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A procedure for Pauli-Villars regularization of locally and globally 

supersymmetric theories is described. Implications for specific theo­
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Participation in this conference implies a belief that supersymmetry is relevant to particle 
physics. Since gravity is an established force of nature, we are inevitably led to take supergrav­
ity seriously as an effective, nonrenormalizable theory valid in some energy range. As such, we 
should be able to treat it at the quantum level, which means that we need a regularization pro­
cedure consistent with the symmetries of the theory. In this talk I will describe a procedure [1] 
for regulating the one-loop quadratic divergences of a general supergravity theory [2], with only 
the restriction that the gauge kinetic function is diagonal in gauge indices: !ab(Z) = 8abkaf(Z). 
In the case of global supersymmetry, the procedure has been generalized [3] to regulate all 
one-loop ultraviolet divergences for a general gauged nonlinear u-model with no dilaton. Fol­
lowing some preliminaries to establish notation, specify the gauge fixing, etc., I will describe 
the Pauli-Villars field content and couplings. Finally I will mention several implications for 
and applications to physical issues that are especially relevant to effective supergravity theories 
from strings. 

The tree-level supergravity lagrangian [2] I adopt, with f(z) = x + iy, is 

- 1-£ ~r- ~F F~'-v- ¥._p F~'-v + K·-'D~'-zi'D zm- V vg 2 4 J1.V 4 J1.V zm J1. 

where 

+ i;).Q). + if{im (x£' Qxt + xkQx~) + e-K/2 (~f;Ai).R).L- A;jxkx{ + h.c.) 

+~~J1.'{(iQ + M)J~'-7/Jv- ~~11-f!i-(iQ + _1Vf)!v7/Jv 

[
x.T. vp ~'-' pa .T. 'TJI-m;:,.r ~'-L i1.T. ~'- \a'T"'t ·.T. ~'-L i h ] 

- 8'~-'~'-0" I /\a vp + 'f/J1. .Lt'z 1..im/ X 4'~-'11-f {5/\ Va + z'l-'!1-f X mi + .c. 

+ (i>.n [2Kim(Taz)m- 2~J;'Da- ~u11-vF~w J;] xt + h.c.) + 4 fermion terms, (1) 

V V + 'D, V = e-K (A;Ji- 3AA), 1J = -
2
1 

'Da'Da, 'Da = Ki(Tazi), 
x. 

M- (M)t=eK1 2 (WR+WL), A=eKW, A=eKW, mi=e-Kf2A;. (2) 

K(z,z) is the Kahler potential, W(z) is the superpotential, ra is a generator of the gauge 
group, and 

(3) 

with Di the scalar field reparameterization covariant derivative, and f{im the inverse Kahler 
metric. The one-loop effective action is determined from the quadratic quantum action: 

· 1ArJ( I< ) £quad(~,0,c) = 2,</> </> 8Ifh+(AI)J8K S+£91+£9 h = 

-~~T z<I> (.b~ + H<I>) ~ + ~GZ0 (iQe- Me) 0 + ~czc (iJ~ +He) c + 0(7/;c~), (4) 

where </>I= ~I, 0I, 8I = 8/8</>I, and the column vectors, 

eT (·'· 'a i m ) = '~-'~'-'"' 'XL, XR, a , 

represent the bose, fermion and ghost quantum degrees of freedom, respectively, with a 
-Co? an auxiliary field introduced [4] to implement gravitino gauge fixing. The connection 
(AI)} is chosen so as to preserve all bosonic symmetries, and also to simplify matrix elements 
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involving the graviton. In particular the quantum variables zi, zm. are normal coordinates in the 
space of scalar fields: (Ai)J = ffi, the affine connection associated with the Kahler metric Kim., 
giving a scalar field reparameterization invariant expansion. In ( 4) 7/JcZ represents background 
fermion fields that I set to zero; that is, I calculate only the one-loop bosonic action. 

