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Abstract 

The gauge interactions of any supersymmetric extension of the stan

dard model involve new flavor mixing matrices. The assumptions involved 

in the construction of minimal supersymmetric models, both SU(3) x 

SU(2) x U(l) and grand unified theories force a large degree of triviality 

on these matrices. However, the requirement ofrealistic quark and lepton 

masses in supersymmetric grand unified theories, forces these matrices to 

be non-trivial. This leads to important new dominant contributions to 

the neutron electric dipole moment and to the decay mode p -+ K 0 J..L+, 

and suggests that there may be important weak scale radiative correc

tions to the Yukawa coupling matrix of the up quarks. The lepton flavor 

violating signal J.l -+ e; is studied in these theories when tan f3 is suf

ficiently large that radiative effects of couplings other than At must be 
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Energy under Contract DE-AC03-76SF00098 and in part by the National Science Foundation 
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included. The naive expectation that large tan /3 will force sleptons to 

unacceptably large masses is not borne out: radiative suppressions to the 

leptonic flavor mixing angles allow regions where the sleptons are as light 

as 300 Ge V, provided the top Yukawa coupling in the unified theory is 

near the minimal value consistent with mt. 



I. Introduction 

It has recently been demonstrated that flavor and CP violation provide an 

important new probe of supersymmetric grand unified theories [1-4]. These new 

signals, such as J.L -t e1 and the electron electric dipole moment de, are com

plementary to the classic tests of proton decay, neutrino masses and quark and 

charged lepton mass relations. The classic tests are very dependent on the flavor 

interactions ancl. symmetry breaking sector of the unified model: it is only too 

easy to construct models in which these signals are absent or unobservable. How

ever, they are insensitive to the hardness scale, AH, of supersymmetry breaking. 1 

On the other hand, the new flavor and CP violating signals are relatively insensi

tive to the form of the flavor interactions and unified gauge symmetry breaking, 

but are absent ifthe hardness scale, AH, falls beneath the unified scale, Ma. The 

signals are generated by the unified flavor interactions leaving an imprint on the 

form of the soft supersymmetry breaking operators [5], which is only possible if 

supersymmetry breaking is present in the unified theory at scales above Ma. 

The flavor and CP violating signals have been computed in the minimal 

SU(5) and SO(lO) models for leptonic [1-3] and hadronic processes [4], for 

moderate values of tan/3, the ratio of the two Higgs vacuum expectation values. 

While rare muon decays provide an important probe of SU(5), it is the SO(lO) 
theory which is most powerfully tested. If the hardness scale for supersymmetry 

breaking is large enough, as in the popular supergravity models, it may be 

possible for the minimal SO(lO) theory to be probed throughout the interesting 

range of superpartner masses by searches for J.L -t e1 and de. 

The flavor changing and CP violating probes of SO(lO) are sufficiently 

powerful to warrant an exploration of consequences for non-minimal models, 

which is the subject of this paper. In particular, we study SO(lO) theories in 

which 

(I) The Yukawa interactions are non-minimal. 

In the minimal model th~ quarks and leptons lie in three 16's and the 

two Higgs doublets Hu and Hv lie in two 10 dimensional representations lOu 
and lOv. The quark and charged lepton masses are assumed to arise from the 

1This is the highest scale at which supersymmetry breaking squark and gluino masses 

appear in the theory as local interactions. 
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interactions 16-Xu 16 lOu+ 16.Xnl6 IOn. This model is a useful fiction: it is very 

simple to work with, but leads to the mass relation me/miJ. = md/ms, which is in 

error by an order of magnitude. It is clearly necessary to introduce a mechanism 

to insert SO(lO) breaking into the Yukawa interactions. The simplest way to 

achieve this is to assume that at the unification scale, MG, some of the Yukawa 

interactions arise from higher dimensional operators involving fields A, which 

break the SO(lO) symmetry group. This implies that .Xu,D ~ .Xu,n(A). Every 

realistic model of SO(lO) which has been constructed has this form; hence one 

should view this generalization of the minimal model as a necessity. 

(II) The ratio of electroweak VEV's, tan/3 = vu/vn, is allowed to be large, 

~ mt/mb. 

This is certainly not a necessity; to the contrary, a simple extrapolation of 

the results of [2] to such large values of tan f3 suggests that it is already excluded 

by the present limit on f-L ~ e1. The case of large tan f3 in SO(lO) has received 

much attention [6, 7, 8, 9] partly because it has important ramifications for the 

origin of mt/mb = (At/ >..b) tan /3. To what extent is this puzzling large ratio to 

be understood as a large hierarchy of Yukawa couplings, and to what extent in 

terms of a large value for tan /3? If the third generation masses arise from a 

single interaction of the form 163 163 10 it is possible to predict mt using mb and 

m 7 as input [6], providing the theory is perturbative up to Ma. The prediction 

is 175 ± 10 GeV [7], and requires tan f3 ~ mt/mb. In this paper we investigate 

whether this intriguing possibility is excluded by the f-L ~ e1 signal; or, more 

correctly, we determine whether it requires a soft origin for supersymmmetry 

breaking, making it incompatible with the standard supergravity scenario [10]. 

In the next section we show that SO(lO) models with .X ~ .X(A) possess 

new gaugino mixing matrices in the up-quark sector, which did not arise in 

the minimal models. In ~ection III we set our notation for the supersymmetric 

standard model with arbitrary gaugino mixing matrices, and we show which 

mixing matrices are expected from unified models according to the gauge group 

and the value of tan /3. In section IV we describe the new phenomenological 

signatures which are generated by the gaugino mixing matrices in the up sector; 

these signatures are generic to all models with Yukawa interactions generated 

from higher dimensional operators. The consequences of large tan f3 for the 

flavor and CP violating signatures are analyzed analytically in section V and 
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numerically in section VI. The analysis of the first five sections applies to a wide 

class of models. In section VII we illustrate the results in the particular models 

introduced by Anderson et al [9). As well as providing illustrations, these models 

have features unique to themselves. Conclusions are drawn in section VIII. 
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II. New Flavor Mixing in the Up Sector 

In [1-4] flavor and CP violating signals are studied in minimal SU(5) and 

SO(lO) models with moderate tan /3. In these models the radiative corrections 

to the scalar mass matrices are dominated by the top quark Yukawa coupling At 

of the unified theory, so the scalar mass matrices tend to align with the up-type 

Yukawa coupling matrix and all non-trivial flavor mixing matrices are simply 

related to the KM matrix. However, as mentioned above, the minimal models 

do not give realistic fermion masses. One has to insert S0(10) breaking into 

the Yukawa interactions. The simplest way to achieve this is to assume that the 

light fermion masses come from the non-renormalizable operators 

1 A1 A2 At Ae+I An 
.Aii16i.l\" M ... M 10-M ... M l6j, 

~1 2 t l+l n 
(2.1) 

where the 16/s contain the three low energy families, 10 contains the Higgs dou

blets, and A's are adjoint fields with vacuum expectation values (VEV's) which 

break the S0(10) gauge group. After substituting in the VEV's of the adjoints, 

they become the usual Yukawa interactions with different Clebsch factors as

sociated with Yukawa couplings of fields with different quantum numbers. For 

example in the models introduced by Anderson et al. [9], (hereafter referred to 

as AD HRS models) 

X:), 
(2.2) 

where the x, y, z's are Clebsch factors arising from the VEV's of the adjoint 

fields. Thus realistic fermion masses and mixings can be obtained. 

The radiative corrections to the soft SUSY-breaking operators above Ma 
are now more complicated. From the interactions (2.1) the following soft super-

symmetry breaking operators are generated: 

(2.3) 

where ¢i, ¢i are scalar components of the superfields, and Aij(A) are adjoint 

dependent couplings, .A(A) = >..'11; ... ~:. After the adjoints take their VEV's, 

the m~e(A) become the usual soft scalar masses. If we ignore the wavefunction 

4 



.. 

renormalization of the adjoint fields (which is valid in the one-loop approxima

tion), this is the same as if we had replaced the adjoints by their VEV's all the 

way up to the ultraheavy scale where the ultraheavy fields are integrated out, 

and treated these nonrenormalizable operators as the usual Yukawa interactions 

and scalar mass operators. This is a convenient way of thinking and we will use 

it in the rest of the paper. 

Above the GUT scale, in addition to the Yukawa interactions which give 

the fermion masses 

(2.4) 

the operators (2.1) also lead to 

(2.5) 

where Hu3 , Hn3 are the triplet partners of the two Higgs doublets Hu and Hn. 

Each Yukawa matrix has different Clebsch factors associated with its elements, 

so they can not be diagonalized in the same basis. The scalar mass matrices 

receive radiative corrections from Yukawa interactions of both (2.4) and (2.5), 

which, in the one-loop approximation, take the form 

.6.m2 
Q 

t t 2 ..\t ..\ t ex ..\u..\u + ..\n..\n + Aqq qq + qCAqc' 

.6.m~ 2 t t 2 t ex ..\u..\u + ..\euAeu + Aud..\ud' 

' 
.6.mb 2 t t 2 t ex ..\n..\n + ..\ndAnd + ..\udAud, 

.6.mi t 3 t t ex ..\E..\E + ..\qc..\qc + ..\nc..\nc, 

.6.m1 ex 2..\E..\k + 3..\euA!u · (2.6) 

In the minimal 50(10) model, scalar mass renormalizations above Me arise from 

a single matrix ..\u. It is therefore possible to choose a "U-basis" in which the 

scalings are purely diagonal. This is clearly not possible in the general models. 

All scalar mass matrices and Yukawa matrices are in general diagonalized in 

different bases. Therefore, flavor mixing matrices should appear in all gaugino 

vertices, including in the up-quark sector (where they are trivial in the minimal 
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models studied in [1-4]). The up-type quark-squark-gaugino flavor mixing is a 

novel feature of the general models. Its consequences will be discussed in Sec. 

IV. Also, the flavor mixing matrices are no longer simply the KM matrix. They 

are model dependent and are different for different types of quarks and charged . 

leptons, and are fully described in the next section. 

6 



III. Flavor Mixing Matrices in General Superymmetric Standard Mod

els. 

In this section we set our notation for the gaugino flavor mixing matrices 

in the supersymmetric theory below Ma, taken to have minimal field content. 

We also give general expectations for these matrices in a wide variety of unified 

theories. 

