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assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
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process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 
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ABSTRACT 
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Two new solvers are discussed. LUBAND, the first routine is a direct solver for banded systems and is based pn a 
LU decomposition with partial pivoting and row interchange. BCGSTB, the second routine, is a Preconditioned 
Conjugate Gradient (PCG) solver with improved speed and convergence characteristics. Bandwidth minimization 
and gridblock ordering schemes are also introduced into TOUGH2 to improve speed and accuracy. 

Introduction 
Most of the computational work in the numerical simulations of fluid and heat flows in 

permeable media arises from the solution of large systems of linear equations Ax = b, where A 
is a banded matrix of order N, x is the vector of the unknowns, and b the right -hand side. These 
are solved using either direct or iterative methods. The most reliable (and often the simplest) 
solvers are based on direct methods. The robustness of direct solvers comes at the expense of 
large storage requirements and execution times. Iterative techniques exhibit problem-specific 
performance and lack the generality, predictability and reliability of direct solvers. These 
disadvantages are outweighed by their low computer memory requirements and their substantial 
speed especially in the solution of very large matrices. 

In TOUGH2 the matrix A is a Jacobian with certain consistent characteristics. In systems 
with regular geometry, A has a known block· structure with well defined sparsity patterns. In 
general, A matrices arising in TOUGH2 simulations are non-symmetric with typically no 
diagonal dominance. Although A can be positive definite in regular systems with homogeneous 
property distributions, it usually is ·not, and ill-conditioning is expected in realistic heterogeneous 
large systems. Due to the fact that A is a Jacobian, the elements of A in a single row may vary 
by several orders of magnitude. In TOUGH2 simulations it is possible to encounter a large 
number of zeros on the main diagonal of A, making central S = NBpivoting impossible and 
resulting in very ill-conditioned matrices. TOUGH2 creates matrices which are among the most 
challenging, with all the features that cause most iterative techniques to fail. In addition, the 
general-purpose nature of TOUGH2 means that different matrix characteristics may arise for 
different types of problems. This explains the past heavy reliance of TOUGH2 on the direct 
solver MA28 [Duff, 1977]. 

The LUBAND Solver 
LUBAND is a direct solver intended to replace the MA28 solver currently used in the 

TOUGH2 family of codes. It is derived from routines in the LAPACK [1993] package, which 
have been enhanced and extensively modified to conform to the TOUGH2 architecture. It is 
based on a LU decomposition with partial pivoting and row interchange, and allows the solution 
of systems with a large number of zeros on the main diagonal. Unlike MA28 (which is a general 
solver), LUBAND is a banded matrix solver, and as such it capitalizes on the significantly lower 
and well defined memory requirements of these solvers. A pseudo-banded matrix structure is 
automatically created by LUBAND for systems with irregular grids. 

Although LUBAND can be applied without any problem in the current TOUGH2 
version, a new MESHMAKER routine was also developed to minimize the bandwidth of matrix 
A and maximize the benefits ofLUBAND. This was prompted by the heavy penalty which non-
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optimization of the bandwidth exacts. Defining work W as the number of multiplications and 
divisions necessary to convert the full matrix to an upper triangular form and to perform back 
substitution, Price and Coats [1974] showed that for direct solvers 

and S=NB (1) 

and S is the minimum storage requirement, N is the order of the matrix and M its half- l~., 
bandwidth, the full bandwidth B being 

B=2M+l. (2) 

The form of the matrix depends upon the ordering of equations. For a given problem size N, 
work and storage are minimized when M is minimized. If I, J, K are the number of 
subdivisions in the x-, y- and z-directions respectively, the shortest half-bandwidth is M = JK 
when I> J > K. This is called standard ordering [Aziz and Settari, 1979], and the resulting 
matrices are banded. As W increases with the square of M, it is obvious that the penalty for non
optimization of the ordering of equations may be substantial. Note that it is possible to use the 
new MESHMAKER with MA28. 

A further substantial improvement was added to the new MESHMAKER~ which features 
as an option the implementation of the Alternating Diagonal Scheme (D4) for gridblock ordering. 
D4 is a direct solution technique belonging to the matrix-banding class, which derives its benefits 
from the numbering of the grid points. More details can be found in Price and Coats [ 197 4]. D4 
ordering partitions the matrix into four distinct entities. This structure allows forward 
elimination through the equations in the lower half of A, which zeroes all original entries in the 
lower left quadrant of A and transforms it into a null matrix, while creating non-zero entries in 
the submatrix ALR in the lower right quadrant of A. The submatrix ALR is of order N/2, and 
allows the calculation of the lower half of x, from which the upper half is obtained by simple 
substitution. Depending on the grid geometry, D4 makes possible execution speed improvement 
by a factor ranging between a minimum of 2 and a maximum of 5.85 [Price and Coats, 1974] 
over standard ordering. Moreover, it reduces storage requirements by a factor of2. 

