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Abstract 

Declustering is a well known strategy to achieve maximum I/0 parallelism 

in multi-disk systems. Many declustering methods have been proposed for sym

metrical disk systems, i.e, multi-disk systems in which all disks have the same 

speed and capacity. This work deals with the problem of adapting such declus

tering methods to work in heterogeneous environments. In such environments 

there are many types of disks and servers with a large range of speeds and 

capacities. We deal first with the case of perfectly declustered queries, i.e., 

queries which retrieve a fixed proportion of the answer from each disk. We 
; 

show that the fraction of the dataset which must be allocated to each disk is 

*The support of the Defense Advanced Research Projects Agency, as well as the support of the 

Department of Energy under contract DE-AC03-76SF00098 is gratefully acknowledged. 
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affected by both the relative speed and capacity of the disk. Furthermore, the 

hierarchical structure of most distributed systems, where groups of disks are 

placed in servers, imposes further complications due to variations in server and 

network bandwidths which may affect the actual achievable transfer rates. We 

propose an algorithm which determines the fraction of the dataset which must 

be loaded on each disk. The algorithm may be tailored to find disk loading for 

minimal response time for a given database size, or to compute a system profile 

showing the optimal loading of the disks for all possible ranges of database 

sizes. 

Next we look at the probabilistic aspects of this problem and show how to 

optimize the expected retrieval time when the proportions of the data retrieved 

from each disk are random variables. We show the rather surprising result 

that in this case to achieve optimality, the fraction of the data loaded on each 

disk must not simply be proportional to its speed but rather some compensa

tion must be made with bias towards the faster disks. The methods proposed 

here are general and can be used in conjunction with most known symmetric 

declustering methods. 

1 Introduction 

Declustering methods have gained a lot of attention recently as a technique to enhance 

I/0 parallelism [1, 2, 4, 5, 3, 6). The idea is to distribute the data among n parallel 

disks so that data which is likely to be requested together by a query is allocated 

to different disks. The speed-up is achieved due to the fact that each disk has to 

access only a fraction of the answer. Proposed declustering methods differ from 

each other in the way in which they decompose the data among the disks. Methods 

based on hashing techniques, error-correcting codes, hilbert curves and lattice-based 

decomposition have all appeared in recent research literature. 

In symmetrical systems where the disks have similar transfer rates and capacities, 
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the maximum I/0 speed-up is achieved if the response to a typical query is balanced 

across the disks, i.e. each of then disks accesses approximately the same fraction, 1/n, 

of the answer. To our knowledge, all of the research work on declustering focuses on 

symmetrical systems and therefore each of the decomposition algorithms mentioned 

above allocates the same volume of data to each disk. 

However, many applications have to use existing platforms and hardware configu

rations and therefore need to decluster the data over a network of heterogeneous disks 

and servers. The various disks in the system may differ in their transfer rates, seek 

times and their capacities. Furthermore, the servers to which these disks are con

nected may have different speeds. As we will show later, server speeds may affect our 

solution as a slower server may limit the effective combined transfer rate achievable 

by the disks connected to it. 

In fact, this work was motivated by an application where we needed to design 

an Image Server in which we store a collection of aerial photographs of an area of 

interest for the purpose of terrain visualization. The photographs are partitioned into 

tiles of some standard size (typically 256 by 256 pixels) which are then declusterd on 

a system consisting of several servers each connected to a number of parallel disks. 

Users can trace a path of flight thru the terrain on the screen of a SGI workstation 

connected to the servers, all tiles intersecting this path must be fetched quickly from 

the disks to allow continuous visualization. Currently, the system runs on a network 

of three to six servers each connected to a number of disks with different capacities 

and speeds (See Figure 1). As an example of the kind of heterogeneity we are facing, 

the Image Server will be using a variety of disks such as the Seagate Barracuda and 

the Elite 2 whose speeds range between 1 to 3 MB/s, and servers ranging from a Sun 

Spare 10 model 41 and 51 to Dec Alpha machines. The observed server speed ratio 

of the Spare and the Alpha machines are approximately 1:2. 

In [1] more details of the actual declusterization method are given. In develop

ing declusterization strategies for the Image Server, we discovered that symmetric 
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Figure 1: Declustering for terrain visualization application 

declusterization is not optimal due to the heterogeneity of our hardware devices and 

subsequently developed the general declustering algorithm described here. 

In this paper we do not devise a new declusterization method but rather show 

how to adapt any declusterization method to work efficiently in heterogeneous envi

ronments. The method we propose here is especially suitable for declusterization of 

video and audio data as queries for such data types usually require large amounts of 

data that are accessed sequentially and can be easily declustered perfectly [7]. 

We present algorithms which determine the optimal ratio of data allocation to 

the various disks, taking into account all the above mentioned constraints. We then 

consider the realistic scenario in which the proportion of the data requested from 

each disk follows some multinomial distribution based on the fraction of the database 
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stored on each disk. 