The most general scalar masses are 6 x 6 matrices for squarks and charged 

sleptons and 3 x 3 matrix for sneutrinos, 

( m2 (Cu +>.up, cot f3)vu) 
mb UL 

= (ct + >..hp, cot f3)vu 2 ' muR 

( m2 ( Cv + >..vp, tan f3)vv) 
m1 DL 

= (t:b + >..bp, tan f3)vv 2 ' mvR 

( m2 (CE + AEJ.l tan f3)vv) 
m~ 

_ EL 
- (ck + >..kp, tan f3)vv 2 ' mER 

m2 
1/ = (m~J' (3.1) 

where mbL, m1L, mbR' m1R' m~L, mkR are 3 x 3 soft SUSY-breaking mass ma

trices for the left-handed and right-handed squarks and sleptons, and (u, (v, (E 

are the trilinear soft SUSY-breaking terms. To calculate flavor violating pro

cesses, such as p, --+ e1, one can diagonalize the mass matrix mk by the 6 x 6 

unitary rotation matrix liE and m~ by the 3 x 3 unitary rotation Vv, 

(3.2) 

where mk, m~ are diagonal. The amplitude for J.l --+ e1 is given by the diagrams 

in Fig. 1, summing up all the internal scalar mass eigenstates. 

If the entries in the scalar mass matrices are arbitrary, they generally give 

unacceptably large rates for flavor violating processes. From the experimen

tal limits one expects that the first two generation scalar masses should be 

approximately degenerate and the chirality-changing mass matrices (A should 

be approximately proportional to the corresponding Yukawa coupling matrices 

>.A. In this paper we treat the chirality-conserving mass matrices and chirality

changing mass matrices separately, i.e., the mass eigenstates are assumed to be 

purely left-handed or right-handed, and the chirality-changing mass terms are 
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treated as a perturbation. This may not be a good approximation for the third 

generation where the Yukawa couplings are large, the correct treatment will be 

used in the numerical studies of Sec. VI. The superpotential contains 

(3.3) 

where >..u, >..v, AE are the Yukawa coupling matrices which are diagonalized by 

the left and right rotations, 

(3.4) 

The soft SUSY-breaking interactions contain 

Qtm~*Q + [jctmbUc + nctmbDc + ltmi,l + £ctm~*Ec 
-T - -T - - T -+ Q CuUc Hu + Q CvDc Hv + Ec CELHv. (3.5) 

Because the trilinear terms should be approximately proportional to the Yukawa 

couplings, we write 

C = Co + ~c; = A>.. + ~c;. (3.6) 

The soft-breaking mass matrices are diagonalized by: 

(3.7) 

(3.8) 

In the mass eigenstate basis the rotation matrices V, U appear in the gaugino 

couplings, 
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£ 9 = .J2g' t [- ~-hwt eLNn(HnB + cotBwHnu;3 ) + e£WlReRNnHnB 
71"=1 

+ ~cot Bw1hihNnHnu;3 

+ uLW.ut uLN (~H -+~cot BwH -) + dLWnt dLN (~H --~cot BwH -) L n 6 nB 2 nw3 L n 6 nB 2 nw3 

- ~U£Wi;.RuRNnHnB + ~d£WbRJRNnHnB + h.c.] 

2 

+ g :L[eLwlLvL(xJ<cW") + ihh(x!K;u;) 
c=1 

+ JLwbL uL(xJ<<:W) + 'ihWtLJL(x!K;u;) + h.c.] 

+ .J2g3[uLwtL uL9 + JLwbLJL9 + u£WtRuR9 + Cl~wbRJR9 + h.c.], (3.9) 

where2 the neutralino and chargino mass eigenstates are related to the gauge 

eigenstates by e.g. B = 2::!=1 HnBNn, W3 = 2::!=1 Hnu;3 Nn, w+ = 2::~=1 Kcu;Xc, 
and 

WEL = uLvEL' WER = u}:;vER, WuL = U~VuL, WnL = U~VnL, 

WuR = u&vuR, WnR = Ub Vnw 

There are also non-diagonal chirality-changing mass terms 

-£':;/ = e~W_ER(AE + J.l tan ,8)-XEWt eLVD + e~U'fl:lCEULeLVD 
7r t- 'JI'T -

+ dL Wl)L (An+ J.l tan ,8)-XnWnRdRvn + dLUQI:lCnUndRvn 

+ ufWuJAu + J.l cot ,8)-XuWtRuRVU + ufUJI:lCuUuuRVU 

+ h.c. 

The lepton flavor violating couplings are summarized in Fig. 2. 

(3.10) 

In the rest of this section we discuss the flavor mixing matrices in the min

imal supersymmetric standard model, minimal and general SU(5) and SO(lO) 

models, with moderate or large tan ,8. The results are summarized in Table 1. 

2 Neutrino masses are not discussed here and we choose the neutrino to be in the sneutrino 

mass eigenstate basis. 
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For the minimal supersymmetric standard model, the radiative corrections 

to the soft masses only come from the Yukawa interactions of the MSSM: 

.6.m2 t t 
Q ex >..u>..u + K.AD>..D, 

.6.m~ ex 2>..b>..u, 

.6.m1 ex 2>..h>..n, 

.6.ml t ex >..E>..E, 

.6.m2 E ex 2>..E>..k . (3.11) 

We have assumed a boundary condition on the scalar mass matrices m~ ex I 

at Mp£, and "" =/= 1 represents the possibility that the proportionality constants 

are not universal. For moderate tan /3, At ~ Ab so that the radiative corrections 

are dominated by At. Thus one can neglect the >..n contribution and the only 

nontrivial mixing is WnL. For large tan/3,At and Abare comparable, so mb 

will lie between >..u>..b and >..n>..b. Therefore both WuL and WnL are non-trivial. 

with KM matrix and one can ignore them. 

For the minimal SU(5) model, there are only two Yukawa matrices, >..u = 

>..w, >..n = >..E = >..5 , and 

.6.m2 
Q ex 3>..u>..h + 2K.>..n>..b, 

.6.m~ ex 3>..b>..u + 2K.>..h>..n, 

.6.m1 ex 4>..h>..n, 

.6.ml ex 4>..h>..n, 

.6.m1 ex 3>..u>..h + 2K.>..n>..b . (3.12) 

For moderate tan /3, At ~ Ab, we have non-trivial mixings for WnL and WER, 

as found in [1, 2]. For large tan /3, >..n can not be ignored, giving non-trivial 

mixings for WuL and Wuw 

For the minimal S0(10) model considered in [2, 3], 

.6.mb ex 5>..u>..h + 5K.>..v>..b, 

.6.m~ ex 5>..b>..u + 5K.>..b>..v, 

10 



~mb ex 5AhAu + 5~AbAv, 

~mi ex 5AhAu + 5~AbAv, 

~m~ ex 5AuAh + 5~AvAb. (3.13) 

We have non-trivial mixings WvL, WvR, WEL, and WER for moderate tan/3 and 

non-trivial mixings for all W's for large tan (3. 

For the general SU(5) or SO(lO) models, defined in the last section, we get 

non-trivial mixings for all mixing matrices in general. However, in SU(5) models 

with moderate tan (3, the splittings among mb and ml, are too small (because 

they are generated by the small As(A)) to give significant flavor changing effects. 

One might expect that the mixing in the Wu's are smaller than those in 

the Wv's because of the larger hierarchy in AU compared with AD· However, a 

given W is the product of aut (which diagonalizes the scalar mass matrix) and 

a V (which diagonalizes the Yukawa matrix). Even if the mixings in Vu's are 

smaller than those in Vv 's because of the larger hierarchies in AU, we do not have 

a general argument for the size of mixings in U matrices. This is because U di

agonalizes (appropriate combinations of) known Yukawa matrices and unknown 

Yukawa matrices appearing above the GUT scale, (2.5). The mixings in ut and 

V can add up or cancel each other. Our only general expectation is that these 

new Yukawa matrices have similar hierarchical patterns as AU or AD. Without a 

specific model, one can at most say that all non-trivial W's are expected to be 

comparable to Vi<M; the argument that the mixings in Wu's should be smaller 

than is Wv 's is not valid. 

In the minimal models at moderate tan (3, the leading contributions to flavor 

changing processes, such as f1 -+ e1, involve diagrams with a virtual scalar of the 

third generation. Although such contributions are highly suppressed by mixing 

angles, they dominate because they have large violations of super-GIM[ll]: the 

top Yukawa coupling makes m-; very different from m-;, m;_. At large tan (3, the 

strange/muon Yukawa couplings get enhanced, so the splitting between m-; and 

m;_ increases, leading to potentially competitive contributions to flavor changing 

processes which do not involve the third generation. The importance of these 

new diagrams can be estimated by comparing the contributions to ~m~1 (in a 

basis where gaugino vertices are diagonal) when the super-GIM cancellation is 

11 



between scalars of the first two generations (2-1) and third generations (3-1): 

~m~1 (2-1) 'VcdA~ { 10-2, forA2=Ac, 
2( )~ 2~ (tan/3) 2 

~m21 3-1 'Vtd 'VtsAt """'60 , for A2 = As· 
(3.14) 

We can see that for large tan f3 (or any tan f3 with small As coming from the 

mixing of Higgs at Ma i.e., As(Ma) = t~tA2(Ma)), this could be comparable to 

the flavor violating effects from the large splitting of the third generation scalar 

masses. However, for the J.t -+ e1 in S0(10) models, it does not contribute 

to diagrams which are proportional to m 7 , (because it does not involve the 

third generation scalars), the dominant contributions are still those diagrams 

considered in [2]. For flavor changing processes which do not need chirality 

flipping, such as K - K mixing, and all flavor changing processes in SU(5) 

models, this non-degeneracy between the first two generations is important. 

The above discussion is summarized in Table 1. 
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Table 1 

SU(5) SO(lO) 

MSSM Minimal I general minimal I general 

• • 0 • 0 

WuL • • v • v 
WvL v v v v v 
WuR - • v • v 
WvR - - v v v 
WEL - - v v v 
WER - v v v v 

Table 1: Summary table for the flavor mixing matrices: 

8m~: important effects due to some third generation scalars not degenerate 

with those of first two generations. 

8m~ : non-negligible effects due to non-degeneracy of the scalars; of the 

first two generations. 

lVi : fermion i and scalar z are rotated differently to get to mass basis . 

.j: present for any value of tan /3. 
• : present only for large tan /3. 
o : present for large tan /3, but model dependent for moderate tan /3. 
-: not present. 

* : although present, its effect for moderate tan f3 on flavor violation is 

small due to the small non-degeneracy among different generation scalars. 
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IV. Phenomenology from up-type mixing 

As discussed in the previous section, unlike the minimal models with mod

erate tan j3 studied in [1, 2, 3, 4] in generic GUT's (for any tan j3) and even for 

minimal GUT's (at large tan/3), we expect mixing matrices in the up sector. 

