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Tradeoff's between measurement residual and reconstruction error 
in inverse problems with prior information 

Paul Hughett 

Lawrence Berkeley Laboratory, MS 55-121 
University of California, Berkeley, CA 94720 

ABSTRACT 

In many inverse problems with prior information, the measurement residual and the reconstruc­
tion error are two natural metrics for reconstruction quality, where the measurement residual 
is defined as the weighted sum of the squared differences between the data actually measured 
and the' data predicted by the reconstructed model, and the reconstruction error is defined as 
the sum of the squared differences between the reconstruction and the truth, averaged over some 
a priori probability space of possible solutions. A reconstruction method that minimizes only 
one of these cost functions may produce unacceptable results on the other. This paper develops 
reconstruction methods that control both residual and error, achieving the minimum residual for 
any fixed error or vice versa. These jointly optimal estimators can be obtained by minimizing 
a weighted sum of the residual and the error; the weights are determined by the slope of the 
tradeoff curve at the desired point and may be determined iteratively. These results generalize to 
other cost functions, provided that the cost functions are quadratic and have unique minimizers; 
some results are obtained under the weaker assumption that the cost functions are convex. 

1. INTRODUCTION 

In many inverse problems there are two or more natural cost functions for the reconstruction 
quality. Two very common ones are the measurement residual, defined as the weighted sum 
of the squared differences between the data actually measured and the data predicted by the 
reconstructed model, and the reconstruction error, defined as the sum of the squared differences 
between the reconstruction and the truth, averaged over some a priori probability space of pos­
sible solutions. The minimum-norm least squares method [2] minimizes the residual without 
respect to the error and can produce very large reconstruction errors in ill-posed problems [1]. 
Minimum mean-square error methods such as OCLIM [1], on the other hand, minimize the re­
construction error without regard to the residual and can possibly produce reconstructions in 
which the measured and predicted data match only poorly. 

The purpose of this paper is to develop reconstruction methods that control both the residual 
and the error and that yield the minimum error for a fixed residual or vice versa. The paper 
also develops some useful properties of the tradeoff curve which defines the minimum possible 
residual for every value of error, and vice versa. 

The first part of the paper demonstrates that the tradeoff curve is convex and monotone 
decreasing, given only the assumption that the cost functions are convex. Furthermore, every 
estimator that minimizes a weighted sum of the cost functions achieves some point on the tradeoff 
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curve. The second part of the paper considers the additional assumptions that the cost functions 
are quadratic and have unique minimizers; then every interior point on the tradeoff curve can 
be achieved by an estimator which minimizes the weighted sum of the cost functions. The third 
part of the paper considers the measurement residual and the reconstruction error as the cost 
functions and derives the optimal estimator for any point on their tradeoff curve. The final part of 
the paper applies these results to a model problem from biomagnetic source imaging and exhibits 
the tradeoff curve for this problem. 

2. FOUNDATIONS 

We begin by developing some fundamental properties of the tradeoff curve between two cost 
functions for reconstruction quality. Suppose that Vis a space of possible data sets and M is a 
Banach space of possible models to explain a data set. Let 1i be a set of reconstruction operators 
from V to M, either linear or nonlinear. Since M is a linear space, it is always possible to 
define the addition of two operators or the multiplication of an operator by a constant as the 
corresponding addition or multiplication of the solutions. That is, for any scalars a and f3 and 
any estimators H 1 and H 2, 

(1) 

where dE Vis a data set. Further let span(1i) be the set of all linear combinations of operators in 
1i and observe that span(1i) is a linear space, whether or not the operators H in 1i are themselves 
linear or nonlinear. 

Let the cost functions p( H) and v( H) be any real-valued convex functions of the reconstruction 
filter H and suppose that smaller values of p and v indicate better quality. Recall that a function 
J.l is convex if 

p(aH1 + (1- a)H2) s; ap(H1) + (1- a)p(H2) 

for all 1 s; a s; 1 and all H 1 and H 2 in span( 11.). 

