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Abstract. A new numerical method, the Laplace Transform Finite Difference (LTFD) 

method, is extended to the solution of the solute transport problem in groundwater. The 

major advantage of LTFD is that it eliminates the time dependency, the need for time 

discretization, and the problems stemming from the treatment of the time derivatives in 

the nonlinear Partial Differential Equations (PDEs) of flow and transport by using Laplace 

transform formulations. LTFD yields solutions semi-analytical in time and numerical in 

space by solving special formulations of the PDEs using a Finite Difference (FD) space 

discretization scheme in the Laplace space, and numerically inverting the transformed 

solution vectors. Two space discretization schemes are employed, and two inversion 

methods are used. Concerns over the effects of the numerical treatment of the time 

dependency on accuracy and stability, which necessitate a large number of small time 

steps between successive observation times in traditional solutions, are rendered irrelevant 

because time is no longer a consideration. An unlimited time step size is thus possible 

without loss of accuracy or stability. 
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1. Introduction 

The contaminant transport problem in groundwater involves the solution of two 

Partial Differential Equations (PDEs): the parabolic PDE of groundwater flow, and the 

hyperbolic PDE of solute transport. The traditional numerical methods employed in the 

solution of these PDEs discretize both the space and the time domains, and are based on the 

universal concept of substitution of a set of algebraic equations (valid within sub domains 

of time and space) for the original equations. Instead of solving for a continuous smooth 

function j(x1, Xz, X3, t), the space domain (x1, x 2 , x 3 ) is subdivided in M subdomains with 

spatially constant properties and the time t is discretized in Mt subdivions (timesteps); 

Mt sets of approximations j of the solution are obtained at the l\1 predetermined points 

in space. A PDE problem with a continuous smooth solution surface is thus reduced to a 

set of algebraic equations, which are easier to solve and provide a solution arithmetically 

"close" to the true solution of the original PDE, from which they differ by the truncation 

error E = f - f. 

While the nul:nerical solution of the PDE of transient groundwater flow is relatively 

simple, the solution of the hyperbolic PDE of solute transport in groundwater poses 

some formidable problems which may involve oscillating solutions, numerical dispersion, 

peak clipping, and grid orientation. For simultaneous flow and solute transport, the 

space discretization which minimizes truncation errors in the flow equation is rarely that 

which minimizes the truncation errors in the solute transport equation. This requires the 

development of complicated schemes (e.g. dual, adaptive, or travelling grids), which may 

be difficult to implement and require large computer storage memories. 

Although space discretization may be very important (especially in cases of sharp 

fronts), the treatment of the time dependence and the approximation of the time derivative 

in the PDEs are consistently the most important factors affecting the stability and 

accuracy of the numerical methods approximating the PDE of solute transport. The 
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explicit formulation of the numerical approximation to the transport PDE may require 

impractically small time steps for stability. Implicit formulations may introduce significant 

numerical dispersion. Inappropriate time dicretization may lead to numerical smearing 

or oscillatory behavior of the solution, and especially so in cases of sharp fronts and 

dominant advective displacements. Unstable solutions, inaccurate results, and significant 

mass balance errors may be observed. Accuracy and stability considerations necessitate a 

large number of small timesteps between observation times, and solutions must be obtained 

at all these intermediate times (whether desired or not), at the expense of longer execution 

times and larger roundoff errors. 

The Laplace Transform Finite Difference (LTFD) method is a numerical method 

developed for the solution of the linear parabolic PDE of incompressible flow [Moridis 

and Reddell,1990a; 1991a] and the non-linear PDE of slightly compressible fluid flow 

[Moridis et al.,1994] through porous media. It belongs to a family of new, Laplace

transform based numerical methods which also includes the Laplace Transform Galerkin 

[Sudicky,1989; 1990], the Laplace Transform Finite Element (LTFE) method [Moridis and 

Reddell,1991b], and the Laplace Transform Boundary Element (LTBE) method [Moridis 

and Reddell,1991c; 1992]. 

These methods combine traditional space discretization schemes with Laplace trans

forms, and use the same approach: (a) a Laplace transform is performed on the original 

PDE, (b) the resulting transformed PDE is discretized using a standard FD, FE, or BE 

discr~tization scheme, (c) the resulting simultaneous equations are solved and the vector 

of the unknowns is obtained in the Laplace space, and (d) the solution in real time is 

obtained by numerically inverting the Laplace space solution. 

The major advantage of these new numerical methods is that they eliminate (a) the 

time dependency of the problem, (b) the complications arising from the treatment of 

the time derivative, and (c) thus the need for a large number of small timesteps for an 
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accurate solution because of their Laplace transform formulation. They return a solution 

numerical in space and semi-analytical in time, allow an unlimited timestep size without 

loss of accuracy or stability, and yield a stable, non-increasing material balance error in 

addition to a more accurate solution than the conventional treatments. Execution times 

may be reduced by orders of magnitude [Moridis and Reddell,1991c] because calculations 

are necessary only at the desired observation times, while in standard methods calculations 

are needed at all the intermediate times of the discretized time domain. 

The combination of a traditional space discretization scheme with Laplace transforms 

for the solution of the solute transport equation was first reported by Sudicky [1989; 1990], 

who reported impressive results using a Galerkin weighted-residual variational formulation. 

Assuming (a) a constant, time-invariant velocity field, (b) a uniform porosity distribution, 

(c) linear absorption, and (d) a water density unaffected by the presence of solutes (i.e. very 

dilute solutions), he eliminated the flow equation from the problem and obtained numerical 

solutions of the linearized solute transport PDE in systems with Peclet numbers in excess 

of 30. For the numerical inversion of the solutions in the Laplace space he used the Crump 

[1976J.algorithm (accelerated by means of the epsilon algorithm [MacDonald,1964]), which, 

though powerful, requires the solution of a large number of large, almost singular matrices 

(four times the size of the analogous matrix in the traditional time-marching Galerkin 

scheme), and significant execution times. 

