
.,

~~

I
I
~

LBL-37215
UC-405

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Information and Computing
Sciences Division

To be presented at Very Large Database (VLDB 95),
Zurich, Switzerland, September 9-16 1995, and to be
published in the Proceedings

Declustering Databases on Heterogeneous Disk Systems

L.T. Chen, D. Rotem, and S. Seshadri

April 1995

::0 ,.,

(") "TI c,
60::0 (1),
c Cit z (")
cuzm
c+O
(I) c+(")

0
""tJ

Ill <
0.---

CQ

U'l
lSI

r-....
tT (")
-s 0
Ill ,
-s '<
'<

r-
Ill
r-
I

w,
N
U'l

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

LBL37215

Declustering Databases on Heterogeneous
Disk Systems

Ling Tony Chen
Doron Rotem

Lawrence Berkeley Laboratory
University of California

Berkeley, California 94720

and

Sridhar Seshadri

Leonard N. Stern School of Business
New York University

New York City, New York

April 1995

This work was supported by the Defense Advanced Research Projects Agency and the Director,
Office of Energy Research, Office of Basic Energy Sciences, of the U.S. Department of Energy
under Contract No. DE-AC03-76F00098.

Declustering Databases on Heterogeneous Disk

Systems*

Ling Tony Chen

Doron Rotem

Lawrence Berkeley Laboratory

Berkeley, CA 94 720

and Sridhar Seshadri

Leonard N. Stern School of Business

New York University

Abstract

Declustering is a well known strategy to achieve maximum I/0 parallelism

in multi-disk systems. Many declustering methods have been proposed for sym

metrical disk systems, i.e, multi-disk systems in which all disks have the same

speed and capacity. This work deals with the problem of adapting such declus

tering methods to work in heterogeneous environments. In such environments

there are many types of disks and servers with a large range of speeds and

capacities. We deal first with the case of perfectly declustered queries, i.e.,

queries which retrieve a fixed proportion of the answer from each disk. We
;

show that the fraction of the dataset which must be allocated to each disk is

*The support of the Defense Advanced Research Projects Agency, as well as the support of the

Department of Energy under contract DE-AC03-76SF00098 is gratefully acknowledged.

1

affected by both the relative speed and capacity of the disk. Furthermore, the

hierarchical structure of most distributed systems, where groups of disks are

placed in servers, imposes further complications due to variations in server and

network bandwidths which may affect the actual achievable transfer rates. We

propose an algorithm which determines the fraction of the dataset which must

be loaded on each disk. The algorithm may be tailored to find disk loading for

minimal response time for a given database size, or to compute a system profile

showing the optimal loading of the disks for all possible ranges of database

sizes.

Next we look at the probabilistic aspects of this problem and show how to

optimize the expected retrieval time when the proportions of the data retrieved

from each disk are random variables. We show the rather surprising result

that in this case to achieve optimality, the fraction of the data loaded on each

disk must not simply be proportional to its speed but rather some compensa

tion must be made with bias towards the faster disks. The methods proposed

here are general and can be used in conjunction with most known symmetric

declustering methods.

1 Introduction

Declustering methods have gained a lot of attention recently as a technique to enhance

I/0 parallelism [1, 2, 4, 5, 3, 6). The idea is to distribute the data among n parallel

disks so that data which is likely to be requested together by a query is allocated

to different disks. The speed-up is achieved due to the fact that each disk has to

access only a fraction of the answer. Proposed declustering methods differ from

each other in the way in which they decompose the data among the disks. Methods

based on hashing techniques, error-correcting codes, hilbert curves and lattice-based

decomposition have all appeared in recent research literature.

In symmetrical systems where the disks have similar transfer rates and capacities,

2

the maximum I/0 speed-up is achieved if the response to a typical query is balanced

across the disks, i.e. each of then disks accesses approximately the same fraction, 1/n,

of the answer. To our knowledge, all of the research work on declustering focuses on

symmetrical systems and therefore each of the decomposition algorithms mentioned

above allocates the same volume of data to each disk.

However, many applications have to use existing platforms and hardware configu

rations and therefore need to decluster the data over a network of heterogeneous disks

and servers. The various disks in the system may differ in their transfer rates, seek

times and their capacities. Furthermore, the servers to which these disks are con

nected may have different speeds. As we will show later, server speeds may affect our

solution as a slower server may limit the effective combined transfer rate achievable

by the disks connected to it.

In fact, this work was motivated by an application where we needed to design

an Image Server in which we store a collection of aerial photographs of an area of

interest for the purpose of terrain visualization. The photographs are partitioned into

tiles of some standard size (typically 256 by 256 pixels) which are then declusterd on

a system consisting of several servers each connected to a number of parallel disks.

Users can trace a path of flight thru the terrain on the screen of a SGI workstation

connected to the servers, all tiles intersecting this path must be fetched quickly from

the disks to allow continuous visualization. Currently, the system runs on a network

of three to six servers each connected to a number of disks with different capacities

and speeds (See Figure 1). As an example of the kind of heterogeneity we are facing,

the Image Server will be using a variety of disks such as the Seagate Barracuda and

the Elite 2 whose speeds range between 1 to 3 MB/s, and servers ranging from a Sun

Spare 10 model 41 and 51 to Dec Alpha machines. The observed server speed ratio

of the Spare and the Alpha machines are approximately 1:2.

