
... 

]. 
,.., 

LBL-37162 
UC-414 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

Physics Division 

Submitted to The Astrophysical Journal 

Testing Single-Parameter Classical 
Standpoint Cosmology 

G.F. Chew 

May 1995 

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098 

---
:::0 
I'TI 

("') "'TI 
..... em 
-sO:;c 
omm 
t: VI z ...... ("') 
QJZITI 
r+O 
m r+("') 

0 
CD 

"C 
-< ...... 

0.---
IQ 

U1 
ISl 

r ...... 
("') 
0 
"0 
'< 
...... 

r 
CD 
r 
I 

w ...... 
...... 
0'1 
N 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



May 26, 1995 LBL-37162 

Testing Single-Parameter Classical Standpoint 
Cosmology* 

G.F. Chew 

Theoretical Physics Group 

Lawrence Berkeley Laboratory 

University of California 

Berkeley1 California 94720 

Abstract 

Experimental tests of homogeneous-universe classical standpoint cos

mology are proposed after presentation of conceptual considerations that 

encourage this radical departure from the standard model. Among pre

dictions of the new model are standpoint age equal to Hubble time, 

energy-density parameter Q0 = 2 - v'2 = .586, and relations between 

redshift, Rubble-scale distribution of matter and galaxy luminosity and 

angular diameter. These latter relations coincide with those of the stan

dard model for zero deceleration. With eye to further tests, geodesics 

of the non-Riemannian ~tandpoint metric are explicitly given. Although 

a detailed thermodynamic "youthful-standpoint" approximation remains 

to be developed (for particle mean free path small on standpoint scale), 

standpoint temperature depending only on standpoint age is a natural 

concept, paralleling energy density and redshift that perpetuates ther

mal spectrum for cosmic background radiation. Prospects for primordial 

nucleosynthesis are promising. 

*This work was supported by the Director, Office of Energy Research, Office of High Energy 

and Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy under 

Contract DE-AC03-76SF00098. 



I. Introduction 

Standpoint cosmology (Chew 1994, 1995), despite superficial phenomeno

logical similarity to the "standard" cosmology of Friedmann-Robertson-Walker 

(see Weinberg 1972), differs profoundly in principle. Standpoint cosmology is 

closer in spirit to "kinematic cosmology" (Milne 1935), although a standpoint 

spacetime is compact with corresponding curvature. Essential to both kinematic 

cosmology and to standpoint cosmology is a concept of spacetime-localized "big 

bang" together with "age" measured therefrom. In the new model age belongs 

not to the entire universe as in the standard model but rather to a "standpoint" 

where "observer" is located. 

Standard-model successes (greater than those of kinematic cosmology where 

there is no curvature) must eventually not only be matched but exceeded by 

the new model if the latter is to survive. The present paper, after reviewing 

conceptually-attractive novelties of standpoint cosmology, displays explicitly in 

standpoint-based coordinate systems the homogeneous-universe geodesics. Ap

plication thereof is then made (a) to the relation between standpoint age and 

Hubble time, (b) to mean energy density, (c) to relation between redshift and 

both luminosity distance and angular-size distance and (d) to Hubble-scale dis

tribution of matter. Apart from the energy-density prediction no = 2- .J2, 
the foregoing relations coincide not only with those of kinematic cosmology but 

with those of the standard model for zero "deceleration". 

A detailed thermodynamic approximation remains to be developed. It will 

nevertheless become plausible from what follows that, when particle mean free 

path is small on the (Hubble) scale of some standpoint, a standpoint temper

ature can be defined that depends only on standpoint age and that decreases 

as age advances. Age-temperature correlation dovetails with a photon redshift 

controlled entirely by ratios of standpoint ages. We shall be led to qualitative 

understanding of cosmic background-radiation and to optimism about nucle

osynthesis within standpoint cosmology. The new model leaves u:q.disturbed the 

theory of fluctuations, on length scales small compared to Hubble scale, that 

arise from weak Einstein gravity (Chew 1995). 
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II. Conceptual Novelties 

The new model is economical; a single standpoint-associated parameter of 

length dimensionality, designated R, controls "radius of universe" (seen from 

standpoint) together with standpoint age ( c = 1) and Hubble time. As is the 

case for Milne's cosmology, there is no scale parameter depending on univer

sal time, no deceleration parameter, no cosmological constant. In tandem with 

the gravitational constant G, the parameter R determines mean energy density. 

Paucity of parameters places the new model in immediate jeopardy of experi

mental falsification. 

As in Milne's cosmology, there is no meaning for universe beyond a horizon 

tied to big bang. All matter is causally connected- -sharing a spacetime-localized 

big-bang origin. -Only optical opacity obstructs observation from any standpoint 

of the entire classical universe. Nevertheless there is a sense in which the uni

verse is "infinite": departing from some standpoint in a fixed spatial direction, 

there is no limit to the different standpoints of same age to be encountered. In 

any standpoint coordinate system a huge quantity of matter concentrates near 

horizon. In Mach spirit one may think of such "maximally-distant" matter as 

responsible for the Minkowski metric tensor that holds sway (in homogeneous

universe approximation) near any standpoint in that standpoint's coordinate 

system (see Chew 1995). 

