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Abstract. Some of the statements and procedures appearing in the indicated reference are 

discussed and interpreted, and alternatives to them are proposed. 

1. In Sections 1 and 2 of the reference [1], the authors consider the behavior of a capillary 

surface in a "wedge shaped region" in the absence of gravity. Not all hypotheses and conclusions 

are clearly stated, so it is difficult to determine what are the precise contributions of the paper, 

and to some extent we have had to surmise the intent of the authors. Nevertheless, the underlying 

nature of the problem being attacked and the general form of the methods that were employed can 

be discerned with some certainty. In the Abstract of [1] appears the statement 

"It is shown that the height of the free surface at the corner tends to infinity as the wedge angle 

[2a] decreases to a critical value [2o:cr] dependent upon the contact angle ['y]." 

From this statement we may infer that the authors are studying a fluid surface interface 

described by a function u(x, y), and which meets the bounding walls of the wedge in a prescribed 

angle 'Yi on the following _page of [1] the further condition is introduced that the surface is to have 

a constant mean curvature "'· This latter condition can be expressed explicitly by the equation 

divTu = 2K, 
\lu 

Tu = --;:;==:::::::==.::= J1 + j\7uj 2 
(1) 

over the wedge domain W of opening 2o:, while the former one takes the form 

v · Tu =COS"( (2) 

at boundary points distinct from the vertex P; here v is the unit exterior normal vector to oW. 

We observe that the height u(x, y) of the surface appears in the equation and boundary condi

tion only in differentiated form; thus any solution is determined at most up to an additive constant. 

The italicized statement cannot have a meaning until this constant is determined. In physical sit

uations, it is customary to fix the constant via a normalization; that can be done, for example, 

in a capillary tube closed at one end by normalizing the volume. However, the authors assume 
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at a crucial point in their discussion that the region of definition is an entire infinite wedge, thus 

excluding the possibility of volume normalization. A reasonable alternative might be to normalize 

the height to vanish asymptotically at infinity in directions interior to the wedge and distinct from 

those of the bounding edges. This possibility is however excluded by the conclusion of the authors 

that the solution must be an inclined plane whenever 'Y =/; 1r /2. Another alternative is to normalize 

the height at one point, and one way to do that is to normalize it at the vertex P. It is not 

immediately clear that such a choice is feasible, as P is a singular boundary point and the solution 

height is not initially known to be defined there. In view additionally of the italicized statement, 

that particular normalization would not at first seem to have been what the authors had in mind; 

nevertheless, it is precisely what they do. Indeed, on the following page, they determine by an 

incomplete reasoning the possibly correct result that the solution must be a plane and write: "Let 

us write the equation of this plane as z = -Ax where x = r cos() is the distance from the edge 

along the bisector of the wedge angle." Thus the height at the vertex is set to be zero, and so we 

are hard-pressed to understand how it could go to infinity as a-+ acr, as they state. 

One could attempt to justify the reasoning by taking the view that what the authors really 

had in mind is the local behavior at a boundary corner point Pin a capillary tube with bounded 

section. One is interested only in behavior very close to P, and relative to such points the remainder 

of the boundary could be viewed as being effectively an infinite wedge. In such a configuration a 

volume normalization would be feasible, and experience with other physical problems might lead 

one to expect the local height to become large with decreasing wedge angle. In anticipation of the 

final conclusion that there can be no solution when a< acr = ~~- 11, one might guess that the 

local height should become unbounded as a decreases to acr· We may surmise that such thoughts 

were the motivation for the statement italicized above. But a brief reflection yields the following 

counterexample: 

We observe that in .the absence of gravity a lower spherical cap yields a formal solution to 

the capillarity equation (1). In the configuration of Figure 1, which indicates the section n of a 

cylindrical capillary tube, we choose for u(x, y) the portion lying over n, of a lower hemisphere SR for 

which ER is the equatorial circle; :ER is positioned at a height above the base plane to be determined. 

Then SR meets the boundary walls over E =an in the constant angle 'Y = ~- sin- 1 (p/R), while 

a= sin- 1 (p/ Ro). 

Keeping p and R fixed, we let Ro increase to R. Then 'Y remains constant while a decreases 

to acr = ~ - "(, and it is clear that the height of :ER can be adjusted within fixed upper and lower 

bounds so that the volume remains constant throughout the deformation. It follows that u(x, y) 
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Figure 1. Construction of example. 

remains bounded above and below, and thus the surface cannot tend to infinity in the corner. 

Note that in this example the surface continues to exist as a formal solution of the capillarity 

equation, up to and including the limiting configuration a = acr, with the boundary condition 

satisfied at all smooth points of 2: (it is not possible to specify a boundary angle at P). 

Thus, even for a bounded container and fixed fluid volume, the statement italicized above 

cannot be justified. 

It will be shown in Sec. 3 below that the solution just determined disappears discontinuously 

if a is decreased beyond acr· Physically, the fluid presumably flows out along the edge over P until 

it either reaches the top of the container or uncovers a region on the base. But the fluid remains 

at a height over the base uniformly bounded above and below for all a 2: acr· 

2. The infinite wedge considered in [1] has an independent mathematical interest, and it seems 

worthwhile to examine the line of reasoning offered by the authors. The reasoning given on p. 162 

that 11, = 0 is suggestive but not rigorous. A rigorous justification follows from a theorem of S. 

