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Abstract 

We clarify the role of approximate S-duality in effective super­

gravity theories that are the low energy limits of string theories, and 

show how this partial symmetry may be used to constrain effective 
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1. Introduction 

It has long been understood that .abelian gauge fields can be coupled to 

scalar fields in such a way that the equations of motion are invariant un­

der a group of "duality" transformations [1] that interchange the gauge field 

strength FIJ.v with its dual F/1-v, provided the (noncanonical) kinetic energy 

term of the scalar field( s) [hereafter referred to as the dilaton( s)] that couple 

to the gauge fields satisfies certain constraints. This is an automatic feature 

of ungauged extended supergravity theories [2]. A special example of this 

class of models is the dilaton plus Yang-Mills sector of effective N = 1 su­

pergravity theories obtained from superstrings in the limit where the gauge 

and Yukawa couplings are set to zero. In this case the group of duality 

transformations is 5L(2, R), which has as a discrete subgroup 5L(2, Z) that 

includes the transformation 5 -+ 1/5, often referred to as 5-duality. This 

is analogous to the modular group, known to be exact to all orders of string 

perturbation theory [3], which contains a subgroup 5L(2, Z) that includes 

the transformation T -+ 1/T, where T is a modulus chiral supermultiplet. 

The vev of its scalar component t determines the radius of compactification. 

In models from orbifold compactification, this discrete symmetry is generally 

a subgroup of a classical continuous symmetry that contains 5L(2, R) as 

a subgroup. Such symmetries are anomalous at the quantum level of the 

effective field theory since, for example, in supergravity they entail chiral 

transformations on fermions. In the case of modular invariance countert­

erms [4, 5] must be added to the effective field theory so as to restore the 

discrete modular symmetry. 

It has been conjectured [6] that a similar situation might hold with re­

spect to S-duality. Since the vev of the complex scalar field s that is the 

scalar member of the dilaton supermultiplet 5 determines the gauge cou­

pling constant: (s) = g-2 -i()j81r2 , this corresponds to strong/weak coupling 

duality. Recently there has been considerable interest in 5-duality from both 

the string [7, 8] and field [7, 9, 10] theory points of view. In particular, it has 
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been shown that the SL(2, Z) subgroup of SL(2, R) that is generated by the, 

elements() -t () + 27r and 47r s -t 1/ 47r s relates different string theories [8], and 

also that certain theories are S-duality invariant [9] under transformations 

involving both elementary fields and nonperturbative solutions. 

In this paper we restrict our attention to effective field theories of the type 

that have been obtained explicitly in orbifold compactifications. In these the­

ories S-duality, which we define hereafter as the SL(2, R) group of duality 

transformations among elementary fields, is a symmetry of the equations 

of motion only of the dilaton-gauge-gravity sector in the limit of vanishing 

gauge couplings - that is, the limit in which the gauge group reduces to 

U(1)n, where n is the total number of gauge degrees of freedom. Since the 

effective superpotential [11, 12] that parameterizes gaugino condensation is 

induced by the nonabelian self-couplings of Yang-Mills fields and by their 

gauge couplings to chiral supermultiplets, this term must explicitly break 

duality. Nevertheless, approximate S-duality may be a useful tool in pa­

rameterizing additional quantum effects that arise from the couplings of the 

Yang-Mills sector to the gravity and dilaton sectors. In Section 2 we show 

how the dilaton couplings in the chiral multiplet formulation are related to 

the general formulation [1] of duality invariance for interacting vector fields, 

and use this formulation to obtain the duality transformation law for the 

composite chiral multiplet that is interpreted as the lightest bound state of 

a confined Yang-Mills sector. In section 3 we give examples of how this 

transformation property may be used to constrain effective potentials in the 

chiral formulation. We will consider both the chiral multiplet and the linear 

multip1et formulations for the dilaton superfield. 

