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Abstract 

Using the N = 4 topological reformulation of N = 2 strings, we 

compute all loop partition function for special compactifications of N = 

2 strings as a function of target moduli. We also reinterpret N = 4 

topological amplitudes in terms of slightly modified N = 2 topological 

amplitudes. We present some preliminary evidence for the conjecture 

that N = 2 strings is the large N limit of Holomorphic Yang-Mills in 4 

dimensions. 
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1. Introduction 

One of the simplest types of string theories is N = 2 string. It lives in 

four dimensions, and it has finite number of particles in the spectrum. More­

over it describes self-dual geometries and Yang-Mills fields [1] [2], which are 

conjectured to describe, through reduction, all 2 and 3 dimensional integrable 

models. Moreover the 4 dimensional N = 2 string itself seems to correspond 

to an integrable theory, as is evidenced by perturbative vanishing of scattering 

amplitudes beyond three point functions. 

Given all these connections, it seems very !mportant to understand N = 2 

string amplitudes. In this paper we consider this question and find, rather sur­

prisingly, that one can compute, at least in special cases, the all genus partition 

function of N = 2 strings. This seems to be another evidence for the quantum 

integrability of self-dual theories. More specifically we consider compactifica­

tions of N = 2 strings on T 2 x R2
• Using the reformulation of N = 2 strings 

in terms of N = 4 topological strings [3], allows one to develop techniques to 

compute it. 

For low genus, this can be done more or less directly, because the structure 

of the amplitudes are so simple. However for g 2: 3 the story gets more compli­

cated. In such cases we have found a modified version of the harmonicity equa­

tion of [3] for which the boundary contributions cancel, and are strong enough 

to yield the genus g partition function up to an overall constant. Specialized to 

g = 1, 2 this result agrees with explicit computations of the amplitudes. This 

is somewhat analogous to the method used in [4] to compute the topological 

N = 2 string amplitudes, with the replacement of holomorphic anomaly with 

harmonicity equation. 

Another aspect of N = 2 string, is the topological interpretation of what 

it is computing. We show that quite generally N = 4 topological strings, are a 

slightly (but crucially) modified form of N = 2 topological string amplitudes. 

This allows us to give a more clear interpretation of what topological quantities 

the partition function computes. In particular we see quite explicitly in the cases 

of genus 1 and 2 in the example of T 2 x R2 what these topological quantities 
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are, and moreover reproduce in yet another way, the partition function itself by 

direct topological evaluation. 

Given that N = 2 string has finite number of particles it is a candidate for 

a search for a large N limit of a gauge theory. We look for this and find some 

preliminary evidence that the large N limit of Holomorphic Yang-Mills theory 

in 4 dimensions (2 complex dimensions)[5][6] is N = 2 strings. This theory is 

a deformation of N = 2 topological Yang-Mills theory, which has been recently 

solved in the work of Seiberg and Witten [7]. This is another exciting link with 

N = 2 strings. 

The organization of this paper is as follows: In section 2 we review relevant 

aspects of N = 2 strings as well as its topological reformulation. We also 

give a connection between N = 4 and N = 2 topological amplitudes in this 

section. In section 3 we show how the modified harmonicity equation manages to 

avoid boundary contributions (with some of the details postponed to appendix 

A). In section 4 we consider the target space to be T 2 x R 2 and evaluate the 

partition function for all g. We do genus 1 and 2 explicitly (with some of the 

details for the genus 2 case postponed to the appendix B) and then use the 

harmonicity equation to rederive these results as well as generalize to all g. In 

section 5, using the topological reinterpretation, we compute the genus 1 and 

genus 2 contributions topologically and find agreement with the computation 

of the previous section. Finally in section 6 we present our conclusions and 

conjectures. 

2. Review of N = 2 Strings 

In this section we briefly review aspects of N = 2 strings which are relevant 

for this paper. N = 2 string was first studied in the early days of string theory 

[8] and its study was resumed with the surge of interest in string theory [9]. 

It was discovered relatively recently [1],[2] that N = 2 string theory has a 

rich geometric structure related to self-duality phenomena. In particular its 

critical dimension is four (2 complex dimensions), and the closed string theory 

describes self-dual gravity, whereas heterotic and open string versions describe 
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self-dual gauge theories in four dimensions coupled to self-dual gravity. Some 

of these aspects were further studied [10]. More recently it was shown [3] 

that the loop amplitude computations in N = 2 theories can be simplified by 

proving their equivalence to a new topological string based on the small N = 4 

superconformal algebra. In this way the ghosts are eliminated and at the same 

time the matter fields are topologically twisted; this makes computations much 

easier. The main aim of this paper is to further elaborate on the meaning of the 

N = 2 string amplitudes in light of this development. In this section we will 

give a brief review of the topological reformulation of [3] referring the interested 

readers for the detail to that paper. We will mainly concentrate on the closed 

string case. The generalization to other cases (heterotic and open) are straight 

forward. 

N = 2 strings are obtained by gauging the N = 2 local supersymmetry on 

the worldsheet. This consists of the metric gJJ 11 , two supersymmetric partners of 

spin 3/2, '1/Jtfo and one U(1) gauge field Aw In the standard fashion, these give 

rise to a pair of fermionic ghost (b, c) of spin 2, two pairs of bosonic superghosts 

(.13±, r±) of spin 3/2 and another pair of fermionic ghost (b, c) of spin 1. The 

total ghost anomaly is c = -6, which is cancelled by a matter with c = 6, 

corresponding to a superconformal theory in 4 dimensions. The vacua of N = 2 

strings consist of theories in 4d which have Ricci-flat metric [1]. These theories 

will necessarily have an extended symmetry, by including the spectral flow 

operators, to the small N = 4 superconformal algebra with c = 6 (c = 2). 

The N = 4 algebra consists of an energy momentum tensor T of spin 2, an 

SU(2) current algebra of spin 1, whose generators are denoted by J++, J, J-­

and 4 spin 3/2 supercurrents which form two doublets (a-' a+) and (a-' a+) 

under the SU(2) currents. The supercurrents within a doublet have no singular­

ities with each other, while the oppositely charged supercurrents of the different 

doublets have singular OPE (and in particular give the energy momentum ten­

sor). Moreover a+ and a+ have a singular OPE with a total derivative as the 

residue: 
a+(z)a+(o),..., aJ++(o) 

z 
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Note in addition that 

c+ = a-(J++) (2.1) 

which follows from the fact that (G-,G+) form an SU(2) doublet. Also note 

that J++ is the left-moving spectral flow operator. This in particular implies 

that the chiral field v corresponding to the volume form of the superconformal 

theory can be written as 

v = Jt+ Jfi+ 

Together with (2.1) this means that 

G£G_RV(z, z) = G!Gfi(z, z) 

(2.2) 

(2.3) 

It is important to note that the choice of two doublets among the four su­

persymmetry currents is ambiguous: In particular there is a sphere worth of 

inequivalent choices given by 

where 

-G+(u) = u 1a+ + u2G+ 

G-"(u) = u 1G-- u2G­

G-(u) = u2*G-- utoG­

G+(u) = u2*G+ + utoa+ 

lull2 + lu212 = 1 

(2.4) 

and where the complex conjugate of Ua is t:abub (i.e. ( u1) = u2* and ( u2) = -uh 

where *2 = -1). Note that we could do this rotation for left and right N = 4 

algebras independently, and we will use U£, UR to denote the left- and right­

moving choices for the rotation. 

A theory with N = 4 superconformal structure can be deformed, preserving 

theN= 4 structure using chiral field of(left,right) charge (1,1). There are four 

deformations that can be made out of a given chiral field r/J;: 

s s + jtPa-a-.~,;- e1a-a- .~,;- t~ 2a-c- .~,; + e2c-c- .~.. -+ I L R'l' I L R'l' I L R'l' I L R'l'l 
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Note that for unitary N = 4 theories, these deformations are pairwise complex 

conjugate. In particular there exists a matrix M/* so that 

tf!b _ €ac€bd Ml*t~d 
I - I J 

with MM* = 1. 

The N = 2 string amplitudes are computed by integration of the string 

measure over the N = 2 supermoduli. The bosonic piece of this moduli consists 

of the moduli of genus g Riemann surfaces as well as the g-dimensional moduli 

of U(1) bundles with a given instanton number n. For a fixed instanton number 

the dimension of {3± zero modes gives the dimension of superrhoduli. Since they 

are charged under the U ( 1) this dimension will depend on the instanton number. 

In particular the dimension of these supermoduli is (2g- 2- n, 2g- 2 + n) for 

the ([3+ , {3-) zero modes. In particular this means that In I ~ 2g - 2 in order to 

get a non-zero measure. Even though geometrically not obvious, it turns out 

that we can also assign independent left-moving and right-moving instanton 

numbers. So at each genus g we have to compute the string amplitudes F/fL,nR 

with -2g + 2 ~ nL, nR ~ 2g- 2. It is convenient to collect these amplitudes in 

terms of a function on u-space. Let 

F 9(uL,uR) = 

~ ( 4g-4 )( 4g-4) 
~ 2g- 2 + nL 2g- 2 + nR . F/fL,nR X 

-2g+2$nL,nR$2g-2 

X ( ul)2g-2+nL ( uk)2g-2+nR ( u~yg-2-nL ( u~)2g-2-nR 

The result of [3] is that F 9 can be computed by 

3g-3 

F 9 (uL, uR) = { ([II (llA, Gz(uL))(JiA, ~(uR))] { hJRX 
jMg A=l jE (2.5) 

x [ h G!(uL)Gji(uR)] 9
-

1
) 

where E denotes the Riemann surface and M 9 denotes the moduli of genus g 

surfaces and llA denote the Beltrami differentials. In this expression there are 

no ghosts left over and the N = 4 matter field is topologically twisted, i.e. the 
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spin of the fields are shifted by half their charge, so in particular a+, (;+ have 

spin 1 and a-,(;- have spin 2 and J++ has spin 0 and J-- has spin 2. 

Let us give a rough outline of how the above correspondence between N = 2 

string amplitudes and the N = 4 topological amplitude, defined above, arises. 

The simplest case of constructing this measure corresponds to the nL = nn = 

2g- 2. In this case we have no (J+ zero modes, and (4g- 4) (J- zero modes. 

If we had instanton number (g - 1 ), it would have been equivalent to twisting 

the fields, by the definition of topological twisting (identifying gauge connection 

with half the spin connection). So for instanton number (2g- 2), we can view 

the amplitudes as being computed in the topologically twisted version but with 

an addition of (g -1) instanton number changing operators inserted. Note that 

the matter part of the instanton number changing operator is J++. In the 

topologically twisted measure the ((J-, 'Y-) ghost system have the same spin as 

(b, c) and the ((J+, -y+) have the same spin as (b, c), and since they are of the 

opposite statistics they cancel each other out as far as the non-zero modes are 

concerned. The zero modes can also be canceled out by a judicious choice of 

the position of picture changing operators. We have ( 4g - 4) picture changing 

operators inserted for integration over the supermoduli which are accompanied 

from the matter sector with a-. (3g- 3) of them get folded with the Beltrami 

differentials in cancelling the zero modes of b. The integration over the U(1) 

moduli is traded with integration over g operators on Riemann surfaces: (g- 1) 

of them come from operators where (g- 1) of the instanton changing operators 

have converted a- into (;+ and the last one is simply the current J. This 

would give the correspondence at the highest instanton numbers and the rest 

are obtained by performing an SU(2) rotation on the N = 2 string side and 

seeing that it corresponds to changing the instanton numbers. 