(2) 

Definition 1: A point (J.Lb v1) is feasible if there exists an operator H E span(1i) such that 
p(H) = J-L1 and v(H) = v1. 

Definition 2: A point (J.Lb v1) is (p, v )-optimal (or just optimal) if it is feasible and there 
is no other fe~sible point (J.L2, v2) such that J.l2 s; J.l1 and v2 s; v1. Equivalently, if there is no 
other feasible point in the closed quadrant below and to the left of (J-LI, v1). An operator H is 
(p, v )-optimal if (p( H), v( H)) is an optimal point. 

Definition 3: The (p, v) tradeoff curve is the set of optimal points. 

It is now easy to show that the tradeoff curve is single-valued and monotone decreasing. 

Lemma 4: Let (J-L1, v1) and (J.L2, v2) be two points on the tradeoff curve. Then exactly one of 
the following three statements is true: ( 1) J.l1 = J.l2 and v1 = v2; ( 2) J.ll < J.l2 and v1 > v2; or ( 3) 
J.l1 > J.l2 and lll < ll2 ~ 

Proof: Let H1 and H2 be the estimators that realize the two given points. Since the points are 
optimal, so are the estimators. (1) Consider the case that J.ll. = J-l2· If v1 < v2 then H2 cannot 
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be optimal, and if v1 > v2 then H1 cannot be optimal. (2) Consider the case that I-ll < J-l2· If 
v1 :::; v2 then H2 cannot be optimal. (3) Consider the case that I-ll > J-l2· If v1 2::: v2 then H1 
cannot be optimal. 

The tradeoff curve is also convex, in the sense defined by the following proposition. 

Lemma 5: Let H1 and H2 be optimal estimators such that J-t(Hl) < J-t(H2) and (necessarily) 
v(Hl) > v(H2)· Then for every 0 < o: < 1 there exist a feasible estimator H3 and an optimal 
estimator H4 such that 

(3) 

and 
(4) 

Proof: Define H3 = o:H1 + (1- o:)H2. Then by the convexity of J-l and v, 

(5) 

and 
(6) 

If it happens that H3 is optimal, take H4 = H3. Otherwise H3 is not optimal and there must 
exist some optimal estimator H4 such that J-t(H4) :::; J-t(H3) and v(H4) :::; v(H3). In either case 
we have J-t(H4) :::; J-t(H3) and v(H4):::; v(H3). Finally observe that we must have J-t(Hl) < J-t(H4); 
since v(H4) < v(H1), H1 cannot be optimal otherwise. Similarly, we must have v(H2) < v(H4) 
since H 2 is optimal. 

3. TRADEOFF FUNCTION 

Since the tradeoff curve is single-valued, we can define a continuous tradeoff function that gives 
the minimum possible value of the second cost function v for any given value of the first cost 
function 1-l· Then there is an estimator that comes arbitrarily close to any point on the curve 
traced out by this function. 

Definition 6: The tradeoff function ii from 1-l to v is the real-valued function given by 

ii(J-to) = inf v( H) 
p(H)5:J.Lo 

It is undefined whenever no such H exists. 

(7) 

Lemma 7: Let A be an optimal estimator. Then for every 1-lO 2::: J-t(A) and every € > 0, there 
exists an H E span(H) such that J-t(H) :::; 1-lO and v(H) :::; ii(J-to) +E. 