The paper is organized as follows: In Section 2 we present some preliminary results 

on systems without any disk capacity constraints. In Section 3 we present our solution 

for maximizing system bandwidth subject to capacity constraints. In Section 4 we 

present our most general algorithm which shows how to implement all the previous 

results in an environment where disks are connected to different servers with their 

own bandwidth constraints. In Section 5 we analyze the case in which the request 

proportions follow some probabilistic distribution. Section 6 contains a discussion 

about the implementation of our algorithm and an example of the results produced 

by it on a typical system. Finally, Section 7 contains some conclusions and discussion 

of future work. Table 1lists all the major notations used in this paper, most of which 

have not been introduced yet. 

2 Declustering for maximal bandwidth without ca

pacity constraints 

In order to illustrate the concepts, let us consider a simple example in which we 

wish to store a dataset of size 1 GB on 2 disks with transfer rates of 3 and 2 MB/s 

respectively. Let us assume no capacity constraints are present (i.e. each disk has a 

capacity greater than 1 GB), and that future queries on this dataset request perfectly 

declustered chunks of data so that for every query the amount of data read off disk i 

is proportional to the fraction of the dataset residing on disk i. 

We note that the response time of a query is equal to the time it takes for the 

last byte to arrive, i.e., we need to wait for all disks to complete the transfer their 

portion of the answer. If we decluster this dataset symmetrically (i.e. 0.5 GB on each 

disk), a query requesting a chunk of 100 MB will retrieve 50MB from ec;~.ch disk. The 

response time for this query will be maxe3°, 5
2°) = 25 seconds. On the other hand, if 

we allocate 0.6GB on the fast disk and 0.4GB on the slower one, the query will access 
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I Notation I Meaning 

n The number of disks in the System 

ci The usable capacity of disk i 

ai The capacity actually stored in disk i for this request 

Bi The bandwidth (transfer rate) of disk i 

c The total amount of data requested to be stored 

B The desired retrieval bandwidth 

T The retrieval time constraint ( = C I B) 

Bopt The optimal (i.e. maximal) retrieval bandwidth 

Topt The optimal (i.e. minimal) retrieval time ( = C I Bopt) 

m The number of servers in the System 

S· J The set of disks in server j 

B· J The bandwidth of server j 

C· J The current amount of data in server j 

Table 1: List of all notations used in this paper 
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(based on these proportions) on the average 60MB from the fast disk and 40MB from 

the slow disk resulting in an expected response time of max( 6;, ~0 ) = 20 seconds. 

Note that even in symmetric declustering schemes, it is quite possible that the 

actual observed response time for a query will be slower than the promised one due to 

the fact that the portion of the dataset requested by the query may not be perfectly 

declustered across the disks. In the non-symmetric case an additional complication 

may arise due to fluctuations in the ratios retrieved from each disk around their 

expected values. We will deal with these issues in Section 5. 

In this section, we define a minimal response time declustering scheme to be a 

scheme which achieves minimal expected response time (i.e. maximal bandwidth) 

for perfectly declustered queries. Note that assuming all queries are perfectly 

declustered is especially true for video and audio data, where queries always access 

a continuous stream of data, and are almost always perfectly declustred. In the 

c absence of capacity constraints, the above example illustrates the following principle 

summarized under proposition 1 (the proof is very simple and therefore omitted). 

PROPOSITION 2.1 Assuming that all disks are infinite in capacity, and that C amount 

of data needs to be stored in a disk system containing n disks with average trans

fer rates (i.e. bandwidths) of Bt, B 2 , ••• , Bn· The optimal declustering scheme that 

minimizes the response time for perfectly declustered query requests, should have the 

amount of data stored on each disk (ai) be proportional to the bandwidth of each disk 

(Bi)· In other words, the amount of data ai stored o,n disk i should be: 

Bi 
ai = C X En B 

k=l k 

Note that this algorithm and the ones discussed in the following sections, will only 

determine a declustering ratio among the disks. In order to adapt a given symmetric 

declusterization strategy to follow the allocation ratios produced by our algorithm, 

we need to have each real disk be represented by multiple virtual disks. Considering 

the previous example where the determined declustering ratio is 3:2. We need to 
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transform this initial problem into one with 3 + 2 = 5 symmetric virtual disks and 

apply the symmetric declusterization method to a problem with 5 virtual disks. We 

then collect the data that has been declustered to 3 of these virtual disks, and load 

them into the first real disk, and collect the data from the other 2 virtual disks and 

load them into the second real disk. The question of how to choose the 3 virtual 

disks which should be loaded on the same real disk is application dependent and can 

usually be chosen to preserve maximum declusterization. Also note that in order to 

use the above method we need to have integer ratios, where as the declustering ratios 

determined by our algorithms are usually real numbers. This should not present a 

big problem though, since it is fairly easy to come up with good integer ratios based 

on real number ratios, with some small error introduced in the process. 

