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Random Fields Generation by the Source Point Method 

ABSTRACT 

Sergey P. Pozdniakov* and Chin-Fu Tsang 

Earth Sciences Division 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, CA 94 720 

A semi-empirical method of generating random 2-D fields with exponential 

correlation is developed. The most important features of this method are the relatively 

small number of calculations at each point of the field and the simplicity of the 

programming algorithm. In the present work, the method was improved for modeling 

anisotropic fields and fields where the dimension of the modeling domain is comparable 

to the correlation scale. An integral method of evaluating the results of the generated 

large field was developed by dividing the field into blocks and calculating the statistics of 

the generated data averaged over the blocks. 
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INTRODUCTION 

Within the framework of stochastic hydrology theory, the estimation of aquifer 

properties and calculation of flow and contaminants transport requires the generation of 

random autocorrelated fields. Examples of the use of randomly generated fields in the 

investigation of ground water flow and transport can be found in the works of several 

authors, including Shvidler (1964), Tsang et al. (1988), Tompson and Gelhar (1990), and 

Desbarats (1992). In many cases the heterogeneity of the natural hydrogeological 

parameters (e.g., aquifer transmissivity, porosity, and thickness) can be accurately 

described by normal or normalized random fields with an exponential correlation 

function. There are several methods of generating such fields, and they are presented by 

Heller (1972), Smith and Freeze (1979), and Mantoglou and Wilson (1982). The present 

paper examines and extends the Source Point Methods (SPM) of Heller ( 1972) and Ghori 

et al. ( 1993). An important feature of this method is the relatively small number of 

calculations at each point of the generating field. The method also provides users with 

simple programming algorithms. However, a limitation is associated with this method­

it lacks a strong theoretical background for the correlation function. The goal of this 

paper is to improve and extend the method for generating anisotropic 2-D random fields 

and fields with dimensions comparable to the correlation scale. 

BACKGROUND OF METHOD 

According to Ghori et al. (1993), the main idea of the SPM is to calculate a random 

set of function valuesf(xi,Yi) at given points by the values at the sources, whose 

coordinates are being randomly distributed as: 

N 
f(xi,Yi)=Lai,j·qj , 

j=l 

2 

(1) 



where qi is the normally distributed value and ai,j is the weighting function determined 

from 

N 
ai,j = [ (Xj- Xi) 2 + (yj- Yi)2 rl I ~[(xj- Xi) 2 + (Yi- Yj )2 rl ' (2) 

j=l 

where N is the number of sources involved in the calculation of the function at a given 

point with Xi and Yi coordinates and Xj and Yj are the random coordinates of the j-source. 

Evidently, 

N 
~a· ·=1 £.J 1,] ' 

j=l 

N 
~a?-. :;t 1 £.J l,] 

j=l 

The performance of this method is exceptionally good because it only needs two 

(3) 

generations of the uniformly distributed numbers for the coordinates of the sources, one 

generation of normally distributed numbers for source values, and a small number of 

calculations for each point of field according to eq. (1). It was shown in the work of 

Ghori et al. (1993) that by using some empirical relations between the correlation length 

and the number of involved sources one can generate a field with the form of the 

correlation function close to that of the exponential function. 

The method, presented by Ghori et al. (1993), performs well. However, there are 

some areas that can be improved, and they can be identified by asking the following 

questions: 

• How can one assume the mean and variance of the modeling field to be the same 

as preset values? 

• Is it necessary to use every source number to calculate each point value of the 

field? 

• How can one simulate a field that has dimensions comparable to the scale of 

correlation? 
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The Ghori et al. (1993) article also contains an empirical, nondimensional equation (see 

eq. (6) of this article). Such an approach makes it difficult to generate an anisotropic field 

with a different form from that of Ghori et al. (1993). This paper will present some 

efforts to improve the SPM' s modeling of random fields along these lines. 

IMPROVEMENTSTOSPM 

Let us simulate a normal distributed stationary fieldf(xi,Yi), with a mean M and 

standard derivation a, having the antisotropic correlation function R(r) in the domain 

{X,Y}: 

where X, Yare the dimension of a domain andLx, Ly, are correlation scales along the x 

and y axes, respectively. 