Despite the prevailing physics paradigm of covariance within a unique un

bounded spacetime, the new model attributes to each standpoint a separate 

compact spacetime endowed with a special set of coordinates. This coordinate 

system is suitable for describing experiments carried out in the neighborhood 

of that standpoint. On the scale of R (Hubble scale), "homogeneous universe" 

presents the same appearance from any standpoint when described by the coor

dinates belonging to that standpoint. Only a portion of one compact standpoint 

spacetime generally maps onto another such spacetime. It will nevertheless be 

shown that familiar Poincare symmetry (of a unique spacetime) prevails ( ap

proximately) within neighborhoods that are small on Hubble scale. 

The separate compact spacetimes are tied together by invariant metric 

combined with common origin of coordinate systems. The common origin is 

identified with "big bang". A "newly-born" standpoint originates in big bang 
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and moves "outward" in any "old" standpoint coordinate system along a well

defined positive-timelike geodesic. Standpoint age is proportional to invariant 

"distance" from big bang. Each standpoint trajectory being labelable by "ini

tial velocity" (near big bang), any standpoint is specified by age plus initial 

velocity. Because all standpoint spacetimes are Minkow~kian near big-bang ori

gin, "homogeneity of universe" corresponds unambiguously to a nonintegrable 

Lorentz-invariant distribution of initial standpoint velocities. Nonintegrability 

amounts to the previously-emphasized "infinite universe". 

Standpoint-spacetime metrics are generally non-Riemannian, although they 

approach Minkowski form not only near big bang but, in homogeneous-universe 

approximation, also near standpoint. The metric is Riemannian for radial 

homogeneous-universe motion in any standpoint coordinate system and for gen

eral motion near standpoint if inhomogeneity is "weak" (see Chew 1995). In the 

latter case, Einstein theory of gravity applies in standpoint neighborhood (small 

on Hubble scale). Near "strong" inhomogeneities ("black holes"), the not-yet

understood non-Riemannian character of standpoint metric becomes important. 

"Standpoint" represents separation between past and future - - i.e., the 

"present". Metric describing the past is different from that describing the future 

when Rubble-scale times are considered. Only for time displacements from the 

present short on Hubble scale is there (approximate) equivalence. 

Many conventionally-tolerated displacements are disallowed in a compact 

standpoint spacetime. Consistency depends on additivity of positive timelike 

or lightlike displacements associable with matter motion. Asymmetry between 

past and future is dramatically manifested by an impassible future boundary - -

called "abyss" (Chew 1994). Prediction offuture based on present measurements 

- - i.e., measurements made near standpoint - - cannot extend beyond this 

boundary. The abyss limitation correlates with geodesics and may be regarded 

in the spirit of "Schwartzschild radius" accompanying a mass of order pR3 , where 

p is energy density at standpoint. 

The only region within a standpoint spacetime accessible to measurement 

is the neighborhood of the standpoint's backward light cone. The remainder of 

a standpoint spacetime facilitates prediction of results from (future) measure

ments to be carried out near older standpoints and verification of prediction 

based on (earlier) measurements made near younger standpoints. Essential to 
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the integrity of standpoint cosmology's emphasis on measurement correlation 

is the "stability" of lightlike geodesics: a lightlike geodesic in one standpoint 

spacetime maps onto lightlike geodesic within any other (where mapping is pos

sible). Classical-measurement correlation dovetails with S -matrix interpretation 

of quantum standpoint cosmology (Chew 1994). 

Although the present paper will not discuss the quantum underpinning of 

standpoint cosmology, here defining the classical model by the metric of stand

point spacetime, this metric was uniquely inferred from symmetry properties of a 

more fundamental quantum model of expanding universe. Only for standpoints 

whose R greatly exceeds Rmin "" 10 em (age large in nanoseconds) does 3-space 

in the quantum model achieve classical significance. Quantum-model meaning 

for "location" within a standpoint spacetime arises in conjunction with mean

ing for "particles". In a "dense" region of the universe-,- where R ~ Rmin - -
neither particles nor 3-space enjoy model meaning. According to the quantum 

model, "diluteness" is essential to classical significance for 3-space. 

A semantic observation: although classical standpoint cosmology, with un

derpinning that lacks a priori spacetime, fails to accord with all aspects of 

general relativity, the model considered here may be described as "more rela

tivistic" than the standard model. The latter, after all, is characterized by a 

universal 'time. 

Milne's 1935 cosmology corresponds to standpoints of infinite age, which 

have past but no present and no future. It often turns out calculationally con

venient to invoke infinite age where the metric is Minkowskian, but physical 

spacetime belongs to a present where the surrounding spacetime is curved. 
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III. Specially-Coordinated Standpoint Spacetimes 

Because the spacetime belonging to a standpoint is compact, with boundary 

and well-defined "center", there is an accompanying natural system of coordi

nates. A standpoint locates at the center of its own spacetime where it is "at 

rest". In coordinate systems other than its own, a standpoint is displaced from 

center and generally is in motion. Any (compact) standpoint spacetime may be 

described as the intersection of interiors of forward and backward light cones 

whose vertices share the standpoint's spatial location while each vertex locates 

an interval R in time from the standpoint, one vertex in the standpoint's past 

and the other in its future. (The past vertex is identifiable with big bang.) 