2. Duality transformations 

We first recall the relevant elements of the general formalism constructed 

in [1] for a noncompact group g C Sp(2n, R) of duality transformations on 
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n vector field strengths F. The scalars are valued in the coset space g jK, 

where K C U(n)-is the maximal compact subgroup of '9, and they can be 

represented by a group element g: 

<P*) <P~ ' 

that is restricted to the special form: 

( o P
0
*). g = exp p 

(2.1) 

(2.2) 

Under g the vector field strengths and scalar fields, respectively, transform 

as 

V*) 
T* ' 

(2.3) 

where G~-'v = ~cJ.Lvpo-Gpu = 2fJ.Cj8F~-'v, T = -Tt is a compact generator of K, 

V = VT is a noncompact generator of g jK, and k = k(g0 , P) is an element of 

K with field-dependent parameters chosen so as to preserve the off-diagonal 

form of lng. The symmetry of P implies <PJ = ¢0 , <Pf = ¢1 . The lagrangian 

describing these bose degrees of freedom, is1 

.c 
z 

1 (1- Z*) 
f = 2 1 + Z* ' 

(2.4) 

where QJ.L and PJ.L are the parts in the Lie algebra of K and of g /K, respec­

tively, of the the element g-1 81-'g = QJ.L + PJ.L of the Lie algebra of Q. The 

equations of motion derived from the lagrangian (2.4) are invariant under the 

1The normalization of the vector kinetic term here differs by a factor two from that 

in [1), where it was chosen to coincide with the canonical one in the limit Z __,. 0. 
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transformations (2.3), although the action is not. 2 Couplings to other fields 

· '1/Ji are determined by their transformation properties under K; the equa­

tions of motion of the following lagrangian are invariant under (2.3) with 

'1/Ji ~ ki(g0 , P)'l/Ji, where ki represents K on the multiplet of fields '1/Ji: 

where the a/J are constants, and the dots represent possible 9-invariant op­

erators of higher dimension,. as well as operators constructed from the field 

strength FJ.Lzn an arbitrary antisymmetric tensor HJ.Lv ( '1/J ), and their duals [1]. 

Here we are interested in the simplest realization of the above construc­

tion, namely 9 = SL(2, R), K = U(1). Then then x n matrices <Pi, T, V, Z, P 

and f are proportional to the unit matrix. The dilaton s from superstring 

theory is identified as 
1 (1- Z*) 

s = 2 1 + Z* =f. (2.6) 

Expressing <Pi in terms of s we obtain: 

__ 1_ ( o ( 77 *) 2 8~-'s) 
s + s ry 28J.Ls 0 ' 

7] = (ry*)-1 = J~ :~:- (2.7) 

Inserting (2.6) and (2.7) in (2.4), we recover the standard lagrangian for the 

string dilaton with Kahler potential K(S, S) = -ln(S + S). In addition we 

have 

Q = 1 (8~-'s- 8~-'s 0 ) (ry*8~-'ry 0 ) 
~-' 2( s + s) o 8~-'s - 8~-'s + 0 ry8~-'ry* · 

(2.8) 

The action of SL(2, R) on s takes the usual form 

, as- ib 
s ~ s = . d' zcs + a,b,c,d E R, ad- be= 1. (2.9) 

2 An invariant action for supergravity with an abelian gauge group has been constructed 

in [7] by sacrificing manifest general coordinate invariance. 

4 



This corresponds in (2.3) to 

9o ·(p q*) ' 
q p* 

k- (' 0) - 0 (* ' 

p ~(a + d) + ~c- ib 
2 4 ' q = ~(d- a)+ ~c + ib, 

(C)-1 = 'f/,c, 
'f/ 

( ry' = ry(s'), 

A Weyl fermion '1/Jn of U(l) charge n transforms as 

and its SL(2, R) invariant kinetic energy is given by 

-ics + d 
ics + d · 

where we have defined fn,/3 = TJn(s + s)f3'1/Jn; under SL(2, R): 

(2.10) 