3 Declustering for maximal bandwidth with ca

pacity constraints 

3.1 An example 

Next we consider the more practical system in which each disk has some finite capacity 

of Ci, and discuss how to decluster with capacity constraints. As an example, consider 

the following problem: Assume we need to store a dataset of 2.5 GB in a system, with 

3 disks, disk 1 can store 1 GigaByte and has a average transfer rate of 3 MB/s, disk 2 

can store 2 GB and has a average transfer rate of 2 MB/s, and disk 3 can store 3 GB 

and has a average transfer rate of 1 MB/s. This system is illustrated in Figure 2. As 

we showed in the previous section, without considering disk capacity limitations, we 

should always decluster data on this disk system in a 3:2:1 ratio (proportional to the 

speed of the 3 disks). This would result in an average transfer rate of 3 + 2 + 1 = 6 

MB/s being observed by the whole system. The question is whether this transfer rate 

can be achieved with the capacity constraints we have introduced. As the following 
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3GB 

1 MB/s 

Figure 2: A disk system containing 3 heterogeneous disks 

discussion shows this rate is not achievable and finding the maximum achievable rate 

and optimal allocation is not trivial. 

The first thing we need to realize is that in order for any subset to be retrieved at 

a transfer rate of 6 MB/s, we specifically need to be able to retrieve the entire dataset 

(2.5 GB) in 2500/6 = 416.66 seconds from all 3 disks, ever though most queries only 

ask for a portion of the dataset. By observing this constraint and the disk capacity 

constraints we note that we are allowed to place at most 1 GB on disk 1 (capacity 

constraint), 833.33 MB on disk 2 (transfer rate constraint) and 416.67 MB (transfer 

rate constraint) on disk 1. The total is less than 2.5 GB and thus 6 MB/s is not 

achievable, but this still leaves us clueless as to what kind of a distribution would 

result in a maximized retrieval bandwidth and what that bandwidth would be. For 

this particular problem, it turns out that the optimal solution is to place 1 GB on 

disk 1, 1 GB on disk 2, and 0.5 GB on disk 3, which would result in a maximized 

bandwidth of 5 MB/s. In the following subsection, we will show an algorithm that 

can help us find this optimal solution. 
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3.2 The algorithm 

The problem in its more general form can be described as follows: We are required to 

load a dataset of C MBytes on a system of n disks with each disk i having a capacity 

of Ci MB and a transfer rate Bi MB/s, such that the overall bandwidth B of the 

system is maximized. 

We note that the bandwidth of the system is a function of the individual transfer 

rates of the disks and the amount of data each of them needs to transfer. Clearly, 

under any feasible solution, the volume of data ,ai, allocated to each disk should 

satisfy: 

i=l 

First let us consider how we can determine whether a given level of system band

width B is achievable. In order for this bandwidth to be achieved, the entire dataset 

of size C must be retrievable in T = C / B time. This implies that disk i should hold 

at most T x Bi MB of data. Of course, we also have the constraint that at most Ci 

MB of data can be put on disk i. Thus, we define the function: 

f(i,T) = rnin(T x Bi,Ci) 

which indicates the maximum amount of data that can be stored on disk i, subject 

to the retrieval time constraint ofT. 

Define the total volume of data that can be stored on the system subject to the 

time constraint T as 
n 

g(T) = 2: /( i, T) 
i=l 

PROPOSITION 3.1 The maximal bandwidth, Bopt, achievable in the system satisfies: 

where 

C = g(Topt) 

c 
Topt = -B 

opt 
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PROOF: Let Bopt be the maximal bandwidth we are looking for, and Topt = C I Bopt· 

If 9(Topt) is larger than C, it would mean that an allocation could still be found 

with B larger than Bopt thus implying that Bopt is not the maximal bandwidth. If 

9(Topt) is smaller than C, it would mean it is infeasible. Thus it must be true that 

9(Topt) = C 0 

Due to the fact that 9 contains a function f which uses the min function, an 

inverse function for 9 does not exist, and thus a closed form solution for Bopt does not 

exist. The most efficient way to find Bopt, would be to perform a binary search on 

different bandwidths B. For each bandwidth B that we try, if 9(CIB) > C, then B 

is too small and needs to be increased, if 9( C I B) < C, then B is too large and needs 

to be decreased. We keep on iterating this search until 9( C I B) is sufficiently close to 

C, at which point B will be sufficiently close to Bopt· At this termination time, we 

simply set the amount of data, ai, we store in each disk to be J( i, C I B). 

The MaxBandwidth-Algorithm listed below contains a more formal description of 

the above algorithm. 

Max:Bandwidth-Algorithm: 

1. Compute Bma.x, the highest possible bandwidth as Bma.x = L:f=1 Bi 

2. Using a binary search procedure between 0 and Bma.x find a value B that satisfies 

0 ~ I9(T)- Cl· ~ € where € is some predetermined acceptable small error, and 

T = CIB. At this point, we should also have IB- Boptl < 8 for some small8 

that is a function of €. 