Using the boldface symbol R to designate a standpoint and the 4-symbol 

XR = ( tR, iR) for the special attached coordinates, restriction to the double

cone interior amounts to coordinates being constrained to the interval, 

(I I I.1) 

The R standpoint locates at tR = R, iR = 0, i.e., at the double-cone center. (Big 

bang locates at tR = 0, fR = 0). It will be seen in Section IV that standpoint

spacetime geodesics curve in conformity to (111.1) - - matter inside the double 

cone being unable to cross the boundary. This curvature constitutes a major 

departure from Milne's 1935 kinematic cosmology. 

Portions of one standpoint spacetime map onto portions of others. Ex

plicit mapping rules (in homogeneous-universe approximation) will be presented. 

Mappings are anchored by big bang - - the origin of one coordinate system map

ping onto the origin of any other and, because all spacetimes are asymptotically 

Minkowskian in neighborhood of origin (tR ~ R), the (infinitesimal) positive 

timelike or lightlike 4-vectors XR are there related to each other by Lorentz 

boosts. A convenient corollary is explicit elaboration of the symbol R into the 

4-symbol (R, $), w·ith the 3-vector $interpretable as "initial rapidity" of stand

point. That is, in the coordinate system belonging to a zero-rapidity standpoint 

R = ( R, 0), some (other) "very young" standpoint located at XR (with iR ~ R) 

has rapidity $ such that 

(I I I.2) 
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We shall see that, as this standpoint of initial -rapidity P grows to an age of 

order R, its rapidity in the (R, 0) coordinate system diminishes so as to keep 

the moving standpoint within the compact (R, 0) spacetime. This deceleration, 

gravitationally interpreted, will in Section IV determine mean energy density in 

terms of R and G. 

Mapping between ( R, /]) and ( R', iJ') coordinates is conveniently achievable 

by a 3-step process involving standpoints of infinite age: 

... A ... B ... c I ... , 

(R, !3)-*( oo, !3)-* ( oo, {3')-* (R, {3) (II 1.3) 

Step B we shall see to be a simple Lorentz boost (with counterpart in kinematic 

cosmology). Steps A and C at fixed initial rapidity are also simple transforma

tions but of a completely different type exposed in Section IV after standpoint

spacetime metric is introduced. Fixed-iJ mappings between coordinate systems 

of different ages are generally defined only for portions of the involved space

times. 
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IV. Geodesics 

Compactness of standpoint spacetime, accompanied by non-Riemannian 

metric (Chew 1994), precludes applicability of numerous notions from general 

relativity. Surviving, nevertheless, is representation of gravity through mat

ter motion along geodesics; gravitational mass continues to be indistinguishable 

from inertial mass. Classical metric is controlled by the symmetry of an underly

ing quantum dynamics whose description here is impractical. A convenient con

sideration is that radial homogeneous-universe motion in a standpoint spacetime 

is describable by a quadratic (Riemannian-like) form. For radial displacements 

with respect to R standpoint, an increment of "distance" turns out to be given 

by 

(JV.1) 

even though nonradial motion requires a quartic form. (Absence of subscript 

on ds2 is remindful of distance in variance under change of standpoint.) The 

radial metric (IV.1) will generate the required mappings between standpoint 

spacetimes of same rapidity but different R. We shall not here need the quartic 

·expression of more general metric. 
\ 

Notice that the radial metric (IV.1) is singular along the backward-light-

cone (future) spacetime boundary where ri = (2R- tR) 2 • This singularity, 

present also in the general metric, prevents any geodesic from penetrating the 

future boundary -- which has been called "abyss" (Chew 1994). Notice further 

that in big-bang neighborhood (i.e., tR ~ R) or, equivalently, in the limit R-+ 
oo, the anticipated Minkowskian form is achieved. In standpoint neighborhood 

( ltR - Rl ~ R, rR ~ R) the metric also is Minkowskian although here ds 2 = 
2( dti - dri). The factor 2 will be found below to influence standpoint age. 

The metric (IV .1) implies the radial equation of motion (geodesic differential 

equation) 

d
2
rR = -~ [ 1 _ (drR) 

2
] rR + (2R- tR)~ 

dtit 2 dtR (2R - tR) 2 
- rit ' 

(JV.2) 

for which explicit solutions will below be presented. Because radial motion 

with respect to one standpoint maps onto nonradial motion with respect to 

another standpoint of different spatial location (different initial rapidity), the 
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mapping strategy (III.3) generates from solutions to (IV.2) the most general 

homogeneous-universe geodesics. 

