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1 

A Lagrangian numerical method based on impulse variables is analyzed. A relation between 

impulse vectors and vortex dipoles with a prescribed dipole moment is presented. This 

relation is used to adapt the high-accuracy cutoff functions of vortex methods for use in 

impulse-based methods. A source of error in the long-time implementation of the impulse 

method is explained and two techniques for avoiding this error are presented. An application 

of impulse methods to the motion of a fluid surrounded by an elastic membrane is presented. 
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Chapter 1 

Introduction 

The Navier-Stokes equations, which describe the motion of viscous fluids, are typ­

ically written in terms of the fluid velocity or vorticity. Most numerical methods are dis­

cretizations of either formulation of these equations. In recent years, the introduction of 

a new variable, which has been called magnetization [6, 8], velicity [7], impetus [24], and 

impulse [17], led to a new formulation of the fluid equations [29, 7]. In terms of the new 

variable, the Euler equations, which describe the motion of inviscid fluids, display read­

ily the Hamiltonian structure of fluid flow in any space dimension. Buttke [7] presented 

a Lagrangian numerical method based on discretizations of these new equations. These 

discretizations lead to systems which in the absence of viscosity, conserve many invariants 

associated with the Hamiltonian, including kinetic energy, impulse, helicity, and angular 

momentum. 

The numerical method based on impulse, presented by Buttke, is the starting 

point for this dissertation. Many questions regarding the method have been unresolved. For 

instance, specific flows for which the method is particularly useful have not been identified; 

the accuracy of impulse-based methods has not been studied for long-time simulations; 

convergence properties of the method were unknown; how to choose the cutoff functions 

was not know. These questions are answered here. 

The dissertation begins with background material about the Navier-Stokes equa­

tions, the definition of impulse, its equation of motion, and the relevant Hamiltonian formal­

ism. In chapter 3, the equations of motion for impulse are used to obtain some results about 

the evolution of impulse, and geometric interpretations of impulse flow are made with the 

help of surfaces orthogonal to the impulse field. The numerical method and its properties 
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are presented in chapter 4, as is the connection between impulse and vortex dipoles. This 

connection validates the use of the cutoff functions of vortex methods in impulse methods 

and sheds light on the accuracy problems that can be expected in some long-time imple­

mentations of the method. The special case of two-dimensional flow is discussed in chapter 

5, where two techniques for maintaining long-time accuracy are presented and illustrated 

by numerical examples. Chapter 6 contains a discussion of three-dimensional implemen­

tation of the method. Finally, in chapter 7, an important application of impulse methods 

to the motion of a two-dimensional elastic membrane surrounding an incompressible fluid 

is presented for the cases of both inviscid and viscous fluids. This is an example of an 

application for which impulse methods are particularly well-suited and is a step toward the 

use of impulse methods in physiological flows. 
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Chapter 2 

Background and Previous Work 

2.1 Navier-Stokes Equations 

The equations that describe the motion of viscous fluids are the Navier-Stokes 

equations. In this chapter, the Navier-Stokes equations for incompressible fluids are pre­

sented in three different forms. They are introduced in terms of the fluid velocity, which is 

the form that naturally arises from equating the rate of change of momentum of a portion 

of fluid to the sum of all forces acting on the same portion of fluid. The vorticity in the flow 

is then defined and the evolution equations for the vorticity are deduced. Finally, impulse 

variables are introduced and the Navier-Stokes equations expressed in terms of impulse are 

derived. 

2.1.1 Velocity Variables 

Let n be a subset ofR2 or R3 with smooth solid boundary an. If the fluid velocity 

is denoted by u = (u11 u2,u3), the Navier-Stokes equations for incompressible fluids are 

Ut+(u·V)u = -Vp+v~u 

V·u = 0, 

(2.1) 

(2.2) 

in n. Here, t is time, Ut is shorthand notation for au; at, p is the pressure, and v is the 

fluid viscosity. Eq. (2.2) expresses the incompressibility of the fluid. The viscosity will 

force the fluid to come to a stop at the boundary of the domain, so the equations must be 

supplemented by the boundary condition u = 0 on an. For inviscid fluids (i.e. v = 0), the 
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lack of friction allows the fluid to move along the solid boundary but not to penetrate it. 

In this case, the boundary condition is u · n = 0 on an, where n is the outward unit vector 

normal to the boundary. When the domain n is the entire space, the boundary condition 

is replaced by u -t 0 as JxJ -too. The free-space case will be considered from now on. 

2.1.2 Vorticity Variables 

The vorticity ~ of a flow is defined as the curl of the fluid velocity, ~ = V' x u. 

If one thinks of R 2 as a subspace of R3 , then in two dimensions the vorticity is a vector 

normal to the plane; one could then write~= (O,O,w)T, where w = ax1 u2- ax2 u1, and 

(xb x2, x3) are the coordinate variables. 

By taking the curl of Eq. (2.1) and using Eq. (2.2), one arrives at the equations of 

motion for incompressible flow in terms of vorticity [16] 

~t + (u · V')~ = (~ · V')u + v.::l~. (2.3) 

In two dimensions, the first term of the right-hand side is zero, so the equations reduce to 

the scalar equation 

Wt + (u · V')w = v.::lw. (2.4) 

Eq. (2.4) indicates that, in the absence of viscosity (i.e. for v = 0), the vorticity is simply 

transported by the flow; that is, w remains constant along particle trajectories. 

In three dimensions, the vorticity along particle trajectories can change even in the 

absence of viscosity due to the first term on the right-hand side of Eq. (2.3). This term is 

commonly called the stretching term, because it is associated with the stretching of vortex 

lines [16]. 

2.2 Definition of Impulse Variables 

A key element in the discussion of impulse and its equations of motion is the 

following decomposition theorem (see e.g. [16]): 

Theorem 1 (Hodge Decomposition) Let n be a simply connected, bounded domain with 

smooth boundary an. Then, any vector-valued function q defined on n can be written 

uniquely as the sum 

q=u+V'(, 
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with \7. u = 0 inn and u. n = 0 on an, where n is the outward unit normal to an. 

The two terms in the decomposition of q are orthogonal in the sense that fn u · \7 ( dV = 0, 

where dV is an element of volume. The divergence-free part, u, is called the orthogonal 

projection of q on the space of divergence-free vectors tangent to an, and is represented by 

u = lPq. In free space, the boundary condition u · n = 0 is replaced by the decay condition 

u ---t 0 as lxl ---t oo. 

One way to introduce impulse is to start with the fluid velocity at timet= 0 and 

make a change of variables in the following way: let m be a vector field equivalent to u up 

to an arbitrary gradient; that is, 

m = u + \7¢. {2.5) 

Remarks 

1. m has units of velocity but it is not the velocity of the fluid. 

2. Eq. (2.5) implies that u is the divergence-free part of the Hodge decomposition of m 

in free space. 

3. m is not uniquely defined since the function </>is initially arbitrary. Consequently, m 

can be transformed according to m ---t m + \7¢, for any arbitrary scalar function ¢. 
This transformation is called a gauge transformation. 

4. The vorticity ~ can be found from either u or m since ~ = \7 x u = \7 x m. 

Impulse, I, is the total amount of linear momentum required to start the given 

motion from rest (see [2]). Impulse is given by 

I = f!. { x x ~ dV. 
2 }R3 

(2.6) 

The fluid density will be assumed to be p = 1 from now on. If m has compact support, one 

obtains from the above definition and Eq. {2.5) 

where the last equality follows after integration by parts. It follows that m is an impulse 

density, thus m will be referred to as impulse. The literature refers to this same variable 

m also as magnetization and velicity [7, 8, 14]. 
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Consider now a two-dimensional impulse field m(x) with support inside a bounded 

set n. It follows that 

f m · dl = 0, lan 
where dl is a length element tangent to the boundary. By Stokes' theorem, 

0 = f m · dl = f (\7 x m) · dA = f { . dA. Jan ln ln 
Therefore, only when the net vorticity is zero can m(x) have compact support in two di­

mensions. Consequently, a patch of positive vorticity cannot be represented by a compactly 

supported impulse field. 

In order to make use of the change of variables defined in Eq. (2.5), one would like 

to derive evolution equations form with the property that the velocity field deduced from 

m by the Hodge decomposition satisfies the Navier-Stokes equations (2.1)-(2.2). 

2.3 Equations of Motion for Impulse 

The :fluid equations of motion in impulse variables can be derived in various ways. 

One way is to start with the definition of impulse, Eq. (2.5), and use the Navier-Stokes 

equations in velocity variables. A second way is to use a Hamiltonian formulation for 

incompressible :fluid :flow [24]. Both methods are presented here for :flows in free space. A 

third method for deriving the equations of motion for impulse uses Eq. (2.6) as the starting 

point; see [6] for more details. 

2.3.1 Lagrangian Derivation 

If one considers any function of position and time, it is convenient to define the 

rate of change of this function along the particles paths. 

Definition. The material derivative of any quantity g is DgjDt = 8gj8t + u · \7g. 

The material derivative represents the rate of change of a function at a point 

moving with the :fluid. Using the material derivative, Eq. (2.1) can be written as 

Du 
- = -\7p+v~u. 
Dt 

(2.7) 
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Since IPV'f = 0 for any continuously differentiable function f, applying the projection 

operator to the last equation yields 

Du 
IP Dt = IPv~u = IPv~m. (2.8) 

The following identities are useful in the derivations of the equations in this chapter: 

(IDl) Y' (tJuj 2
) = (V'u)T u, 

(ID2) gt Y' ¢ = Y' ( £M) - (V'u)TV' ¢, 

where V'u is a matrix with entries (Y'u)ij = 8uif8xj, and T denotes a transpose. From 

Eq. (2.5), one finds that impulse satisfies [7, 8] 

Dm 
Dt 

= Du .!!_V'"' = Du V' (D¢) _ (V'u)TV'"' 
Dt + Dt <{/ Dt + Dt <{/ 

= - + Y' - + -juj 2 
- (V'ufm Du (D¢ 1 ) 

Dt Dt 2 ' 

where (IDl) and (ID2) have been used. One can write Eq. (2.7) in the form 

Du 
Dt 

= -V'p + v~ [m-Y'¢] 

and substitute this expression in Eq. (2.9) to obtain 

Dm (D¢ 1 ) - = Y' D + -juj2
- p- v~¢ - (V'uf m + v~m. 

Dt t 2 

(2.9) 

This is an equation of motion for m given any initial choice of the function ¢. If one lets ¢ 

evolve according to 

the equation of motion for m in free space reduces to 

Dm 
Dt 

-(V'uf m + v~m 

IPm - u. 

(2.10) 

The specific choice of the equation of motion for¢ above leads to Eq. (2.10). This particular 

form of the equation for m arises naturally in the Hamiltonian derivation of the next section 

and is the form that allows the geometric interpretations of impulse flows discussed in the 
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next chapter. It is easy to show that Eq. (2.8) can be obtained by applying the projection 

operator to Eq. (2.10). This is done at the end of the next section. 

It is important to make the connection between m and computational variables 

with similar properties used in other numerical methods. For instance, projection meth­

ods [11, 12] generally update the fluid velocity in two steps: a first velocity update is 

obtained by approximating Eq. (2.7) without regard to the divergence constraint; the up­

date is then projected onto the space of divergence-free vector fields to find the velocity. 

The auxiliary field obtained after the first step is an impulse field since its divergence-free 

part is the fluid velocity. For more details on projection methods see [11, 12, 4]. 

2.3.2 Hamiltonian Derivation 

The Hamiltonian structure of Euler flow in impulse variables will be discussed in 

its discrete version when the numerical method is presented. In this section, a simplified 

version of the derivation of the Hamiltonian equations found in [24] is presented. 

Let x( a, t) denote the coordinates at time t of a material particle located initially 

at position a, and let x = u(x, t) be the velocity. For an inviscid fluid, one starts with the 

Lagrangian L(x,x,a) = J !x2 J da, where J is the Jacobian of the map a~ x. The 

constraint V · x = 0 can be introduced with a Lagrange multiplier [25, 24], ¢(a, t), in the 

full variational Lagrangian 

£(x,x,¢) = j [~x2 - (V ·x)¢(a,t)] J da. 

From this, it can be shown that 6£j8x = x+ V¢ = u+ V¢. This means that m = u+ V¢ 

is the appropriate variable conjugate to position. The constraint 8£/8¢ = 0 yields the 

incompressibility condition V · u = 0. 

One can expect to find a Hamiltonian which will lead to equations of motion for 

x and m. The canonical Hamiltonian equations [24] are 

= u(x) x(t) 

m(t) 
1 

= -[(Vuf\7¢ + V(21ul 2
)] J 

= -[(Vuf m] J, 

from which one can deduce that J = 1 (see [24]). 

(2.11) 

(2.12) 

(2.13) 



In the case of viscous fluids, one expects the equations to be 

)((t) == u()C) 

m(t) -(V'uf m + vAm. 

Indeed, by replacing m == u + Y'</> and using (IDl) and (ID2), one obtains 

Du 
Dt 

== E_(m- Y'</>) == Dm - V'D</> + (V'u)TV'</> 
Dt Dt Dt 

== - [(Vuf u + (V'ufV<P] + v [Au+ A(V'</>)]- V'D</> + (V'ufV'</> 
· Dt 

== - V' ( ~~ + ~lul 2 
- vA</>) + vAu, 

9 

(2.14) 

(2.15) . 

which yields the Navier-Stokes equations in projection form, Eq. (2.8), after multiplication 

by the projection operator IP. 

Discretizations ofEq. (2.14)-(2.15) lead to Lagrangian numerical methods in terms 

of impulse variables. Methods resulting from a particular approximation of the impulse field 

will be discussed in chapter 4. 

2.3.3 The Hamiltonian Structure of Fluid Flow 

The Lagrangian L()C, )(,a) == J !u2dV was the starting point for the Hamilto­

nian derivation of the evolution equations for impulse in the last section. Based on this 

Lagrangian, one can define the Hamiltonian in terms of velocity and impulse by 

H(u, m) == j [m · u- ~u · u] dV. 

