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Abstract 

Invariant integrals of functions and forms over q - deformed Euclidean space and 
spheres in N dimensions are defined and shown to be positive definite, compatible with 
the star- structure and to satisfy a cyclic property involving the D- matrix of SOq(N). 
The definition is more general than the Gaussian integral known so far. Stokes theorem 
is proved with and without spherical boundary terms, as well as on the sphere. 
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1 Introduction 

In recent years, there has been much interest in formulating physics and in particular field 
theory on quantized, i.e. noncommutative spacetime. One of the motivations is that if there 
are no more "points" in spacetime, such a theory should be well- behaved in the UV. The 
concept of integration on such a space can certainly be expected to be an essential ingredient. 
In the simplest case of the quantum plane, such an integral was first introduced by Wess and 
Zumino [1]; see also [2]. In the presumably more physical case of quantum Euclidean space 
[3], the Gaussian integration method was proposed by a number of authors [4, 5]. However, 
it is very tedious to calculate except in the simplest cases and its properties have never been 
investigated thoroughly; in fact, its domain of definition turns out to be rather small. 

In this paper, we will give a different definition based on spherical integration in N 
dimensions and investigate its properties in detail. Although this idea has already appeared 
in the literature [6], it has not been developed very far. It turns out to be both simpler 
and more general than the Gaussian integral. We first show that there is a unique invariant 
integral over the quantum Euclidean sphere, and prove that it is positive definite and satisfies 
a cyclic property involving the D- matrix of SOq(N). The integralover quantum Euclidean 
space is then defined by radial integration, both for functions and N forms. It turns out not 
to be determined uniquely by rotation and translation invariance (=Stokes theorem) alone; 
it is unique after e.g. imposing a general scaling law. It is positive definite as well and thus 

. allows to define a Hilbertspace of square - integrable functions, and satisfies the same cyclic 
property. The cyclic property also holds for the integral of N and N -1 - forms over spheres, 
which leads to a simple, truly noncommutative proof of Stokes theorem on Euclidean space 
with and without spherical boundary terms, as well as on the sphere. These proofs only 
work for q of. 1, nevertheless they reduce to the classical Stokes theorem for q -+ 1. This 
shows the power of noncommutative geometry. Obviously one would like to use this integral 
to define actions for field theories on such noncommutative spaces; this is work in progress. 

Although only the case of quantum Euclidean space is considered, the general approach 
is clearly applicable to e.g. quantum Minkowski space as well. 

2 Integral on the quantum sphere s:-1 

To establish the notation, we briefly summarize the definitions used in this paper, following 
Faddeev, Reshetikhin and Takhtadjan [3]. 

The (function algebra on the) quantum orthogonal group Oq(N) (which is called SOq(N) 
in [3]) is the algebra generated by A~ modulo the relations 

R_ik AmAn 
mn J I 

9iiAiA{ 

SOq(N) is obtained by further imposing 

A i Ak RAnm 
n m jl ' 

9kl· 

A i.l AiN ~il····iN = ~iJ .... iN 
Jl .... JN'-'q '-'q 
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using the fact that the quantum determinant is central, see e.g. [7]. 
The R - matrix decomposes into 3 projectors R~ = (qP+- q-1 p- + q1-N P0)~. The 
t . . d t . d b (P0 )ii 92 - 1 ii h ki r:i I h. me nc IS e ermme y kl = (qN-l)(q2 N+l)g 9kz, w ere 9ik9 = o;. n t IS paper, we 

assume q is real and positive. Then there is a star - structure (involution) 

A~ = gim A~gz; 

so that we really have (S)09 (N, IR), and the antipode can be written as 

S(A;) =A{ 

Quantum Euclidean space [3] is generated by xi with commutation relations 

(P-)~xkx1 = 0, 

(4) 

(5) 

(6) 

and the center is generated by 1 and r 2 = 9iixixi. The associated differentials satisfy 
(P+)~dxkdx1 = 0 and 9iidxidxi = 0, i.e. 

dxidxi = -qR~dxkdx1 • 

The epsilon - tensor is then determined by the unique top - (N-) form 

dxi1 ... dxiN = c;~l···iN dx1 ... dxN = c;~l···iN dNx. 