Expansion of LTFD for use in the solution of the hyperbolic solute transport PDE 

was first presented by Moridis and Reddell [1990b]. In this paper we present (a) the 

development of the generalized PDEs of transient flow and transport through porous media 

in an appropriate form for use in LTFD, (b) the LTFD formulation of both PDEs, (c) two 

space discretization schemes, as well as (d) two numerical schemes for the inversion of the 

solutions in the Laplace space. Applications of the methodology to a number of flow and 

transport problems are presented in a companion paper [Moridis,1995]. 
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2. The Equation of Flow 

2.1. General Form 

The general non-linear equation of transient flow single-phase through porous media 

is obtained by combining appropriate forms of Darcy's Law and the equation of mass 

conservation, yielding: 

[
kp l 8(p¢) -\7. j;. (\7P- pg\7h) =---at+ q, (1) 

where k is the absolute permeability tensor of the porous medium (L 2 ); p is the fluid 

density (ML-3 ); p, is the fluid viscosity (ML-1T-1); Pis the fluid pressure (ML- 1T- 2 ); 

g is the gravitational acceleration (LT- 2 ); his the elevation (L); ¢is the porous medium 

porosity (dimensionless); tis the time (T); and q is the mass flow rate of source or sink 

per unit volume ( M L - 3r- 1 ). If the effects of other factors (such as temperature) on the 

fluid density are negligible compared to the influence of pressure and concentration, the 

fluid density can be described by the expression 

p(P, C) =poo · (1 + wX) · exp {E(P- Po)}= 
(2) 

Pop· (1 + wX) = Pco · exp {E(P- Po)}, 

where 

C=X·Co 
Co op 1 op 

w=--=--
Pop 8C Pop 8 X ' 

(3) 

C is the contaminant mass concentration per unit volume of the fluid phase (M L - 3 ); 

X is the relative concentration (dimensionless), and 0 ::; X ::; 1; Co is the reference 

concentration, usually equal to the maximum expected concentration (M L - 3 ); E is the 

fluid compressibility (M-1 LT2 ); Po is a reference pressure (M L - 1r-2 ); p00 is the fluid 

density at P = Po and C = 0; Pop is the density at P = P and C = 0; and Pco is the 

density at P =Po and C =C. 

The viscosity p, is a weak function of concentration, and is given by 

p, = J-Lo(1 + ryX), (4) 
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Viscosity is a weaker function of concentration than density, i.e. 'TJ < w. 

The dependence of¢ on pressure was described by Moridis [1987] as 

¢ = 1 + (¢o -1) exp{(~ +()(Po-P)}, (5) 

where ¢o is the porosity at P = P0 , ~ is the reservoir (aquifer) particle (grain) compress

ibility (M-1 LT2
), and ( is the reservoir (aquifer) skeleton compressibility. From (2), (3) 

and (4) 
8p 
BP = E Pea exp{c(P- Po)}= E p, (6) 

8p 
8X = w Pop, (7) 

and 
8¢ 
BP = (¢o -1)(~ + () exp{(~ +()(Po-P)} (8) 

2.2. Assumptions and Simplifications 

In the development of the PDE of flow through porous media, isothermal flow and 

negligible lateral deformation of the aquifer skeleton were assumed. For groundwater flow, 

we can make the following simplifications with a negligible loss of accuracy: 

1. The water viscosity is unaffected by pressure. This is a valid assumption because 

viscosity, while being strongly affected by temperature, is a very weak function of pressure 

for the range of pressures encountered in, groundwater aquifers. 

2. The pressure dependence of the density p in the flow terms (i.e. in the left-hand 

side) of (1) is neglected. This is a valid assumption for water (c = 4.47 x 10-10 1/ Pa), 

where a pressure change equal to 220 times the atmospheric (very unusual under most 

near-surface groundwater conditions) is needed to effect an 1% change in p. Then 

Pop~ Poo and p ~ Poo (1 + wX) . (9) 

3. Unless compressible clayey soils are involved, the values of~ and ( are very small 

(ex: 10-11 - 10-9 1/ Pa ), and the following approximations can be made with negligible 
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effects on accuracy: 

¢ = 1 + (¢o- 1) exp {(c; +()(Po-P)} ~ 1 + (¢o- 1) [1 + (c; +()(Po-P)]~ ¢o , (10) 

and 

&¢ 
&P ~ (1- ¢o) (c; + () . 

2.3. Development of the Right-Hand Side 

Expanding the time derivative on the right-hand side of (1), we have 

where 

and are constants. 

&(p¢) = ( &¢ A. &p) &P A. &p &X 
8t P &P + '+' &P &t +'+'&X &t 

&P &P &X 
= Poo [ Sp &t + Sp w X &t + Sc &t ) , 

'-v--" ...._,_.., '-v--" 
Rl R2 R3 

Sp = (1 - ¢o) (c; + () + ¢o c, Sc =¢ow, 

(11) 

(12) 

(13) 

Investigating the spatial and temporal behavior of R1, R2 and R3, we notice the 

following: 

1. Due to the high speed of propagation of the pressure perturbation, flow achieves 

a steady-state in a relatively short time (i.e. a few .hours or days) after the excitation of 

the system (caused by the operation of wells or a variation in the boundary conditions). 

On the other hand, the migration of solutes is a much slower process; while a local steady

state may be reached, a domain-wise steady-state may not be reached for hundreds or even 

thousands of days after the initial excitation of the system, and it may not be reached at 

all over the simulated period of the process. 

2. For relatively short times t (i.e. before the time tp when the pressure steady-state is 

reached) R2 is generally non-linear and 8ft ::/= 0, although it may tend to zero in areas not 
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yet affected by the excitation. Due to the small value of w (::::; 10-2 ), R2 can be linearized. 

as 

8P 
R2 r-v (Sp w X) at' 

where x indicates the time averaged value of the quantity x, i.e. 

11t X=- X dt. 
t 0 

(14) 

(15) 

This is especially true in cases of Injection of solutes in previously 'clean' aquifers (Le. 

X = 0), where (a) the extent of contaminant migration is limited in the time tp needed to 

reach a pressure steady-state condition, (b) R2 is linear (and R3 = 0) both spatially and 

temporally over large sections of the domain (due to X= 0) during this time, and (c) the 

linearization in (14) is very accurate and conserves mass in the vicinity of the injection 

point. 

3. In aquifers which are not bounded exclusively by no-flow boundaries, 8J: ---+ 0 

throughout the space domain after the initial short time tp to the pressure steady-state 

condition. Fort ~ tp, P(x1 , x2, x3, t) = P(x1 , x2, x3), the quantity R2(xl, x2, x3, t) ---+ 0, 

and its non-linearity vanishes. 

4. The quantities Sp and Sc being constants, R1 and R3 are linear. Due to the length 

of the time tc required to reach the concentration steady-state, in general R3 =I 0 during 

the duration of the simulation, though it is possible to have subdomains where R2 = 0. 

