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INTRODUCTION 

· Many of the sites that have been proposed as potential locations of underground 

radioactive waste repositories contain fractured rocks. For example, both the saturated 

zone and the unsaturated zone at Yucca Mountain, Nevada, contain many hydrogeolo

gic units that are extensively fractured [1,2]. When modeling the hydrological 

behavior of these sites, for either the purpose of site characterization of performance 

assessment, computational gridblocks are often used that contain large numbers of 

fractures [3]. In order to treat these gridblocks as equivalent continua, it is necessary 

to develop a procedure for relating the hydraulic properties of the individual fractures, 

and the topology of the fracture network, to the overall gridblock -scale permeability 

[4,5]. One aspect of this problem is that of determining the in situ hydraulic properties 

of the individual fractures. Another aspect is to reconstruct the three-dimensional 

geometry of the fracture network based on borehole or outcrop measurements. The 

final stage in the problem is that of taking a network of known geometry (which may 

be stochastically generated), and determining its effective gridblock-scale conductivity. 

The purpose of this paper is to describe a simple procedure for solving this latter prob

lem, and to demonstrate its use in cases of both saturated and unsaturated flow. 

NETWORK MODEL 

We will assume that a two-dimensional fracture network can be represented by a 

network of "conductive elements" that are connected to each other at nodes. The 

nodes are assumed to have zero volume, and to offer no additional hydraulic resis

tance. A length of fracture connecting two nodes will be referred to as a fracture seg

ment. The conductance Ci of the i th individual fracture segment depends on geometr

ical features such as the mean aperture, the fracture wall roughness, the amount of 

contact area of the two rock faces, and the length of the segment [6-9]. If the rock is 

only partially saturated, the conductance will also depend on the degree of liquid 

saturation [10,11]. In the present work, we consider only the problem of estimating 
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the macroscopic conductivity of a network of fractures, assuming that the individual 

fracture segment conductances are known. 

If the values of all of the conductances were known exactly, and the topology of . 

the network were also known (i.e., which conductors were connected to which nodes), 

evaluation of the overall macroscopic conductance of the network would require the 

solution of a system of algebraic equations. These equations arise by applying the 

equation Q = C Ml to each conductor, where Q is the volumetric flowrate, C is the 

hydraulic conductance, and H is the hydraulic potential (defined here asH =P+pgz), 

and then invoking the fact the the sum of the fluxes into each node must be zero in 

order for mass to be conserved. For a network of saturated fractures, this procedure is 

analogous to finding the effective conductivity of a network of electrical resistors, and 

leads to a system of linear algebraic equations [12] .. For unsaturated flow, however, 

the analogy between fluid flow and electrical flow through a linear resistor network 

breaks down, and the governing equations become nonlinear. In these cases the con

ductivity depends on the potential, through the hydraulic conductivity (i.e., relative per

meability) function, and the conductivities of the individual_ftacture segments must be 

found as part of the solution procedure. This can be accomplished with a numerical 

simulator such as the TOUGH code [13], as was done by Kwicklis and Healy [14]. 

This procedure is tedious to implement, however, since it requires the construction of a 

computational grid for the entire fracture network. 

In order to reduce the problem of solving the full set of network equations to a 

problem that is much easier to solve, several steps will be taken. There are two 

aspects of the network-flow problem that render it awkward to solve: the broad distri

bution of the values of the individual fracture segment conductances, and the irregular 

topology of the fracture network. The first step is therefore to replace the conductance 

of each fracture segment by some suitable effective conductance, C. An approximate 

expression for C, in terms of the individual conductances Ci of the fracture segments 
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and the mean coordination number of the network, can be found using the effective 

medium approximation of Kirkpatrick [15]. The next step in our procedure is to 

replace the actual irregular network by a square lattice of conductors (Fig. 1). The 

accuracy of this type of replacement procedure has been studied in detail by, among 

others, Hestir and Long [16]. We will merely assume that this replacement can be 

made, and judge its accuracy by the extent to which we can predict the actual overall 

conductivities. The overall conductivity of this square lattice of equal conductors, in 

either of the two orthogonal lattice directions, say x 1, is then trivially found to be 

equal to NC, where N is the number of conductors oriented in the x 1 direction, per 

unit length in the x 2 direction. The fact that the actual coordination number may be 

less than four, in which case all of the conductive elements of the square lattice are 

not actually present, can also be accounted for using the effective medium approxima

tion (see below). 