Topological Meaning of N = 2 String Amplitudes 

Given the fact that the physical N = 2 string amplitudes have been re­

formulated in terms of topologically twisted N = 4 theories, it is natural to 

ask if there is any topological meaning to the latter. Recall that if we have 

any N = 2 superconformal theory we can consider the twisted version and 
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couple it to topological gravity, which has critical dimension 3. The geomet­

rically interesting examples of such theories are sigma models on Calabi-Yau 

manifolds and depending on how the left- and right-moving degrees of freedom 

are twisted we get a topological theory which counts holomorphic maps (A­

model) or quantizes the variations of complex structure on the Calabi-Yau (the 

Kodaira-Spencer theory [4] obtained from B-model). If the complex dimension 

of Calabi-Yau is not equal to three the topological string amplitude vanishes 

because the (3g-3) negative charges of the a- insertions is not balanced by the 

d(g- 1) charge violation of the U(1) of theN= 2 algebra if d :f. 3. Only in the 

case of complex dimension 2 one can still try to get a non-vanishing amplitude 

by inserting (g- 1) chiral operators to the action of the form a£a"RV where 

V is the unique chiral field with charge two2 and it corresponds to the volume 

form of the complex 2d manifold. Note using (2.3) that these (g -1) insertions 

are the same as the (g -1) insertions of G!G~. In other words it gives exactly 

the same result as the partition function for the highest instanton number of 

the N = 2 string (2.5) with the exception of the insertion of I hJn. It was 

argued in (4] that this N = 2 topological amplitude vanishes even with this 

charge insertion. In fact it was directly argued in (3] that this follows rather 

simply from the underlying N = 4 algebra. So the N = 2 string amplitude 

manages to be non-trivial precisely because of the extra insertion of I J LJ R· 

Therefore there must be a simple topological meaning for the highest instanton 

amplitude of the N = 2 string. 

For concreteness let us consider the A-model version which is set up to 

count the holomorphic maps from Riemann surfaces to Calabi-Yau manifolds. 

In the limit that f; --+ oo one can show that the measure is concentrated near 

the holomorphic maps [4] . In this case we are considering holomorphic maps 

which map the Riemann surface with (g - 1) points on the Riemann surface 

mapped to specific (g - 1) points on the target which is dual to the volume 

form. Actually to go to the Poincare dual of the volume form one has to use 

2 In dimension bigger than 3 we need a negative charged chiral field which does 

not exists, and in dimension 1, there is no chiral field with charge bigger than one. 
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c+ trivial operators to deform the field, but that may change the amplitude 

in this case because we have J insertion which does not commute with c+. 
So we have to use the precise representative given by G£ GR_ V. Each time we 

choose a cohomology representative in target of degree d (corresponding to d­

forms), it gives rise toad- 2 form on moduli space (which translating degree 

to charge, in the operator language means that the charge is decreased by two 

units because of the insertion off G£ f GR_)3 . In our case each volume form will 

give a (1, 1) form on the moduli space ofholomorphic maps which we denote by 

k. So consider the moduli space MY of holomorphic maps from genus g to the 

2 complex manifold. The formal complex dimension of M is (g- 1), however 

it typically has a dimension bigger than (g- 1). In such cases the topological 

amplitude computation is done by considering the bundle V on M whose fibers 

are the anti-ghost zero modes which is H 1(N) where N is the pull back of 

the normal bundle piece of the tangent bundle on the manifold restricted to 

the holomorphic image of the Riemann surface. Let n be the dimension of V. 

Then the complex dimension of M is (g - 1 + n ). Therefore if it were not for 

the J J LJ R insertion, the usual arguments of topological strings, in the simple 

cases, would lead to the computation of 

JM k9-1
cn(V) (2.6) 

where Cn denotes the n-th chern class of V. However as mentioned before this 

amplitude vanishes. The effect of the J J LJ R insertion, will correspond on the 

moduli of holomorphic maps to a (1,1) form which we denote by :f. This has 

the effect of absorbing one of the fermion zero modes which was responsible 

for the vanishing of the amplitude. Thus the characteristic class that we will 

end up with from V will be of dimension (n- 1). The precise form of it may 

depend on the case under consideration. Therefore using the same reasoning 

3 The form on the moduli space can be described by considering the canonical map 

from the total space of the Riemann surface and the moduli space of liolomorphic maps 

to the target manifold, and using the pull-back of the d-form and integrating it over 

the Riemann surface. 
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as for topological theories we see that the top instanton number amplitude for 

N = 2 strings in the [-+ oo computes 

F:fg-2,2g-2lf-_.
00 

= { kg-l 1\ c~-l(V) 1\ :J }Mg 
(2.7) 

Later in this paper we will see how this works in detail in the case of the four 

manifold T 2 x R2 for g = 1, 2. It happens that for some topological strings the 

formula (2.6) is modified. An example of this is discussed in (11). In such cases 

some of the insertions of operators corresponding to fields (the analog of k in 

the above) will be replaced by modifying the bundle V. It turns out that this 

does happen for us for g ~ 3 for the example of T 2 x R 2 • For g ~ 3 the above 

formula in this case gets replaced by 

F:fg-2,2g-2lf-.oo = { k 1\ Cn+g-3(V) 1\ :J }Mg 
(2.8) 

for some V. Unfortunately there is no general prescription for computing this 

that we are aware of, and it very much depends on the models. We have not 

computed V for T 2 x R2 , which is relevant for g > 2 amplitudes. 

3. Harmonicity Equation 

In this section, we will prove that the g-loop amplitude FY( U£, un) solves 

the equations 

eabuR
8

8 
DtbcF9 (uL,un) = 0 ua 

L 

fabu[, aa DtcbF9 ( U£, un) = 0. ua 
R 

(3.1) 

(3.2) 

In the paper [3), Berkovits and one of the authors have pointed out that the 

stronger version of these equations 

fab aa DtbcF9 ( U£, un) = 0 ua 
L 

eaba{)a DtcbF9(uL,un) = 0 
UR 
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would hold if the contributions from the boundary of the moduli space M 9 and 

contact terms in operator products were absent. The purpose of this section 

is to examine these contributions carefully. As we shall see, there are in fact 

contact terms which spoil (3.3). This is also in accord with the fact that if 

there were no corrections to (3.3) it would lead to puzzling_ conclusions [12]. 

Fortunately these contact terms are cancelled out in (3.1) and (3.2). In the 

following, we will refer to these as harmonicity equations. 

In the next section, we will examine the case when the target space is 

M = T 2 x R2. For g = 2, we can compute F9 directly and check explicitly that 

the F9 directly and check explicitly that the harmonicity equations (3.1) and 

(3.2) are satisfied. Furthermore the harmonicity equations will make it possible 

to determine F9 for all g ~ 3 up to a constant factor independent of target 

space moduli at each g. 

Now let us prove the harmonicity equations. The steps in the proof are 

parallel to those used in [3] except we will have to be very careful with many 

boundary contributions that arise. The covariant derivative D1.b is defined so 

that its action on F9 generates an insertion of a marginal operator correspond-

ing to the target space moduli tab; 

w[,w~D1.bF9(uL, un) = 
3g-3 

= 1 ([II (JlA, ~(uL))(iiA,~(un))] f hJnx 
Mg A=1 }r:, 

x [1: Gt(uL)GI(un)] g-

1 h {QL(wL), [~(wn), ¢]}) 

where ¢ is an anti-chiral primary field coupled to the moduli tab. Therefore the 
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left-hand side of (3.1) can be written as 

ab c a D Fg E un-a tbc = ua 
L 
a2 

= Eab a b [wiunD1bcF9] = 
auLawL 

a2 1 3g-3 - -
= fab- a awb ([II (JlA, G£(uL))(iiA, G]i(un))]x 

L L Mg A=1 

x h hJn [lr:. Gt(uL)~(un)r-
1 

x 

x h {Qt(wL), [~(un), ¢]}). 

(3.4) 

Note that the marginal operator inserted here is { Qt( wL), [~( un), ¢]} with 

un in the right-mover while WL f- UL in the left-mover. Since 

a2 - -ab - + -+ _ -+ + + -+ 
f - a a b GL(uL)QdwL)- GLQL- GLQL 

UL WL 

= (Eabu£wi)- 1 (6"f(uL)Qt(wL)- G!(wL)Qt(uL)) 

and similarly 

a2 - -ab - - + - + -- -+ 
f - a a b GduL)QL(wL) = GLQL +GL.QL 

UL WL 

= (Eabu£wi)- 1 (~(uL)Qt(wL)- ~(wL)QL(uL)), 

the differential operator fabau• awb exchanges UL and WL· In the following, we 
L L 

will show that if we pick any of ( 4g - 4) UL 's in the correlation function 

3g-3 

J9(uL, un; WL) = 1 ([II (JlA, ~(uL))(iiA, ~(un))] f hJnx 
Mg A=1 }r:, 

x [.£ Gt(uL)GI(un)r-
1 .£ {QL(wL), [~(un), ¢]}}, 

and exchange it with WL, f9 remains invariant. This implies that f9 obeys 

a2 
fab- a a b f9(uL,un;wL) = 0, 

UL WL 
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which is equivalent to the harmonicity equation (3.1) by (3.4). 

Since 
(ii(uL) = [Qt(uL), J£-] 

(3.5) 
~ ~ GL(uL) = -[QduL), h], 

exchanging U£ and WL is same as exchanging locations ofQL(uL) and QL(wL) 

in fY(uL, URi W£). We can exchange their locations just like two automobile 

drivers would do when they try to pass each other on a narrow country road. We 
~ ~ 

can first move Q!(wL) off from [Q}i(uR), ~],park it in a "turn-out" at JE hJR. 

We then move Qt(uL) off from Ji- or h in (3.5), let it pass QL(wL), and 

stop it at [Q"1i(uR),~]. Finally we move QL(wL) out from the ~-out and 

stop it at Ji- or h. In this way, we can exchange locations of Q!(wL) and 
~ QL(uL)• 

This is not the complete story since we have neglected the anti-commutators 
~·-::- ~ of QL with GL and GL; 

{QL(wL), G£(uL)} = 2(Eabu£wi)TL 

---::-; ~ 1 a b ++ {QL(wL),GL(uL)} = 2,(fabULw£)8JL , 

which appear when we move Qt(uL) and Qt(wL) back and forth in fY. There­

fore what we have shown so far is that (3.4) is a linear combination of the 

following four types of terms; 

3g-3 1 ((J.LA'• TL) II (J.LA, (ii(uL)) II (JlA, ~(uR))x 
Mg A;tA' A=1 (3.6) 

x h hJR [l Gt(uL)~(uR)r- 1 

h[Q1i(uR), ~]). 

