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Abstract 

Quasiparticle Energy Studies of Bulk Semiconductors, Surfaces and Nanotubes. 

by 

Xavier Fraw;ois Blase 

Doctor of Philosophy in Physics 

University of California at Berkeley 

Professor Steven G. Louie, Chair 

This dissertation focuses on the understanding of many-electron effects in bulk, 

surface, layered or nanostructure (e.g. nanotubes) semiconductors. The infl.uence 

of many-body effects on the electronic excitation energies (quasiparticle band struc­

ture) of these materials is explored. The GW approximation, including local field 

effects, for the self-energy operator is used throughout this work to calculate quasi­

particle energies. Specific studies include: 

• A study of the newly discovered carbon nanotubes is carried out. Structural 

stability and band structures are calculated. A similar study is performed 

for boron-nitride (BN) nanotubes, leading to the prediction of their stability. 

For both systems, unexpected electronic features with important technological 

potentials are predicted. The filling of carbon nanotubes with metal atoms and 

the doping of BN nanotubes by carbon and other impurities is also studied. 

• A study of the occupied surface states at the H/Si(111 )-(1 x 1) surface is per­

formed. We show that a quantitative understanding of the electronic structure 

requires a full quasiparticle calculation even for this simple chemisorption sys­

tem. 

• The core level shift of the Si 2p levels for atoms near the H/Si(l11 )-(1 x 1) 

surface is calculated. We show that a simple first order perturbation theory 

using pseudopotential and the local density approximation gives good results 

for the observed features in the photoemission spectra of the core electrons. 
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• A study of the quasiparticle energies of bulk hexagonal BN and those of an 

isolated BN sheet is done. The results provide a physical understanding of the 

quasiparticle band structure of BN nanotubes. A nearly-free electron state 

with a wavefunction in the inter-layer or vacuum region is shown to compose 

the bottom of the conduction bands. 

• A novel mixed-space formalism for the calculation of the dynamical screening 

effects and electron self-energy operator in solids is presented. This approach 

provides an efficient algorithm to calculate quasiparticle energies for large sys­

tems. 
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Chapter 1. 

Introduction and Overview 

This dissertation is on the study of the structural and electronic properties of 

real materials using first-principles quantum mechanical methods. Two approaches 

are employed extensively: the density functional theory (DFT) [1] for ground-state 

properties and the quasiparticle self-energy approach [2] within the GW approxima­

tion [3] for electronic excitation properties. Calculations have been carried out to 

explain and predict the properties of several systems of significant current interest, 

including the newly discovered carbon and B-C-N composite nanotubes, semicon­

ductor surfaces and layered materials, and wide band gap II-VI compounds. A novel 

approach for quasiparticle energy calculations is also developed. 

In the past decade, considerable progress has been made in calculating the struc­

tural and electronic properties of materials within the local density approximation 

(LDA) [1] to DFT. More efficient nonlocal [4] and ultrasoft pseudopotentials [5] 

reduce considerably the effort of computations. New algorithms to iteratively di­

agonalize the Hamiltonian matrix [6] or to find directly the eigenvalues by efficient 

minimization techniques [7] have been developed and implemented, and systems 

with several hundreds of atoms can now be studied. Very recently, several N-linear 

methods have also been proposed [8, 9, 10, 11] in which the computing time scales 

linearly in the number of atoms N in the unit cell in the large N limit. Such 

improvements in the efficiency of state-of-the-art LDA calculations have allowed 

tremendous progress in the understanding of the ground-state properties of an ever 

expanding range of materials. The predictive power of ab initio calculations have 

been enhanced to such an extent that DFT -LDA are now being used in attempts to 

"design" new materials [12]. We present in Chapter 2 a study within LDA of the 

1 



2 Chapter 1. Introduction and Overview 

novel carb<?n and boron-nitride nanotubes. The metastability of carbon nanotubes 

is confirmed by our theory [13] and the existence of BN nanotubes is predicted [14]. 

In addition, unusual and possibly technologically important electronic features are 

shown to arise in these structures. In the case of carbon nanotubes, hybridization 

of the a-* and 1r* states of graphene is shown to be as important as band folding 

effects in determining the metallicity of small radius carbon nanotubes. For the 

BN nanotubes, we predict the lowest conduction state to be free-electron like with 

charge density localized inside the tube, leading to a remarkable constancy of the 

band gap independent of the tube size and helicity. Further, substitutional doping 

of BN nanotubes by carbon is studied. We show that carbon impurities substitut­

ing B atoms yield too deep a donor level to populate efficiently the bottom of the 

nanotubes conduction bands. Finally, we study the filling of carbon nanotubes by 

metallic atoms. We show that, for small radius nanotubes, microscopic processes 

such as interatomic charge transfer are responsible for the "intercalation within" of 

carbon nanotubes by metallic atoms. 

Although ground-state properties such as structure, binding energies, and vi­

brational properties can be obtained within DFT, those associated with exciting 

electronically the system into a higher energy state are beyond the scope of a 

ground-state theory. As a consequence, the Kohn-Sham eigenvalues, used within 

DFT to determine the ground-state total energy of real-materials, are well-known 

to yield large errors when compared to experiment for fundamental quantities such 
' 

as band gap, interface- and surface-state energies, or semiconductor band offsets. 

' These problems are related to the approximate use of the Kohn-Sham eigenvalues for 

quasiparticle energies. In particular, they do not invalidate the band structure pic­

ture of solids, which have proven to be a very convenient and successful framework 

for understanding electronic excitations. This is exemplified in this thesis where we 

show that the photoemission spectra of real materials can be explained quantita­

tively and even predicted, provided that they are properly interpreted as transitions 



between quasiparticle states of the many-electron systems. These quasiparticles, 

which are the particle-like excitations of an interacting many-electron system, pro­

vide a bridge between a rigorous many-body theory and the very "practical" band 

structure picture. We note, however, that such an approach relies on the presence of 

"well resolved" peaks in the experimental spectra used to characterize the electronic 

states of the system of interest. Because a quasiparticle is defined and experimen­

tally observed as a peak in the spectral density of the interacting system, it is of 

course required that these spectral peaks be well defined and do not overlap to form 

a featureless background. Equivalently, the lifetime of these particle-like excitations 

must be larger than the mean interaction time of the experimental probe with the 

crystal. This condition insures the "functionality" of the quasiparticle approach. 

For a detailed exposition on the concept of quasiparticle, we list in the bibliog­

raphy references for the Fermi liquid theory [15] which lays the formal framework 

for the present approach. In brief, the "many-body" approach incorporates the fact 

that bare electrons in solids are strongly interacting with each other via the Coulomb 

potential V C· To deal with the complexity ofthe many-body problem, we assume, as 

a starting point, that the non-interacting electrons evolve "continuously" (when the 

Coulomb interaction is adiabatically switched on) into "identifiable" quasi-particles. 

By continuously, we mean that in the process of switching on the interaction, no 

phase transition occurs which radically changes the structure of the energy spectrum 

so that the one-to-one correspondence between the electrons and the quasiparticles is 

not broken (important counter-examples are the Wigner crystallization at low elec­

tronic density and the superconducting transition). These quasiparticles can then 

be roughly described as electrons surrounded by a polarization cloud or exchange­

correlation hole. Therefore, the interaction of an electron with its surrounding can 

be recast as a self-energy for the quasiparticle. 

To obtain now an expression for the self-energy operator, one notes that the 

screened interaction W in a solid is in general much weaker than the bare Coulomb 

3 



4 Chapter 1. Introduction and Overview 

potential. Consequently, an expansion of the self-energy operator in terms of W 

converges rapidly. Taking the first term of this expansion yields the so-called G W 

, approximation [3] for the self-energy operator (with G being the electron propaga­

tor). It is this approximation which is used throughout this thesis. Further, following 

the pioneering work by Hybersten and Louie [2] who provided for the first time a 

practical method to calculate ab initio the quasiparticle energies of real materials in 

the GW approximation, this approach has been shown to yield for semiconductors 

bulk [2, 16, 17], surface [18, 19, 20, 21], interface [22] and superlattice [23] quasi­

particle energies accurate to within 0.1 eV when compared to various spectroscopic 

experiments. The method has also recently been successfully applied to complex 

materials such as solid C60 [24]. 