Having motivated an origin for non-trivial up mixing matrices WuL(R) =/= 1, we 

consider some effects they produce. In the following we simply assume some 

WuL(R) at the weak scale and consider their phenomenological consequences. 

(See however Section V and the appendix for a discussion of the scaling of mix

ing matrices from GUT to weak scales.) In particular we discuss D- jj mixing, 

corrections to up-type quark masses, contributions to the neutron electric dipole 

moment ( e.d.m.) and the possibility of different dominant proton decay modes 

than those expected from minimal models. 

IVa. D- jj mixing: 

To get an idea for the contribution of up-type mixing matrices to D- jj 

mixing, we follow [12, 13] and employ the mass insertion approximation. The 

bounds obtained from D - jj mixing on the 6 x 6 up-squark mass matrix mb = 

( 
m~LL m~LR) (in the basis where gluino and Yukawa couplings are diagonal) 
munL munn 

are summarized in [13]. For average up-squark mass of m = 1 TeV, they are 

( 4.1) 

m2 
ULR12 ::::; .06. ( 4.2) 
m2 

Consider first (4.1). In the last section we estimated that the contribution to 

mi2 from the slight non-degeneracy between the first two generation scalars is 

generically at most comparabale to that from the non-degeneracy between the 

first two and third generation scalars. Thus, for our calculation, we only consider 

the contribution from the splitting between first two and third generation scalars. 

Then, for A = L, R 

(4.3) 

We see that for Hi's of the same size as the corresponding KM matrix ele

ments, the LHS of ( 4.1) is of order 4 x 10-4, and the bound is easily ~atisfied. 
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Turning to (4.2), note that if (u = A..\u, mbLR
12 

= 0. However, we expect 

(u = A..\u + ll(u, with ll(u induced in running from Mp£ to M'G having pri

marily a third generation component in the gauge eigenstate basis. If all rele

vant mixing matrix elements are of order the KM matrix elements, we expect 

~m~f12 1 = O(I~'VtdVtsl)· Again, we see that the bound (4.2) is generically 

easily satisfied, and thus we do not in general expect significant contributions 

to D- fJ mixing. 

IVb. Weak-scale corrections to up-type quark masses: 

It is well known that there are important weak-scale radiative corrections 

to the down quark mass matrix proportional to tan/3 [7, 8, 14, 15, 16). In 

general unified models, with non-zero Wu, there are also importrant weak scale 

corrections to the up quark mass matrix. 

From the diagram in Fig. 3, we have a contribution to up-type masses 

proportional to mt. We find, again assuming degeneracy between the scalars of 

the first two generations, 

where 
-2 m-

- ' 
X;= M2' 

g 

h(x,y) = _1_ [xlogx _ ylogyl· 
x-y 1-x 1-y 

( 4.4) 

( 4.5) 

The largest fractional change in the mass occurs for the up quark. If WuL(R) 31 is 

comparable to the corresponding KM matrix element, the contribution to .6.m.., 
m.., 

is not significant. However, if each of the WuL(R) 31 are a factor 3 larger than 

the corresponding KM elements we can get sizable contributions. In Fig. 4, we 

plot .6.m., in .!:!:il. - .::::i.. space where we have assumed m- = m- = m-· m- = 
mu Mg m;. ' UL UR ul tL 

m7R = m-7, and we have put IWu£31 1 = IWuR31 1 = 1/30, (A+ J.l cot f3)jm7 = 3. 

Any deviations from these values can simply be multiplied in llmu/ mu. In some 

regions of the parameter space it is possible to get the entire up quark mass as 

a radiative effect. 
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IV c. Neutron e.d.m.: 

If we attach a photon in all possible ways to the diagram giving the contri

bution to u-quark mass, we get a contribution to the u-quark e.d.m., which is 

proportional to mt for any value of tan {3. Evaluating the diagram, we find 

du = elF I sin <Pu (4.6) 

where 

F _~(as) m A+ J.LCOt{3Wi W.* Wi W.* 
- 3 4?r t M:2 UL31 UL33 UR31 UR33 

g 

where 

G2(x,y) = g(x)- g(y), g(x) = 
2

( 
1 

)
3

[x 2 -1- 2xlogx] (4.8) 
x-y x-1 

and 

In general we expect a large non-zero sin <Pu· If the combination of W's appearing 

in the above is comparable to the combination giving a down quark e.d.m., 

the u-quark contribution will dominate over the d-quark contribution to the 

neutron e.d.m: considered in [3] by a factor 4m~:m.6' (the factor 4 comes from 

the quark model result dn = 4/3dd- 1/3du)· Hence, the neutron e.d.m. may be 

competitive with J.L -+ e1 and de as the most promising flavor changing signal 

for supersymmetric unification. 

IV d. Proton decay: 

Finally we turn briefly to the relevance of up-type mixing matriCes for 

proton decay; in particular to the important question of the charge of the lepton 

in the final state. We know that upon integrating out the superheavy Higgs 

triplets we can generate the baryon number violating operators 2ftH ( QQ)( Q L) 
and ~H (EU)(DU) in the superpotential. These operators must subsequently 

be dressed at the weak scale in order to obtain four-fermion operators leading 

to proton decay. The dressing may be done with neutralinos, charginos or 

gluinos where possible. Since the dressed operator grows with gauge couplings 
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and vanishes for vanishing neutralino/charginojgluino mass, one might naively 

expect gluino dressing to be most important. However, if the up-type mixing 

matrices are trivial, gluino dressed operators can only lead to proton decay with 

a neutrino in the final state. To see this, we examine each operator separately: 

( eua)( dbuc)tabc (where a, b, care color indices) must involve u's from two different 

generations because of the tabc. One of them has to be au, so the other is a cor a 

t. If there is no up mixing, the up flavor does not change in the dressing process, 

so the final state would have to contain a cor at. Since mt, me > mp, this can 

not happen. Next, consider (QQ)(QL) = u[,dt(u£eL-d£vL)tabc· By exactly the 

same argument as the above, the u£dtu£eLtabc operator can not contribute to 

proton decay. Thus, we see that in the absence of mixing in the up sector, gluino 

dressing can only give neutrinos in the final state. However, the above arguments 

break down if up-mixing matrices are non-trivial, since gluino dressed diagrams 

give a significant contribution to the branching ratio for charged lepton modes 

in proton decay. A detailed study of flavor mixing in the up sector [17] concludes 

that, whether the wino or gluino dressings are dominant, the muon final state 

in proton decay is of greatly enhanced importance. Without the mixings, one 

expects ?(P:r-;;.::/ ~ 10-3. The up mixing in general models increases this by 

0(100) making the mode p --+ I< 0 J.L+ a favorable one for discovery of proton 

decay. 
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Section V. Large tan /3: Analytic Treatment 

The large tan f3 scenario is interesting for a number of reasons. For moderate 

tan /3, the only way to understand mt ~ mb, m 7 is to have At ~ Ab, A7 at the 

weak scale. This gives us little hope of attributing a common origin for third 

generation Yukawa couplings at a higher scale. However, for large tan f3 ""'"" 
0 (:~),the weak scale At,Ab,A7 are comparable and the above hope is restored. 

(In fact it is realized in SO(lO) models like the ADHRS example outlined in 

section VII). For us, this is sufficient motivation to study the large tan f3 case in 

more detail. Also, this case was not studied in [2]. We shall see that unexpected 

new features arise in the large tan f3 limit. 

The largest contribution to the J.L -+ e1 amplitude comes from the diagram 

with L- R scalar mass insertion (Fig. 5). In the L- R insertion approximation, 

the amplitude for J.LL(R) decay is 

FL(R) = 471" c~2 Ow m-r WEL(Rb WER(Lb W£L(Rl33 W£R(Ll33 ( AE + J.L tan /3) 

x [G2 (m~ m~)- G2(m~ m~ ) - G2(m~ m~ ) + G2(m~ m~ )] 'TL' 'TR eL' 'TR 'TL' eR eL' eR ' 

where 

(5.1) 

Note, however, that for large tan f3 the L - R insertion approximation may be 

a bad one, since the chirality changing mass for the third generation becomes 

comparable to the chirality conserving masses. A correct treatment will be used 

for the numerical analysis in the next section. We still expect, however, that the 

amplitude to be proportional to WE32 WE31 because of the unitarity of the mixing 

matrices: the sum of contributions from the first two generations is proportional 

to W 1iW1*i + W 2iW;i = -W3iW;i fori=/= j, and the contribution from the third 

generation is itself proportional to Ttfl3i w;j. 
Two simplifications in the dependence of the J.L -+ e1 rate on parameter 

space occur for large tan /3. First, since the dominant diagram involves the 

L - R insertion (A + J.L tan f3)mt, and since tan f3 is large, the amplitude does 
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not depend on the weak scale parameter A. Second, in the large tan{:J limit, the 

chargino mass matrix is 

V2Mw sin {3) ---+ ( M2 
-J.L 0 

V2Mw), 
-J.L 

(5.2) 

and the parameters M2 , J.L have a direct interpretation as the chargino masses. 

(Note that this assures us that J.L tan {3 will likely always be much bigger than 

A; for a tan {3 of 50, the LEP lower bound on chargino mass of 45 GeV tells us 

that J.L tan {3 > 2 Te V, so for A to be comparable to J.L tan {3 we must have A > 2 

TeV.) 

In considering J.L -t ey for large tan{:J, two factors come immediately to 

mind which tend to (perhaps dangerously) enhance the rate over the case with 

moderate tan {3. 

(i) As we have already mentioned, the dominant contribution to J.L --+ e1 

grows with tan {3; the diagram in Fig. 5 is proportional to tan {3, a factor of 900 

in the rate for tan {3 = 60 compared to tan {3 = 2. 

(ii) For large tan {3, A'T can be 0(1) and we can not neglect its contribu-

, tion to the running of the slepton mass matrix from Ma to Ms (soft SUSY 

breaking scale). This scaling generally splits the third generation slepton mass 

even further from the first two generations, meaning a less effective super-GIM 

mechanism and a larger amplitude for J.L --+ e1. 

While both of the above effects certainly exist, there are also two sources 

of suppression of the amplitude for large tan {3, which can together largely com

pensate for the above factors: 

(i)' Large tan {3 allows At to be smaller than for moderate tan{:J. There are 

two reasons for this. First, large tan {3 allows vu to be larger and so At can be 

smaller to reproduce .the top mass. Secondly, b - T unification [18] is achieved 

with a smaller A'T in the large tan {3 regime [7, 8]. Since At is smaller, a smaller 

non-degeneracy between the third and first two generations is induced in running 

from Mp£ to 111a, suppressing the amplitude compared to the moderate tan {3 

case. 