In order to introduce the constraint V' · u == 0, let u == m - V' </> and replace ( u · u) by 

[ u · ( m - V' </>)] in the second term of the Hamiltonian. This yields 

H(u, m) == j [m · u- ~u· (m-Y'</>)] dV == ~ j m · u dV, (2.16) 

where the last equality follows after integration by parts. Note that the Hamiltonian can 

also be written as ! J u · u dV and thus represents the kinetic energy of the fluid [7, 8]. 

In the case of an inviscid fluid, many quantities are known to be invariants of the 

flow. The invariance of kinetic energy and impulse is presented here under the assumption 

that m has compact support inside a set n. The rate of change of kinetic energy is 

n H == ! ~ j u . u av == j lit . u av == r mt . u av. 
Dt 2 dt ln 
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For incompressible flow, one can verify the identity [(Vu)T m+ (u· V)m]·u = \7 · [(u· m)u]. 

This formula is used to conclude that 

DH 
Dt - -In [(Vuf m + (u · V)m] · u dV =-In \7 · [(u · m)u] dV 

- - f (u·m)(u·ft)dS=O, lan 
since u · ft = 0 on an by the Hodge decomposition. 

The invariance of impulse can also be established via Eq. (2.15). Recall that 

I= 1/2 f x x ~ dV = f m dV. 1R3 ln 
Differentiating with respect to time, one finds 

~!= JnmtdV=-Jn(vufm+(u·V)mdV 

One can verify the following formula for any sufficiently smooth vector field q, 

[ (u · V)q dV = [ q(u · it)dS- [ q(\7 · u) dV = 0. 
k kn k 

Therefore, the last term in the equation for DI/ Dt is zero and 

DI 
Dt 

- -In (Vu)T m dV = Jn u x (\7 x m) dV 

- In u x (V x u) dV 

- [ V(!iul 2
)- (u · V)u dV = 0. ln 2 

Incompressible Euler flow has other known invariants which can be expressed in 

terms of impulse. The integral J ~ · u dV is known as the helicity. In terms of impulse, 

the helicity can be written as Jn ~ · m dV. In the next chapter, it will be shown that the 

helicity density is constant along particle paths. This implies that J F(~ · m) dV, where F 

is any sufficiently smooth function, is a conserved quantity (see e.g. [29]). 

Other invariants of Euler flow are the angular momentum, defined as J x x u dV 

and the circulation around any closed curve moving with the flow, fc u · dl, where dl is an 

element of length along the curve (see [16, 2]). These can be written respectively in terms 

of impulse as J x x m dV (see [7]) and fc m · dl. 
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Chapter 3 

Euler Flow in Impulse Variables 

· The topic of this chapter is fluid flow in the case of zero viscosity. In this case, 

the equations are the Euler equations. The vorticity was defined in the previous chapter as 

the curl of the fluid velocity, ~ = \! x u. The Euler equations for vorticity along particle 

trajectories are a special case of Eq. (2.3), 

ne 
- = (Vu)e. 
Dt 

The right-hand side describes how the vorticity carried by fluid particles changes in time. 

In two dimensions, the only non-zero component of vorticity is the one normal to the plane. 

This scalar, denoted w, satisfies the Euler equation 

Dw 
--0 Dt- ' 

which states that the vorticity carried by fluid particles does not change in time. This is 

Eq. (2.4) without the viscous term. 

Impulse was defined as a vector function whose divergence-free component is the 

fluid velocity. The Euler equations in two or three dimensions in terms of impulse are 

Dm T 
Dt = -(\/u) m. 

In either two or three dimensions, impulse carried by the fluid particles may change in time 

according to the equation above. 

In a Lagrangian numerical method one tracks the flow properties along trajectories 

traced in time by fluid particles. As a prelude to the numerical method, some results 

regarding vorticity and impulse carried by the particles are presented now. A connection 
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between the equations of motion for impulse and the equations of motion for gradients of 

certain functions will give rise to interesting geometric interpretations. 

3.1 Preliminary Facts About the Flow Map 

This section presents results about vorticity and impulse in the case of Euler flow. 

The results make use of a map which advances each fluid particle from its position at time 

t = 0 to its position at later times [16]. 

Definition. Let ¢t denote the map which, for a given t, maps each fluid particle from its 

initial position to its position at timet. If x(a, t) is the trajectory followed by the particle 

which is initially at position a, then ¢t sends a to x(a, t). The Jacobian matrix of the map 

¢t is a function of space and time and will be denoted V¢t· (The subscript indicates the 

dependence in time, not differentiation.) 

All functions, including the fluid velocity, vorticity, impulse and flow map, will 

be assumed to be as smooth as required for the propositions in this chapter. The first 

proposition is a simple consequence of the definition of the flow map. The second one shows 

how the vorticity at a point x(a, t) depends on the flow map and on the initial vorticity at 

a. Both propositions are found in [16]. 

Proposition 1 %t(V¢t) = (Vu)(V¢t) 

Proof: 

(v[:(a,t)J)ii = (v(u(x,t)))ii 

= (8ui/8xk)(8xk/8o:j), 

Thus %t(V¢t)ij = (Vu)ik(V¢t)ki = ((Vu)(V¢t))i/ 0 

It was already mentioned that in two dimensions, ~(x(a, t), t) = ~(a, 0). The 

following result establishes the relationship between the vorticity at a point x(a, t) and 

time t, and the vorticity at the point a at t = 0 in three dimensions. 

Proposition 2 In three dimensions, ~(x, t) = (V'¢t)~(a, 0). 



Proof: 

D 
Dt [~- (Vcf>t)~(a, 0)] 

D~ a 
= Dt - [at (V</>t)]~(a, O) 

D~ 
= Dt - [(Vu)(V</>t)]~(a, 0) 

= (Vu)~ - (Vu)(V </>t)~( a, 0) 

= (Vu)(~- (V</>t)~(a,O)]. 
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Since (V <f>t) = I at t = 0, the expression in brackets is zero for all time. 0 

A similar result can be established for impulse in either two or three dimensions [7]. 

Proposition 3 m(x, t) = (V<f>t)-T m(a, 0). 

Proof: 

8 T TDm 
[0t(V</>t)] m+(V</>t) Dt 

(V</>t)T(Vuf m + (V<f>tf( -Vuf m 

= 0. 

The result follows since (V </>o) =I. 0 

It is clear that the given form of the equation for m plays a key role in this 

proposition and, as will be seen in the next section, in the geometric interpretations of 

impulse flow. 

3.2 Consequences for Vorticity and Impulse 

In two dimensions, the vorticity ~ is characterized by the scalar w, where ~ = 

(0, 0, w )T. Since vorticity is normal to the xy-plane, the helicity density (~ · m) is identically 

zero. In three dimensions, both ~ and m are vector fields and the helicity density is generally 

a function of time and space. From the previous propositions, one can establish the following 

result found in [29]. 

Proposition 4 ~(x, t) · m(x, t) =~(a, 0) · m(a, 0). 



Proof: 

~(x, t) · m(x, t) = [(Y'¢t)~(a, 0)] · [(Y'¢t)-T m(a, 0)] 

- ~(a,O)·m(a,O). 
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0 

This proposition establishes that (~ · m) is constant along particle paths. Conse­

quently, for any smooth scalar function F, the quantity F(~ · m) is conserved in Euler flow. 

The next proposition shows that one can define families of functions, parametrized by time, 

so that the gradients of those functions evolve in time with the same equation as m. 

Proposition 5 Let Po : Rn ---+ R (n = 2 or 3} be smooth and define the family of functions 

Pt(x) =Po o ¢t"1 (x), parametrized by time. Then the evolution equation for V' Pt is identical 

to the evolution equation form. Furthermore, Y'Pt(x) = (Y'¢t)-TY'Po(a) for all t ~ 0. 

Proof: One can write Pt o ¢t(a) = Po(a). Differentiation of this equation with 

respect to a yields (Y'¢t)TY'Pt(x) = (Y'¢o)TY'Po(a), where the fact (V'¢0 ) =I has 

been used. The expression (Y'¢t)TY'Pt(x) is invariant in time, thus 

D 
(Y'¢tf(V'uf'V' Pt(x) + (Y'¢tf Dt Y' Pt(x) 

-(V'uf\7 Pt(x). 

0 

This result indicates that the gradient of the time-dependent function Pt will evolve 

with the same equation of motion as m. Then one can deduce that if m(a, 0) = \7 Po(a) for 

some Po, then m(x, t) will equal V' Pt(x) for all t ~ 0. Therefore, if m is initially a gradient 

(i.e. the flow is irrotational), m will remain a gradient. This is a statement that in free 

space, no vorticity is created. Under the same assumptions, since V' Pt is perpendicular to 

the zero level set of Pt (for any t), as this level set deforms when it is carried by the flow, 

V' Pt and therefore m, will remain perpendicular to the level set. 

3.2.1 Example 

Consider two-dimensional steady flow given by u(x, y) = (1- e-x, eYf. Note that 

V' · u = e-x + eY # 0; the divergence-free condition on the flow was not needed for the 
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preceding propositions. In this case, a particle located at ( x, y) moves according to the 

equations: 
dx 
- = 1- e-x 
dt ' 

dy- y 
dt- e' 

which can be solved explicitly. Suppose Po is such that its zero level set is the unit circle 

and 'V Po = 1 on this level set as indicated in the figure below. 

4 

3 t = 0 

2 

"' ·x 
ctl 

;l1 

0 

-1 

-2 
-4 -3 -2 -1 0 2 3 

x-axis 

Figure 3.1: 'V Po on the zero level set of P0 • 

The equation of motion for 'V Pt is 

The solution of this equation was found explicitly and graphed for times t = 0.25 and 

t = 0.35. The results are shown below. 

Remarks 

1. As expected, the vectors remain perpendicular to the set {x E R 2 : Pt(x) = 0}. 

2. From the matrix equation, it is clear that the magnitudes of the vectors 'V Pt always 

decrease. However, this effect is more pronounced in regions where the entries of the 

matrix are large, such as in the second quadrant. In regions where the entries are 

small, like the fourth quadrant, the vector magnitudes are reduced only very slightly. 



<J) 

·x 
co 

4 
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x-axis 
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3 t = 0.35 
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Figure 3.2: Solution at t = 0.25 and t = 0.35 
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3. In regions where the level set has been stretched by the flow, contiguous vectors are 

farther apart than in other regions. This will become an important issue when the 

connection between impulse methods and vortex methods is established. 

4. The equations of motion for \7 Pt can be used to update vectors normal to a surface 

in situations where there is an underlying flow. For instance, motion under mean 

curvature requires computation of the unit normal vectors, which could be tracked by 

evolving them with the equations of motion for impulse and normalizing them after 

every step. 

3.3 Orthogonal Surfaces 

For rotational flows, the initial impulse field is not a gradient. However, proposition 

5 can be extended to the case of impulse fields which are initially orthogonal to level sets 

of a given function but vary along these level sets. 

Definition. Given a vector field V E Rn, a V -orthogonal surface is a surface (or curve in 

R 2) on which V is perpendicular to the surface. 

Proposition 6 Let Po(a) = 0 implicitly define a surface So. Assume that on So there is 

some function Ho such that m is initially given by m(a,O) = Ho(a)'VPo(a). Then, 

m(x, t) = Ht(x) \7 Pt(x) = Ho(a) \7 Pt(x) 

~(x, t) = \7 Ht(x) x \7 Pt(x), 

where Ht(x) = Ho o ¢t"1 (x) and Pt(x) =Po o ¢t"1 (x), and the equations of motion for \7 Ht, 

\7 Pt and m are identical. 
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Proof: Let Ht(x) = Ho o ¢;-1(x) and Pt(x) = Po o ¢;-1(x). Then for a E S0 and 

t '?::. 0, 

m(x, t) (V<Pt)-T m(a, 0) 

= Ho(a) (V<Pt)-TV Po(a) 

= Ho(a) VPt(x) = Ht(x) VPt(x). 

It follows that 

~(x, t) = V x m(x, t) = V x [Ht(x) VPt(x)] 

= V Ht(x) x V Pt(x). 

The equations of motion of V Ht, V Pt and mare identical as established by propo-

sition 5. 0 

This proposition holds true for any smooth velocity field u, as long as m evolves 

with the given equation of motion. If m is initially proportional to the gradient of some 

function Po on the m-orthogonal surface So, then m will remain proportional to V Pt. 

The proportionality factors, which are functions of space, will not change along particle 

paths. Consequently, the impulse will remain perpendicular to the evolving surface and the 

vorticity ~ is the cross product of two gradients which evolve with the same equation. 

3.3.1 An Example in Two Dimensions 

Suppose an initial impulse field is defined on the unit circle by 

m(a, 0) =~[(sine+ 1]a. 

This field can be represented as m{a) = Ho(a)V P0 , where V Po = a (i.e. radial unit 

vectors) and Ho = ~[(sine+ 1]. In subsequent chapters it will be noted that this initial 

setup is equivalent to defining vorticity on the unit circle. The initial impulse field is shown 

in figure 3.3. In the previous example, an arbitrary flow field was imposed to show the 

evolution of the gradient vectors. In this example, the flow will be the one induced by the 

impulse. The numerical method used here is the one introduced by Buttke [7], which will 

be explained in detail in the next chapter. The purpose of this example is to show the 

evolution of the impulse vectors and the gradient vectors, and to show that at any time t, 

the impulse field is given by m(x,t) = Ho(a)VPt(x). Figure 3.4 shows the gradient VPt 
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Figure 3.3: Initial impulse field. 
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Figure 3.4: Plot of V Pt (left) and m (right) at time t = 6. 
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and the impulse at time t = 6. According to proposition 6, the ratio of vector lengths taken 

along the m-orthogonal surface must equal the function H 0 . The vector lengths and the 

ratio IV Ptl/lml were computed and are shown below to coincide exactly with Ho. 

Figure 3.5: Plot of IV Ptl (top line) and lml (bottom line) as functions of 8. 

