
-. 

. 
' 
I 

. j 

LBL-37340 
UC-410 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

Accelerator & Fusion 
Research Division 

Presented at the Fourteenth International Conference on . 
Magnetic Technology, Tampere, Finland, June 11-16, 1995, 
and to be published in the Proceedings 

Three Dimensional Pure Permanent Magnet 
Undulator Design Theory 

R.D. Schlueter and S. Marks 

June 1995 

~- ---- - 1 '"-

' \ ~ 

' I ··'. I 
I 

' 

,, 
..1 /; I ,, 

. j 

I 

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098 

::0 
ITI 

("') , 
....... 0 1T1 
J 0 ::0 omm 
t: Ill z ...... ("') 
QJZITI 
c-t-0 
(be-t-(") 

0 
"'0 

OJ -< ...... 
0.---
10 

r ....... 
0" ("') 
J 0 
Ill "C 
J '< 
'< . ..... 



DISCLAIMER 

This document was prepared as an account of work sponsored by the 
United States Government. While this document is believed to contain 
correct information, neither the United States Government nor any 
agency thereof, nor The Regents of the University of California, nor any 
of their employees, makes any warranty, express or implied, or assumes 
any legal responsibility for the accuracy, completeness, or usefulness of 
any information, apparatus, product, or process disclosed, or 
represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or 
service by its trade name, trademark, manufacturer, or otherwise, does 
not necessarily constitute or imply its endorsement, recommendation, 
or favoring by the United States Government or any agency thereof, or 
The Regents of the University of California. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof, or The Regents of the 
University of California. 

Lawrence Berkeley National Laboratory 
is an equal opportunity employer. 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



THREE DIMENSIONAL PURE PERMANENT 
MAGNET UNDULATOR DESIGN THEORY* 

Ross D. Schlueter and Steve Marks 

Advanced Light Source 
Accelerator and Fusion Research Division 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, CA 94720 

June 1995 

LBL-3734~, ~ 

LSGN-216_. 
UC-410 

Paper presented at the 14th International Conference on Magnetic Technology, 
Tampere University of Technology, Finland, June 11-16,1995 

*This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials 
Sciences Division, of the U.S. Department of Energy, under Contract No. DE-AC03-76SF00098. 



Three-Dimensional Pure Permanent Magnet Undulator Design Theory 

R.D. Schlueter and S. Marks 
Lawrence Berkeley Laboratory, Berkeley, California 94720 

Abstract-Expressions for fields due to a point charge 
in 3D and due to a line charge in 2D are compared. 
Extensions to dipoles are made with emphasis on the 
relationship between dipole orientation and field com­
ponent magnitudes. Differences between the effects 
on fields of dipole rotations in 2D and in 3D are high­
lighted and formulas for maximizing individual field 
components are given. A final macrogeometry exten­
sion is made and a closed-form expression is developed 
to calculate the field due to an arbitrary 3D configu­
ration of permanent magnet (PM) blocks. The field 
optimization theory is applied to the design of the 
ALS elliptically polarizing undulator (EPU). Utilizing 
3D field enhancement; peak on-axis field in practical 
designs can be incre~ typically by 5% to 40% or 
more over their 2D counterparts. The theory is gen­
erally applicable to any pure (i.e., no soft magnetic 
material) PM design. 

I. INTRODUCTION 

The theory of pure permanent magnet (PM) design in 
two dimensions has been described thoroughly [1,2]. De­
sign of both nominally 2D pure PM structures, e.g., lin­
early polarizing undulators, and inherently 3D pure PM 
structures, e.g., Sasaki-type [3,4] planar elliptically polar­
izing undulators, can benefit from the extension of these 
concepts and optimization techniques to ~. Herein, the 
PM material with f.l = 1 is represented by magnet.ic charge 
sheets on surfaces [5,6]. 

