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Abstract 

We review developments in the world-sheet action formulation of the 

generic irrational conformal field theory, including the non-linear and the 

linearized forms of the action. These systems form a large class of spin

two gauged WZW actions which exhibit exotic gravitational couplings. 

Integrating out the gravitational field, we also speculate on a connection 

with sigma models. 
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1 Affine Lie Algebra and Conformal Field Theory 

Affine Lie algebra, or current algebra on the circle, was discovered independently 

in mathematics [1] and physics [2]. The affine algebras have played a central 

role in the construction of new conformal field theories [2, 3, 4, 5, 6], which have 

historically been found first in the Hamiltonian or operator formulation and only 

later in their corresponding action formulations [7, 8, 9, 10, 11]. 

One reason for this order of events is that Hamiltonians with different local 

symmetries correspond to qualitatively different actions, so that generalization 

to larger classes of actions is not always straightforward. For example, the 

affine-Sugawara construction [2, 3, 4] is described by the WZW action [7, 8], the 

coset constructions [2, 3, 5] are described by the spin-one gauged WZW actions 

[9, 10], and the generic irrational conformal field theory [6, 12] is described by 

the spin-two gauged WZW actions [11, 13]. 

On the other hand, all these theories are uniformly included in the general 

affine-Virasoro construction [6, 14], 

T =Lab* J J * * a b * a, b = 1. .. dimg (1.1) 

which is quadratic in the currents Ja of the general affine algebra g. The co

efficient Lab is called the inverse inertia tensor, in analogy with the spinning 

top. In the general case, the inverse inertia tensor must satisfy the Virasoro 

master equation [6, 14], whose solutions include the affine-Sugawara and coset 

constructions, and a very large number of new conformal field theories. 

The generic affine-Virasoro construction has irrational central charge, even 

on positive integer level of the compact affine algebras. As a consequence, the 

study of this class of theories is called irrational conformal field theory (ICFT), 

ICFT :>:> RCFT (1.2) 

which includes rational conformal field theory (RCFT) as a small subspace. 

The development of ICFT has moved through a number of stages, including: 

• exact unitary irrational solutions [12] of the master equation 

• partial classification [15, 16] of the solution space of the master equation 

• generalized KZ equations on the sphere [17] and the torus [18] 

• the generic world-sheet action [11, 13] of ICFT. 

See Ref. [19] for a broad review of irrational conformal field theory. 
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In this talk, we focus on the Hamiltonian and action formulation of the 

generic ICFT on simple g. In this formulation, the geometry of the action is 

determined by the local symmetry group of the Hamiltonian. The local symme

try of the generic Hamiltonian is smaller than that of the coset constructions, 

and the corresponding generic action is a large set of spin-two gauged WZW 

models. The spin-two gauge fields are gravitational fields with exotic matter 

couplings which generalize and include the coupling of the conventional world

sheet metric. We will discuss in particular the non-linear and linearized forms 

of the action and a speculative connection with sigma models. 

2 Fundamentals of ICFT 

We begin by brie:fl.y reviewing some basic facts about ICFT which are essential 

to understanding the action formulation. 

For any Lie g, the general current algebra g is [1, 2] 

J ( ) 7 ( ) Gab . + c Jc ( W) 
a z Jb w = ( )Z + ZJab --+reg. z-w z-w 

(2.1) 

where a, b = 1 ... dimg, and !abc and Gab are the structure constants and gen

eralized metric of g. For the example of simple compact g, one has Gab = k'f/ab, 

where 'T/ab is the Killing metric of g and k is the level of the affine algebra. 

On each level of g, the general afline-Virasoro construction is [6, 14] 

Lab = 2LacGcdLdb- Led Lef fee a h/- Led Jc/ Jd/a Lb)e 

C = 2GabLab 

(2.2a) 

(2.2b) 

(2.2c) 

where (2.2b) is the Virasoro master equation. The master equation is a large 

set of coupled quadratic equations for the inverse inertia tensor Lab. For each 

solution Lab of the master equation, one obtains a conformal field theory with 

central charge c given in (2.2c). Generically-irrational central charge, even on 

positive integer levels of the affine algebra, is an immediate consequence of the 

structure of the master equation. In what follows, we confine our remarks to 

simple compact g, which is all that is needed below. 