3g-3 

1 ((J.LA', TL)(J.LA"• J£-) II (J.LA, (ii(uL)) II (JlA, ~(uR))x 
Mg A;tA',A" A=1 (3.7) 

x h hJR [l G[(uL)6"i(uR)] g-

1 

h (Qt(uL), [Q}i(uR), ~]}}, 
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3g-3 

1 ([ IJ (J.LA, (ii(uL))(JlA, ~(uR))] { hJR 
Mg A=1 jE 

x h aJt+~(uR) [l Gt(uL)6"i(uR)r-
2 

h[Q1i(uR),~]). 
(3.8) 

3g-3 

1 ((J.LA•, J£-) II (J.LA, (ii(uL)) II (JlA, ~(uR))x 
Mg A;tA' A=1 

x h aJt+ JR [l Gt(uL)~(uR)r- 1 

h[Q1i(uR),~]), 
(3.9) 

where A', A" = 1, ... , 3g- 3 (A' ::j:. A"). We did not write terms which are 

related to one of these four types by contour deformation of the operators. To 

prove the harmonicity equation (3.1), we want to show that these four terms 

vanish. 

The first two, (3.6) and (3.7), contain (J.LA'• TL) thus are total derivative in 

the moduli space M 9 of smooth Riemann surfaces. Then these integrals reduce 

to integrals on the boundaries of M 9 • In Appendix A, it is shown that there is 

no boundary contribution to these integrals and therefore we can ignore (3.6) 

and (3.7). 

The third (3.8) and fo~h (3.9) will also be zero if we can integrate away 

the total derivatives aJt+ G}i( UR) and aJt+ J R; This will be possible if there 

is no singularity in the domains of these integrals. Let us first consider the 

third term (3.8). By the Cauchy theorem, the surface integral of 8Jt+~(uR) 
becomes anti-holomorphic contour integrals around other operators in the cor­

relation function. Although t~ are operators in (3.8) which have operator 

product singularities with Jt+ G}i( uR), none of these singularities survive after 

the contour integrals since they all have wrong powers in the holomorphic and 

anti-holomorphic coordinates. Thus (3.8) vanishes by integration-by-parts. 

Let us examine the last piece (3.9). Again Jt+ J R has singularities with 

other operators in (3.9), but the only ones that survive the contour integrals 
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are those at G'R( UR), which gives 

[ ((J.tA'• Ji-)(J.tA"'• Jt+Gn(uR)) II (J.tA, Gr(uL)) II (ftA, Gn(uR))x 
}Mg A;tA' A;tA'" 

X [l8I(uL)~(uR)] g-

1 

l(Qi(uR), ~]), 
where A"'= 1, ... , 3g- 3 However it is easy to see that this in fact is also zero. 

To show this, we can just move ~( uR) off from ~. Since everything in the 

above (anti-) commutes with ~( uR), its contour drops off from the Riemann 

surface. Therefore the last term (3.9) also vanishes by integration-by-parts. 

We have shown that (3.6), (3.7), (3.8) and (3.9) are all zero. Thus the 

harmonicity equation (3.1) is proven. _ 

We should point out that in this proof it is crucial that ~( uR) ~he 
marginal operator has the same UR as the rest of the operators GJi and G~ in 

Fg. Otherwise the operators Jt+ ~would have a singularity with [QI( uR), ~] 
with a non-zero pole residue, and the last part of the proof would not go through. 

This is where the stronger version of the harmonicity equation (3.3) breaks 

down. 

4. N = 2 String Amplitudes on T 2 x R2 to All Order in Perturbation 

In this section, we will examine the N = 2 string amplitudes on T 2 x R 2 

in detail. We consider the A-model only. The corresponding amplitudes in the 

B-model are obtained by simply replacing the Kahler moduli u by the complex 

moduli p. 

At genus one, the string amplitude has been computed in our previous 

paper [1] as 

F 1 =-log ( vflmulmpl17(u)j2117(P)I2
), 

where o- and pare Kaher and complex moduli of T 2 respectively. At genus two, 

we will carry out explicit computation below and derive4 

F2(uL, uR) = "" ( uiuk + _u~i~u~h!:_)4 
L..J n+mu n+mu 

(n,m);t(O,O) 

4 This is up to an overall normalization. To obtain the topological normalization 

discussed in section 5.1 we need to multiply the above result by 4 ( 2~)4. 
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We will show that F:j, 2 has a nice topological interpretation as counting of 

number of holomorphic maps from genus two surfaces to T 2• 

We will also verify that these expressions for F 1 and F 2 are consistent with 

the harmonicity equations, (3.1) and (3.2). We will then apply these equations 

to g 2: 3 amplitudes. It turns out that the harmonicity equations determine Fg 

up to an overall constant at each genus as 

( 
u1u1 u2u2 )4g-4 

Fg(uL, uR) = (const) x L: In+ mu!2g-4 L R + L R_ 
( )() n+mu n+mu 
n,m ;t 0,0 

Topological interpretation of g 2: 3 amplitudes will be discussed in section 5. 

4.1. Genus One 

At genus one, the N = 2 string amplitude F 1 is given by 

1 1 j dr (j )2 

F = 4 (Imr)2( JLJR } 

whelie T is the modulus of the worldsheet torus. This is defined in such a way 

that the derivative D 1.b with respect to the target space moduli tab gives 

a b 1 1 J dr (! J --::-( )--::-( ) } uLuRDtabF = 2 (lmr)2 hJR GL U£ GR UR cj> 

which is natural generalization of (2.5) ( 1/2 is due to the z2 symmetry of the 

torus). 

When the target space is T 2 x R2 , this expression reduces to 

1 J d2
r 

F1 = 2 L: (Imr)2 exp( -S) 
n,m,r1$EZ 

where 

S = 
1 

(tPLPR + [f5LPR) 

PL and PR are string momenta on T 2 given by 

PL = (n + ps)- (m + pr)f 

PL = (n + ps)- (m + pr)f 

PR = (n + ps)- (m + pr)r 

PR = (n + ps)- (m + pr)r 
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with p being the complex moduli of T 2, and t is the Kahler modulus whose 

real and imaginary parts are the volume of T 2 and the theta parameter of the 

sigma-model. In [1] (See also [4] and [13]) , this integral is evaluated with the 

result 

F 1 =-log ( Jimalmpi?J(aW!?J(PW) ( 4.1) 

where a= (87ri)- 1t. 

It is easy to show that this expression is consistent with the harmonicity 

equation. In fact, in this case, the stronger version of the harmonicity equation 

(3.3) also holds. On Fl, the stronger version takes the form 

(_E__!!_- _E__!!_)F 1 - 0 
IJtla 1Jt2b' 1Jt2a IJtlb' - (4.2) 

where a, b = 1, 2. Let us first consider the case when (a, b)= (1, 2) and choose 

t 11 to be the Kahler modulus t and t 22 ' to be its complex conjugate f. In this 

case 1Jt21 and 1Jttb' insert operators ax28X 1 and 8X28X1 on the worldsheet 

where X 1 and X 2 are coordinates on T2 and R2 parts of the target space 

respectively. Since there is no winding mode in R2 direction, 8X2 and 8X2 

are contracted according to the Wick rule, and its residue is proportional to 

8X 18X1. This is equal (up to a factor (t + f)- 1) to the T 2 part of the energy­

momentum tensor TR, which we can convert into a derivative 8r with respect 

to the worldsheet modulus. Thus we find 

1 1 "'128(1 ) 1Jt2•1Jtt2'F = .( f) LJ d r
8

_ -exp(-S) . 
1rz t + t r Imr n,m,r,, 

Since this integral is total derivative in f, it will receive contribution only from 

the boundary of the moduli space at Imr -+ oo. There the sum over n, m, r, s 

becomes an integral and we obtain 

L exp( -S) -+ 1Timr 
n,m,r,$ t + f • 

The contribution from the boundary of the moduli space then gives 

1 1 
1Jt211Jt•2' F = 2(t + f) 2. 
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By combining this with the harmonicity equation ( 4.2), 

lJ IJ-Fl - __ 1 
t t . - 2(t + f)2 

and this is consistent with the expression (4.1) of F 1. 

By considering other cases such as (a, b) = (1, 1) and t 11 = t, t 12' = p, we 

can derive identities such as 

1JtlJpF1 = 0, 

which are also consistent with the expression ( 4.1 ). In fact, the harmonicity 

equation ( 4.2) together with the modular invariance in p and the duality in t 

uniquely determine F 1 to be of the form (4.1). 

4 .2. Genus Two; Evaluation I 

Genus two computation of the amplitude is much easier than g > 2, because 

all the fermionic fields in the definition of the partition function are absorbed 

by the fermion zero modes (this is mirrored, as we will explain later, in the 

simplicity in its topological reinterpretation). We leave this aspect of the genus 

2 amplitude computation to Appendix B, where it is shown that the genus 2 

amplitude F 2 on T 4 is given by 

( )

2 detg ~ ~ ~ 
F

2
= L j detlmn ([det(PL+rL)det(PR+rRW)x 

PL,PR 

d3 fld3fi 
X exp(-S(PL, PR)].. ·-. 

where PL and PR are given by 

~i - 1 i 2 ij - k 
PLa- uLPLa + ULf YjkpLa 

~; 1 i 2 iJ k 
PRa = uRPRa + URf Y]kPRa 

with PL and PR being parametrized by a set of integers n, m, 1·, s as 

Pfa = (n~ + P~s-!)- (mib + p~rib)Oba 
i i -i . ib -i 'b -

PLa = (na + Pjs{.)- (m + Pjrl )flba 

i i i . ib i 'b 
PRa = (na + Pjs{.)- (m + Pjrl )flba 

i i -i . ib -i 'b 
PRa = (na + Pjs{.)- (m + Pjrl )flba, 
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(4.3) 



TL and TR are quantum variables obeying 

(!{a r{b} = (~a r:1b} = 0 
.,. ~~ i~ 1 1 2 2 

(rLaf'Rb} = -g 1 (uLuR + uLuR)(Imn)ab, 
( 4.4) 

the action S is given by 

S(PL, PR) = (ti]PlaPhb + li]PlaP1b) (Imn-1)ab, 

with ti] = gi] + i()l:t kq and nab is the period matrix of the genus 2 surface. 