In [1] more details of the actual declusterization method are given. In develop

ing declusterization strategies for the Image Server, we discovered that symmetric

3

ATM

SWITCH

ATMNETWORK

Figure 1: Declustering for terrain visualization application

declusterization is not optimal due to the heterogeneity of our hardware devices and

subsequently developed the general declustering algorithm described here.

In this paper we do not devise a new declusterization method but rather show

how to adapt any declusterization method to work efficiently in heterogeneous envi

ronments. The method we propose here is especially suitable for declusterization of

video and audio data as queries for such data types usually require large amounts of

data that are accessed sequentially and can be easily declustered perfectly [7].

We present algorithms which determine the optimal ratio of data allocation to

the various disks, taking into account all the above mentioned constraints. We then

consider the realistic scenario in which the proportion of the data requested from

each disk follows some multinomial distribution based on the fraction of the database

4

stored on each disk.

The paper is organized as follows: In Section 2 we present some preliminary results

on systems without any disk capacity constraints. In Section 3 we present our solution

for maximizing system bandwidth subject to capacity constraints. In Section 4 we

present our most general algorithm which shows how to implement all the previous

results in an environment where disks are connected to different servers with their

own bandwidth constraints. In Section 5 we analyze the case in which the request

proportions follow some probabilistic distribution. Section 6 contains a discussion

about the implementation of our algorithm and an example of the results produced

by it on a typical system. Finally, Section 7 contains some conclusions and discussion

of future work. Table 1lists all the major notations used in this paper, most of which

have not been introduced yet.

2 Declustering for maximal bandwidth without ca

pacity constraints

In order to illustrate the concepts, let us consider a simple example in which we

wish to store a dataset of size 1 GB on 2 disks with transfer rates of 3 and 2 MB/s

respectively. Let us assume no capacity constraints are present (i.e. each disk has a

capacity greater than 1 GB), and that future queries on this dataset request perfectly

declustered chunks of data so that for every query the amount of data read off disk i

is proportional to the fraction of the dataset residing on disk i.

We note that the response time of a query is equal to the time it takes for the

last byte to arrive, i.e., we need to wait for all disks to complete the transfer their

portion of the answer. If we decluster this dataset symmetrically (i.e. 0.5 GB on each

disk), a query requesting a chunk of 100 MB will retrieve 50MB from ec;~.ch disk. The

response time for this query will be maxe3°, 5
2°) = 25 seconds. On the other hand, if

we allocate 0.6GB on the fast disk and 0.4GB on the slower one, the query will access

5

I Notation I Meaning

n The number of disks in the System

ci The usable capacity of disk i

ai The capacity actually stored in disk i for this request

Bi The bandwidth (transfer rate) of disk i

c The total amount of data requested to be stored

B The desired retrieval bandwidth

T The retrieval time constraint (= C I B)

Bopt The optimal (i.e. maximal) retrieval bandwidth

Topt The optimal (i.e. minimal) retrieval time (= C I Bopt)

m The number of servers in the System

S· J The set of disks in server j

B· J The bandwidth of server j

C· J The current amount of data in server j

Table 1: List of all notations used in this paper

6

(based on these proportions) on the average 60MB from the fast disk and 40MB from

the slow disk resulting in an expected response time of max(6;, ~0) = 20 seconds.

Note that even in symmetric declustering schemes, it is quite possible that the

actual observed response time for a query will be slower than the promised one due to

the fact that the portion of the dataset requested by the query may not be perfectly

declustered across the disks. In the non-symmetric case an additional complication

may arise due to fluctuations in the ratios retrieved from each disk around their

expected values. We will deal with these issues in Section 5.

In this section, we define a minimal response time declustering scheme to be a

scheme which achieves minimal expected response time (i.e. maximal bandwidth)

for perfectly declustered queries. Note that assuming all queries are perfectly

declustered is especially true for video and audio data, where queries always access

a continuous stream of data, and are almost always perfectly declustred. In the

c absence of capacity constraints, the above example illustrates the following principle

summarized under proposition 1 (the proof is very simple and therefore omitted).

PROPOSITION 2.1 Assuming that all disks are infinite in capacity, and that C amount

of data needs to be stored in a disk system containing n disks with average trans

fer rates (i.e. bandwidths) of Bt, B 2 , ••• , Bn· The optimal declustering scheme that

minimizes the response time for perfectly declustered query requests, should have the

amount of data stored on each disk (ai) be proportional to the bandwidth of each disk

(Bi)· In other words, the amount of data ai stored o,n disk i should be:

Bi
ai = C X En B

k=l k

Note that this algorithm and the ones discussed in the following sections, will only

determine a declustering ratio among the disks. In order to adapt a given symmetric

declusterization strategy to follow the allocation ratios produced by our algorithm,

we need to have each real disk be represented by multiple virtual disks. Considering

the previous example where the determined declustering ratio is 3:2. We need to

7

transform this initial problem into one with 3 + 2 = 5 symmetric virtual disks and

apply the symmetric declusterization method to a problem with 5 virtual disks. We

then collect the data that has been declustered to 3 of these virtual disks, and load

them into the first real disk, and collect the data from the other 2 virtual disks and

load them into the second real disk. The question of how to choose the 3 virtual

disks which should be loaded on the same real disk is application dependent and can

usually be chosen to preserve maximum declusterization. Also note that in order to

use the above method we need to have integer ratios, where as the declustering ratios

determined by our algorithms are usually real numbers. This should not present a

big problem though, since it is fairly easy to come up with good integer ratios based

on real number ratios, with some small error introduced in the process.