(4) 

Now let us transform and include the modeled domain into a unity square so that the 

point coordinates (x[,y[) in the latter are connected with the actual area coordinates (xi,Yi) 

by the ratios: 

(5) 

where Dmax = max{X,Y}+2-Lx. Having the simulated isotropic fieldf>(x[,y[) on the 

unity square with a zero mean and unit variance, one can obtain the actual anisotropic 

field by using the inverse coordinates transformation and scaling the field on the nonzero 

mean and actual variance: 

(6) 

Variation of the Generated Random Field Realization 

Only in the case when X>> Lx andY>> Ly will the variance of the mean a! of 

random fieldf>(x[,y[) equal to 0 and the field variance dj equal to 1. In practice the size 

of the modeled field often does not exceed ten times that of the correlation scale, so it is 
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necessary to estimate beforehand the influence of the ratio of the field dimension to the 

correlation length on modeling the field statistics. 

The variance of the field mean can be calculated as: 

cr~ = X21y2 (Jf JO(x,y)dxdy) = X21y2 fJIJ R(r)dxdydx'dy' (7) 

The variance of field can be calculated as: 

aJ = (;y Jf (JO(x,y))2dxdy- X2
1
y2 (JJ JO(x,y)dxdy t) = 1- cr~ (7a) 

The four-fold integral in eq. (7) was solved (for another problem) for an exponential 

isotopic correlated field by Shvidler ( 1964). The final equation for the variance of the 

field mean is: 

where the function q> is 

q>(z) = 2z-2(e-2 + z -1) . 

Another widely used function in stochastic theory is the Gaussian correlation 

function: 

R(r) = exp(-x2 I Li- y2 I L~;) . 

The structure of the means's variance for this function is the same as for eq. (8) 

where the function tf1 is 

tf!(Z) = z-2 ( z-fiierf(z) + e-Z2 -1) . 

(8) 

(9) 

(10) 

(lOa) 

(11) 

For a general n-dimensional case, the equation for the variation of the field's mean has 

the form 
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n 
CT~ = IT <p(A;) or 

i=l 
(j~ =IT 'lf(A;) ' A;=~ ' 

i=l 

(12) 

where n = 1, 2, 3 denotes the dimension of modeled field and D;/L; gives the ratio of field 

size to correlation length for each axis. 

The influence of the ratio of the field size to the correlation length on the mean's 

variation is shown in Table 1 for the case of the 2-D square isotopic field with an 

exponential correlation. One can find from this table that the variance of the field's mean 

tends to 0 when the field size is ten times or more the correlation scale. 

The influence of the ratio of the field size to the correlation length on the mean's 

variation is shown in Fig. 1 where n = 1,2,3 denotes the dimension of the isotropic field 

with an exponential correlation. Using the equation for mean variance and the normal 

distributed number, one can estimate the expected values of the mean and variance of the 

generated field. 

Procedure for Field Calculation 

To generate a fieldjO(xf,y[) using (1) and (2), it is necessary to estimate the total 

number Ns of sources in a unit square, the parameters of the q source value distribution, 

and the number of sources N for calculations at each point of the field. According to 

eqs. (1) and (2) the distribution of field values will be ofthe same type as the distribution 

of sources values, i.e., a normal distribution. The mean of the field value distribution will 

be equal to the mean of the source values distribution. There is no way a priori to 

estimate the variance of distribution of source values that would give unit variance of the 

Table 1. The influence of the ratio of the field size, D, to the correlation length, L, on 
the variation of the mean. 

DIL 0.5 1 2 4 6 8 10 20 

ci m 0.726 0.541 0.322 0.142 0.072 0.048 0.032 0.009 
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field. Thus, we use a distribution of source values with a zero mean and unit variance. In 

this case the distribution of values for the generated field fJ ( x[, yf) has non unit (less than 

one) variance, and it has a mean close to zero. This distribution is then transformed to 

zero mean and unit variance N(O, 1) distribution by using the estimated values of mean 

and variance obtained during this field generation. The N(O, 1) distribution could easily 

be transformed onto another normal distribution with expected values of variance and 

mean. 

For an estimation of Ns and N, we will use the following procedure. It is clear that the 

correlation length of the generated field is comparable to the search radius of the nearest 

source. It means that for search radius Rsearch it is possible to assume an empirical 

equation: 

Rsearch = f3 · Lx I Dmax , 1 ~ f3 ~ 2 . 