As part of this thesis, we study using the self-energy approach [2] several mate­

rials of important theoretical and technological interests. We focus specifically on 

systems in which the structural and electronic properties depend on the interplay of 

physically very different electronic states. For example, the study of a surface sys­

tem requires that the theoretical approach employed be able to treat with the same 

accuracy both extended bulk states and localized surface states. We present also 

the example of layered materials where layer states and inter-layer states coexist. 

Finally, II-VI compounds are materials in which the interaction of the core-like 3d 

states with the covalent sand p levels has a crucial influence on both the structural' 

and electronic properties. 

In Chapter 3, we present a study of the surface states of the H/Si(111)-(1x1) 

surface [25]. Because of both its simplicity and the availability of recent state-of­

the-art high-resolution angle-resolved photoemission data, this system is an ideal 

prototype for studying many-body effects at a semiconductor surface. Comparison 

. of the quasiparticle surface-state energies with those from LDA eigenvalues shows 
I 

that the self-energy corrections are very large, typically two to three times larger 

than the corrections found in previous calculations on other semiconductor surface 
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systems. For some of the surface states, their energy locations are extracted by the 

self-energy operator from the bulk continuum where they were incorrectly located 

within LDA. In addition, the calculated dispersion of theses surface states (which is 

found to be too large by ,....., 1 e V within LDA) is brought to perfect agreement with 

experiment. 

In Chapter 5, we study the quasiparticle band-structure of bulk hexagonal BN 

as well as that of an isolated BN sheet [26]. These systems are technologically im­

portant since bulk BN is an extremely hard material and possesses the widest band 

gap of all the III-V compounds. Also, theoretical calculations on an isolated BN 

sheet are used to provide informations for the analysis of the properties of the BN 

nanotubes. The self-energy correction opens the LDA band gap of hexagonal BN 

by as much as 1.7 eV. In the case of the isolated BN sheet, LDA and GW in fact 

do not yield the same conduction band ordering, leading to a different identification 

of the states which determine the band gap. This is related to an exceptionally 

large k-dependency of the self-energy of the various electronic states in this partic­

ular system. The importance of an interlayer state in determining the gap of bulk 

hexagonal BN is demonstrated. A corresponding "sheet" state, in the case of the 

isolated BN sheet, plays the same role in determining its band gap. 

Although the reliability of the present self-energy approach to describe quasipar­

ticle energies has been clearly demonstrated for s-p bonded materials, calculations 

within this formalism have been restricted to the study of systems with less than 100 

atoms. The primary reason is that calculations with the self-energy approach re­

quire a significant increased complexity in the formalism as compared to DFT-LDA 

calculations. In particular, because dynamical and local-fields effects are crucial for 

accurately describing the screening in real materials [2], they are both taken into 

account in the present quasiparticle formalism. Therefore, the self-energy opera­

tor is non-local, energy-dependent and in general non-Hermitian. Its calculation 

is computationally much more demanding than simply solving the local and time-

5 



6 Chapter 1. Introduction and Overview 

independent Kohn-Sham equation within LDA. 

To improve on this situation, we propose in Chapter 6 a novel mixed-space 

formalism for the quasiparticle energy calculations within the GW approximation. 

This new approach is shown to be computationally more efficient than the existing 

reciprocal-space formalism [2], in particular for calculations on large size supercells, 

or supercells in which the vacuum region constitutes a large part of the unit-cell 

(molecules, clusters, surfaces, etc) or systems which exhibit significant electronic 

charge density inhomogeneities (transition metals, II-VI compounds, etc). Results 

for bulk Si and the H/Si(lll)-(lxl) surface are presented. In addition, going be­

yond the generalized plasmon pole model generally used in previous quasiparticle 

calculations, we implement an explicit calculation of the frequency dependence of 

the dielectric matrix. This effort is motivated in part by our attempt to calculate 

the quasiparticle energies of the 3d levels in cubic ZnS. We show in this case (see 

Appendix A) that the use of the generalized plasmon pole model for the extension 

to finite frequencies of the static dielectric matrix may not be adequate. We note 

here that most of the equations on which the quasiparticle GW formalism is based 

will be presented in Chapter 6 (besides an introduction in section 3.2.2). Readers 

who are not familiar with the self-energy approach may want to read this chapter 

first. 

To close this introductory chapter, we would like to note that sometimes it is 

not necessary to carry out heavy computational calculations to get "trends" and 

understanding of the behavior of materials and that under appropriate conditions 

simple model Hamiltonians can reproduce fairly well many properties of materi­

als while providing, at the same time, a very simple picture of the basic driving 

mechanisms for the properties of interest. For example, in Chapter 4, a simple 

first-order perturbation theory gives excellent results for the the Si 2p core level 

shift at the H/Si(lll)-(lxl) surface [27]. As another example, we show in Appendix 

A that a simple Hubbard Hamiltonian, based on parameters derived from ab ini-



tio total energy calculations, yields excellent results for the binding energies of the 

two-phonon bound states at the H/C(lll)-(lxl) surface [28]. We note however 

that semi-empirical methods may sometimes fail ttoo describe new materials or new 

situations because the transferability of the parameters used in such approaches is 

never certain. This is exemplified in Chapter 2 where it is shown that tight-binding 

(TB) approaches, with parameters designed to reproduce the electronic properties 

of bulk hexagonal graphite and BN, fail to describe the novel electronic properties of 

nanotubes induced by the curvature and nanoscale size of these structures. Another 

example is given in Chapter 5 where a nearly-free-electron state is discovered which 

cannot be described by the usual localized basis sets used in TB. Of course (and 

this is a motivation for this work) the lack of transferability of a theoretical model 

(such as the uniform electron gas model for LDA) limits also the predictive abilities 

of ab inito methods. There is ,the usual temptation to try to overcome the problem 

by adding additional layers of complexity to the existing theories. It is definitely a 

very difficult task to maintain both a balance and a bridge between the more and 

more complex theories and the simple models, so that the physical understanding 

of the properties of real materials may benefit from both types of approaches. 
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Chapter 2 

Structural and electronic properties of nanotubes 

2.1 Introduction 

Since the discovery of graphitic nanotubes [29] created in an arc discharge be­

tween two carbon rods, much experimental and theoretical efforts have focused on 

the synthesis and understanding of these novel quasi one-dimensional structures. 

Using iron [30] or cobalt [31] based catalysts, single- or multi-wall carbon nanotubes 

can be selectively synthesized. Tubes with diameter as small as 7 A have been ob­

served [30]. Carbon nanotubes, which are found capped after synthesis, can also 

be opened and filled with atoms, molecules or small clusters [32]. Further, based 

on similarities between carbon and BN-based materials, BN nanotubes have been 

investigated [14]. By heating of amorphous BN to 1100°C, large turbostratic tubu­

lar BN structures have been obtained [33]. Recently, BxCyNz nanotubes have been 

observed [34] using composite carbon/BN anode rods under arc discharge. A quan­

titative determination of the chemical composition of these nanotubes suggests t.he 

presence of BC3 and BC2N nanotubes. The existence of these tubes have been 

previously predicted by theoretical calculations [35, 36]. 

In this chapter, we present a theoretical study of the structural and electronic 

properties of carbon and BN nanotubes. An ab initio pseudopotential approach is 

used in the framework of the local density approximation (LDA). In section 2.2, 

small single-wall carbon nanotubes are discussed. We show that carbon nanotubes, 

with diameter down to 5.5 A, are metastable. In particular, contrary to what have 

been recently suggested, their strain energy is not large enough that they would 

open into carbon strips. Further, the metallicity of these tubes is studied as a 
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function of their size and chirality. In previous calculations [37, 38], classification of 

the carbon nanotubes as metals or semiconductors was determined on the basis of 

how the underlying graphite band structure is "folded" when one applies the tubes' 

azimuthal periodic boundary conditions. Although early work [37, 38, 39] has noted 

that hybridization of the graphitic 0",7r,7r* and O"* states should occur because of the 

curvature of the tubes, the importance of these effects was not fully appreciated. The 

tube states near the Fermi level were described as chiefly 1r and 1r* states. Recently 

[30], nanotubes with very small radii were experimentally produced, with diameters 

as small as 7 A. We show here that sufficiently strong hybridization effects occur in 

such tubes which dramatically change the band structure proposed in these previous 

works. 