3 Declustering for maximal bandwidth with ca

pacity constraints

3.1 An example

Next we consider the more practical system in which each disk has some finite capacity

of Ci, and discuss how to decluster with capacity constraints. As an example, consider

the following problem: Assume we need to store a dataset of 2.5 GB in a system, with

3 disks, disk 1 can store 1 GigaByte and has a average transfer rate of 3 MB/s, disk 2

can store 2 GB and has a average transfer rate of 2 MB/s, and disk 3 can store 3 GB

and has a average transfer rate of 1 MB/s. This system is illustrated in Figure 2. As

we showed in the previous section, without considering disk capacity limitations, we

should always decluster data on this disk system in a 3:2:1 ratio (proportional to the

speed of the 3 disks). This would result in an average transfer rate of 3 + 2 + 1 = 6

MB/s being observed by the whole system. The question is whether this transfer rate

can be achieved with the capacity constraints we have introduced. As the following

8

Disk 1

1GB

3 MB/s Disk2

2GB

2 MB/s Disk3

3GB

1 MB/s

Figure 2: A disk system containing 3 heterogeneous disks

discussion shows this rate is not achievable and finding the maximum achievable rate

and optimal allocation is not trivial.

The first thing we need to realize is that in order for any subset to be retrieved at

a transfer rate of 6 MB/s, we specifically need to be able to retrieve the entire dataset

(2.5 GB) in 2500/6 = 416.66 seconds from all 3 disks, ever though most queries only

ask for a portion of the dataset. By observing this constraint and the disk capacity

constraints we note that we are allowed to place at most 1 GB on disk 1 (capacity

constraint), 833.33 MB on disk 2 (transfer rate constraint) and 416.67 MB (transfer

rate constraint) on disk 1. The total is less than 2.5 GB and thus 6 MB/s is not

achievable, but this still leaves us clueless as to what kind of a distribution would

result in a maximized retrieval bandwidth and what that bandwidth would be. For

this particular problem, it turns out that the optimal solution is to place 1 GB on

disk 1, 1 GB on disk 2, and 0.5 GB on disk 3, which would result in a maximized

bandwidth of 5 MB/s. In the following subsection, we will show an algorithm that

can help us find this optimal solution.

9

3.2 The algorithm

The problem in its more general form can be described as follows: We are required to

load a dataset of C MBytes on a system of n disks with each disk i having a capacity

of Ci MB and a transfer rate Bi MB/s, such that the overall bandwidth B of the

system is maximized.

We note that the bandwidth of the system is a function of the individual transfer

rates of the disks and the amount of data each of them needs to transfer. Clearly,

under any feasible solution, the volume of data ,ai, allocated to each disk should

satisfy:

i=l

First let us consider how we can determine whether a given level of system band

width B is achievable. In order for this bandwidth to be achieved, the entire dataset

of size C must be retrievable in T = C / B time. This implies that disk i should hold

at most T x Bi MB of data. Of course, we also have the constraint that at most Ci

MB of data can be put on disk i. Thus, we define the function:

f(i,T) = rnin(T x Bi,Ci)

which indicates the maximum amount of data that can be stored on disk i, subject

to the retrieval time constraint ofT.

Define the total volume of data that can be stored on the system subject to the

time constraint T as
n

g(T) = 2: /(i, T)
i=l

PROPOSITION 3.1 The maximal bandwidth, Bopt, achievable in the system satisfies:

where

C = g(Topt)

c
Topt = -B

opt

10

/

PROOF: Let Bopt be the maximal bandwidth we are looking for, and Topt = C I Bopt·

If 9(Topt) is larger than C, it would mean that an allocation could still be found

with B larger than Bopt thus implying that Bopt is not the maximal bandwidth. If

9(Topt) is smaller than C, it would mean it is infeasible. Thus it must be true that

9(Topt) = C 0

Due to the fact that 9 contains a function f which uses the min function, an

inverse function for 9 does not exist, and thus a closed form solution for Bopt does not

exist. The most efficient way to find Bopt, would be to perform a binary search on

different bandwidths B. For each bandwidth B that we try, if 9(CIB) > C, then B

is too small and needs to be increased, if 9(C I B) < C, then B is too large and needs

to be decreased. We keep on iterating this search until 9(C I B) is sufficiently close to

C, at which point B will be sufficiently close to Bopt· At this termination time, we

simply set the amount of data, ai, we store in each disk to be J(i, C I B).

The MaxBandwidth-Algorithm listed below contains a more formal description of

the above algorithm.

Max:Bandwidth-Algorithm:

1. Compute Bma.x, the highest possible bandwidth as Bma.x = L:f=1 Bi

2. Using a binary search procedure between 0 and Bma.x find a value B that satisfies

0 ~ I9(T)- Cl· ~ € where € is some predetermined acceptable small error, and

T = CIB. At this point, we should also have IB- Boptl < 8 for some small8

that is a function of €.

3. Load the ith disk with ai equal to f(i, C I B)

As a final note about this algorithm we note that theoretically speaking, we can

terminate the binary search, whenever the remaining range of possible B's to search

for, is such that, whether f(i, T) is T X Bi or ci is completely determined for all

i. At this point, a closed form solution can be obtained since an inverse function

11

for f exists for this range of B on all i. From a practical point of view, however,

the implementation is much simplified by letting the binary search continue to the

point where the desired precision of B is obtained. The complexity of the algorithm

is O(nlog2 ~) which is really not that important, since the running time of this

algorithm is negligible (less than a second) compared to the time it takes to load a

dataset into a disk system.