Bernstein [2], that a surface whose height u(x, y) satisfies (1) with 11, =f. 0 cannot be defined in a 

disk of radius exceeding 1/IK,I. (Sharper forms of this result, not needed in the present context, 

are given in [3] and in [4].) Thus, the only possibility for a solution of (1) in an infinite wedge is 

that u(x, y) represent a minimal surface, for which 11, = 0. The authors then attempt to use the 

invariance of the domain and of the boundary condition under dilation to show that the surface is 
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ruled. Unfortunately, this reasoning depends essentially on the uniqueness of the solution, which 

for the indicated configuration is currently an open problem under active study (see, for example, 

[5] and [6]). But in the expectation of an ultimate positive outcome for this step, let us go on to 

the next one, which is that because the surface is minimal and ruled it must be a plane. For this 

last statement, the helicoid u(x, y) = tan- 1 (y/x) provides a counterexample. 

Nevertheless, the situation is not wholly lost. It was shown by E. Catalan [7] in 1842 that the 

helicoids are the only ruled minimal surfaces other than the planes. But a helicoid cannot satisfy 

the boundary condition (2), and we arrive finally--subject to the uncertainty about uniqueness-at 

the stated conclusion that u(x, y) represents a plane. From this point, we may safely follow the 

authors' reasoning to obtain their conclusion that a > I~ -II· 

3. The authors state on p. 161 that their procedure provides a simple derivation of our 

earlier result. But beyond the incompleteness of their derivation, they assume a solution defined 

in an entire infinite rectilinear wedge, whereas we require only that the solution be defined in a 

neighborhood of a protruding corner in a general domain. There is a further important distinction, 

in that our original conclusion was that a 2: I~ -II· The possibility of achieving the equality sign 

is illustrated in the example given above; it is an important case, as it demonstrates concretely the 

discontinuous dependence on the boundary data. 

In order to compare the two reasonings from the points of view of completeness and of sim

plicity, we outline our proof. We consider a domain with a protruding corner P, and a solution of 

(1), (2) defined in a neighborhood N of P and smooth up to the boundary at points distinct from 

P. We choose a segment r within N, and cut off the vertex with a parallel segment A, as indicated 

in Figure 2. In the resulting domain i1A., we integrate (1) and use (2) and the divergence theorem 

to obtain 

2K-Ii1A.I = 1r v · Tu ds + i v · Tu ds + II.:A.I cos')'. 

Since lv · Tul < 1, we may let A move to P, and the integral over A vanishes in the limit. 

Writing .e = limA__.P II:A.I, we find 

£cos1 = -lr v · Tu ds + 0(£2
). 

Using again that lv · Tul < 1 and letting£ --t 0, we obtain I cos 'YI :S sin a; that is, a 2: I~ - 'YI· We 

are done. As one sees from the example above, the result is best possible. 

4. It is not known whether every minimal surface u(x, y) defined over an infinite rectilinear 

wedge and meeting the boundary walls in a constant angle ')' =/= 1r /2 is necessarily a plane. (It has 
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Figure 2. Portion of wedge. 

only recently been proved that the special case 'Y = 1rj2 admits an affirmative answer, see [6].) We 

can show, however, that there is no such minimal surface, even in a neighborhood of P, when the 

half-opening a = acr· In fact, if there were such a solution, we could introduce a segment r as 

above, and a formal integration would yield 

f. cos"(= 1r v · Tu ds < R.sina 

and also f. cos"(> -R.sina, which is not possible when a=~~- 'YI· 

Thus, in the case of an infinite wedge, for which the surface is necessarily minimal, the extremal 

configuration cannot be realized by any solution; this differs from the behavior when only a portion 

of the wedge is occupied by the fluid, as follows from the above example. 

5. The authors in [1] proceed on p. 163 to take up the case in which the contact angles on the 

two sides of the wedge may differ, concluding with the same reasoning as in the single angle case that 

the surface must be a plane and hence obtaining a condition on the range of possible opening angles. 

In this situation, however, they lose much more than particular solutions in a limiting configuration. 

There is an entire family of solutions, whose behavior near the vertex differs essentially from what 

can occur in the equal angle case. These surfaces appear when the two contact angles satisfy 

l"f1 - 'Y2 1 > 1r- 2a, although the method of [1] predicts nonexistence for such configurations. In 

[8] and in [9] sectional geometries are characterized for which the surfaces exist globally for all 

such 'Yl, "(2 as formal solutions of the boundary value problem, and it must be expected that they 

will also be observed experimentally. Thus in our view--even apart from the uncertainties about 

the procedures-the condition (2. 7) introduced in [1] is not a good indication of the behavior to 

be expected of solutions of the capillary equation in domains with protruding corners, when the 
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contact angles differ on the two sides of the corner. Correspondingly, the experiment proposed in 

that reference, if interpreted by (2.7), would, we believe, lead to erroneous conclusions in many 

cases of physical interest. 

This work was supported in part by the National Aeronautics and Space Administration under 
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