For the bose sector, I use a smeared gauge-fixing: 

, ( <5ab 
Z= 

0 
(5) 

The Yang-Mills gauge-fixing term: 

preserves off-shell supersymmetry [5] in the limit of global supersymmetry and coincides with 
the string-loop result [6] for chiral multiplet wave function renormalization. The graviton 
gauge-fixing term: 

V2cll- = (':rhil-v- ~V' 11-h~- 2'Dil-z1 ZuzJ + 2.r;v.A~), 

is the one originally introduced by 't Hooft and Veltman [7], generalized [4] to include the 
Yang-Mills sector. The script quantum and classical Yang-Mills fields and field strengths are 
canonically normalized [8]: 

Ail- = .jXAJl-, Ail- = .jXAJl-, FJl-V = .jXFJl-V' vfx'DJl-AV = 'D~AJ.I, 

where 'Dil- is the gauge and general covariant derivative, and 'D~ = 'Dil- - oll-x/2x, 'D~ = 
'Dil- + oll-xj2x. In the earlier literature two gravitino gauge fixing procedures have been used: a) 
a Landau-type gauge [9, 10] 'Y · 7/J = 0, implemented by the introduction of an auxiliary field, 
and b) a smeared gauge [11] £ ~ £- F MF, F = 1 · 7/J, M = ~ (i 1J + 2M,p) supplemented 
with Nielsen-Kallosh ghosts. Here I use an unsmeared gauge G = 0, with the gauge-fixing 
function [4] 

G = _'Yv(ilJ- M)'l/Jv- 2(TJzii<im.Rxm.+TJzm.I<im.Lxi) + ~O"vp>.aF:P + 2imzx1
- 'Ys'Da>.a, (6) 

where Dll- contains the spin and chiral Kahler connections. The quantum Lagrangian is obtained 
by the introduction of an auxiliary field a: 8( G) = fda exp ( iaG) , and a shift in the gravitino 
field: 7/J' = 7/J + 1a, ?{;' = ?{; + ii'Y, so as to diagonalize the gravitino kinetic energy term. The 
ghost and ghostino determinants are obtained in the usual way as, respectively: 

A,B = a,JL, (

A 2 )"' fJ8G"' 
De +He {3 = fJcf3 , 

where Dll- is related to 'Dil- or Dll- by additional connections. With these choices the one-loop 
bosonic action takes a very simple form: 

(7) 

where 

STrln (b~ +He) 2Tr ln ( D~ '! He) ca - 2Tr ln ( D~ + He) ea,Jl , 
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which just reduces to determinants of the form of those for scalars and spin-~ fermions. More­
over the ghost and non-ghost sectors have separately supersymmetric quantum spectra, except 
for the Yang-Mills fields: 

1 2 (Tr 1)e = (Tr 1)q;- 2Na = 2N + 2Na + 10. (Tr 1L, = 4, (Tr 1) c = 4 + N a, 
a,b 

where N(Na) is the number of chiral (gauge) supermultiplets. To evaluate (7) I separate (10, 12] 
the fermion determinant into helicity-even and -odd parts: 

. . 

_ _:Tr ln( -iQ +Me)= _ _:Tr ln M(Js) = T_ + T+, 
2 2 

(8) 

where here Df.l. contains all fermion connections, and 

z 
T_ -4 (Trln M( Is)- Trln M( -Is)], 

z 
T+ = - 4 (Trln M(Js) + Trln M( -Is)], 

. _ (O"~Dt M+ ) 
M - lo( -zQ +Me)- M- O"'::.D;; , (]"~ = (1, ±8). (9) 

Then defining 
b~ +He= (-iQe +Me) (iQe +Me), 

The one-loop bosonic action (7) reduces to: 

The helicity-odd term T_ is at most logarithmically divergent, and is finite (4, 12] in the absence 
of a dilaton, that is, for f( Z) = g-2 + i() j81r 2 = constant. It does not contribute to the effective 
actions considered in this talk. 