3.3 Optimal loading for varying database sizes

In some cases the database size is not known apriori and the designer needs a "Sys

tem Profile" which indicates how to optimally load the data on the disk system for

each feasible database size. We can compute an optimal loading scheme for varying

database sizes by using the following procedure whose correctness is based directly

on Proposition 2.1. The procedure uses iterations where in each iteration more the

amount of data loaded increases while the system transfer rate decreases. This con

tinues until we fill all the capacities of our .disks.

Given any portion of the database, X, which is still unloaded on the disks, and

given a subset U consisting of k disks (of the n initial disks) with remaining unused

capacity, we will try to load as much as we can on U observing the "proportionality"

principle which says that the fraction of data loaded on each disk of U must be

proportional to the speed Of that disk (within U). The system transfer rate achieved

for the loaded portion is LiEU Bi. Observing the "proportionality" principle, we may

not be able to load all of X due to one or more disks reaching their capacity C~, these

are what we call the bottleneck disks. Each iteration is completed when one or more

bottleneck disks are identified.

We note that by the above principle, if we load a database of size X on the system,

the amount loaded on the ith disk must satisfy

BB; X X< ci where Bmax =LiEU Bi. From this it follows that X~ =-Be: X Bmax
maz '

for all i. Therefore if the zth disk is a bottleneck it must satisfy

12

* = Minieu{Ci/Bi}.

At this point we iterate the procedure with U consisting 'of the remaining non-

bottleneck disks and X consisting of the remaining unloaded portion of the database.

The remaining capacity of each disk is of course adjusted with the amount loaded on

it in the previous round.

More formally this is described in the following algorithm.

MaxBandwidth-Algorithm with varying Database:

Given a databse of size X, a set of disks U
Do While X> 0, and at least one Ci > 0 in U

Compute Bmax as Bmax = 'EieU Bi

compute~ for each disk in U

Find Mini{ Ci/ Bi}, call it Min(U), and the disks which achieve it BottleN eck(U)

Load each disk in U with the correct proportion of Min(U) x Bmax

Reduce each Ci in U to Ci minus the allocated proportion for this disk

Set U = U- Bottleneck(U) and X= X- (lUI x Min(U))

EndDo

As an example assume, we have three disks with relative bandwidths 5,2,1 and

relative capacities 2,4,3 (for simplicity we omit units as only the proportions are

relevant). The maximal size database we can load is 9. The first disk becomes a

bottleneck in the first iteration where we load 2, .8 and .4 on the disks respectively to

maintain the proportions, the combined bandwidth is 8 and remaining capacities are

0,3.2 and 2.6. At this point 3.2 were loaded. In the next iteration, the two remaining

disks must be loaded with proportions 2:1. We can show that 4.8 can now be loaded

with one disk receiving 3.2 and the other 1.6. The combined bandwidth at this point

drops to 3. We finally load the remaining 1 on the slowest disk at which point the

system bandwidth drops to 1. The bandwidth for any loaded database size between

0 to 9 can be computed using the above allocations.

We observe that all disks of the same type, i.e., same speed and capacity will

13

become bottlenecks at the same iteration. Therefore, the algorithm will need m

0(n 2
) time where n is the number of different disk types in the system.

4 Server Bandwidth

In this section, we discuss the complicated issues that arise when the disks are dis

tributed among multiple servers that have bandwidth restrictions themselves. The

assumption is that each disk is located within some server, and each server (which can

contain multiple disks) has a limitation on its retrieval bandwidth, possibly because

of limited bandwidth on its bus, memory, or even CPU. One can view this problem

as just adding another layer of bandwidth restrictions on groups of disks. The ex

tra layer does not necessarily have to come from the existence of servers. It could

also come from bandwidth limitations on the disk controller, system bus, or network

hub. In fact, it is quite possible that within a disk system, there are several layers of

bandwidth restrictions that are imposed on the disks in a hierarchical form.

In this paper we will only discuss how to handle one extra layer, and we will use

the term server to represent the reason for the extra layer. The reac:ier should keep in

mind that this solution can be easily extended for multiple layers and that the extra

layer does not have to be due to the existence of servers.

Let us assume that the n disks are connected to m servers, and that Si represents

the set of disks connected to server j. Let Bi represent the bandwidth of server j, and

define Ci to be the total capacity that we are attempting to place on all disks in Si (i.e.

Ci = Eiesi ai)· If we now try to come up with an allocation that achieves a retrieval

bandwidth of B (and thus a retrieval time of T = C /B) by putting ai = f(i, T)

amount of data on disk i, we could run into the problem of Ci being larger than

T x Bi. This means that although the amount of data stored on each disk in server j

can be retrieved in time T, server j is overflowed with data and cannot keep up with

this data in order to deliver it all in timeT.

14

The solution to this problem is to place a total of only T x Bi data on all the

disks in server j, and to do this for every server j that overflows. With this solution

in mind, we can now redefine the function g(T) that describes the total amount of

data that can be placed in the system, subject to the retrieval time constraint ofT:

m

g(T) = l:s(j,T)
i=I

where s(j, T) is the amount of data that can be stored in server j, and is defined as:

s(j, T) = min(T x Bj, L f(i, T))
iES;

where f(i, T) is the amount of data that can be stored in disk i as defined in the

previous section. With this new definition of g, we can now compute the amount

of data that can be placed in a system, subject to the retrieval time constraint of

T for both disks and servers. Thus, the binary search algorithm described in the

previous section, can still be applied to find the maximal bandwidth Bopt in which

g(C / Bopt) =C.