In section 2.3, we present extensive LDA and quasiparticle calculations per­

formed on boron nitride (BN) single-wall and multi-wall nanotubes. Strain energies 

are found to be smaller for BN nanotubes than for carbon nanotubes of the same 

radius, owing to a buckling effect which stabilizes the BN tubular structure. For 

tubes larger than 9.5 A in diameter, the lowest conduction band is predicted to be 

free electron-like with electronic charge density localized inside the tube. For these 

tubes, this band is at constant energy above the valence band maximum. Conse­

quently, in contrast to carbon nanotubes, single and multi-wall BN nanotubes have 

constant band gap, independent of their radius and helicity. 

In section 2.4, we stll:dy the doping of bulk hexagonal BN by substitution of a 

boron atom by a carbon atom. We show that the carbon impurity yields a deep 

donor level located 0.5 eV below the bottom of the conduction band which is free 

electron-like. Finally, the metallic filling of carbon nanotubes is investigated in 

section 2.5. 

2.2 Hybridization effects and mefallicity in carbon nanotubes 

We have carried out both ab initio pseudopotential local density functional 

9 
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(LDA) calculations and Slater-Koster [40] tight-binding (TB) calculations. Fol­

lowing the notation of Ref. [38], we study the tubes (n,O), with n ranging from 6 

to 9. As illustrated in Fig. 2.1(a), tube (n,O) corresponds to wrapping a section of 

a graphitic sheet in the indicated orientation with n hexagons around the tube cir-
·, 

cumference. The diameter of these tubes ranges from 4.78 A for (6,0) to 7.20 )1 for 

(9,0). The LDA electronic structure calculations were performed using a planewave 

basis set. We generated first a semilocal pseudopotential following the scheme of 

Troullier and Martins [41] and made it fully nonlocal according to the Kleinman and 

Bylander procedure [4]. The energy cut-off for the electronic wave-functions was set 

at Ecut= 49 Ry leading to an 0.05 eV convergence of the band energies. The very 

large number of planewaves needed for this type of calculation (ranging from 13,500 

for (6,0) to 19,000 for (9,0)) required the use of an efficient iterative diagonalization 

scheme [42]. The LDA calculations were carried out in a supercell geometry with 

a hexagonal array of tubes, with the closest distance between atoms on different 

tubes being 5.5 A. This permitted the neglect of tube-tube interactions. For the 

TB calculations, we used the first and second nearest neighbor parameters proposed 

in Ref. [43] for graphite. 

Along the axes of the tubes, the length of the unit cell was set by assuming that 

the tube was generated simply by rolling a graphite sheet segment [37]. Using the 

Hellman-Feynman theorem, we found that the stresses imposed on each supercell 

were negligible in the axis direction. The most important_ structural change was the 

tendency of the tube to reduce its radius from that given by the above rolling. This 

effect was nonetheless small, ranging from 1.6 % reduction for (6,0) to nearly zero 

for (9,0). We found similar results within a tight-binding total energy minimization 

scheme [44]. The effect of this relaxation on the electronic band structure was 

negligible. We also relaxed the internal coordinates of the atoms using Hellman­

Feynman forces. The forces were very small, and all the atoms remained equivalent 

within the unit cell. 
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Our results for the band gaps are given in Table 2.1, compared with those from 

previous TB work [37]. We find major differences between the results from LDA 

and the TB calculations. The most significant difference occurs for the tube (6,0) 

which has been previously predicted to be a small gap semiconductor [37]. We find 

in this work that, within LDA, tube (6,0) is a metal. In addition, we find that tubes 

(7,0) and (8,0) are semiconductors, consistent with previous calculations, but with 

a much smaller gap than those from TB based works. This discrepancy is mainly 

due to a singly degenerate state which is much lower in our LDA calculations than 

in the TB work. LDA is known to underestimate the value of the band gap of many 

materials, but the narrowing of the gap here is due primarily to curvature effects, 

as evidenced by the dependence on tube size. 

In Fig. 2.2 we show the band structure and density of states (DOS) for the tube 

(6,0). The singly degenerate state mentioned above is labeled by (a). At f, this state 

is 0.83 eV below the doubly degenerate state that forms the top of the valence band 

in TB calculations. This band overlap makes the tube (6,0) a metal within LDA 

with a density of states at the Fermi level equal to D(EF) = 0.07 statesjeV-atom. 

For this tube, we also performed an independent LDA calculation using a semilocal 

pseudopotential and another diagonalization scheme as described in Ref. [24]. The 

two LDA band structures were in excellent agreement. We also checked that this 

state is insensitive to the small structural relaxation effects described above. 

As we shall show, state (a) occurs in all (n,O) tubes for symmetry reasons, but its 

energy at r varies with n. For the tubes (7,0) and (8,0), state (a) does not close the 

gap but reduces significantly its value as compared to TB calculations. For these 

two tubes, the state (a) at r lies between the two doubly degenerate states that 

form the top of the valence and bottom of the conduction bands in TB calculations. 

This state reduces the TB gap by 1 eV for (7,0) and by 0.6 eV for (8,0). For the 

tube (9,0), the state (a) lies just above the TB LUMO state and therefore does not 

fall within the gap. 

11 
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The discrepancy between TB and LDA calculations decreases as the radius of 

the tube increases. This is consistent with the notion that, in large tubes with 

small curvatures, one obtains a good description of the nanotube band structure by 

"folding" the graphite sheet band structure. However, this idea implicitly relies on 

the assumption that states around the gap or Fermi level are essentially 1r or 1r* 

derived [38, 39]. This is not true for small tubes where the curvature is so strong 

that large hybridization effects occur. We show in Fig. 2.3 the charge density 

distribution for the state (a) at r for the tube (6,0). One can see that most of the 

wave-function is localized outside the tube. If this state is mostly 1r or 1r* derived, 

it should have equal weight inside and outside the tube. Detailed analysis of the 

(j*-1r* hybridization in (n,O) tubes also indicates that this state should be mostly 

outside of the tubes fork-vectors near the tube's zone center. We show below that 

it is crucial to accurately describe the f3* states and their interaction with the 1r* 

complex before one is able to reproduce within TB the behavior of the state (a) in 

our LDA calculation. 

To study the effects of hybridization on the state (a) of tube (6,0), we begin with 

a planar sheet of graphite with the unit cell described in Fig. 2.l(a). Because state 

(a) is singly degenerate, in the "band folding" language, it must be derived from the 

f-M line ofthe graphite sheet Brillouin zone (BZ), and must occur in all (n,O) tubes. 

As a result of the boundary conditions of the tube, M is folded onto r. We plot in 

Fig. 4(a) the corresponding TB bands along the f-X direction of the tube (see Ref. 

[37]). From the symmetry of the tube, singly degenerate states only mix with each 

other and not with states of higher degeneracy, so only these need be considered in 

the analysis of the behavior of state (a). The dashed lines are the singly degenerate 

bands coming from the folding of the 1r* and tj* graphite bands along the r-M line of 

the hexagonal graphite BZ (Fig. 2.l(b)) onto the f-X line of the tube BZ. Next we 

bend this graphite sheet along the AB direction while imposing the proper periodic 

boundary conditions in order to mimic a continuous transformation of the graphite 
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sheet onto the (6,0) tube. This procedure distinguishes the zone folding effects from 

the curvature effects. 

Fig. 2.4 illustrates the evolution of our TB band structure under this trans­

formation for two of these "intermediate" structures. Their radii of curvature are 

between R = oo of planar graphite (Fig. 2.4(a)) and R =2.39 A of tube (6,0) (Fig. 

2.4( d)). For a curved sheet of graphite, the 7r* and CJ* states mix and repel each 

other, resulting in a lowering in energy of the (originally) purely 7r* states. It is the 

lower hybridized 7r* band which gives rise to the singly degenerate state (a) near 

Ep in the LDA calculation. Therefore, within the TB Hamiltonian of Ref. [43], this 

state does exist, but it is not low enough in energy to make the tube metallic as 

found in the LDA calculation. We note also that, with a localized basis set limited 

to 2s and 2p orbitals, TB calculations are unable to describe large charge transfer 

asymmetrically away from the atoms. However, in our LDA calculations, we find 

the total potential to be locally symmetric inside and outside the tube so that the 

localization of the state (a) outside the tube must be mainly due to hybridization 

and not electrostatic effects. Similar studies have been made for tubes (7,0), (8,0), 

and (9,0), yielding similar results. 