2 

• 



a) Affine-Sugawara construction [2, 3, 4]. The affine-Sugawara construction is 

the simplest solution of the master equation, with 

where Qg'T/ab = - facd fbdc· 

2kdimg 
Cg = 2k + Q

9 

(2.3) 

b) K-conjugation covariance [2, 6, 3]. A central feature of the master equation 

is that its solutions come in K-conjugate pairs L and L, where 

Lab + L- ab = Lab + -g , C C = Cg. (2.4) 

The corresponding K-conjugate stress tensors T and i', 

(2.5) 

commute and sum to the affine-Sugawara stress tensor T9 • 

K-conjugation is used to generate additional solutions, as in the familiar 

case of the coset constructions [2, 3, 5] Th + Tg/h = T9 . At the level of dynam

ics, K-conjugation also provides the minimal local symmetry of any ICFT, as 

discussed below. 

c) Semi-classical solutions [12, 20]. On simple g, the generic solutions of the 

master equation live in level-families Lab(k) whose high-level forms are 

(2.6a) 

ab 
Lab+ Lab= Lab= L + O(k-2) (2.6b) 

g 2k 

c =rank P+O(k-1
) c =rank F+O(k- 1

) c9 = dimg+O(k-1
) (2.6c) 

p2 = p P2 = p ' p p = 0 ' p + p = 1 (2.6d) 

where P and P are the high-level projectors of the L and the L theory respec

tively. 

The partial classification [15, 16] of ICFT by graph theory is based on these 

high-level forms, and it is believed [19] that the generic level-family is generically 

unitary on positive integer levels of g. 
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d) Spin-two gauge theories [11, 21, 13]. The basic Hamiltonian of the general 

affine-Virasoro construction is 

(2.7) 

where the barred currents J are right-mover copies of the left-mover currents 

J. For the gfh coset constructions the symmetry algebra of H0 is affine h x h, 

which leads to a world-sheet description by spin-one (or Lie-algebra) gauged 

WZW models [9, 10]. 

In the space of all conformal field theories, the coset constructions are only 

special points of higher symmetry. For the generic affine-Virasoro construction 

Lab' the symmetry group of Ho is Diff sl X Diff sl' generated by the left- and 

right-mover stress tensors 

T =Lab* J J. * * a b * (2.8) 

of the K-conjugate theory Lab. As a consequence, the world-sheet action of the 

generic ICFT is a spin-two gauged WZW model, as discussed in the following 

section. 

3 The Exotic Gravities of ICFT 

3.1 The Generic Affine-Virasoro Hamiltonian 

The classical basic Hamiltonian of the generic level-family Lab(k) on simple g is 

[21r 
Ho = Jo du?-lo (3.1) 

where La:, = pab /2k is the high-level form of Lab in Eq. (2.6). The classical 

currents Ja, Ia are taken as Bowcock's canonical forms [22], which satisfy the 

bracket algebra of affine g x g. The coset constructions, with (bracket) affine 

symmetry, are included in (3.1) when L = Lgfh = L9 - Lh, but we consider only 

the generic Lab for which, as in the quantum theory, the local symmetry algebra 

of Ho is Diff sl X Diff sl. The generators of the diffeomorphism groups are the 

conformal stress tensors of the commuting K-conjugate theory, 

(3.2) 
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where £: = pab j2k is the high-level form of £ab in Eq. (2.6). Since these 

classical generators satisfy the Virasoro algebra without central extension, they 

form a set of first class constraints of H0 . 