1 .... 

0.8 

0.6 

0.4 

0.2 

0 . 

0 2 3 

() 

4 5 6 

Figure 3.6: Plots of the ratio IVPtl/lml and (sin(O) + 1)/2. 

3.3.2 An Example in Three Dimensions 

Consider the following initial impulse field in cylindrical coordinates defined on 

the disc r ::; 1 and z = 0 

( 
{ 

0.25(1 - r )z, 
mr,O,z)= 

0, 

on the disc 

otherwise. 

The disc is an m-orthogonal surface as illustrated in figure 3.7. Let the flow be the one 

induced by this impulse. 
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Figure 3.7: Initial impulse (radially symmetric). 

As the flow evolves, the fluid moves around the outside of the disc and is ejected 

into the disc from below while pushing down on the edges. This causes the surface to swell 

up near the center of the disc, creating a bell-shaped surface. The solution, which is radially 

symmetric, is shown at timet= 2 in figure 3.8. One can think of the disc as the zero level 

set of a function Po with unit gradient pointing upward. According to proposition 6, the 

ratio IV' Ptl/lml does not change along particle trajectories. Let s be a parameter along the 

m-orthogonal surface such that 0 ::::; s ::::; 1, s = 0 at the center, and s = 1 at the edge of 

the surface (so that s = r is initially). The next figures show IV'Ptl, lml,and their rato as 

functions of s. Note that the ratio coincides with H0 • 

When So is the zero level set of a function Po, then along flow lines V' Pt evolves in 

such a way that it remains normal to the evolved level set. However, the area of the surface 

may change even when the flow is incompressible since the flow can accommodate larger 

areas by contracting in the direction normal to the surface. The next proposition points 

out that the growth of the area of an m-orthogonal surface is related to the growth of lml. 

Consider first the following definition: 

Definition. The divergence of the flow u along a surface So is (V' · u) restricted to S0 , and 

will be denoted by (V' · u) I so· 



22 

2 

1.5 

N 

0.5 

0 

-0.5 
1 

-1 -0.5 0 0.5 
y 

X 

Figure 3.8: Impulse field at timet= 2 (radially symmetric). 
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Figure 3.9: Plot of jVPtl (dashed) and lml (solid) as functions of s. 
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Figure 3.10: Plot of the ratio IV Ptl/lmJ. 
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As an example consider the situation where u(x,y,z) = (u1,u2 ,u3)T and So is the 

xy-plane. Then (\7 · u)J 80 = 8uif8x + 8u2/8y. 

Let So be an m-orthogonal surface and let n be a piece of So such that Xo E n. 
Suppose that the divergence of the flow restricted to So is constant in n. Then, if the 

surface area of n is denoted by A, the material derivative of A is 

DA = f u. n dl = f (\7 · u)j
8 

dS = (\7 · u)j
8 

A, 
Dt lan ln o o 

(3.1) 

where n is a unit vector on So normal and outward to an. 

Proposition 7 Let So be an m-orthogonal surface and fix xo E So. Then for \7 · u = 0, 

and therefore JmJlocally satisfies the same ordinary differential equation as the surface area 

of a small neighborhood of xo on So. 

Proof: Let m(xo) =/= 0 and let a be a fixed unit vector in the direction of m(x0 ) 

(i.e. normal to So at xo), and let the flow u be incompressible. Then at x 0 , 

Jml (\7 . u) I so Jml [v · u- a· V(u ·a)] 

= -JmJ(Vu)Ta ·a= -(Vuf m · m 
lml 

Dm m DJml 
= Dt . lml = J5t· 

0 
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Comparing the result of proposition 7 with Eq. (3.1) one concludes that the relative 

growth of the area of an m-orthogonal surface is equal to that of lml in regions where 

(V · u)l
80 

can be considered constant. This fact will become important in the numerical 

method, where discrete impulse vectors carry elements of volume. Each volume element can 

be thought of as the area of a piece of an m-orthogonal surface multiplied by a thickness, 

where the length of each vector is proportional to the area it carries. 

3.3.3 An Example in Three Dimensions 

In this example, the vectors V Pt will be used instead of m to emphasize that the 

flow is not induced by the impulse but imposed externally. Consider the flow u(x, y, z) = 

(x, y, -2z)T. Let So be the xy-plane, and let V Po = (0, 0, 1)T. Then the divergence of u 

restricted to S0 is (V · u)l 80 = ~ + ~ = 1 + 1 = 2. Additionally, 

One can readily see that .&'t IV Pt I = 21 V Pt I· On the other hand, a circular patch on So of 

radius r, centered at the origin has area A = trr2• Then, 

DA Dr T T 2 - = 2trr-D = 2tr(x,y,O) · (x,y,O) = 2trr = 2A. 
Dt t 
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Chapter 4 

A Lagrangian Numerical Method 

4.1 Buttke's Method 

In [7], the impulse field is discretized by subdividing the domain into cells with 

the volume (or area) of the j-th cell equal to Ai, and by letting mi = m(xi)Ai, where xi 

is the center of the cell. Then an approximate impulse field is given by the sum 

N 

m(x) = L mi(t)f6(x- xi), (4.1) 
j=l 

where N is the total number of cells and !6 is a smooth function. For Eq. (4.1) to be a 

reasonable approximation to m(x), the function !6 must approximate a Dirac delta function. 

In the theory of vortex methods, !6 is called the cutoff function or the blob function and 

the subscript 8 refers to the cutoff radius. Cutoff functions are chosen to satisfy certain 

conditions which guarantee small discretization errors due to the replacement of the Dirac 

delta by j 6 (see e.g. [1, 3, 21, 14, 32, 28]). Typically, J<5(x) = s-2 h (x/ 8) in two dimensions 

and f<5(x) = 8-3 h(x/8) in three dimensions, where the function h satisfies the following 

conditions: 

1. f h(x)dx = 1, 

2. J xf1xg2 x~3 fl(x)dx = 0, 0 < !31 + !32 + !33 < k, 

3. J xf1 xg2 x~3 fl(x)dx < oo, !31 + !32 + !33 = k. 

Here, k a fixed positive integer and f3i 's are non-negative integers. A smooth function 

satisfying the conditions above causes discretization errors to be 0(8k), and is therefore 
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called a k-th order cutoff function. For a more detailed discussion of cutoff functions, 

see [1, 3, 32, 19]. Choosing a cutoff function from vortex methods may seem reasonable; 

however, there is no a priori knowledge of whether this is a good choice or whether new 

functions should be designed. The next section will settle this question. 

In order to arrive at a discretization of equations (2.14)-(2.15) given the approxi­

mation in Eq. (4.1), the fluid velocity at locations xi due tom and the derivatives of this 

velocity must be computed. The procedure is described below for the case of Euler flow. 

The inclusion of the viscous term will be discussed in a later chapter. In this section, n 

represents the spatial dimension (n = 2 or 3). 

4.1.1 Step 1: The Particle Velocities 

Recall that if m = u + V ¢, then u = IPm. The process of finding the velocity 

u in terms of m can be done exactly for a good choice of radially symmetric function fc· 

First one takes the divergence of m = u + V¢ to obtain 

N 

Ll¢ = V · m = 2: mi · Vfc(x- xi). 
i=l 

Suppose that a function 'ljJ satisfies Ll'ljJ = Jc, then one could write <P = 'E mi · "\1'1/J. Since 

'ljJ depends only on j 6 , 'ljJ can be found once and for all. For a radially symmetric cutoff 

function, the equation for 'ljJ can be written in polar coordinates as 

where the subscript r represents a partial derivative with respect tor. Ultimately only V'ljJ 

is needed, not 'ljJ itself. Thus the last equation can be solved for '1/Jr to obtain 

'1/Jr(r) = rl-n for qn-l fc(q)dq = 1r(~;~2-1' 
where F(r) = flxl::;r fc(lxl)dx is called the shape factor, and depends only on the cutoff 

function. 

Since <P = 'E mi · V'ljJ, an expression for <P can now be found. After differentiating 

the resulting expression, a formula for u = m - V <P is derived. The final result in terms of 

the shape factor is 

u(x) = _1_ ~ mi [rF'(r)- F(r)] _ xi(mi. xi)[rF'(r)- nF(r)]' (4.2) 
7r2n-1 ~ rn rn 

J=l 

where x_i = (x- xi)jr and r = lx- xi I. 
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4.1.2 Step 2: The Rate of Change of Impulse 

The impulse carried by the particles must be updated by an equation approximat­

ing Eq. (2.15). Differentiation of the expression for u(x) leads to the matrix Vu, whose 

k-th column is given by 

_1_ ~ mi xi [r
2 
F" - nr F

1 + nF] _ mj x_i [r F
1 

- nF] (4.3) 
- 7r2n-1 ~ k rn+l k rn+l 

J=l 

~k( j. ~j)[rF1 - nF] _ "-i ~j( j. ~j)[r2F"- (2n + l)rF
1 + n(n + 2)F] 

e m x rn+l x-kx m x rn+l ' 

where xi = (x- xi)jr, r = lx- xi!, ek is the unit vector in the k-th direction, and all 

subscripts represent vector components. 

The equations of motion for the particle locations and the impulse strengths are 

dxi 
u(xi) - = 

dt 
(4.4) 

dmi 
-(Vufmi, = 

dt 
(4.5) 

where u and the entries of (Vu) are given by Eq. (4.2) and (4.3) respectively. From a 

computational point of view, these equations are written in a convenient form since the 

expressions in square brackets contain the smoothing effect of the cutoff function and can 

be found once and for all. 

4.2 The Hamiltonian Structure of Impulse Flow 

Eq. (4.4)-(4.5) form a discrete Hamiltonian system. The last part of chapter 2 

shows the Hamiltonian from which the equation of motion for impulse is derived, as well 

as other known invariants of incompressible Euler flow. The discrete versions of these 

invariants are given now. The discrete Hamiltonian is 

1 N . . 
H =- 2:u(x1 ) ·m1 , 

2 j=l 

which is initially an approximation of the continuous Hamiltonian Eq. (2.16). The total 

impulse, angular momentum and helicity density are [7, 8] 

One can show the invariance of all these quantities by using Eq. ( 4.4)-( 4.5). 
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4.3 Comments About the Numerical Method 

In a vortex method, one typically approximates the vorticity by the sum [(x) = 

E ~j f6(!x- xi!). The velocity field induced by this vorticity can be written formally as 

U = -V' X ~-1 [, 

where ~ - 1 represents the inverse of the Laplacian operator. If impulse is approximated by 

the sum in Eq. (4.1), the velocity field ofEq. (4.2) is 

u = m.- v(v . Li - 1m.). 

The additional differentiation of the approximate field required in the impulse method points 

out that the impulse method is more singular than the vortex method. The cutoff function 

is designed to smoothly eliminate the singularity in the velocity field. 

A Lagrangian numerical method based on impulse is possible because when the 

vorticity is concentrated in a bounded region, the impulse can be defined with compact 

support. This is the case because outside the support of vorticity the :fluid velocity is a 

gradient (i.e. the :flow is potential), and the function <P can be chosen so that its gradient 

cancels the velocity outside a set containing the support of vorticity. In general, the support 

of impulse contains, but does not equal, the support of vorticity. One can see this by 

considering a two-dimensional :flow in which vorticity is confined to two disjoint and bounded 

regions with net vorticity + 1 and -1 respectively. Let n be an open set containing only 

the first region and consider the circulation around the boundary of n. The circulation is 

Ian m · dl =In~· dA = +1, and the impulse cannot vanish identically on the boundary of 

n. A similar example in three dimensions is found in [7]. Impulse must be defined in a 

larger domain than vorticity. 

A simple calculation shows that the vorticity field induced by impulse, ~(x) -

V' x Ej mi fa(x- xi), automatically satisfies the condition V' · ~ = 0. This important 

property is not necessarily shared by other methods [32]. 

As pointed out in the previous section, the impulse equations are the canonical 

Hamiltonian formulation of :fluid :flow in any space dimensions [24, 7]. In practice, expres­

sions for invariants associated with the Hamiltonian system of equations can be used to 

determine parameters of the impulse method and to monitor the computation. Also, there 

is a large amount of mathematical machinery applicable to Hamiltonian systems which can 

be exploited in the impulse method. 
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Consider the three-dimensional case of the velocity field in Eq. (4.2). Suppose the 

cutoff function fc(x) has support in a ball of radius o and that lx- xi I > o for all j. Then 

Eq. (4.2) reduces to 
N . . .. 

1 ~ -mJ + 3x3 (mJ. :XJ) 
u(x) = - L...., 3 , 

471" . 
1 

r 
J= 

which is the flow induced by dipoles (see [22] §5.6). A complete connection between the 

velocity field due to an impulse vector and that due to a vortex dipole will be made later 

in this chapter. 

4.4 Discrete Impulse and Vortex Blobs 

Suppose that there is a single blob of impulse at the origin. The velocity at an 

arbitrary point x due to the impulse is 

u(x) = mf.s(lxl)- (m · V')V'Ijl(lxl), where f:::..'ljl = f.s. 

Define the Green's function, G, as the function with the property that if!:::..(= - fc in free 

space, then ( = G * j 8 , where* denotes a convolution. In two dimensions G(x) = 2~ loglxl, 

while in three dimensions G(x) = - 4~ lxl-1 , both for lxl -=f. 0. In terms of the Green's 

function, 'ljJ can be written as 1/J = -G * Jc. Using the identity (F · H)G = F x (G x H)+ 

(F · G )H one obtains for lxl -=I- 0, 

u(x) - mfc + (m · V)(V'G * f.s) = mfc + V'G * (m · \i'fc) 

n 8G 8Jc J 
= mf.s + m ~ axi * axi + Vf.s(z) x (VG(x- z) x m) dz. 