Some workers [45, 46] have recently suggested that tubes with radii smaller than 

rv3 A will not be stable. They argue that, for such tubes, the elastic strain energy 

per atom stored in the rolled sheet is larger than the dangling bond energy per atom 

for the flat graphitic strip obtained by "cutting" the tube along its cylindrical axis. 

In order to address this_ question for the tubes of our study, we carry out LDA total 

energy calculations for the (6,0) tube with radius 2.39 A and the corresponding 

strip. We find that the tube is energetically more stable than the strip. This implies 

that the critical radius below which tube energy exceeds strip energy for the (n,O) 

tubes is less than the (6,0) tube radius. This result is in agreement with a force­

field calculation [46] which predicts the critical radius to be "' 2 A, in contradiction 

with the semi-empirical calculation of Ref. [45] which predicts the critical radius 
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to be ,....., 3.85 A. However, we stress that as long as the tube and strip energies 

are comparable, kinetic effects will still dominate the growth process. Thus, total 

energy comparisons may not be relevant to the question of tube stability. 

In conclusion, large n*-O"* hybridization effects can occur in small nanotubes 

which drastically change the electronic band structure from that obtained by simply 

''folding" the graphite sheet band structure. These effects are demonstrated in our 

study of tubes (6,0) to (9,0), some of which are comparable in size to the smallest 

tube experimentally observed thus far. Our results show that, for this class of tubes, 

hybridization effects change the energy and character of the lowest lying conduction 

band states with important consequences to the metallicity and transport properties 

of the tubes. An implication of this result is that hybridization effects could also 

play an important role in doped small nanotubes with metallic dopants either inside 

or on the tubes. 

2.3 Stability and band gap constancy of BN nanotubes 

In a recent paper [47], the existence of boron nitride (BN) nanotubes was pro­

posed. It was suggested that these tubes may be stable and their electronic prop­

erties were studied within an empirical Tight-Binding (TB) approach. However, 

because of the lack of a total energy calculation scheme within TB for BN based 

materials, no evidence for the stability of BN nanotubes was given and the calcu­

lations were restricted to tubes with the "ideal" geometry given by rolling a single 

sheet of hexagonal BN into a tubular shape. In addition, as shown in the previous 

section, the large curvature of small tubes may induce strong hybridization effects 

which strongly modify the band structure given by a standard s-p Slater-Koster TB 

scheme. 

We have carried out ab initio pseudopotential local density functional (LDA) 

calculations to study from first-principles the structural stability of this novel form 

of BN. Further, we have studied the electronic properties of BN nanotubes, both 
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within LDA and within the more accurate quasiparticle approach. The electronic 

properties of multi-wall BN tubes are also investigated. The calculation of the 

quasiparticle energies is performed using the self-energy approach [2], based on the 

GW approximation [3]. Technical details for the quasiparticle calculations will be 

described l.n Chapter 5. Pseudopotentials and electron wavefunctions are expanded 

in a planewave basis. The energy cut-off for the electronic wavefunctions is set at 

Ecu.t= 45 Ry to converge both total energies and eigenvalues. Boron and nitrogen 

pseudopotentials are generated following the Kleinman and Bylander procedure [4]. 

The calculations are carried out in a supercell geometry with a hexagonal array 

of tubes. The closest distance between atoms on neighboring tubes is set at 5 A. 
Within this geometry, tube-tube interactions are negligible. 

By minimizing both stress and Hellman-Feynman forces, we determine first the 

equilibrium geometry for (n,O) and (n,n) tubes with diameters ranging from 4 to 12 

A (index notations for the tubes refer to the convention of Ref. [37, 38] as defined 

for graphitic nanotubes). The main relaxation effect is a buckling of the boron­

nitrogen bond, together with a small contraction of the bond length ( '"'-' 1%). In the 

minimum energy structure, all the boron atoms are arranged in one cylinder and all 

the nitrogen atoms in a larger concentric one. We plot in Fig. 2.5 the structure of 

a BN (8,0) tube corresponding to the calculated buckling. 

Due to charge transfer from boron to nitrogen, the buckled tubular structure 

forms a dipolar shell. The distance between the inner "B-cylinder" and the outer "N­

cylinder" is, at constant radius, mostly independent of tube helicity and decreases 

from 0.2 a.u. for the ( 4,4) tube to 0.1 a.u. for the (8,8) tube. As a result of this 

buckling, each boron atom is basically located on the plane formed by its three 

neighboring nitrogen atoms so that the sp2 environment for the boron atom in the 

planar hexagonal structure is restored (at most, the NBN angles differ from 120° 

by 0.2% for the smallest tube). This tendency for three-fold coordinated column 

III atoms to seek 120° bond angle is extremely strong. For example, it explains 
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the atomic relaxation of the (110) and (111)-2x2 surfaces of GaAs and other III-V 

compounds [48]. On the other hand, the BNB angles approach the value of the 

bond angle of the s2p3 geometry. This is also consistent with previous calculations 

performed on small B12N12 clusters [49] where a similar buckling of the BN bond 

was observed for a monocyclic ring structure. Buckling and bond length reduction 

induce a contraction of the tube along its axial direction by a maximum of 2% for 

the smallest tube studied. 

Energies per atom for the relaxed tubes are plotted in Fig. 2.6 as a function 

of the tube diameter. The zero of energy is taken to be the energy per atom of 

an isolated hexagonal BN sheet. On the same graph, the energy per carbon atom 

above the graphite sheet energy is represented. As for graphitic tubes, BN tube 

energies follow the classical 1/ R2 strain law, where R is the average radius of each 

tube. However, for the same radius, the calculated strain energy of BN nanotubes 

is smaller than the strain energy of graphitic tubes. This is related mostly to the 

buckling effect which reduces significantly the occupied band energy in the case of 

the BN compounds. Therefore, it is energetically more favorable to fold a hexagonal 

BN sheet onto a nanotube geometry than to form a carbon nanotube from a graphite 

sheet. Based on the existence of carbon nanotubes, we predict that BN nanotubes 

are metastable structures. 

We also address the question of stability of a small tube versus opening into a 

strip of hexagonal BN [45]. We performed total energy calculations for the strip 

corresponding to the small tube (6,0), allowing complete relaxation of the strip 

geometry. As shown on Fig. 2.6 (filled square), the strip is less stable than the 

corresponding tube. As for carbon nanotubes, BN nanotubes with a radius larger 

than 4 A are stable with respect to a strip. 

Because of its large ionicity, a hexagonal BN sheet is a large gap semiconductor 

in contrast to graphite which is semimetallic. Consequently, on the basis of a band 

folding analysis [38, 37], BN nanotubes are large gap semiconductors, with direct gap 
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at f for (n,O) tubes and indirect gap for (n,n) tubes. However, strong hybridization 

effects can occur because of curvature of the tubes which may strongly modify the 

band structure given by the band folding analysis. As for carbon nanotubes, the 

present ab initio LDA calculations show that for small (n,O) tubes, a 1r*-(J'* hybridized 

state significantly reduces the gap predicted by the band folding analysis. Consistent 

with its carbon analog, this state is at the zone-center k-point r with wavefunction 

localized outside the tube. It. corresponds to the hexagonal BN 1r* state at K which 

is folded onto the tube r point when rolling the BN sheet onto a (n,O) tube. Once 

folded, this state lowers its energy by interacting with the (]'* state at r. However, 

the consequences of the energy lowering of this state are less important than that in 

the case of carbon nanotubes since (n,O) BN tubes remain large gap semiconductors 

with a LDA minimum band gap of 2.5 eV for the (6,0) tube. With decreasing tube 

curvature, the hybridization effects are less important. For (n,O) tubes such that 

n > 12 (which corresponds to a diameter larger than 9.5 A), the hybrid state does 

not play any role in determining the gap of the BN tubes. 