3. Load the ith disk with ai equal to f( i, C I B) 

As a final note about this algorithm we note that theoretically speaking, we can 

terminate the binary search, whenever the remaining range of possible B's to search 

for, is such that, whether f(i, T) is T X Bi or ci is completely determined for all 

i. At this point, a closed form solution can be obtained since an inverse function 
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for f exists for this range of B on all i. From a practical point of view, however, 

the implementation is much simplified by letting the binary search continue to the 

point where the desired precision of B is obtained. The complexity of the algorithm 

is O(nlog2 ~) which is really not that important, since the running time of this 

algorithm is negligible (less than a second) compared to the time it takes to load a 

dataset into a disk system. 

3.3 Optimal loading for varying database sizes 

In some cases the database size is not known apriori and the designer needs a "Sys

tem Profile" which indicates how to optimally load the data on the disk system for 

each feasible database size. We can compute an optimal loading scheme for varying 

database sizes by using the following procedure whose correctness is based directly 

on Proposition 2.1. The procedure uses iterations where in each iteration more the 

amount of data loaded increases while the system transfer rate decreases. This con

tinues until we fill all the capacities of our .disks. 

Given any portion of the database, X, which is still unloaded on the disks, and 

given a subset U consisting of k disks (of the n initial disks) with remaining unused 

capacity, we will try to load as much as we can on U observing the "proportionality" 

principle which says that the fraction of data loaded on each disk of U must be 

proportional to the speed Of that disk (within U). The system transfer rate achieved 

for the loaded portion is LiEU Bi. Observing the "proportionality" principle, we may 

not be able to load all of X due to one or more disks reaching their capacity C~, these 

are what we call the bottleneck disks. Each iteration is completed when one or more 

bottleneck disks are identified. 

We note that by the above principle, if we load a database of size X on the system, 

the amount loaded on the ith disk must satisfy 

BB; X X< ci where Bmax =LiEU Bi. From this it follows that X~ =-Be: X Bmax 
maz ' 

for all i. Therefore if the zth disk is a bottleneck it must satisfy 
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* = Minieu{Ci/Bi}. 

At this point we iterate the procedure with U consisting 'of the remaining non-

bottleneck disks and X consisting of the remaining unloaded portion of the database. 

The remaining capacity of each disk is of course adjusted with the amount loaded on 

it in the previous round. 

More formally this is described in the following algorithm. 

MaxBandwidth-Algorithm with varying Database: 

Given a databse of size X, a set of disks U 
Do While X> 0, and at least one Ci > 0 in U 

Compute Bmax as Bmax = 'EieU Bi 

compute~ for each disk in U 

Find Mini{ Ci/ Bi}, call it Min(U), and the disks which achieve it BottleN eck(U) 

Load each disk in U with the correct proportion of Min(U) x Bmax 

Reduce each Ci in U to Ci minus the allocated proportion for this disk 

Set U = U- Bottleneck(U) and X= X- (lUI x Min(U)) 

EndDo 

As an example assume, we have three disks with relative bandwidths 5,2,1 and 

relative capacities 2,4,3 (for simplicity we omit units as only the proportions are 

relevant). The maximal size database we can load is 9. The first disk becomes a 

bottleneck in the first iteration where we load 2, .8 and .4 on the disks respectively to 

maintain the proportions, the combined bandwidth is 8 and remaining capacities are 

0,3.2 and 2.6. At this point 3.2 were loaded. In the next iteration, the two remaining 

disks must be loaded with proportions 2:1. We can show that 4.8 can now be loaded 

with one disk receiving 3.2 and the other 1.6. The combined bandwidth at this point 

drops to 3. We finally load the remaining 1 on the slowest disk at which point the 

system bandwidth drops to 1. The bandwidth for any loaded database size between 

0 to 9 can be computed using the above allocations. 

We observe that all disks of the same type, i.e., same speed and capacity will 
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become bottlenecks at the same iteration. Therefore, the algorithm will need m 

0( n 2
) time where n is the number of different disk types in the system. 

4 Server Bandwidth 

In this section, we discuss the complicated issues that arise when the disks are dis

tributed among multiple servers that have bandwidth restrictions themselves. The 

assumption is that each disk is located within some server, and each server (which can 

contain multiple disks) has a limitation on its retrieval bandwidth, possibly because 

of limited bandwidth on its bus, memory, or even CPU. One can view this problem 

as just adding another layer of bandwidth restrictions on groups of disks. The ex

tra layer does not necessarily have to come from the existence of servers. It could 

also come from bandwidth limitations on the disk controller, system bus, or network 

hub. In fact, it is quite possible that within a disk system, there are several layers of 

bandwidth restrictions that are imposed on the disks in a hierarchical form. 

In this paper we will only discuss how to handle one extra layer, and we will use 

the term server to represent the reason for the extra layer. The reac:ier should keep in 

mind that this solution can be easily extended for multiple layers and that the extra 

layer does not have to be due to the existence of servers. 