II. PM POINT CHARGES AND DIPOLES 

A. Point charge. 

In ~ the scalar potential and field from a point charge 
q [G-cm2] located at rq = (zq,Yq,iq) are, respectively, . 
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For a line charge of strength q' [G-cm2 /em] per unit 
length in z, the field is 2D and is given by 

The field conjugate is an analytic function of the complex 
variable t = z + iy: B*(t) = Bz- iBy = q' f27r(t- tq)· 

B. Dipole. 

Extension to a dipole, where at rq point charges of 
strength ±q separated by l are oriented according to di­
rection cosines f}q = (cos~· cos 1/1, cos 0), gives in 3D: 

q By(r) = 47rlr - rls ( Bz(r) ) 

ql Bz(r) 
(3) 

where Xq = Zq-Z, etc. For a permanent magnet q = Br ·a, 
where Br is the remanent field and a is the surface normal. 

For a line dipole of strength q' = Br ·a' in 2D: 

2xq§q ) ( cosx ) 
y~- x~ cos.,P 

(4) 
Since f}q = eix, field conjugate B*(t) = q1lei"/27r(tq -t)2 • 

Note that for a 2D line dipole oriented in, say, the z­
direction, there is no Bz component at r = 0 when that 
line charge is located along the line Yq = ±zq· At this 
location, this orientation also maximizes By(O, 0). This 
contrasts with the 3D case of a point dipole so oriented, 
which gives rise to a pure By component on-axis at z = zq 
when it lies along the line Yq = ±.J2zq, though at this 
location By(r = 0) is not maximized by this orientation. 

\ 

C. Easy axis rotation. 

In 2D, dipole rotation by an angle Llx has the effect of 
rotating B by -Llx, while IBI remains unchanged [1]: 
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(r = 1) ,-r sin (I 

y 

z 
i]q = (cosx,costjl,cosO) = (sinBcos¢,sinBsin¢,cos8) 

Fig. 1. Direction cosi~es of dipole at rq = 0 

-'lei(x+ll.x) 
B* - 'l B* ill.x B B -ill.x 

2 - 21r(tq- t)2 = 1 e ; 2 = te . (5) 

This 2D easy-axis rotation theorem implies that dipole 
orientation maximizing a field component nulls the or­
thogonal component. In 3D, without loss of generality, 
coordinates can be oriented such that the point of inter­
est is at the origin and the dipole is at (0, 0, zq)· On-axis 
field B{O) is 

(4n:fql)B(O) = {-cosx,-costjl,2cos8). (6) 

In contrast to the 2D case, in 3D the magnitude IB(O)I 
can vary by a factor of two, depending on the dipole ori­
entation, being largest when the dipole is oriented in the 
direction of r - rq: 

(4n;fql)IB(O)I = V3cos2 0 + 1. (7) 

Rotation of the dipole by tl.¢q in the z:-y plane leaves 
B~, IBI, and the sum B; + B; unchanged; individually, 
B~ and B11 are proportional to cos¢q and sin¢q, respec­
tively. Rotation by tl.Oq in any plane containing the z-axis 
leaves the ratio B~/ B11 unchanged; both B:: and B11 are 
proportional to sin09 , Bz is proportional to cosOq, and 
IBI ex: v'3 cos2 0 + 1. (See Fig. 1.) 

D. Maz:imizing field components. 

The formulas above are useful in determining the opti­
mal orientation of magnetic moments in space to achieve 
a desired 3D field distribution. For example, in a 3D pure 
PM structure, using 11]9 I = 1, on-axis By = f( cos tjl, cos 0) 
and is given by: 

4'1rlrqls 
--=.....!.

1 
.:...By(O, 0, z) = 3z9 yq Vl- cos2 tP- cos2 0 

q r 

+ (2~- z;- zi) costjl + 3yqzq cosO. (8) 

Fig. 2. ALS EPU periodic structure 

It is maximized for i}q given by: 

+(3yqzq)2]-l/2 ( 2~ ~z;r- zi ) . 
3y9z9 

(9) 

Thus to maximize on-axis By(O, 0, z), easy-axis orien­
tation of a dipole at, for example, location Zq = z and 

{ 

Zq =0 } { (0,+1,0)} 
2~- z~ = 0 is i]q = (+1,0,0) . 