For (n,n) tubes, the key feature is the bottom of the conduction band at f. For 

all (n,n) tubes studied, this state is, within LDA, located at around 4 eV above 

the top of the valence band, independent of tube radius. In addition, this state is 

uniquely characterized by a remarkable charge density distribution. As shown in 

Fig. 2.7 for the (6,6) tube, this state yields a nearly constant charge density filling 

the interior of the tube. Since in this region the tube potential is constant, this state 

has a nearly-free-like electron (NFE) behavior. The effective mass at r for this NFE 

band is calculated to be m* = 1 ± 0.1 me for all tubes, where me is the free electron 

mass. 

In a band folding analysis, this NFE state corresponds to the bottom of the 

conduction band at r for hexagonal BN. This is shown in Fig. 2.8 where we compare 

the LDA band structure for the BN ( 4,4) tube to the LDA hexagonal BN band 

structure. In this calculation, the distance between two BN planes is set to the ( 4,4) 
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tube diameter. We select directions in the hexagonal Brillouin zone (BZ) which, in 

a band-folding analysis, would yield the tube top of the valence and bottom of the 

conduction bands. As one can see; the bottom ofthe conduction band is very similar 

in both structures, with hardly any modification in position and shape around the 

center of the zone. For hexagonal BN, the charge density of the state at the bottom 

of the conduction band is located on the nitrogen atoms and in the interplanar 

region. This state is the analog of a tJ* state at r in graphite [50] and has been 

referred to as the interlayer state. 

Since the NFE tubule state at r is the image of the interlayer state in the band­

folding mapping, it exists in all tubes independently of their helicity. We note that 

the NFE-state is very constant in energy and does not hybridize with curvature: this 

is because its wavefunction does not overlap with those of other states which are 

mostly localized on the tube walL This explains that, even for the smaller !·ubes, the 

LDA band gap is stabilized at around 4 eV, except for the few (n,O) tubes with n:::::::; 

12. Even for these tubes, for which the 1r*-tJ* hybrid state forms the bottom of the 

conduction band, the NFE-state is, within LDA, localized at 4 eV above the top of 

the valence band. We have studied also the band structure of two concentric tubes 

(in the case of carbon, most graphitic "needles" are formed of concentric tubes). We 

select the (4,4) and (9,9) tubes. The difference between their radii is comparable to 

the Van der Waals equilibrium distance between two layers in bulk hexagonal BN. 

Tube-tube interaction hardly modifies the energy and wavefunction of the innermost 

tube NFE state, which remains the bottom of the conduction band at 4 eV above 

the top of the valence band. We predict therefore that for all BN tubes (except the 

(n,O) tubes with n :::::::; 12) the band gap is stabilized around 4 eV (LDA value) and 

the bottom of the conduction band is a NFE-like state. 

Since a band-folding analysis correctly describes the band structure of most BN 

tubes, we perform a more accurate description of the electronic properties of these 

tubes by studying within the quasiparticle formalism the electronic band structure 
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of hexagonal boron-nitride compounds. This study is reported in d~tails in Chapter 

5 and we give here a "preview" of the results which are used to understand the 

properties of BN nanotubes. Several structures are studied which are composed 

of periodically repeated layers of hexagonal BN sheets, with an interlayer distance 

varying from d= 5.5 A (diameter of the (4,4) tube) to d= 13.5 A. By including 

layer-layer interactions, we investigate the effects of the overlap of orbitals inside 

small tubes and of tube-tube interactions in multi-wall structures. For d = 13.5)!, 

two neighboring layers do not interact. Therefore, the corresponding band structure 

can be used to obtain the band structure of large diameter BN tubes. For all these 

layered structures, the quasiparticle band gap is indirect between the top of the 

valence band at M and the bottom ofthe conduction band at r. The calculated band 

gap is very stable around 5.5 eV for all inter-layer distances d. This is in excellent 

agreement with the experimental value of 5.8 eV for bulk hexagonal boron-nitride 

[51]. Therefore, the quasiparticle calculation confirms the physical·picture given by 

the. LDA approach: single-wall and multi-wall BN nanotubes are nearly constant 

gap materials with a band gap around 5.5 eV (quasiparticle value). In addition, the 

lowest occupied state is a NFE-like state with charge density localized inside the 

tube. 

As discussed above, for bulk BN, the interlayer state has a maximum and nearly 

uniform charge density in the vacuum region between BN layers. For d = 13.5A, the 

"interlayer state" does not overlap with the one of a neighboring layer. However, 

it remains localized in the vacuum region with a maximum charge density at rv 2 

A away from the corresponding BN plane. Consequently, for very large tubes, we 

expect the charge density for the NFE-state at r to be localized in a region at about 

2 A away from the interior of the tube wall and to remain NFE-like. We remark that 

· the interlayer state described here does not exist in a usual TB calculation based on 

a minimal (3s,3px,3py,3Pz) basis. Therefore, even in the limit of large nanotubes, for 

which hybridization effects are negligible, a simple TB picture would not describe 
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correctly the nature of the BN tube gaps. This is contrary to the case of carbon 

nanotubes where TB and LDA results agree for large tubes. In the case of graphite, 

the interlayer state within LDA is 2 eV above .the bottom ofthe conduction band so 

that this NFE state is at higher energy in the conduction bands and does not play 

any role in the metallicity and doping properties of the carbon nanotubes. 

In conclusion, we find that the wrapping of the planar hexagonal structure onto a 

tube geometry is slightly more favorable for BN tubes than carbon nanotubes. This 

is mostly related to a buckling effect which stabilizes the BN tubular structure. 

The BN nanotubes are predicted to be wide gap semiconductors with a value of 

r..J 5.5 e V, independently of their radius and helicity. This insensitivity of the BN 

tube band gap to variations in radius, helicity and coaxial arrangement, may be of 

crucial importance for technological applications because samples containing many 

different sizes and structures, single-wall or multi-walls tubes, could be grown with 

predictable electronic properties [52]. This constant gap value is related to the 

bottom of the conduction band state, which has a nearly-free-electron-like behavior 

with charge density localized inside the tube. We expect this property to have 

important technological implications particularly in the case of n-type doping (we 

study in the next section the possibility of doping BN nanotubes by substitution of 

an nitrogen atom by a carbon atom). The origin of the NFE state will be discussed 

in more details in Chapter 5. 

2.4 Carbon doping of BN nanotubes 

The present study is motivated by a recent experimental attempt to synthesize 

BxCyNz nanotubes using an arc-discharge technique between mixed graphite-BN 

electrodes [34]. -The nanotubes observed were identified as being BC2N and BC3 

nanotubes. This synthesis confirmed the early theoretical prediction [53] that such 

compounds could be metastable. However, no pure BN nanotubes were observed. 

This indicates that C is very likely to form bonds With B and N and carbon appears 
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to be an obvious candidate for substitutional doping of BN nanotubes. (We suggest 

the possible use of tungsten instead of carbon in the electrodes in order to synthesize 

pure BN nanotubes. The introduction of a thin carbon vapor in the reaction chamber 

would then lead to a carbon doping of the BN nanotubes). 

In the previous section, we concluded that a good description of the band struc­

ture of BN nanotubes could be obtained through band folding analysis of the band 

structure of the related "gedanken" BN( d) structures. Therefore, doping properties 

of BN nanotubes and BN( d) structures should be similar. The doping of BN( d=5) 

by substitution of a boron atom by a carbon atom is studied here. The 5 A sep­

aration between two neighboring BN layers is comparable to the diameter of the 

BN(6,0) tube. In each BN plane, we substitute a boron atom by a carbon atom and 

put the carbon impurity in the center of a 3x3 and a 5x5 supercell. With such a 

geometry, two carbon atoms are located, respectively, at 13.05 A and 21.75 A away 

from each other. The calculations are carried out with a cut-off of Ecut = 36 Ry 

in the planewave expansion of the eigenstates. This corresponds to an average of 

16,000 planewaves in the case of the 5 x 5 supercell, and an iterative diagonalization 

technique is used to calculate the lowest desired eigenvalues. 

We first minimize the total energy of the system by simultaneously moving the 

atoms in the direction of the Hellman-Feynman forces and reducing the stress on 

the unit cell. Because the C-N bond length is different from the 1.45 A B-N bond 

length in hexagonal BN (in BC2N, the C-N bond length has been calculated to be 

1.35 A [53]), the nitrogen atoms around the carbon impurity relax from their original 

position. At equilibrium, we find that the C-N bond length is equal to 1.42 A. The 

relaxation of other atoms is negligible. In the case of the 3x3 supercell, we find a 

similar relaxation with a 45 Ry cut-off. The relaxation energy is equal to 0.19 eV 

per carbon impurity. 