Proof: The existence of ii(J-to) follows from the fact that J-t(A) :::; 1-lO· Then the inequalities 
J-t(H) :::; J-lO and v(H) :::; ii(J-to) + E follow from the definition of infimum. 
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Proposition 8: Let A and B be optimal estimators such that J.L(A) < J.L(B). Then (1) v is 
defined, convex, and monotone non-increasing on the closed interval [J.L(A), J.L(B)]; (2) v(B) ~ 
v(J.Lo) ~ v(A) for all J..lO E [J.L(A), J.L(B)]; (3) the left derivative 

~1 
1
. v(J.LI)- v(J.Lo) 

1/ = liD 
- J.tliJ.to J..ll- J..lO 

(8) 

exists for all J..lO E (J.L(A),J.L(B)]; and (4) the right derivative 

~1 
1
. v(J.LI)- v(J.Lo) 

1/+ = liD 
J.tdJ.to J..ll- J..lO 

(9) 

exists for all J..lO E [J.L(A), J.L(B)). 

Proof: (1) To see that v(J.Lo) is defined for J..lO ~ J.L(A), observe that A satisfies the condition 
that J.L(A) ~ J..lO and so the infimum always exists. Furthermore v(J.Lo) ~ v(A). 

(2) To see that f; is monotone non-increasing, consider two points J..ll and J..l2 such that J.L(A) ~ 
J..ll ~ J..l2 ~ J.L(B). Then 

v(J.LI) = in£ v(H) ~ inf v(H) = v(J.L2) 
p(H)'5:J.tl p(H):5:J.t2 

(10) 

The inequality v(B) ~ v(J.Lo) follows immediately from monotonicity. 

(3) To see that f; is convex, consider any J..ll and J..l2 such that J.L(A) ~ J..ll < J..l2 ~ J.L(B) and any 
E > 0. Then there exist H1 and H2 such that 

J.L(HI) ~ J..ll 
J.L(H2) ~ J..l2 

and 

and 

v(HI) < v(J.LI) + E . 

v(H2) < v(J.L2) + E • 

Furthermore, by Lemma 5, there exists for any 0 ~a~ 1 an estimator Ha such that 

and 

Then consider 

J.L(Ha) ~ (1- a)J.L(HI) + aJ.L(H2) 
~ (1- a)J..ll + aJ..l2 

v((1- a)J..ll + a112) = inf v(H) 
p(H)-.5:(1-a)J.ll +aJ.t2 

~ v(Ha) 
~ (1- a)v(HI) + av(H2) 
~ (1- a)(v(J.Ll) +E)+ a(v(J.L2) +E) 
= (1- a)v(J.LI) + av(J.L2) + E , 

and, since E was arbitrary, 
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which is the required condition for convexity. Continuity and the existence of the left and right 
derivatives follow from convexity. 

Lemma 9: Suppose that the estimator His (J.L, v)-optimal. Then v(H) = v(J.L(H)). 

Proof: First observe that 

v(J.L( H)) = inf v( G) 
G:f.l(G)$f.l(H) 

::; v(H) (17) 

since J.L(H) ::; J.L(H). Now suppose that v(J.L(H)) < v(H). Then there must exist a G such that 
J.L(G) ::; J.L(H) and v(G) < v(H). But then H cannot be optimal. Therefore we must have 
v(J.L( H)) = v( H). 

4. A CLASS OF OPTIMAL ESTIMATORS 

Given a point (J.L, v) on the tradeoff curve, we often wish to construct an estimator that achieves 
that performance. In fact, it is possible to define a class of estimators which are always (J.L, v )­
optimal. Unfortunately, it is not known in the general case whether every optimal point can be 
achieved by an estimator in this class. 

Definition 10: The class 0 C span(?-l) is the set of estimators H E span(?-l) that minimize 
the weighted sum J.L(H) + Bv(H) for some fixed positive real B. 

Theorem 11: Suppose that the estimator He E 0 minimizes J.L(H) + Bv(H) for some fixed 
B > 0. Then He is (J.L, v)-optimal. Furthermore, 

(18) 

Proof: (1) Suppose that He is not (J.L, v)-optimal. Then there exists aGE span(?-l) such that 
either J.L(G) < J.L(He) and v(G)::; v(He) or J.L(G)::; J.L(He) and v(G) < v(He). In either case 

J.L(G) + Bv(G) < J.L(He) + Bv(He) (19) 

and therefore He does not minimize J.L(H) + Bv(H). 