Following Dirac, one obtains the full Hamiltonian [11] of the generic theory 

L, 

H = 12

-rr du1-l , 1-l = 1-lo + v · I<(Loo) 

- 1-b --
v · K(Loo) = -L~( vJaJb + vJaJb) 

211' 

(3.3a) 

(3.3b) 

where the K-conjugate stress tensors in v ·I< play the role of Gauss' law and v, v 
are multipliers. The multipliers form a spin-two gauge field or gravitational field 

on the world-sheet, which is called the K-conjugate metric. This Hamiltonian 

generalizes and includes the WZW Hamiltonian (which is included when P = 
1, P = 0) and the conventional world-sheet metric formulation of the WZW 

model (which is included when P = 0, P = 1). 

More generally, the K-conjugate metric is an exotic gravity because it ex

hibits exotic, £ab_dependent coupling only to the "K-conjugate matter", which 

is, loosely speaking, only "half" the matter. 

3.2 The Non-Linear Action 

The action corresponding to H in (3.3) is the non-linear form of the generic 

affine-Virasoro action [11], 

5 = J dTdu(£ + r) 

.c 8~ ejaGoc€/ [[J(Z) + aaw.Pw-:-1 J(Z)PL b ( xixj- x'ix'j) 

+a [J(Z).PL b ( xixj + x'ix'j + .x(ixj)') 

+a [w.Pw-1 J(Z) L b ( xixj + x'ixlj- x(ixj)t) 

+ [1- J(Z) + aaw.Pw-1 J(Z).PL b ( x[ixjl') J 

j(Z) = [1- aaZt1
, 

- - - -1 Z=PwPw , 

5 
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1-v 
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(3.4a) 

(3.4b) 

(3.4c) 



which is the world-sheet description of the generic theory L. Here, xi and 

eia, i = 1 ... dim g are the coordinates and left-invariant vielbein on the group 

manifold G. Also, w(g)ab is the adjoint action of g E G, and r is the WZW 

term. The non-linear action reduces to the WZW action when P = 0, and to 

the world-sheet metric formulation of the WZW model when P = 1. 

We call attention to the exotic, non-linear coupling of the K-conjugate met

ric (a, a) in the action (3.4). In spite of this non-linearity, the action exhibits 

Lorentz, conformal and local Weyl symmetries, and the expected world-sheet 

diffeomorphism invariance. The diffeomorphism group is called Diff S2 (K) be

cause it is associated to the commuting K-conjugate theory. 

The K-conjugate metric can be written in standard form, 

- -4> - ( -vii 
hmn =.e 1 ( _) 

2 v-v 
Hv- v)) 

1 ' 
0hmn = _2_ ( -1 

v+v ~(v-v) 
!(v-=- v)) 

vv 
(3.5) 

and hmn transforms under Diff S2 (K) as a second-rank tensor field. The Diff 

S2 (K) transformations of the matter are given in Refs. [11] and [13]. In the 

discussion below, we give the corresponding matter transformations for the lin

earized form of the action. 

The gravitational stress tensor of the K-conjugate metric is defined in the 

usual way, 

(3.6) 

and, in the conformal gauge, 

v=v=1 a=a=O r:i- (-1 y-nhmn = 0 ~) (3.7) 

this prescription reproduces the conformal stress tensor of the L theory, as it 

should. It follows that hmn is the world-sheet metric of the L theory. 

The chir~ currents of the underlying affine-Virasoro construction (2.2a) 

are also found [11] in the conformal gauge. In other gauges, the currents are 

gauge-equivalent to chiral currents. 
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3.3 The Linearized Action 

In the equivalent linearized form [13], the generic action is clearly seen as a large 

class of spin-two gauged WZW models, 

S' = Swzw + j d2 zb..CB 

a: - b 
-2L~ Tr(TaB)Tr(7/,B) 
1rY 

a - b - -
+-2L~ Tr(TaB)Tr(7bB) 

1rY 

_.!_Tr(DBgDBg-1 ) 
7rY 

(3.8a) 

(3.8b) 

(3.8c) 

Here, g(T) is the group element in irrep T of g, Swzw is the Wess-Zumino

Witten action and y ,......, k-1 is associated to the trace normalization ofT. The 

quantities B = BaTa, f3 = f3aTa are a set of auxiliary fields, called the connec

tions for reasons which will be clear below. Integration of the connections gives 

the non-linear form (3.4) of the action. 