(ii)' In comparing large and moderate tan{:J, we must know how the mixing 

matrices WL,R3 , (appearing at the vertices of the diagrams responsible for J.L -t 

e1) compare in these two cases. In the moderate tan{:J minimal models discussed 
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in [2], WL,R3 ; were equal to the corresponding KM matrix elements VKM3i at 

Ma, and this equality was approximately maintained in running form Ma to 

Ms. As discussed in the previous sections, for more general models one expects 

that the WL(R) 3 ; at Ma are equal to VKM3i at Ma up to some combination 

of Clebsches. One might then expect (as in the minimal models) that this 

relationship continues to approximately hold at lower scales. In fact for large 

tan f3 this expectation is false. We find that often, the WL(R)3i decrease from Ma 

to Ms, overcompensating for the increased non-degeneracy between the third 

and first two generation slepton masses induced by large A-r (point (ii) above). 

In the following, we examine the scaling of these mixing matrices in detail. 

Consider first the lepton sector. The renormalization group equation (RGE) for 

>.E (in the following t = i~~) is 

d>.E ( t · t t ) 2 9 2) -dt = >.E 3>.E>.E + Tr(3>.n>.n + >.E>.E - 3g2 - 5 g1 (5.3) 

giving 

d t t t t t 2 18 2 t - dt AEAE = 6>.E>.E + 2>.E>.ETr(3>.n>.D + >.E>.E)- (6g2 + 5 g1 )>.E>.E (5.4) 

d t t t t t 2 18 2 t 
- dt AEAE = 6>.E>.E + 2>.E>.ETr(3>.n>.D + >.E>.E) - (6g2 + 5 g1 )>.E>.E. (5.5) 

These in turn imply that the basis in which >-1>-E is diagonal, and the (in general 

different) basis where >.E>.1 is diagonal, do not change with scale. Consider now 

the evolution of the left handed slepton mass matrix m1,. The RGE for mi is 

d 2 (2 2 2)t 2 t 2 t 2 2 t G · t -dtmL= mL+ mHd>.E>.E+ >.EmE>.E+>.E>.EmL+ CECE+ augmo erms. 
(5.6) 

In the basis where >-1>-E is diagonal, keeping only the A-r contribution, the 3i 

entry ( i # 3) becomes: 

(5.7) 

In this basis, we have mi = WlmiW£. (Here and in the remainder of this 

section, we abbreviate WEL(R) ~ WL(R))· Assuming degeneracy between scalars 

of the first two generations, mL; = WL3iWl33 (m;L - m;J = WL3iWl33 .6.m1,. 

Then (5.7) becomes 

- :t (WL3iW133.6.ml) = ..\;(WL3iTVl33.6.ml) + 2(C1CEb· (5.8) 
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For now, we ignore the ((k(E)Ji term in (5.8), yielding the solution: 

(WL3iW133.6.ml)(Ms) = e-1r(WL3iW133.6.m2)(Ma), (5.9) 

where 

(5.10) 

Thus, 
t -I .6.mh(Ma) t 

WL3iwL33(Ms) = e r .6.mh(Ms) WL3iwL33(Ma). (5.11) 

Similarly, we find 

t -21 .6.mh(Ma) t 
WR3iWR33(Ms) = e r .6.mh(Ms) WR3iWR33 (Ma). (5.12) 

Note that, generically the quantities ~mt(Rl~~G~ are smaller than one, since the 
mL(R) S 

third generation mass gets split even further from the first two generations in 

running from Ma to Ms. Thus, we find that the WL(R)3; get smaller in magnitude 

as we scale from Ma toMs, in contrast with the KM matrix elements Vf<M3i, 
which scale as 

(5.13) 

Suppose that at Mathe WL(R) are related to VKM though some combination of 

Clebsches determined by the physics above the GUT scale. 

W1(R)33WL(R)3i(Ma) = Zi£(R)VKM3i(Ma). 

This relationship is not maintained at lower scales; instead we have: 

W t W (M ) .6.m'i(Ma) -(Ir+lt+h) u (M ) 
£ 33 L3i S = .6.mi(Ms) e ZiL VKM3i S , 

W t W (M ) .6.mh(Ma) -(2Ir+lt+h) u (M ) 
R33 R3i S = .6.m'h(Ms) e . ZiR VKM3i S . 

The dominant contribution to the p -+ e1 rate is proportional to 

IW133WL32Wk3WR3I(Ms)i 2 + IW133 WL31 Wk3WR32(Ms)l 2, giving 

(5.14) 

(5.15) 

(5.16) 

Br(p -+ e1) = [.6.mi(Ma) .6.mh(Ma)l
2 

e-(6lr+4lt+4h) X (lz z 12 + lz z 12) 
.6.mi(Ms) .6.mh(Ms) 2L IR lL 2R 

t . 
x Br(p-+ e1, lil1L(R)3iWL(R)33(Ms) -+ VKM3i(Ms)) 

(5.17) 
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This f represents a possibly significant suppression of the rate for large tan /3. 
At this point, the reader may object: it is true that the WL(R)3 i decrease 

from Ma to Ms, but as already mentioned, the non-degeneracy between the 

third and first two generating is increasing. Which effect wins? We argue that 

in general there is a net suppression. This is easiest to see if in computing the 

J.L -+ e1 amplitude, we use the mass insertion approximation rather than mixing 

matrices at the the vertices (Fig. 6). Although this may be a poor approxi

mation, it serves to illustrate our point. (Of course no such approximation is 

made in our numerical work.) From the diagram it is clear that the amplitude 

is proportional to ml32mk1(Ms). From (5.7), we see that the rate scales as 

(m2 m2 ) 2 (M ) = e-(6Ir+4It+4h) (m2 m2 ) (M ) 
L32 R31 S L32 R31 G ' (5.18) 

. I h . . . . h h Llm2(MG) a net suppressiOn. n t e mass msertwn approximatiOn, t en, t e terms Llm2 (Ms) 

in (5.17) serve to exactly compensate for the increased non-degeneracy between 

m~ and m~ ; what remains is still a suppression. This, together with (i)' 
eL 'TL 

invalidates the naive expectation that the theory is ruled out in most regions of 

parameter space due to the enhancing factors (i) and (ii), (although there are 

still stringent constraints on the parameter space). 

The above analysis suggests that individual lepton number conservation is 

an infrared fixed point of the MSSM (whereas individual quark number conser

vation is an ultraviolet fixed point). A more complete analysis of scaling for the 

lepton sector and a discussion of scaling in the quark sector is presented in the 

appendix. 
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Section VI. Large tan (3: Numerical Results 

The amplitude for J.L -+ e1 depends on the 6 x 6 slepton mass matrix M 2 . 

In the basis where mi, m~ are diagonal, we have 

M2 = (m~L + DL k ) 
kt m~R +DR 

(6.1) 

where in the large tan (3 limit, Di = -(T3i- Qi sin2 Ow )M~ is the D-term contri

bution, and kij = J.Lmr tan f3WL3iWR3j· The amplitude from Fig. 1 for ILL decay 

IS 

where 

(6.3) 

In [2], M 2 was approximately diagonalized by the J.Lm7 tan (3 insertion approx

imation, and G2 (M2
) was calculated using this approximate diagonalization. 

Since here tan (3 is large, we wish to avoid making such an approximation, and 

numerically diagonalize the full6x6 M 2 . 

Faced with a rather large parameter space, we must decide which param

eters to use in our numerical work. We have firstly decided to do our analysis 

only for large tan (3, since the moderate tan (3 scenario has been covered in [2]. 

Secondly, we choose to present our results in a different way than in [2], where 

the rates for J.L -+ e1 were plotted against a combination of Planck scale and 

weak scale parameters. In our work, we compute J.L -+ e1 entirely in terms 

of weak scale parameters. In particular, we assume that the necessary condi

tion for a significant J.L -+ e1 rate exist at the weak scale, namely non-trivial 

mixing matrix WL,R3 ; and· non-degeneracy between third and first two genera

tion slepton masses. In the previous sections, we have shown a possible way in 

which these ingredients may be produced. Our plots for J.L -+ e1 rates are made 

against low energy parameters, and we separately plot the regions in low energy 

parameter space predicted by our particular scenario for generating ll -+ e1. 

This way, our plots are in terms of experimentally accessible quantities and can 

be thought of as constraining the parameter space of the effective 3-2-1 softly 

broken supersymmetric theory resulting from the spontaneous breakdown of a 

GUT. (We use the GUT to relate weak scale gaugino masses.) Our low energy 
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plots have no dependence on the physics above the GUT scale, all the model de

pendence comes into the predictions for low energy parameters the GUT makes. 

If the predicted region of low energy parameters corresponds to a J.L ---+ e1 rate 

exceeding experimental bounds, the theory is ruled out. 

There is a more practical reason for working directly with low-energy param

eters specific to large tan /3: the well known difficulty in achieving electroweak 

symmetry breaking in this regime. Working with high energy parameters, and 

imposing universal scalar masses necessitates a fine-tune to achieve SU(2) x U(l) 

breaking. However, we have nowhere in our analysis made the assumption of 

universal scalar masses, hence the Higgs masses and squark/slepton masses are 

independent in our analysis, and therefore the J.L parameter is not tightly con

strained by squark/slepton masses. Working with weak scale parameters allows 

us to assume that the desired breaking has occurred without having to know 

the details of the breaking. 

With the aforementioned assumption about the existence of a GUT, and 

assuming degeneracy between the first two generations, the rate for J.L ---+ e1 de

pends on the weak scale parameters J.L, tan /3, M2, m~ , m~ , m~ , m~ , WL3i, WR3i· eL "L eR 'TR 
We know that the amplitude depends on WL(R) 3i simply through the product 

WL3iWR3j, so for normalization in our plots we put WL(R)3i = VI<M3i· Any devi

ation from this can be simply multiplied into the rate. We also fix tan f3 = 60, 

and put m:;:-L(R) = m-;;L(R) - ilL(R)· Next, we use some high energy bias to relate 

m-;;L and m-;;R: we assume that their difference is proportional to M2 ( as would 

be the case if they started out degenerate and were split only through different 

gauge interactions), so we put m-;;L = m-;;R- rM2. In all specific models we have 

looked at, r is small (less than about .2). We find that, as long as r is small, the 

rate has little dependence on its exact value, so we put r = 0, m-;;L = m-;;R = m-;;. 

We also found that as long as ~ is close to 1, there is little dependence on its 

actual value either, so we put ilL = ilR =fl. 