(2.11) 

fn,/3--+ !~,{3 =e-n lise+ dl- 2{3 !n,/3 = e-2{3-n(ics + d)- 2{3 !n,/3· (2.13) 

In a supersymmetric theory the transformation property (2.9) of s applies 

to the dilaton chiral supermultiplet S( fJ) = s + Bxs + · · ·: 

S(fJ)--+ S'(fJ) = ~S(fJ')- ib_ 
zcS(fJ') + d 

This effects a Kahler transformation: 

I< --+ I<+ F + F, F = ln(ics +d), 

(2.14) 

from which one can derive the transformation properties of the component 

fields of S; in particular 

(2.16) 
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Thus we can identify Xs _ J_~ 1 in (2.13). It is straightforward to verify 
2' . 

that .C(f_~ 1 ) given in (2.12) coincides with the kinetic energy term for xs 
2' 

in the standard supergravity lagrangian [13, 14]. 
The other fermion fields that couple to the dilaton are the gauginos >. 

with kinetic energy term: 

(2.17) 

Comparing (2.17) with (2.12), the (canonically normalized) field );L is iden­

tified as );L - h 0 , from which it follows that A£ = h _l, with its transfor-
2' 2' 2 

mation law given by (2.13) as: 

(2.18) 

This immediately gives the transformation law for the gauge field strength 

supermultiplet Wen where a is a Dirac index: 

(2.19) 

Having established the transformation laws for the superfields S and W,0 

and using the invariance under SL(2, 'R) of the supervielbein, one can directly 

check that the supergravity equations of motion [14] are invariant under 

SL(2, 'R) when the the theory is limited to this set of fields. In this case they 

reduce to: 

G 1 -aav S'D s- (S + SLc.aw w 0 
b + 8( s + s)2 o-b a a - 8 o-b a a = , 

~ 'D.:'Wa - ~'DaSWa + h.c. = 0, 

(S + s)- 2 ps + ~wawa = 0, (2.20) 

where b is a Lorentz index, F 5 = -~'Da'DaS, and. the superfields R and 

Gb describe the supergravity multiplet; they are related to the curvature 
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superfield by: 

R s.:y 8(- )hR 
ba = <TbaE ' R.:y - 2·Gd ( c ).:y 

5 ba - - Z <T E 5 Edcba • 

Using the Bianchi identity: 

(2.21) 

it is straightforward to show that these equations are invariant under the 

SL(2, R) transformations defined by (2.14) and (2.19). It follows from the 

latter that the composite superfield 

(2.22) 

used in effective supergravity lagrangians for gaugino condensation trans­

forms as 

U(B)-+ U'(B) = e(ics + d?U(B). (2.23) 

As shown in [15], since the Kahler weight of the chiral superfield Wa differs 

from that of an ordinary chiral superfield such as S, the composite field U, 

in the context of supergravity, is related to an ordinary chiral field H by: 

where ]{ is the full Kahler potential; classically: 

I< = -ln(S + S) + G(Z, Z), 
eG/2 H3 

U=---~ 
(S + S)t' 

(2.24) 

(2.25) 

where Z represents chiral multiplets other than the dilaton. Since under 

(2.14) (S + S) -+ lieS+ dl-2 (5 + S), we obtain the transformation property 

H(B)-+ H'(B) = (icS + d)t H(B). (2.26) 

We emphasize that, although the equations of motions (2.20) make no 

explicit reference· to the nonabelian nature of the gauge field strength, they 
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are duality invariant3 only in the abelian case· [16]. This is because the 

covariant spinorial derivatives (or, in the case of nonsupersymmetric theories, 

the covariant derivatives) have an implicit dependence on the gauge potential. 

Furthermore, even in the abelian case duality is broken if gauge couplings to 

matter: are introduced, since this also involves the gauge potential explicitly. 

Finally, S-duality is broken by the presence of a superpotential W( Z) through 

the appearance of the noninvariant factor eK(s,s) in the corresponding scalar 

potential and Yukawa couplings. 