Let us assume that the n disks are connected to m servers, and that Si represents 

the set of disks connected to server j. Let Bi represent the bandwidth of server j, and 

define Ci to be the total capacity that we are attempting to place on all disks in Si (i.e. 

Ci = Eiesi ai)· If we now try to come up with an allocation that achieves a retrieval 

bandwidth of B (and thus a retrieval time of T = C /B) by putting ai = f( i, T) 

amount of data on disk i, we could run into the problem of Ci being larger than 

T x Bi. This means that although the amount of data stored on each disk in server j 

can be retrieved in time T, server j is overflowed with data and cannot keep up with 

this data in order to deliver it all in timeT. 
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The solution to this problem is to place a total of only T x Bi data on all the 

disks in server j, and to do this for every server j that overflows. With this solution 

in mind, we can now redefine the function g(T) that describes the total amount of 

data that can be placed in the system, subject to the retrieval time constraint ofT: 

m 

g(T) = l:s(j,T) 
i=I 

where s(j, T) is the amount of data that can be stored in server j, and is defined as: 

s(j, T) = min(T x Bj, L f(i, T)) 
iES; 

where f( i, T) is the amount of data that can be stored in disk i as defined in the 

previous section. With this new definition of g, we can now compute the amount 

of data that can be placed in a system, subject to the retrieval time constraint of 

T for both disks and servers. Thus, the binary search algorithm described in the 

previous section, can still be applied to find the maximal bandwidth Bopt in which 

g(C / Bopt) =C. 

5 Probabilistic analysis of heterogeneous declus-

tering 

In this section we describe the declustering process where we remove the perfect 

declustering assumptions. Assuming that we load N records on n disks, where ai 

records are loaded on the ith disk, we note that, if Xi is the (random) number of 

records requested from disk i by a random transaction, then X= (Xt, X 2 , ••• , Xn) has 

a multinomial distribution with parameters (at/ N, ad N, ... , an/ N). 

In order to compare different allocations to each other we will need some definitions 

from the theory of Majorization. 

Definitions ([8]) 
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Notation: Given a vector a = (a~, a2, ... ,an) , rearrange the components of this 

vector in decreasing order and denote the rearranged vector as (a{1], ar2J, ... , a[nJ), with 

a[1] ~ a[2] > ... ~ a(n]· 

Majorization: Given two vectors a = (a1, a2, ... ,an) and b = (b~, b2 , ••• , bn), the 

vector a is said to be majorized by the vector b, written as a <m b if: . 
k k 

.E al•l < .E br•l' k = 1,2, ... ,n-1 
•=1 •=1 

n n 
and .E a(i] = ):::: b[i] 

•=1 •=1 
Schur Concave Function: A real valued function f defined on a set A C Rn is 

Schur Concave if a <m bon A implies f(a) ~ f(b). 

Smaller in Usual Stochastic Order: A random variable X is said to be smaller in 

the usual stochastic order than another random variable Y if for all t, P(X ~ t) 2: 

P(Y ~ t). This ordering will be written as X ~st Y. A consequence of this ordering 

is that, if X <st Y , then E(J(X)) ~ E(J(Y)) for all non-decreasing real valued 

functions f and when the epectations exist. 

PROPOSITION 5.1 {{8} ,p. 306} If X = (X1 ,X2 , ... ,Xn) has a multinomial distri

bution with parameter(}= (8~,82 , ... ,8n), then Po{s ~X;~ t} is a Schur-concave 

function of 8, -oo ~ s ~ t ~ oo. 

We will first deal with disks with equal speeds and different capacities. 

PROPOSITION 5.2 If all disks have equal speeds and capacities C1 2: C2... 2: Cn, 
n 

and there are a total of N records to be placed, with N ~ E C;, then the retrieval 
i=1 

time is stochastically minimized by placing an = min{ Cn, Njn} in disk n,, an_1 = 
n 

min{Cn-b (N-an)/(n-1)} records in disk (n-1), ... , ai = min{Cj, (N- E a;)j(n
i=i+1 

n 
j + 1)} in disk j, ... , a 1 = (N - E a;) records on the first disk. 

i=2 

PROOF: Given any allocation of records b = (b11 b2 , ... , bn), rearrange the given vector 

bin decreasing order and denote the rearranged vector as (b[1], b[2], ... , b[nJ). We claim 

that: a1 < b[1], a1 + a2 ~ b[1] + b[2], ... , a1 + a2 + ... +a; ~ b[1] + br2J + ... + b(i] and 
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n n n n 
L: ai = L: bi. Because the same number of records are allocated, L: a; = L: b; = N. 
i=l i=l i=l i=l 

If Cn > Njn, then a; = N /n, i = 1, 2, 3, .. and the claim follows immediately. Else, 
n-1 n 

an = Cn (by definition). Let p = L: ad L: b; ::; 1. Let b[,1 = pb[i], i = 1, 2, ... , n - 1 
i=l i=l 

and apply the same reasoning to the vectors, (at, a2, .. an-t) and (b[t], b(2], .. b[n-tJ)· The 

claim follows by repeated appication of this inductive argument. 