2.4. Development of the Left-Hand Side 

Substitution into and expansion of the left hand side of (1) yields 

8 { kpoo (1 + wX) [ 8P (1 X) h']} - -- ---poo +w g · 
oxi Mo (1 + rJX) oxi 2 

= Poo _i_ [k (1 +wX) 8P] _ P6o9 _i_ [kh' (1 +wX)
2

] 

Mo oxi (1 + rJX) oxi Mo oxi 2 (1 + rJX) ' 
(16) 

Ll L2 
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where i = 1, 2, 3 and h~ = %/:i. Both L1 and L2 are non-linear. Expansion of L1 yields 

Lla Llb 

The term L1a is linear. In L1b, the term (1 + TJX) -t 1 when either TJ -t 0 (i.e. when the 

viscosity is unaffected by the concentration of a certain species) or X -t 0. An excellent 

approximation is obtained when (1 + TJX) is linearized by using (1 + TJX). 

In L2 the quantity 

(1 +wX)2 

(1 + TJX) 

w2 
where f3 = 2w- TJ-

'TJ 
(17) 

is linearized by substituting X for X in the denominator of the third term of the sum. 

Introduction into L2, substitution and expansion leads to 

L2 = ~ _u_ (kh/) + _u_ (kh/ X) + 00 _u_ i X . P2 g ~ Po2ow2g ~ p2 f3g ~ ( kh' ) 
f-Lo axi J-LoTJ axi f-Lo axi 1 + TJX 

(18) 

L2a L2b L2c 

The term L2a = L2a(x 1 , x 2 , x 3 ) is time-invariant. The term L2b is linear, and may become 

significant in the long-term solute migration in deep aquifers. 

Substitution into (1), division by Poo, and rearrangement yields 

(19) 

where 

(20) 

Kix =- Poo9 (wz + f3 ) kh·' 
J-Lo TJ 1 + TJX 

2 

' 

(21) 

St = Sp (1 +wX) and q = qj POO· (22) 
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q is the volumetric flow rate of a source or sink per unit volume (T- 1 ), and Xq is the 

relative concentration of the solute in the removed or injected water. Equation (19) 

describes the flow of almost incompressible fluids through porous media in its general form, 

with a minimum of simplifications. Although the formulation of (19) suggests cartesian 

coordinates, the equation of flow in cylindrical coordinates can be obtained in an entirely 

analogous manner through a procedure described in detail by Moridis and Reddell [1991a). 

When low solute concentrations do not affect the water density, equation (19) applies with 

the adjustments 

k Poo9 ( ' K1P ~ -, .K1x ~ --- 2w-17)khi, 
f-Lo f-Lo 

(23) 

3. The Equations of Solute Transport 

3.1. The Equation of a Species in Solution 

The equation of transport of reacting solutes through porous media was presented 

in various forms by several investigators [Bear, 1972; Domenico and Palciauskas, 1979; 

Hyakorn and Pinder, 1983). Applying the principles of mass conservation, the general 

non-linear transport equation of a single species is 

a ( ax) a a ~ CoDij ~ -~(Co ViX) = -;;-(¢CoX)+ qCoXq +A+ ¢f 
uX2 uX1 uX2 ut · 

(24) 

where Dij is the tensor of hydrodynamic dispersion (L2T- 1 ); Vi is the Darcy velocity 

(LT- 1 ) of the aqueous phase; A is the rate of mass transfer of the species between the 

liquid (solute) and the soil matrix (adsorbate) ( M L - 3r- 1); and r is the rate of mass 

production/ disappearance of the solute by homogeneous reaction per unit volume of liquid 

(ML- 3T- 1 ). Dij includes both mechanical dispersion [Scheidegger,1961] and molecular 

diffusion [Millington,1959], and is given by Dorgarten and Tsang [1991) as 

) ViVj 4/3 
Dij = 8ijatiVI + (ag- at lVf + 8ij¢ Dm, (25) 
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where 8ij is the Kronecker delta, ae and at are the longitudinal and transverse dispersivities 

(L) respectively, and Dm is the molecular diffusivity (L2T- 1 ). 

Assuming linear reversible, non-equilibrium sorption, a general expression for A is 

[ Voss,1984] 

A= Co(l- ¢) H, (26) 

where m 1 and m 2 are sorption parameters (T- 1 ), and Xs is the relative concentration of 

adsorbate on the grains of the porous medium (with respect to C0 ). If a linear equilibrium 

sorption model is assumed, then 

and A= Co(l- ¢) H, (27) 

where Kd is a 'distribution coefficient'. 

The production/ disappearance term r is given by an expression of the type [ Voss,1984] 

(28) 

where lo and II are appropriate coefficients (such as decay coefficients in the case of 

radioactive decay). Equation (28) can be used to describe first-order production or decay 

such as radioactive decay, biological oxygen demand, and biological or chemical production, 

as well as zero-order production or decay. 

Substituting in (24), and dividing by C0 , results in 

8~- (nij ;:. ) - 8~- (Vi X)= :t (¢X) +qXq + (1- ¢)H + ¢(10 + 1 1C). (29) 
l J ~~ 

Tl T2 T3 

The terms Tl, T2, and T3 are no_n-linear, but can be linearized with a minimal effect 

on accuracy using the procedures previously described. Investigation of the temporal 

behavior of Vi shows that after the relatively short period tp, Vi becomes time-invariant, 

and equal to its steady-state value. We have found that in the absence of flow reversals, 

the approximation 

D · · "'D ·- - r:_ ·""t.IVI + ('"""-"" ) Vi Vj + r: .. ..+.413 D lJ - lJ - ulJ'-'- '-'-<- '-'-t lVI ulJ'f' m, (30) 
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allows the linearization of T1 with a minimal effect on accuracy for t < tp and no 

perceptible effect fort> tp. Then 

a (- ac) 
T1 ~ axi Dij axj . (31) 

The linearization of T2 follows the same logic and procedure, and yields 

a a -
T2 = -(~X) ~ -(ViX). axi axi (32) 

Similarly, expanding T3 and using (10), 

aP ax - aP ax 
T3 = (1- <Po)(~+ ()X 8t + ¢ 8t ~ (1- <Po)(~+ ()X 8t + ¢o 7Jt· (33) 

For~' ( ~ 0 (incompressible formations), and t > td (when ~~ ~ 0), 

ax 
T3 --=+ <Po ot . (34) 

Substitution into (29) yields the linearized form of the equation of the species in 

solution in its most general form as 

a (- ax) a -- Dij - --(~X) axi axj axi 
- aP ax 

(1- </Jo)(~ +()X at+ </Jo at + qXq + (1- </Jo)H + ¢o(1o + 'Y1X). 