If one defines the operator K(x) = VG(x) x, the expression for velocity can be written as 

u(x) = mfc + m \7 · (VG * f.s) + j \i'f.s(z) x K(x- z) m dz 

= mfc- m 1:::..(-G * f.s) + \7 x j K(x- z) mf.s(z) dz 

= \7 x (K * f.s)m = K * (\7 x mf.s), 

which is the velocity field due to a vorticity distribution ~(x) = \7 x mfc(x). It is therefore 

important to analyze in detail the vorticity induced by impulse vectors and to establish 

connections with vortex methods. 
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4.5 Two-dimensional Impulse and Vortex Dipoles 

The previous calculation shows that the velocity field due to one impulse blob is 

the same as the velocity induced by the vorticity ~(x) = '\1 x mj0(x). This section presents 

an analysis of this vorticity in two dimensions and its connection to vortex blobs. 

Given an approximate impulse field consisting of one blob located at the origin, 

m(x) = m 0 (t)j6(x), one can compute the curl of m(x) to get 

(4.6) 

Let the impulse strength be given by m 0 (t) = (m1,m2,o? and~ - (O,O,w?. Then 

Eq. ( 4.6) implies 

w(x) = '\1 fa(x) · (m2, -mb O)T = '\1 fa(x) · (m0 X z), 

where z is the unit vector normal to the plane. The vector (m0 x z) has magnitude lm0 1 and 

is perpendicular to m 0 • Thus, one can interpret the vorticity as lm0 1 times the derivative of 

the cutoff function fa in the direction of (m0 x z). Let h represent a vector in the direction 

of (m0 x z) and let lhl =h. Then, the vorticity may be written as 

( ) I 
olli fa(x +h) - fa(x- h) 

w x = m m 
2

h 
h->0 

lim w0 [fa(x +h) - fa(x- h)], 
h->0 

where w0 = lm0 1/2h. This expression shows that the vorticity induced by each impulse 

vector is that of a vortex dipole. A vortex dipole is the limit of two vortex blobs of equal 

and opposite strength as their separation goes to zero. Since the vortex strengths depend 

on the separation but 2hw0 = lm0 1 is constant in the limit process, this limit is taken in a 

way that maintains a constant dipole moment equal to -2hw0 = (z x m 0 ). 

In two dimensions, a discrete impulse vector induces the same velocity field as a 

vortex dipole with dipole moment prescribed by the impulse vector. If one neglects the 

limit process in the expression for vorticity, and simply places two vortex blobs along the 

line normal to m 0 at a distance 2h with strengths w0 = ±im0 1/2h, the new vorticity w(x) 

may be written as 

w(x) = w0 [fa(x +h) - fa(x -h)]. (4.7) 

There are several key observations that one can make about this expression. One way to gain 

intuition about impulse variables is to think of each vector as approximately a vortex pair 
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Figure 4.1: Vortex Pair Approximation to Impulse Vector. 

in the sense explained above. The approximation is more accurate as the two vortices are 

placed closer together near the base of the impulse vector. It is clear that Eq. ( 4. 7) comes 

from replacing the derivative in expression ( 4.6) by a centered-difference approximation; 

thus the error in this replacement is O(h2 ). One of the most important observations is that 

the two vortex blobs in the formula for w(x) use the same cutoff function as the impulse 

blob. This allows one to export the role of the cutoff function in the accuracy of vortex 

methods into impulse methods, and validates the use of these cutoff functions. 

The preceding discussion points to the importance of curves which are locally per­

pendicular to the impulse vectors. These curves are the m-orthogonal surfaces discussed in 

the previous chapter. Since impulse is a collection of vortex dipoles along the m-orthogonal 

curve, the flow represented by the impulse can be approximated by the flow due to an 

appropriate vorticity distribution along the curve. If there is vorticity in a strip surround­

ing the curve such that the net vorticity in the strip is zero, then the velocity due to the 

vorticity can be written as an line integral along the curve and the velocity due to impulse 

vectors which represent the same flow is a discretization of this integral. This is the subject 

of the next section. 

4.6 The Velocity Field 

Suppose that the vorticity is ~ = (0, 0, w )T, where the support of w(x) is the strip 

in the figure below. Let the dotted curve have parametric representation x(s), where the 

arclength parameter s is zero at the left end of the curve and s = B at the right end. Let 

the thickness of the strip be h. Assume that the vorticity varies along the curve but that the 

strip is narrow enough that w(x) can be considered constant in the transversal direction. 
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Figure 4.2: Strip in which vorticity is concentrated. The strip is assumed to have thickness 
hand be parametrized by s. 

Assume also that the net vorticity is zero and define r(x(s)) = J; w(x(q))dq. From this 

definition it is clear that r(x(O)) = 0 and that r(x(B)) =foB w(x(q))dq = 0 by assumption. 

The velocity induced by the vorticity is 

u(x) = K * w = j K(x- a)w(a)da, 

where K(x,y) = 2~(-y,x)jr2 is known as the vortex kernel, and r2 = x 2 + y2. In vortex 

methods, one generally uses a smoothed vortex kernel of the type K6(x, y) = K(x, y)F(r), 

where F(r) is the shape factor defined at the beginning of this chapter. Then the velocity 

field due to the vorticity is approximated by u6 = K6 * w. In the case at hand, 

{B {B d 
u6(x) =h lo w(x(s)) K6(x-x(s))ds=h}

0 
[d

8
r(x(s))]K6(x-x(s))ds. 

Since r vanishes at both ends of the curve, one can integrate by parts to obtain 

u6(x) = -h foB r(x(s)) [:8K6(X- x(s))]ds 

Note that fsK6(x- x(s)) = -(Y'K6)x'(s), where x'(s) is the unit vector tangent to the 

curve in the direction of increasing s. One can discretize the integral above by letting 

{xi }f=1 be a set of points along the curve with spacing ( L).s )i = xi+l - xi. If the unit 

tangent vector at xi is denoted by x'1 , the discretization of the integral gives 

N 

ii(x) = Lh(L).s)i r(xj) (Y'K6(x-xi))x'i. 
i=l 

This is exactly the velocity field induced by impulse vectors placed along the curve and 

normal to it. To see this, differentiate K 6 to get 

21r(Y'K
6
)(x) = ( -xy -y

2 
) (F(

2
r))'! + ( 0 -1 ) F(r) 

x2 xy r r 1 0 r2 . 
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Now, use the equalities x2 = r 2 - y2 and -y2 = x2 - r 2 in the first term to get 

z,(vK,)(x) ( =:; :: ) ( Fr~)n + ( ~ ~~ ) [(r~l)'r + Fr~)] 

= ( =:; ::) [rF'r~2Fl + ( ~ ~I) [rF~;F]. 
Then 

. · ( . i) .[rF'-2F] ·[rF'-F] 21r(VK6(x- x1))x'1 =- (x- x1) · (z x x') (x- x1 ) r 4 + (z x x'1) r 2 , 

where z is the unit vector normal to the plane and r = lx - xi!. Finally, let mi = 

h(fis)i r(xi)(z X X 1j) be vectors perpendicular to the curve, and let x_i = (x- xi)jr in 

order to simplify the notation. Then the velocity can be written as 

1 LN · · ·[rF'-2F] .[rF'-F] ii(x) = - -(i:J · m1):X1 + m 1 • 
271" . r 2 r 2 

J=l 

This equation is identical to Eq. ( 4.2). 

In practice; one discretizes impulse by identifying many strips in which the vectors 

can be defined. For example consider the problem of two vortex patches of constant vorticity 

+w and -w as shown in figure 4.3. Impulse vectors can be defined along horizontal strips 

as shown in the figure. If m = (0, m2), then m2(x, y) = f~oo w((, y)d(. 

4. 7 An Example 

Consider the initial vorticity defined in the unit disc, given in polar coordinates 

by w(r, 9) = -30r2 (r - l) 2cos9. This vorticity is antisymmetric about the y-axis and can 

be thought of as a large version of a smooth vortex dipole. As described in [7], this flow 

can be represented by the impulse field m = (mi. m2), where m1 = 0 and m2(r, 8) = 

1 - 10r3 + 15r4 - 6r5 • Horizontal lines are m-orthogonal surfaces. As in [7], the initial 

parameters are square cells of side h = 0.05 and cutoff function fs(r) = 8- 2JI(r/8), where 

JI(r) = 7/27r(l- 10r3 + 15r4 - 6r5) and 8 = 0.4. Figures 4.4-4.6 show the evolution of 

some of these surfaces and the impulse field defined on one of them for time between 0 and 

3. The magnitudes of the vectors have been multiplied by a fixed scalar to make them more 

visible and only half of the surfaces used are shown. 
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Figure 4.3: Two patches of constant vorticity (top). The bottom picture shows the corre­
sponding impulse field defined on a horizontal strip. 
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Figure 4.4: Initial m-orthogonal surfaces and the impulse defined on one of them. 
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Figure 4.5: m-orthogonal surfaces and the impulse defined on one of them at time t = 1. 

Time= 3 

1.4 

1.2 

0.8 

(/) 0.6 ·x 
co 

0.4 I 
>. 

0.2 

0 

-0.2 

-0.4 

-0.6 

-1 -0.5 0 0.5 
x-axis 

Figure 4.6: m-orthogonal surfaces and the impulse defined on one of them at timet= 3. 
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One readily notices that in regions where the surfaces come close to one another, 

the surfaces must stretch in order to keep the flow incompressible. As discussed in chapter 

3, the largest growth of vector magnitudes, relative to their initial values, occurs in these 

regions. If one interprets the impulse discretization along one surface as a quadrature 

approximation to a line integral on that surface, stretching of the m-orthogonal surfaces 

translates into larger spacing between particles along some regions of the surface. This will 

lead to loss of accuracy in the line integral approximation, and numerical solutions which 

cannot be trusted for long times. The particles and the impulse have been updated with 

a fifth-order Runge-Kutta method and some discrete invariants have been tracked. The 

normalized kinetic energy (the Hamiltonian) was conserved to an accuracy of 1 x 10-6 , and 

the total impulse and angular momentum were conserved to more than 9 significant digits. 

One concludes that in spite of the conservation of invariants of the Hamiltonian 

system of dipoles, the _accuracy with which the collection of vortex dipoles represents the 

flow induced by the vorticity may decrease in time. As the m-orthogonal surfaces stretch, 

there are too few impulse vectors to provide an accurate discretization of the line integrals 

discussed in the previous section. At later times, the flow described by the collection of 

dipoles may not resemble the intended flow. Numerical experiments which address the issue 

of accuracy loss are discussed in the next chapter. 
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Chapter 5 

Accuracy Considerations in Two 

Dimensions 

This chapter presents numerical experiments designed to illustrate how impulse 

discretizations which initially approximate accurately the flow induced by vortices, may 

evolve into configurations which no longer approximate the correct flow. This is due to 

a loss of accuracy in the approximation of the velocity integral discussed in the previous 

chapter. Two different methods for avoiding this loss of accuracy are then presented. 

5.1 Numerical Experiments 

Two numerical experiments are presented in this section. The first one shows the 

flow induced by two vortex blobs of opposite strength. This simple situation will be used 

to exemplify the way in which the impulse method can lose the accuracy with which it 

approximates the flow induced by the vortices. The second experiment shows two circular 

vortex patches of constant and opposite vorticity. The patches are discretized by vortices 

and this discretization is approximated by impulse vectors. This experiment was used to 

compute the order of accuracy of two methods for maintaining accuracy over time. These 

are presented in subsequent sections. 
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0.6 0.8 1 

Figure 5.1: Initial impulse which represents the flow induced by two vortex blobs of equal 
and opposite strength. 

5.1.1 First Experiment: Two Vortex Blobs 

The first example consists of the flow induced by two point vortices of equal but 

opposite strength w as shown in figure 5.1. The positive vortex is located initially at 

a = ( -0.5, 0) and the negative one at (3 = (0.5, 0). The initial impulse is m = (m1, m 2)T 

where m1 = 0 and m2(x, y) = w for -0.5 < x < 0.5, y = 0 and zero everywhere else. 

If a vortex method is used to solve this problem, the velocity at an arbitrary point 

x = (x, y) and timet= 0 is given by 

w F(r1) F(r2) 
u(x) = -

2 
[( -y, x + 0.5)-2-] - ( -y, x- 0.5)-2-], 

n ~ ~ 

where r1 = lx- al, r2 = lx- (31, and F is the shape factor. In particular, each of the point 

vortices moves in the y-direction with speed w/2n. The interval [-1/2, 1/2] on the x-axis 

was divided into N intervals of length h = 1 j N, and the initial impulse vectors were placed 

at the center of each interval. The values N = 40 and w = 1 were used. With this setup, the 

velocity induced by the impulse represents the midpoint rule approximation of the velocity 

field obtained by a vortex method which uses the same cutoff function. As the flow evolves, 

the integration path will wrap around the vortices and will swell up in the center. When 

this happens, the impulse vectors are sparsely distributed along the integration path, and 

one can expect the midpoint rule to experience accuracy loss. The problem was first solved 

with a vortex method keeping track of the location of the vortices and of marker particles 

placed initially where the impulse vectors start out. The same problem was then solved 

using the impulse method. Both methods used the 4th-order cutoff function derived from 
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Figure 5.2: Solutions at time t = 6 obtained with a vortex method ( 67) and the impulse 
method (arrows). 
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Figure 5.3: Error in particle positions for the impulse method for time 0 :::; t < 10 and 
discretizations corresponding toN= 40 and N = 80. The error was defined as the average 
difference in particles positions evolved once with the vortex method and once with the 
impulse method. 
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fi(r) = 2~(e-r
2 + te-r2

f 2 ) and cutoff parameter 8 = 0.3. 