A Newtonian-gravitational interpretation of the linear approximation to 

(IV.2) in standpoint neighborhood, i.e., of the approximate equation of motion 

(IV.3) 

allows an inference of mean energy density in standpoint 3-space. At time 

tR = R, consider matter spatially displaced from R-spacetime center (i.e., from 

R standpoint) by a distance rR that is small compared to R. Let this matter 

be at rest with respect to that standpoint - - displaced slightly from R - - which 

coincides in location with the matter. It may be deduced from formulas in 

Section VI that such "stationary" matter has radial velocity in the R system, 

drR 1 rR (rR) 2 

dtR = J2 R + order R (IVA) 

It then follows from (IV.3) that nonrelativistic matter acceleration in the R 

system, in the neighborhood of R standpoint, is 

d
2
rR 1 ( 1 ) rR 

dtf:t = - 2 1 + J2 R2 + order (~~). (IV.5) 

In Newtonian terms the foregoing acceleration is attributable to a restoring 

gravitational force that resists displacement from the center of a spherically

symmetric mass distribution (whose radius is of order R.) If mass density at 

center is PR, the Newtonian gravitational potential at small rR is 

(IV.6) 

corresponding to an acceleration (toward the center) 

8?r 
-G -rRPR 3 . (IV.7) 

Equating (IV.7) with (IV.5) yields 

PR = 1~1r ( 1 + ~) G~2· (IV.S) 
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Once R has below been related to Hubble time, it will be found that (IV.S) cor

responds to the conventionally-defined density parameter (fraction of "critical" 

density in standard model), 

no = 2 - v'2 = .586. (IV.9) 

The foregoing prediction of no is provisional, subject to systematic deriva

tion of classical standpoint cosmology as a dilute-universe approximation to the 

more exact quantum model. Such a derivation would relate G to a "more

fundamental" small dimensionless parameter (Chew, 1994). In the interim, 

before a quantum-based theory of gravity becomes available, we are leaning 

on experimentally-supported (sub-Rubble-scale) features of classical Newton

Einstein theory (see Chew 1995) where G is regarded as a fundamental constant 

of nature. 

The structure of (IV.l) exemplifies the general principle that the limit 

R --+ oo for fixed xa leads to Minkowskian metric. In this (Milne) limit the 

spacetime becomes noncompact and unique for all iJ - - corresponding to the 

forward light cone with big bang as vertex. lnfinite-R coordinate systems, each 

labeled by a 3-vector rapidity, all describe the same spacetime. These systems 

are related to each other by Lorentz transformations, with Xoo,tJ = ( t oo,ff' r oo,ff) 
behaving as a 4-vector. (Poincare displacements are not allowed.) lnfinite

R spacetime, while extremely useful as intermediary in the mapping strategy 

(111.3), is not a physical spacetime. "Usual physics" situates in the neighbor

hood of some finite-R standpoint and is to be described by the attached coor

dinate system. Section IX will explain how usual Poincare symmetry (under 

displacements as well as Lorentz transformations) prevails approximately within 

standpoint neighborhoods small on the scale of R. 

lnvariance of the radial distance given by (IV.1) implies the fixed-rapidity 

mapping, (R, iJ) --+ ( oo, iJ), 

{ v ta±ra} i 00 ± r 00 = 4R 1 - 1 -
2
R , (JV.10) 

with the inverse, ( oo, iJ) --+ (R, iJ), 

(IV.11a) 
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.... .... ( too) TR = r 00 1--. 
4R 

(IV.llb) 

Here the rapidity index i3 has been suppressed. The interval 0 :::; tR ± TR :::; 2R 

is mapped onto the interval 0 :::; t 00 ± r 00 :::; 4R and vice versa. Straightline 

geodesics in in:finite-R coordinates transform into curved geodesics in :finite-R 

coordinates. (When these latter geodesics are radial, they satisfy the differential 

equation (IV. 2).) The most general geodesic may be written in infinite-age 

coordinates as the straight line 

(JV.12) 

with a, b, c a set of 7 constants constrained by c ~ 0, iai :::; c, 0 :::; lbl :::; 1. Here 

the 4-vector Xo = ( c, a) locates "source" of matter trajectory while the 3-vector 

b is matter velocity. The special geodesics followed by standpoints correspond 

to x0 = 0 with lbl =tanh lfil and b/ jbl = fi/ !iii· 
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V. Standpoint Age 

What time registers on a clock carried by an observer who starts clock close 

to big bang and moves along a standpoint trajectory? The clo~k adds up time 

increments dtR in a succession .of different coordinate systems as R increases, 

with the relation 

(V.1) 

prevailing continuously along the trajectory. It follows that "standpoint age" 

is 7z times its invariant distance from big bang. Recognizing roo to be zero 

everywhere along trajectory, distance from big bang is 

( 
2 ' 2 ) 1/2 

s = too - r 00 =too. (V.2) 

From (IV.10) one calculates 

too(tR = R, rR = 0) = 4R (1- ~), (V.3) 

so standpoint age is 

(
1- _1 ) 

v'2' 

1 1 . 

v'z + 2 
(V.4) 

Phenomenologically, what we are calling "standpoint age" is·the quantity com

monly called "age of universe". The latter terminology, which fits the standard 

model, seems inappropriate here and we shall avoid it. 
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VI. Redshift and Hubble Parameter 

The outcome of the following calculation of redshift is so simple that we 

state it immediately. The redshift factor commonly denoted 1 + z is equal to the 

ratio of observer age to source age (or observer-R to source-R). Equivalently, 

1 + z = eA, where .6. is the magnitude of source-standpoint initial rapidity when 

observer-standpoint (initial) rapidity is zero. The simplicity of this relation 

raises expectation of a transparent derivation. Unhappily we are not presently 

in possession of such. The calculation to follow combines Doppler redshift due 

to source motion in observer system with "propagation redshift" due to gravity 

experienced by photons moving through observer-standpoint spacetime. 