The above relations are preserved under the coaction of (S)09(N) 

Ll(xi) =A;® xi= xh) ® x~2), 

(7) 

(8) 

(9) 

in Sweedler - notation. The involution xi = xi 9ii is compatible with the left coaction of 
(S)09(N, JR). One can also introduce derivatives which satisfy 

(P-)~akfi = o, 
aixi = gii + q(R-l)~xkaz, 

and 

(10) 

(11) 

fidxi = q-1 R~dxk81 , xidxi = qR~dxkx1 • (12) 

This represents one possible choice. For more details, see e.g. [8]. Finally, the quantum 
sphere s;:-l is generated by ti =xi jr, which satisfy 9iititi = 1. 

We first define a (complex- valued) integral < f(t) >t of a function f(t) over Sf;"-1
. It 

should certainly be invariant under 0 9 (N), which means 

A il Ain < tii tin > -< ii1 tin > 
i1 · · · in · · · t- · ·· t • (13) 

Of course, it has to satisfy 

and (14) 

We require one more property, namely that Ji1 .•• in =< ti1 ... tin >t is analytic in (q- 1), i.e. 
its Laurent series in ( q - 1) has no negative terms (we can then assume that the classical 
limit q = 1 is nonzero). These properties in fact determine the spherical integral uniquely: 
for n odd, one should define < ti1 ... tin >t= 0, and 
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Proposition 2.1 For even n, there exists (up to normalization) one and only one tensor 
Jil···in = Jil··-in(q) analytic in (q- 1) which is invariant under 0 9 (N) 

(15) 

and symmetric, 
(16) 

for any l. It can be normalized such that 

(17) 

for any l. Jii ex gii. 
An explicit form is e.g. Ji1 ... in = An(~nf2xi1 ... xin), where~= g;j8181 is the Laplacian 

(in either of the 2 possible calculi), and An is analytic in (q- 1). For q = 1, they reduce to 
the classical symmetric invariant tensors. 

Proof The proof is by induction on n. For n = 2, gii is in fact the only invariant symmetric 
(and analytic) such tensor. 

Assume the statement is true for n, and suppose In+2 and 1~+2 satisfy the above condi
tions. Using the uniqueness of In, we have (in shorthand - notation) 

f(q- 1)fn 

J'(q-1)fn 

(18) 
(19) 

where the f( q - 1) are analytic, because the left - hand sides are invariant, symmetric and 
analytic. Then Jn+2 = f' In+2 - f 1~+2 is symmetric, analytic, and satisfies g12Jn+2 = 0. It 
remains to show that J = 0. 

Since J is analytic, we can write 

00 

Jil···in = L (q _ 1)k J[k) .. in. (20) 
k=no 

(q- 1)-nojil---in has all the properties of J and has a well-defined, nonzero limit as q-+ 1; 
so we may assume J(o) =/:- 0. 

Now consider invariance, 
J il···in = Ai_1 A in jJl···Jn 

J1 ••• Jn • (21) 

This equation is valid for all q, and we can take the limit q -+ 1. Then A~ generate the 
commutative algebra of functions on the classical Lie group O(N), and J becomes J(o), 

which is just a classical tensor. Now (P-)~:~~~:: jJl···Jn = 0 implies that J(o) is symmetric for 
neighboring indices, and therefore it is completely symmetric. With g12J = 0, this implies 
that J(o) is totally traceless (classically!). But there exists no totally symmetric traceless 
invariant tensor for O(N). This proves uniqueness. In particular, Ji1 ... in = An(~ nf2xi1 ... xin) 
obviously satisfies the assumptions of the proposition; it is analytic, because in evaluating 
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the Laplacians, only the metric and the R - matrix are involved, which are both analytic. 
Statement ( 17) now follows because x 2 is central. 0 . 