5 Probabilistic analysis of heterogeneous declus-

tering

In this section we describe the declustering process where we remove the perfect

declustering assumptions. Assuming that we load N records on n disks, where ai

records are loaded on the ith disk, we note that, if Xi is the (random) number of

records requested from disk i by a random transaction, then X= (Xt, X 2 , ••• , Xn) has

a multinomial distribution with parameters (at/ N, ad N, ... , an/ N).

In order to compare different allocations to each other we will need some definitions

from the theory of Majorization.

Definitions ([8])

15

Notation: Given a vector a = (a~, a2, ... ,an) , rearrange the components of this

vector in decreasing order and denote the rearranged vector as (a{1], ar2J, ... , a[nJ), with

a[1] ~ a[2] > ... ~ a(n]·

Majorization: Given two vectors a = (a1, a2, ... ,an) and b = (b~, b2 , ••• , bn), the

vector a is said to be majorized by the vector b, written as a <m b if: .
k k

.E al•l < .E br•l' k = 1,2, ... ,n-1
•=1 •=1

n n
and .E a(i] =):::: b[i]

•=1 •=1
Schur Concave Function: A real valued function f defined on a set A C Rn is

Schur Concave if a <m bon A implies f(a) ~ f(b).

Smaller in Usual Stochastic Order: A random variable X is said to be smaller in

the usual stochastic order than another random variable Y if for all t, P(X ~ t) 2:

P(Y ~ t). This ordering will be written as X ~st Y. A consequence of this ordering

is that, if X <st Y , then E(J(X)) ~ E(J(Y)) for all non-decreasing real valued

functions f and when the epectations exist.

PROPOSITION 5.1 {{8} ,p. 306} If X = (X1 ,X2 , ... ,Xn) has a multinomial distri

bution with parameter(}= (8~,82 , ... ,8n), then Po{s ~X;~ t} is a Schur-concave

function of 8, -oo ~ s ~ t ~ oo.

We will first deal with disks with equal speeds and different capacities.

PROPOSITION 5.2 If all disks have equal speeds and capacities C1 2: C2... 2: Cn,
n

and there are a total of N records to be placed, with N ~ E C;, then the retrieval
i=1

time is stochastically minimized by placing an = min{ Cn, Njn} in disk n,, an_1 =
n

min{Cn-b (N-an)/(n-1)} records in disk (n-1), ... , ai = min{Cj, (N- E a;)j(n
i=i+1

n
j + 1)} in disk j, ... , a 1 = (N - E a;) records on the first disk.

i=2

PROOF: Given any allocation of records b = (b11 b2 , ... , bn), rearrange the given vector

bin decreasing order and denote the rearranged vector as (b[1], b[2], ... , b[nJ). We claim

that: a1 < b[1], a1 + a2 ~ b[1] + b[2], ... , a1 + a2 + ... +a; ~ b[1] + br2J + ... + b(i] and

16

n n n n
L: ai = L: bi. Because the same number of records are allocated, L: a; = L: b; = N.
i=l i=l i=l i=l

If Cn > Njn, then a; = N /n, i = 1, 2, 3, .. and the claim follows immediately. Else,
n-1 n

an = Cn (by definition). Let p = L: ad L: b; ::; 1. Let b[,1 = pb[i], i = 1, 2, ... , n - 1
i=l i=l

and apply the same reasoning to the vectors, (at, a2, .. an-t) and (b[t], b(2], .. b[n-tJ)· The

claim follows by repeated appication of this inductive argument.

This shows that the vector a <m b (see definition). As mentioned above, if X; is

the (random) number of records requested from disk i, then X= (X1 , X 2 , ..• , Xn) has a

multinomial distribution with parameters, (atfN, a2/N, ... , an/N) and (btfN, b2/N, ... , bn/N)

under the two arrangements. Therefore it follows from the above proposition, and

the definition of a Schur-concave function that

P(at/N,a2 /N, ... ,an/N){X; ::; t} ~ P(bt/N,b2 jN, ... ,bn/N){X; ::; t}, -00 ::; t ::; 00

This satisfies the definition of stochastic minimization. 0

It appears at first glance that the problem with unequal disk speeds can be solved

by allocating records directly in proportion to the disk speeds. Unfortunately this

need always be the case as shown in our analysis and simulation results given below.

We can prove that allocating more records to a faster disk is stochastically optimal

(the proof is very tedious and omitted here). Here we present two results, the first

shows that the "intuitive" allocation of records in proportion to the disk speeds is

asymptotically optimal for large request sizes. The second gives an approximate

allocation rule.

PROPOSITION 5.3 When there are n disks with transfer rates B;, i = 1, 2, ... , n, then

the allocation of the fraction Bi/(B1 +B2 + ... +Bn) of records to disk i is asymptotically

optimal as the size of the request N increases.