(2) For the inequality on the derivatives, define J.Le = J.L(He) and consider some J.ll =/= J.lB· Fix 
E > 0. Then there exists an optimal estimator H1 such that J.L(Hl) ::; J.ll and v(H1) ::; v(J.Ll) +E. 

Then 
J.L(Hl) + Bv(H1)::; J.Ll + B(v(J.Ll) + t:) 

Now since He minimizes J.L(H) + Bv(H) we have 

p(Ho) + Bv(He)::; J.L(Hl) + Bv(HI) 

and so ) 

J.L(He) + Bv(He)::; Ill+ B [v(J.Ll) + t:] 
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Since v(J.Le) = v(J.L(He)):::; v(He), 

J.Le + Bv(J.Le):::; J.LI + B [v(J.Ll) + t] (23) 

Since € is arbitrary, 
(24) 

and 
(25) 

(3) If J.Ll > J.Le, the last inequality can be rearranged to yield 

(26) 

Taking the limit as J.L 1 ! J.Le yields 

(27) 

( 4) If J.L 1 < J.Le, the inequality can be rearranged to yield 

(28) 

and taking the limit as J.Ll T J.Le yields 

. 1 
v'_(J.L(He )) :::; - 8 (29) 

5. QUADRATIC COST FUNCTIONS 

Many interesting inverse problems involve finite-dimensional linear estimators and quadratic cost 
functions and it is true for this case that every interior point on the tradeoff curve can be achieved 
by an estimator He E 8 for some B. To be definite, suppose that the model space M and the 
data space V are both finite-dimensional vector spaces, and that the model m and the data d 
are related by the linear equation d = Fm+w, where w is the measurement error. Furthermore, 
the estimate of the model is always in the form m = Hd where H is a matrix. Stacking the 
columns of the matrix H yields a vector h. 

Definition 12: Suppose that span(1i) is a finite-dimensional vector space and that every 
element H E span(1i) can be uniquely represented as a stacked vector h. Then a cost function 
J.L(H) is quadratic if it can be written in the form 

(30) 

for some symmetric positive semidefinite matrix A, some real vector b, and some real constant 
c. The cost function J.L(H) is quadratic positive definite if the matrix A is positive definite. 
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Proposition 13: Let p,(H) be a quadratic cost function. Then p,(H) is a convex function of 
H. 

Proof: Let H1 and H2 be any two estimators and let h1 and h2 be the vectors that represent 
them. Assume that 0 :::; a :::; 1. Then 

p,(aH1 + (1- a)H2) = [ah1 + (1- a)h2]T A[ah1 + (1- a)h2] 

+ bT[ah1 + (1- a)h2] + c 

= a[hf Ah1 + bTh1 + c] + (1- a)[hr Ah2 + bTh2 + c] 

- a(1- a)[hf Ah1- 2hf Ah2 + hr Ah2] 

= ap,(Hl) + (1- a)p,(H2)- a(1- a)[h1- h2f A[h1- h2] 
:::; ap,(Hl) + (1- a)p,(H2) 

since A is positive semidefinite. 

Proposition 14: Consider a quadratic cost function 

Then the estimator H represented by 

(31) 

(32) 

(33) 

minimizes p,(H), where At is the Moore-Penrose pseudoinverse of A. If p, is positive definite, 
then the estimator H is unique and can be written as 

(34) 

Proof: To find the minimum, consider a variation h + bh to obtain 

p,(H + bH) = (h + bh)T A(h + bh) + bT(h + bh) + c 

= hT Ah + bTh + c + 2bhT ATh + bhTb + bhT Abh (35) 

The estimator corresponding to h is a stationaf, point of p, if the linear term in bh is zero 
independent of the value of bh. This requires 2A h = b, or, since A is symmetric, 2Ah =b. 