Now, the J.L ---+ e1 rate depends only on J.L, M2 , m-;; and il, and we have the 

large tan f3 interpretation of J.L and M2 as chargino masses. Fixing m-;; = 300 

GeV, we make contour plots of Br(J.L ---+ e1). The rate scales roughly as m-;;-4 

and J.L2 for scalar masses heavy compared with gaugino masses. In Fig. 7, we fix 

J.L and plot in M 2 - Ll space. In Fig. 8, we fix Ll and plot in J.L - !112 space. In 

Fig. 9, we plot the values of Ll predicted by the GUT against M 2 , for various 
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values of At(Ma) and Ae(Ms) and for two values of b5 , the gauge beta function 

coefficient above the GUT scale. In Fig. 10, we plot the suppression factor t for 

the same parameter set as in Fig. 9. We see that, over a significant region in 

parameter space, tis small, between 0.2 and 0.01. 

It is clear from Fig. 7 that, with no suppression, a typical value for~ of 0.3 

(X 300Ge V) would give rise to rates above the current bound of Br(f.l --7 e,) < 
4.9 x 10-11 [19]. However, from Fig. 10, the suppression from t is seen to be 

typically 20, allowing ~'s of up to 0.45 ( x300GeV). We see that tis crucial in 

giving the GUT more breathing room, as ~'s of less than 0.45 are more common. 

From Fig. 8 it is also clear that regions of small 1-l and M 2 (that is, light chargino 

masses) are preferred. Smaller f.l is preferred because it decreases the L-R mass 

f.lm 7 tan /3, small M 2 is preferred because in the limit that the neutralino mass 

tends to zero, the diagrams Fig. 5 vanish. We also note that smaller f.l, M 2 are 

preferred for electroweak symmetry breaking[7, 8]. 

If 1-l and M 2 are both small, the lightest supersymmetric particle (LSP) 

can be quite light, (but where it has significant higgsino component, it must be 

heavier than 45 Ge V in order to be consistent with the precise measurement of 

the Z width), and it annihilates (primarily through its higgsino components) 

through a Z into fermion antifermion pairs much like a heavy neutrino. The 

contribution of the LSP to energy density of the universe f2h 2 then just depends 

on its mass, and the size of its higgsino components, both of which only depend 

on f.l and M 2 in the large tan f3 limit. In Fig. 11, we make a plot of f2h 2 in 

1-l- M 2 space. We see that it is possible to get n "'0(1) in some region of the 

parameter space. 
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VII. The Example of ADHRS Models 

In this section, we study the ADHRS models [9] which are known to give 

realistic fermion masses and mixing patterns. These models are specific enough 

for us to do calculations and make some real predictions. Although not neces

sarily correct, they are good representatives of general GUT models. We believe 

that by studying them, one can see in detail the general features of generic re

alistic GUT models and the differences between them and the minimal SU(5) 

or S0(10) models. 

As mentioned in Sec. II, in ADHRS models, the three families of quarks 

and leptons lie in three 16 dimensional representations of S0(10), and the two 

low energy Higgs doublets lie in a single 10 dimensional representation. Only 

the third generation Yukawa couplings come from a renormalizable interaction 

(7.1) 

All other small Yukawa couplings come from nonrenormalizable interactions 

after integrating out the heavy fields. These interactions can be written in 

general as 

(7.2) 

The Aa's are fields in the adjoint representation of S0(10) and their vevs break 

S0(10) down to the Standard Model gauge group. Therefore, these Yukawa 

couplings can take different values for fermions of the same generation with 

different quantum numbers under SU(3) x SU(2) x U(1) and a realistic fermion 

mass pattern and nontrivial KM matrix can be generated. In ADHRS models, 

the minimal number (four) of operators is assumed to generate the up, down

type quark and charged lepton Yukawa coupling matrices AU, AD and AE, and 

they take the form at Me 

zeC 0 ) 
YeE XeB , 

x' B A e 
(7.3) 

where the x, y, z's are Clebsch factors arising from the VEV's of the adjoint 

Higgs fields Aa. This form is known to give the successful relations Vub/"Vcb = 
Jm.,)mc and "Vtd/"Vts = Jmd/ms (20] so it is well motivated. Strictly speaking, 
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the interaction (7.2) become the usual Yukawa form only after the adjoints Aa 

take their VEV's at the GUT scale. However, as we explained in Sec. II, they 

can be treated as the usual Yukawa interactions up to the ultraheavy scale 

(which we will assume to be Mp£) where the ultraheavy fields are integrated 

out if the wavefunction renormalizations of Aa 's are ignored. In the one-loop 

approximation which we use later in calculating radiative corrections from MPL 

to Ma, they give the same results, because the wavefunction renormalizations of 

the adjoints Aa only contribute at the two-loop order. This makes our analysis 

much easier. Above the GUT scale, in addition to the Yukawa interactions (2.4) 

which give the fermion masses, we have the interactions (2.5) as well. Each 

Yukawa matrix has different Clebsch factors x, y, z associated with its elements. 

All the Yukawa matrices have the ADHRS form 

( 

0 z1C 0 ) 
AJ = z[C YIE x1B , I= qq, eu, ud, qf, nd, nf. 

0 x[B A 

(7.4) 

If each entry of the Yukawa matrices is generated dominantly by a single opera

tor, like in the ADHRS models, then the phases of the same entries of all Yukawa 

matrices are identical. One can remove all but the >.22 phases by rephasing the 

operators. After phase redefinition only E is complex and is responsible for CP 

violation. In order to generate the realistic fermion mass and mixing pattern, 

one expects the following hierarchies, 

B 
rv "Vcb rv c? 

A ' 

E ms 
rv c? rv-

A ' mb 

c 
rv sin ()c rv E, where E rv 0.2. (7.5) 

E 

The hierarchical Yukawa matrices can be diagonalized approximately [20], the 

unitary rotation matrices which diagonalize them at the GUT scale can be ap

proximately written as 

zC 

y lEI e<~> 

x'B 
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where 

( e•• 
VF ~ -Sp1 

VB~ 

SF1SF2 

-SB1 e-i<l> ( I 

SB1 SB2e-i4> 

z'C 
E'' 

S ei<l> 

+)· 
F1 

1 

-Sp2 

SBl 

s~l e-i</> 

-SB2e-i4> 

E' = jyE- SF2SB2AI = ly!Eiei;;;- x'X:
2

1, 

- x'xB2 

¢> = arg(E), ¢> = arg(yE- ---;t ). 

(7. 7) 

(7.8) 

The soft SUSY-breaking scalar masses for the three low energy generations and 

trilinear A terms are assumed to be universaP at Planck scale MPL as in [2). 

Beneath MPL, the radiative corrections from the Yukawa couplings destroy the 

universalities and render the mixing matrices non-trivial. In the one-loop ap

proximation, the radiative corrections to the soft SUSY-breaking parameters at 

Ma are simply related to the Yukawa coupling matrices and therefore the re

lations between general mixing matrix elements and KM matrix elements are 

also simple. This allows us to see the similar hierarchies in the general mixing 

matrices and the KM matrix very clearly. Although the one-loop approxima

tion may not be a good approximation for quantities involving third generation 

Yukawa couplings, we will be satisfied with it since it simplifies things a lot and 

the uncertainties in other quantities such as Clebsch factors are probably much 

3 If the nonrenormalizable operators already appear in the superpotential of the underlying 

supergravity theory, the A terms will be different for different dimensional operators, and 

will induce unacceptably large J.L ---> e1 rate because the triscalar interactions and the Yukawa 

interactions can not be diagonalized in the same basis for the first two generations. In theories 

where the nonremormalizable operators come from integrating out heavy fields at Mp£ and 
all the relevant interactions have the same A term, the resulting nonrenormalizable operators 

will also have the same A term. 
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bigger than the errors made in the one-loop approximation. The RG equations, 

for mk as an example, from MPL to Ma are 

- gaugino mass contribution] . (7.9) 

In the one-loop approximation, the gaugino mass contributions are diagonal and 

the same for all three generations, so they can be absorbed into the common 

scalar masses and do not affect the diagonalization. The corrections to scalar 

masses at Ma have the following leading flavor dependence 

ZeXeCB ) 
Yex~EB + xeBA ,(7.10) 

x'2B2 + A2 e 

where the overline represents the weighted average of the Clebsch factors, z; = 
H2z; + 3z;u) and so on. Because b.mk is hierarchical, assuming no big x, y 

Clebsches (ADHRS models have some big z Clebsches), the rotation matrix 

which diagonalizes it can be given approximately as 

where 

SEl 
e-i</> 

-SE2e-i<1> 

(7.11) 

Similarly, for other scalar masses the leading flavor dependent corrections at Ma 

are 
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.6.m~ ex: >..u >..h + >..v>..b + 2>-.qq>..!q + Aqe>..!b 

.6.mb OC 2>-.h>..u + >..!uAeu + 2>-.udA~d' 

.6.m1 ex: 2>..1>-.v + >..~dAnd + 2>-.~dAu.d, (7.12) 

and the rotation matrices which diagonalize them are given by expressions simi

lar to (7.11) with Clebsches replaced by the appropriate ones. Then, the mixing 

matrices appearing at the lepton-slepton-gaugino vertices are given by 

where 

SELl - SL1ei('i-4>e) 

ei('i-4>e) 

(SL - SE )e-i4>e 
2 Lz 

(7.13) 

SE eirl> e - SE ei'i 
Rl 1 

ei¢ 

SE2 - SER2 

SE1 (S~- SERZ)ei'i ~ SE3) 
-(SE2 - SER

2 
)e-~4> , 

1 

Z IG c I B 2 
e S Ze El = I E- XeXe I 
£I ' ER1 = £I 1 e Ye A 1 

e e 

x:' SER
2 

= x~B, <Pe = arg (Ye lEI ei'i- x~x~B
2

) 

~ </> (if Ye 1'-.J Xe, x:), 

- TeYeCIEI - ieB S _ z;x;;cB 
SEt - z~2C2 + y; IEI2 + (x:- x~)B2' SEz = A' E3 - A2 ' 

S- ~eCIEI S- ~B S- _ z-r;ecB 
Lt - ~C2 + ~1£12 + (~- x:)B2' Lz =A' L3- A2 ' 

and 

- 1 (2 3 ) I - 1 ( I 3 I I ) t Xe = 5 Xe + Xeu 1 Xe - 5 Xe + X9 e + Xne e C. 
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Note that 
- CB - - CB 
SL3 rv Clebsch X A2 ' SELl (SL2- SEL2) = Clebsch X EA. (7.15) 

If there is no very big or small Clebsch involved and no accidental cancellation, 

SL3 , SE3 can be neglected in W's. 