First consider the case J(Z) = constant. The quadratically divergent (O(A2 )] contribu­
tions to the one-loop bosonic action are: 

STrH9rav - -10V- 2MJ- ~- iF2 + 4I<;m.V,j1Y'zif"', 

STrHx 2N ( V + MJ- ~) + 2x-1'DaD;(Taz)i- 2R;m. (e-K A; Am.+ V,_jVP.zm.), 

. x 2 r ( ) STrHyM 21) + 2,F + Na 2. 10 

First note the cancellation of the terms containing the squared Yang-Mills field strength F 2
• 

Assuming that the generators of the gauge group are traceless: TrTa = 0, the z-dependent terms 
can by regulated by the introduction Pauli-Villars chiral supermultiplets: z; = ( Z!) t, z:f = 

( Z~1 ) t, r.pA = (cpA) t, where Z I transforms like Zi under the gauge group, and Z'l ,....., z' transforms 
according to the conjugate representation, with Kahler potential: 

I<(Z, Z, r.p, <p) L I<;m.(z,z) (z:Xz~ + z:;z~M) + L:eaAK'PA'PA, 
a,l=i,M=m A 

superpotential: 

W(Z,r.p) = Lf.L!Z:Xz:! + Lf.LA ('PA) 2, 
A,[ A 
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and signature r("'•A = ±1, which determines the sign of the contribution to the supertrace 
relative to that of a physical supermultiplet (e.g., ghosts have signature -1). The Pauli-Villars 
contribution to STrHx is: 

with: 

STrHpv · 
X 22: (277" + 77A) (v + MJ- i) 

cx,A 

+4 2: 1]cx [x-lVa D(aJ)(Taz)(cxJ) - R~~~lim ( k Ame-K + VttziVtt.zm)) 
cx,J 

+22:1JA [x- 1VaDA(Taz)A-R1im (AiAme-K +VttziVtt.zm)], (11) 
A 

R(Icx) ccx c!Ri 
(Jf3)km = 0 {3°J jkm' 

To regulate the term proportional to the space-time curvature r, I add U(1) gauge supermul-
J. 

tiplets wa with signature 1]a, chiral multiplets e80. = ( e90.) I with signature 1]a, U(1)b charge 

qabab, and Kahler potential: I<(O,B) = ~L:avae"aK(Oa + Ba) 2 which is invariant under U(1)b: 
bbBa = -bbOa = iqabab· The fields (ea + (Ja)/V'i combine with the wa to form vector supermul­
tiplets with squared mass J.L~ = (2x t 1 q;e"a.K lla· The chiral supermultiplets contribute in the 
same way as cpA with aA -7 aa; the vector supermultiplets contribute only to the r-term, with 
the opposite sign. Then the overall contribution from light and heavy modes is: 

STrH' = 2V [N ( 1 + 2 ~ 77a) + ~ 1JA (1- aA) + ~ 77a (1- aa)- s] 
+2MJ [N (1 + 2~1]a) + ~1]A (1- 3aA) + ~1]a (1- 3aa) -1] 

-i [N (1 +2~7Ja) + ~1JA + 1- Na] 
+2 ( 1 + 2 ~ 1Jo:) [~Va(Taz)i- Rim (e-K AiAm + VttziVtt.zm)]. 

+2 ( I<imVttiD11 zm- 2V) ( 2- ·~ 7JAaA- ~ 7Jaaa) . (12) 

The finiteness condition STrH' = 0 requires: 

0 = 1 + 22:77a = l:17A + l:17a -7 = 2:17A + 1- Na = 2- ,L:7JA0A- 2:1Jae¥a· (13) 
ex A a A A a 

Note that there are only four independent conditions possible, but these are sufficient to cancel 
eight a priori independent quadratically divergent contributions. Next, taking, for example, 
qa = 1, J.L/ = f3!J.LI, f..LA = f3AJ.Lcp, lla = xf3~IJ.Lel 2 , cancellation of the O(p2 lnA2

) terms requires 

the additional conditions: l::a 17! (!3!) 
2 

= L:A 1JA (f3A) 2 = L:a 1Ja (f3a) 2 = 0. The result for the 
O(p2) part of So+ 51 = f d4 x (.Co+ £1) is: 

.Co(9~v' I<)+ £1 = .Co(9JJv, K + 8I<), 9JJv = 9~11 (1 +E), 

(14) 
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,. 

where P, Q = represent all heavy fields, and [13] Ap = 2'L,TJ; (!3;) 2 ln f3~. This result can be 
p 

expressed in terms of effective cut-offs Aq.: 

E = (15) 

where: 

(z = ('P = (~ = (~ = 1, (e = -4 (~ = 0, 

Note however that if there are three or more terms in the sum over p, the sign of Aq. is 
indeterminate [13], so caution should be used in making conclusions about the implications 
of these terms for the stability of the effective potential. 