(35) 

3.2. The Equation of the Adsorbate 

The conservation of mass for a single species stored as adsorbate on the solid grains 

of a porous medium is expressed as 

a 
A- (1- ¢)rs = at [(1- cp)CoXs], (36) 

where A is given by equations (26) or (27). r sis the rate of adsorbate mass production (per 

unit volume of the solid matrix) due to production/ decay reactions within the adsorbed 

material, and 

(37) 
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where 'Yos and 'Yls are appropriate coefficients (such as decay coefficients in the case of 

radioactive decay). Substituting into (36), expanding, linearizing, and dividing by Co 

yields 

(1- ¢o)H- (1- ¢o)hos + 'YlsXs) = -(1- ¢o)(~ +()X s a: - ¢o a:-s. (38) 
' ut ut 

3.3. The Final Form of the Equations 

Equations (19), (35), and (38) govern the flow and solute transport in groundwater 

systems, subject to the previously discussed assumptions. If adsorption is not included, 

then equations (19) and (35) are solved simultaneously, with H = 0 in (35). For deep 

aquifers, long times, dense solutions, and reversible non-equilibrium adsorption, (19), (35), 

and (38) are solved simultaneously to yield P, X, and X 8 • 

If a linear equilibrium model is assumed, then Xs = KdX, equation (38) of the 

adsorbate can be eliminated by adding it to equation (35), yielding 

8 (- 8X) 8 -- DiJ - - -(ViX) 
OXi OXj OXi 

8X - 8P (39) 
= ¢(1- Kd)at + X(1- Kd)(1- ¢o)(~ +()fit 

+ qXq +¢(-yo+ !IX)+ (1- ¢)('Yos + 'YlsKdX). 

Then equations (19) and (39) are solved simultaneously. 

When low solute concentrations do not affect the liquid density, equation (19) is the 

equation of flow after the simplifications of equation (23). If the pore deformation is 

negligible, equation (39) is further simplified to 

(40) 

Then equations (19) and (40) are solved sequentially. 
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4. Step 1 of the Method: The Laplace Transform of the PDEs 

The Laplace Transform Finite Difference (LTFD) numerical method eliminates the 

time dependency, the need for time discretization, and the problems stemming from the 

treatment of the time derivatives in the PDEs of flow and transport by providing a numer-

ical solution in the Laplace space. This approach renders time step size considerations and 

limitations irrelevant, and allows an unlimited time step size without loss of accuracy or 

stability. The, unknowns in time are obtained by numerically inverting the Laplace-space 

solution. The application of LTFD is described in detail in the following sections. 

The Laplace transform of the PDEs of flow and transport is possible because of the 

linearization of the equations described in the previous sections. Applying the Laplace 

transform to the flow equation ( 19), 

(41) 

where 

(42) 

(43) 

Pi and Xi are the initial pressure and relative concentration, >. is the Laplace variable, 

~ = .C{P}, w = .C{X}, and Q = .C{q (1 + wXq)}, (44) 

and .C{} denotes the Laplace transform of the quantity in the brackets. For injection at 

a steady rate q of water with a relative concentration Xq, Q = q (1 + wXq)/ >.. For water 

removal at a rate q, Q = qj>. + qwW, and the terms K 2x and Bp are adjusted. 

Application of the same procedures to equations (35) and (38) yields 

(45) 

and 

(46) 
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respectively, where 

Fzx =Vi, F3x = -[<Po(>.+ II)+ (1- <Po) mi], (47) 

FIP = -X(l- ¢o)(f, + () >., Fis = -(1- ¢) mz, (48) 

(49) 

GIP = -Xs(l - ¢o)(f, + () >., (50) 

' 
G1x = (1- ¢) mz +<Po >., Gis = -(1- <Po) (mz- /Is), (51) 

Bs = -Xs(l- ¢o)(f, + () Pi+ ¢o Ci + (1- ¢o) los >., (52) 

. { qXq/ >. for injection, 
Qc = £{qXq)} =· 

q'if! for removal. 
Y = .C{Xs}, and (53) 

For water removal the terms F3x and B x have to be adjusted. Equation ( 45) is the general 

equation of a species in solution. For solute transport with linear equilibrium adsorption, 

the Laplace transform of equation (39) yields an equation of the same form, but with 

and 

F3x =-{<Po [(1- Kd)>. +II]+ (1- ¢o) Kd /Is}, 

FIP = -X(l- Kd)(l- ¢o)(f, + () >., Fis = 0, 

Ex = Qc- X(l - Kd)(l- ¢o)(f, + () Pi 

1 
- ¢ (1- Kd) Xi+~ [¢'Yo+ (1- ¢o) los]. 

{54) 

(55) 

(56) 

For the dilute solutions described by equation (40), the general form of equation (45) 

is maintained with Fis = 0, F3x as in equation (54), but with 

1 
FIP = 0 and Bz = Qc- ¢o (1- Kd) Xi+~ (¢o'Yo + (1- ¢o) los]. (57) 

The criteria for the selection of the appropriate equations were discussed in subsection 3.3. 
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5. Step 2: The FD Scheme in the Laplace Space 

Time being no longer considered, a standard "block centered" grid method is employed 

in the space discretization of the transformed PDEs of flow and transport [Aziz and 

Settari,1979]. There are MI, M2 and Ms subdivisions of the xi, x2 and x 3 coordinates 

respectively, which divide the domain into M = MI X M2 X Ms gridblocks. 

5.1. Approximation of Derivatives in the Flow Equation 

In the LTFD method the spatial domain discretization is the same as in a standard 

FD scheme. The discretization of the term 8~i (KIP g;: ) in the general equation of flow 

(41) follows the procedure discussed in detail by Moridis and Reddell [1991a]. 