This shows that the vector a <m b (see definition). As mentioned above, if X; is 

the (random) number of records requested from disk i, then X= (X1 , X 2 , ..• , Xn) has a 

multinomial distribution with parameters, (atfN, a2/N, ... , an/N) and (btfN, b2/N, ... , bn/N) 

under the two arrangements. Therefore it follows from the above proposition, and 

the definition of a Schur-concave function that 

P(at/N,a2 /N, ... ,an/N){X; ::; t} ~ P(bt/N,b2 jN, ... ,bn/N){X; ::; t}, -00 ::; t ::; 00 

This satisfies the definition of stochastic minimization. 0 

It appears at first glance that the problem with unequal disk speeds can be solved 

by allocating records directly in proportion to the disk speeds. Unfortunately this 

need always be the case as shown in our analysis and simulation results given below. 

We can prove that allocating more records to a faster disk is stochastically optimal 

(the proof is very tedious and omitted here). Here we present two results, the first 

shows that the "intuitive" allocation of records in proportion to the disk speeds is 

asymptotically optimal for large request sizes. The second gives an approximate 

allocation rule. 

PROPOSITION 5.3 When there are n disks with transfer rates B;, i = 1, 2, ... , n, then 

the allocation of the fraction Bi/(B1 +B2 + ... +Bn) of records to disk i is asymptotically 

optimal as the size of the request N increases. 

PROOF: The proof is given for n=2. Assume that the allocation of p fraction of 

records has been made to the first disk. Given that the total number of records 

requested is N, the distribution of the number of records, X, requested from this 
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disk has mean= Np and standard deviation= jNp(1- p). The distribution of the 

number of records requested from the second disk has mean N(1- p) but the same 

standard deviation. Assume that pf B1 - (1- p)/ B 2 = E > 0. Then we note that: 

(Npf B1 - N(1- p)f B2)/.../N = E.../N and p = 81:8_;82 + :.~/J2 E 

From the first of these relations, the difference in means of the two random v~ri

ables, X and ( N - X) grows asymptotically with N. This implies that the maximum 

of the two random variables X/(B1.../N) and (N- X)/(B2.../N) asymptotically coin

cides with X/ ( B 1 VN) (a rigorous proof of this fact is omitted, but the logic is that 

both these random variables have the same finite standard deviation which does not 

grow with N whereas their means grow apart at the rate of VN). This in turn implies 

that: 

E(max(X/~N-X)/B2)--+E(WI) = VNp = VN + _lb._E 
N N B1 B1+B2 B1+B2 

Thus the difference in the allocation, E, must be made as small as possible. 0 

5.1 An approximate result 

In this section we use the normal approximation to the binomial. We first derive an 

exact formula for optimally allocating data on two disks of different speeds. We then 

use a simpler formula to derive a general heuristic for allocating data on n disks. 

Consider a random variable, X, distributed Normally with mean N p and standard 

deviation jNp(1- p). Then, 

E (max{ X/ B~, (N- X)/ B2 }) = 

E(X/B1I{X 2:: <;::A
2
>}) + E((N- X)/B2I{X ~ <;::A

2
>}) = 

E((X- (t:A2)) I{X > (;::k2)})/Bl + (Bl~B2)P(X 2:: (;::h2)) 

+E( ((;::h2) - x) I {X ~ (t:A2)} )/ B2 + (~ - (B1~:;)B2 )P(X < <t:k2>) -
(B1~B2) + E(X- (t:h2> )l(X 2:: (t:h2) )/ B1 
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where I {A} is the indicator function of the set A. Let ~, ~c stand for the standard 

Normal distribution function and its complement. Let ¢>denote the standard normal 

density function. Let a= NB1 j(B1 + B 2 ), J.L = Np, and u = JNp(1- p). Then the 

right hand side of (9) can be simplified as: 
NB1 

N 1 00 NB, (X-1-') 1 (B,+B2 ) NB1 ~ 
(B,+B2)+Bl J (X-(BI+B2))¢>( (T )dX+B2 J ((BI+B2) X)¢>( ;1-' )dX = 

N~ -oo 
CB1+B2) 

NB1 
oo (B1+B2) 

(Bl~B2) + ~l N{ (X- J.L)¢>(<X;~-'>)dX- ~2 -L (X- J.L)¢>(<X;~-'>)dX 
(B1+B2) 

+(J.L- (lJk2))~C(a~e)/B1- (J.L- (l:Jk2))~(a~e)/B2 = 
(B,~B2) + (J.L- (B~:k2))~C(a~1J.)jB1- (J.L- (;::}J2 ))~(a~!J.)jB2 

a-p a-p a-p 1 1 
Nj(B1 + B2) + (J.L- a)(-~(--)/B2 + ~c(--)/Bt) + u¢>(--)(-B + -B ) (2) 

u u u 2 1 

This expression can be minimized by using a search procedure. A approximate 

but quicker result can be obtained by noting that u is almost invariant for small 

changes in p. Then the expression to be minimized can be written as: 

(3) 

where z is the standard Normal deviate. 