The solutions at timet= 6 are shown in figure 5.2. The figure shows the location 

of the marker particles obtained with the vortex method, as well as the impulse vectors 

and their locations as obtained with the impulse method. The solutions do not differ 

appreciatively in spite of the increased separation between contiguous impulse vectors. The 

particles at the endpoints of the curve are the vortices. As a way to measure the discrepancy 

in the particle positions obtained with the impulse method in comparison with the vortex 

method, one can define the error 

1 N . . 

Error= N L lx{r- x}l, 
j=l 

(5.1) 

where xiv is the location of the j-th particle obtained with the vortex method and x} is the 

location obtained with the impulse method. Figure 5.3 shows the variation of this error in 

time for two different discretizations corresponding to N = 40 and N = 80. For times t :::; 6, 

the two solutions agree well. For later times and N = 40, the error increases drastically and 

the solutions begin to differ significantly (see Figure 5.4). As expected, a finer discretization 

allows the impulse method to maintain good accuracy for longer times. In both cases, the 

sharp increase of the error occurred when the largest separation between contiguous vectors 

was approximately equal to the cutoff parameter 8. 

Figure 5.4 shows the solutions at time t = 9 and N = 40. Obviously, the flow 

induced by the impulse no longer approximates the flow induced by the two vortex blobs. 

The vectors are so far apart that they do not approximate the right flow. One may think 

of the impulse flow as that of vortex dipoles at the base of the vectors. The positions 

found with the vortex method indicate the locations where the impulse vectors should be. 

However, at this time more vectors are needed to accurately approximate the corresponding 

line integral along the twisted curve. Even as the impulse method loses the accuracy with 

which it approximates the flow induced by the two vortices, the invariants associated with 

the Hamiltonian system continue to be preserved to an accuracy of 10-8 . 

5.1.2 Second Experiment: Two Vortex Patches 

A new problem consists of the discretization of two vortex patches of radius 0.25, 

strengths +1 and -1, and centered at (-0.5,0) and (0.5,0) respectively, as shown in fig­

ure 5.5. In the impulse method, vortex pairs were represented by impulse vectors pointing 
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Figure 5.4: Solutions at time t = 9 obtained with a vortex method ( EB) and the impulse 
method (arrows) and N = 40. 
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Figure 5.5: Initial discretization of the vortex patches with vortices (circles) and location 
of impulse vectors (dots). 
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in the positive y-direction as in the preceding experiment, but some vortex pairs share im­

pulse vectors with other pairs in order to keep the particle number as low as possible. The 

situation is the same as the one illustrated in figure 4.3. In this case, the parameters used 

were 8 = 0.5 and the inter-particle spacing h = 0.05. The particles were evolved with the 

3.6 

3.4 

3.2 

3 

·~2.8 
ro 
:1..2.6 

2.4 

2.2 

.. 
2 ' 

1.8 

-1 

3.6 

3.4 

3.2 

3 

·~2.8 
ro 
:1..2.6 

2.4 

2.2 

2 

1.8 

-1 

, ... 

0 
• 0 

·00 

.•. c:r\ . .· 

~- :"!··· 
.· .· :POno-o.-
o.~'\i· .. · 

.... -
: : ·. · ... 