So < ti1 ••• tin >t= Ji1 •.. in for even n (and 0 for odd n) defines the unique integral over 
s;-r-1 • A different but equivalent definition was given in [6]. From now on we only consider 
N 2: 3 since for N = 1, 2, Euclidean spac~ is undeformed. The following lemma is the origin 
of the cyclic properties of invariant tensors. For quantum groups, the square of the antipode 
is usually not 1. For (S)Oq(N), it is generated by the D - matrix: 5 2 A; = DfAi(D-1 )J 
where Df = gik9tk (note that D also defines the quantum trace). Then 

(22) 

Proof From the above, (22) amounts to 

(23) 

Multiplying with s-1 A~~ from the left and using s-1(ab) = (S- 1 b)(S-1a) and (S- 1 A~~)A~~ = 
8;~, this becomes 

Now multiplying with A~~ from the right, we get 

But the (lhs) is just Ji 2 ••• inlo by invariance and thus equal to the (rhs). 0 

We can now show a number of properties of the integral over the sphere: 

Theorem 2.3 

< f(t) >t 
< f(t)f(t) >t 
< f(t)g(t) >t 

< f(t) >t 
> 0 

< g(t)f(Dt) >t 

where (Dt)i = n;ti. The last statement follows from 
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(24) 

(25) 

(26) 

(27) 

(28) 

(29) 



Proof For (26), we have to show that Jin···i1 gjni,;···9j1i1 = Ii 1 .•• in. Using the uniqueness of 
I, it is enough to show that Jin--:i19jnin···9j1 i1 is invariant, symmetric and normalized as I. 
So first, 

(30) 

We have used that I is real (since gii and Rare real), and A~~9kJi1 = 91Ji1 A~1 • The symmetry 

condition (16) follows from standard compatibility conditions between R and ii, and the 
fact that R is symmetric. The correct normalization can be seen easily using gii = 9ii for q 
- Euclidean space. 

To show positive definiteness (27), we use the observation made by [3] that 

(31) 

with u1 u18{ + UNb~ is an embedding s;-l ---+ Fun(Oq(N)) for U!UN = (q(N- 2)12 + 
q(2-N)f2t 1, since (P-)~uku1 = 0 and 9iiuiui = 1. In fact, this embedding also respects 
the star- structure if one chooses UN= u 1ql-N/2 and real. Now one can write the integral 
over s;-l in terms of the Haar- measure on the compact quantum group Oq(N, IR) [9, 10]. 
Namely, 

< t il tin > < Ail Ain > i1 in -< Ai > j (32) ··· t= j 1 ••• Jn A U ... U = j_ A U-, 

(in short notation) since the Haar - measure <>A is left (and right) - invariant < Az >A= 

A& < AI >A=< A& >A AI and analytic, and the normalization condition is satisfied as well. 

Then < ti.t!... >t=< A&A~ >A uf5..ur.. and for f(t) = "'£ fi.ti. etc., 

< f(t)g(t) >t f Ai.A!... k r (fAi. k) ( Ai r) i.9j_ < fs.. T.. >A U'-'-U- =< i. fs..U- 9j_ "f}.l-

< f(Au)g(Au) >A. (33) 

This shows that the integral over s;-l is positive definite, because the Haar - measure over 
compact quantum groups is positive definite [9], cp. [11]. 

Finally we show the cyclic property (29). (28) then follows immediately. For n = 2, the 
statement is obvious: gii = Digik. 
Again using a shorthand - notation, define 

(34) 

Using the previous proposition, we only have to show that J is symmetric, invariant, analytic 
and properly normalized. Analyticity is obvious. The normalization follows immediately by 
induction, using the property shown in proposition (2.1). Invariance of J follows from the 
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above lemma. It remains to show that J is symmetric, and the only nontrivial part of that 
is (P- )I2J 12···n = 0. Define 

(35) 

so J is invariant, antisymmetric and traceless in the first two indices (12), symmetric in the 
remaining indices (we will say that such a tensor has the ISAT property), and analytic. It 
is shown below that there is no such J for q = 1 (and N 2: 3). Then as in proposition (2.1), 
the leading term of the expansion of J in ( q - 1) is classical and therefore vanishes, which 
proves that J = 0 for any q. 