We perform LDA band-structure calculations for both the 3 x 3 and 5 x 5 su­

percells in their equilibrium geometry. The band structure for the 3 x 3 supercell is 
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plotted in Fig. 2.9. The donor level is easily identifiable as the nearly non-dispersive 

band (solid line) below the bottom of the conduction band of the corresponding un­

doped BN system (the non-zero dispersion is an artifact of the finite size of the 3 x 3 

unit cell). The donor binding energy at r is calculated to be 0.537 eV for the 3x3 

cell and 0.516 eV for the 5x5 cell. The good agreement between these two values 

indicates a good convergency of the present calculation with respect to supercell 

size. We plo~ in Fig. 2.10 the total charge density difference between the C-doped 

and the undoped BN systems in the 3 x 3 geometry. As expected, the charge excess 

is localized on the carbon atoms and hardly overlaps from one supercell to another. 

In conclusion, we find that the substitution of B by C in hexagonal BN yields 

a deep defect level with a binding energy of rv 0.5 eV. Therefore, carbon does 

not constitute a donor for doping BN and, at room temperature, very few carriers 

will populate the NFE state which lies at the bottom of the conduction bands of 

hexagonal BN. From a band-folding analysis, the same conclusion holds for BN 

nanotubes. 

2.5 Filling of carbon nanotubes with metallic atoms 

Several recent experimental and theoretical studies have shown evidence that 

carbon nanotubes can be filled, or "intercalated" within, by atoms, molecules, or 

small clusters. Specific examples include the filling of nanotubes by lead oxides [54], 

HF molecules [55], superconducting TaC single crystals [56], and liquid metals such 

as sulfur, selenium or rubidium [57]. However, the mechanisms and the conditions for 

filling are not understood and seem to differ significantly from one case to another. 

For example, in Ref. [56], carbon nanotubes have been shown to grow "around" the 

TaC clusters, while all other examples deal with filling of tubes which are already 

formed. Among these latter examples, a distinction can be made between cases 

where the filling is made on previously opened nanotubes [55, 57] and cases where 

the opening and the filling are concomitent [54]. On more general grounds, it is clear 
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that the filling of carbon nanotubes will be very sensitively depending on factors such 

as the relative size ofthe nanotubes and the filling structure, the phase in which these 

structures can be found at the arc-temperature, the binding energy, viscosity, surface 

tension of this phase, and also the static or induced polarizability of the tubes and 

filling materials in the presence of each other. The very wide interest in the filling of 

nanotubes is of course motivated by the large range of possible applications that can 

be thought of for such filled nanotubes. In particular, in light of our results in the 

previous sections, the doping of carbon or BN nanotubes to populate the bottom of 

the nanotube conduction bands would be of great interest. The conductivity of these 

1-dimensional materials will also be of great fundamental and practical interest. The 

superconducting transition temperature of TaC encapsulated in carbon nanotubes 

[56] have been measured to be 10.0 K. It is suggested that in such a system, both 

superconducting electrons and mediating phonons come from the TaC crystal alone, 

and the carbon nanotubes are just used as "cages" to enforce 1-dimensionality. 

This role of cage was also suggested in Ref. [54] in another context. The carbon 

nanotubes were thought of as molds for the fabrication of nanoscale metallic wires. 

Protection of chemical or biological functions can also be suggested as a use for the 

nanotubes in the "cage mode". Finally, many interesting phenomena can arise from 

the interaction between the nanotube and its filling. By analogy with alkali-doped 

fullerites (fullerides), it is of course interesting to consider filling candidates which 

will add conduction carriers while the tube "provides" the phonons (or vice-versa) in 

a possible superconducting phase. Further, as shown below, a chain of alkali atoms 

filling in the tubes would lose one electron per atom to the carbon tube, forming a 

conducting tube enclosing a 1D ionic chain. 

We have carrie,d out a study of the stability and electronic properties of metal­

filled small radius nanotubes. We focus on potassium as a prototypical intercalant. 

We show that potassium does "intercalate" inside small radius carbon nanotubes. 

This is consistent with the fact that potassium atoms easily intercalates graphite 
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[58]. We perform ab initio pseudopotential LDA calculations using the same carbon 

pseudopotential as in section 2.2. The pseudopotential for K is generated in the 

ground state c~nfiguration of the atom using the scheme by Troullier and Martins 

[41]. An energy cut-off of 36 Ry is used in the expansion of the eigenstates in a 

plane-wave basis. As in the previous section, an hexagonal two-dimensional array 

of tubes is used, with a closest distance of 5.5 A between atoms on neighboring 

tubes. We then intercalate one potassium atom per unit cell along the axis of the 

tube. This corresponds to 1 K atom per 4n C atom in the case of (n,O) nanotubes 

studied here. The geometry of a single K-doped (7,0) carbon tube is represented in 

Fig. 2.11. We note that the K-K distance in a free K linear chain is calculated to 

be 7.72 a.u. within LDA. In the geometry used here to study the intercalation of 

carbon nanotubes, the K atoms are located 8.22 a.u. apart from each other along 

the axis of the tube. We note, however, that the "bulk modulus'' of the linear chain 

is very small (we calculate it to be 0.073 eV ja.u.) and the difference in energy for 

the chain with K atoms located 8.22 a.u. apart, as compared to 7.72 a.u., is only 

0.011 e V per K atom. 

Furthermore, we study the possibility for a Peierls transition to induce a dimer­

ization of the K chain. Starting from a linear chain with two atoms per unit cell 

(that is the unit cell length is now 15.44 a. u.), we dimerize the two atoms in the unit 

cell without changing the unit cell length. In order to sample carefully the band gap 

opening at the Fermi level, we increase the k-point sampling to 150 points in the 

irreducible part of the BZ. We find that for dimerization corresponding to a bond 

length contraction larger than .6.a=0.08 a.u, the linear chain is more stable by at 

least 0.04 meV /atom. Smaller .6.a contractions have not been studied. This means 

that if a Peierls transition would occur, its effect will be insignificant and will be 

destroyed at temperature larger than 0.46 K. 

Table 2.2 gives the calculated heat of formation of K-intercalated carbon nan­

otubes. The reference of energy for the heat of formation is the energy of the isolated 
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tube plus the energy of a K atom in the crystal bee phase. We note that the binding 

energy of K in the crystal phase, as compared to the isolated atom in its ground­

state configuration, is 0.94 eV/atom [59]. Therefore, the intercalation energy gain 

for a K atom coming from the gas phase will be larger than the value reported in 

Table 2.2 by roughly 0.94 eV /atom. We study the evolution of the binding energy 

for the intercalation of potassium atom as a function of nanotube radius. For too 

small a radius, the potassium atom does not want to go inside. This can be simply 

understood in terms of the atomic radius of both potassium and carbon atoms as 

compared to the tube radius. These values are reported in Table 2.3. One can see 

that in the case of the smallest (6,0) tube, the sum of the potassium plus carbon 

atomic radii exceeds significantly the (6,0) tube radius (2.39 A). Therefore, for such 

a small tube, the repulsion energy due to the overlap of the potassium and carbon 

valence charges is too strong and the potassium atoms cannot "fit" inside. For larger 

tubes, this restriction is less severe and potassium does fit inside the tubes. We note 

that in graphite K-intercalated compounds, the graphite plane-plane distance has 

been measured to be equal to 5.35 A. This corresponds roughly to the diameter 

of the (7,0) tube. This is consistent with our finding that the largest intercalation 

energy for the filling of carbon nanotubes by K atoms is obtained for the (7,0) tube. 

To trace the origin of the stabilization observed, we plot in Fig. 2.12(a) the 

band structure of the (7,0) tube alone as compared to (in Fig. 2.12(b)) the band 

structure of the (7,0) tube with potassium inside. In Fig. 2.12(a), NFE labels the 

nearly-free electron band analog to the NFE band described in the previous section 

for the BN tubes. We note that in the case of carbon tubes, this band is at higher 

energy as compared to the BN tubes case and does not play any role in determining 

the metallicity of the carbon nanotubes. Further, with introduction of the K atoms 

inside the tube, the potassium 4s band hybridizes with the NFE tube state of the 

undoped tube. Indeed, bo~h states are singly degenerate and have a charge density 

localized along the axis of the tube. The resulting two hybrid bands are labeled (a:) 
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and ((3) in Fig. 2.12(b) and their corresponding charge density at r is plotted in Fig. 