The action (3.8) describes the generic theory L as a spin-two gauging of 

the WZW action by the K-conjugate theory L. The couplings of the gauge field 

hmn(a:, a) are quite simple in this form. The linearized action is invariant under 

the Diff S2 (I<) transformations 

- ...... 
8a: = -ae + e a a, 8a = -a[+ [ [) a 

8g = gi>. - i>..g 

8B =a>.+ i[B, >.], 8B = [)).. + i[B, >..] 

>. = ;..ara, ).. = >..ara 

;..a = 2ei/~Bb, ).a = 2[L:f3b 

(3.9a) 

(3.9b) 

(3.9c) 

(3.9d) 

(3.9e) 

where e, [are the diffeomorphism parameters. The transformation of the K

conjugate metric in (3.9a) is the usual transformation of a second-rank tensor 
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field, as noted above, but the Diff S2 (K) transformation of B, Band the matter 

is quite exotic. 

In particular, Eqs. (3.9b,c) show that Diff S2 (K) is locally embedded in 

local Lie g x Lie g, with the matter g(T) E G and the connections B, B trans

forming under local Lie g x Lie g as the group element and the Lie g x Lie g 

connection respectively. These transformation properties account for the covari

ant derivatives in (3.8c) and the intriguing resemblance of the linearized action 

(3.8) to the usual (Lie algebra) gauged WZW model. Further discussion of the 

local embedding and the linearized action is given in Refs. [11], [13], and [19]. 

4 Two world-sheet metrics 

We have seen that the world-sheet action of the generic theory L is a spin-two 

gauge theory, where the gauge field hmn is the world-sheet metric of the L theory. 

Because hmn couples only to the L matter, it is also possible [11] to introduce 

another spin-two gauge field hmn, 

( 
-uu 

hmn = e-x 1 ( -) 
2 u-u 

Hu- u)) 
1 ' 

V-Ji,hmn = _2_ ( -1 
u+u ~(u-u) 

Hu-=-u)) 
uu 

(4.1) 
which is the world-sheet metric of the L theory. This results in the doubly-gauged 

action Sv, with a K-conjugate pair of world-sheet metrics hmn and hmn· 

The linearized form of the doubly-gauged action [13] is surprisingly simple, 

D..Cv ~(at:+ f3L:)Tr(TaB)Tr(7bB) 
1rY 

1-v 
a=--

1+v 

+~(at:+ /3L:)Tr(TaB)Tr(7bB) 
1rY 

1 - 1 
--Tr(DBgDBg- ) 

1rY 

1-v 
a=--

1-v 

1-u 
f3=1+u 

8 

- 1-u 
,8=1+u 

(4.2a) 

( 4.2b) 

(4.2c) 
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and may in fact be obtained from the action (3.8) by the substitution 

(4.3) 

Other forms of the doubly-gauged action, including the non-linear form, are 

given in Refs. [13] and [19]. 

The doubly-gauged action (4.2) is invariant under two commuting diffeo

morphism groups [13], called Diff S2(T)x Diff S2(K), which are associated to 

the two world-sheet metrics hmn and hmn· In particular, hmn is a rank-two ten

sor under Diff S2(T) but inert under Diff S2(K) and vice versa for hmn· The 

Diff S2(T) x Diff S2 (K) transformations of the matter and the connections are 

given in Ref. [13] 

In the doubly-gauged action (4.2), the K-conjugate metrics hmn(a, 6:) and 

hmn(/3, m are on equal footing. When considering the L theory, however, only 

hmn is dynamical, while hmn provides a gravitational probe for the stress tensor 

of the L theory, 

(4.4) 

in parallel with the stress tensor omn of the L theory in (3.6). In what follows, 

we refer to hmn and hmn as the L-metric and the L-metric respectively. 

5 A Connection with Sigma Models 

An important open problem in the action formulation of ICFT is the possible 

connection with sigma models. In this section we sketch a speculative, essentially 

classical derivation [19] of such a connection, with surprising results. The details 

of this derivation cannot be taken seriously until one-loop effects are properly 

included. 