From (IV.ll) and (IV.12) with x0 = 0, it is straightforward to calculate 

in observer system the radial rapidity b.s of a source, located on the observer's 

backward light cone, that follows the trajectory of a standpoint whose initial 

rapidity magnitude was b.. One finds 

.6.s = ~ ln ( e-A +;:~sinh b.) · (V/.1) 

It may be verified that there is deceleration - - i.e. b.s < b.. (For small .6., b.s ~ 

(2 - V2)b..) The Doppler redshift factor is then 

e3/2A 
eAs = . 

( e-A + 2312 sinh b. )112 (V /.2) 

What about propagational redshift? Here we need to study geodesics along 

·the observer's backward lightcone. From a computation described in the Ap

pendix one finds a propagational redshift factor 

(V/.3) 

where rs is distance to source in observer system, the parameter R belonging to 

observer standpoint. The distance to source, from a calculation paralleling that 

leading to (VI.1), turns out to be 

r5 = e-2A sinh b.( cosh b.+ J2 sinh .6.)TR, 

and, remembering (V.4), one then calculates from (VI.4) that 

( 
2r ) 1/2 

1 + Rs = e-A( e-A + 23/ 2 sinh b.). 

12 
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Thus the product of (VI.3) with (VI.2) is simply e6.. 

That e6. gives the ratio of observer age to source age follows from the 

mapping of observer backward light cone onto a corresponding backward light 

cone in the infinite-age coordinate system that has spatial origin at observer. 

Along this infinite-age cone, 

too~ roo == sobserver' (V 1.6) 

and remembering the general relations== (t~ -r~) 1 12 , together with the special 
relation tanh .6. == rsource jtsource so 

00 00 ' 

tsource - ssource cosh .6. 
00 - ' 

r:urce = ssource sinh .6., (V1.7) 

it follows from (VI.6) that 

e6. sso·urce == sobserver. (V 1.8) 

Consider next the Hubble parameter, phenomenologically definable as 

. z 
Ho = hm -. 

Ts-+0 rs 
(V1.9) 

Because Formula (VI.4) exhibits a linear relation between r s and .6. for small .6., 

while in the same limit z/ .6. --1- 1, it follows that 

R -1 
0 == TR · 

(V 1.10) 

(V1.11) 

Before closing this section we remark that, according to (VI.4), the upper 

limit of rs - - distance to source located on standpoint backward light cone -

- is R/2, reached as .6. --1- oo. In other words, R/2 is "radius of the R stand

point's universe." Such a statement, as emphasized above in Section II, can 

be misleading inasmuch as Section VIII will show that (apart from quantum 

limitation) .an indefinitely-large amount of matter concentrates near standpoint 

horizon. Classically speaking, our universe is infinite. 
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VII. Luminosity Distance 

In this section we shall compute luminosity distance (as defined by Weinberg 

1972) and will find 

(VII.1) 

Although this result coincides with the standard-model formula for zero decel

eration parameter, an independent derivation is required. There is no present 

understanding of the coincidence. 

We are concerned with observer-system trajectories followed by photons 

emitted isotropically from the spatial origin of the source coordinate system. 

Let us designate by Os the angle qf emission in source system with respect to the 

direction, ii = -l.j tl, that (in either system) connects source to observer. Our 

task is to compute, for extremely small 05 , the photon impact parameter with 

respect to observer in observer system; this impact parameter will be equated 

with (}s times "effective distance". After attention to redshift loss of photon 

energy and to extension of observer time interval during which some collection 

of photons is received, "luminosity distance" will emerge. 

The direction ii' of photon emission in the source coordinate system (cos (} s = 
ii' · ii) is also the direction of photon propagation in infinite-age rapidity-l. coor

dinates: In the latter system photon spacetime location is given by the 4-vector 

xoo,.& which we abbreviate by x' = (t', r '). Introducing photon distance from 

big bang 

(V 11.2) 

it is convenient to represent photon trajectory as a 4-'vector function of the 

invariant s, which at emission takes the value ssource and at observation equals 

$observer. Under-l. boost the 4-vector x' transforms to the 4-vector X = xoo,O = 

(t, r) that locates photon in zero-rapidity infinite-age coordinates. lnvariance of 

s means s = (t2 - r 2 ) 112 . When the photon is near observer, t :::::::: sobserver and 

r:::::::: 0; near observer it follows that 

r' :::::::: sobserver sinh /:l. (VI 1.3) 

Employing the symbol R for observer standpoint, with the coordinates 

(tR, rR) physically locating the photon, we seek for photon near observer the 
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component of rR transverse to E. Because at observer 

t = Sobserver = 4R (1- ~), (VIlA) 

Formula (IV .11) tells us that, near observer, 

(VII.5) 

Using the subscript "tr" to denote transverse components of 3-vectors, it follows 

that the desired impact parameter is 

(VI 1.6) 

for s = sobserver. Because a Lorentz "boost does not alter the transverse compo

nent of a 4-vector, we have 
... ...., 
rtr = r trl (VII.7) 

and consequently 

(VI 1.8) 

Finally, because all trajectories are straight lines in infinite-age coordinates, it 

follows that r~r ~ Bsr', and Formula (VII.3) together with (VII.S) leads to 

(VII.9) 

For .6. ~ 1 where, according to (VI.4), TR..6. approximates (observer-measured 

or source-measured) distance between source and observer, the result (VII.9) 

agrees with straightline photon propagation through a unique flat space; but for 

.6.;<.1, (VII.9) becomes drastically non-Euclidean. (As .6. -7 oo, TR sinh .6. -7 oo 

whereas distance to source approaches R/2.) 