-0.5 

c9~0~~~ 
~~~oo0oo 

oeooooi::POO 

go~~\~ 

-0.5 

0 
x-axis 

0 
x-axis 

. .. , 

0 

~-· 

.. i.:., ·~ 
··~ % 

-···':_ . . .. 
-·· .. ·· .. :: . .:·. 

, 

0.5 

§}Q~ 
0000 CP. f'bc:o ooOOo 0o000 

~g~~og 

0.5 

Figure 5.6: Solution at t = 4.76. The top figure shows the vortex locations (circles) and 
the location of the impulse vectors (dots) obtained with the impulse method. The bottom 
figure shows the location of the vortices obtained with the vortex method. 

impulse method to time t = 4. 76 and the positions of the vortices were compared with the 

ones obtained with the vortex method. Figure 5.6 shows the location of the vortices (circles) 

and impulse vectors (dots) given by the impulse method at t = 4. 76 and the locations of 
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the vortices obtained with the vortex method. The vortex positions given by the vortex 

method indicate that the patches should still be approximately circular, with centers about 

0.5 units higher than the locations given by the impulse method. The patches found with 

the impulse method are already coming apart. 

5.2 Impulse Method With Refinement 

The accuracy in the impulse approximation of the velocity field given by the vortex 

method can be maintained by adding new impulse vectors throughout the evolution of the 

flow. This technique is referred to as the impulse method with refinement. In this method, 

new vectors are introduced whenever the separation between contiguous vectors surpasses 

a predetermined length. The refinement refers to the approximation of the vortex flow by 

impulse vectors, not to new vortex blob discretizations of the patches. In other words, 

the number of vortex blobs is fixed in the beginning of the problem. The procedure to 

place a new vector is as follows: each of the m-orthogonal curves is piece-wise linear with 

a vector at the midpoint of each linear piece (see figure 5.7). If a linear piece is too long, 

replace the vector by two vectors in the same direction and with half the magnitude of the 

original one. The new vectors are equally spaced along the piece of curve. This procedure 

1 

~2 

Figure 5. 7: Refinement procedure which preserves impulse. The vector m2 is replaced by 
two vectors in the same direction and of half the magnitude of the original. 

is designed to preserve the discrete impulse, I = I: mj, exactly. Invariants which depend 

on the discretization, such as the energy, cannot be expected to be preserved as well as 

impulse since the discretization is being changed. Even without the dynamics, changes in 

the number of vectors of a discretization, say of figure 5.1, lead to slight changes in the total 

energy due to its sensitivity to the discretization. However, one can expect to conserve all 

invariants approximately during the refinement procedure. 

The results of the impulse method with refinement for the problem of two vortex 
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Figure 5.8: Solution at t = 4. 72 found with the impulse method with refinement. 
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Figure 5.9: Normalized impulse (dashed) and energy (solid) at t 

impulse method with refinement. 
4. 72 found with the 
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patches are shown in :figure 5.8 at timet= 4.72. In this case, an impulse vector was replaced 

by two vectors whenever the discretization size (the inter-particle spacing) reached twice 

the value of the original discretization, which was set to h = 0.05. In comparison with 

:figure 5.6, it is clear that the refinement procedure allows the impulse method to maintain 

the accuracy with which it approximates the flow. The approximate conservation of energy 

and exact conservation of impulse are shown in figure 5.9. However, the computation using 

refinement becomes increasingly expensive in time, since the number of impulse variables 

continually increases. For instance, the number of particles used to represent the initial 

flow was 290, while in figure 5.6 (at time 4.72) there are 1180 particles. When the velocity 

at each particle is computed directly, i.e. when the contribution to the velocity at each 

particle location due to every particle is computed separately, then the number of function 

evaluations for N particles is of O(N2 ). Without the use of fast summation techniques, the 

impulse method with refinement eventually becomes prohibitively expensive. 

In order to estimate the order of accuracy of the impulse approximation to the flow 

induced by the vortices, the same vortex discretization was approximated by impulse vectors 

with initial discretization h = 0.025. The solution was carried to t = 4. 72 and compared 

with the vortex method solution. This final time was chosen arbitrarily as representative 

of times when the original impulse method is known to yield wrong answers. At other final 

times, the results were similar. As shown in figure 5.10, the discrepancies in the vortex 

positions decreased by about a factor of 4. This indicates that the impulse method with 

refinement is second order accurate. The previous chapter explained that the impulse flow 

was the midpoint-rule approximation of the vortex flow, and thus should be second order 

accurate in space. The results support this statement. 

5.2.1 Return to the Example in §3. 7 

An example of a large smooth vortex dipole taken from [7] was presented at the 

end of the last chapter (refer to figures 4.4-4.6). The results there and in [7] were shown 

at times too short for the accuracy loss to be perceived visually. Figure 5.11 shows the 

solution of the same problem at a later time. In this :figure it is evident that the flow 

represented by the impulse is different from the original flow. Material curves are no longer 

resolved between contiguous vectors as these curves appear to cross one another. Figure 5.12 

shows the solution at the same time obtained with the impulse method with refinement. 
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Figure 5.10: Comparison of vortex positions at t = 4.72. The top figure shows the distance 
between corresponding vortices given by the impulse method with refinement for h = 0.05 
(circles) and h = 0.025 (crosses), compared with the vortex method. The bottom figure 
shows the ratio of the distances. 
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Figure 5.11: m-orthogonal surfaces and the impulse defined on one of them at timet= 5. 
Solution obtained with the impulse method. 

Time= 5 

1.6 

1.4 

1.2 

en 0.8 
·x 
as 0.6 I 
>. 

0.4 

0.2 

0 

-0.2 

-0.4 

-1 -0.5 0 0.5 
x-axis 

Figure 5.12: m-orthogonal surfaces and the impulse defined on one of them at timet= 5. 
Solution obtained with the impulse method with refinement. 
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The refinement parameter used was 2h, where h was the original inter-particle spacing. The 

material curves remain smooth and do not cross one another. Figure 5.13 shows the increase 

in the number of particles for this problem using the impulse method with refinement. 
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0 z 
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
time 

Figure 5.13: Variation in the number of particles used in the impulse method with refinement 
for the problem of §3.7. 

5.3 Impulse Method With Resurfacing 

One would like to have a method that maintains the initial accuracy of the impulse 

discretization and in which the number of particles used does not grow without bound. A 

second variant of the impulse method, impulse method with resurfacing, is introduced now. 

In figure 5.2, one can stop the evolution of the flow and replace the impulse field (and the 

curve along which it is defined) by a new field along a straight line connecting the vortices, 

which are located at the endpoints of the curve. The non-uniqueness of the impulse field 

that represents a given flow is what allows this replacement. In the case of the two vortex 

blobs of the first example in this chapter, any curve that connects the two vortices can 

be used to define an impulse field. This field would be perpendicular to the curve and of 

constant magnitude along it. 

In the impulse method with resurfacing, the impulse vectors along a curve con­

necting a vortex pair are evolved a few time steps and then the vectors are discarded and 

a new curve is placed connecting the pair. For curves that connect several vortex pairs, 

as in the example with the patches, the new curves are chosen to be shorter and nearly 

horizontal. This prevents the total number of impulse vectors needed to represent the flow 



from growing unboundedly and allows the computation of solutions for longer times. 
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Figure 5.14: Solution at t = 4.72 found with the impulse method with resurfacing with 
8 = 0.5 and h = 0.05. 

The problem of the vortex patches was solved using the impulse method with 

resurfacing. Figure 5.14 shows the particle positions obtained with this method at time 

t = 4. 72 as in the previous figures. In this case, the new m-orthogonal curves are replaced 

at the end of every time step to ensure that the initial discretization defines the accuracy 

of the method. One can define the error in the position of the vortices as in Eq. (5.1) 

1 N . . 

Error= N L ixlv- x:}l, 
j=l 

where x{ represents the position of the j-th vortex obtained by the impulse method with 

resurfacing and xiv represents the position of the same vortex obtained with the vortex 

method. Table 5.1 shows the results from two impulse discretizations corresponding to 

inter-particle separations of h = 0.05 and h = 0.025. The numbers in the table indicate 

that the errors increase linearly in time and decrease by about a factor of four when the 

discretization is halved. This is the same result shown in figure 5.10 for the case of the 

impulse method with refinement. However, the number of particles using the resurfacing 

procedure does not increase without bound as it does in the refinement. For instance, the 

number of particles used by the resurfacing procedure for the case of the vortex patches and 

h = 0.025 is shown in figure 5.15. The alignment of the particles in the initial conditions 
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h = 0.05 h = 0.025 

time m~x lxi- x}l 
N . . 

myx lx{,- x}l 
1 N . . it E1 lx'v - x}l N E1 lx{r - x}l 

J 

t = 2.4 7.4646e-04 4.2806e-04 1.8560e-04 1.1063e-04 

t = 4.72 13.431e-04 8.0132e-04 3.5754e-04 2.0817e-04 

t = 7.92 22.859e-04 12.648e-04 6.1270e-04 3.3106e-04 

Table 5.1: Errors for the vortex patch problem using the impulse method with resurfacing 
and two different discretizations. The method used cutoff parameter 8 = 0.5 and time step 
tl.t = 0.08. :x!v is the position of the j-th particle obtained with the vortex method, x} is 
the position of the same particle obtained with the impulse method. 
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Figure 5.15: Variation in the number of particles used in the impulse method with resur­
facing for h = 0.025, 8 = 0.5 and tl.t = 0.08. 



51 

allows the number of particles to be the smallest at time t = 0. In this example, the initial 

number of particles was 590. The number of particles at later times fluctuates about 1000. 

The errors were also computed for three separate runs of the impulse method with 

refinement performing the resurfacing every 1, 5 and 10 time steps respectively. These 

errors are shown in table 5.2 and correspond to Jv L:f lxiv- x{J. The errors increase as the 

frequency with which the resurfacing is performed decreases. This is to be expected since 

the separation between particles along an m-orthogonal curve is larger after 10 steps than 

the separation after only one step. Table 5.3 shows the variation of the errors for different 

time steps. 

Time Resurfacing every Resurfacing every Resurfacing every 
iteration 5 iterations 10 iterations 

t = 2.4 4.2806e-04 4.8407e-04 6.7586e-04 

t = 4.72 8.0132e-04 9.4746e-04 15.485e-04 

t = 7.92 12.648e-04 21.101e-04 36.562e-04 

Table 5.2: Errors for the impulse method with resurfacing using three frequencies of resur­
facing. The method used cutoff parameter h = 0.5, h = 0.05 and time step l:!:..t = 0.08. 

l:!:..t = 0.125 l:!:..t = 0.25 

time m~x Jxt- x{J 1 N . . max Jxiv- x{J 1 N . . 
N L:1 IX'v - x}J N L:1 JX'v- x}l 

J J 

t = 1.25 2.1677e-03 1.1738e-03 3.1036e-03 1.9639e-03 

t = 2.50 3.6319e-03 2.2104e-03 4.9524e-03 2.6307e-03 

t = 3.75 4.6283e-03 3.2911e-03 9.4152e-03 3.8728e-03 

Table 5.3: Errors for the vortex patch problem using the impulse method with resurfacing 
and two different time steps. The method used 8 = 0.25 and discretization size h = 0.05. 
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5.3.1 Finding Vortex Positions From the Impulse Discretization 

The impulse method with resurfacing discussed in the previous section treated 

the vortices as marker particles and used their positions to define the new surfaces and to 

compare the results with those obtained with the vortex method. In general, one must be 

able to extract information about the vorticity in the flow from the impulse discretization, 

without having to track the vortices in addition to the impulse variables. This section 

explains a procedure for locating vortices which induce a flow equal to the flow induced by 

the impulse vectors up to O(h~), for a prescribed parameter h0 • 

Consider the velocity field due to an impulse vector m located at the origin and 

pointing in the positive y-direction. This velocity field is u(x) = jmj 8xK0(x), where 

K 6 = K * j 6 is the smoothed vortex kernel from §4.6. Assume that ho is given and that K 0 

has at least three continuous derivatives. Then the velocity above can be written as 

u(x) = 

(5.2) 

where~= jmj/2ho and (is some number between -ho and ho. 

An error of size up to ieh511o;Koll has been committed in the replacement of an 

impulse vector by two vortices at a distance h0 on either side of the vector. This is the 

impulse discretization error. Vortices close to the vector induce a better approximation to 

the impulse flow than weaker vortices placed farther apart. If two or more vortices created 

in this way are located at the same point, they can be combined into one vortex with 

strength equal to the sum of the strengths of all the vortices that have been combined. No 

vortex is needed if the combined vorticity is zero. In practice, two vortices will not generally 

be placed at the exact position. However, there is some flexibility in the placement of the 

vortices which can be deduced from the following error analysis. Let a = (ab a2)T and 

suppose one changes the position of the left vortex to the point -(ho + a 11 a2) instead of 
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-(h0 , 0). Then a Taylor series expansion of K 6 (x, y) yields 

K.s(x + ho + a11 y + a2) = K.s(x + ho, y) +a· DK.s(TJb TJ2), 

where (TJl, TJ2) is a point in a ball of radius lal centered at ( -ho, 0). A balance of the error 

due to the change in location of one vortex and the impulse discretization error leads to 

lal ~ ~hglla~K.sii/IIDK.sll. The same could be said about the vortex on the right. 

The norms above depend only on the cutoff function and can be computed in 

advance once the choice of cutoff function has been made. From the definition of the shape 

factor F(r), it is clear that we can write F(r) = q2G(q), where q = r/8 and G(q) =1= 

0 anywhere. Therefore, the vortex kernel can be written in polar coordinates as K 6 = 

0 qG(q)8-1 . Upon differentiation of this expression with respect to x or y we conclude that 

DK6(x,y) scales as 8-2 and 8~K.s(x,y) scales as 8-4 . Thus for the error terms to be of the 

same order, the vector a must satisfy 

so vortices can be placed within O(hg8-2 ) of ±(ho, 0) without incurring larger errors than 

the discretization errors. This scaling is independent of the cutoff function used; the dimen­

sionless expressions 82 DK.s and 84 8~K.s depend on the cutoff function but can be computed 

once and for all for each function. 

Figure 5.16: The vectors m1 and m2 can be replaced by two pairs of vortices located near 
the base of the vectors. The left picture shows a low accuracy representation of the impulse 
flow but allows the combination of the middle vortices. The right picture shows a more 
accurate representation of the impulse flow by the vortices. 

The error in the replacement of an impulse vector by two vortices is O(~hg/84 ) as 

indicated in Eq. (5.2). After integrating along a strip to which the vectors are perpendic­

ular, the error becomes O(~h5/84 ). When ho/8 = 0(1), the discretization errors become 

extremely large as seen in figure 5.3. 
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The freedom in the placement of the vortices that approximate the flow induced 

by impulse can be put to good use in the impulse method with resurfacing. For a given 

collection of impulse vectors and a parameter h0 , one can find vortex pairs that approxi­

mate the flow induced by the impulse and systematically combine vortices that are within 

O(hM-2 ) of one another. The circles of the left side of figure 5.16 represent the regions 

where the corresponding vortices may be placed. Those vortices would be combined into 

a single vortex, with strength equal to the sum of the strengths of the two, placed in the 

middle of the intersection of the circles. This process allows the cancellation of opposite 

vortices within O(h~8-2 ) of each other. 

5.3.2 Example 

Returning to the example of the two vortex patches, suppose that the impulse 

discretization uses initially the inter-particle spacing h = 0.05 and cutoff radius 8 =. 0.5. 

The location of the impulse vectors after a short time are shown in figure 5.17. The figure 
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Figure 5.17: Location of impulse vectors before finding vortices. One m-orthogonal curve 
shown. 

also shows the impulse vectors along one m-orthogonal curve. In order to find a collection of 

vortices which induce the same flow as this impulse field, the impulse vectors can be replaced 

by vortex pairs near the base of the vectors. The strengths of the vortices are determined 

by the equation 2howi = lmil, where the parameter ho is half the distance separating the 

vortices of a pair. At time t = 0, the choice 2h0 = h would lead to a discretization of the 
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vortex patches by vortices separated a distance h. At the instance shown in figure 5.17, 

the impulse vectors have separated beyond the initial inter-particle spacing h so that they 

represent the vortex patches to a lower accuracy. The vortex representation of the impulse 
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-0.2 

-0.4 

Figure 5.18: Location of vortices with 2ho = 0.065. All impulse vectors allowed the cancel­
lation of vorticity except in the two circular patches. 

flow for 2ho = 1.3h is shown in figure 5.18. This value of ho is large enough to ensure 

the cancellation of vorticity between the patches. If the value of ho is decreased, and thus 

a more accurate vortex representation of the impulse flow chosen, one can expect some 

vorticity to be left between the patches. Figure 5.19 shows the case of 2ho = 1.2h, in which 

vortices from contiguous impulse vectors were combined but their strengths did not cancel 

due to the more severe restriction in the placement of the vortex pairs. The result is a few 

additional vortices whose strengths have absolute value less than 0.0045, while the vortices 

in the patches have strengths ±1. The difference between the flow induced by this collection 

of vortices and the patches is entirely due to the effect of the weak vortices. This effect is 

small since these vortices are far from the patches. 

If one decreases the value of ho even more, the vortex representation of the impulse 

flow departs further from a discretization of the two patches. Figure 5.20 shows results for 

the case 2h0 = 1.1h. Some vortices end up very close to vortices from adjacent impulse 

vectors but not close enough for them to be combined. This leaves a cloud of strong vortices 

between the patches. Vortices of opposite strength between the patches are so close to each 

other that they cannot be distinguished easily in the figure. The net effect of these vortices 
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Figure 5.19: Location of vortices with 2ho = 0.06. A few vortices at the top combined but 
their vorticity did not cancel leaving vortices of strength smaller than 0.0045. 
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Figure 5.20: Location of vortices with 2ho = 0.055. Some impulse vectors are not close 
enough to their neighbors for vortices to combine. The result is pairs of vortices of strength 
up to ±10 inducing nearly opposing flows. 