So from now on q = 1. We show by induction that J = 0. This is true for n = 2: there 
is no invariant antisymmetric traceless tensor with 2 indices (for N 2: 3). Now assume the 
statement is true for n even, and that ] 12···(n+2) has the ISAT property. Define 

}[12 ... n _ g J-12. .. (n+2) 
' - (n+l),(n+2) · 

K has the ISAT property, so by the induction assumption 

]{ = 0. 

Define 

(36) 

(37) 

M14S ... (n+2) = 923J12 ... (n+2) = s14Ml4S ... (n+2) + A14Ml4S ... (n+2) (38) 

where S and A are the classical symmetrizer and antisymmetrizer. Again by the induction 
assumption, A 14M 145 ···(n+2 ) = 0 (it satisfies the ISAT property). This shows that M is 
symmetric in the first two indices (1, 4). Together with the definition of M, this implies 
that M is totally symmetric. Further, g14 M 145···(n+2) = 914923J12···(n+2) = 0 because J is 
antisymmetric in (1, 2). But then M is totally traceless, and as in proposition (2.1) this 
implies M = 0. Together with (37) and the ISAT property of J, it follows that J is totally 
traceless. So J corresponds to a certain Young tableaux, describing a larger - than - one 
dimensional irreducible representation of O(N). However, J being invariant me~ns that it 
is a trivial one - dimensional representation. This is a contradiction and proves J = 0. 

0 

Property (27) in particular means that one can now define the Hilbertspace of square -
integrable functions on S!;' -1 . The same will be true for the integral on the entire Quantum 
Euclidean space, which has been conjectured (4, 6], but never proven. 

The cyclic property (28) is a strong constraint on Jit···in and could actually be used to 
calculate it recursively, besides its obvious interest in its own. 

3 Integral over quantum Euclidean space 

It is now easy to define an integral over quantum Euclidean space. . Since the invariant 
length r 2 = 9ijXixi is central, we can use its square root r as well, and write -any function 
on quantum Euclidean space in the form f(xi) = f(ti, r). We then define its integral to be 

< .f(x) >x=<< f(t,r) >t (r) · rN-1 >r, (39) 
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where< f(t,r) >t (r) is a classical, analytic function in r, and< g(r) >r is some linear 
functional in r, to be determined by requiring Stokes theorem. It is essential that this radial 
integral< g(r) >r is really a functional of the analytic continuation of g(r) to a function on 
the (positive) real line. Only then one obtains a large class of integrable functions, and this 
concept of integration over the entire space agrees with the classical one. This is also the 
reason why the Gaussian integration procedure suggested e.g. in [4, 5] works only for a very 
small class of functions of the form p( x )9a ( x) where 9a ( x) is a Gaussian and p( x) is a certain 
class of power- series. It diverges as soon as p(x) has a finite radius of "convergence", such 
as e.g. 1/(r2 + 1); even classically, one cannot do such integrals term by term. This problem 
does not occur for the spherical integral. 

It will turn out that Stokes theorem e.g. in the form < od( X) >x= 0 holds if and only 
if the radial integral satisfies the scaling property 

< g(qr) >r= q-1 < g(r) >r. (40) 

This can be shown directly; we will instead give a more elegant proof later. This scaling 
property is obviously satisfied by an arbitrary superposition of Jackson - sums, 

( 41) 

with arbitrary (positive) "weight" f.L(ro) > 0. If f.L(ro) is a delta- function, this is simply a 
Jackson - sum; for f.L(r0 ) = 1, one obtains the classical radial integration 

( 42) 

For Gaussian - integrable functions, all of these uncountable choices are equivalent (and of 
course agree with that definition). This is in general not true for functions integrable in this 
radial sense, i.e. for which the above is finite, and shows again that this class is indeed larger. 
The classical integral over r however is the unique choice for which the scaling property ( 40) 
holds for any positive real number, not just for powers of q. 

The properties of the integral over s;'-1 generalize immediately to the Euclidean case: 

Theorem 3.4 

and 

if and only if (40) holds. 