(4) 

and 

(5) 
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Therefore H(z) is minimized by setting the first derivative equal to zero, giving: 

l(B2 = i!>"(z)(l/B1 + 1/B,) <? i!>" ( ,;;~;~ p)) = (B, ~ B,) (6) 

This is a "newsboy" type of solution. Equation 6 shows that when the disk speeds 

are equal we must have a = N p, otherwise we must always favor the faster disk in 

allocating records, i.e., place more than the number proportional to its speed. We 

summarize these results: 

PROPOSITION 5.4 Given two disks with speeds B1 and B 2 and a request of size N, 

then the optimal allocation under the Normal approximation to the binomial distribu

tion is given by minimizing Equation (2). An approximate solution to this minimiza

tion problem can be obtained by solving for p in Equation 6 and placing p fraction of 

records on disk 1. 

Remarks: To apply this Proposition, first we need a value for N. We can use the 

average size of the request as a proxy for N. Second, when there are many disks, 

how can the allocation be made? We suggest that records are at first allocated in 

proportion to the disk speeds. Then iteratively reallocate records using ( 6) to the 

two fastest disks, the next two fastest and so on. Repeat this reallocation procedure 

until the changes in allocation are small. 

The psuedo code for the allocation procedure is given below. 

Procedure HEURISTIC: 

Step 0: 

Read number of disks (ndisk), disk speeds (Bi) 

and average number records retrieved (nrec). 

Read tolerance (tol). We assume that disk speeds 

are ordered as: B1 > B2 > B3 .. > Bndisk 

Set proportions to be allocated on diski as 
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Step 1: 

B· 
Pi= (Bl+B2+ .. +Bndi4k) 

Set error= l.Oe32 

Do while (error > tol) 

Step 1.1: 

error= 0.0 

Do i = 1, ndisk-1 

N = (Pi+ Pi+t) * nrec 

bt = B; 

b2 = B;+t 

Solve for pin (6) using a search procedure 

temp= Pi 

Pi= p * N/nrec 

Pi+I = (1- p) * Njnrec 

error = error + I temp - pi] I 
end do 

end do 

Usually the procedure converges in 10-20 iterations of Step 1.1. It can be proved 

that this procedure will eventually stop, (the reason is that the largest allocation, p1 , 

is monotone increasing). Our experiments show that the allocation is rather robust 

with respect to the average size of request N. 

The. allocation given by the procedure was tested against the proportional alloca

tion using simulation. In the simulations, the average size of requests, N, was varied 

between 5 and 100 in steps of 5. For each average size N, 10,000 trials were conducted. 

In each trial, a random number M was generated between 0.5*N and 1.5*N, where 

M is the actual size of the request. The results of these heuristics are shown in the 

next section. 
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The HEURISTIC procedure is easily adapted to the case when the disk capacities 

are finite. The HEURISTIC procedure is called and the allocations are tested for 

feasibility, i.e., whether the allocations can be fitted into the disks. If the allocation is 

feasible, we stop, else we look at the fastest disk whose allocation violates the capacity 

constraint. We load this disk to its capacity, eliminate it from further consideration 

and resolve the problem. The algorithm for handling this case is given below: 

Algorithm FINITE 

Step 0: 

Step 1: 

Step 2: 

Read number of disks ( ndisk), disk speeds Bi 

and average number records retrieved ( nrec). 

Read tolerance (tol). We assume that disk speeds 

are ordered as:B1 > B2 > B3 .. > Bndisk 

Read the capacity Ci, of each disk and the total 

number of records to be allocated, NTOT. 

alloci is the final allocation, indexi is 

a temporary array, ntotold = NTOT 

Set indexi = i, i = 1, ndisk 

call HEURISTIC and get Pi 

Do fori = 1, ndisk 

allocindex; =Pi* NTOT jntotold 

if(pi * NTOT > Cindex;) then 

allOCindex; = Cindex)ntoto[d 

NTQT = NTQT - Cindex; 

do for j = i + 1, ndisk 

indexi-t = indexi 

end do 
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ndisk = ndisk - 1 

go to Step 1 

endif 

end do 

Stop 

This iterative method can be used with any allocation method (i.e., not just HEURIS

TIC), by replacing the call in Step 1 of the algorithm to a call to the appropriate 

procedure. Using this logic, we compared the allocation under HEURISTIC versus 

allocation under the proportional scheme. Some graphs of the results are shown in 

the next section. 