Judging from the structure equation of ai,j. these coefficients are a rapidly increasing 

function, and hence, the total number N of members of the series in eq. ( 1) have to be 

kept below 10-20. 

From the above, it is possible to assume an empirical equation for N5 : 

(13) 

D~ax f3 Ns=N· 2 /32 ; 1~ ~2 , 10~N~20 . 
Lxlr 

(13a) 

After generating a series of fields for various values of Nand /3, it is found that the best 

values of N is 16 and the best value of f3 is 1.25. 

In summary, the procedure for field generation consists of the following steps: 

• Transform the field domain into a unit square. 

• Calculate the mean variance and the expected field variance according to eqs. (7) 

and (8). 

• Simulate the expected value of the field mean, using its estimated variance. 

• Calculate the number of sources according to eq. (13a). 

• Generate uniform random coordinates of sources on the unit square. 
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• 

• 

Generate a normal distributed sources value with N(O.l) distribution . 

Calculate field values on the unit square according to eqs. (1) and (2) using N 

nearest sources. 

• Transform field values to an N(O,l) distribution. 

• Inverse the coordinates transformation. 

• Find the field values using the expected values of mean and variance according to 

eq. (6). 

• Transform the field as needed by exponentiation, etc. 

AN EXAMPLE OF RANDOM FIELD GENERATION 

Random fields of hydraulic transmissivity were generated for Monte Carlo 

simulations of transport in the heterogeneous aquifer. From the empirical data, the 

estimated value of the variance of log transmissivity was 1,4. Generating a random field 

of transmissivity with such a large variance could lead to abnormally high (on the order 

of n*l04m2fday) and abnormally low (less than I0-3 m2fday) transmissivity values. Thus 

a distribution was sought that would limit the extreme values near the small and large 

probability values but give values that correspond to the lognormal distribution near the 

median. The Johnson's S-V distribution was chosen-which is a normal distribution for 

the transformed function Fr 

F I 
T-Tmin r= og--=~ 
Tmax -T 

(14) 

where Tis transmissivity, and T min are its minimum and maximum values. Parameters of 

the transmissivity distribution are: 

m2 m2 
Mp =-2.73 , a~ =2.0 , Tmin =0.4- , Tmax =870-

day day 
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The horizontal exponential correlation scales of Fr were Lx = 30 and Ly = 90 meters. 

The transformation used to obtain the random transmissivity field is in two steps: 

a) Generation of Fr(x,y) field, 

b) transform Fr(x,y) into T(x,y) according to 

T = T max exp(Fy)+ T min 

1+exp(Fr) 

The transmissivity field was generated on a square mesh 560 x 560 meters with a 

constant grid of 10 x 10 meters. 

The estimation of field and correlation scale size interaction according to eqs. (7) and 

(8) gave the next values for variances: cr~ ""0. 037; cr] ""0. 963. 

More than 50 field realizations were simulated. For each realization, the empirical 

distribution ofF r and three variograms (for all points, X-X and Y-Y directions) were 

calculated. For each variogram the parameters of the exponential curve were found. In 

all variants the distribution shape was normal and the estimated correlation lengths were 

close to the modeled values. The standard derivation of the estimated correlation lengths 

was less than 30%. 

An example of the generated field of transmissivity is shown in Fig. 2. Empirical 

variograms of the transformed field of transmissivity calculated for this realization of 

field according to eq. (13), are shown in Fig. 3. The less than expected value of 3 for the 

ratio of correlation lengths can be explained by the variogram method in the X-X andY-

Y calculations. For the calculation of variograms with the dependence on direction, a 

search of nearest points is performed for over an angle 90 quadrant. 

Table 2 compares computing time on an i486/33DX machine for this method with 

that for the Turning Bands Method (TBM) of Tompson and Gelhar (1990). 
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Table 2. Comparison of computing time for SPM vs TBM methods on an i486133DX 
computer. 