It is straightforward to perform the Wick contraction of ([det(PL + 

Ti)det(PR + fR)JZ) using (4.4) as 

detg ~ ~ ~ 

( )

2 

detlmn ([det(PL + rL) det(PR + rR)]
2
} = 

= (det g det PL det PR) 
2 

detlmn 

det g det PL det P R (P~ p""" )( 1 1 2 2 ) 
-4 detJmn L, R ULUR + ULUR + 

(4.5) 

( 
det g det PL det P R 2(P~ p""" )) ( 1 1 2 2 )2 

+ 16 detlmn + L, R ULUR + ULUR -

~ """' 1 1 2 2 3 1 1 2 2 )4 - 12(PL, PR)(uLuR + ULuR) + 12(uLuR + ULUR 

where 
~ ~ ~i -1 ab ~3 

(PL, PR) = gi]PLa(Imn ) PRb' 

To compute F 2 on T 2 x R2, we set 

(gi]) = ( rtflmp 0 ) 
0 r2 

and send r 2 -+ oo while keeping r1 finite. In order for the action S to remain 

finite, we must impose the momenta in the r2-direction to vanish, Pla = P~a = 

0. The action then becomes 

S = t(pL,PR) + f(pL,PR), (4.6) 
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where 

( 
_ ) PLa(Imn- 1)abPRb 

PL.PR = I ' mp 

PL and PR are string momenta on T 2 given by 

PLa = Pla = (na + psa)- (mb + prb)f!ab 

PLa = Pla = (na + psa)- (mb + prb)f!ab 

PRa = PAa = (na + psa)- (mb + prb)nab 

PRa = Pka = (na + psa)- (mb + prb)nab 

with p being the complex moduli of T2, and t is the Kahler moduli of T 2, whose 

real and imaginary parts are r1 and (} respectively. In this limit, we can make 

the following substitutions in ( 4.5): 

det g det PL det PR 1\2 1 1 2 2 [ - - - - ] . = (t + t, ULURULUR (pL,PR)(PL,PR)- (pL,PR)(pL,PR) 

~~ [11- 22-] (PL, PR) = (t +f) uLuR(PL,PR) + uLuR(PL,PR) · 
(4.7) 

We can now expand F 2(uL, uR) in powers in U£ and UR and extract F; m• 
' 

Since F 2 depends on ui and uk only through the combinationsu}u_k and u'iuh 

as one can see from (4.7) and {4.5), the off-diagonal terms F;,m (n f: m) all 

vanish for T 2 x R 2 (This is not the case for a generic T 4 ). Since the unitarity 

of the sigma-model implies Fif,m = F!!.m,-m• we only need to compute F:f, 2 , 

F{, 1 and FJ.0 . Let us examine them one by one. In the following, we drop the 

superscript 2 from F; n to simplify expressions. 
' 

(1) F2,2: 

From ( 4.5) and ( 4. 7), it is easy to read off the following expression for F2,2. 

!( ~~n 
F2,2=2 I: (t+f)2(pL,PR)2 -6(t+f)(pL,PR)+6)exp(-S) .. - ·-· 

PL.PR 

Since S for T2 is given by ( 4.6), we can also write it as 

a2 a 
F2,2 =2((t+f)2

8t 2 +6(t+f)at +6)z, (4.8) 
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with 

Z(t, f)= L j exp(-S)- ~anda~-
PL.PR 

(4.9) 

By doing the Poisson resummation in PL and pn, one can show that the com­

bination (t + f) 2 Z(t, f) is invariant under the T-duality transformation. Thus 

( 4.8) can also be written as 

F _ 2 a [ 2 a ( 2 )] 
2,2 - , .. +-

02 
at (t +f) at (t +f) z 

= 2D; [(t + f) 2 Z(t, f)] 

where D1 is the duality covariant derivative. This means in particular that 

the weight of F2,2 is such that F2,2(t, f)(dt) 2 is invariant under the duality 

transformation. 

(2) F1,1: 

By extracting a coefficient of (uiuk)3 uiuh from (4.5) using (4.7) for the 

limit T 4 --+ T 2 x R2 , we obtain 

Ft,l = ~ J (- (t + f) 3 (PL,PR) [(PL,PR)(PL,PR)- (PL,PR)(PL,PR)] + 

+ (t + f) 2 [(PL 1 Pn)2 + 5(pL,PR)(PL, PR)- 4(pL,PR)(pL,Pn)]­

d3!1d3f2 
- (t +f) [ 9(pL, PR) + 3(pL, PR)] + 12) exp( -S) [det Im!1)3 

(4.10) 

This expression is simplified significantly by using the following formula 

for the variation of the action ( 4.6) with respect to the worldsheet moduli flab· 

as i ( 1 1 1 1 ) 
anab = 2(t +f) (PLimfl)a(PLlmfl)b + (PLlmfl)b(PLimfl)a (4.11) 

This formula can be derived either by computing the derivative of S directly or 

by noting that (8S/8flab)waWb is proportional to an expectation value of the 

energy-momentum tensor T = Y;;8Xiaxi. By using this formula repeatedly, 
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we are going to reduce Ft,l given by (4.10) to 

3 J ( ) d3!1d3f2 Ft,t=2 -(t+f)(pL,Pn)+2 exp(-S)[d --

3 ( a ) j dandan =
2 

(t+f)at +2 exp(-S).. __ (4.12) 

= ~ ( (t + f) :t + 2) z = (t + f)-tat [ (t + f) 2 z] 

In particular, this shows that Ft,t(t, f)( Vdt) 3Vdt is invariant under the duality 

transformation. 

Now let us prove (4.12). We first note that the first term in the integrand 

of (4.10) can be rearranged as 

(pL,PR) [(PL,PR)(pL,PR)- (PL,PR)(PL,Pn)] = 

= (PL,PR) [(PL,Pn)(PL,PR) + (PL,PR)(PL,jjn)]­

- 2(pL,pn)(PL,PR)(PL,PR) 

2 ( as ) 2 ( as ) = i(t + l) ana/RaPRb (PL,PR)- i(t + l) ana/RaPRb (PL,PR)· 

We can then perform the integration-by-parts on M 2 as 

J ] ~n~n 
(PL, PR) [(PL,jjn)(PL,PR)- (pL, pn)(PL, PR) exp( -S)-- -- = 

= _2_ J _a_ (PRaPRb(PL,PR)- PRaPRb(PL,PR)) ex (-S)d3!1d3f2 
i(t + l) anab [det Im!1)3 p 

= (t ~ l) j ( (PL, Pn)
2 + 4(pL, pn)(PL, PR)- 5(pL, pn)(PL, Pn)) x 

d3!1d3f2 
x exp( -S) _ __ 

it is easy to show that there is no contribution from the boundaries of M 2 • 

Substituting this into (4.10), we obtain 

Ft,l = ~ J ((t + l)2 [(PL,PR)(PL,PR) + (PL,PR)(PL,Pn)]-

d3!1d30 
- 9(t + f)(pL, PR)- 3(pL,PR) + 12) exp( -S). _ ·-

(4.13) 
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We then note 

2 (as ) (pL,PR)(Jh,PR) + (pL,PR)(pL,PR) = :t~ I .i\ ana/RaPRb , 

and do the integration-by-parts again. 

I ((PL,PR)(PL,PR) + (PL,PR)(pL,PR)) exp( -S). ~3~d3~- = 

2 I a ( = i(t + t) anab [det I~npPRaPRb) exp( -S)d
3
f!d3fi 

- 3 I ( - ) d3f!d3fi 
- (t+t) (PL,PR)+(.PL,PR) .. -·-· 

Substituting this into (4.13), we recover {4.12) and this is what we wanted 

to show. 

(3) Fo,o: 

By extracting a coefficient of (uiukuiuh) 2 from (4.5) using (4.7) for the 

limit T 4 - T 2 x R2
, we obtain 

Fo,o = 3~ j ((t + 04 [(PL,PR)(.PL,PR)- (PL,PR)(.PL,.PR)] 
2 

+ 

- 4(t + t)3 [(PL,PR) + (PL,PR)] [(PL,PR){PL, PR)- (pL,PR){PL,PR)] + 

+ (t + t)2 [2(pL,PR) 2 + 2(pL,PR)2 + 40(pL,PR)(PL,PR)- 32(pL,PR)(pL,PR)] 

d3f!d3Q 
-36(t+t)[(PL,PR)+(.PL,PR)] +72)exp{-S) .. _ ·-

( 4.14) 

As in the case of F1,t, we can use the formula (4.11) to reduce this to 

Fo,o =I ((t + t) 2(PL,PR)(.PL,PR)-

) 
d3f!d3Q 

-2(t+t)[(PL,PR)+(.PL,PR)] +2 exp(-S)(detlmf!j3 

( 
a2 ( a a ) ) I d3na3fi = (t + t) 2 atal + 2(t + t) at + 8[ + 2 exp( -S). _ ·-

= ( (t + £)2 8~~[ + 2{t +f) ( :t + :l) + 2) z = a18t((t + £)
2 z]. 

(4.15) 
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Thus in particular Fo,o{t, t)dtd[ is invariant under the duality transformation. 

Let us prove (4.15). We note that the first term in the integrand of (4.14) 

can be written as 

[(PL,PR)(PL,PR)- (PL,PR)(PL,PR)r = 

= . 
2

- (a~/RaPRb) ((PL,PR)(pL,PR)+(pL,PR)(pL,PR))-

4 (as ) - ana/RaPRb (PL,PR)(P£,.PR)· 

Therefore 

I( 2 ~n~n 
(PL,PR)(PL,PR)- (PL,PR)(PL,PR)) exp(-S).. ·- = 

= · 
2 

- I a~ab [ (PRaPRb{(PL,PR)(PL,PR) + (PL,PR)(PL,PR)}­

- 2PRaPRb(PL, PR)(.PL, .PR)) [det Imf!t3
) exp( -S)d3 f!d3 Q 

= (t ~f) J ( 4(pL, PR)2(.PL,PR) + 2(.PL,PR)(PL,PR)(.PL,.PR)­

d3f!d3fi 
- 6(pL,.PR)(PL,PR)(.PL,.PR)) exp( -S) (det Imf!j3. 