< f(x) >x 

< f(x)f(x) >x 

< f(x)g(x) >x 

< f(qx) >x 

< f(x) >x 

> 0 
< g(x )f(Dx) >x, 

-N =q <f(x)>x 

7 

( 43) 
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( 45) 

( 46) 



Proof Immediately from theorem (2.3), (40) and (39), using Dr= rand p(r0 ) > 0. 0 

( 43) and ( 46) were already known for the gaussian integral [4]. 

4 Integration of forms 

It turns out to be very useful to consider not only integrals over functions, but also over 
forms, just like classically. As was mentionned before, there exists a unique N - form 
dxi 1 ••• dxiN = €~1 ··-iN dNx, and we define 

(47) 

i.e. we first commute dNx to the left, and then take the integral over the function on the 
right. Then the two statements of Stokes theorem < od(x) >x= 0 and fx dwN-1 = 0 are 
equivalent. 

The following observation by Bruno Zumino [12] will be very useful: there is a one- form 

q2 2 1 1 
w = ( ) 2 d(r ) = q-dr = dr-

q+lr r r 

where rdxi = qdxir, which generates the calculus on quantum Euclidean space by 

[w, JJ± = (1 - q)df 

for any form f with the appropriate grading. It satisfies 

dw = w2 = 0. 

We define the integral of a N - form over the sphere r · s~-1 with radius r by 

j dNxf(x) = wrN < f(x) >t= drrN-l < f(x) >t, 

SN-1 
T· q 

which is a one- form in r, as classically. It satisfies 

SN-1 
T· q SN-1 qr· q 

( 48) 

(49) 

(50) ; 

(51) 

(52) 

where (drf(r))(qr) = qdrf(qr). Now defining frdrg(r) =< g(r) >r, (47) can be written as 

1 dNxf(x) = 1( j dNxf(x)). 

~-s;:-1 
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The scaling property (40), i.e. fxdNxf(qx) = q-N fxdNxf(x) holds if and only if the radial 
integrals satisfies 

1 dr f(qr) = q-11 dr f(r). (54) 

We can also define the integral of a (N- 1) form ow_1(x) over the sphere with radius r: 

J O:N-1 = W-
1

( J WO:N-1)· (55) 
r-s;:- 1 r-s;:-1 

The w-1 simply cancels the explicit w in (51), and it reduces to the correct classical limit 
for q = 1. 

The epsilon - tensor satisfies the cylic property: 

Proposition 4.5 
(56) 

Proof Define 
(57) 

in shorthand - notation again. Lemma (2.2) shows that K is invariant. K
12

···N is traceless 
and ( q -) antisymmetric .in (23 ... N). Now g12 K12···N = 0 because there exists no invariant, 
totally antisymmetric traceless tensor with (N- 2) indices for q = 1, so by analyticity there 
is none for arbitrary q. Similarly from the theory of irreducible representations of SO(N) 
[13], P+12 K 12···N = 0 where p+ is the q- symmetrizer, 1 = p+ + p- + P0 . Therefore ,_12. .. N 

is totally antisymmetric and traceless (for neighboring indices), invariant and analytic. But 
there exists only one such tensor up to normalization (which can be proved similarly), so 
K12···N = f(q)c! 2···N. It remains to show f(q) = 1. By repeating the above, one gets c!2

···N = 
(f(q))N(detD)c! 2 ···N (here 12 ... N stands for the numbers 1,2, ... ,N), and since detD = 1, it 
follows f(q) = 1 (times a N-th root of unity, which is fixed by the classical limit). D 

Now consider a k- form o:k(x) = dxi 1 
•••• dxik j;1 ••. ik(x) and a (N -k)- form f3N-k(x). Then 

the following cyclic property for the integral over forms holds: 

Theorem 4.6 

j o:k(x)f3N-k(x) = ( -l)k(N-k) 

S N-1 
T· q 

where o:k(qN Dx) = (qN Ddx)i1 •••• (qN Ddx)ik j;
1 

••• ik(qN Dx). 

(58) 

In particular, when O:k and f3N-k are forms on s:-\ i.e. they involve only dxi~ and ti' 
then J o:k(t)f3N-k(t) = ( -l)k(N-k) J f3N-k(t)o:k(Dt). (59) 

s;:-1 s;:-1 
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On Euclidean space, 

1 o.k(x)f3N-k(x) = (-ll(N-k) Lf3N-k(x)o.k(qNDx) 

if and only if (54) holds. 