Finally we note that while the equations of motion (2.20) are SL(2, R) m­

variant, the Yang-Mills superfield lagrangian [14] is not4
: 

.CyM = ~ j d4B!swaWa+h.c., SWaWa--+ JicS+dJ (a-~) SWaWa. 

(2.27) 

This result will have implications for attempts to impose approximate SL(2, R) 

invariance on effective lagrangians for gaugino condensation, to be discussed 

in the next section. 

3. Gaugino condensation 

A. Chiral multiplet formulation 

The superpotential for gaugino condensation was first derived by Veneziano 

and Yankielowicz [11] in the context of a supersymmetric renormalizable 

Yang-Mills theory, by imposing the correct chiral and conformal anomalies. 

Their result was extended to include the dilaton by Taylor [12]. In the su­

perfield formulation [14] of supergravity this leads to the potential term [15], 

3 There is evidence (9] for invariance under duality transformations involving soliton 

solutions in N = 2 supersymmetric Yang-_Mills theories with vanishing ,8-functions (which 

includes the case N = 4). 
4 See however (7]. 
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expressed in terms of the chiral multiplet H introduced in (2.24), of the form 

1 J 4 E K/2 .Cc+.CQ=2 d(}Re (Wc+WQ), 

We ~SH3 W. = bo H 3 ln(H/ ) 4 ' Q 2 J.L, (3.1) 

with b0 the group theory constant that determines the appropriate ,8-function . 

.Cc and .CQ are usually interpreted as the classical and quantum contribu­

tions, respectively, to the effective potential for gaugino condensation. As 

anticipated in the introduction, .CQ is not SL(2, R) invariant. However, nei­

ther is .Cc, since, by construction, it has the same transformation property as 

(2.27). In the general formulation [1] of duality transformations, couplings of 

the dilaton( s) to matter entail duality in variance of the corresponding terms 

in the lagrangian, as opposed to their couplings to gauge fields, which are 

only an invariance of the equations of motion. This mismatch may be traced 

to the fact that we used the Bianchi identity (2.21) to obtain the invariance 

of the equations of motion for the underlying theory expressed in terms of 

the Yang-Mills field strength Wa. The identification (2.22), together with 

the constraint 

implies a constraint on the superfield H that is not satisfied for an ordi­

nary superfield. This suggests a possible inconsistency in all chiral multiplet 

formulations of gaugino condensation [11, 12, 15, 17, 18], especially those 

treatments [19] a la Nambu-Jona-Lasinio in which the use of a Lagrange 

multiplier imposes the operator identity U = wawa. We will return to this 

point in section 3.B below. 

In this paper we consider a toy model with a single modulus superfield T, 

and set gauge nonsinglet matter fields to zero. These simplifications do not 

affect the generality of our results. In [15] we showed that the (continuous) 

modular invariance of the classical supergravity theories requires that the 
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Kahler potential depend on the composite field H only through the invariant 

IHI 2 /(T + T), and we adopted the no-scale form 

]{ -ln(S + S)- 3ln(T + T)- 3ln (1- f(S, S) IHI
2 

) 
T+T 

-ln(S + S)- 3ln (r + t- J(S, S)IHI 2
). (3.3) 

The effective theory constructed by combining (3.3) with (3.1) was subse­

quently modified [17, 18] by including an additional T -dependence through 

the Dedekind function ry(T) in such a way as to restore invariance under 

the discrete modular group. Although this modification was regarded as a 

parameterization of threshold corrections [4] that arise from integrating out 

heavy string modes in some orbifold compactifications, none of the above 

models is truly consistent with string theory, since they do not incorpo­

rate the Green-Schwarz counterterm [5] that cancels part (or in many cases 

all [20]) of the modular anomaly that arises from perturbative field theory 

quantum corrections. The effect of the Green-Schwarz term is to modify the 

Kahler potential by 

ln(S + S)--+ ln(S + S- bG), G -:- -3ln(T + T), (3.4) 

where b = 2b0 /3, and b0 = .56 is the constant that determines the E8 (3-

function. This modification spoils the no-scale feature of the Kahler potential 

and generally leads to an unbounded potential. 