5.2. Diffusion-Related Derivatives in the Transport Equation 

The discretization of a~i · ( c/JoDij g~ ) in the general transport equation ( 4 7) follows 

the procedures discussed by [Reddell and Sunada,1970]. Using the terms and quantities 

depicted in Figure 1, in a two-dimensional cartesian system (xi = x, x2 _ y) 

(58) 

where Dxx = Dn for simplicity, and 

(59) 

The subscripts j and k are invariant in (58), and are omitted. The cross derivative 

[) ( [)\]!) 
ox Dxy 8y :::::::: 

(
D aw) - (n aw) 

xy [)y i+~ xy [)y i-~ 

.6.xi 
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(Dxy)i-~ 
.D..fxy 

2 
(bli Wi-l,j+l + b2i Wi,j+l - b1i Wi-l,j-1 - b2i wi,j-d, 

(60) 

~ 

c;y 
where 

(61) 

and 

(62) 

Approximation of the remaining ·derivatives in two- and three-dimensional problems can 

be easily obtained by cyclical substitution. 

The approximation of the diffusive component of equation ( 45) leads to a set of 

coefficients corresponding to communication of the grid block ( i, j, k) with its neighboring 

gridblocks. The coefficient for Wijk is 

(63) 

£ ,T, _ c+ + c-Or '*'i+l,j,k : a2- x x - a1, (65) 

£ ,T, _ c+ + c-Or '*'i,j+l,k : a4 - y y - cr3, (67) 

£ ,T, _ c+ + c-Or '*'i,j,k+l : a5 - z z -as, (69) 

(70) 
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for wi-1,j+I,k : o-s = -bli G;Y- a2j Gtx, (71) 

(72) 

(73) 

for wi-1,j,k-1 : o-n = b1i c;z + b1k c-;x, (74) 

for wi-1,j,k+1 : (}12 = -bli c;z- a2k c;x, (75) 

for wi+I,j,k-1 : o-13 = -a2i G;tz - blk G-;x, (76) 

for wi+1,j,k+1 : o-14 = a2i G;tz + a2k c;x, (77) 

for wi,j-1,k-1 : (}15 = b1j c:;;z + blk c-;y' (78) 

for wi,j-1,k+1 : (}16 = -b1j c:;;z - a2k c;y' (79) 

for wi,j+1,k+1 : o-17 = -a2j Gtz - blk G-;y, (80) 

and 

for wi,j+1,k+1 : (}18 = a2j ctz + a2k c;y. (81) 

5.3. Treatment of Boundaries 

The treatment of the pressure boundaries has been discussed in detail by Moridis 

and Reddell [1991a]. Here we concentrate on the treatment of the w boundaries. If the 

gridblocks under consideration are not located at the corners or edges of the domain, there 

are two possilities (Figure 2): 

1. A Dirichlet type (hereafter referred to as D-type) boundary at x = 0: i = 1 and 

J > 1 (Figure 2a). Then no modification is needed in the coefficients developed in the 

approximation of the derivatives. 
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2. A Neuman-type (hereafter referred to as N-type) boundary boundary at x = 0: 

i = 1 andj > 1 (Figure·2b), with (~;)i-~ =fxo· Th~n the approximation of :U (Dyy ~!) 

is unaffected but 

(82) 

where c; are as in equation (60), and G; = 0. The cross derivative 

(83) 

which results in equations (60) and (61) with the difference 

and (84) 

Finally, the cross derivative 

(
D aw) - (n aw) 

~ (nx. ()if!) ~ xy ax j+~ xy ax j-~ 
8y y ax IJ.yj 

(85) 

where 

(86) 

and the terms a1j, a2j, b1j, b2j remain as defined in ( 61). The coefficients of equations 

(63) through (81) are then appropriately adjusted. 

/ 
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The approximation of the boundary conditions becomes more complicated at the 

corner and edge gridblocks. Working with an (i,j) system in (x, y), we can identify the 

following four additional possibilities at (i = 1,j = 1) in Figure 2: 

3. A D-type boundary at x = 0, and aD-type ?oundary at y = 0 (Figure 2c). In 

this case the approximation of lx ( Dxx ~:) and ty ( Dyy ~~) are given by substitution 

in equation (58). The cross derivative 

(87) 

and 

!.._ ( aw)- (Dxy ~=t~- (Dxy ~=t~ 
a Dxy a - A 

y X LJ.Yj (88) 
=Gtx (a1i wi+1,j + a2i wi+1,j+1 - a1i wi-1,j - a2i wi-1,j+1) 

-a;; (b1j wi+1,j-1 + b2j wi+1,j - b1j wi,j-1 - b2j wi,j). 

4. AD-type boundary at x = 0, and aN-type boundary at y = 0 (Figure 2d). Then 

equation (58) approximates 1x ( Dxx ~:), and equation (82) approximates ty ( Dyy ~~). 
The cross derivative 

(89) 

Finally, ty (Dxy ~!) is approximated using equations (83) and (84). 

5. AN-type boundary at x = 0, and aD-type boundary at y = 0 (Figure 2e). Then 

equation (1) approximates ty ( Dyy ~';) and equation (82) approximates lx (Dxx ~:). 
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We use equations (83) and (84) to approximate gx (Dxy ~';; ), and equation (85) for 

gy(Dxy ~:). 

6. A N-type boundary at x = 0, and a N-type boundary at y = 0 (Figure 2f). 

Equation (82) applies for the approximation of gy ( Dyy ~';;) and gx (Dxx ~!)- We use 

equations (83) and (84) to approximate gx (Dxy ~';; ), and equation (85) for gy (Dxy ~! ). 
The cross derivative 

(90) 

-c;; (wi,j+l- wi,j). 

Similarly, substituting (x, y, i,j) for (y, x,j, i) in (90) yields the approximation of the term 

gy(Dxy ~:). 

The other type of boundary that needs to be examined is the mixed-type, hereafter 

referred to as M-type. We can identify two additional cases: 

7. M-boundary at x = 0 (i = 1), with D-type for 1 < J < Jm and N-type for 

Jm:::; j <My (Figures 2g and 2h). At (i = 1,j = ]m), this boundary gridblock is ~reated 

exactly like the one described in case 5. 

The grid block at ( i = 1, j = ]m - 1), i.e. the first D-type boundary grid block has to 

be treated differently. In the case the approximation of gx (Dxx ~!) and gy ( Dyy ~';;) is 

accomplished by using equation (58). However, 

(91) 

where 

(92) 
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and the terms a1j, a2j, b1j, b2j remain as d~fined in (61). Finally, 

(
D aw) _ (n aw) 

xy ax i+l xy ax i-l 
2 2 

(93) 

8. M-boundary at x = 0 (i = 1), with N-type for 1 < j ~ Jm and D-type for 

Jm < j < My (Figures 2i and 2j). At (i = 1,j = Jm) equation (58) approximates 

:Y (Dyy ~!),and tx (Dxx ~!)is discretized using (82). We approximate lx(Dxy ~!) 
using (83) and (84), and ty (Dxy ~!) using (85). 