LUBAND makes possible the solution of large multi-dimensional problems. The 
maximum benefits of LUBAND are realized when used within the context of D4, i.e. to solve the 
submatrix ALR. However, D4 can only be used with regular grids. Although it is theoretically 
possible to solve ALR using ,MA28, the user is strongly advised against for two reasons: the 
uncertainty over the storage requirements of MA28 and the known rapid deterioration of the 
MA28 performance as the matrix fill-in increases (e.g. in 3-D problems). The user has also the 
option of solving ALR using the package of Preconditioned Conjugate Gradient (PCG) solvers 
available in TOUGH2 [Moridis and Pruess, 1995]. 

The BCGSTB Solver 
BCGSTB, the second solver, belongs to the PCG family, and complements T2CG1 

[Moridis and Pruess, 1995], the existing suite of iterative solvers in TOUGH2. It was developed 
based on the BiCGSTAB(e) algorithm [Sleijpen and Fokkema, 1993], which is a recent extension 
of the more traditional BiCGSTAB algorithm of van der Vorst [1992]. It was developed to 
address the problem of irregular convergence behavior of the PCG solvers in T2CG 1 in 
situations where the iterations are started close to the solution (e.g. when approaching steady 
state). This is a weakness which afflicts most PCG solvers, and may lead to severe residual 
cancellation and errors in the solution. BiCGSTAB(Q) alleviates the irregular (oscillatory) 
convergence common to the Hi-Conjugate Gradient (Bi-CG) [Fletcher, 1976] and Conjugate 
Gradient Squared (CGS) [Sonneveld, 1989] methods in T2CG1, thus improving the speed of 
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convergence. Filially, it alleviates potential stagnation or even breakdown problems which may 
be encountered in traditional BiCGSTAB. According to Sleijpen and Fokkema [1993], 
BiCGSTAB(Q) combines the speed of Bi-CG with the monotonic residual reduction in the 
Generalized Minimum Residual (GMRES) method, while being faster than both. Theoretical 
analysis of the underlying concepts also indicates that the BiCGST AB(Q) algorithm is especially 
well-suited to the solution of very large (i.e. N >50 000) problems [van der Vorst, 1992]. 

BCGSTB uses the Boeing-Harwell matrix storage scheme of TOUGH2, and has the same 
architecture as the other routines in T2CG 1. It uses a modified LU decomposition for 
preconditioning, as well as ILU and MILD preconditioners with various levels of fill. Its 
memory requirements increase linearly with the order Q of the Minimal Residual polynomial. For 
Q = 4, it requires twice the memory of Bi-CG or CGS, which is half the GMRES requirement. 

Examples 
The solvers were tested in four test problems. Test problem 1 involves a laboratory 

convection cell experiment. A porous medium consisting of glass beads fills the annular region 
between the two vertical concentric cylinders. Application of heat generates a thermal buoyancy 
force, giving rise to the development of convection cells. This problem has been discussed in 
detail by Moridis and Pruess [1992]. The EOS1 module is used. The domain consists of 16x26 
= 416 gridblock.s in (r,z), with NK = 1 and NEQ = 2, resulting in a total of N = 832 equations. 

Test problem 2 examines flow as it reaches steady state in a simple two-dimensional 
model of a heterogeneous porous medium. The basic computational grid is composed of 80 x 
120 = 9600 grid blocks in (x,y). Impermeable obstacles with lengths uniformly distributed in the 
range of 2 - 4 m are placed in the domain. These blocks are removed from the mesh, leaving a 
total of 8003 grid blocks. EOSl is used, and NK = NEQ = 1. Moridis and Pruess [1995] present 
a thorough discussion of the problem. 

Test problem 3 describes the WIPP (Waste Isolation Pilot Plant) repository, which is 
planned for the disposal of transuranic wastes. It is located in a bedded salt formation, is brine 
saturated and consists of a large number of beds with thin interbeds. The layer permeabilities 
vary by four or five orders of magnitude. The purpose of the model is to evaluate effects of gas 
generation and two-phase flow on repository performance within a complex stratigraphy. The 
simulated domain consists of 1200 elements in a 2-D vertical grid. EOS3 is used in this 
isothermal (NK = NEQ = 2) problem, which results in a total of N = 2400 equations. More 
details can be found in Moridis and Pruess [1995]. · 

Test problem 4 describes the TEVES (Thermal Enhanced Vapor Extraction System) 
process, which is designed to .extract solvents and chemicals contained in the Chemical Waste 
Landfill at Sandia National Laboratories. In this process the ground is electrically heated, and 
boreholes at the center of the heated zone are maintained at a vacuum to draw air and vaporized 
contaminants into the borehole and to a subsequent treatment facility. The 3-D grid consists of 
1300 gridblocks. EOS3 is used (NK = 2, NEQ = 3), and N = 3900 equations are solved. 
Additional information can be found in Moridis and Pruess [1995]. 