EFFECTIVE MEDIUM APPROXIMATION 

The purpose of the so-called effective medium approximation is to allow a net

work having a distribution of individual conductances Ci to be approximated by a 

geometrically identical network in which every bond has the same conductance C 

(Fig. 1). In general, the behavior of the original network and the effective network 

will differ locally, in the sense that the potential at a given node will not usually be 

the same in the two networks. Likewise, the flux through a given conductor will, in 

general, be changed if all the conductances are replaced by some value C. This 

replacement process is intended to leave the macroscopic behavior of the original net

work unchanged, in some sense. One method of finding a suitable C is that proposed 

by Kirkpatrick [15], who used the criterion that if a single conductor Ci is replaced by 

a conductor with conductance C, the resulting perturbations in the potentials at the 

nearby nodes should average out to zero. Application of various theorems of network 
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analysis led Kirkpatrick to the following equation that implicitly defines C: 

N C-C· 
L I =0' 
i=l (z/2-1)C +Ci 

(1) 

where the coordination number z is the number of conductors that meet at each node, 

and the sum is taken over each individual conductor in the network. Eq. (1) was origi

nally derived under the assumption that the coordination number of each node was the 

same. It was later shown [16}, however, that eq. (1) can be used for topologically 

irregular networks if z is defined to be the average coordination number of all the 

nodes in the network. 

In the trivial case when each conductance has an identical value Ci = C, eq. (1) 

correctly predicts that C = C, regardless of the coordination number. The effective 

medium approximation is also exact in the two limiting cases of z --72 and z -?oo, 

regardless of the type of distribution of the individual conductances. These two values 

of z correspond to series and parallel networks, respectively. For z =2, eq. (1) reduces 

to C(2)=N!I:(11~;), while for z=oo, eq. (1) yields C(oo)=(l/N)I:Ci. C(z) is gen

erally an increasing function of z, so that it is always the case that C (2) < C (z) < C ( oo) 

for an arbitrary value 2<z <oo [16]. This fact is useful when attempting to solve eq. 

(1) numerically, since it allows C (z) to be bounded a priori, and then solved for using 

the bisection method. 

As might be expected, the accuracy of the effective medium approximation gen

erally decreases as the distribution of the values of the individual conductances 

becomes broader. Koplik [17] and David et al. [18] studied the accuracy of the 

effective medium approximation for two-dimensional square, triangular, and hexagonal 

networks. They found eq. (1) to have errors of less than 10% for narrow "peak-like" 

distributions of conductances, as well as for conductances that are uniformly distri

buted between some minimum and maximum values. However, eq. (1) underpredicted 
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C by about 50% for exponentially-decreasing distributions. Koplik [17] also found 

that fairly large errors would occur for log-uniform distributions of the form 

p(C)=constant/C for C0 <C < l/C0 , if C0 is close to zero. The common factor in 

all cases where eq. (1) breaks down is not broadness of the conductance distribution 

per se, but the existence of a relatively large number of conductors with conductances 

that are very close to zero (in the sense of being much smaller than the mean). The 

·conductances of rock fractures are often found to follow lognormal distributions [19], 

which go to zero rapidly as the conductance goes to zero. Hence, it seems that actual 

conductivity distributions will likely be of the form for which eq. (1) is fairly accurate. 