Before including the dilaton, I note that there is an ambiguity in the separation (9) 
of the fermion determinant into helicity-even and -odd contributions. For example, if D J.t = 
Op. + VJ.t + iAp./s, M = m + m'1s, we would identify D'tf = Op. + VJ.t ± iAJ.t, M± = m =t= m'. 
However terms even and odd in Is can be interchanged by the use of the identities: 

The choice is generally dictated by gauge or Kahler covariance. However there is an off-diagonal 
gaugino-a mass term: 

a+/3=1. (16) 

The one-loop action 5 1 is invariant under the choice of a only if the integrals are finite. For an 
arbitrary choice we obtain, instead of {10) 

X 2 2 2 
STrHgrav 3 2F (a - f3 - 2), 

X 2 2 2 STrHyM 3 2F (a - f3 ). 

The choice a = 1 is the "supersymmetric" one, in that it matches analogous matrix elements 
in bose and ghost sectors, resulting in the cancellation of the F 2 terms in (10). We now include 
a dilaton, that is we take fab = Dab!, f = x + iy =J. constant (which is trivially generalized 
to Jab = Dabkaf, ka = constant, and so includes all known string models). There is a dilatino­
gaugino mass term: 

, + 8 = 1, fi = od, 

and an additional gaugino connection: 

E + ( = 1, 

that give the additional contributions to the supertraces: 

STrH9 rav (17) 
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where M] = (2x )-2e-K JJi Ajk, P = J<im fm· In this case, the "supersymmetric" choices that 
match matrix elements in the bosonic and ghost sectors are 1 = 8 = ~' E = 0, ( = 1, and the 
F 2 terms again cancel; the remaining terms: 

(18) 

can be regulated by the introduction of additional Pauli-Villars- chiral multiplets: 1ra = (?fa) t 
with 

Finiteness requires: I:a TJ~ = +Na, I:a TJ~ (f3C:) 2 = 0, and the results (12-15) are modified 
accordingly; the sums in (14,15) are extended to include, respectively P = 7ra, <P = 1r, with: 

K 

A! = :xzlf3~/-t1f 128$ (/3~)2' 
The result ( = 1 has implications for chiral/linear multiplet duality. In this case the y-axion 
contribution to the gaugino connection is Al-L = 2xhvpo-i[~-Liv/p/o-], where hvpo- = t: 11PO"/.L8/.Lyj4x2 

is the three-form that is dual to y-axion in the absence of interactions; there is a similar 
term in the vector connection. This suggests that the linear supermultiplet formalism [14, 15] 
is the natural framework for describing the dilaton supermultiplet. It has been shown [16] for 
several models that axion/three-form duality holds at the quantum level up to finite topological 
anomalies. In the presence of fermion couplings to the dilaton, there are additional anomalies; 
interchanging terms in T+ and T_ is analogous to shifting the integration variable. The linearly 
divergent triangle diagram leads to an ill-defined finite chiral anomaly that is fixed by imposing 
local gauge invariance; in the present case supersymmetry resolves the ambiguity. In addition, 
with the choice ( = 1, the dilaton supermultiplet contributes a purely "vector-like" gaugino 
connection, and there is no y-axion analogue of the modular anomaly (the ImtF F term induced 
at one loop). This result coincides with the conclusion of [17], where it was argued that a y F F 
term is inconsistent with the linearity constraint of the linear multiplet formulation. 

To fully regulate the theory, including all logarithmic divergences, requires additional 
Pauli-Villars fields and/ or couplings. For example, to regulate the Yang-Mills sector we must 

include in the set cpA Na chiral multiplets r..p1 = ( <P1) t that transform according to the adjoint 
representation of the gauge group, with I:A,a 7JA. = 3Na. In this case the effective cut-off has 
been determined [17] by imposing supersymmetric matching of chiral and conformal anomalies, 
giving aA. = ~- Imposing the full finiteness conditions on STrH'2 may constrain the other 
parameters aA, aa, aa. This program has been carried out [3] only in the case of global super­
symmetry with no dilaton. In this case only Pauli-Villars chiral multiplets are needed. The full 
superpotential and Kahler potential are, respectively: 