Compared with VKM, 

VKM(Ma) = vJL VvL 

"" ( Su - Sv 1 e-i(¢d-¢u) 
Ll Ll 

SvL1 (SvL1 - SuL2 )e-i<l>d 

Sv - Su e-i(<l>d-<l>u) 
Ll Ll 

e-i(</>r</>u) 

-(Sv - Su )e-i<l>d L2 L2 

(7.16) 

where 

_ ZuC E' _, E _ XuX~B2 ' ).. _ ( E _ XuX~B2 ) SuLl - E' ' u- Yu A ''f'u- arg Yu A ' 
u 

we can see that the W's and VKM do have similar hierarchical patterns, but 

have different Clebsch factors associated with their entries. 

When a specific model is given, one can calculate all the Clebsch factors 

and make some definite predictions for that particular model. For example, the 

ADHRS Model 6, which gives results in good agreement with the experimental 

data, has the following four effective fermion mass operators 

= 163 10 163, 

Ay Ay 
= 162 Ax 10 Ax 163, 

= 162 Ax 10 AB-L 162 or other 5 choices, 
M Ax 

(Ax) 3 (Ax) 3 

= 161 M 10 M 162, (7.17) 
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where Ax, Ay, AB-L are adjoint's of S0(10) with VEV's in the SU(5) singlet, 

hypercharge, and B - L directions. There are six choices of 0 22 operators 

which give the same predictions for the fermion masses and mixings, but dif

ferent Clebsches for other operators appearing above Ma. Fortunately, they 

do not enter the leading terms of the most important mixing matrix elements 

WEL32 , WEL3P WER32 , WER3P which appear in the leading contributions to the 

amplitudes of LFV processes and the electric dipole moment. 

The magnitude of the mixing matrix elements VKM32, VKM3b WEL32 , WEL31 , 

WER3 2 , WER3 1 , and the relevant Clebsch factors are listed in Tables 2 and 3. 

Table 2 

u d e eu q.e n.e 
X -1 1 ~ -6 ! 0 6 2 4 

x' -1 1 ~ -6 ! 0 -6 2 4 

y 0 1 3 - - -

z 1 1 1 1 1 125 -27 -27 

z' 1 1 1 1 1 125 27 -27 

? - 9 x- 3 e- 20' e--

Table 2: Clebsch factors for Yukawa coupling matrices in ADHRS model 6. 
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Table 3 

ADHRS models Model6 Relevant process 

IWEL32 /vtsl 
lx'-x' I 
~ 1.26 

IWER.n/Vfsl 1~1 Xd-Xu 5.4 

IWEL3)vtdl 
I z~yd(x~-x~) I 
ZdYe(xd-xu) 0.42 

IWER3)vtdl 
I ZeYd(Xe-Xe)_ I 

ZdYe(Xd-Xu) 1.8 

I WEL32 WER31 I 
Vts Vid 

I ZeYd(xe-XeHx~-x~) I 
ZdYe(Xd-xu)2 2.268 f.1 -t e1 amplitude 

I WEB32 WECJJ I 
Vts Vtd 

I Z~Yd(xe-xeHx~-x~) I 
ZdYe(Xd-Xu)2 2.268 J1 -t e1 amplitude 

( V2WE 1,~ 1 WEa,~2 ) / (YtA) I v'2z~ZeYd I !. 
J!WEL32 WER3l F+IWER32 WEL3l j2 Vts V(z~+z~)ZdYe 3 

Table 3: The relevant Clebsch factors for J1 -t e1 and de m ADHRS 

model6. 

In ADHRS models tan f3 is large. The J1 -t e1 rate for large tan f3 has been 

calculated in Sec. V and VI for WEL32 = WER32 = Vfs and WEL31 = WER31 = Vfd· 

To obtain the predictions of ADHRS models we only have to multiply the results 

by the suitable Clebsch factors. The relevant Clebsch factors for Model 6 are 

listed in Table 3. For a generic realistic GUT model with small tan/3, for example 

the modified ADHRS models in which the down type Higgs lies predominantly 

in some fields which do not interact with the three low energy generations and 

contain only a small fraction of the doublets in the 10 which interact with the 

low energy generations (21], most of analysis should still hold. In this case the 

leading contributions to J1 -t e1 are the same ones as in the minimal 50(10) 

model of Ref. [2] (Fig. 10 h,R, C£,R, c£,R of [2]). The diagrams C£R, dLR involve 

the corrections to the trilinear scalar couplings. 
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In the one-loop approximation the leading corrections to (Eat Ma contain 

pieces proportional to AE, AE(>..1>..E + 3>..!e>..q.e + >..~>..n.e), (2>..E>..1 + 3AeuA!u)>..E 

respectively. The piece proportional to AE can be absorbed into CEo by a redef

inition of AE, the other two pieces are proportional to the product of AE and 

the corrections to the scalar masses, 

(7.18) 

6m2 +A2 

where f-LEL, f-LER are proportional constants (J-LER = f-LEL = lAo 0 in one-loop 

approximation). The LFV couplings in Fig. 2e, 'th.U'[.6..CEUL'hvn, now can be 

written as 

1 -T UT A 2 ij - 1 -T UT A 2 U ---eR ELlffiEAE LeLVD + --eR EAELlffiL LeLVD 
f-LER f-LEL 

1 -T A-2 W* - wt - 1 -Tw* - wt A 2- ( 9) = --eRLJ.mE ERAE EL eLVD + --eR ERAE EL LJ.ffiLeLVD, 7.1 
f-LER f-LEL 

where the overline means that the matrix is diagonal. Again, the amplitudes are 

given by the same formulas as in [2] (eqn. 29, 30), except that y;~y;e1 (y;3*)2 has 

to be replaced by WEL32 WER3 1 W_EL
33 

W_ER3
3

, and WER32 WEL31 W_ER3
3 

W_EL
33

, and 

~Ib by -1-.6..m~33 and - 1-.6..ml,33 . The results in [2] are only modified by some 
~ER ~EL 

multiplicative factors and therefore represent the central values for the LFV 

processes. 

It was pointed out in [2, 3] that the electric dipole moment of the electron 

(de) constitutes an independent and equally important signature for the 50(10) 
unified theory as J-L --7 e1 does. The diagrams which contribute to the electric 

dipole moment of the electron are the same as the ones which contribute to 

J-L --7 e1, with J-LL(J-LL) replaced by eL( e£). Thus a simple relation between de and 

the J-L --7 e1 rate was obtained in the minimal 50(10) model [2), 

a 
r(J-L --7 e1) = 2m~IF2I

2 , (7.20) 

(7.21) 
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where </> is an unknown new CP violating phase defined by 

In a more generic S0(10) model, such as the ADHRS model, we still have this 

simple relation but the mixing matrix elements have to be replaced by the W's: 

(7.22) 

In particular, in ADHRS models there is only one CP violating phase, so the 

phase </>' can be related to the phase appeared in the KM matrix of the Standard 

Model. From eqn. (7.13) (7.14) (7.16) we can see that</>' ~ </>e, </>e ~ </>d ~ ;j, </>u = 
0 (because Yu = 0). The rephrase invariant quantity J of the KM matrix is given 

by 

J = I m "Vud vtb ~d Vu*b 

~ -BuLl SDL1 (SDL2 - SuL2 )
2 sin </>d. (7.23) 

Therefore the CP violating phase appeared in de related to the CP violation in 

the Standard Model by 
• A.' J 

sm't' ~ lvtdiiVubl (7.24) 

Finally, as mentioned in the Sec. III, we consider the possibility that the 

slight non-degeneracy between the first two generation scalar masses could give 

a significant contribution to the flavor changing processes because of the larger 

mixing matrix elements. We still use ADHRS models as an example to estimate 

this contribution to the LFV process f.L -+ e1. For an order of magnitude 

estimate, the mass insertion approximation in the super-KM basis employed in 

[1] will serve as a convenient method. After rotating the .6.mk in eqn. (7.10) 
to the charged lepton mass eigenstate basis, the contribution from the first two 

generations to .6.mk
21 

is 
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Ze [y;CIEI + x;~:l
2 

+ ZeYeCIEI] 2 ~ -- .6.mE 
~ ~ u 

(assume Ze = z~ as in ADHRS model). (7.25) 

Compared with the result found in [1] for minimal SU(5): 

(7.26) 

we can see that if the Clebsch factors are 0(1 ), this contribution is comparable 

to that of the minimal SU(5) model. In order for this contribution to be com

petitive with the dominant diagrams (Fig. 10 h,R, CL,R, c£,R of [2]) which are 

enhanced by mT, large Clebsch factors are required. While it is possible to have 
mil 

large Clebsch factors, we consider them as model dependent, not generic to all 

realistic unified theories. 
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VIII. Conclusions 

In supersymmetric theories, the Yukawa interactions which violate flavor 

symmetries not only generate the quark and lepton mass matrices, but neces

sarily also lead to radiative breaking of flavor symmetries in the squark and 

slepton mass matrices, leading to a variety of flavor signals. While such effects 

have been well studied in the MSSM and, more recently, in minimal unified 

models, the purpose of this paper has been to explore these phenomena in a 

wide class of grand unified models which have realistic fermion masses. 

We have argued that, if the hardness scale AH is above Me, the expec

tation for all realistic grand unified supersymmetric models is that non-trivial 

flavor mixing matrices should occur at all neutral gaugino vertices. These addi

tional, weak scale, flavor violations are expected to have a form similar to the 

Kobayashi-Maskawa matrix. However, the precise values of the matrix elements 

are model dependent and have renormalization group scalings which differ from 

those of the Kobayashi-Maskawa matrix elements. 

It is the non-triviality of the flavor mixing matrices of neutral gaugmo 

couplings in the up quark sector which strongly distinguishes between the general 

and minimal unified models, as shown in Table 1. Although the minimal unified 

models provide a simple approximation to flavor physics, they are not realistic, so 

we stress the important new result that flavor mixing in the up sector couplings 

of neutral gauginos is a necessity in unified models. this leads to four important 

phenomenological consequences. While the D 0
- D0 mixing induced by this new 

flavor mixing is generally not close to the present experimental limit, it could 

be much larger than that predicted in the standard model. 

The new mixing in the up-quark sector implies that there may be significant 

radiative contributions to the up quark mass matrix which arise when the super

partners are integrate.d out of the theory. This is illustrated in Figure 4, where 

the new mixing matrix elements have been taken to be a factor of three larger 

than the corresponding Kobayashi-Maskawa matrix elements. In this case the 

entire up quark mass could be generated by such a radiative mechanism: above 

the weak scale the violation of up quark flavor symmetries lies in the squark 

mass matrix. 