2.13. From the calculations, it is clear that the introduction of the potassium atom 

inside the tube hardly modifies the band structure of the occupied states. We reach 

the same conclusion for the intercalation of the smaller (6,0) tube by K. This can be 

understood by looking at the LDA energy levels of the isolated atoms as reported in 

Table 2.3. One can see that the valence 4s energy level of potassium is significantly 

higher in energy than both the 2s and 2p energy level of carbon. For the conduction 

bands, the main effect is the interaction of the K 4s level with the NFE band. This is 

not surprising since the charge density of both states strongly overlap along the axis 

of the tube. Further, since the potassium 4s band lies above the Fermi level in Fig. 

2.12 (b), the 4s electron of potassi urn would gained energy by being transferred to the 

nanotube states. The shift up of the Fermi level from Fig. 2.12(a) to Fig. 2.12(b) 

indeed corresponds to roughly one electron. Such a charge transfer is illustrated in 

Fig. 2.14(a) where we plot, in a plane perpendicular to the tube and going through 

a potassium atom, the total charge density corresponding to the states between the 

Fermi level of Fig. 2.12(a) and the one of Fig. 2.12(b). Because no hybridization 

occurs (the introduction of the potassium chain induces mainly a rigid shift of the 

nanotube band structure), we conclude that the interaction between the chain and 

the tube is mainly electrostatic. 

The heat of formation can then be explained in a simple classical picture as the 

internal energy of a tubular capacitor composed of the linear potassium chain (the 

anode) and the carbon tube (the cathode). For larger tubes, this interaction energy 

decreases because both the charge transfer is smaller and the distance between the 

two "plates" of the capacitor increases. Since the atomic ionization energy decreases 

for alkali atoms with increasing mass, we expect even larger binding energy for Rb 

and Cs in carbon tubes of appropriate radius. We plot also in Fig. 2.15(b) the charge 

transfer for an K atom localized outside the tube at a distance comparable to the 

tube radius. The same kind of electrostatic effects as described above is expected 
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to "glue" the K atoms on the outside of the graphite tubes. Accurate total energy 

calculations are difficult in this case because of a strong dipole-dipole interaction 

between unit cells. We note however that atoms attracted to the outside of the 

tubes can be easily "washed" away from the tube wall, while atoms inside the tube 

are protected against any mechanical or chemical agent active in the environment. 

Preliminary calculations have been performed for the intercalation of lead inside 

carbon nanotubes. We find a very large positive formation energy of 4.5 eV /Pb for 

intercalation inside a (6,0) tube. Therefore, Pb will not intercalate inside the carbon 

nanotubes. Since Pb has a smaller atomic radius than K, the argument given above 

for non-intercalation of K inside a (6,0) tube does not hold for Pb. The ratio of 

the atomic radius of Pb to the (6,0) tube radius is equivalent to the ratio of K to 

the (9,0) tube. This suggests that Pb is much less likely to intercalate nanotubes 

as K does and that the interaction of Pb with the carbon wall is different in nature 

from the electrostatic interaction found in the case of K. We plot in Fig. 2.15, the 

Ph-intercalated (6,0) tube band-structure (Fig. 2.15(b)) as compared to the non­

intercalated (6,0) tube band structure (Fig. 2.15(a)). The comparison of the two 

band-structures shows significant hybridization effects between the Ph-chain energy 

levels and the tube bands. In particular, the 6s Ph-chain band (indexed by (ex)) 

induces significant changes in the tube band structure down to -6 eV below the 

Fermi level. In the conduction bands, the most important effect is the hybridization 

between the Pz Ph-chain state (z being the tube axis direction) (labeled ry and ry') and 

the 1r*-a* states described in section 2.2 (labeled j3 and /3'). This can be understood 

by noting that, in Table 2.3, the atomic levels of Pb, contrary to K, are very close 

in energy to the C 2s and 2p energy levels. This hybridization, which does not 

give rise to charge transfer, reduces significantly the electrostatic energy gained by 

transferring electrons from the metallic chain to the carbon nanotubes. Therefore, 

the picture given above for the case of K of a charge transfer with electrostatic 

interaction breaks down for Pb. However, further calculations, including a study of 
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intercalation of Pb with tubes larger than the (6,0) tube, are necessary to gain more 

insight into the physics of Ph-intercalated tubes. 

We note that, in Ref. [57], pure metals in the liquid phase were found to be 

drawn inside carbon nanotubes only if their surface tension is smaller than a cut-off 

value between 100 and 200 mN jm. These experimental findings were explained in 

terms of classical arguments which relates the wetting properties, and in particular 

the liquid-solid contact angle, to the values of the surface tension at the solid-vapor 

and solid-liquid interface. Since the surface tension of liquid K is roughly 390 mN /m, 

it should not intercalate inside nanotubes. However, the tubes synthesized in Ref. 

[57] were of the order of 10 nm wide in diameter. This is much larger than the tubes 

we study in this section. As pointed out by the authors of Ref. [57], the classical 

and macroscopic arguments they used are expected to break down for very small 

size nanotubes. This is confirmed by the present work where charge transfer and 

hybridization effects at the atomic level are shown to be responsible for the filling 

properties of small size carbon nanotubes by metallic atoms. 

2.6 Conclusion 

In this chapter, some fundamental structural and electronic properties of carbon 

and BN nanotubes were studied. We showed that important and unexpected prop­

erties arise from the nanometer size scale and reduced dimensionality of these new 

compounds. However, many interesting questions and problems remain unanswered. 

A important issue is the understanding of the growth mechanism responsible for the 

synthesis of nanotubes. Are the tubes growing capped or uncapped? Do they grow 

from an end in contact with the electrode or from a free end ? What is the influ­

ence of the electric field in the arc ? The answers to these questions will certainly 

improve our ability in the making of nanotubes, so that a better control over the 

size, helicity or filling of the tubes may be achieved during the synthesis process. 

Another important direction is the study of the electronic excitations in nanotubes 
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which is important for the application of their optical and transport properties. 

Such an area is yet to be explored in any details both theoretically and experimen­

tally. Experimentally, as mentioned above, the difficulty comes from being able to 

synthesize and isolate tubes with well defined radius and helicity. For example, the 

large variety of transport responses, which are expected from single carbon nan­

otubes with varying radius and helicity, have been recently shown to be averaged 

out in experiments performed on pellets of nanotubes (the response is then similar 

to that of plain polycrystalline graphite pellets [60]). From the theoretical point 

of view, the large size of the supercells used in the previous section to study the 

nanotubes is such that it is not practicable to calculate their electronic excitations 

using more accurate ab initio many-body formalisms. Even more difficult would be 

the calculation of the polarizability of an open-ended nanotubes, because this would 

require the construction of a supercell which extend also in the direction of the tube 

axis. This kind of study is nevertheless crucial for the understanding of the growth 

mechanism of nanotubes. 

To overcome this problem, we present and test in Chapter 6 a novel approach for 

the calculation of the dynamical RPA dielectric response. This approach; based on 

a mixed-space implementation of the linear response theory, is particularly efficient 

in the case of large supercells which contain a significant amount of vacuum space. 

Nanotubes are ideal candidates for the use of such an approach. Applications of 

this novel formalism to quasiparticle calculations will be also discussed in Chapter 

6. 

There are many other issues remaining to be explored: 

- because of the strength of the C-C or B-N bonds, we can expect very interesting 

plastic properties for these "nanometer fibers". 

-the chiral structures of some nanotubes suggest that chiral currents may be possible 

on such tubes. This would lead to a net induced magnetic field along the tube axis, 

and tubes would then be nanoscale solenoids. Preliminary results show that BC2N 
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nanotubes may be candidate to support such chiral currents [61] . 
• 

- the study of the capillarity action of nanotubes should tell us if such "nanometric 

straws" can be used to "pump" selected compounds at the atomic or molecular level. 

Direct applications to the extraction and protection of atoms and molecules can be 

suggested. 