PROOF: The proof is given for n=2. Assume that the allocation of p fraction of

records has been made to the first disk. Given that the total number of records

requested is N, the distribution of the number of records, X, requested from this

17

disk has mean= Np and standard deviation= jNp(1- p). The distribution of the

number of records requested from the second disk has mean N(1- p) but the same

standard deviation. Assume that pf B1 - (1- p)/ B 2 = E > 0. Then we note that:

(Npf B1 - N(1- p)f B2)/.../N = E.../N and p = 81:8_;82 + :.~/J2 E

From the first of these relations, the difference in means of the two random v~ri

ables, X and (N - X) grows asymptotically with N. This implies that the maximum

of the two random variables X/(B1.../N) and (N- X)/(B2.../N) asymptotically coin

cides with X/ (B 1 VN) (a rigorous proof of this fact is omitted, but the logic is that

both these random variables have the same finite standard deviation which does not

grow with N whereas their means grow apart at the rate of VN). This in turn implies

that:

E(max(X/~N-X)/B2)--+E(WI) = VNp = VN + _lb._E
N N B1 B1+B2 B1+B2

Thus the difference in the allocation, E, must be made as small as possible. 0

5.1 An approximate result

In this section we use the normal approximation to the binomial. We first derive an

exact formula for optimally allocating data on two disks of different speeds. We then

use a simpler formula to derive a general heuristic for allocating data on n disks.

Consider a random variable, X, distributed Normally with mean N p and standard

deviation jNp(1- p). Then,

E (max{ X/ B~, (N- X)/ B2 }) =

E(X/B1I{X 2:: <;::A
2
>}) + E((N- X)/B2I{X ~ <;::A

2
>}) =

E((X- (t:A2)) I{X > (;::k2)})/Bl + (Bl~B2)P(X 2:: (;::h2))

+E(((;::h2) - x) I {X ~ (t:A2)})/ B2 + (~ - (B1~:;)B2)P(X < <t:k2>) -
(B1~B2) + E(X- (t:h2>)l(X 2:: (t:h2))/ B1

18

where I {A} is the indicator function of the set A. Let ~, ~c stand for the standard

Normal distribution function and its complement. Let ¢>denote the standard normal

density function. Let a= NB1 j(B1 + B 2), J.L = Np, and u = JNp(1- p). Then the

right hand side of (9) can be simplified as:
NB1

N 1 00 NB, (X-1-') 1 (B,+B2) NB1 ~
(B,+B2)+Bl J (X-(BI+B2))¢>((T)dX+B2 J ((BI+B2) X)¢>(;1-')dX =

N~ -oo
CB1+B2)

NB1
oo (B1+B2)

(Bl~B2) + ~l N{ (X- J.L)¢>(<X;~-'>)dX- ~2 -L (X- J.L)¢>(<X;~-'>)dX
(B1+B2)

+(J.L- (lJk2))~C(a~e)/B1- (J.L- (l:Jk2))~(a~e)/B2 =
(B,~B2) + (J.L- (B~:k2))~C(a~1J.)jB1- (J.L- (;::}J2))~(a~!J.)jB2

a-p a-p a-p 1 1
Nj(B1 + B2) + (J.L- a)(-~(--)/B2 + ~c(--)/Bt) + u¢>(--)(-B + -B) (2)

u u u 2 1

This expression can be minimized by using a search procedure. A approximate

but quicker result can be obtained by noting that u is almost invariant for small

changes in p. Then the expression to be minimized can be written as:

(3)

where z is the standard Normal deviate.

(4)

and

(5)

19

Therefore H(z) is minimized by setting the first derivative equal to zero, giving:

l(B2 = i!>"(z)(l/B1 + 1/B,) <? i!>" (,;;~;~ p)) = (B, ~ B,) (6)

This is a "newsboy" type of solution. Equation 6 shows that when the disk speeds

are equal we must have a = N p, otherwise we must always favor the faster disk in

allocating records, i.e., place more than the number proportional to its speed. We

summarize these results:

PROPOSITION 5.4 Given two disks with speeds B1 and B 2 and a request of size N,

then the optimal allocation under the Normal approximation to the binomial distribu

tion is given by minimizing Equation (2). An approximate solution to this minimiza

tion problem can be obtained by solving for p in Equation 6 and placing p fraction of

records on disk 1.

Remarks: To apply this Proposition, first we need a value for N. We can use the

average size of the request as a proxy for N. Second, when there are many disks,

how can the allocation be made? We suggest that records are at first allocated in

proportion to the disk speeds. Then iteratively reallocate records using (6) to the

two fastest disks, the next two fastest and so on. Repeat this reallocation procedure

until the changes in allocation are small.

The psuedo code for the allocation procedure is given below.

Procedure HEURISTIC:

Step 0:

Read number of disks (ndisk), disk speeds (Bi)

and average number records retrieved (nrec).

Read tolerance (tol). We assume that disk speeds

are ordered as: B1 > B2 > B3 .. > Bndisk

Set proportions to be allocated on diski as

20

Step 1:

B·
Pi= (Bl+B2+ .. +Bndi4k)

Set error= l.Oe32

Do while (error > tol)

Step 1.1:

error= 0.0

Do i = 1, ndisk-1

N = (Pi+ Pi+t) * nrec

bt = B;

b2 = B;+t

Solve for pin (6) using a search procedure

temp= Pi

Pi= p * N/nrec

Pi+I = (1- p) * Njnrec

error = error + I temp - pi] I
end do

end do

Usually the procedure converges in 10-20 iterations of Step 1.1. It can be proved

that this procedure will eventually stop, (the reason is that the largest allocation, p1 ,

is monotone increasing). Our experiments show that the allocation is rather robust

with respect to the average size of request N.