In this section we consider a prototype model in which the hidden gauge 

group is E8 , in which case the anomaly is completely cancelled by the Green­

Schwarz term, and furthermore there is no ambiguity in constructing an 

effective composite potential. That is, since the modular transformation 

laws are now, with a:, (3, ,, 8 3 n, a8- (3, = 1: 

T --+ T' =aT- i(3 G--+ G + F + F, 
i1T + 8' 

F = 3ln(itT + 8) 

H --+ H' = e-F/3 H, S--+ S' = S + bF, (3.5) 
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the structure (3.1), which can be understood [21] as arising from coupling 

constant renormalization, coincides with the requirements of modular invari­

ance. 

We study the effective lagrangian for the composite superfield H under 

the assumptions that modular invariance is exact to all orders, and that S­

duality, as defined by (2.14) and (2.26), with T -+ T' = T, is recovered to 

leading order in g 2 = (Res) - 1 = O". S-duality determines the function f( S, S) 
in (3.3): f(S, S) = (S + S)~; we therefore adopt the Kahler potential: 

I< -lnM- 3ln(1- (M')~Q) + G, L-1 = S + S- bG, 

M L-1 + 3b1ln Q, M' = L-1 + 3b2ln Q, Q = IHI2eG/3. (3.6) 

The rationale is as follows. Modular invariance requires ]{ = G + k(L, Q). 
In the limit g 2 -+ 0, i.e., O" -+ oo, (3.6) is S-duality invariant and reduces 

to the form (3.3). By matching string one-loop calculations with field theory 

ones, it was shown in [22] that at the string scale the Kahler potential is 

precisely (3.6) with b1 = b2 = H = 0; the modular invariant scalar field5 

R = [s + s + 3bln(t + l)t1 = 2g2 (3.7) 

is twice the squared gauge coupling constant at that scale [22, 23]. However, 

we are interested in the effective theory at the condensation scale; one possi­

bility is that we should replace everywhere the string scale coupling constant 

by the running coupling constant evaluated at the condensation scale, which 

would correspond to b1 = b2 = b. In this case the theory is of the no-scale 

form, and the potential is positive semi-definite. 

For the superpotential we take the most general form consistent with 

modular invariance of string perturbation theory: 

W = c + Wo, W0 = e-S/b F(Y), Y = H e5f3b (3.8) 

5We use reduced Planck mass units: 81rGN = 1/m~1 = 1, and throughout this sub­

section we use upper case letters for chiral scalar superfields and lower case for the corre­

sponding complex scalars. 
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that is, we take W0 (S, H) to be modular invariant but allow for a constant 

term that breaks modular invariance, that might arise [24] from a classical 

nonperturbative effect such as the vev of the three-form Hemn of ten dimen­

sional supergravity. In the standard formulation [11, 12, 15, 17, 21, 18] of 

gaugino condensation F(Y) ex Y 3 ln Y. However, as noted above this is not 

invariant under S-duality in the limit g2 --+ 0 (a --+ oo). If we adopt the 

point of view that S-duality should be recovered in this limit, we require 

n < 3. (3.9) 

Such a superpotential could be interpreted as arising from purely nonpertur­

bative effects, with, for b2 = b, the Yang-Mills wave function renormalization 

encoded in the Kahler potential, rather than the superpotential - in contrast 

to (3.1). A similar reinterpretation was used in [18] to recover a positive 

semi-definite no-scale potential in the presence of ry(T)-dependent terms. 