CONDUCTANCE OF A SQUARE LATTICE 

Once the effective medium approximation has been used, we then assume that the 

conductors are arranged on a square lattice (see Fig. 1). A detailed examination of 

various methods that have been proposed to replace an irregular network with a square 

network has been made by Hestir and Long [16], under the assumption that all the 

fractures have the same conductivity per unit length. We expect, however, that the 

uncertainty in the gridblock-scale conductivity due to the variation in conductivities 

among the individual fractures will be much larger than that which arises due to the 

difference between a square and irregular network. In this regard we note that David 

et al. [18] presented exact calculations of the effective conductances of square, hexago

nal, and other regular lattices, and found that topology was of secondary importance, 

as compared to the distribution of individual conductivities. Now imagine a rectangu

lar gridblock, such as would be used in a numerical finite-difference simulation, that 

contains this square lattice of equal-strength conductors. If a potential difference Ml 

were imposed from top to bottom across this block, it follows from symmetry con

siderations that each of the Nx vertical connections would carry the same amount of 

flow, and that there would be no lateral flow through any of the horizontal conductors. 
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If the conductance of each element is C, then the total flow through the block would 

be Q = Nx C MI. According to Darcy's law, the flux would be Q = KLxLy Ml I Lz, 

where Lx is width of the block normal to the flow direction, Ly is the thickness in the 

third direction ("into the page"), and Lz is the length of the block in the flow direc

tion. Hence, the continuum conductivity is given by K = CNxLziLxLy. 

Finally, however, we must account for the fact that the actual mean coordination 

number z of the network will usually be less than four, in which case the 

"equivalent" square lattice should have only z 14 of its bonds intact. This can be done 

by again invoking the effective medium approximation, eq. (1). We first take the lat

tice shown in Fig. 1c, and "fill in" the missing bonds with bonds that have zero con

ductance; this procedure clearly will not effect the overall conductance. The new lat

tice, shown in Fig. 1d, now has a coordination number of 4. A fraction f = 1-(zl4) 

of its conductors have conductance C =0, whereas a fraction 1-f =zl4 of its conduc

tors have C =C. Application of eq. (1) to this lattice yields, after some algebraic 

manipulation, the result C = (z I 2- l)C = (1- 2/ )C. According to this result, if 10% 

of the bonds are "missing", the effective conductance will be decreased by 20%; 

when 50% of the bonds are removed, the effective conductance drops to zero. This 

critical fraction f* = 1/ 2 (i.e., z* = 2) can be explained heuristically by noting that if 

fluid enters a node from one bond, there must be at least one other bond connected to 

that node in order for the fluid to continue through the network. Hence, the critical 

coordination number needed for the network to be fully conducting should be z* = 2; 

this is in fact rigorously true for a square lattice [20]. However, more precise analysis 

using percolation theory shows that the relationship between C and C is not a linear 

function of z near the critical value z = 2, but varies as C I C = const x(z - 2)1
, where 

the percolation exponent t is equal to about 1.3 [21,22]. However, we will use the 

simpler expression C = C (z I 2- 1 ), which should be sufficiently accurate as long as the 

fracture network is not near the percolation limit z = 2. 
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APPLICATION TO A SATURATED FRACTURE NETWORK 

We have used the procedure described above to predict the overall gridblock con

ductivity of the fracture network that was analyzed by Priest [12] under conditions of 

saturated flow (Fig. 2). A square region of size lOmx 10m was covered with twelve 

"randomly" oriented and located fractures of varying lengths and apertures. Five of 

these fractures, along with parts of the seven others (shown as dotted lines in Fig. 2) 

can be removed because they are clearly not part of the network that will actually con

duct fluid. As there are four nodes at which four segments meet (nodes 4,6,10,13), 

and six nodes at which three segments meet (nodes 5,7,9,12,14), the mean coordination 

number of the conducting network is z =(4·4+6·3)/(4+6)=3.40. 

For saturated flow, the conductance of a fracture of length L in the direction of 

flow, aperture b, and length w in the transverse direction, is given by the so-called 

"cubic law" [12]: 

(2) 

where Jl is the viscosity of the fluid and p is the density. The fractures shown in Fig. 