Yq = 0 (0,-1,0) 
(10) 

At the other extreme, as zq ---+ oo at any {zq, y9), the 
easy-axis orientation of a dipole that maximizes on-axis 
By(O,O,z), is costjl = -1. 

Implications for pure PM ID design are tremendous. 
One can increase on-axis B by ...., 20% in the inherently 3D 
ALS EPU structure (..\ = 5cm, gap=l.8cm) by rotating 
the PM easy-axis as one moves off-axis in z. (See Fig. 2.) 

On-axis fields of conventional linear polarizing pure PM 
devices also can be increased dramatically by taking ad­
vantage of this third-dimension easy-axis directionality 
optimization. For example, for pure PM IDs of gap-period 
ratios of 0.5 and 0.07, 4 blocks-per-period, and block 
height L = ..\/2, maximum By of a practical structure 
utilizing easy-axis orient?-tion variation in the z-direction 
(with just three rows of blocks in z) increases by 5% and 
40%, respectively, over their 2D counterparts. (See Fig. 
3.) For large period devices, peak fields greater than 2.5T 
are achievable. Finer subdivsion of blocks can in principle 
more than double these percentage increases, but man­
ufacturing and assembly becomes increasingly cumber­
some. If fabrication simplicity is-Paramount, peak on-axis 
field can actually be increased beyond the 2D 'ideal' field 
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" 
Fig. 3. Linear polarizing pure PM device with 3D field 

enhancement (one of many possible discretizations) 

by merely truncating the PM blocks in the x-direction, 
since easy-axis orientation for maximizing peak on-axis 
B 11 rotates through 180° as the x-coordinate of the dipole 
location Va.ries within the interval 0 ~ x 11 $ oo. 

Maximization of B:c = f( cos .,P, cos 6) is analogous: 

41l'lr Is . ~ -------=~-~~ q/ B::(O, 0, z) = (2x;- y; - zih/1- cos2 .,P- cos2 6 

+ 3x11y11 cos,P + 3x11z11 cosO. (11) 

It is maximized for ij11 given by: 

+(3XqZq)2]-l/2 ( 2X~ ;X~q- z; ) . 
3x11 z11 

(12) 

Thus to maximize on-axis B::(O, 0, z), easy-axis orien­
tation of a dipole at, for example, location z11 = z and 

{ 2z{!.. ~ ~ 0 } is ij11 = { ~~~~:~~ } . (13) 
Yt=O (+1,0,0) 

At the other extreme, as z11 --+ oo at any (z9 ,y11 ), the 
easy-axis orientation of a dipole that maximizes on-axis 
B::(O,O,z), is cosx = -1. 

III. PM BLOCKS & PERIODIC STRUCTURES 

The field B(x, y, z) due to a uniformly magnetized block 
can be determined from a charge sheet model over the 
block surface where q = Br · a, where Br is the remanent 
field and a is the magnet's surface area. Referring to 
the PM block in Fig. 4, charge sheets may exist on any 
of the block's six faces, depending on the magnetization 

y 

Yq, 
d 4 c 

1 PM 2 

5,6 

Yq, a 3 b 

X 
Xq, Xq, 

z 

Fig. 4. PM block orientation and surfaces 

orientation [5,6]. For a positive charge sheet on a single 
face: 

da11 = { ~::~~: } ; Br II { ; } , (14) 
dyqdZg X 

where u = z, y, or z. Summing contributions from the 
individual faces for each PM block in a system yields the 
vector components of Bat any arbitrary location(s), e.g. 
along the axis in a pure PM undulator. For blocks whose 
surfaces are not parallel to the cartesian axes, one can 
always perform coordinate transformations by axes rota­
tion; thus the development herein is completely general. 
Two types of integrals must be evaluated: those where 
the charge sheet surface normal and the calculated field 
component are parallel (a9 x iis. = 0) and when they are 
perpendicular (aq · iis. = 0). (See Appendix A for solu­
tion details using either varible substitutions or Green's 
theorem.) The first integral type is: 

ln ((ii112 + lr,(u112 ,v112,w,)l][ii111 + lr9 (u91 ,v1111 w9)11) 
(iiiJ2 + lrq( Uqll v,2' Wq)l][ii,l + lr,( uf21 Vql' w, )I] 

where u is the cartesian coordinate of the field component 
of interest, with u, v, w each being any one of the cartesian 
coordinates z, y, z. The normal to the charged block sur­
face is parallel to the w axis and is defined by the region 
w9 =constant, u111 $ Ug $ u 92 , and v91 $ v11 $ v92 • Br 
is the surface charge sheet 'density and lr9 (u9 ,v9,w9 )1 E 