The electric dipole moment of the neutron, dn, IS a powerful probe of 
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the neutral gaugino flavor mixing induced by unified theories. In the mini

mal SO(IO) theory, dn arises from the flavor mixing in the down sector, which 

leads to a down quark dipole moment, dd. However, in realistic models the 

flavor mixing in the up quark sector leads to a du which typically provides the 

dominant contribution to dn. Thus the neutron electric dipole moment is a more 

powerful probe of unified supersymmetric theories than previously realized. 

The presence of flavor mixing in the up sector plays a very important role 

in determining the branching ratio for a proton to decay to !{0 11+. In the 

minimal models, without such mixings, this branching ratio is expected to be 

about 10-3 : the charged lepton mode will not be seen and experimental efforts 

must concentrate on the mode containing a neutrino, J(+ v. However, including 

these mixings the charged lepton branching ratio is greatly increased to about 

0.1. While this number is very model dependent, we nevertheless think that this 

effect greatly changes the importance of searching for the charged lepton mode. 

These four phenomenologocal consequences are sufficiently interesting that 

we stress once more that they appear as a necessity in a wide class of unified the

ories. The absence of mixing in the up sector is a special feature of the minimal 

models. Since the flavor sectors of the minimal models must be augmented to 

obtain realistic fermion masses, any conclusions based on the absence of flavor 

mixings in the up sector are specious. 

A second topic addressed in this paper is the effect of large tan j3 on the 

lepton process, J1 -+ e1 which is expected in unified supersymmetric SO(lO) 

models. The amplitude for this process has a contribution proportional to tan /3. 
In this paper, we have found that the naive expectation that large tan f3 in su

persymmetric SO(IO) is excluded by J1 -+ e1 is incorrect, at least for all values 

of the superpartner masses of interest. Contour plots for the J1 -+ e1 branching 

ratio are shown in Figures 7 and 8. It depends sensitively on the parameter 

.6., which is the mass splitting between the scalar electron and scalar tau, and 

is plotted in Figure 9. Lower values of the top quark Yukawa coupling, which 

for large tan f3 still give allowed predictions for the b/'r mass ratio, give a much 

reduced value for .6., thereby reducing the J1 -+ e1 rate and partially compen

sating the tan2 j3 enhancement. A further significant suppression of an order of 

magnitude is induced by the renormalization group scaling of the leptonic flavor 

mixing angles, and is shown in Figure 10. The net effect is that while the case 
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of tan f3 ~ mt/mb is not excluded in SO(lO), the J.1 ---+ e1 rate is still typically 

larger than for moderate tan (3, so that this process provides a more powerful 

probe of the theory as tan f3 increases. 

For large tan f3, J.1 and M 2 become the physical masses of the two charginos. 

The J.1 ---+ e1 contours of Figure 8 show that J.1 and M 2 should not be too large, 

providing an important limit to the chargino masses in the large tan f3 limit. 

Furthermore, this constrains the LSP mass to be quite small. We find that 

in this region it is still possible for the LSP to account for the observed dark 

matter, and even to critically close the universe, as can be seen from Figure 11. 

However, the requirement that the LSP mass be larger than 45 GeV suggests 

that the two light charginos will not be light enough to be discovered at LEP II. 

As an example of theories with both a realistic flavor sector and large tan f3 
we studied the models introduced by Anderson et al. The flavor sectors of these 

theories are economical: the free parameters can all be fixed from the known 

quark and lepton masses and mixings. Hence the flavor mixing matrices at all 

neutral gaugino vertices can be calculated. These are shown for the lepton sector 

of model 6 in Table 3. The Clebsch factors enhance the J.1 ---+ e1 amplitude by 

a factor of 2.3, and suppress de by a factor of 3. Even taking the top quark 

Yukawa coupling to have its lowest value the rate for J.1 ---+ e1 in this theory 

is very large. Another interesting feature of these theories is that the flavor 

sectors contain just a single CP violating phase. This means that the phase 

which appears in the result for dn and de can be computed: since it is closely 

related to the phase of the Kobayashi-Maskawa matrix it is not very small. That 

which appears in de is given in eqn. (7.24) and is numerically about 0.2. We 

have computed the radiative corrections to mu in the ADHRS models and have 

found that the new mixing matrices in the up sector are not large enough to yield 

sizable contributions: thus the ADHRS analysis of the quark mass matrices is 

not modified. Furthermore, due to a cancellation special to these theories, there 

is no contribution to dn from the up quark at one loop. 
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Note Added: 

While finalizing this work, we received a preprint by Ciafaloni, Romanio 

and Strumia[22], where the large tan f3 scenario is also considered. However, 

unlike this work, they assume strict universality in soft scalar masses, such that 

imposing electroweak symmetry breaking leads them into a region of parameter 

space with a high mass (1 TeV) for the sleptons. In their discussion of general 

models, they do not include flavor violating RG scaling of scalar masses above 

Ma. 
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Appendix 

In this appendix, we first give a more complete treatment of mixing matrix 

scaling in the lepton sector, and then give a treatment for the quark sector. 

Let us return to (5.7) and consider the effect of including the (CkCEhi term. 

In general the scaling from MPL to MG will generate a CkCE not diagonal in the 

same basis as ..x1..xE, so we expect some non-zero ((kCEhi· From the RGE for 

(E, neglecting gauge couplings, 

- ~CE = CE[5..x1..xE + Tr(3..xb..xn + ..x1..xE)] + ..xE[4..x1cE + Tr(6Cn..Xh + 2(E..x1)J. 
(A.l) 

We have 

-~(CkCE) = 5[Ck(E..\1..XE + ..\1..\E(k(E] + 2Tr(3..Xh..Xn + ..x1..xE)Ck(E 
dt 

+ 8(k..XE..\1(E + (Ck..XE + ..x1CE)Tr(6(n..Xh + 2(E..X1). (A.2) 

Then, to first order in the off diagonal parts of CkCE and (E(k, and keeping only 

third generation Yukawa couplings we have 

(A.3) 

where TJ = ',v33
• Because of the large numerical coefficient in front of ..\~, ,\~ 

E33 

in the above equation, (CkCE)Ji is driven to zero more rapidly than WL3i, after 

which it ceases to have any effect on the running of WL3;. More explicitly, from 

. (5. 7) we have that 

~ ( m'i,
3
;( t)efo' dt' >.~(t')) = -2( CkCE hi( t)efo' dt'>.~(t'). (AA) 

Solving (A.3) for (CkCEh(t) and inserting into (A.4) we get 

_! ( m'i,3;(t)efo'dt'>.~(t')) = 2(CkCEhi(MG)e- J0'dt'[16>.~+6>.~+611>.b>.,](t'). (A.5) 

Integrating (A.5), we find 

l
_l_log !::!.£l r' 

2 (M ) I 2 (M ) __ -2 
0 

I61r
2 Ms dte- Jro dt'[16>.~+6>.~+617>.b>..,.](t') m L3i s e .,. - m L3i G 

X (CkCE)J;(MG) 

= b(CkCE)J;(MG)· 
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So, we have 

(A.7) 

We expect ml,3 i and (CkCE) 3i to be related by some combination of Clebsches x 
at Ma as follows: 

( t ) A~ 2 (E(E 3i = - 2 xm L3i 
mo 

(A.8) 

Where A0 , m6 are the universal A parameter and scalar mass at Mp£, respec

tively. Then, we have from (A. 7) 

t -I,. 6.m2
( Ma) A6 t 

WL33WL3i(Ms) = e 6.m2(Ms) [1 + h mBx]WL33WL3i(Ma). (A.9) 

Clearly if h~x ~ 1, inclusion of the (CkCEb term in (5.7) do not change any 
mo 

A2 
of our results. If h3x "' 1 or ~ 1, we can still of course use (A.9), but the 

mo 

suppression effect may disappear. A simple estimate shows, however, that b 

itself is already small "' {0 , and so we are only in trouble if ~x is big. To see 
' - - 0 

this, replace >..,., ).b and TJ by some average values >..,., ).b and ij in the expression 

(A.6) for 6. Then, 

1 1 !':!si b = - 2fo 16 "'
2 og Ms e -t(16X~+6:\~+6XbXt7J) 

1 [e - 16~2 log ~(16X~+6X~+67JXbXr )] . 

8>.¥ + 3( >.t + ij ).b >..,.) 
(A.10) 

So, 
1 

lhl < 2 ( 2 ) 8>..,. + 3 >.b + ij >.b >..,. . 
(A.ll) 

For the ~'s between 0.5 and 1, and ij"' 1, lhl ranges from! to 1
1
5 • 

How can we qualitatively understand the above results for the scaling of 

mixing matrices? The renormalization group equations try to align the soft 

supersymmetry breaking flavor matrices with whatever combination of flavor 

matrices responsible for their renormalization. However, because a given cou

pling can only be renormalized by harder couplings, there is a hierarchy in which 

flavor matrices affect the running of others. The Yukawa matrices, being dimen

sionless, can only be affected by other Yukawa matrices. In the lepton sector, 

this is the reason that the basis in which e.g. AkAE is diagonal does not change. 

Next, the soft trilinear terms, having mass dimension one, can only be affected 
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by other trilinear terms and Yukawa couplings. Again in the lepton sector this 

means that e.g. (k(E tries to align itself with ~1~E· Finally, the scalar mass, 

having dimension two, are affected by everything: ml, tries to align with ~1~E, 
but suffers interference from Ck(E, unless Ck(E is diagonal in the same basis as 

~1~E· Even if (k(E is not diagonal in the same basis as ~1~E, it is trying to 

align itself with ~1-'E, so ml, will still tend to align with -'k-'E· 

From the above discussion, it is clear that the situation is slightly compli

cated in the quark sector. In the lepton sector, there was a fixed direction in 

flavor space given by ~E, with which the soft matrices aligned. In the quark 

sector, we have both ~u and ~D, and ~u~h, ~D~h are misaligned (VKM #1). 
This complicates the analysis for WuL, WnL so we discuss them last. Let us 

now examine the scaling of WuR, Wnw (Throughout the following, we assume 

degeneracy between first two generation scalar masses, we neglect all Yukawa 

coupling matrix eigenvalues except those of the third generation, and we do not 

include the effect of trilinear soft terms in the scaling. The last assumption is 

made for simplicity; we can make similar arguments about the importance of 

these neglected trilinear terms as we did above in the lepton sector.) 

First, we show that the basis in which ~&~u is diagonal remains fixed. The 

RGE for ~&~u is 

d t ( t )2 t t t 16 2 2 13 2) t 
- dt ~u-'u = 6 -'u~u + 2~u~n-'n-'u + 2(3Tr-\u~u- 3g3- 3g2 -

15
91 ~u-'u. 