2 are assumed to have unit depth in the third direction, i.e., w =1m. The apertures and 

lengths of the fifteen fracture segments contained in the conducting network are shown 

in Table 1, along with the computed conductances, which varied by a factor of about 

290: 1 froll). largest to smallest. Note that as the only parameter that enters into the 

flow calculations for a given fracture is the conductance, C, the present example does 

not actually depend in any fundamental way on our use of the cubic law to relate con

ductance to aperture. The conductances in Table 1 are then used in eq. (1) to find 

C =0.3316x 10-6m2/s. This value must then be corrected by the multiplicative factor 

(z/2)-1 =0.70, to account for the "missing" bonds in the square lattice, yielding 

C = 0.2321 x w-6 m2/s. Next we must decide upon the number of rows and columns 
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of fractures that should be used in the equivalent square lattice. Again, a detailed dis

cussion of various approaches to this question is given by Hestir and Long [16]; here 

we take the following simple approach. As there are eight intersections of the fracture 

network with the four sides of the square outer boundary of the gridblock, there are an 

average of two intersections per side, which corresponds to a square lattice that con

tains two horizontal and two vertical fractures. The overall conductivity in the x 

direction is then found to be 

Kx = _C_'N_x_L..:....z = (0.2321 x 10-6m2/s)(2)(iOm) = 0.4642 x 10-6m/s. 
LxLy (lOm)(l m) 

(3) 

The volumetric flowrate through the block is found by substituting this conductivity, 

along with the head drop of 2m, into Darcy's law: 

(0.4642x w-6 m/s)(10m)(l m)(2m) = 0.9284x 10-6m3/s (4) 
(lOrn) 

per unit thickness in the third direction. This value is within 2% of the exact value 

0.947x 10-6m3/s that was found by Priest [12] by solving the full set of twenty simul~ 

taneous algebraic equations. 

APPLICATION TO AN UNSATURATED FRACTURE NETWORK 

We have also applied our procedure to unsaturated flow in the 2-D fracture net-

work (Fig. 3) that was studied by Kwicklis and Healy [14]. They constructed a frac-

ture . network consisting of 9 fractures transecting a 5 m x 5 m square region, which 

resulted in 51 fracture segments. The fractures consisted of two sets, a subvertical set 

with a mean dip angle of 74 degrees, and a subhorizontal set with a mean dip angle of 

23 degrees; these values were chosen to be consistent with the fracture data from 
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Yucca Mountain, Nevada, described by Wang and Narasimhan [1]. In the simulations 

that we will consider, the subvertical fractures had a mean aperture of 125 J.Lm, and the 

subhorizontal fractures had a mean aperture of 25 J.Lm. This would seem to imply a 

certain degree of anisotropy; however, the network was constructed such that no 

constant-aperture continuous path exists between the inflow (top) and outflow (bottom) 

boundaries. We interpret this fact, coupled with the fact that the fracture orientations 

of the two sets exhibited large scatter about the mean dip angle, as providing some 

justification our use of an essentially isotropic model to analyze flow in the network. 

After dead-end segments were removed, this network had a mean coordination 

number of 3.43. For the ''mixed aperture'' simulation, 56% of the fracture segments 

had a mean aperture of 125 J.Lm, and 44% of the fracture segments had a mean aperture 

of 25 J.Lm. The hydraulic conductivity functions (Fig. 4) of the two different fracture 

types were computed using a variable-aperture flow model [10], in conjunction with 

some assumptions concerning the distribution of apertures within each fracture plane. 

For cases such as this in which the conductivities follow a pure bi-modal distribution, 

eq. (1) reduces to a quadratic equation, which is easily solved. As the fractures inter

sect the four gridblock faces in ten locations (see Fig. 3), we took our equivalent 

square lattice as having 10/4=2.5 vertical and horizontal fractures per. gridblock. The 

gridblock-scale conductivities were computed using the procedure described above, 

over a range of hydraulic heads from -0.01 to -0.3 m. The results, sho~n in Fig. 5, 

agree fairly well with the conductivities that were computed by Kwicklis and Healy 

[14]. They used the numerical simulator TOUGH [13], and associated each computed 

permeability with the mean value of the two potentials at the top and bottom edges of 

the block. Our method has the advantage, however, of requiring the solution of only a 

single equation for each value of the pressure head, as opposed to the 51 simultaneous 

equations that were solved [14] when computing the actual flow field (the nine fracture 

segments were each discretized into more than one computational elements; see Fig. 
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3). Moreover, our proposed upscaiing method does not require the construction of a 

numerical grid. 