By substituting this into (4.14), we obtain 

as 

Fo,o= 3~~ ((t+t) 3 [6(pL,PR)(.PL,.PR)(.PL,PR)-

- 2(pL,PR){PL,PR)(pL,PR)- 4(pL,PR)(pL,PR)2 ]+ 

+ (t + t) 2 [2(pL,PR)2 + 2(pL,PR)2+ {4.16) 

+ 40(pL,PR)(pL,PR)- 32(p£,PR)(PL,PR)]-

) 
. d3f!d3fi 

- 36(t + l){(pL,PR) + (.PL,PR)} + 72 exp( -S) (det lrr ·- · 

Next we note that the first term in the integrand of (4.16) can be written 

6(pL, PR)(.PL, PR)(PL' PR) - 2(pL, PR)(.PL, PR)(PL. PR)­

- 4(pL,PR)(PL,PR)2 = 

2 as ( = -· - 8f!ab - 4PRaPRb(PL,PR) + 5PRaPRb(PL,PR)-

- PRaPRb(PL,PR)) 

24 



Therefore 

J ( 6(pL,Pn)(iJL,iJn)(jl£,pn)- 2(pL,Pn)(PL,iJn)(pL,iJn)-

) 
d3f!d3(i 

- 4(pL,Pn)(pL,Pn)2 exp( -S). _ __ = 

= 
2 J a~ab ( [- 4PnaPRb(PL, Pn) + 5pnaPRb(PL, Pn)-

- PnaPnb(PL, Pn)] [det Imflt3) exp( -S)d3fld3!'i 

= (t! l) j (- 8(pL, Pn)(PL, Pn) + 10(pL, Pn)(PL, Pn)-

) 
d3f!d3(i 

-(iJL,Pn) 2 -(PL,Pn)2 exp(-S).. --· 

Substituting this into (4.16), we obtain 

as 

Fo,o = 
3
1
6 
J ((t + l)2 [24(pL,Pn)(PL,Pn)- 12(pL,Pn)(P£,pn)]­

d3f!d3(i 
- 36(t + l) [ (PL, Pn) + (iJL, Pn)] + 72) exp( -S)- --

( 4.17) 

Finally we note that the first term in the integrand of ( 4.17) can be written 

24(pL,Pn)(iJL,Pn)- 12(pL,pn)(iJL,PR) 
24 as 

= 36(pL,Pn)(PL,Pn)- : 1~ , I\ ana/RaPRb· 

Therefore 

J 
~n~n 

(t + l)2 
( {24(pL, Pn)(PL, Pn)- 12(pL, Pn)(iJL, Pn)) exp( -S)- - = 

= 36 J ((t + l) 2 (PL,iJn)(iJL,Pn)_- (t + l){(pL,Pn) + (iJL,pn)}) X 

d3f!d3(i 
X exp( -S). _ __. 

Substituting this into (4.17), we find that Fo,o is expressed as (4.15), and 

this is what we wanted to show. 

25 

4.3. Genus Two; Evaluation II 

We have shown that, for T 2 x R2 , the N = 2 string amplitudes at genus 2 

are given by 

where 

F2,2 = 2(t + l)2 n; z 
3 

F1,1 = 2(t + l)DtZ 

Fo,o = (t + l)2 DtDrZ 

Z = L 1-exp(-S(pL,pn))-~3~d3~-· 
PL.PR M2 

(4.18) 

We shall see that these expressions are consistent with the harmonicity equation. 

To understand Fn,n better, we shall first prove the following two key prop­

erties of Z; 

( 1) Z is a sum of two terms, one depends only on the Kahler moduli a = 
(81ri)- 1t and if and another depends only on the complex moduli p and pup 

to a factor (Ima)-2 • 

Z = f(a, if)+ (Ima)- 2 j(p, p) (4.19) 

(2) f and j are eigen-functions of Laplacians on the Kahler and the complex 

moduli spaces respectively. 

8t8t[(t + l)2 !] = 2/ 
2 - -4(1mp) 8p8pf = 2/ 

(4.20) 

These properties, combined with the large t behavior of Z, 

J d3fld3(i f 
z--+ [detlmfl)3 ""}M

2 
(c1)

3 (t,f--+ 00) 

where c1 is the first Chern class of the Hodge bundle over the moduli space M 2 

and the mirror symmetry a +-+ p, completely determines f( a, if) and j(p, p) as 

1 
f(a,if) = L (n + ma)2(n + ma)2 

n,m 

(Imp)2 

f(p, p) = L: . .. .. 
n,m 
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By substituting this into ( 4.18) and ( 4.19), we obtain the following expression 

for Fn,n· 
2 

Fo,o = 2/ = 2: (n + mo-)2(n + m<T) 2 
n,m 

3 3 
F1,1 = -(t + f)Dd = 2: 

2 n,m 

12 
F2,2 = 2(t + f) 2 D~ f = 2: (n + m<T)4 

· n,m 

In particular, F2,2 is holomorphic in <T 

8iiF2,2 = 0 

(4.21) 

and is given by the Eisenstein series of degree 4. These expressions for Fn,n are 

combined nicely as 

and 

_ 4 1 1 2+n 2 2 2-n 2 ( )2 F(uL, un)- L 
2 
+ n Fn,n (uLuR) (uLuR) 

n=-2 

= 12 L ( uiuk + u'iu'h )4 
(n,m)#(O,O) n + m<T n +mit 

Now let us prove (4.19) and (4.20). We will use 

z 
8p(PL,PR) = 8p(PL,PR) = 2lmp (PL,PR) 

1 i 
Op [Imp (pL,PR)] = 2(1mo) 2 ( (pL,fJR) + (fJL,PR)) 

Op [Imp(fJL,fJn)] = 0 

i(t +f) - -
opS = 2lmp (pL,PR), 

which follows from the definition of (PL,PR) etc. Therefore 

J 
2 ~n~n 

8pDtZ = 8p (- (pL, Pn) + (t +f)) exp( -S)- -

J (i(t +f) _ _ _ 3i _ _ ) d3nd3Q 
= 21mp (pL,PR)(PL,Pn)- 21mp(PL,PR) exp(-S)(detlmn)3" 
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We then note 

1 as 
i(t + f)(fJL,fJR)(PL,PR) = ImpPLaPRb {)gab. 

We can then perform integration-by-parts to obtain 

Ji(t+f)- - 3 3-
21mp (pL,PR)(pL,PR)exp(-S). d nd n__ = 

= __ PLaPRb J -1 a ( - ) 
2(Imp)2 anab [det Imn)3 exp( -S)d3gd3fi 

- 3i j - d3nd3-
- - 21mp (PL, PR) exp( -S). _ _ n__. 

Thus we found 

8pDuZ = (lm<T)- 28p8u [(1m<T) 2 z] = 0. 

Similarly we can prove 

8p8ii [(Im<T)2 z] = 8p8u [(Im<T)2 z] = 8p8ii [(1m<T) 2 z] = 0. 

Therefore Z is a sum of f(t, f) and (t + f)- 2 }(p, p) as in ( 4.19). 

To prove ( 4.20), we first compute 

By using 

((t + f) 2 DtDr +4(1mp)2 8p8p) Z = 

= J ((t +f)2 ((pL,fJR)(fJL,PR) + (PL,PR)(PL,PR)]­

d3nd3Q 
- 3(t +f) ((PL,PR) + (PL,PR)] + 2) exp( -S).- --. 

as 
(t + f) 2 ((pL,PR)(PL,PR) + (PL,PR)(PL,PR)] = -2i(t + f)PRaPRb {)gab' 

one can show 

J ((t + f)2 [(PL,Pn)(PL,PR) + (PL,PR)(PL,PR)]­

d3nd3Q 
- 3(t +f) ((pL,PR) + (fJL,PR)]) exp(-S) (det Imn)3 = 0 
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by integration-by-parts. Thus Z is an eigen-function of a Laplacian 

(t + £) 2 D1Dr+ 4(Imp) 2 8p8p = 4((Imal DuDu + (Imp) 2 8p8p) 

as 

((ImalDuDu + (Imp)28PaP)z = 2Z. 

Since Z is a sum of f(a,o-) and (Ima)- 2 i(p,p) as in (4.19), this means that 

f and j are also eigen-functions of (Ima)2 DuDu and (Imp) 2 8p8p as in (4.20), 

and this is what we wanted to show. 

4.4. Topological Interpretation at g = 2 

We have found that F2,2 is holomorphic in t and is given by the Eisenstein 

series of degree 4. The holomorphicity of F 2,2 implies [14],[4] that F2,2 should 

"count" the number of holomorphic maps from genus-2 Riemann surfaces to 

T2. 

Since F2,2 is independent of[, let us regard t and [ to be independent 

and take [-+ oo limit in ( 4.8) while keeping t to be finite. This limit imposes 

constraint on the period matrix nab as 

nab(mb + prb) = (na + psa)· (4.22) 

In this case, the map X : :E -+ T 2 characterized by the string momenta 

PL,PR become a holomorphic map. There are 2 equations for 3 independent 

components of nab constraints. Thus a solution to the constraint should be 

parametrized by one complex parameter. It is easy to write down the most 

general solution. Since nab is symmetric, we can parametrize it by 3 complex 

parameters u, v, w as 

nab =u(Imna)a(Imna)b+ 

+ v [facac(Imna)b + (Imna)afbcac] + WfacO'cfbdad, 

where a" = m" + pra. For fixed u, v, w, this is a non-linear equation since 

Imn in the right hand side also depends on u, v, w. This however will not 

cause complication later since the values of u and v are fixed by the constraints 
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and the dependence on w turns out to be simple as we shall see. In this 

parametrization, the solutions to the constraints correspond to 

u = uo = (aimna-)- 2(na + psa)a" 

v = vo = (aimna-)- 2 (na + psa)f"b(Imnp)b 

and w is arbitrary. The term of the action which blows up in the [-+ oo limit 

is now of the form 

l(fiL,PR) = 
1 

l (aimna)3 (lu- uol 2 + (detJmn)- 1 lv- v012). 
mp 

The exponentiated action becomes in this limit 

exp( -S)"' 

"' C7P) 2 

[aimna-]-6 [detimn]6<2>(u- uo)6(2>(v- vo) exp( -t(pL,fin)). 

Since nabab = (na + psa), it follows 

(PL,PR) = 4aaimnabfrb 
Imp 

- 4Im(aan -b) - abO' 
Imp. 

= 4(sama - Tana), 

namely (PL, fin) is a degree of the holomorphic map from :E to T 2 • It is conve­

nient to change the integration variables from nab to u, v, w. The Jacobian is 

easily computed as 

d3Qd3Q = (aimna)6 d2ud2vd2w 

Thus (plmQp)- 6 from the exponentiated action cancels with the Jacobian. 

To compute F2,2 , we need to apply D~ on Z as in ( 4.8). In the [ -+ oo 

limit, D~ acting on exp( -S) reduces to 8~, and the integrand for F2 ,2 becomes 

(
pimn(w)p)

2 

detlmn(w) exp[27ria(sama- Tan")]d
2
w 
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where u = (87ri)- 1t and 

!lab(W) = !l~b + WfacO:cfbd0:d 1 

with n~b being a special solution t~ the constraint ( 4.22). 

Since 

a ( ) c d aw nab w = facO: fbd0: ' 

we can write 

( 
plm!l(w)p) 2 = (Imn-1)abawnbc(w)(Imn-1)cdawfida(w) 
detimn(w) 

= 8w 8w trace log Imn 

= 8w 8w log det Imn 

Thus we can interpret that F2,2 computes the first Chern class of the Hodge 

bundle over the one dimensional moduli space of holomorphic maps from ~ to 

T2. In section 5, we will further elaborate on this point and show that we can 

reproduce the Eisenstein series of degree 4 from this topological point of view. 

4.5. Harmonicity Equation on T 2 x R2 

Now that we have the explicit expression (4.21) for Fn,n 1 we would like to 

check whether the harmonicity equations (3.1) and (3.2) are consistent with it. 

Let us first write down the harmonicity equation (3.1) on T 2 x R2 for 

general value of g. In terms of the components, the equation is 

Dp2F:,m- Dt12F~-1,m+ 

2g- 2 + m ( ) · + 2 2 1 Dt2tF~ m-1- DtnF,~-1 m-1 = 0 g- -m+ , , 
(4.23) 

Suppose t 22 couples to the marginal operator 8zX18,X 1 where X 1 is the 

coordinate in the T 2 direction, namely t 22 = f in the notation in this section. 