(A.l2) 

Working in a basis where ~&~u is diagonal, let us see if jt~&~u has off-diagonal 

components. We have, (recalling that in this basis -'b~n = VKMXb VkM ), 

d t t 
- dt(~u~u)i~i = 2(XuVi<MXbVKMXu)ii 

2- TT -2 v;t -= AU; VJ<M;e-'De KMej~Ui 

= 0 for i, j =I 3 (A.l3) 

since we neglect all Yukawa's except the third generation. Similarly, the basis 

in which -'b~n is diagonal does not change. Thus, the discussion for the scaling 

of WuR, WnR is completely analogous to that in the lepton sector, and we find 

t · -21~ .6mb( Me) t 
WuR3;WuR33 (Ms) = e .6mb(Ms) WuR3;WuR3 3 (Mc), (A.l4) 
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(A.15) 

We now turn to WuL, WEL· Let Vz:iL (t) be the matrix diagonalizing .>..u.>..h(t): 

(A.16) 

In the superfield basis in which .>..u .>..h is diagonal, the squark mass matrix is 
-2• _ Trt 2•TT N t b £ th t -2• _ (W,t -2•ur ) _ ur w,t A 2 mQ3i- vuLmQ vuL. o eas e ore a mQ3i- uLmQ vvuL 3i- vvuL3 i uL33 LJ.mQ, 

. t d. d - 2* · N so we are mteres e m dt mQ3i. ow, 

(A.17) 

The second term is the analogue of what we have already seen in the lepton and 

right-handed quark sector; using the RGE for m~* we find to leading order 

(A.18) 

Now, vJL:t VuL is obtained from the RGE for .>..u.>..h. Actually, note that 

(A.19) 

so that only [VJL ;t VuL, X[r] is determined. (This is a reflection of the fact that 

VuL is not unique: let X(t) be any unitary transformation leaving m~(t) in

variant: m~(t) = xt(t)mb(t)X(t). In our case, X(t) is most generally a U(2) 

matrix in the first two generation subspace. Then, if VuL diagonalizes mb*, so 

does VuLX. Under this change, vJL ft VuL is not invariant, but [VJL :t VuL' X[r] 
is invariant). Further, since we neglect first two generations Yukawa eigen

values, [VJL;tvuL,X[r]ij = 0 for i,j = 1,2, and only [VJL;tvuL,Xlrb(i3) = 
(+)-A~VJ ddtVJ . . is determined, and we can choose all other components of 

L L•3(3•) 

vJL :t VuL to vanish. From the RGE for .>..u.>..h, 

d t ( t )2 ( t 16 2 2 13 2 t - dt (.>..u.>..u) = 6 .>..u.>..u + 2 3Tr.>..u.>..u- 3g3- 3g2 -
15

gl).>..u.>..u 

(A.20) 
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we find 

and thus 

- ( VJL(~~u~I,)VuL t = {X~,VKM;q,V)Mj,; 

= ).~ ).~1fKM331flM3i' 

Thus to leading order 

[VJL m~ 11uL' vJL ~ 11uJ3i = -~m~ ).~ V1M3i 11KM33, 

and finally we have 

(A.21). 

(A.22) 

(A.23) 

- ~ (WuL3i WJL33 ~m~) = (}.~ + ).~)Vf!uL3i w&L33 ~m~ + ).~1f1M3i 1fKM33~m~. 
(A.24) 

Similarly we find 

-:t (WnL3i WbL33 ~m~) = (>.; + >.~)WnL3 ; WbL33 ~m~ + >.;V[~M3i Vl<M33~m~. 
(A.25) 

We can formally solve the above equations, e.g. 

-(lt+h+fMGdt').2vkM3iVKM33) A 2 (M.) 
t Ms b wuL3. w/; L.J.mQ G t 

WuL3iWuL33(Ms) = e ' L33 ~m~(Ms) WuL3iWuL33(MG), 

(A.26) 

and, to a good approximation, given that WuL3i does not scale very significantly, 

we can replace 

(A.27) 

So, an approximate solution of the RGE for WuL, Vf!nL is 

( ( 
vi vrM )) - lt+h 1+ KM3i ~ 33 (MG) ~m2 ]\1!, 

TVu TVut (Ms) ~ e wuL3iwuL33 Q( G)Vl!n .wut (MG) 
L3• L 3 3 . ~mb(MG) L3• L33 ' 

(A.28) 
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and similarly 

( ( 
vt .VKM33 )) - h+ft 1+ KM3t t (Mo) ~m2 (M. ) 

W wt (M ) ,....., WuL3iwUL33 Q G W wt (M. ) 
DL3i DL33 s "'e ~mb(Ms) DL3i DL33 G · 

(A.29) 

The above results are in agreement with qualitative expectations; the extra 

terms in the exponential of (A.28) and (A.29) are a reflection of the fact that the 

bases in which AUAb and ADAb are diagonal change with scale. For moderate 

tan (3, however, we expect that the basis in which AUAb is diagonal should not 

change with scale, and in this limit the extra term drops out of (A.28). 

46 



References 

[1] R. Barbieri and L.J. Hall, Phys. Lett. B338 212 (1994). 

[2] R. Barbieri, L.J. Hall and A. Strumia, Nucl. Phys. B445 219 (1995). 

[3] S. Dimopoulos and L.J. Hall, Phys. Lett. B344 185 (1995). 

[4] R. Barbieri, L.J. Hall and A. Strumia, LBL 39607 (1995), hep-ph/9504373. 

[5] L.J. Hall, V.A. Kostelecky and S. Raby, Nucl. Phys. B267 415 (1986). 

[6] B. Ananthanarayan, G. Lazerides and Q. Shafi, Phys. Rev. D44 1613 

(1991). 

[7] L.J. Hall, R. Rattazzi and U. Sarid, Phys. Rev. D50 7048 (1994). 

[8] R. Rattazzi and U. Sarid, SU-ITP-94-16 (1995), hep-ph/9505428. 

[9] G. Anderson, S. Dimopoulos, L.J. Hall, S. Raby, and G. Starkman, Phys. 

Rev. D49 3660 (1994). 

[10] A. Chamseddine, R. Arnowitt and P. Nath, Phys. Rev. Lett. 49 970 (1982); 

R. Barbieri, S. Ferrarra and Savoy, Phys. Lett. BllO 343 (1982); L. Hall, 

J. Lykken and S. Weinberg, Phys. Rev. D27 2359 (1983). 

[11] S. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D2 1285 (1970). 

[12] F. Gabbiani and A. Masiero, Nucl. Phys. B322 235 (1989). 

[13] Y. Nir and N. Seiberg, Phys. Lett. B309 337 (1993). 

[14] T. Blazek, S. Raby and S. Pokorski, OHSTPY-HEP-T-95-007 (1995), hep

ph/9504364. 

[15] M.Carena, M. Olechowski, S. Pokorski and C. Wagner, Nucl. Phys. B426 

269 (1994). 

[16] R. Hempfling, Phys. Rev. D49 6168 (1994). 

[17] A. Antaramian, Ph.D. Thesis, LBL-36819 (1994); see also, K.S. Babu and 

S.M. Barr, BA-95-21 (1995), hep-ph/9506261. 

47 



(18] M. Chanowitz, J. Ellis, and M.K. Gaillard, Nucl. Phys. B128 506 (1977); 

A. Buras, J. Ellis, M.K. Gaillard, and D.V. Nanopoulos, Nucl. Phys. B135 

66 (1978). 

[19] R. Bolton et al., Phys. Rev. D38 2077 (1988). 

[20] L.J. Hall and A. Rasin, Phys. Lett. B315, 164 (1993). 

[21] M. Carena, S. Dirnopoulos and C.E.M. Wagner, CERN-TH/95-53, hep

ph/9503448. 

[22] P. Ciafaloni, A. Rornanino and A. Strurnia, IFUP-TH-42-95 (1995), hep

ph/9507379. 

48 



Figure Captions 

Fig. 1. Feynman diagrams contributing to J.l --+ e1. 

Fig. 2 Lepton :flavor violating couplings in general supersymmetric Standard Mod

els. 

Fig. 3 Corrections to the up-type quark mass matrix, proportional to mt. 

Fig. 4 Contours for .t.mu in !!!l.LM= -~plane, assuming m-;;; = m-:;; = m-:;;, m- = 
mu 9 mu -L -R - tL 

_ TXT TXT 1 A+ttcot,6 3 
mtR = mt, VVUL31 = VVUR31 = 30' mi = . 

Fig. 5 The diagram which gives the dominant contribution to J.L--+ e1 in the large 

tan (3 limit. A photon is understood to be attached to the diagram in all 

possible ways. 

Fig. 6 The dominant diagram (for J.L --+ e1) in the mass insertion approximation. 

Fig. 7 Contours for Br(J.L --+ e1) in M2 - .6. plane with m-; = 300Ge V, .6. = 
L(R) 

m-;L(R) - m7L(R), WEL(R)32 = 0.04, WEL(R)31 = 0.01, for (a) J.L = 100 GeV, 
(b) J.L = 300 GeV. Contours for negative J.L are virtually identical. To get 

Br(J.L --+ e1) prediction from a GUT, multiply by appropriate Clebsch, 

and E factor (Fig. 10). 

Fig. 8 Contours for Br(J.L --+ e1) in J.l - M2 plane for (a) .6. = 0.25, (b) .6. = 0.5, 

with other parameters same as in Fig. 7. The blacked out regions are ruled 

out by the LEP bound of 45 Ge V on chargino masses. The thick dashed 

lines are contours for a 45 GeV LSP mass. 

Fig. 9 Plots of the averaged difference between the third and the first two gen

erations charged slepton masses .6. = .t.r.;.t. 8
, .6-L(R) - m-;L(R) (at Ms), 

against M2 , for -21 (m~ + m~) = (300 GeV)2, At = Ab = A,. (at Ma) = 
eL eR 

0.5, 0.8, 1.1, Ae(Ms) = 1, 0, -1, two values of the gauge beta function 

coefficient b5 between Afa and MPL, (a) b5 = 3 (asymptotically free), (b) 

b5 = -20. Scalar masses are assumed degenerate at Mp£ = 2.4 x 1018 

GeV. Ma is taken to be 2.7 x1016 GeV. 

Fig 10 Plots of the suppression factor E against M 2 , with the same parameters as 

in Fig. 9. 
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Fig. 11 Contours for flh 2 in J.L- M2 plane in the large tan {3 limit. Dashed lines are 

LSP mass contours of 30, 45, and 60 GeV. For all regions of mLsP < 45 

Ge V in this plot, the Higgsino components of LSP are too big and therefore 

they are ruled out by the Z width. 
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Fig. 4 
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Fig. 8(a) 
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Fig. 9(a) 
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Fig. 11 
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