CONCLUSIONS 

A major issue in the modeling of fluid flow in fractured rock masses is the deter

mination of appropriate gridblock-scale conductivities. We have used Kirkpatrick's 

effective medium approximation [15] to develop a method for predicting the 

gridblock-scale hydraulic conductivity of a two-dimensional fracture network. The 

method requires knowledge of the mean coordination number of the fracture network, 

the mean fracture spacing, and the hydraulic conductivity functions of the individual 

fractures. However, in contrast to methods that solve for the detailed flow field 

through the entire network, the proposed upscaling procedure requires solution of only 

a single nonlinear equation. The method has been tested against numerical simulations 

conducted by Priest [12] on saturated flow through a fracture network, and also against 

the unsaturated flow simulations of K wicklis and Healy [ 14]. In both cases the pro

posed upscaling method gave accurate predictions of the macroscopic hydraulic con

ductivity. Furthermore, the method is expected to be more accurate for gridblocks that 

contain larger numbers of conductive segments [16,17], -such as would typically be 

encountered in modeling the performance of an underground radioactive waste reposi

tory located in fractured rock. 

ACKNOWLEDGEMENTS 

This work was carried out under Department of Energy Contract No. DE-AC03-

76SF00098 for the Director, Office of Civilian Radioactive Waste Management, Office 

of Geologic Disposal, administered by the Nevada Operations Office, U. S. Department 

of Energy, in cooperation with the U. S. Geological Survey, Denver. The authors 

_thank Christine Doughty and Kenzi Karasaki of LBL for reviewing this paper. 



- 12-

REFERENCES 

1. Wang J. S. Y. and Narasimhan T. N. Hydrological mechanisms governing fluid 

flow in a partially saturated, fractured, porous medium. Water Resour. Res. 21, 

1861-1874 (1985). 

2 . .Spengler R. W. and Fox K. F. Stratigraphic and structural framework of Yucca 

Mountain, Nevada. Rad. Waste Manag. Nucl. Fuel Cycle 13, 21-36 (1989). 

3. Wittwer C. S., Bodvarsson G. S., Chornack M.P., Flint A. L., Flint L. E., Lewis B. 

D., Spengler R. W. and Rautman C. A. Development of a three-dimensional site-
' 

scale model for the unsaturated zone at Yucca Mountain, Nevada. Rad. Waste 

Manag. Env. Restor. 19, 147-164 (1994). 

4. Long J. C. S. and Witherspoon P. A. The relationship of the degree of interconnec

tion to permeability in fracture networks. J. Geophys. Res. 90, 3087-3098 (1985). 

5. Odling N. E. and Wehman I. A "conductanct:" mesh approach to the permeability 

of natural and simulated fracture patterns. Water Resour. Res. 27, 2633-2643 

(1991). 

6. Witherspoon P. A., Wang J. S. Y., lwai K. and Gale J. E. Validity of cubic law for 

fluid flow in a deformable rock fracture. Water Resour. Res. 16, 1016-1024 (1980). 

7. Neuzil C. E. and Tracy J. V. Flow through fractures . . Water Resour. Res. 17, 191-

199 (1981). 

8. Zimmerman R. W., Kumar S. and Bodvarsson G. S. Lubrication theory analysis of 

the permeability of rough-walled fractures. Int. J. Rock Mech. 28, 325-331 (1991). 

9. Zimmerman R. W., Chen D. W. and Cook N. G. W. The effect of contact area on 

the permeability of fractures. J. Hydro/. 139, 79-96 (1992). 

10. Pruess K. and Tsang Y. T. On two-phase relative permeability and capillary pres

sure of rough-walled fractures. Water Resour. Res. 26, 1915-1926 (1990). 



- 13 -

11. Murphy J. R. and Thomson N. R. Two-phase flow in a variable aperture fracture. 

Water Resour. Res. 29, 3453-3476 (1993). 

12. Priest S. D. Discontinuity Analysis for Rock Engineering, Ch. 11. Chapman & 

Hall, London (1993). 