In this case, t 12 , t 21 and t 11 couple to 8zX2 8,X 1
, 8zX18,X2 and 8zX2 8:X2 

respectively. In this case, it is easy to see that the only nontrivial case in ( 4.23) 

is when n = m, otherwise each term in the equation vanishes identically. Since 
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X 2 is in the R2 direction, X 2(z, z) is a single valued function on the Riemann 

surface ~. It is then straightforward to compute insertions of these operators 

in F9 and obtain 

(t + f)Dtt2F~_ 1,n = (2g- 2 + n)F~-1,n-1 

(t + f)Dt21F~,n- 1 = (2g- 2 + n)F~-1,n-1 
(t + f)DtnF:,n = (g + n)F:,n 

We can derive these formula by writing, for example, 8zX281X1 = 8z ( X 281X 1) 

and by doing integration-by-parts. By substituting them into ( 4.23), we obtain 

i\ 9 2g - 2 + n ( ) 9 
(t + t,DtFn,n = 2g- 2- n + 1 g- n Fn-1,n-1 (4.24) 

when t 22 =f. Similarly when t 11 = t, (4.23) becomes 

2g- 2- n 9 (t + f)DtF:,n = '>- '> 1 _ 1 1 (g + n)Fn+l,n+l (4.25) 

By combining these two equations, we also find that F: n is an eigen-function 
' 

of the Laplace operator 

(t + f)2 DtDtF:,n = (g- n)(g + n- 1)F,f,n· ( 4.26) 

When g = 2, the holomorphic anomaly equations, (4.24) and (4.25), gives 

3 
DfF1,1 = 2Fo,o 

3 
DtFt,1 = 4F2,2 

4 
DtFo,o = 3F1,1· 

It is straightforward to check that, combined with the Laplace equation ( 4.26), 

they are consistent with the explicit expressions (4.21) for F; n· Now we can 
' 

apply the harmonicity equations, (4.24) and (4.25), to compute pg for all g. 
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4.6. g ~ 3 

We have verified that the harmonicity equations ( 4.24) and ( 4.25) are con­

sistent with the explicit computation at genus 2. Let us now use the harmonicity 

equations to determine Fg for all g ~ 3. The two equations imply 

and therefore 

(t + f) 2 D1 DrF~,n = (g- n)(g + n- 1)F~,n 

(t + f) 2 DrDtF~,n = (g + n)(g- n + 1)F~,n• 

[Dt, Dr]FJ n = -2g(t + f)- 2 FJ n· , , 

Combined with the hermiticity condition F/f,n = F~n -n• we find F!f n , , 
( .Jdt)(g+n) ( Vdtl(g-n) is invariant under the duality transformation. 

Using the fact that 

FJ,0 = FJ,0 ( t + f)9 

is a modular function of weight zero, and that it is an eigenstate of Laplacian 

( 4.26) and that as t --+ oo it can at most have power law singularity in t + f 
(as it is becoming equivalent to R4 ) allows us to solve for it (up to an overall 

constant). In particular we learn from ( 4.26) that for large t 

i'g 0...., (t + f)g , 

Now using the modular invariance we can get the rest by acting with SL(2, Z) 

(note that SL(2, Z) transformations commute with the Laplace operator and so 

will give you another function with the same eigenvalue for Laplace operator )5 • 

We thus learn, in this way, that ( 4.26) has a solution for FJ 0 as , 

1 
F.g = (const) X L In+ ma12g · 0,0 - ( ) 

(n,m);t 0,0 

That this solution is unique follows from the fact that if we had another solution, 

by subtracting the two solutions we get a function which vanishes at infinity-this 

means that it is the eigenstate of Laplacian with a positive eigenvalue, which 

5 We are thankful to A. Lesniewski for discussion on this point. 
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is the wrong sign. Thus we have a tmique solution. Note that the constant 

appearing in front of our solution cannot depend on the complex structure 

of T 2 because we can always take t --+ oo in which case the answer will be 

the partition function on R4 which clearly is independent of which complex 

structure we chose for T 2 before blowing it up. 

We can now use ( 4.24) and ( 4.25) to compute the rest of F!f,n to obtain 

F 9 (uL, uR) = (const) x L In+ mal2g-4 ( uluh + uiuh )
49

-

4 

(n,m);t(O,O) n + m<T n + ma 

5. Topological Interpretation of N = 2 String Amplitudes on T 2 x R2 

Having seen that the genus 1 and genus 2 computation of N = 2 string 

amplitudes on T 2 x R2 have a topological interpretation we now ask the same 

question in all genera. In the general case we use the result discussed in section 

2, and in particular apply equation (2.7) to our special case where target space 

is T 2 x R 2 • 

Let us recall equation (2.7): 

F/g-2,2g-21f-+oo = { kg-l 1\ Cn-t(V) 1\ .J jMg 

This equation shows that the top instanton number amplitude, in the limit 

f --+ oo can be reinterpreted topologically by doing a topological computation 

on the moduli space of holomorphic maps. Let us see how this works. In 

the case of genus one the above computation is exactly the same as counting 

the holomorphic maps from torus to torus, because the .J insertion precisely 

absorbs the zero mode in the direction of R 2 and so we are back to counting 

holomorphic maps from genus one to genus one, which was done in [4). 

For genus g, the moduli of holomorphic maps M has dimension (2g- 2 + 1) 

for degree bl.gger than zero. This corresponds to double covering of the torus by 

the Riemann surface having (2g- 2)branch points and ( +1) comes from choice 

of the R 2 coordinate of the holomorphic map. Note that all holomorphic maps 

to T 2 x R 2 will lead to constant maps as far as the R 2 factor is concerned. Thu~ 

34 



pulling back the volume form V and integrating over the Riemann surface will 

lead us to the statement that k is precisely the (1, 1) form on Min the direction 

of changing the R2 image. The bundle V in our case is the same as holomorphic 

one forms, simply because the normal bundle is simply the R2 direction (i.e. 

the fermion zero modes in the R2 direction). In other words V is simply the 

Hodge bundle 1i on the moduli of genus g surfaces, restricted in our case to 

the moduli of Riemann surfaces which holomorphically cover a fixed torus. The 

top chern class is g, but we are instructed to take the (top- 1) class, which is 

c9 _ 1(1i). Note that the dimension of M agrees with (g- 1) + (g- 1) + 1 as 
' 

expected from (2.7). Let us first consider the case of g = 2. In this case we 

are instructed to compute I k 1\ c1 1\ .J over the moduli space of holomorphic 

maps which is of dimension 3; 2 coming from the choices of two branch points 

and 1 from the image of the map on R2 • As discussed above the k integrates 

over the R 2 part and gives the volume in the R2 direction. Moreover .J gives 

the volume form over the torus, i.e. absorbs the zero mode corresponding to 

shift of the origins of the map on the torus direction. Note that if we did not 

have .J and if we have c2 instead of c1 the computation would have been the 

standard N = 2 topological computation which would have vanished because 

of the flatness of the torus. This agrees with the general argument that the 

J insertion is crucial for a non-vanishing answer. We are thus left with I c1 

over the moduli of holomorphic maps from genus 2 to torus, up to a shift in 

the origin of the torus. This is precisely the object we encountered in explicit 

computation in section 3. 

5.1. Genus 2 Topological Computation 

We have seen that the l -+ oo of genus 2 computation of the top com­

ponent amplitude is the same as integration of the first Chern class c1 of the 

Hodge bundle over 'the one dimensional space of moduli of holomorphic maps. 

Moreover using other argument we have shown that the top component is pro­

portional to E4. We will now prove that the answer being proportional to E4 

could have also been derived using the direct topological computation. 
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To this end we have to use the fact that c1 for genus 2 can be written as 

c1 = 27ri88"logdetlmn 

and try to use integration by parts to integrate over moduli of holomorphic 

curves. However in order to do this we cannot directly use the above expression 

because det Imn is not a modular invariant object. Instead we write it as6 • 

c1 = ~aalog(detlmn( IJ iJJ/'5
] 

21rz 
even 9 function~ 

which is modular invariant. Note that product of even(} functions has no zeroes 

in the interior of the moduli space for g = 2 (a fact that fails to be true for higher 

genera). Since we have a total derivative we can integrate by parts and we thus 

come to the point on the moduli of holomorphic maps which corresponds either 

to a handle degeneration or to splitting to two genus 1 curves. The product 

of even theta functions in the handle degeneration case has a zero of the order 

z112 and in the case of splitting a zero of the order z. So in order to compute 

IM c1 we simply have to count how many holomorphic curves exist which go 

from a handle degenerated genus 2 to torus and multiply it by 1/10 and add 

to it the number of holomorphic curves which exist when we have the splitting 

case and multiply it by 1/5. This is described mathematically by the statement 

that 
1 

c1 = 
10 

(261 + 60 ) (5.1) 

where 61 denotes the first chern class of a bundle whose divisor is the boundary 

of moduli space corresponding to genus 2 splitting to two genus 1 curves and bo 

denotes the the corresponding one where the divisor is the boundary of moduli 

space where the genus 2 curve has a handle degeneration. Note that we have 

chosen coordinates on the moduli space such that a symmetry factor of 1/2 in 

the 60 and 61 degenerations are included. 

Using (5.1) we are in a position to compute the genus 2 topological ampli­

tude in terms of genus 1 amplitude7• First note that a genus 2 covering of a 

6 Which is the same trick that give the 2 loop bosonic string amplitude [15] 
7 We are grateful to R. Dijkgraaf for explaining this to us. 
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torus will lead to two branch points. The degenerate genus 2 curves can occur 

only when the two branch points collide. Not every colliding branch points give 

rise to degenerate Riemann surfaces, as some of them simply convert 2 branch 

points of order 2 to a single one of order three. Those would not contribute 

to our amplitude. To count the degenerations of the other type, note that if 

you remove the degenerate preimage we end up in the handle degeneration case 

to a holomorphic map from torus to torus where we have marked two of the 

covering sheets (the ones which get glued over the handle degeneration) and in 

the splitting case to two genus one curves connected by a tube. In the handle 

degeneration case if the remaining genus 1 to torus map is of degree n, we have 

n(n- 1)/2 ways to choose the sheets, and so putting all the contributions of 

these together, and denoting the genus 1 answer by F1 (the topological part of 

it which is dFtfdt = r,' /27ri'TI) we see that the handle degeneration gives (noting 

that 1/2 is already counted in the definition of 6o) 

1 (d2 Ft dFt 1 ] 
10. dt 2 - ( dt + 24) 

(note that each d/dt gives a factor of n-note that since we are in the topological 

limit of l--+ oo we do not have covariantization of d/dt). We have added +1/24 

to dFt/ dt to eliminate to degree zero part of the map which we take into account 

separately below. Similarly when we get the splitting case we get two maps from 

two different genus 1 curves to our torus. We simply have to choose a sheet 

from each one to identify with the other. If one of them is a covering of order n 

and the other of order m, we get nm ways of doing this. We also have to divide 

by a symmetry factor of 1/2 because of the z2 symmetry of exchanging the two 

genus 1 curves. We thus get a contribution from the splitting case (noting that 

the symmetry factor 1/2 is already included in the definition of 61) 

! . (dFt _!_l 
5 dt + 24 

In addition to these two contributions we have bubbling type contributions, 

which correspond to degenerate maps from a genus 2 to the torus, where the 

genus 2 curve is itself a torus glued to another torus, where one torus gets 
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mapped to a constant, and the other gets holomorphically mapped to the torus. 