Luminosity is source-generated energy received at observer per unit area 

per unit time. Impact parameter deals with photons per unit transverse area 

although not with energy per unit time. Momentarily deferring the latter, we 

recognize e; /4 to be the fraction of photons isotropically emitted in source sys

tem that eventually arrive within the impact parameter (VII.9). Because the 

observer-system transverse area in question is 1rB;d~(.6.), where 

(VI 1.10) 
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the fraction of photons eventually arriving per unit area at observer is [47rd~(.6.)t 1 . 

Geometrically speaking, therefore, de(.6.) acts as "effective distance". 

However, fraction of energy emitted per unit source time that is received per 

unit observer time is reduced by a factor e-2.6. - - redshift reduction of photon 

energy being by a factor e-.6., with a second factor e-.o. arising from the ratio 

between source-time interval for emission of a number of photons and receiver

time interval for reception of these photons. Following Weinberg 1972, if instead 

of (VII.10) we define "luminosity distance" by 

(VII.ll) 

then [47rdi(.6.)]-1 gives "luminosity fraction" per unit area at observer. Remem

bering that e.o. = 1 + z, we may rewrite (VII.ll) as 

(VI /.12) 

finally achieving the result advertised above in (VII.1 ). 

With inversion of source and observer, the calculation leading to (VII.9) 

yields the angle sub tended at observer (in observer coordinates) by a source 

diameter (in source coordinates). The result is equivalent to "angular-diameter 

distance" (Kolb, Turner 1990) 

dA ( .6_) = Tsource sinh .6_ = e - 2
.6. dL ( .6_) 

z(1 + z/2) 
=7Jt (1+z)2 • 

(VI/.13) 

Formula (VII.13) agrees with that given by the standard model with zero de

celeration. Note that, according to (VII.13), the observed subtended angle ap

proaches a constant (2d·r;'e) as .6. -7 oo. 
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VIII. Matter Distribution 

Because standpoint trajectories control Rubble-scale :flow of matter, it is 

meaningful to speak of a "distribution of trajectories." Lorentz invariance of 

Rubble-scale distribution in infinite-age spacetime constitutes model definition 

of "homogeneous universe". From a selected standpoint to which zero initial 

rapidity is assigned, Lorentz invariance means other standpoints of initial ra

pidity l are isotropically distributed and, in magnitude of initial rapidity, have 

a distribution proportional to 

. 2 z2(1 + ~ )2 
smh !:ldfl = ( )3 dz, 

1+z 
(VIII.l) 

once again in agreement with standard model (Kolb, Turner 1990) for zero decel

eration. Normalized to (IV.8) at fl = 0, interpretation may be made of (VIII.l) 

as Rubble-scale "matter distribution". Close (z ~ fl ~ 1) to the selected 

standpoint where rR ~ TR.l, such a distribution is uniform in the usual sense of 

density independent of location, but as fl --+ oo the density implied by (VIII.1) 

increases without limit. The distribution is nonintegrable, corresponding to an 

"infinite classical universe" as in Milne's kinematic cosmology. 

Notice on the other hand that according to our luminosity distance (VII.'ll ), 

sources with age-independent spectrum and brightness proportional to mass 

would mean an average luminosity of the sky distributed in fl (or z) according 

to 

(VIII.2) 

Most observed light thus would originate at z;:;l. (The simple form (VIIL2), 

by virtue of ignoring variation of average intrinsic source brightness with age of 

source, is not to be regarded as a falsifiable model prediction). 

The quantum lower limit on classical age, Tmin rv 10-9 sec, in principle 

keeps finite a standpoint's universe. On the standpoint backward light cone 

the age of matter is e-.6-TR., so the lower age limit places a corresponding upper 

limit on fl (or z): !:lmax rv ln TR./Tmin(Zmax rv TR./Tmin)· In practice a far 

smaller bound to the visible universe is erected by observational impediments. 

A maximum observable redshift from our present standpoint is Zdec rv 1400, 

corresponding to the "decoupling" temperature (see Peebles 1993 and Section 

X below) above which photon mean free path becomes small on standpoint 
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scale. Nevertheless, over the "observable" interval z < Zdec the standard model 

with deceleration-parameter qo rv 1/2 predicts matter distribution in redshift 

increasing far less rapidly with z than that given by (VIII.1 ). Matter distribution 

provides potentially unambiguous model discrimination (Peebles 1993). 
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IX. Poincare Symmetry in Standpoint Neighborhood. 

This brief section makes explicit the sense in which standpoint cosmology 

is compatible with "usual" classical physics inside any homogeneous-universe 

neighborhood that is small on Hubble scale. Consider two standpoint coordinate 

systems labeled by 

(R, iJ) and (R', iJ') with IR- R'i ~ ~(R + R') and 1!1 ~ 1, liJ'I ~ 1. 