We have studied the potential for three choices of b1, b2 in (3.6) that we 

enumerate below. An interesting question that we address is whether or not it 

is possible to generate a bounded potential (more precisely, one with vanish­

ing vacuum energy) with supersymmetry breaking without the introduction 

of a constant c in the superpotential. The Kahler potentials we consider are 

by no means the most general. For example, one-loop corrections [25] induce 

a term: 

£ + £1-loop 3 -3 j d4 ()E + 
1
;:2 j d4()E(S + S)2jWaWal2ln A 2, (3.10) 

where A is the effective cut-off, that we take here to be a constant, and Na 

· is the number of gauge degrees of freedom. Since this term arises only from 

couplings of the gauge sector to the dilaton sector it is S-duality invariant, 

and would by itself generate a kinetic term for the composite field H; making 

the replacement wawa --+ U, the classical Kahler potential is modified as 

12 

NalnA 2 

a=---
12871"2 ' 

(3.11) 



where the O(n 2
) terms include the substitution S + S -t L -I when ex­

act modular invariance is imposed. Similar higher dimensional operators 

arise [26] from string corrections even at the classical level; it remains to be 

seen whether or not such a Kahler potential allows for a viable effective po­

tential for the composite multiplet. Since the models we consider possess a 

continuous modular symmetry, the vev (t), that fixes the radius of compact­

ification, is undetermined. This degeneracy of the vacuum could be lifted by 

quantum corrections in the effective field theory and/ or by string corrections 

such as ry(T)-dependent threshold corrections. 

This corresponds to using only the string coupling constant in the Kahler 

potential. We considered a parameterization of the superpotential F (y) = 
L:n anyn. The requirement that the potential be positive semi-definite con­

strains the values of n: n > .4238 or n < -4.74 (and thus c = 0). We 

studied the potential as a function of .e for F(y) = yn, for various values of 

.424::; n::; 2 and of x = (m')iq with 0::; x < 1, as required by positivity 

of the scalar metric. We found that, if the potential is bounded, the global 

minimum is always at (y) = (V) = (W) = 0, so supersymmetry is unbroken 

if the potential is bounded. 

II. b1 = 0, b2 = b. 

This incorporates the Yang-Mills wave function renormalization at the con­

densation scale into the Kahler potential for H, but leaves the dilaton Kahler 

potential unmodified from its form at the string scale. A self-consistent phys­

ical interpretation requires strong coupling: g~ ~ 1 at the nonperturbative 

vacuum, where 
2 .e 

29c = fc = 1 + 3b.eln q >.e. (3.12) 
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It turns out that that positivity of the kinetic energy together with the con­

dition .ec > .e requires .ec ~ 7.8. Moreover, if we start in a region of parameter 

space where both the potential and the eigenvalues of the Kahler metric are 

positive, the potential goes to +oo as we approach the limiting value of .ec, 
which therefore cannot be reached. Alternatively, the potential is negative 

for positive eigenvalues of the Kahler metric, and goes to -oo in the limit. 

We conclude that this parameterization is inconsistent with condensation if 

the potential is bounded from below. 

III. No scale case: b1 = b2 = b. 

This corresponds to replacing the string coupling constant everywhere by the 

running coupling constant evaluated at the condensation scale, and results 

in a potential that is automatically positive semi-definite, because it satisfies 

the general criterion [18] for a no-scale potential. In this case the potential 

is minimized for W0 = 0, c = W, so there is no supersymmetry breaking if 

c = 0. If we take F(y) = aynln(y/JL), we obtain< W0 >= 0 for y = 0 or 

y = f.L· The interesting case is the latter one (y =f:. 0), for which the positivity 

constraints on the scalar metric are satisfied provided 

f.L > 1, 
.e 1 1 1 

.€c = - >- = -. 
1 + 3bfln q 6b ln JL b .37 

(3.13) 

Assuming a, f.L"" 1, and .e = g2 /2 = 1/4, the gravitino squared mass is given 

by 
2 .€c2eG a2 f.L2ne-1/bf.o (5 X 10-4mpz)2 

ma = (1- x)3- 9b2.€(1- x)3 "' ac/47r 
(3.14) 

and the compactification radius is 

(3.15) 

where ac = .€c/27r is the fine structure constant at the condensation scale; 

consistency requires ac / 47r ~ 0 ( 1). 
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A pertinent question is whether the use of S-duality constraints brings 

any qualitatively new features to the problem of gaugino condensation. We 

have not found a satisfactory supersymmetry breaking potential without in­

troducing a constant c, which is the same as the situation without S-duality. 