The c1 of this family will simply be the c1 of the genus 1 curves times the one 

point function of the genus 1 answer. Since c1 on the genus 1 moduli space 

gives 1/12, the bubbling contribution is given by 

1 dFt 1 
12( dt + 24) 

There is also going to be an overall constant contribution coming from genus 

2 curves which map to a constant. Using the topological formula (2.7), and 

the fact that in this case J k A :1 absorb the volume integral over T 2 x R 2 , 

this should be ca(1i ED 1i) = 2ct(1i)c2(1i) and using the fact that 2c2 = (ct)2 

it is given by ( ct)3 • Integrated over moduli of genus 2 curves, this gives 
28

1
80 • 

Putting all these three contributions together we find 

1 d2 Ft dFt 1 1 dFt 1 2 1 dFt 1 1 
10. [ dt2 - ( dt + 24)] + 5. ( dt + 24) + 12( dt + 24) + 2880 

It is quite miraculous that all the terms which are not second order in 

derivatives oft disappear as they should in order to end up with a function of 

a definite modular weight. Moreover E4 which was shown to be proportional 

to the genus 2 answer is proportional to d;;;• + 2 [ ~] 2 
as expected. We thus 

learn that 

5.2. g 2: 3 

F 2 __ 1_E _ _!_ d2Ft 
2 

dFt 2 
2•2 - 2880 4 - 10 ( dt 2 + ( dt ) ) 

If we consider g 2: 3 the above topological computation formally vanishes, 

because we get a higher power of k. Since all of them are in the direction of R2, 

and there is only one such direction on the moduli space and if the topological 

amplitude were give by the above formula, we would get zero. In fact this is 

precisely an example of the type mentioned at the end of section 2, where the 

extra insertions go to modifying the bundle V. This is clear from the explicit 

attempt in computation of the amplitude for g 2: 3 because then we can no 

longer replace the fermion fields by the zero mode wave functions, as is possible 

for genus 2-some of the fermions are contracted, giving us Greens functions, 
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which are reinterpreted as curvature of a bundle, as in [11]. In such a case 

presumably methods similar to those of [11] should be applicable to determine 

the new bundle V which we expect to be of rank 2g- 2, and for which the 

amplitude can be written as 

F:fg-2,2g-21t-+oo = j k 1\ C2g-3(V) 1\ J 

We have not determined this bundle. 

6. Speculations and Conjectures 

From the discussions in this paper it is clear that the N = 2 string theory 

on R2 x T 2 has a lot of resemblance to the large N description of 2d Yang-Mills 

as a string theory [16]. Even though the precise topological computation we 

ended up with was not exactly the one appearing in the large N limit of 2d 

Yang-Mills on a torus it is very close to it, in that the primary objects in both 

cases is the moduli of holomorphic maps from Riemann surfaces to a torus. It 

is thus natural to ask if there is any gauge theory which would give us, as a 

large N expansion, the N = 2 string. 

In order to narrow down the search we should recall the natural setting in 

which the N = 2 string theory is defined. First of all the target space dimension 

of N = 2 string is four thus we are looking for a 4d gauge theory. Another fact 

motivated from the connection between large N limit of 2d Yang-Mills theory 

and string theory is that the latter has no propagating degrees of freedom and 

it has only global topological degrees of freedom (which was the reason for its 

exact solvability [17]). Another fact is that we are looking for a theory which 

makes sense only in two complex dimensions, as that is the natural setting for 

N = 2 strings. We only know of one class of gauge theories which satisfies 

all these requirements: It is known as the holomorphic Yang-Mills theory in 

4d [5][6]. It is basically the ordinary Yang-Mills theory with no matter, but 

formulated in two complex dimensions and with the requirement that the field 

strength be holomorphic. This means that, in holomorphic notation, 

p2,0 = p0,2 = 0 (6.1) 
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and the only non-vanishing component ofF is in the F 1•1 direction. Of course 

in general one cannot just set constraints such as (6.1) and expect to get a 

consistent field theory. However, it can be done in this case [5][6]. The idea is 

based on the link established between the 2d Yang-Mills and Donaldson theory 

in 2d [18]. It was shown there that ordinary 2d Yang-Mills theory can be 

viewed as the deformation of 2d topological Yang-Mills. Recall that topological 

Yang-Mills is a twisted version of N = 2 Yang-Mills. The four dimensional 

analog turns out to be the natural generalization of this construction: One 

starts from N = 2 Yang-Mills theory and twists it to obtain the Donaldson 

theory [19] and then perturb it using certain observables of Donaldson theory 

and in addition with some topologically trivial deformation. In this case one 

obtains the holomorphic Yang-Mills theory. Thus the theory makes sense as a 

quantum field theory. 

Note that there are no local degrees of freedom in holomorphic Yang-Mills 

theory. To see this we have to go to a Minkowskian version of the theory. Con­

sider signature (1,1) in complex notation (which is the one which also appears 

for N = 2 strings). Let 

A;= j e~(p,p)exp(i(p · x + p · x)) 

A; = j l;(p,p)exp(i(p · x + p · x)) 

where i = 1, 2 denote the holomorphic index. Then the linearized equations of 

motion imply that the support of e is on p · p = 0; moreover the lorentz gauge 

condition implies 

p·l+p·e=O 

This cuts down the real degrees of freedom to 2. However we have the con­

straints (6.1) which imply 

€(iPi) = 0 
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where we antisymmetrize in indices, and this further cuts down the number by 

two leaving us with no propagating degrees of freedom as desired8 . 

One other fact which suggests that large N version of gauge theory in 4d 

may lead to a string theory is the fact that for finite N we can turn on 't Hooft 

magnetic fluxes on the manifold which live on H 2 (M, ZN)· As N -+ oo the 

choice of the flux gets related to H 2(M, U(1)) which is precisely the choice of 

the antisymmetric field B that can be turned on for string theory that for a 

fixed N did not have a gauge theory analog. 

Putting all this together we feel we have some evidence for the following 

conjecture: 

The LargeN limit of holomorphic Yang-Mills is equivalent toN = 2 strings. 

How do we check this conjecture? The natural method should be first to 

solve the holomorphic Yang-Mills theory in 4d, just as Migdall solved the 2d 

theory. This should be an exactly solvable theory as there are no propagating 

modes, and steps in solving it have been taken [5). Another related computation, 

given the relation of holomorphic Yang-Mills theory with the N = 2 SU(N) 

Yang-Mills theory, is the large N computations of Douglas and Shenker [20). 

Perhaps the simplest case to check would be holomorphic Yang-Mills on T 4 

(or perhaps K3). Another test, also related to the computation we have done 

in this paper is to study the reduction of the holomorphic Yang-Mills to 2d on 

a small torus. Note that in string language a small torus and a big torus are 

equivalent by R-+ 1/ R so the case we have been considering on T 2 x R 2 can 

be viewed in this way. Thus we should get a gauge theory in 2d which for large 

N should reproduce the computations we have done in this paper for all N. 

Formally this theory should be a deformation of N = 4 topological theory in 

8 This same counting also work for one complex dimension, as there the constraints 

(6.1) are vacuous. In complex dimensions bigger than 2, for generic p, the constraints 

(6.1) will lead to 'negative' number of degrees of freedom. Thus complex dimensions 

1 and 2 are critical for holomorphic Yang-Mills theory. 
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2d, which at the topological level computes the Euler characteristic of Hitchin 

space [21). Note that, being a deformation of a topological theory, it continues 

to have no propagating degrees of freedom. We expect this deformation of 

2 dimensional model be exactly solvable also, just as 2d Yang-Mills is exactly 

solvable. This would be very interesting to compute, as the results of this paper 

provide an all order prediction for its large N behaviour. 

Another point we wish to comment on is whether we can sum up the 

perturbation series which we have computed for the example of T 2 x R2 • Note 

that in this paper we computed the amplitudes for each g up to an overall 

g-dependent (but modulus independent) constant. It is tempting to speculate 

whether there is a natural choice of the overall constant which would make the 

summing up lead to a nice answer. Even though this may not be a strong test, 

we have found one particularly simple choice, which reproduces all g answers, 

which agrees with the normalizations we have obtained for g = 1, 2 (up to 

redefinition of string coupling constant). Let A= uiuh and>.= u'iuh (we can 

absorb the definition of string coupling constant into this), then we have seen 

in this paper that 

F9(A,A)rv L ln+mal2g-4( A + >. )4g-4 

(n,m);t(o,o) n + ma n +miT 

(note in particular that the limit r -+ oo is proportional to (A + A)4g-4, as 

expected, only the m = 0 contributed to the sum). The natural guess for 

summing up all g is thus a geometrical sum 

1 
L F9

(A, A)= L I !2 (AJntmii + >.Jn+mf!_ )4 
g (n,m);t(O,O) n + ma - ntmu ntmu 

It would be interesting to find out whether this correctly captures the g­

dependent constant. 

In this paper we have talked about N = 2 strings which is equivalent to 

N = 4 topological strings, with critical dimension 4. It would be tempting 

to connect this with N = 2 topological strings which has critical dimension 

6 (corresponding to topological sigma models on Calabi-Yau threefolds). One 
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idea along this line, suggested to us by Yau, is to consider the twistor space. 