"Neighborhoods of standpoints", defined loosely by 

it - Rl ~ R, WI ~ R, 

it'- R'i ~ R', if''l ~ R', (JX.1) 

then map onto each other even though the full spacetimes do not map. (For ex

ample, because the maximum possible invariant distances from big bang within 

these spacetimes are 4R and 4R', respectively, if R' > R the portion of R' 
spacetime near abyss where 4R < s < 4R' does not map onto R spacetime.) 

Employing the strategy (III.3) we may ask for the relation between correspond

ing points (t, F) and (t', r') within the neighborhood (IX.1). One finds 

(t- R) - (t'- R') ~ r'- r, 

i -i'~(iJ'-iJ)r~·r', (JX.2) 

up to corrections of order (R+R')- 1 . Change of standpoint is thus equivalent to a 

familiar Poincare displacement. Adding the consideration that, to the foregoing 

order, metric is Minkowskian within the neighborhood (IX.1) for both coordi

nate systems, one recognizes usual Poincare covariance of a unique noncompact 

spacetime. For physics within this neighborhood any Poincare transformation 

may be invoked such that errors due to finiteness of universe are tolerable. 
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X. Thermodynamic Approximation? 

Because energy density varies inversely with square of age, near sufficiently 

young standpoints one expects particle mean free path (in time as well as in 

space) to become small on the scale of R, allowing a thermodynamic approxi

mation to develop meaning. Isotropy of universe as viewed from a standpoint · 

(using standpoint coordinates) makes natural an association with young stand

points of temperature and pressure, as well as energy density; expectation is 

that such quantities will be found in homogeneous-universe approximation to be 

dependent only on standpoint age. Accompanying energy density "' ak2 , a tem

perature monotonically decreasing with standpoint age is anticipC;J.ted. Not yet 

under control, however, is the thermodynamic role of gravity. Model geodesics 

imply unambiguous gravity and we have seen how attractive gravitational forces 

provide universe "confinement"- -defining a spatially-spherical spacetime "box" 

of radius R/2. But details of this "box" are unorthodox to a degree that mo.: 

mentarily is frustrating effort to formulate a consistent thermodynamic approx-

. imation. 

Assuming thermodynamic equilibrium for sufficiently-small standpoint ages, 

with radiation decoupling as temperature at a certain age falls below atomic 

ionization energies, a thermal photon ("black-body") spectrum would survive 

to later ages with "photon temperature" decreasing inversely with age. The 

energies of all decoupled. photons diminish by a common factor as age advances. 

N ucleosynthesis must occur near standpoints whose temperature allows nu

clear reactions but, in absence of thermodynamic gravity understanding, calcula

tions have not yet been attempted. It is momentarily unknown what standpoint 

cosmology predicts for light-element abundances generated by primordial nu

cleosynthesis. Making a preliminary crude guess that, during thermodynamic 

equilibrium, energy density varies as T 4
, the ratio rv 1022 is expected between 

age of photon decoupling and the minimum classically-meaningful age, Tmin· 

The latter accompanies a maximum classically-meaningful temperature near 

TeV scale. The MeV-scale temperatures needed for nucleosynthesis would occur 

near an age '"" l010
Tmin"' 10 SeC. 
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XI. Concluding Remarks 

Not described here but presented in a separate paper (Chew 1995) is standpoint

cosmology prescription for "weak" gravity- - small departures from Minkowskian 

metric at standpoint, departures generated by matter-distribution inhomogeneities 

much less potent than black holes. For "weak" inhomogeneities characterized 

by length scales well below Hubble scale, the standpoint prescription concurs 

with Einstein theory. Only for inhomogeneity scale approaching Hubble might 

there be significant difference. Almost all previous work on gravity-induced 

fluctuations in matter density is sustained (see Peebles 1993). 

For any matter distribution generating large metric deviation from Minkowskian 

form, the new model's non-Riemannian structure will generate unorthodox pre

dictions. Up t<? present, however, exploration of these predictions has been 

confined to "homogeneous-universe" calculations of Rubble-scale metric curva

ture - - calculations reported in the present paper. Investigation of small-scale 

"strong" inhomogeneities ("black holes") remains for the future. 

Prime candidate for early falsifier of standpoint cosmology is the predicted 

redshift dependence of luminosity distance (VII.1), but determination of matter 

distribution up to redshifts ;<:..5 could quickly eliminate the new model. Al

though ability of the new model to explain light-element abundances is not yet 

established, cosmic background radiation presents no qualitative challenge. 

Motivation behind classical standpoint cosmology has been, not addition of 

curvature to Milne's 1935 kinematic cosmology, but rather representation of the 

symmetry of an underlying quantum model. That symmetry implies for each 

standpoint a quartically-metricized compact spacetime. The compactness in 

turn requires classical curvature: Out of quantum symmetry has flowed classical 

dynamics. 

In homogeneous-universe approximation the quartic metric has yielded the 

geodesics described in the present paper, which for infinite-age standpoints re

duce to those of Milne - - a limit where all standpoint spacetimes become iso

morphic to each other, noncompact and Minkowskian. Although physical space

time is curved, belonging to a finite-age standpoint, the following striking set of 

redshift-related phenomenological features from Milne's model have survived in 

standpoint cosmology: 
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(A) "Age of universe" equals a Hubble time defined by redshift. 