A similar result was found in [10) where a different definition of S-duality 

was used. Moreover, if we take M' -+ 1 in (3.6) we find positivity constraints 

similar to those in III; taking n = 3 in the superpotential of III, we recover 

the model studied in [15, 21), except that the Kahler potential has been cor­

rected to include the Green-Schwarz anomaly cancellation counterterm, with 

the string coupling renormalized at the condensation scale f.t ( b1 = b) so as to · 

recover a no-scale effective Lagrangian. Thus the implementation of approx­

imate invariance under S-duality does not seem to qualitatively change the 

picture of gaugino condensation, at least in the chiral multiplet formulation. 

B. Linear multiplet formulation 

There is reason to believe that the linear multiplet formulation is the correct 

one for describing the dilaton supermultiplet from string theory, and, in 

fact, the Green-Schwarz counterterm is most easily constructed within this 

framework [5, 27). While this formalism is dual to the chiral formalism 

in the tree approximation, it has generally been assumed that this duality 

may be broken by nonperturbative quantum effects. If this were true, one 

could interpret the potentials parameterized in the previous subsection in the 

following way. In the absence of a superpotential, the theory defined by the 

Kahler potential (3.6) is dual to a theory containing a linear supermultiplet 

L and the chiral supermultiplets T, H with Kahler potential K = k(L, Q) + 
G, where k(L, Q) is modular invariant. The Green-Schwarz counterterm 

appears [27) as a subtraction constant Vas in the integral equation 

- J dLfJK 
S + S +Vas( G, Q) = - L f)L. (3.16) 
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obtained from integrating the equation of motion for L. One can choose 

the functions Vas and k such that the Kahler potential (3.6) is recovered 

in the dual formulation in terms of the chiral supermultiplet S. Within 

this perspective, one would first perform the duality transformation to cast 

the theory in terms of a chiral supermultiplet, and then add a potential 

induced by nonperturbative quantum effects which should vanish in the limit 

of vanishing gauge coupling constant. This last requirement coincides with 

the S-duality constraint imposed in Section 3.A. 

However, recent investigations [28, 29] suggest that chiral/linear multi­

plet duality may not be broken by nonperturbative effects, and that, in any 

case, gaugino condensation and the generation of a potential for the dilaton 

supermultiplet can be implemented directly within the linear supermultiplet 

formulation [28, 29, 26]. The physical degrees of freedom of the chiral super­

multiplet are the dilaton o- and and axion a. In the classical approximation 

to effective supergravity theories derived from string theory, the axion is dual 

to a three-form hJ-Lvp that is the curl of a two-form potential bJ-Lv· The conven­

tional wisdom has been that duality is preserved in the absence of a potential 

for the axion. However, it was shown some time ago [30] that interactions for 

the two-form can be introduced in such a way that the dual theory contai~s 

massive scalars. In the remainder of this subsection we will consider what 

the implications of S-duality may be in the general framework of gaugino 

condensation as formulated in terms of a linear supermultiplet. We will see 

that some of the difficulties encountered in the chiral multiplet formulation 

are avoided. 

The only subgroup6 of SL(2, R) defined by (2.14) and (2.19) that does 

not mix the dilaton o- with the axion a is the group of scale transformations: 

a-1 = d =-A, b = c = o, (S' + S') = _A- 2 (5 + S), W~-+ -AWa. (3.17) 

The transformation law for the linear multiplet L can be inferred from (3.16), 

6The symmetries involving the axion reemerge in the linear formalism as two indepen­

dent gauge transformations of the transverse antisymmetric tensor bp.v. 
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which gives, in the classical limit: 

L---+ L' = >.2 L. (3.18) 

This symmetry is respected by the modified linearity condition [27] 

(3.19) 

where k is a constant, when the Yang-Mills sector is included. 