The treatment of the gridblock (i = 1,j = Jm + 1), i.e. the first D-type boundary 

gridblock, is the same as in case 3. 

5.4. Advection-Related Derivatives in the Transport Equation 

The greatest challenge is the approximation of the first-order spatial derivative in the 

advection terms a(aV'll) in equation ( 45). We investigated two differencing operators: (a) 
X / 

a single-point upstream, and (b) the higher order method of Saad et al. [1990]. At node 

i in the 1-D system (x1 = x) of Figure 3 both differencing operators are defined by the 

general expression 

Vi+I/2 wi+1/2- V'i-1;2 wi-1/2 
.6.xi 

(94) 

The subscripts i±1; 2 indicate values of the corresponding terms at the block interfaces. 

Using Darcy's law, the terms Vi±1; 2 are readily available from the solution of the discretized 

equation ( 41). 

In the single point upstream weighting method, 

· { llJ i if flow is from i to i ± 1 

wi±~ = 
Wi±1 if flow is from i ± 1 to i . 

(95) 
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The direction of the flow is provided by the sign of !:1p± = Pi±1 - Pi, where p = P- pgh is 

the potential. A positive sign indicates flow from i ± 1 to i. This scheme provides only a 

first order approximation, and may introduce significant numerical diffusion [Lantz, 1971]. 

The higher order scheme of Saad et al. [1990] is a modification of the differencing 

operator suggested by Leonard [1979]. For a variable grid size (not allowed in the Leonard 

scheme), and for Pi-1 :S Pi :::;; ii+1 (Figure 3a), 

(96) 

and 

(97) 

where 

(98) 

For Pi -1 2: Pi 2: Pi+ 1 (Figure 3b), 

(99) 

and 

For Pi- 1 >Pi and Pi :::;; Pi+1 (Figure 3c), equations (96) and (100) are used to determine 

Wi+1/2 and Wi-1/2 respectively. Finally, when Pi-1 :S Pi and Pi 2: Pi+1, equations (97) and 

(99) are used for Pi-1; 2 and Pi+I/2 respectively. 

These approximations are derived using a conservative-control-volume formulation 

[Saad et al.,1990], with gridblock face values of W expressed in terms of three nodal values: 

the nodal value at i, plus two upstream values .. When the water velocities at the opposite 

sides of a grid block have the same sign (Figures 3a and 3b) , information from 4 nodes 

is used. For diverging flow (Figure 3c) three centrally located nodes are needed. For 

converging flow (Figure 3d), the approximation involves five nodes symetrically arranged 
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on both sides of node i. Extension to two or three dimensions is entirely analogous (Figure 

4). The variable-grid formulation is second-order correct, and as such more accurate than 

the single-point upstream approximation, which, is zero-order correct when used with a 

variable grid size. For a uniform grid spacing, the scheme is third-order correct. 

Applying the procedures described above, the discretization of equations (41), (45), 

and ( 46) in the Laplace space yields three general algebraic equations valid in each of the 

M gridblocks of the space domain. Depending on the appropriate number of applicable 

equations per gridblock, the number of the resulting algebraic equations N = Ne x M, 

where Ne is the number of simultaneous equations per gridblock. 

6. Step 3: The Solution in the Laplace Space 

The resulting algebraic equations may be written in a general matrix form as: 

Tx-:B - ' (101) 

where Tis the coefficient matrix, X is the vector of the unknowns, and B is the composite 

vector of knowns. The computation of T and B necessitates values for the A parameter 

of the Laplace space. These are provided by the two schemes: the Stehfest algorithm 

[Stehfest,1970a; 1970b], and the DeHoog method [DeHoog et al.,1982]. For a desired 

observation time t, the A in the Stehfest algorithm is real and given by 

ln2 
Av =- ·V, 

t 
v=1, ... ,Ns (102) 

where N s is the number of summation terms in the algorithm and is an even number. In 

the DeHoog method, A is a complex number given by Crump [1974] and Sudicky [1989] as 

l/1r 
Av = .Ao + n i, 

A _ ln(ER) 
0 - f.l- 2T ' v=1, ... ,NH (103) 

where 20 is the period of the Fourier series approximating the inverse function in the 

interval [0, 20], i = v'=I, and NH = 2MH + 1 is an odd number. A thorough discussion of 
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the terms p, and ER and their significance can be found in Sudicky [1989]. As is discussed 

in Moridis [1995], excellent results are obtained when p, = 0, 10-10 ::; ER -;:; 10-8 , and 

0.9 tmax ::; n ::; 1.1 tmax, where tmax is the maximum simulation time. 

The vectors 

... [... ... ... ... ]T 
B = B1,X2, ... ,B"', ... ,BM , (104) 

where the vectors X"' and B"' correspond to the unknowns and right-hand side at each 

gridblock. Their length is a function of the number of the unknowns and the type of the 

Laplace parameter A. The quantities <P, W and Y assume the real or complex type of A. 

The three-element vector X"'= [<P, W, Y];r applies when all three equations are solved 

simultaneously, and corresponds to the three-element vector B"' = [Bp, Bx, Bs];r. When 

(a) the effect of the solute concentration on water density is measurable but does not 

violate the linearity assumption and (b) adsorption is reversible or neglected, the two 

element vector X"' = [<P, w];r applies, and B"' = [Bp, Bx]t Single element vectors apply 

to very dilute solutions where the water density is not affected. Then equation (41) is a 

function of <P only and is solved first to provide the V's needed in ( 45). In the presence 

of non-linear and/or irreversible adsorption, equations (45) and (46) need to be solved 

simultaneously. Then X"' = [w, Y];r is a two-element vector, and B"' = [Ex, Bs];r. 
,.... 