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is small because they induce nearly opposite flows since they are so close to each other, not 

because they are weak. 

The last two figures show that as one finds collections of vortices that approximate 

the vorticity induced by a given impulse discretization to increasingly higher accuracy, the 

difference between the vortices found and the discretization of the patches becomes larger. 

This is the case since the impulse vectors represent the vortex patches to an accuracy which 

decreases as time increases. The small effects manifest themselves as weak vortices or as 

vortices (not necessarily weak) of opposite strength and very near each other inducing nearly 

opposite flows. In either case, the additional vortices must must be included as part of the 

approximation to the impulse flow. 
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Chapter 6 

Impulse Variables in Three 

Dimensions 

The dipole character of the flow induced by impulse in either two or three dimen­

sions was displayed in chapter 4. In three dimensions, the flow induced by impulse vectors 

can be viewed as an approximation to the flow induced by small vortex loops. This view 

is more convenient for gaining insight about the role of discrete impulse in the numerical 

method presented in chapter 4. This chapter begins by explaining the connection between 

impulse and vortex loops and then presents the three-dimensional versions of the refine­

ment and resurfacing procedures introduced in the previous chapter. Numerical examples 

are presented throughout this chapter. 

6.1 Impulse and Vortex Loops 

This section presents a part of the discussion in [22] which leads to the conclusion 

that at sufficiently long distances, any localized vorticity distribution induces the same flow 

as a vortex dipole. The presentation in [22] is in the context of magnetostatics but its 

interpretation in fluid dynamics is clear if one keeps in mind the following correspondence 

between variables in the two fields: 

Magnetostatics Fluid Dynamics 
current density, J vorticity, ~ 
magnetization, m impulse, m 
magnetic induction, B velocity, u 
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The flow induced by a localized vorticity field in the shape of a small loop can be 

identified with the flow induced by an impulse vector normal to the plane of the loop in the 

following way. Assume ~(x) is a vorticity distribution confined to a small set containing the 

origin. The flow induced by ~ can be written as 

where G(x) = ( 47rlxl)-1 is the Green's function for the Laplacian operator in free space. 

The size of the set is assumed to be small relative to the distance from the observer; that 

is, IYI «: lxl whenever ~(y) # 0. One can make use of the expansion 

1 1 X ·y 
lx - Yl = lxf + lxl3 + ... 

to write the convolution as 

(G * ~)(x) = 1 J ~(y) dy 
47r lx- Yl 

= -1-J~(y)dy+-1 -j(x·y)~(y)dy+···, 
47rlxl 47rlxl3 

(6.1) 

where the neglected terms are no larger than O(lyl2 /lxl3). Since ~ is divergence-free and 

compactly supported, it can easily be shown that the first integral in Eq. (6.1) is zero and 

the second integral satisfies 

J (x · y) ~(y)dy =-~X X J y X ~(y)dy. 

Then the first non-zero term in the Taylor expansion of the Green's function yields 

xxi 
( G * ~)(x) = - 47rlxl3' 

where I = t J y x ~(y)dy is the impulse as defined in [2]. Therefore the flow due to the 

localized vorticity distribution is 

u(x) _ V x I x x __ 1_ [3x(x ·I) _I] 
- 47rlxl3 - 47rlxl3 lxl2 ' 

which is the flow induced by a vortex dipole [22]. Note that if ~(x) = V x mf6(x), the 

equation above becomes 
1 [3x(x · m) ] 

u(x) = 47rlxl3 lxl2 - m ' 

which is exactly the impulse flow described by Eq. ( 4.2) outside the support of /6. This 

analysis is valid for any localized vorticity distribution and for the evaluation point x in the 
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far field. One concludes that far away from any localized vorticity distribution, the flow is 

that of a vortex dipole. In particular, if the vorticity is confined to a closed thin loop in the 

xy-plane with circulation r, then 

m = ~ J y X e(y)dy = ~ f y X dl, (6.2) 

where dl is a line element along the loop as shown in figure 6.1. Equation 6.2 implies that 

m is a vector perpendicular to the plane of the loop and with magnitude lml =A r, where 

A is the area inside the loop (see figure 6.1). 

Figure 6.1: The impulse vector m induces the same flow as the vortex loop if lml = A r, 
where A is the area enclosed by the loop and r is the circulation around the loop. 

6.2 Comments 

A large thin vortex loop can be represented by a collection of many small loops 

lying on a surface that spans the large loop as in figure 6.2. Each of the small loops can be 

thought of as an impulse vector normal to the plane of the loop and with magnitude equal 

to the surface area enclosed by the loop multiplied the circulation around it. Impulse, m, 

is thus a variable that localizes vorticity. 

The non-uniqueness of m is evident in this interpretation of impulse since there are 

infinitely many surfaces that span a particular vortex loop. By construction, each surface is 

an m-orthogonal surface for the impulse field defined on it. Given a large, thin vortex loop 

that does not lie in a plane, the surface which requires the least number of impulse vectors 

of a prescribed size in its discretization is a surface with minimal area. The problem of 

finding the optimal impulse field to represent the flow induced by an arbitrary vortex loop 

is thus connected with finding minimal surfaces attached to a frame. 
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Figure 6.2: A large vortex loop represented as a collection of small loops. 

A three-dimensional version of the impulse method with resurfacing presented in 

the previous chapter requires a recipe for collapsing the small loops represented by individual 

impulse vectors to the large loop. Then, one must define a new surface and the new impulse 

field on it. In two dimensions the new surface was a piece-wise linear curve; in three 

dimensions, the recipe for finding the minimal surface will not be presented here but is left 

for future work. 

It was pointed out in chapter 3 that the magnitude of the an impulse vector is 

proportional to the area of a piece of the m-orthogonal surface. That result is made obvious 

by Eq. (6.2) and the fact that the circulation around a vortex loop carried by incompressible 

flow is a constant of the motion [16]. In the case of a large vortex loop with unit circulation, 

the quantity I: lmi I is a measure of the area of the m-orthogonal surface which is moving 

with the flow. As observed in [14] and seen in the example of §2.3.2, this quantity increases 

in time even when the total impulse is conserved. 

6.3 Examples 

This section illustrates the implementation of the impulse method presented by 

Buttke for three-dimensional flows. Two examples of flows with closed, circular vortex lines 

are presented. In the first example, the vorticity is confined to a sphere; the second one is a 

traditional vortex ring. The cutoff function used in both cases is the fourth-order function 
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!6(r) = 8-3fi(r/8), where fi(r) = 8~(5- 3r3)e-r
3 

[3]. Numerical examples of the impulse 

method with refinement and resurfacing will be presented in the next sections. 

6.3.1 Hill's Spherical Ring 

The first example, presented in [2], is one in which the support of the vorticity is 

a ball of radius a which translates in space but remains invariant otherwise. The vorticity 

in cylindrical coordinates (r,8,z) is given by 

~(r, 8, z) = (0, Ar, 0), (6.3) 

where A is a constant. The vorticity is normal to the z-axis and constant on cylindrical 

shells lying within the ball. The same flow in terms of impulse can be written as 

( ) A 2 2 2 m r, (}, z = 2 (0, 0, a - z - r ) 

for (r, 8, z) inside the sphere. The constant of integration has been chosen so that m(x) = 0 

for lxl ~ a. Since the support of impulse density and the support of vorticity are identical 

in this case, the impulse method is as efficient as a numerical method based on vorticity. 

Figure 6.3 shows one of the initial m-orthogonal surfaces for a sphere of unit radius and 

A = 2. The top figure shows several circles on the surface of the sphere marking latitudes at 

fixed vertical increments. The bottom picture shows the initial impulse field on one surface. 

The flow induced by the vorticity distribution of Eq. (6.3) is steady and can be 

computed analytically [2]. The velocity field relative to axes moving with the sphere is 

2 
u(r, (}, z) = 5(rz, 0,1- z2

- 2r2
). (6.4) 

From this expression, it is easy to see that a particle on the surface of the sphere, say 

at a point ( r, 8, z) with r 2 = 1 - z2 , moves along the surface of the sphere with speed 

2r j 5 in the direction away from the the point ( 0, 0, 1 ), the north pole. Consequently, the 

latitudinal curves in figure 6.3 will drift downward on the surface of the sphere. The curves 

near the equator will move faster than those near the poles. Figure 6.4 shows the same 

curves and surface as the previous figure but at time t = 1.2. The cutoff radius was fixed 

at 8 = 0.35 and the discretization size was set to about 0.18. The m-orthogonal surfaces 

passing through the center of the sphere swell up faster than others since the flow is fastest 
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Figure 6.3: Latitudinal curves on the initial sphere. The initial impulse is defined on flat 
surfaces like the one shown in the top picture. The bottom picture shows the impulse on 
one m-orthogonal surface at time t = 0. 
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Figure 6.4: Latitudinal lines on the sphere at t = 1.2. The m-orthogonal surfaces swell up. 
The bottom picture shows the impulse on one m-orthogonal surface at time t = 1.2. 
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at the center of the sphere. The set of stagnation points includes the north and south poles, 

so them-orthogonal surfaces near the poles swell up slowly. A front view of the latitudinal 

curves in figure 6.4 is shown in figure 6.5 for a better appreciation oftheir downward motion. 

One can see here that the sphere has translated in the positive z-direction while the circles 

on the surface have migrated down. 
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Figure 6.5: Front view of the latitudinal lines on the surface of the sphere at time t = 0 
(top) and timet= 1.2 (bottom). The lines travel away from the north pole. 
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6.3.2 A Vortex Ring 

While the vorticity distribution in the previous example may be considered a vortex 

ring, a more traditional vortex ring in which the vorticity is confined to a torus of radius R 

and core radius a with a < R, is presented in this section. The impulse density that defines 

a vortex ring of constant vorticity ~(r,B,z) = {O,w,O) is m(r,8,z) = (O,O,m3 ) where 

{ 
w[R + ..Ja2 - z2 - r], for (r- R)2 + z2 :::; a 2 

m3(r,8,z) = 
w..Ja2 - z2, for z2 :::; z2 and r:::; R- ..Ja2- z2. 

Note that the impulse is continuous while the vorticity is not. The impulse density of this 

example cannot be restricted to the torus [7] since the circulation around a loop which 

encircles the ring but lies outside of the support of the vorticity is 1ra2w. As a consequence, 

more particles are needed in this case for the representation of the ring by impulse than by 

vortex elements. 

Figure 6.6 shows the initial ring for R = 0.5, a= 0.2 and vorticity with w = 1/2a 

so that m3 (0, 0, 0) = 1. The m-orthogonal surfaces are horizontal discs as in figure 3.7 in 

chapter 3. 
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Figure 6.6: Initial vortex ring of radius R = 0.5 and core radius a = 0.2. 

The impulse density was approximated by points on a grid which is nearly uniform 

in cylindrical coordinates with spacing h = 0.06. The cutoff radius was set at 8 = 0.3. The 

ring at time t = 4 is shown in figure 6.7. At this time the core has rotated about one half 
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Figure 6. 7: Vortex ring of radius R = 0.5 and core radius a = 0.2 at time t = 4. 
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of a revolution and the m-orthogonal surfaces are swollen due to the fluid ejected through 

the ring. Figure 6.8 shows one of these surfaces at various times in the evolution of the 

flow. By t = 2, the impulse vectors on the top surfaces had stretched by a factor of 3 near 

the center of the ring. By t = 4, the same vectors had stretched by a factor of 8 to 11, 

indicating that the impulse density is no longer well approximated in those regions. 

It is important to stress that the energy, impulse, and angular momentum have 

been kept invariant to at least 8 significant digits throughout the computations in both 

examples of this chapter. As in two dimensions, the conservation of these invariants will 

continue as the method solves accurately the Hamiltonian system of dipoles. The question 

of how long those dipoles represent the flow induced by the vortex ring is a separate one. 

6.4 Impulse Method With Refinement 

A three-dimensional analogue of the refinement procedure from last chapter can 

be designed now that the connection between impulse vectors and vortex loops has been 

established. One thinks of a vector m located at the point x as an object that induces the 

flow of a vortex loop centered at x, lying on the plane normal to m, and having circulation 

rand area A. It is now known that the relation lml =A r holds. A refined representation 

of the same flow is given by smaller loops which span the former one and whose circulation 
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Figure 6.8: Figures showing half of an m-orthogonal surface located initially on the xy­
plane. The surface is shown at times t = 0 (bottom), t = 2 (middle) and t = 4 (top). 
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is still r. If one chooses vectors m1, m2, · · · , ID£ to represent the smaller loops, then the 

conditions 
L L 

L lmkl =A r, :Lmk =m 
k=l k=l 

will enforce incompressibility and ensure the invariance of impulse and circulation around 

the original loop. In contrast to the two-dimensional case, the shape of the loops is arbitrary, 

and so there is no unique way to subdivide a loop. For instance, one can consider a loop of 

area A centered at x and subdivide it into 4 loops of area A/ 4 located on the corners of a 

square of side v'A./2 as shown in figure 6.9. This convention is adopted here. 

Figure 6.9: Refinement of impulse in three dimensions. The impulse vector on the left 
induces the flow of a vortex loop of area A. The refinement process replaces the vector by 
four vectors of magnitude 1/4 the original one. 

Consider a vortex ring of radius R = 1 and core radius a = 0.4. As noted before, 

the surfaces at the top of the ring are the first ones to suffer the most stretching so an m­

orthogonal surface initially at z = 0.32 is presented in figure 6.10. The surface is shown as 

a collection of loops at t = 4 both without refinement (top) and with refinement (bottom). 

The size of each loop is proportional to the size of the vector it represents. The ring is 

initialized by points on a cylindrical grid of size h = 0.16 and the cutoff radius is 8 = 0.35. 

These parameters are chosen merely for the illustration of the refinement procedure. The 

criterion used for the refinement is the area spanned by the loop being 4 times its original 

value. Once the subdivisions occur, each vector evolves independently giving more flexibility 

to the surface. The energy is conserved to within 4% of its initial value throughout the 

computation. Note that some of the loops have not met the criterion yet while others 

have already been subdivided. It is also evident that the loops run into each other in the 

azimuthal direction but show gaps on rays of constant angle. This is an indication that the 

surface does not stretch equally in all directions but favors directions of constant (). This 

kind of information is helpful in deciding what refinement criteria to use. For this problem, 
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one may want to subdivide each loop into 2 loops centered along the intersection of the 

plane of the loop with the planes of constant 0. 
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Figure 6.10: Vortex loops representing an m-orthogonal surface for a ring of R = 1 and 
a = 0.4 at time t = 4. The top picture shows the loops without refinement; the bottom 
picture shows the refinement of some loops while others have not yet been refined. 

6.5 Impulse Method With Resurfacing 

Consider a large, thin vortex loop and an impulse field that represents the :flow 

induced by the loop. This impulse is defined on a surface which spans the loop. The most 

efficient impulse representation of this :flow would be one in which the impulse is defined 
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on a minimal surface bounded by the loop. Thus a general resurfacing procedure would 

take a collection of impulse vectors as input and would (1) determine the vortex loop they 

represent, (2) compute a minimal surface that spans the loop, and (3) define a new impulse 

field on the minimal surface. 

In two dimensions, each impulse vector was replaced by two vortices whose posi­

tions were adjusted to exploit cancellation of vorticity. In three dimensions, each impulse 

vector represents a small vortex loop of arbitrary shape lying on a plane normal to the 

vector and enclosing a given area. The situation is more intricate here since the arbitrari­

ness of the small loops makes it difficult to determine whether two adjoining small loops 

can be combined to form a larger one. Additionally, the computation of a minimal sur­

face attached to a frame is a complex mathematical task in itself [10]. Some frames allow 

topologically different minimal surfaces. From the point of view of impulse variables, the 

resurfacing procedure should produce a surface whose area is smaller than the area of the 

surface being replaced but not necessarily a minimal surface. One with nearly minimal area 

may be sufficient for the definition of the new impulse field and may avoid some of the high 

computational cost of reaching the minimal surface. 

A general resurfacing procedure is left for future work and will not be presented 

at this time. However, the particular case of the smooth vortex ring of the previous section 

will be used as an illustration of the resurfacing procedure. In this case, the initial m­

orthogonal surfaces are flat discs where the impulse defined on each surface represents the 

flow of several concentric circular vortex loops lying on that surface. One can make use of 

the fact that the vortex loops remain circular and flat as the flow evolves, so that one point 

on the loop is enough to determine the location of the entire loop. A threading routine 

similar to the one in two dimensions is used here to connect several loops with one surface 

in order to keep the number of surfaces (and therefore impulse vectors) small. Figure 6.11 

shows m-orthogonal surfaces at time t = 1 before and after the resurfacing. Note that 

the new surface does not necessarily represent the same vortex loops as the old surface, 

but the new surfaces together do represent all vortex loops and have smaller area than 

the surfaces being replaced. As a consequence, the new impulse field consists of vectors of 

smaller magnitude than the replaced vectors and an equal number of vectors can be used 

to represent the flow with higher accuracy. 



72 

0.6 

0.4 

0.2 

N 0 

-0.2 

-0.4 

1.5 

y 
X 

0.6 

0.4 

0.2 

N 0 

-0.2 

-0.4 

1.5 

y 
X 

Figure 6.11: m-orthogonal surfaces for a vortex ring at time t = 1.0. The top figure shows 
one of the original surfaces and the bottom figure shows a new surface after the resurfacing 
procedure. 
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Chapter 7 

Application of Impulse Methods to 

Immersed Boundary Problems 

The previous chapters address the approximation of vorticity fields by impulse and 

techniques for maintaining the accuracy of these approximations over time. This chapter 

discusses applications of impulse methods to problems for which these methods are par­

ticularly well-suited. Consider the example of a flow in which a force acts on immersed 

boundaries, like the interface between two fluids or an elastic membrane containing a fluid. 

Since force is by definition a rate of change of impulse, it is natural to represent the effect of 

forces acting on particular regions of the flow by introducing an impulse field which changes 

according to the Navier-Stokes equations with an additional force term. 

Interesting situations of a fluid in a region bounded by an elastic membrane include 