In references [29, 26] a vector supermultiplet V was introduced that has 

among its components the components of a linear supermultiplet L and of a 

chiral multiplet, 

(3.20). 

that has the same Kahler weight as WQWQ, and moreover satisfies the con­

dition: 

(3.21) 

where r ABC is a super three-form gauge potential [31]. Eq. (3.21) is consis­

tent with the constraint (3.2) if we interpret U ,....._ WQWQ as the condensate 

chiral multiplet. 

In contrast to the case discussed in section 3.A, we do not need to intro­

duce a "classical" superpotential for the composite supermultiplet U, because 

the corresponding term is implicitly included in the kinetic energy term for 

V just as, in the linear multiplet formalism for the dilaton coupled to Yang­

Mills fields, the Yang-Mills lagrangian is implicitly included in the lagrangian 

for L through the linearity condition (3.19) . 

. In the case of global supersymmetry [29, 26] the "quantum" superpoten­

tial is the same as in ( 3.1): 

b 
W(U) = 4u ln U. (3.22) 

If no additional operators are introduced in the lagrangian, the complex 

scalar field u is a nonpropagating auxiliary field, but a potential is induced 
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for the dilaton supermultiplet. The field u can acquire a kinetic energy 

term with the introduction of appropriate operators of higher dimension. 

This construction was extended to the supergravity case in [26] using the 

formalism of superconformal supergravity, with N=1 Poincare gauge fixing 

constraints imposed on the chiral compensator [32]. Here we use the Kahler 

covariant formulation [14], where S-duality, as defined by (3.18), IS more 

transparent. In this case the classical kinetic energy term is just 

(3.23) 

where a is a constant, and Vas = -bG is the Green-Schwarz counterterm 

introduced in (3.16). The nonperturbatively induced superpotential term is 

- b J 4 E ( -K/2 ) .CQ-S d()RUlne U +h.c., ]{ = ln V + G, (3.24) 

where the argument of the log, which must be a superfield of Kahler chiral 

weight w = 0, can be understood [21] in terms of the ratio of the infrared 

cut-off (Ut) and the effective ultraviolet cut-off ( eKf6). Under the modular 

transformation (3.5), with 

V'(O) = V(O'), (3.25) 

we have 

(3.26) 

If the kinetic term for the condensate is dominated by field theory quan­

tum corrections and/or string corrections analogous to (3.10), that arise only 

from the dilaton/Yang-Mills/ gravity sector interactions, then S-duality can 

be used as a guide to their construction. For example, in the general formal­

ism described in [14], terms in the locally supersymmetric lagrangian are of 

the generic form 

1 JE .C = 2 R ~ + h.c., (3.27) 
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where <1> is a chiral supermultiplet cva<P 
w( <1>) = + 2. A special case is 

0) with Kahler chiral weight 

(3.28) 

Superfields <1>, </>can be constructed from S-duality invariant forms such as 

Terms similar to these were used in [26] to generate effective lagrangians for 

a dynamical condensate. The restricted class of models studied (which do 

not include a constant c in the superpotential) do not break supersymmetry 

at the vacuum. 

4. Conclusions 

We have explicated the gauge and dilaton superfield transformations under 

the SL(2, R) group of duality rotations that includes weak/strong coupling 

duality, S ---+ 1/ S," as a group element. SL(2, R) is a symmetry of the 

Yang-Mills/ dilaton/ gravity sector in effective Lagrangians obtained from su­

perstring theory, and we have studied its implications for models with a 

dynamical condensate. In the linear multiplet formulation for the dilaton, 

the only remnant of SL(2, R) is a scale transformation that can nevertheless 

be used to constrain the operators appearing in the lagrangian, and in fact 

this formulation appears to be the more natural framework for describing 

a composite superfield condensate. None of the models studied so far have 

produced a bounded potential with supersymmetry breaking at the vacuum 

without the introduction of a constant term in the superpotential. 
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