When the single-point upstream scheme is used, the Kth block row of matrix T, 

associated with the gridblock K = (K1 , K2 , K3 ), is 

when M1 2::: M2 > M3, indicating a bandwidth Bw = 2 (M3 x M2 + 1) Ne- 1. For real 

A, Ne = 1, 2, or 3; for complex A, Ne = 2, 3, or 6. When the higher-order scheme of Saad 

et al. [1990] is used, the left half of the K-th block row of matrix T"', ~sociated with the 

- I 
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TK;1 -2 0···0 TK;1 -I 0···0 TK:2 -2 0···0 TK;2 -1 0···0 TK;3 -2 TK:3 _ 1 TK: (106) 

2M2 

when M1 2:: M2 2:: M3, indicating a bandwidth Bw = 2 (2M3 x M2 + 1) Ne -1, i.e. almost 

double that of equation (105). In both cases there is symmetry to the right and left of the 

central block-matrix T with regard to the positions of the block-matrices. 

The solution of equation (101) returns a set of Ns or NH vectors of the unknown X's 

as 

(107) 

To obtain a solution at a time t, all vectors X 11 , v = 1, ... , N s or N H are needed, i.e. the 

system of simultaneous equations has to be solved N s or N H times. 

When using the DeHoog method, the matrix equation (101) involves complex numbers 

and 1>, W and T are complex. The easiest and simplest way to solve (101) is to use the 

complex arithmetic operations available to FORTRAN. However, this is a very inefficient 

approach because operations on complex numbers are very slow. 

A much faster execution is achieved by splitting each one of the discretized equations 

intQ two equations containing the real and the imaginary parts of f p, f x, and f s. 

Depending on the number of initial simultaneous equations, this approach uses strictly 

real computer arithmetic. This approach requires determination of the unknowns 1> n, 1> I, 

'Yin, WI, Tn and TI, where 

(108) 

and the subscripts R and I denote the real and imaginary parts respectively. This yields 

6, 4, or 2 equations per gridblock and requires significantly less execution time than 
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using complex arithmetic. For example, if equations (41), (45), and (46) must be solved 

simultaneously, at each gridblock K, the vectors of the unknowns and the right-hand sides 

respectively are 

X,= and B, = 

Re{Bp} 
Im{Bp} 
Re{Bx} 
Im{Bx} 
Re{Bs} 
lm{Bs} 

(109) 

When the DeHoog method is used, the off-diagonal block-submatrices T , 1 ±l, T , 1 ±2, 

T,2 ±I, T,2 ±2, T,3 ±I, and T,3 ±2 have non-zero elements on their main diagonals only. 

If the same held true for the diagonal sub matrix T,, then the equations of the real and 

the imaginary parts would be completely independent, and, therefore, could be solved 

separately. This, however, is not possible due to the presence of the products K 2pip, 

K2x'iJ! in equation (41), F1pip, F3x'iJ! in (45), and G]_pip, G1x'I! in (46). These products 

involve multiplications of the complex ip and 'iJ! with the complex >., and create non-zero 

entries off the main diagonal of submatrix T ,. 

Due to the need to compute both the real and imaginary parts of the unknown 

dependent variables, for the same problem the DeHoog method increases both (a) the 

number N of'equations in (101) and (b) the bandwidth Bw of the matrix to twice those 

of the Stehfest formulation. Compared to the Stehfest algorithm, the DeHoog method 

~reates a coefficient matrix T four times as large, and thus requires four times the storage. 

The corresponding increase in execution time depends on the type of the solver. For an 

efficient direct solver the execution time is expected to increase by a factor of 8 [Price and 

Coats,1974]. Generalizations are harder for iterative solvers, but an efficient conjugate 

gradient solver is expected to increase the execution time by a minimum factor of 2.6 

[ M oridis and Pruess, 1995]. 

If the effect of the solute on the water density is negligible and the flow equation can 

be solved separately, significant savings in storage and execution time can be realized by 
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using the Stehfest algorithm because it has been shown that for flow problems there is no 

difference in the performance of the DeHoog and the Stehfest algorithms [Moridis,1992]. 

The resulting Darcian velocities V can then be used in the solution of the transport and 

adsorbate equations. A more thorough discussion on the relative merits of the DeHoog 

and Stehfest formulations is presented in the second paper of this series [Moridis,1995]. 

7. Step 4: The Iterative Process 

If the velocity field is time-invariant and the fluid density is not affected by the presence 

of solutes, there is no need· for inner iterations and the LTFD solution proceeds directly 

to Step 5. Under all other conditions, the linearization of the non-linearities encountered 

in the extension of the LTFD method to the solution of the solute transport problem 

necessitates an iteration procedure analogous to the treatment of such non-linearities in 

standard Finite Differences or Finite Elements. The procedure is described as follows: 
--1 _,. 

1. The linearized elements of the initial matrix [T ]0 and the vector [B]o are calculated 

using the initial values xo as an approximation of the required time averaged quantities 

x (equation (15)). An initial solution [X]r is obtained from equation (101). 

2. From XI and the properties of Laplace transforms, the relevant time averaged 

quantities x are calculated as 

1 t 1 { ~} 
X= t Jo X dt = t ~:,-I ~ ' (110) 

where x = £{x}. 

3. Using the x and the adjusted gradients from step 2, the elements of the updated 

---1 -
matrix [T h and vector [B]r are obtained. 

- --1 ...... 
4. An improved solution [X]z is obtained using the updated [T h and [B]r. 

5. Steps 2 through 4 are repeated until a desired convergence criterion is met. In our 

experience convergence is very rapid, and seldom requires more than 3-4 iterations. 

The solution in time U(t) is then obtained by inverting the converged solution X in the 
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following step. It must be pointed out that the linearization and the corresponding inner 

iterations will produce an accurate solution only as long as the underlying approximations 

are valid. In our experience this holds true if the change in the water density does not 

exceed 1.5%, Le. 50% higher than in the traditional Boussinesq assumptions. 

8. Step 5: The Numerical Inversion of the Laplace Solution 

The unknown vector U at any time t is obtained by by numerically inverting 

the Laplace space solutions X(>.v). When using the Stehfest algorithm, the unknowns 

U = P, X, Xs at a point Kanda timet are obtained from 

ln2 Ns 

[U(t)]t;; = -t L Wv [X(>.v)]t;; , 
v=1 

(ll1) 

where 
• !:!..£ 

N mm{v, 2 } klf- (2k') 
W, - ( -1)~+v "' . (ll2) 

v- L ( & - k)!k!(k- 1)!(v- k)!(2k- v)! 
k=~(v+l) 2 

Although the accuracy of the method is theoretically expected to improve with increasing 

Ns, Stehfest [1970a; 1970b] showed that with increasing Ns the number of correct 

·significant figures inreases linearly at first and then, due to roundoff errors, decreases 

linearly. He determined that the optimum N s was 10 for single precision variables (8 

significant figures) and 18 for double precision variables (16 significant figures). However, 

Moridis and Reddell [1991; 1991a; 1991c] reported that LTFD seems to be insensitive to 

Ns for 6::; Ns ::; 20. 