air flow in the lungs, blood flow through the heart, and water sloshing inside a balloon. The 

key feature common to these examples is the interaction between the elastic forces on the 

boundary and the fluid inside and outside. As the membrane stretches and contracts, the 

forces will affect the motion of the fluid and this motion will alter the configuration of the 

boundary, which determines the forces. 

Previous numerical treatments of this type of force-fluid interaction use vortex 

elements on the boundary to introduce the effect of the forces at every time step. The 

elements created dynamically on the boundaries are vortex pairs approximating dipoles [27] 

or a combination of vortex pairs and simple vortex layers [26]. The discussion in chapter 4 

about the equivalence of impulse vectors and vortex dipoles makes it evident that vortex-
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pair approximations of dipoles are no longer necessary and that the strengths of the dipoles 

are updated correctly by the impulse equation of motion. Since boundary forces naturally 

interact with the fluid by imparting impulse, the impulse method is most appropriate for 

the numerical solution of this type of problem. The first use of impulse methods in this 

setting is found in [17], where the motion of an inviscid, incompressible fluid confined to a 

region with elastic boundary was computed. 

The following sections contain the discussion of boundary forces and energy cal­

culation for the case of inviscid fluids, and present numerical examples. The final sections 

show a method for introducing viscous effects into the model and more numerical results. 

7.1 The Formulation of the Problem 

The application presented here is the motion of a two-dimensional incompressible 

fluid in free space and an elastic membrane surrounding a bounded region of fluid (see 

figure 7.1). The assumption that the same fluid occupies the region outside the membrane 

Figure 7.1: Initial setup of an elastic membrane surrounding a fluid. 

is made to focus on the motion due to the elastic forces and not due to density changes across 

the membrane. This assumption is reasonable in physiological applications such as the blood 

flow in the heart chambers, where blood also occupies regions outside the chambers [26]. 

The membrane is idealized as being infinitely thin and massless so that the force field is 

concentrated only on the curve defined by the membrane. The forces are therefore singular 

since they act on a set whose dimension is lower than the spatial dimension of the problem. 
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One may think of the membrane as a string of small rubber bands linked to their two 

nearest neighbors. The force exerted on the fluid by the membrane depends solely on the 

configuration of the membrane, and each point on the membrane is assumed to move with 

the local fluid velocity. 

7.2 Boundary Forces 

The Navier-Stokes equations are 

Du 
Dt = -Vp+v~u+F, V·u=O, 

where F represents external force. The same derivation of the impulse equations from 

chapter 2 leads to 

Dm 
Dt 

= -(Vuf m + v.6.m + F 

lPm - u, 

where it is clearly displayed that force is a rate of change of impulse. The numerical 

method consists of solving Eq. ( 4.4)-( 4.5) with the addition of the force term in the second 

equation. Let P be the force on the piece of boundary represented by the j-th particle, then 

the equations of motion for the particle locations and the impulse strengths in the case of 

in viscid flows ( v = 0) are 

dxi 
u(xi) (7.1) - -

dt 
dmi 

-(Vuf mi + fi. (7.2) -- = 
dt 

Let s be the arclength parameter and x( s) a parametrization of the membrane, 

then the forces exerted by the elastic membrane on the fluid can be written as [26] 

F(x) = j f(s)8(x- x(s)) ds, (7.3) 

where f is the force density, and 8 is the two-dimensional Dirac delta function. Note that 

F is singular since the integral is taken along a curve and 8 is two-dimensional. A different 

approach to evaluating the force term can be found in [9]. 

The force density is of the form f(s) = d(Tf)jds, where Tis tension, and f is the 

unit vector tangent to the boundary [30, 17]. Expanding the derivative in the definition of 
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force density, one obtains 

f(s) = d(Tf) = dT f+Tdf = dT f+TKil 
ds ds ds ds ' 

(7.4) 

where K is the mean curvature and D. is the outward unit vector normal to the boundary. The 

distinction between inviscid and viscous flows is relevant at this point in the computation 

of forces. In Euler flow, the tangential forces simply make the boundary slip so that the 

only force affecting the motion of the fluid is the one normal to the membrane, i.e. 

f(s) = TKil. (7.5) 

In this case the slip condition is enforced by setting f.: = 0, which states that the tension 

is constant along the membrane at any instant. This condition must be enforced in the 

numerical method. For viscous flows, the normal and tangential forces will affect the fluid 

motion and Eq. (7.4) must be used. 

In practice, the forces are found at the locations of the impulse vectors. The force 

associated with a piece of boundary of length hi ( t) corresponding to the the discretization 

size of the j-th particle is fi = f(xi)hi(t). This is the force used in Eq. (7.2). 

Each piece of arclength (the discretization size) is thought of as a rubber band 

with a stiffness constant and a rest-length. Denote by ho the rest-length of all elements, 

and define the tension at xi by the equation 

T(xi) = { u(hi(t)- ho)/ho, 

0, 

hi(t) > ho 

hi ( t) :::; ho, 

where u is a stiffness constant. Note that there are no forces when the elements are com­

pressed below h0 • In the case of Euler flow, the constant tension along the membrane 

requires that the particles be equally distributed on the membrane at every time step. This 

is accomplished with the use of a cubic polynomial interpolant [17]. The curvature at every 

point is also found using a cubic polynomial, which is chosen to go through three points on 

the membrane and to match the slope at the middle point. The curvature of the membrane 

at the middle point is approximated by the curvature of the polynomial. 

7.3 The Membrane Algorithm 

The algorithm used for the tracking of the membrane consists of three parts at 

every time step flt: 



77 

• Based on the current boundary configuration, compute the forces and update impulse 

This part assumes that the force is constant throughout the time step. This assump­

tion has been found to be reasonable and attractive due to its simplicity [17]. 

• Update positions and strengths via Euler equations 

dxi 
u(xi), - = dt 

dmi 
-(Vu)T mi. -- = dt 

These equations are solved using a fifth-order Runge-Kutta method. 

• Add viscous effects if appropriate 

The implementation of the this part will be discussed later in this chapter. 

7.4 Numerical Results for lnviscid Flow 

The initial setup consists of a membrane in a shape of a circular water balloon with 

a dimple on one side (see Figure 7.2). When the motion starts, the forces in the indented 

part of the boundary are stronger than other forces and make this portion move faster than 

the rest, creating waves which propagate along the boundary. The exact initial shape of 

the right side of the membrane is given by x(8) = r(8)cos(8) and y(fJ) = r(8)sin(8), where 

r(8) = 1- 1
7
0 (1- 10q3 + 15q4 - 6q5) and q = 28/tr. The left side is the circle r(8) = 1. 

The boundary was discretized using 300 equally spaced particles and the rest-length of all 

elements was set to half the initial discretization size. The stiffness of all elements was set 

to u = 0.5, the cutoff radius was 8 = 0.12 and the cutoff function was fo(r) = 8-2 fi(rj8) 

where JI(r) = 2~(e-r
2 + ~e-r2 f2 ). 

The motion of the membrane for time 0 through 5.4 and ~t = 0.004 is shown in 

figures 7.3 and 7.4. The initial impulse field was identically zero; what gets the motion 

started is the forces induced by the initial membrane configuration. The area bounded by 

the membrane must be conserved since the flow is incompressible, as well as the total energy, 
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Figure 7.2: Initial membrane configuration. 

kinetic plus potential. The kinetic energy of the fluid is given by H = 1/2 2:: mi · u(xi), 

as before. The potential energy in the elastic membrane is E = ~ 2:: (hi(t)- ho) 2 /ho for 

hi > ho and zero otherwise. The impulse is perpendicular to the membrane since the forces 

are always normal to the membrane. The total energy is given by the initial potential energy 

because the motion is started from rest. By conservation of energy, the potential energy 

never surpasses its initial value and so the length of the membrane is never larger than its 

initial length. This implies that the accuracy problems due to stretching of m-orthogonal 

surfaces is not an issue in this application. 

The invariants are conserved approximately in spite of the redistribution of parti­

cles at every time step. This procedure is equivalent to replacing the Lagrangian particles 

by a new set of variables at every step. In this example the energy was conserved to within 

4% of its initial value and area to within 0.5% of its initial value for 0 ::; t ::; 5.4 as seen in 

figure 7.5. 

The impulse vectors are shown at times t = 1.2 and t = 5 in figure 7.6. Since 

the forces on the right side of the membrane point in the outward direction for a small 

initial time interval, some of the impulse vectors still point outward at t = 1.2. Because 

the impulse represents the accumulation of force over time and the forces act mostly in 

the inward direction, one expects the impulse vectors to have larger magnitudes for longer 

times. This is seen in the bottom picture of figure 7.6. 
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Figure 7.3: Motion of the membrane for time t = 0 - 2.4, with b.t = 0.004. 
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Figure 7.6: Impulse field at times t = 1.2 (top) and t = 5.0 (bottom). 
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7. 5 The Diffusion Term 

In order to model viscous flows, one must approximate the diffusion term ..6.m in 

the equation of motion for impulse. One approach for the modeling of diffusion for vortex 

elements is to impose an appropriate random walk to the particles [13]. In the case of 

the elastic membrane, marker particles would hold the location of the membrane and new 

particles would have to be created at every time step to account for the diffusion. The 

position of the new impulse particles can have the effect of perturbing the membrane in 

ways that will produce large forces (due to large curvatures) in random directions, leading 

to instability. Therefore, a deterministic technique for the modeling of diffusion is adopted 

here. The approach is taken from [18] and consists of approximating the impulse by the 

convolution of it with a cutoff function of the same type used in the numerical method, 

though not necessarily the same function or cutoff radius. Then the derivatives in the 

Laplacian operator can be applied to the cutoff function, 

If the convolution is approximated by a sum, one can define the quantity 

(..6.m)k = Ak L mi ..6.fe(lxk- xi I), 
j 

where mi are the same impulse strengths used in the numerical method and Ak is the 

element of area associated with mk. The viscous effects can then be added by adjusting 

the impulse strengths according to diJ:" = v(..6.m)k at the end of the time step. Note that 

impulse is created on the membrane due to the elastic forces, and it is diffused onto a region 

around the membrane. Therefore, one must place particles with zero initial impulse in a 

band surrounding the membrane to be the recipients of the diffused impulse. The size of 

the region depends on the final time of the simulation. This technique has been shown to 

be consistent with the heat equation and stable for a certain set of cutoff functions [18], 

including the one used here. A variant of this technique has also been used for boundary 

layer flows [5]. 

It is important to emphasize that in the current application the fluid fills the 

entire space even if the forces are restricted to the membrane. Thus the fluid velocity is 

the orthogonal projection of the impulse field in free space. In cases with solid boundaries, 
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the projection and Laplacian operators do not commute, and so the flow near the solid 

boundaries require special treatment [37]. 

7.6 Numerical Results for Viscous Flow 

The problem presented in this section is the same one of the previous section. The 

initial setup is shown in figure 7.7. The dots in the figure are Lagrangian particles that will 

y 

X 

Figure 7.7: Initial membrane configuration and particle locations. 

receive impulse from the diffusion process and will subsequently diffuse their own impulse; 

they were placed approximately 0.08 units apart. The diffusion coefficient was v = 10-3 , 

the cutoff functions for the diffusion process and the impulse approximation were set equal 

to the one used in the previous example, but the cutoff radius for the diffusion was € = 0.1. 

All other initial parameters were chosen as in the previous example. 

Figures 7.8 and 7.9 show the evolution of the membrane for 0 :::; t :::; 5.52. The 

motion observed in the inviscid case is now attenuated by the viscosity of the fluid and 

consequently, the waves propagating along the boundary are smaller. One of the important 

features of the viscous case is that the impulse does not remain orthogonal to the membrane 

due to tangential forces and the diffusion process. One implication is that the particles need 

not be equi-spaced as before in order to allow the tension to vary along the membrane. This 

eliminates the need to interpolate between particles, which in fact reduces the error in the 

computation of invariants. The energy in the system is not conserved due to friction but 
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Figure 7.8: Motion of the membrane for time t = 0 - 2.4, with ilt = 0.004. 
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the rate of energy loss can be computed with the formula 

. 1 d J J H(t)=2dt u·mdx=v u·Amdx. 

An approximation to the integral leads to 

The quantity K + E- ii and the area inside the membrane are then constants of the motion. 

Figure 7.10 shows these invariants. 

Energy Balance 
1.1 r---r----r---.---,--.---,----,----.--r--,.-----, 
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Time 

Figure 7.10: Approximate conservation of invariants for the viscous problem. 

The impulse field is shown in figures 7.11 and 7.12 at times t = 2 and t = 5 

respectively. The figures show the impulse field defined only on the membrane (top) and 

the impulse defined off the membrane (bottom). The bottom vectors have been amplified 

by a factor of 10 for clarity. The figures show that the impulse vectors on the right side of 

the membrane alternate in direction between inward and outward. A more detailed study 

of different methods for approximating the diffusion term is necessary to determine if this 
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oscillation in the direction of the vectors is a manifestation of instability of the diffusion 

method. This study is left for future work. 
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Figure 7.11: Impulse field at timet = 2. The top picture shows the impulse on the mem­
brane; the bottom picture shows the impulse off the membrane (magnified x 10). 
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Figure 7.12: Impulse field at timet = 5. The top picture shows the impulse on the mem­
brane; the bottom picture shows the impulse off the membrane (magnified x 10) . 
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Chapter 8 

Conclusions 

The connection between the velocity field due to vortex blobs and the velocity field 

induced by impulse blobs has been established. The connection is that the velocity field 

induced by two counter-rotating vortices in two dimensions can be written as a line integral 

along any path connecting the two vortices. An impulse field which models the same flow is 

an approximation of this line integral. When the integration path is carried by the flow, the 

path frequently stretches and the approximation of the line integral loses accuracy as the 

points along the path become sparse. The stretching of the path results in the growth of the 

magnitude of impulse vectors. In three dimensions, a large closed loop of vorticity induces 

a velocity field that can be approximated by an integral over any surface that spans the 

loop. The velocity field due to impulse is a discretization of this integral. The flow makes 

the surface expand, leading to the same type of accuracy loss as in R2 • This connection has 

been established by defining and tracking m-orthogonal surfaces, which remain normal to 

the impulse field in the evolution of the flow. 

Based on this understanding, two techniques for avoiding the loss of accuracy in 

the evolution of the flow have been developed in two dimensions. One technique consists 

of dynamically introducing more particles along the integration path as adjacent ones drift 

apart. This is done in a way that exactly preserves impulse. As the discretization along 

the path is modified, other invariants are preserved approximately in spite of their explicit 

dependence on the discretization. A second technique for avoiding loss of accuracy in two 

dimensions involves replacing the integration path, whose endpoints are the vortices, by a 

shorter and more convenient one when the flow stretches 'the original path. The vortices 

are not explicitly being tracked since additional knowledge of the vorticity is not required. 
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The impulse contains the information on the vorticity. 

The extension of these techniques to three dimensions has been described in the 

context of the evolution of a thick vortex ring. A general three-dimensional resurfacing 

procedure requires the definition of a method for locating the vortex loops represented by 

impulse as well as the computation of minimal (or nearly minimal) surfaces attached to 

frames. While the full generality of this procedure has not been presented, the conceptual 

basis for it has been laid out. 

One can interpret an impulse vector as a vortex dipole: the limit of two vortices 

of equal but opposite strength as their separation vanishes while maintaining a constant 

dipole moment. One consequence of this interpretation is that the high-accuracy cutoff 

functions of vortex methods are appropriate cutoff functions for impulse methods. A second 

consequence can be seen in the reconstruction of the integration path and the determination 

of the location of the vortices in the two-dimensional resurfacing technique. The key lies 

in the error analysis of the method. This analysis provides criteria for the cancellation 

of the vorticity created along the path except when the endpoints are encountered. Once 

the endpoints are found, one selects a straight line between them, defines a new impulse 

field along this new path, and proceeds with the computation. One illustration of this 

procedure is in the problem of two vortex patches, where the impulse was defined on many 

such integration paths in order to model the flow induced by the patches. An attractive 

feature of this technique is that the length of the integration paths can be kept optimal, 

requiring only the minimum number of particles per path for the given accuracy. With the 

refinement and resurfacing techniques, longer evolution times have been reached for given 

initial discretizations. 

The interpretation of impulse variables as vortex dipoles allows us to turn to appli­

cations in which vortex dipoles are required. One such application consists of modeling the 

flow inside an elastic membrane immersed in a fluid. The fluid is assumed to be incompress­

ible so that the volume of fluid inside the membrane remains constant as the membrane 

contracts and expands. As the elastic forces represent a rate of change of impulse, their 

effect on the fluid is captured by adjusting the impulse field on the boundary. The impulse 

generated by the forces is introduced into the fluid motion through vortex dipoles, hence 

the use of impulse in this problem is not only convenient but appropriate. This example is 

important because it is a model for problems in physiology such as blood flow in the heart 

chambers or air flow in the lungs. Previous methods resort to approximations of dipoles 
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for the effect of the forces and lack an adequate system for updating the strengths of the 

dipoles. 
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