One begins with the doubly-gauged action ( 4.2) for the L theory, and inte

grates the dynamical gauge fields a, a of the L metric. This gives the 8-function 

constraints on the connections, 

(5.1) 

which are solved by Ba = Pa bbb, Ba = Pa b[jb with unconstrained b, b. Then, one 
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may integrate b, b to obtain the action 

sf3,i3 = J drda(.C + r) (5.2a) 

(5.2b) 

(5.2c) 

c-1 _ ( -~PM(w)P PwPM(w-1 )P) 
- Pw-1PM(w)P {3PM(w-1 )P 

(5.2d) 

M(w) = ((1 + P(w -1)P)(1 + P(w-1 -1)P)- {3~P) -
1 

(5.2e) 

which is the conformal field theory of L coupled to its world-sheet metric hmn(f3, ~). 

Here, eTa = eia xi' eu a = eia x'i' and the barred quantities are defined similarly 

with the right-invariant vielbeins eia. 

Using the action (5.2) and the prescription (4.4), one computes the stress 

tensor of the L theory, 

Boo= Bn -
1
-(era- eua)(erb- eub)Gbc(PF(w)P)ac 

167!" 
1 + 

16
71" (era+ eu a)(erb + eub)Gbc(P F(w-1 )P)a c 

-
1
-(era- eua)(erb- eub)Gbc(PF(w)P)ac 

167!" 
1 

-(era+ eua)(erb + eub)Gbc(PF(w-1)P)ac 
1671" . 

F(w) = ((1 + P(w- 1)P)(1 + P(w- 1
- 1)P))-1 

(5.3a) 

(5.3b) 

in the conformal gauge ({3 = ~ = 0) of the L metric. The matter degrees of 

freedom in (5.3) are entirely projected onto the P subspace. As a consequence, 

one finds that the stress tensor is conformal at high level with high-level central 

charge 

c(L) =rank P + O(k-1
) 

as it should be for the L theory (see Eq. (2.6c)). 

10 
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Finally, one obtains the conformal field theory of L as the effective sigma 

model, 

(5.5a) 

N = wP(1 + P(w- 1)Pt1 P 

B7f = Bii- yeiae/Gcb(N- NT)a c (5.5b) 

NT= P(1 + P(w- 1 - 1)P)-1 Pw-1 (5.5c) 

by evaluating the action (5.2) in the conformal gauge of the L metric. Here Bii 

is the WZW antisymmetric tensor field, and GiJ, Bif are the space-time metric 

and antisymmetric tensor field on the target space. This sigma model reduces 

to the WZW model when P = 1, as it should. 

The result (5.5) is an ordinary sigma model, but the derivation above illus

trates the remarkable fact that the question of conformal invariance of a sigma 

model depends on the choice of the world-sheet metric (the gravitational cou

pling) and its associated stress tensor. 

The correct stress tensor (5.3) of the L theory followed from the exotic 

coupling of the L metric to the L matter in the action (5.2), but one may also 

consider the same sigma model (5.5) with the distinct, conventional gravitational 

coupling [23], 

(5.6) 

of the conventional world-sheet metric g;;:n, which gives the conventional stress 

tensor e;;:n' 
ec = 2 8S 

mn ~8 C y-gc 9mn 
(5.7) 

It is unlikely that e;;:n is conformal in this case, but the question is not directly 

relevant because, as we have seen, g;;:n and e;;:n are not the world-sheet metric 

and stress tensor of the L theory. 

We finally mention that Tseytlin [24] and Bardakc;i [25] have studied a sim

ilar sigma model, which is related to the bosonization of a generalized Thirring 

model [26]. When Q in Tseytlin's (3.1) is taken as twice the high-k projector P, 

his action and the sigma model (5.5) are the same except for a dilaton term and 

an overall minus sign for the kinetic term. Further investigation will determine 

whether this intriguing circumstance is more than a coincidence. 
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