Method Compiler cpu time for one simulation 

SPM VBDOX 1.0 55 sec 

TMB FORTRAN Power Station 1.0 2 min and 15 sec 

The table indicates that the SPM is an efficient method of generating random fields 

with regard to computer time. This method could be used when many realizations of the 

field are needed, but when an accurate reproduction of the theoretical correlation function 

is not required. It is easy to extend this method for 3-D field generation. 

VERIFICATION OF RESULTS OF FIELD GENERATION 

The generated field must satisfy the predetermined correlation structure independent 

of the method of field generation. In this section we will give the integral method of 

verification of results of generation without regard to the SPM. We also will consider the 

method of verifying the general case of an n-dimensional field. 

The best verification measure is to calculate the variogram or the correlation function 

of the field that has been generated. Often the number of generated points of the field 

within the modeled domain exceeds 1Q5- 106 (Tompson and Gelhar, 1990). For such a 

large field the calculation of the variogram n using all points and searching in all 

directions can take a long time. The main idea of the integral method is to consider the 

right-angled blocks oriented along the main axes of correlation having sides of length Bk, 

where k = 1 , ... ,n. Let us consider the covariation function averaged over the block value 

lac of random function/that has variance a2 and the Gaussian correlation function. This 

co variation function Cov( r,B) can be represented in the form: 

n 
Cov(r,B)= a2I1 Covo(rk I Lk,Bk ILk) , 

k=l 

10 
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where the partial covariation Covo(11L,BIL) is 

x+0.5B x+H0.5B 

Covo(-r I L,B I L) = B-2 f f exp(-(lh- fh)2 I L2)d8tdfh 

x-0.5B x+-r-0.5B 

Upon integrating eq. ( 17) we obtain the equation for a partial covariation as a function 

of dimensionless block side length B = B/L and dimensionless displacement r = -riL: 

Cov(B, r) = 
0. SB-1 { ...Ji[ ( -ro + 1)eif(::C + B)- 2 -roeif(::C) + ( -ro -1)eif(::C- B)] (18) 

+B-l[exp(-(r+B)2)-2exp(-r)+exp(-(r-B)2)]} ; -ro = -rl B 

For zero displacement, partial covariation equals the function 1J!(B) defined by 

eq. ( 11). It means that the dimensionless variance a?; = at I a2 of the block values of 

random function can then be calculated from eq. (12) with the parameter~. the ratio of 

the length of each side of the correlation scale L in this direction. For a zero block size, 

eq. (18) approaches the equation for the correlation function of the field eq. (10). 

One can divide the field into blocks and calculate the variance of averaged block 

value as a function of block size and compare the results with theoretical numbers from 

eq. (12). For the widely used lognormal distribution, an effective verification of the 

generation is to calculate the coefficient of variation of the block value. It is easy to show 

that for the Gaussian model of log correlation the equation for the coefficient of variation 

~ has the form: 

(19) 

This equation depends on the size of the blocks, the correlation scale, and the type of field 

correlation. If the empirical data agree well with the various block sizes, they should 

agree well for the zero size block, i.e., for the original field. 

As an example of verification of the generation in Fig. 4, one can compare the 

theoretical values calculated from the coefficient of variation from eq. ( 19) and field 
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generation data from the work of Dykaar and Kitanidis ( 1993). The experimental data 

are obtained by averaging values of the lognormal Gaussian correlated field generated on 

a 3-D fine mesh with the length of the cubic cell equal to Un, increasing step by step the 

size of blocks in a horizontal direction for averaging. Each experimental point is 

computed from a sample size of 10 realizations, and each realization is generated with the 

variance equal to two. Theoretical curves are calculated using eq. (19). The good 

agreement between the theoretical and experimental values shows that the method of field 

generation in this paper gives the tolerance realizations of the expected field. 
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FIGURE CAPTIONS 

Figure 1. Relation between the variation of the mean and ratio of the field size, D, to 
the correlation length, L, for 1, 2, 3 dimensional cases. 

Figure 2. An example of random anisotropic field of transmissivity. 

Figure 3. An experimental variogram of random anisotropic field. 

Figure 4. The comparison of theoretical values of coefficient of variation of 
transmissivity averaged into the blocks and data from numerically generated 
fields (Dykaar and Kitanidis, 1993), where his the vertical length of the 
block in units of integral correlation scale. 
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Figure 2- An example of randolll anisotropic field of u:ansnUssh'it)'. 
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