6 Implementation Results 

The above described algorithms have all been implemented and tested to verify their 

correctness. As an example, Figure 4 shows what the maximal achievable bandwidth 

would be as a function of the load request size for the 3 server disk system shown in 

Figure 3. Server 1 of the system has a bandwidth of 8MB/sand contains 3 disks, two 

of which are 1 GB disks with a bandwidth of 2 MB/s and the remaining one being 

a 2GB disk with a bandwidth of 3 MB/s. Server 2 has a bandwidth of 3 MB/s and 

contains 2 similar disks, each capable of holding 2 GB of data with a bandwidth of 2 

MBjs. Server 3 also has a bandwidth of 3 MB/s but contains 2 different disks, one 

of which is a 3 GB disk with a bandwidth of 2 MB/s, and the other being a 2 GB 

disk with a bandwidth of 1 MB/s. In this disk system, only server 2 has a smaller 

bandwidth than the combined bandwidth of its disks. Because the two disks are of 

the same size and speed, the effective bandwidth of each disk turns out to be scaled 

down evenly to the point where they add up to the bandwidth of the server (i.e. 1.5 

MB/s). 

The maximal achievable bandwidth on this disk system (for small request sizes) 
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Figure 3: An example of a 3 server, 7 disk, heterogeneous system 

-
-

is 13 MB/s (7 MB/s from server 1, and 3 MB/s each from server 2 and 3). When the 

size of the load request grows to 6.5 GB, the two 1 GB disks in server 1 get saturated 

and can no longer hold any more data. This is the reason for the sudden change in 

the slope of the curve at 6.5 GB. From 6.5 GB up to 13 GB (the full storage capacity 

of the system), the curve turns out to be piecewise hyperbola, with the intersection 

points between hyperbolas representing the saturation of other disks. In particular, 

at the storage capacity of 8 GB, the 2 GB disk in server 1 gets saturated, at 12 GB 

the two 2GB disks in server 2 are saturated, and finally at 12.5 GB, the 3GB disk of 

server 3 gets saturated. Of course, when we finally reach 13 GB, the only remaining 

slowest disk (the 2 GB disk of server 3) also gets saturated, and thus no more data 

cari be placed in the system. 
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Figure 4: Achievable bandwidth relative to load request size 

For the probabilistic method, we show graphs of the improvement in allocation 

resulting from our procedure as compared with simply using the deterministic meth

ods. For the test cases shown the improvement ranges from 8 to 23 percent. In the 

graphs of Example 2 and Example 4 we show the comparison for disks with suffi

cient capacities. Example 2 uses 4 disks with relative speeds 20,10,5,5 whereas in 

Example 4 the speeds are 10,5,1,1. The graphs of Example 3 and Example 5 have 

finite capacities. The relative disk speeds in Example 3 are 20,15,10,7 with capacities 

400,100,100,100 and 600 to be allocated ,in Example 5 disk speeds are 10,5,1,1 with 

capacities 750,200,100,100 with 1000 to be allocated. 
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7 Conclusion 

In this paper we have described algorithms for adapting declusterization methods to 

work in heterogeneous distributed environments. The results reported here are partic

ularly suitable for systems which store video and audio data on parallel disk systems 

but can be used for any environment in which declusterization is desirable such as 

image data or multidimensional data retrieved by range queries. The algorithms re

ported here were all implemented and are actually used in an existing application 

which declusters image data for the purpose of terrain visualization. 

The work reported here can also be used for system design purposes. As hardware 

·configurations tend to be dynamic, designers may wish to replace disks and servers 

by newer available models. For example, a designer may wish to find which disks 

or servers in the current system should be upgraded in the most cost-effective way 

to improve system response time. Our algorithms provide as a by-product, informa

tion about the bottleneck disks and servers so that the designer can identify these 

components which are critical. 

To summarize we have shown the following results: 

• For perfectly declustered queries we have an exact algorithm to produce optimal 

allocations. 

• We have provided a. stochastically optimal allocation scheme for for finite ca

pacity and same speed disks. 

• We provide heuristic algorithms for disks with unequal speeds. The theoretical 

results show that we must allocate more than proportionally to faster disks. 

These ideas have been combined into a fast procedure for doing the allocation. 

• Simulation results show that if disk speeds are more unequal, then greater 

benefit is derived from using the allocations from our procedure FINITE as 

opposed to the deterministic algorithm. Results also indicate that the benefit 
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is greater when the size of the actual requests is small. 

We plan to investigate the possibility of building design tools which will be able to 

select the most cost-effective products from a given list of alternative disks and server 

configurations. Such tools will employ these algorithms to determine the bandwidth 

of a selected system. 

Another direction of future research involves some interesting probabilistic issues 

raised by this work, such as finding exact bounds on the probability that the response 

time will not deviate from the predicted one, based on the assumption that retrieval 

requests are completely random and cannot be perfectly declustered. 

In the current work we deal with loading one dataset at a time on the system. 

Another issue we are currently exploring is that of finding optimal methods of loading 

multiple datasets on the disks where each dataset has its own desired bandwidth and 

capacity requirements as well as an associated weight that informs us how important 

it is to achieve the desired bandwidth (or come close to it). 
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