Notice that on the sphere, dNxf(t) = f(t)dNx. 
Proof We only have to show that 

j f(x)dNxg(x) = j dNxg(x)f(qNDx) 

and 

SN-1 
T• q S N-1 

T· q 

j dx'if3N-1(x) = ( -l)N-1 j 
r·S[;'- 1 q-1r.s[;'-1 

N . 
f3N-1(x)(q Ddx)'. 

(61) follows immediately from (28) and xidNx = dNxqNxi. 

(60) 

(61) 

(62) 

To see (62), we can assume that f3N-1(x) = dxi2 ... dxiN f(x). The commutation relations 
xidxi = qR~dxkxt are equivalent to 

f(q- 1x)dxi = R((dxi)(a) 0 f(l))(dxi)(b)(J(x))(2) 

= ( dxi <J n 1 ) (! ( x) <J n 2 ) (63) 

where n = 1?1 0 1?2 is the universal n for SOq(N), using its quasitriangular property and 
R(A{ 0 Ai) = R~. f <J Y =< Y, f(l) > f( 2) is the right action induced by the left coaction 
(9) of an element Y E Uq(SO(N)). Now invariance of the integral implies 

( dxj <J J? 1 ) < f (X) <J J? 2 >t = dxj < f (X) > t, 

because 1?1 0c(R2
) = 1. Using this, (63), (52) and (51), the (rhs) of (62) becomes 

( -l)N-1 J N .. 
f3N-1(x)q Djdx3 (-l)N-1D} j dxi2 ... dxiNf(q-1x)dxi 

r-s!;'- 1 

(-l)N-1D}ci2···iNiwrN < f(x) >t 
cii2 ... iNwrN < f(x) >t 

(64) 

j dxif3N-1(x), (65) 

r·Sf;' - 1 

using (56). This shows (62), and (59) follows immediately. (60) then follows from (54). 
0 

Another way to show (62) following an idea of Branislav Jurco [14] is to use 

j (o.k <J SY)f3N-k = j o.k(f3N-k <J Y) 

r-s::- 1 r-s[;'- 1 
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• 

to move the action of 1?} in (63) to the left picking up 1?}SR2
, which generates the in

verse square of the antipode and thus corresponds to the D-1 - matrix. This approach 
however cannot show (28) or ( 45), because the commutation relations of functions are more 
complicated. 

(58) shows in particular that the definition (55) is natural, i.e. it essentially does not 
matter on which side one multiplies with w. Now we immediately obtain Stokes theorem 
for the integral over quantum Euclidean space, if and only if (54) holds. Noticing that 
w(qN Dx) = w(x), (60) implies 

1 daN-1(x) 

On the sphere, we get as easily 

using (59) and w 2 = 0. 

-
1-l[w, CIW-1]± 

1- q X 

OC 1 WO:N-1- ( -1)N-1aN-1W 

1 ( -1)N-1aN-1W- ( -1)N-1aN-1W = 0 

j [w, O:N-2]± 
s!;' -1 

w-1 j w(waN-2- ( -1)N-2aN-2w)) = 0 
s!;' -1 

(67) 

(68) 

It is remarkable that these simple proofs only work for q -:f. 1, nevertheless the statements 
reduce to the classical Stokes theorem for q ~ 1. This shows the power of the q - deformation 
technique. 

One can actually obtain a version of Stokes theorem with spherical boundary terms. 
Define 

(69) 

which reduces to the correct classical limit, because the (rhs) is a Riemann sum. Define 

aN(x)), (70) 

For l ~ oo and k ~ -oo, this becomes an integral over Euclidean space as defined before. 
Then 
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q1ro 

1 ~ q J ( J WO:N-1- J WO:N-1) 

qkro r-s!;'- 1 qr·Sf;'-1 

J O:N-1 - J O:N-1· (71) 
q1ro·S!;'-1 qkro·S:;'-1 

In the last line, (51), (55) and (69) was used. 
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