13. Pruess K. TOUGH user's guide. Report LBL-20700, Lawrence Berkeley Labora

tory, Berkeley, Calif. (1987). 

14. Kwicklis E. M. and Healy R. W. Numerical Investigation of steady liquid water 

flow in a variably saturated fracture network. Water Resour. Res. 29, 4091-4102 

(1993). 

15. Kirkpatrick S. Percolation and conduction. Rev. Mod. Phys. 45, 574-588 (1973). 

16. Koplik J. Creeping flow in two-dimensional networks. J. Fluid Mech. 119, 219-

247 (1982). 

17. Koplik J. On the effective medium theory of random linear networks. J. Phys. C 

14, 4821-4837 (1981). 

18. David C., Gueguen Y. and Pampoukis G. Effective medium theory and network 

theory applied to the transport properties of rock. J. Geophys. Res. 95, 6993-7007 

(1990). 

19. de Marsily. G. Quantitative Hydrogeology. Academic Press, New York (1986). 

20. Lee C.-H. and Farmer I. Fluid Flow in Discontinuous Rocks, p. 110. Chapman & 

Hall, London (1993). 

21. Charlaix E., Guyon E. and Roux S. Permeability of a random array of fractures of 

widely varying apertures. Transp. Porous Media 2, 31-43 (1987). 

22. Balberg I., Berkowitz B. and Drachsler G. E. Application of a percolation model 

to flow in fractured hard rocks. J. Geophys. Res. 96, 10,015-10,021 (1991). 



- 14-

Table 1. Hydraulic properties of the fracture segments from the network shown in Fig. 

2 (after Priest [12]). 

Start End Aperture Length Conductance 
(Node#) (Node#) (Jlm) (m) (10-6m2/s) 

1 4 70 2.85 0.098 
2 4 160 2.30 1.455 

3 6 240 5.30 2.132 
4 5 70 0.85 0.330 
4 12 160 3.95 0.847 

5 6 70 3.25 0.086 

5 9 180 2.50 1.906 
6 7 70 1.95 0.144 
6 10 240 0.95 11.892 

7 8 70 1.80 0.156 
9 10 90 2.85 0.209 
9 13 180 1.45 3.287 

10 7 90 1.60 0.372 
10 15 240 2.55 4.430 
11 12 60 4.35 0.041 
12 13 60 1.25. 0.141 
13 14 180 3.65 1.306 
14 15 60 2.00 0.088 
14 18 130 2.70 0.665 
15 16 60 2.20 0.080 
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(a) (b) 

(c) (d) 

(e) 

Fig. 1. Schematic diagram illustrating the homogenization process. First (i) we use 

eq. (1) to replace each conductance Ci with E. We then (ii) replace the irregular 

lattice with a quasi-square lattice having the same mean coordination number and 

mean. fracture spacing. Next (iii) we fill in the "missing" bonds with bonds that 

have zero conductance. Finally (iv) we use eq. (1) again to replace each of the 

bonds of this heterogeneous square lattice with a bond having conductivity E. 
The overall conductance of this final network is then trivial to compute. 
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Fig. 2. Fracture network used in the saturated flow simulations conducted by Priest 

(1993). The left and right faces are heid at uniform (but different) potentials, and 

the top to bottom faces have a linear potential gradient imposed along their 
lengths. 
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Fig. 3. Fracture network used in unsaturated flow simulations conducted by Kwicklis 

and Healy (1993). The top and bottom faces are held at the same pressure, so that 

the fluid flows from top to bottom due to gravity; the lateral sides are assumed to 

be impermeable. 
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Fig. 4. Hydraulic conductivity functions for the two types of fractures used in the net

work shown in Fig. 2. , The subvertical set of fractures have a mean aperture of 

125 J.Lm, and the subhorizontal set have a mean aperture of 25 Jlm. 
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Fig. 5. Gridblock-scale hydraulic conductivity of the fracture network shown in Fig. 2, 

as a function of hydraulic potential, as calculated by numerical solution of the flow 

equations, and by using the proposed upscaling procedure. 
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