(B) Luminosity di;tance and angular-diameter distance depend on redshift 

in the manner characterized standardly as "zero deceleration" (despite nonvan

ishing curvature of standpoint spacetime). 

(C) The entire universe is in principle observable from any standpoint, with 

a nonintegrable distribution in redshift that is uniquely determined by Lorentz 

symmetry. 

(D) Redshift factor equals ratio of observer age to source age (although 

· total redshift combines Doppler and gravitational shifts). 

Even if redshift-expressible predictions of standpoint cosmology all turn out 

indistinguishable from those of Milne's kinematic model, geometrical features 

differ. For example, at given age, the radius of a standpoint universe is larger 

than that of Milne by a factor ~ + 72, and the ratio of distance to Rubble-flow 

velocity is larger by a factor 1 + ~- Despite observational impracticability of in

vestigating the foregoing subtle differences, experimental determination of mean 

energy density is widely regarded feasible, and here Milne's model ( unaccept

ably) seems to imply no = 0, while standpoint cosmology predicts no = 2- v'2. 
The current competition, of course, is not with kinematic cosmology but 

with a "standard" cosmology based on Einstein's theory of gravitation. Because 

the latter was originally formulated without regard for quantum principles and 

without regard for meaninglessness of time "before big bang", its reliability at 

Hubble scale may be questioned. Phenomenologically-viable alternatives should 

not be ignored, especially if they entail fewer arbitrary parameters. A useful 

although not understood mnemonic is that, apart from energy density, all pre

dictions listed here coincide with zero-deceleration standard-model prediction~. 
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Appendix. Gravitational Redshift Along Standpoint Light Cone. 

Differentiating Formulas (IV .lla) and (IV .11 b) and taking the quotient 

leads to the following expression for particle velocity as it varies along a radial 

standpoint-spacetime geodesic: 

drR b(1 - 122.) - 1:.22. v = __ = 4R 4R 
R - dt 1 - !s2. - b!:.22. 

R 4R 4R 
(A.1) 

The constant b, limited to the interval -1 ~ b ~ +1, is the radial-motion special 

case of the 3-vector b appearing in the general geodesic (IV.12). Notice from 

(A.1) that in each of the two limits, b---+ ±1, VR approaches the same limit as 

band that, for any allowed b, lvRI ~ 1. (It may also be verified that if lbl < 1 

then, along the abyss boundary, where t 00 + r 00 = 4R, one always finds VR = -1 

- - i.e., inward matter motion parallel to boundary as required by confinement 

to compact standpoint spacetime.) 

Light arriving at standpoint from a source located on standpoint backward 

light cone corresponds to the limiting case VR = b = -1. Our deduction of 

gravitational redshift will invoke the relation 

(A.2) 

between particle velocity VR and particle rapidity IR· Even in the limits VR ---+ 

±1, where /R---+ ±oo, there is (finite) rapidity variation along the trajectory-

corresponding to energy shift. For zero-mass particles, energy varies in propor

tion to e61TRI where 8 bRI means change in the absolute value of /R· We may 

alter (A.1) to a rapidity-variation relation, applicable to incoming photons, by 

asymptotically expanding (A.2) for large negative rapidity, 

-~R~ 1 (A.3) 

and making a corresponding expansion of (A.1) around b = -1. Writing b = 

-1 + t, E > 0, one finds 

-1 + t 4R-tco 4R (t + ) 4R (t r ) - 00 roo 2 
VR = - co-

00 = - 1 + c R ( ) + terms of order E . ( A.4) 
1 - c 4R-(;oo-roo) €<1 4 - too -too 
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By comparing (A.3) with (A.4), it may be inferred that 

2..., E 4R- (too+ roo) e •R ~ -----'-------'-
2 4R- (too- roo)'--

(A.5) 

for E ~ 1, -IR ~ 1. Because /.R is negative, photon energy is thus proportional 

to 

[
4R- (too- r 00 )]

112 
[2R- (tR- rR)]

114 

4R- (too+ roo) - 2R- (tR + rR) ' 
(A.6) 

the right-hand form following if we remember from (IV.10) that 

_ too ±roo _ [ _ tR ± rR] 112 

1 
4R -

1 2R (A.7) 

Along the standpoint backward light cone, tR + rR = R, while at standpoint 

rR = 0. It follows from (A.6) that the gravitational redshift factor for propaga

tion between rR = rs and standpoint is 

( 
2r )1/4 

1+-s 
R 

(A.8) 

Of interest in principle (although not in practice) is gravitational redshift 

of light emitted from standpoint and proceeding along the standpoint's forward 

light cone where tR - rR = R. Repeating the foregoing calculation for the 

limit VR --+ + 1, IR --+ +oo, one finds gravitational energy-reduction during 

propagation in R standpoint system by a factor 

( 
2rs)1/4 

1--
R 

(A.9) 

for light reaching a distance rs from standpoint. At abyss, where rs = R/2, all 

R-system photon energies are thus reduced to zero. On the other "hand, if one 

thinks of light absorption by matter at and moving with some other standpoint 

located on forward cone, the motion of that standpoint produces a Doppler shift 

so that the net redshift in the usual sense continues to be given by the ratio of 

standpoint ages. 
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