Results and Conclusions 
The results are presented in Tables 1 through 4 and Figures 1 and 2. In all the 

simulations a modified LDU preconditioner was used with no fill-up of the resulting LU 
preconditioned matrices. The following conclusions can be drawn: 
(1) The LUBAND routine is a fast and efficient solver with modest memory requirements, 
and can solve large problems previously untractable with the MA28 solver. 
(2) Bandwidth minimization significantly improves the LUBAND performance. 
(3) Coupling D4 with LUBAND increases the solver speed by at least a factor of 2, and 
makes it competitive with iterative solvers in small and medium-sized matrices. However, the 
speed advantage of the PCG solvers becomes apparent in three-dimensional problems. 
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(4) BCGSTB is very competitive, and outperforms the T2CG1 iterative solvers in almost all 
cases. There seems to be no measurable difference in performance for Q = 2 and Q = 4. 
(5) BCGSTB does not exhibit oscillatory behavior, and does not suffer from instability as it 
approaches the steady-state condition. 
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Table 1. Solver Performance in Test Problem 1 

Number of Equations: 832 (2-D) Apple Macintosh QUADRA 800 

Number Newtonian Maximum Minimum CPU Time 
SOLVER of L1t's Iterations Nee Nee (sec) 

MA28 26 91 - - 331 
DSLUBC 26 91 31 2 321 
DSLUCS 26 91 35 2 295 
DSLUGM 26 91 41 11 299 
LUBAND 26 91 - - 246 
LUBAND/D4 26 91 - - 98 
BCGSTB(2) 26 91 36 4 301 
BCGSTB(4) 26 91 32 8 300 
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Table 2. Solver Performance in Test Problem 2 · 

Number of Equations: 8,003 (2-D) IBM RS/6000 370 

Number Newtonian Maximum Minimum 
SOLVER of Lit's Iterations NeG NeG 

MA28 Could not solve the problem due to insufficient memory. 
DSLUBC 10 17 225 172 
DSLUCS 10 17 173 154 
DSLUGM 10 19 316 810 
LUBAND 10 17 - -
LUBAND/D4 10 17 - -
BCGSTB(2) 10 17 64 16 
BCGSTB(4) 10 17 64 24 

Table 3. Solver Performance in Test Problem 3 

Number of Equations: 2400 (2-D) IBM RS/6000 370 

Number Newtonian Maximum Minimum 
SOLVER of Lit's Iterations NeG NeG 

MA28 97 521 - -
DSLUBC 102 554 45 9 
DSLUCS 110 594 45 6 
DSLUGM 125 673 179 8 
LUBAND 97 521 - -
LUBAND( opt) 97 521 - -
LUBAND/D4 97 521 - -
BCGSTB(2) 106 531 40 4 
BCGSTB(4) 104 529 40 8 

Table 4. Solver Performance in Test Problem 4 

Number of Equations: 3,900 (3-D) IBM RS/6000 370 

Number Newtonian Maximum Minimum 
SOLVER of Lit's Iterations NeG NeG 

MA28 Could not solve the problem due to insufficient memory. 
DSLUBC 50 249 36 8 
DSLUCS 50 239 20 4 
DSLUGM 50 250 28 7 
LUBAND 50 232 - -
LUBAND(opt) 50 232 - -
LUBAND/D4 50 232 - -
BCGSTB(2) 50 236 16 8 
BCGSTB(4) 50 235 32 8 
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CPU Time 
(sec) 

158 
86 

379 
55 
26 
40 
33 

CPU Time 
(sec) 
450 
593 
408 
478 
946 
376 
168 
388 
399 . 

CPU Time 
(sec) 

619 
462 
451 
6412 
4228 
1683 
439 
453 



4 
1 0 

2 
1 0 

0 
as 1 0 
::s 

"C 
tn 
CD -2 a: 1 0 

-4 
1 0 

-6 
1 0 

.l ........................................................... l ........................................................... ll ......................................................... --1. 

! ! !I -DSLUBC ! 
! i !i ········· DSLUCS l 

.l... ................................... ~::·_·.-.~~:::~~~~:::::~t:~::,., ............................................. JJ......... --- DSLUGM ___ __L 
: _... : ••••• = :: ~ BCGSTB(2) : 

.L~;~(/ _ _l __ ~>>'~<:::~:J 1·····1··-=~::(~)-- !,;-

} --""""- ............ 
. .....~~ ~ 

- ................... : .............. ~~ ............. L r - - - - --r·· - .. ' -, ! 

T ------ -- --r - - -- r-~tJ

1
- --- - --

1 r- - - - - --~--- --- - t •\• - -- - - ! 
3 4 2 3 4 

1 

Number of CG iterations 

Figure 1. CG solver performance in the frrst Newtonian iteration of the lOth timestep in Test 
Problem 2. 
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Figure 2. CG solver performance in the first Newtonian iteration of the 50th timestep in Test 
Problem 2. 
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