.j(u9 - u)2 + (v9 - v)2 + (w9 - w)2. The second integral 
type is: 
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where points a, b, c, d are shown in Fig. 4. Integral 
contributions along a-b and c-d are zero since y is constant 
along these line segments. Integrating Eq. {21) w.ith V 
given by Eq. (1) yields Eq. (17). Alternatively, 

- arctan ( iiq, Wq, ) -arctan ( Vq2 Wq2 ) 
uqlfq( Uq, Vq" wqJI Uq,rq( Uq, Vq2, Wq2)1 !: B,(x, y, z) = {," (z;: i)) Ct:l) [ <~x, {20) 

where u is the cartesian coordinate of the field component, 
the block surface defined by the region u9= const., v9, :S; 
v9 :S; v92 , and w9, :S; w9 :S; w92 is normal to the v-w plane. 

The field in a 3D structure of PM blocks, then, is 

411" ( B,;(r) ) B B11 (r) = 
r Bz(r) 

{17) 

( 

Lr 02(xq) + Ly Ot(Xq, Zq) + Lz Ot(x9 , y9 ) ) 

Lr Ol(Yq, Zq) + Ly 02(Yq) + Lz Ol(Yq, Xq) , 
Lr01(z9 ,y9 ) +l:11 01(z9 ,x9) +l:z02(z9 ) 

where the summation Er is over all charge sheet surfaces 
whose normal is parallel to the x axis, etc. 

In the expression in Eq. {17), there is a singularity in 
the logarithm when v9 = -lr9 1. These singularities occur 
in pairs and can be handled numerically taking the limit: 

(
-a+ .../a2 + e2) lim ln ~ = ln(bja). 

e-o -b + v b- + e-
{18) 

We have used the 3D optimization techniques of the 
previous section to design the ALS EPU shown in Figure 
2, using the closed-form expressions of this section. Pro­
gram CPU [7] allows input of multiple rows of periodic 
arrays of PM blocks with specified magnetization orienta­
tions to rapidly calculate fields anywhere in the gap region 
of the proposed ALS EPU. 

Having two blocks in each quadrant enables another 
beneficial design feature, i.e., a thinner vacuum chamber 
wall, and thus smaller magnetic gap, over the portion of 
the chamber directly above/below the beam axis than oth­
erwise possible with a uniform-in-x chamber thickness due 
to strength limits. This further increases the attainable 
peak on-axis field. Note that with the 3D field enhance­
ment, field rolloffin xis rapid, thus complicating focusing 
effects. 

IV. APPENDIX A: INTEGRAL DERIVATIONS 

For the integral type of Eq. {17), using Green's theorem 
and noting that Bz = -8Vf8x = 8Vf8x9 , gives 

411" jj -z9 411" jj av 
Br Bz(x, y, z) = lr

9
!3 dx9dy9 = Br Bxq dx'ldy9 

4
11" f 411" ( r r ) = Br Vdyq = Br }b Vdyq + }d Vdyq ' {19) 

Now 

J ( Zq ) ( 1 ) dxq = j dp 
z~ + c1 -jz~ + c2 p2 - (c2- cl) 

-1 .../c2- c1 + Jz~ + c2 
= ln (21) 

Jc2- cl iJz~ + Ct 

where p = Jzi + c2, c1 = z:, and c2-c1 = 11:. Making 

the substjtutions again yields Eq. (17). 
Similarly, for the integral type of Eq. (18), 

1 ( fF02 = arctan p - - 1 , 
.jCi .../c2 - c1 c1 

(23) 

where p = z9f-jz'# +c2, c1 = z~, and c2- c1 = y:. 
Making the substitutions yields Eq. (18). 
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