The. allocation given by the procedure was tested against the proportional alloca

tion using simulation. In the simulations, the average size of requests, N, was varied

between 5 and 100 in steps of 5. For each average size N, 10,000 trials were conducted.

In each trial, a random number M was generated between 0.5*N and 1.5*N, where

M is the actual size of the request. The results of these heuristics are shown in the

next section.

21

The HEURISTIC procedure is easily adapted to the case when the disk capacities

are finite. The HEURISTIC procedure is called and the allocations are tested for

feasibility, i.e., whether the allocations can be fitted into the disks. If the allocation is

feasible, we stop, else we look at the fastest disk whose allocation violates the capacity

constraint. We load this disk to its capacity, eliminate it from further consideration

and resolve the problem. The algorithm for handling this case is given below:

Algorithm FINITE

Step 0:

Step 1:

Step 2:

Read number of disks (ndisk), disk speeds Bi

and average number records retrieved (nrec).

Read tolerance (tol). We assume that disk speeds

are ordered as:B1 > B2 > B3 .. > Bndisk

Read the capacity Ci, of each disk and the total

number of records to be allocated, NTOT.

alloci is the final allocation, indexi is

a temporary array, ntotold = NTOT

Set indexi = i, i = 1, ndisk

call HEURISTIC and get Pi

Do fori = 1, ndisk

allocindex; =Pi* NTOT jntotold

if(pi * NTOT > Cindex;) then

allOCindex; = Cindex)ntoto[d

NTQT = NTQT - Cindex;

do for j = i + 1, ndisk

indexi-t = indexi

end do

22

ndisk = ndisk - 1

go to Step 1

endif

end do

Stop

This iterative method can be used with any allocation method (i.e., not just HEURIS

TIC), by replacing the call in Step 1 of the algorithm to a call to the appropriate

procedure. Using this logic, we compared the allocation under HEURISTIC versus

allocation under the proportional scheme. Some graphs of the results are shown in

the next section.

6 Implementation Results

The above described algorithms have all been implemented and tested to verify their

correctness. As an example, Figure 4 shows what the maximal achievable bandwidth

would be as a function of the load request size for the 3 server disk system shown in

Figure 3. Server 1 of the system has a bandwidth of 8MB/sand contains 3 disks, two

of which are 1 GB disks with a bandwidth of 2 MB/s and the remaining one being

a 2GB disk with a bandwidth of 3 MB/s. Server 2 has a bandwidth of 3 MB/s and

contains 2 similar disks, each capable of holding 2 GB of data with a bandwidth of 2

MBjs. Server 3 also has a bandwidth of 3 MB/s but contains 2 different disks, one

of which is a 3 GB disk with a bandwidth of 2 MB/s, and the other being a 2 GB

disk with a bandwidth of 1 MB/s. In this disk system, only server 2 has a smaller

bandwidth than the combined bandwidth of its disks. Because the two disks are of

the same size and speed, the effective bandwidth of each disk turns out to be scaled

down evenly to the point where they add up to the bandwidth of the server (i.e. 1.5

MB/s).

The maximal achievable bandwidth on this disk system (for small request sizes)

23

~

1GB

2MB/s

1GB

2MB/s

Server 1

8MB/s

-
r-

-
::::

i--

2GB

3MB/s -

Client issuing

Retrieval Requests

2GB

Server2

3 MB/s

2GB

2 MB/s r-- 2 MB/s

~------~~~ --------
3GB

Server 3

3 MB/s

2GB

2 MB/s -~ 1 MB/s

Figure 3: An example of a 3 server, 7 disk, heterogeneous system

-
-

is 13 MB/s (7 MB/s from server 1, and 3 MB/s each from server 2 and 3). When the

size of the load request grows to 6.5 GB, the two 1 GB disks in server 1 get saturated

and can no longer hold any more data. This is the reason for the sudden change in

the slope of the curve at 6.5 GB. From 6.5 GB up to 13 GB (the full storage capacity

of the system), the curve turns out to be piecewise hyperbola, with the intersection

points between hyperbolas representing the saturation of other disks. In particular,

at the storage capacity of 8 GB, the 2 GB disk in server 1 gets saturated, at 12 GB

the two 2GB disks in server 2 are saturated, and finally at 12.5 GB, the 3GB disk of

server 3 gets saturated. Of course, when we finally reach 13 GB, the only remaining

slowest disk (the 2 GB disk of server 3) also gets saturated, and thus no more data

cari be placed in the system.

24

14

13

12

..!e
Ill
~ 11
-~
.s:::.
-t5
-~'

10 "'C
c
ctl
Ill
a;
E
-~
~

9

8

7

6
6 7 8 9 10 11 12 13

Size of load request in GB

Figure 4: Achievable bandwidth relative to load request size

For the probabilistic method, we show graphs of the improvement in allocation

resulting from our procedure as compared with simply using the deterministic meth

ods. For the test cases shown the improvement ranges from 8 to 23 percent. In the

graphs of Example 2 and Example 4 we show the comparison for disks with suffi

cient capacities. Example 2 uses 4 disks with relative speeds 20,10,5,5 whereas in

Example 4 the speeds are 10,5,1,1. The graphs of Example 3 and Example 5 have

finite capacities. The relative disk speeds in Example 3 are 20,15,10,7 with capacities

400,100,100,100 and 600 to be allocated ,in Example 5 disk speeds are 10,5,1,1 with

capacities 750,200,100,100 with 1000 to be allocated.