Now suppose that p, is positive definite. Then A is positive definite and t,he quadratic term in 
oh is positive whenever oh is not zero. Thus any stationary point must be a minimum and the 
solution h = ~A-lb must be unique. Suppose instead that p, is not positive definite. Then A is 

only positive semidefinite and the solution h = ~Atb is not unique. 

Corollary 15: A quadratic cost function p, is positive definite if and only if there is a unique 
estimator H that minimizes it. 

Proposition 16: Consider a quadratic positive definite cost function 

(36) 
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a quadratic cost function 
(37) 

and a non-negative real constant B. Then there is a_unique estimator He that minimizes J.L(H) + 
Bv(H) and that estimator He is represented by 

(38) 

Proof: The weighted cost function 

(39) 

is quadratic and positive definite. 

Theorem 17: Let J.l be a quadratic positive definite cost function and v .be a quadratic cost 
function. Let A and B be optimal linear estimators and (J.Lo, vo) a point on the tradeoff curve 
such that J.L(A) :::; J.lO < J.L(B). Then there is a linear estimator He E 8 such that J.L(He) = J.lO 
and v(He) = vo. 

Proof: The optimal estimator He is a continuous function of the parameter (). Similarly, J.l and 
v are continuous functions of He. Thus J.L( He) is a continuous function of () and there must exist 
a () such that J.L( He) = J.lO. Since He is optimal, v( He) = vo. 

The problem of finding the particular value of () to realize a desired optimal point may be 
solved numerically by iterative methods. 

6. ERROR VERSUS RESIDUAL 

The results of the previous section may be applied to the specific problem of trading off the 
measurement residual versus the reconstruction error in the inverse problem with prior infor­
mation. To make the problem definite, assume that d = Fm + w as before and that m and 
w are independent zero-mean Gaussian random vectors with covariances Cm = E mmT and 
Cw = EwwT. · . 

The measurement residual (or data misfit) may then defined as 

(40) 

and is a measure of the discrepancy between the data actually measured and the data predicted 
by the model. The Moore-Penrose pseudoinverse minimizes x2 but is not unique; therefore x2 is 
not a positive definite cost function. 

The mean square reconstruction error for a given data set d may be defined as 

(41) 

and is a measure of the uncertainty in the solution m. We will see shortly that r,2 is positive 
definite. 
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To find an estimator that jointly minimizes x2 and ry2 it is sufficient to consider the weighted 
sum 

S(m) = E [11m- mll 2
j d] + B(d- Fm)rc;1(d- Fm) . 

Taking the variation m + 8 m yields 

S(m+ om)= E [11m- mll 2
j d] + B(d- Fm)rc;1(d- Fm) 

-28mTE(m- ml d)- 2B8mTFTc;1(d- Fm) 

+ 8mT8m+ B8mTFTc;1F8m . 

(42) 

(43) 

Observe that the sum of the quadratic terms in 8m is 'positive whenever 8m =f:. 0 and so any sta­
tionary point must be unique and must be a minimum. To find this minimum, set the coefficient 
of the linear term to zero, or 

E(m- ml d)+ BFTc;1(d- Fm) = 0 

::::} E(m 1 d)- m+ BFTc;1d- BFTc;1Fm = o 
::::} CmFT(FCmFT + Cw )-1d + BFC;1d = m + BFTc;1Fm 

::::} m= [I+BFC;1F]-
1 

[cmFT(FCmFT +Cw)-1 +BFTc;1] d (44) 

The optimal estimator is 

Ho = [I+BFTc;1F]-
1 

[cmFT(FCmFT +Cw)-1 +BFTc;1] (45) 

Setting B = 0 in the preceding derivation yields the unique estimator that minimizes ry 2, which 
IS 

(46) 

Since this estimator is unique, the cost function :ry2 must be positive definite. Note that this is 
identical to the OCLIM estimator [1). 