The inversion of the Laplace space solution obtained with the DeHoog method is far 

more complicated. The solution U at a time t is given by 

[U(t)]t;; = A exp(>.ot) Re { [~::] t;;}, (ll3) 

where 

An = An-1 + dn z An-2, Bn = Bn-1 + dn z Bn-2, n = 1, ... , 2M, (ll4) 
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and A-1 = 0, Ao =do, B-1 =Eo= 1; 

do = ao, d - -q(o) d2 = -e(o) 2m-1- m' m m' m=1, ... ,M, (115) 

f= 1, ... ,M, k = 0, ... , 2M - 2£ 
(116) 

for f = 2, ... , M, k = 0, ... , 2M- 2f -1, 

e~k) = 0 fork= 0, ... , 2M and q~k) = ak+dak fork= 0, ... , 2M- 1, (117) 

and 

1 
ao = 2X(.\o), ak = X(.\k) and z = exp(j1rtjO). (118) 

A further acceleration is obtained if on the last evaluation of the recurrence relations d2M z 

is rep aced by R2M ( z), 

(119) 

giving 
-.. 
A2M = A2M-1 + R2M A2M-2, (120) 

in which case the accelerated solution at a time t is given by replacing A2M and B 2M by 

A2M and B2M respectively in (113). 

It should be kept in mincl that all the operations in equations (113) through (120) 

involve complex variables, and computationally intensive complex computer arithmetic 

must be used. Moreover' all the intermediate vectors A, jj' d, e, if, a and h have to 

be stored, which can be easily shown to require a minimum of 2N(2M'fi + 11MH + 7) 

double-precision words of memory. This is very large compared to the minimal memory 

requirements of the Stehfest formulation. 

As is shown in the second paper of this series [Moridis,1995], the minimum MH for an 

acceptable accuracy is 5, resulting in a N H = 11, which indicates that the matrix equation 
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(101) has to be solved a minimum of 11 times and requires 224N words of memory in 

addition to the quadrupling of the memory required for the storage of the coefficient matrix 

T. For an accuracy comparable to that of the Stehfest method MH ~ 6 and NH > 13. 

The unique advantages of the DeHoog formulation is that (a) it is capable of accurately 

inverting very steep solution surfaces, and (b) a whole range of solutions at times t in the 

range [0, T] can be obtained from a single set of solutions X, i.e. equation (101) needs not 

be solved for each t of interest. 

The solution in the Laplace space eliminates stability and accuracy problems caused by 

the treatment of the time derivative in standard FD simulators, thus allowing an unlimited 

time-step size if the change in water density does not exceed 1.5limited to that caused by 

the space discretization because time is not discretized, and provides a solution inherently 

more accurate than the standard FD method for the same grid system. The ability to use 

an unlimited time-step size bounds the accumulation of roundoff error by an upper limit 

defined as the roundoff error accumulated after the N s or N H solutions. Thus, LTFD 

offers a stable, non-increasing roundoff error irrespective of the time of observation tobs 

because calculations are performed at one time only by letting .6.t = tobs·· Calculations 

in the standard FD method have to be performed at all the intermediate times of the 

discretized time domain, continuously accumulating roundoff error in the process. 

9. Summary 

A new numerical method, the Laplace Transform Finite Difference (LTFD) method, 

is extended to the solution of the solute transport problem in groundwater. The major ad

vantage of LTFD is that it eliminates the time dependency, the need for time discretization, 

and the problems stemming from the treatment of the time derivatives in the nonlinear 

Partial Differential Equations (PDEs) of flow and transport by using Laplace transform 

formulations. LTFD yields solutions semi-analytical in time and numerical in space by 
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solving special formulations of the PDEs in the Laplace space. 

The LTFD method proceeds in five steps: 

1. A Laplace transform is performed on the linearized PDEs of flow and transport. 

2. The transformed PDEs are approximated using a Finite Difference (FD) method. 

3. The resulting system of simultaneous equations is solved in the Laplace space. The 

number of simultaneous equations per gridblock may vary between 1 and 6. The 

transformed vector of the unknown pressures and concentrations is determined in the 

Laplace space. 

4. For very dilute solutions and time-invariant velocity distributions, there is no need for 

internal iterations and the process moves to Step 5. Otherwise, internal iterations are 

performed on the solutions of Step 3 until an acceptable convergence criterion is met. 

5. The solution in time is obtained by numerically inverting the converged transformed 

vector of unknowns from Step 4. 

Two space discretization schemes are employed in Step 2. The first uses a single-point 

upstream weighting, and provides ,only a first-order approximation. The second scheme 

Saad et al. [1990] uses an asymmetric two-point upstream weighting which provides a 

second- or third-order approximation. The second scheme considerably increases the size 

of the matrix to be solved. 

Two alternative methods are used for the numerical inversion of the Laplace space 

solutions. The first is based on the Stehfest algorithm Stehfest [1970a], which uses real 

numbers for the Laplace space parameter Av (v = 1, ... , Ns and Ns is an even number), 

and requires solution of the resulting system of simultaneous equations N s times. Linear 

combination of the N s solutions returns the actual solution in time. The second method 

was developed by DeHoog et al. [1982], uses complex numbers for Av (v = 1, ... ,NH and 

NH is an even number), and combines non-linearly the resulting NH solutions. It requires 

significantly larger computer storage and execution times than the Stehfest method, but 



32 

offers the advantages that very steep solution fronts can be inverted and that predictions 

over a wide range of times can be obtained from a single set of matrix inversions. 

If the water density changes do not exceed 1.5of the numerical treatment of the time 

dependency on accuracy and stability (which necessitate a large number of small time 

steps between successive observation times in traditional solutions) are rendered irrelevant 

because time is no longer a consideration. An unlimited time step size is thus possible 

without loss of accuracy or stability. 
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Figure 1. Discretization in a two-dimensional cartesian system ( x, y). 
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Figure 2. Possible boundary conditions in the solute transport problem. 
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Figure 3. Application of the higher-order scheme of Saad et al. [1990] in the one-

dimensional problem. All four possible scenarios are shown. 
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Figure 4. An example of the application of the higher-order scheme of Saad et al. [1990] 

in the two-dimensional problem. 
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