25

7 Conclusion

In this paper we have described algorithms for adapting declusterization methods to

work in heterogeneous distributed environments. The results reported here are partic

ularly suitable for systems which store video and audio data on parallel disk systems

but can be used for any environment in which declusterization is desirable such as

image data or multidimensional data retrieved by range queries. The algorithms re

ported here were all implemented and are actually used in an existing application

which declusters image data for the purpose of terrain visualization.

The work reported here can also be used for system design purposes. As hardware

·configurations tend to be dynamic, designers may wish to replace disks and servers

by newer available models. For example, a designer may wish to find which disks

or servers in the current system should be upgraded in the most cost-effective way

to improve system response time. Our algorithms provide as a by-product, informa

tion about the bottleneck disks and servers so that the designer can identify these

components which are critical.

To summarize we have shown the following results:

• For perfectly declustered queries we have an exact algorithm to produce optimal

allocations.

• We have provided a. stochastically optimal allocation scheme for for finite ca

pacity and same speed disks.

• We provide heuristic algorithms for disks with unequal speeds. The theoretical

results show that we must allocate more than proportionally to faster disks.

These ideas have been combined into a fast procedure for doing the allocation.

• Simulation results show that if disk speeds are more unequal, then greater

benefit is derived from using the allocations from our procedure FINITE as

opposed to the deterministic algorithm. Results also indicate that the benefit

26

is greater when the size of the actual requests is small.

We plan to investigate the possibility of building design tools which will be able to

select the most cost-effective products from a given list of alternative disks and server

configurations. Such tools will employ these algorithms to determine the bandwidth

of a selected system.

Another direction of future research involves some interesting probabilistic issues

raised by this work, such as finding exact bounds on the probability that the response

time will not deviate from the predicted one, based on the assumption that retrieval

requests are completely random and cannot be perfectly declustered.

In the current work we deal with loading one dataset at a time on the system.

Another issue we are currently exploring is that of finding optimal methods of loading

multiple datasets on the disks where each dataset has its own desired bandwidth and

capacity requirements as well as an associated weight that informs us how important

it is to achieve the desired bandwidth (or come close to it).

References

[1) Ling Tony Chen and D. Rotem. "declustering objects for visualization". In Pro

ceedings of the 19th VLDB Conference, pages 85-96, 1993.

[2] David J. DeWitt and S. Ghandeharizadeh. "Hybrid-Range Partitioning Strategy:

A New Declustering Strategy for Multiprocessor Databas~ Machine". In Proc.

16th international Conference on VLDB, pages 481-492, August 1990.

[3] H. C. Du. "Disk Allocation Methods for Binary Cartesian Product Files". BIT,

26:138-147, 1986.

[4] C. Faloutsos and P. Bhagwat. "Declustering Using Fractals". In Second Inter

national Conference on Parallel and Distributed Computing (PDIS), pages 18-25,

January 1992.

27

[5] F. Faloutsos and D. Metaxas. "Disk Allocation Methods Using Error Correcting

Codes". IEEE trans. on Computers, 40(8):907-914, August 1991.

[6] S. Ghandeharizadeh, I. Ramos, Z. Asad, and W. Qureshi. "Object Placement in

Parallel HyperMedia Systems". In Proc. 17th international Conference on VLDB,

pages 243-254, September 1991.

[7] S. Ghandeharizadeh and L. Ramos. "Continuous retrieval of multimedia data

using parallelism". IEEE Transactions on Knowledge and Data Engineering,

5(4):658-669, August, 1993.

[8] Marshall. A. W. and I. Olkin. "Theory of Majorization and its Applications".

Academic Press, Edinburgh, London, 1966.

28

0.080000

0.070000

0.060000
Cii
c:
0
'E
0 0.050000 0.
E
a.
Q)

> 0.040000 0 -c:
Q)

E
Q) 0.030000 >
E
0.
E

0.020000

0.010000

0.000000

5 15 25

IMPl

Improvement Over Proportional
Example 2: (1 0,000 runs)

35 45 55 65 75

Average Number of Records Requested

29

85 95

0.090000

0.080000

0.070000

as c
.Q 0.060000 't::

8. e
a. 0.050000
Q)

>
0 - 0.040000 c
Q)

E
Q)

> e 0.030000
0..
E

0.020000

0.010000

0.000000

5 15

IMP3

Improvement Over Proportional (finite capacity)
Example 3: (1 0,000 runs)

25 35 45 55 65 75

Average Number of Records Requested

30

85 95

0.250000

0.200000

a;
c
0 :e
8. 0.150000 e
a.
Q)
>
0 -c
Q)

E 0.100000
Q)
> e
c.
E

0.050000

0.000000

5 15 25

IMP4

Improvement Over Proportional
Example 4: (1 0,000 runs)

35 45 55 65 75

Average Number of Records Requested

31

85 95

0.250000

0.200000

"iii c:
0
'E
8..

0.150000 e
a..
Q)
>
0
E
Q)

0.100000 E
Q)
> e
c..
E

0.050000

0.000000

5 15

IMPS

Improvement Over Proportional (finite capacity)
Example 5: (1 0,000 runs)

25 35 45 55 65 75

Average Number of Records Requested

32

85 95

,-

LA~NCEBERKELEYLABORATORY
UNIVERSITY OF CALIFORNIA

TECHNICAL INFORMATION DEPARTMENT
BERKELEY, CALIFORNIA 94720

.. ~- .--