Given the data d and the optimal estimate m it is easy to compute x2 directly from its 
definition. To compute :ry2, let iil = E( m I d) and consider 

fJ 2 
= E [11m- mll

2
j d] 

= E [(m-m+m-m)T(m-m+m-m)J d] 

=. E [ (m- m)T(m- m) I d] + E [ (rn- m)T(m- m) I d] 
+2E [(m-m)T(m-m)l d] 

= Tr(Var(m I d))+ lim- mll 2 
' ( 47) 

which can be expanded into a convenient form for computation 

ry 2 = Tr ( Cm- CmFT(FCmFT + Cw)-1FCm) 

+lim- CmFT(FCmFf + Cw )-1dJI
2 

(48) 
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Figure 1 A sim pie biomagnetic imaging problem. The source plane is perpendicular to the detector 
plane and contains 64 dipoles perpendicular to the source plane. 

7. SOME SIMULATION RESULTS 

The theoretical results obtained in this paper will be illustrated by a problem in magneto­
encephalographic source ima~ing, using the simplified geometry shown in Figure 1. The sources 
are arranged in a 4 x 4 em planar array perpendicular to the detector plane, and centered 
below that plane with its nearest edge 1 em away. The source plane contains an 8 x 8 array 
of current dipoles directed perpendicular to the plane. The 28 sources in the central cruciform 
region labelled A are assigned an a priori RMS source amplitude aA = 20 x 10-9 A-m; the 36 
remaining sources are assigned a different a priori amplitude a B = 2 x 10-9 A-m. 

Figure 2 shows the detector array, which has a 12 x 12 cm2 planar array of 144 detectors 
arranged in a 12 x 12 grid. Each detector measures the magnetic field perpendicular to the plane 
of the array. The RMS measurement noise at each detector is a- = 100 x 10-15 T; the noise is 
assumed to be independent, zero-mean, and Gaussian. 
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Figure 2 Detector grid. The detector grid contains a 12 by 12 array of sensors that sample the field 

perpendicular to the array. 

The true source dist.ribution wa~ modelled as a sin~le active dipole at row 4 (counting_ from ~he 
top) and column 4, With an amphtude of 100 x 10- A-m. A measurement data set, mcludmg 
noise, was computed using the Biot-Savart Law. Figure 3 shows the tradeoff curve between 
residual x2 and error i/2 in (A-m)2 for this model problem and this data set, plotted in semilog 
coordinates to accomodate the wide range of values of i/2. The curve is convex, although the 
use of semilog coordinates conceals this fact. The values of() used to draw the curve were, going 
from left to right, 0,10-20,10-19,10-18, ... , 10-6. Optimal points for larger values of() could 
not be obtained since the matrix I + () yT c;.1 F becomes too ill-conditio'ned to allow accurate 

, computation. The upper left end of the tradeoff curve corresponds to the OCLIM estimator and 
achieves the minimum possible i/2. 

8. DISCUSSION 

The best possible mean square error i/2 is 8 x 10-15 (A-m)2 and is achieved at a residual of 
x2 = 134. Increasing () increases the square error by 5 orders of magnitude before the residual 
changes significantly. Further to the right, the curve descends roughly linearly, indicating that 
the mean square error increases exponentially as the residual decreases. 

It is useful to compare the mean square error to the expected squared source amplitude, which 
is E llm!!2 = (28)(20 x 10-9)2 + (36)(2 x 10-9)2 = 11.3 x Io-15 (A-m)2. Since this is only slightly 
greater than the best possible squared error, it is not possible in this problem to reduce the 
residual below 134 without increasing the error to the point that it swamps the amplitudes being 
sought. That being the case, there is no reason not to use the OCLIM estimator to obtain the 
m1mmum square error. 
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Figure 3 Tradeoff curve for the model problem. This curve plots the best possible residual x2 for 
each value of mean square error v2 . The curve is convex but does not appear so because it is a semilog 
rather than linear plot. 
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