Recall that the twistor space includes a one parameter complex deformation 

of the complex structure of the manifold, without changing the metric. In 

particular if w denotes the holomorphic 2-form and k the Kahler class, then we 

consider the new holomorphic 2-form S1{t) to be 

n(t) = w + t k + t 2w 

The total space of the manifold including the parameter t is a three dimensional 

complex manifold. It unfortunately does not have c1 = 0. However, if we turn 

on an anti-symmetric 2-form on the three manifold defined by B = S"l(t) which 

is a 2-form, we can modify the condition for conformality from c1 = 0 because 

we now have H =dB f: 0. In fact we have checked that using the ideas of the 

construction of stringy cosmic strings (22] that the resulting theory would be a 

conformal theory. Thus it may be true that an N = 2 topological string on the 

twistor space, with the B-field turned on, is equivalent to N = 4 topological 

string on the 4 manifold. This we find an extremely interesting ·possibility, 

which deserves further study. 
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Appendix A. Vanishing of Boundary Terms in the Harmonicity Equa­

tion 

In section 3, we have proven that the N = 2 string amplitude pg satisfies 

the harmonicity equation 

fabuc 8 D R- Fg( 8u£ Dtbc U£, UR) = 0 

provided 

3g-3 1 ((jjA', TL) II (jjA, Gi(uL)) II (JlA, Gn(uR))x 
Mo A;tA' A=1 

xi hJR [i Gt(uL)Gi(uR)r-
1 
i(fifiuR),~]} 

(A.1) 

and 

3g-3 1 ((jjA',TL)(jjA",Ji-) II (jjA,Gi"(uL)) II (JlA,Gn(uR))x 
Mg . A;tA',A" A=1 (A.2) 

X h hJR [l GL(uL)Gi(uR)] g-

1 h {QL(uL), [~(uR), ~]}} 
vanish. Here we will show that this is indeed the case. Since the insertion of 

(J-lA', TL) generate a derivative 8f8mA' on the moduli space Mg in the direction 

of the Beltrami differential jjA'• we just need to check that 

3g-3 

WA' = ( II (jjA, Gi"(uL)) II (JlA, ~(uR))x 
A;tA' A=1 

xi hJR [i at(uL)Qi(uR)r-
1 
i[~(uR),~]} 

3g-3 

VA',A" = ((jjA", Ji-) II (jjA, Gi(uL)) II (JlA, Gn(uR)) { hJRx 
A;tA',A" A=1 jE 

x [i Gt(uL)Gi(uR)r-
1 h {QL(uL), [~(uR), ~]}) 

vanish at the boundary of Mg whose normal direction is 8mA,. 
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As we approach the boundary, the Riemann surface will degenerate and 

acquire a node. By conformal invariance, we can transform the node into a -cylinder whose length becomes infinite at~ boundary. In this limit, (ftA, GR_) 

with A = A' becomes a contour integral f GR_ around the homology cycle of the 

cylinder. Since states propagating along the cylinder are projected onto zero 

energy states as we approach the boundary, they will be annihilated by f GR_ 

unless there is another operator on the cylinder which does not (anti-) commute -~h GR_. The only operator in VA',A" and WA' whic~oes not commute w~ 

GR_ is J R· However since the commutator ofJ R and c:iis proportional to GR_ 

itself, the zero energy states are still annihilated by f GR_ even if J R is inserted 

on the cylinder. Thus we find that VA',A" and WA' vanish as we approach the 

boundary of the moduli space, and this is what we wanted to show. 

Appendix B. Genus Two Amplitude on T 4 

In this section, we will derive the following expression of FY at g = 2 when 

the target space is T 4 • 

( )

2 detg ~ ~ ~ 
F

2
(uL,uR)= L 1 detlmn ([det(PL+h)det(PR+rRW)x 

PL,PR M, 

d3 Qd30 
x exp[-S(PL,PR)]-- --· 

The notations will be explained in the following. 

Let us start with the definition of F2 

F 2 = f d3 md3 m((!ll,Q-i)(fl2,Q-i)(ill,GR_)(il2,Git)x 
}M, 

X (/13, J£-)(ft3, JR_-)[1 Gf(i£]2). 

This formula for F 2 contains two Gz, one 1£- and two G! given by 

-G_ - -·,.; ax~; 
L - Yij'PL 

J -- ·'·' .d L = flj'PL'PL 

--=+ . ~. 
GL = f;J,P£aX3

, 
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(B.l) 

(B.2) 

where 

ax; = uiaX; + u'i/i YjkaxJ. 

Thus there are two 1/J L and four ?f L in F 2• When the target space is T 4 there 

are 2 zero modes for 1/J L and 2g zero modes for 1f L on genus g since 1/J L 's are 

zero-forms and ?fL 's are one-forms. Therefore, at genus 2, the fermions in F 2 

just absorb their zero modes and the computation of F 2 does not involve the 

Green function. This will simplify the computation at g = 2. For g ~ 3, we 

must deal with the Green function of the fermions. 

For the bosonic field X;, we use the decomposition 

X;(z, z) = Xb(z, z) + <ti(z, z) 

where X~ is the classical part obeying aziJzX~ = 0 and </J; is the quantum part 

which is single-valued on :E. The classical part X~ is parametrized by a set of 

integers n; mia s; ria (i a - 1 2) as 
a' ' a7 ' - ' 

X!(z, z) =(mia + p~ria)Re Jz wa+ 

+ [(n~ + p~~)- (mib + p~ri6)Re!lba](Imn- 1 )aclm Jz We 

(B.3) 

where Wa is the holomorphic one-forms on E and Dab is their period matrix. 

The matrix p~ characterize the complex structure of the target space torus T 4 

as 

T 4 = R4 j(x;,...., x; + n; + p~mi) (n;,m; E Z). 

The quantum part </J; is the free boson whose propagator is given by 

(az </J;aw<P;) = gi}[-azaw log E(z, w) + wa(z)wb( w)(Imn-l t 6] 

(8z</J;8w</J;) = -g;;wa(z)wb(w)(Imn-l)ab (z =/: w), 
(B.4) 

where E( z, w) is the prime form on :E. In F 2, </J; and <P' appear in the combi­

nations 
a¢}= ulo</J; + u'i/igjka</Jk 

jj:i:l _ ul jjA.I + u2 flig~ ijA.k 
'P - R 'P R Jk 'P ' 
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and their Wick contraction rules are 

(az~;aw~i) = (a::~1aw~1) = o 
(az~i[Jw~1} = -gi](tt},uk + u1,u~)wa(z)wb(w)(Imn- 1 )ab. 

Therefore for the purpose of evaluating F 2 , we may write the bosonic field Xi 

as 

where 

and 

ax; - (P; + P )(Imn- 1)abw - La La b 

ax'- (P1 + rJ )(Imn- 1)abw - Ra Ra b, 

~; - 1 i 2 ij - k 
PLa - ttLPLa + ttL€ YjkPLa 
~~ 1 I 2 i] k 
PRa = ttRPRa + tlR€ Y]kPRa 

i i i . ib i 'b -
PLa = (na + Pj~)- (m + Pjrl )f!ba 

Pia= (n~ + jj~s~)- (mib + p~rib)fha 
i i i . ib i 'b 

PRa = (na + Pj~)- (m + Pj,.J )f!ba 
i i -i . ib -i 'b 

PRa = (na + Pj~)- (m + Pjrl )f!ba, 

and h and rR are quantum variables obeying the Wick rules 

(rla r{b} = (~a rkb} = 0 
d ~~ i~ 1 1 2 2 

(rLaF'Rb} = -g 1 (ttLttR + ttLttR)(Imf!)ab 

(B.5) 

(B.6) 

(B.7) 

(B.8) 

Now we are ready to evaluate F 2• Since .,P~ and '1/lk are zero-forms, it is 

natural to normalize their zero modes as 

('¢'~ ( zt).,P{ ( z2 )} = fij 

('1/lk(zt)'¢'1(:z2)} = t:iJ. 

Thus .,P~ and '1/lk may be regarded as constant on E, and we can perform the 

surface integral of 

~ _ . i ~j ~· ab 
GL- €aj'1/IL{PLa + ria)(Imf!) Wb 

G+ = t:~·1•1 (PJ + rJ )(Imn- 1
)

0
bw R IJ'PR Ra Ra b, 
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as 

jGfG-i = t:;i'1/lit:iJ'1/Ik(Pla + ria)(Phb + ~b)(Imn- 1 )ab. 
The expectation value of these operators then becomes 

(! G+G+ J G+G+} -L R L R -

= det(PL + rL)det(PR + fR)(detlmn)- 1
• 

(B.9) 

For '1/lt and '1/lk zero modes, we can express them as a linear combination 

of the holomorphic and anti-holomorphic one-forms Wa (a= 1, 2) as 

'1/lt(z) = eiawa(z) 

'1/lk(z) = 9~wa(z) 

where eia and 9~ are Grassmannian variables. We normalize them as 

(e}!-9{1ePe~e~~le~29~} = fiJ f;crf;i €k 1• 

(B.lO) 

(B.ll) 

In evaluating F 2 , we may replace the fermions by their zero modes (B.lO) as 

fii = Yi]9{0 (P{b + rlb)(Imf!- 1)bcWaWc 

J -- nianlb L = fi)UL u-L WaWb. 

Here the following formula becomes useful. 

J anab 
(/lA,WaWb) = /lAWaWb = amA' 

where a;amA is a derivative on the moduli space M2 in the direction specified 

by the Beltrami-differential 1-'A· Thanks to this formula, we can perform the -surface integrals of G£ and Ji,- as 

( -G-) _,"fa(P~; d )(I n-1)bcanac {tA, L = Y;)u-L Lb + rLb rna --A 
am 

( J --) nianlbanab 
/lA, L =fijULfTL()mA' 
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By working out simple combinatorics, one finds 

(Jtt, G£)(Jt2, GL)(Jt3, 1£-) = 
_ 

0
I1

0
I2

0
21022 d ~ acn n ..... ) - L L L Lfi2 etgdet(PL+'F£)(detlmS1)-1 lb 12,H22 

8(mt. m2 , m3) • 

At genus 2, so called the Schottky problem is absent, and we can use the three 

components of the period matrix Oab as coordinates on M2. By taking into 

the normalization of (}L and (}R in (B.ll), we obtain 

- - - -((~tt, G£)(~t2, G£)(ilt. GR.)(ft2, GR_)(~t3, rc;-)(il3, ln-)}d3md3m = 
~ ~ ~ ~n~n = detgdet(PL + rL)det(PR + i'R).. ·-

(B.12) 

where we used det g = ~: 12q2 to reduce the expression. This relation between 

Yi} and f;j, t:r; is required in order for the generators (B.2) to make the N = 4 

superconformal algebra. 

Finally, by combining (B.9) and (B.12), we derive 

((itt. G£)(Jt2, G£)(ftt, GR_)(jl2, GR_)x 

x (~t3, l£-)(il3, ln-Hj ~j2}d3md3m = 

( 
det g ) 

2 
[ ~ ~ ~ ~ ) 2 d3nd3n 

= detlmO det(PL+rL)det(PR+i'R) .. _ ·-· 

One can easily check that this expression is covariant both on M 2 and T 4 • 

To complete the evaluation of F 2, we need to contract ii and fR according 

to the rule (B.8), and multiply exp( -S) where Sis the classical action for (B.3) 

given by 

s = (t;1PiaPkb + f;1PiaPkb )Cimn)ab, 

where 
t;} = Yi} + i0° k?. IJ 

f;} = Yi} - i0° k?. 
'1 
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and k 0 (a= 1, ... , h1•1) are generators of H 1•1(T\ Z). The determinant factors 

of the bosons ,P and the fermions 1/JL and 1/JR cancel out. By assembling the 

ingredients together, we obtain 

1 ( det g ) 
2 

[ ~ ~ ~ ) 2 d30d3n 
d det(PL+rL)det(PR+rR) fd ,~exp(-S) 

M, etlmn etlmn 

Finally we sum this over all n, m, r, s parametrizing PL and PR as (B.7). This 

way, we have derived the expression (B.l) for F 2
• 
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