W(z, Za, z~, 'Pf3) = W(z) + L ~-t! z~z:: + L f-tf3'P~'P~ + ~ L aaW(Z)ijz~z~ 
a,I a,{3 a 

I<(zi,z',cf>pv) = I<(zi,z')+ L<P~r..p~+ LI<im 
{3 a 

(z, z) ( Z~Z~ + Z'! zf!) + :L f3ai<ii(z, z)Z~Z~ + 0 ( cf>~v), 
a; I,J=i,j 

with 
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and additional constraints on a a, b'Y, f3a are imposed by the finiteness requirement. 
Some of the cut-offs have a straightforward physical interpretation in the context of string 

theory. For chiral matter in torus compactifications or the untwisted sector of orbifold compact­
ifications, the cut-off (in reduced Planck units and assuming a common vev for the moduli), 
ll..zi lvac = Acomp = 1/ R, is just the inverse radius of compactification. The cut-off for the Yang­
Mills sector, Agauge = g-~ Acomp, can be interpreted in terms of the same cut-off, but incorporat­
ing the 2-loop correction to the /3-function, which assures the supersymmetric relation between 
chiral and conformal anomalies. For twisted chiral matter, the interpretation is less transpar-

I j ( -4 4 ) 
3

V -l · · ent: ll..twisted vac = Acomp g ll..comp • The twisted sector must be mcluded to assure both 
the cancellation of the modular anomaly and consistency with string loop calculations (18, 19]. 
Including the Green-Schwarz counterterm [14], matching field theory anomalies-as calculated 
with the above prescriptions-to string loop calculations, and using the all-loop supersymmetric 
renormalization group invariant function of [20], it was shown [17] that the two-loop gauge 
unification scale (as conventionally defined by phenomenologists) is the string scale. The same 
conclusion has been reached in [21] where the same RGE invariant function, but a different 
calculational procedure, was used. 

The extension of the procedure described here to a full regularization of supergravity is in 
progress (22]. Two cases are of special interest. For a compact a-model coupled to gravity, the 
classical ratio frrfmpt is fixed by the Bagger-Witten quantization condition [23], and one may 
ask whether this condition persists at the quantum level, which would require 8I< = 0 in (15). 
Since (in a class of a-models) the scalar Ricci tensor R;m. is proportional to the Kahler metric 
I<im., the cut-offs in (15) can be chosen such that the quadratically divergent parts of gravity and 
chiral loops cancel in 8I<. The possibility of a full cancellation of the ultraviolet divergences 
as well as of the chiral anomaly is under investigation. More interesting for string theory 
are the noncompact a-models that arise in torus and orbifold compactifications. These models 
possess classical noncompact, nonlinear symmetries that contain a discrete subgroup of modular 
transformations. The same considerations hold at the one-loop level as for the compact case. 
The possibility of a regularization procedure that respects the full continuous symmetry as well 
as the discrete modular symmetry has potentially important implications for phenomenology. 
The parameters introduced above to specify the couplings of the PV sector are in general field­
dependent: f.L = J.L(z), v = v(z, z). For example, in superstring theory there is an invariance 
under a modular transformation: I< -+-I<+ F(z) + F(z), W-+ e-F(z)W, that is unbroken 
by perturbative quantum corrections. Thus Z! has the same modular weight as zi and r.pA has 
modular weight -o:A/2; the z-dependence of J.L(z), va(z,z) must be chosen accordingly; this 
field dependence can be interpreted as threshold effects from integration over heavy modes. 
Typically, one expects: J.L(z) <X ry(T)P, where T is a modulus and ry(T) is the Dedekind ry­
function. Such terms break the continuous classical symmetry, thereby destroying the no-scale 
structure of these models ( (V) = 0) and the protection of a mass hierarchy f:l.msusv ~ ma that 
is desirable both for phenomenology and cosmology, as has been discussed in several lectures at 
this conference. These problems might be avoided if an anomaly free regularization is possible. 

Full Pauli-Villars regularization of supergravity including the dilaton can be investigated 
once the ultraviolet divergences have been fully determined for this case [12]. 
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