- a recent experimental study [62] showed that carbon nanotubes have a significantly 

larger orientationally averaged magnetic susceptibility than any other forms of car­

bons. A theoretical study for the understanding of such a phenomenon would be of 

great interest. 

- because interaction between concentric tubes in multi-wall nanotubes is small (Van 

der Waals interactions), one expects some concentric tubes to be incommensurate 

to each other. In such a case, what becomes of the band structure picture when 

the periodicity is broken along the axis of the tubes ? This is reminiscent of quasi­

crystals, and we expect localized states to appear which may modify significantly 

the transport properties of the concentric nanotubes as compared to single-wall 

nanotubes. 

This short list. is of course not exhaustive. We can expect many more novel 

phenomena to arise from this new class of materials, which will challenge the imag­

ination of the materials community. 
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Table 2.1: Band gap (in eV) of selected carbon tubes. All gaps given are 
direct and at the f-point. For the metallic case, the overlap of the bands is 
given as a negative gap. 

tube 

(6,0) 

(7,0) 

(8,0) 

(9,0) 

Tight Binding 

Ref. [37] 

rv 0.2 

rv1 

1.22 

0.04 

Present calculations 

TB LDA 

0.05 metal (- 0.63) 

1.04 0.09 

1.19 0.62 

0.07 0.17 

Table 2.2: Diameter (A) and binding energy (eV /K atom) forK-intercalated 
(n,O) carbon tubes. The heat of formation is defined as the energy of the 
K-intercalated tube (in the geometry described in the text) minus the energy 
of the tube alone and the energy of a K atom in the BCC crystal structure. 

tube diameter (A) binding energy ( e V) 

(6,0) 4.78 0.001 

(7,0) 5.56 1.12 

(8,0) 6.34 1.07 

(9,0) 7.13 0.30 
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Table 2.3: Selected radii and atomic energy levels for C, K and Pb cal­
culated in the ground state configuration from LDA calculations. For Pb, 
semi-relativistic energies are provided. Energies are in eV and radii in A. The 
atomic radii are given for the element in the crystal environment (the crystal 
type is indicated in parenthesis). For K, the ionic radii is given for the isolated 
ion. 

c K Pb 

atomic radius (diamond) 0.77 (bee) 2.26 (fcc) 1.75 

ionic radius (K+) 1.33 

crystal Eb 0.94 2.04 

atomic levels (LDA) (2s) -13.63 ( 4s) -2.42 (6s) -12.20 

(2p) -5.41 (4p) -0.84 (6p) -4.81 
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(a) 

M (b) 

r 

Figure 2.1: (a) Unit cell of the (6,0) carbon tube mapped onto the graphite 
sheet. For the tube, point A is rolled onto point B. (b) Brillouin zone of the 
graphite sheet. The vertical lines mark the set of allowed k vectors for the 
tube. 
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Figure 2.2: Band structure and density of states (statesjeV-atom) for the 
(6,0) carbon tube. The energies are in eV and the zero is at the Fermi leveL 
We trace the CT*-7r* hybridized band (a) around the center of the Brillouin 
zone as a guide to the eye. 
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..... 0.19 

2 

Figure 2.3: Contour plot of the charge density for a*-1r* hybridstate (a) at r 
for (6,0) carbon tube. The contours are in a plane perpendicular to the axis of 
the tube which contains six carbon atoms. The numbers quoted are in units 
of ej[a. u.j3. The circle represents a cross section of the cylinder on which the 
atoms lie. 
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Figure 2.4: Evolution of the graphite TB bands near the Fermi level for the 
(6,0) geometry under increasing curvature. Energies are in eV and the zero is 
set at the Fermi level. The dashed curves mix strongly with each other due 
to curvature. In an LDA calculation, the lower one would span the gap. The 
radii of curvature are indicated. 
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Figure 2.5: Buckled BN (8,0) tube. The larger atoms are the N atoms and 
the smaller one the B atoms. The B-N bond length is set to 1.34 A. 
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Figure 2.6: Total energy of nanotubes in eV /atom as a function of tube 
diameter (in A). The black circles represent the BN nanotube energies above 
the energy of an isolated hexagonal BN sheet. The opened circles represent the 
graphite nanotubes energies above the energy per atom of an isolated graphite 
sheet. The solid and dashed lines are guides to the eye. The energy of the 
strips corresponding to the (6,0) BN and carbon tubes are given respectively 
by the filled and empty square. 
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Figure 2. 7: Contour plot of the charge density corresponding to the bottom of 
the conduction band state at r for the (6,6) BN nanotube. a) Plot in a plane 
containing the axis of the tube and N atoms. N atoms are indicated by empty 
circles. b) Plot in a plane perpendicular to the tube axis containing B and N 
atoms. B atoms are represented by filled circles. The minimum contour line 
(dashed line) corresponds to 0.04 ej[a.u.j3 and the maximum to 0.026 ej[a.u.p 
(thicker black line). We draw the two concentric B- and N-cylinders to stress 
the buckling relaxation. The parabolic dispersion of the NFE state can be 
described through the band-folding picture (see text). 
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Figure 2.8: Banu structure of the BN ( 4,4) tube compared to.hexagonal BN 
band structure plotted along high-symmetry directions of the 2D hexagonal 
Brillouin zone. X is between f and K with f X= 3/4 f K. Energies are in eV 
and the zero of energy is at the top of the valence band for both structures. 
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Figure 2.9: Band structure for the hexagonal BN-C doped system in the 3x3 
supercell geometry. Energy bands are plotted along high-symmetry directions 
of the 2D hexagonal Brillouin pOne. The solid line indicates the donor level. 
Energies are in eV. The zero of energy is set to the Fermi level. 
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Figure 2.10: In-plane charge density for the C-doped BN sheet minus the 
charge density of the undoped sheet in the the 3x3 supercell geometry. The 
full line contours indicate an excess of charge and the dotted line contours a 
deficit of charge. Two carbon atoms· are represented. 20 contours are plotted 
with constant density increment between the minimum and maximum value 
of the differential charge. 



2. 1. Tables and Figures 

) 

Figure 2.11: Atoms and bonds representation of an K-intercalated (7,0) car­
bon nanotube. The diameter of the tube is 5.56 .A, the C-C bond length 1.43 
A and the radius of the K atoms as been set to roughly the atomic radius. 3 
unit cells are represented. 
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Figure 2.12: Band structure for (a) pure (7,0) carbon nanotube and (b) 
K-intercalated (7,0) carbon nanotube. Energies are in eV. The reference of 
energy is taken to be the top of the valence band for the undoped tube. NFE 
labels the nearly-free electron band of the undoped tube while a and f3 label 
the two bands resulting from the hybridization of the undoped tube NFE band 
with the 4s K-chain band. 
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Figure 2.13: Contour plot of the charge density associated with the NFE 
state and the NFE-K4s hybrid states a and (3 at I' for the K-doped carbon 
(7,0) tube. 
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Figure 2.14: (a) Projection on a plane perpendicular to the tube axis of 
the charge density associated with all states with energy between the zero of 
energy and the Fermi level of the band-structure for the K-intercalated (8,0) 
carbon nanotube as represented in Fig. 2.12. (b) Same plot, but with the K 
atoms outside the tube and distant from the tube wall by the tube radius. 
The lengths indicated on the framing boxes are in unit of 22.61 a.u. 
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Figure 2.15: LDA band-structure for (a) an isolated (6,0) carbon tube and 
(b) a Ph-intercalated (6,0) tube. The label a indicates the Pb-chain 6s band. 
The labels {3-{3' and 1-1' indicate respectively the the (T*-1r* hybrid tube band 
and the Pb-chain 6pz band which have hybridized in the Ph-intercalated tube. 
Energies are in e V. 1 
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Chapter 3 

Self-Energy Effects on the Surface States of 

H-Si(lll)-(lxl) 

3.1 Introduction 

Recently, the development of a new wet chemical treatment [63, 64] has allowed 

the preparation of very fiat, highly stable and nearly defect free hydrogen-terminated 

Si(lll) surfaces. The quality of these surfaces is characterized by the exceptionally 

small linewidth of electronic and vibrational states in photoemission [65] and vi­

brational [63, 64, 66] spectroscopy experiments. This has generated much renewed 

interest in this system since measurements can now unravel very fine structures in 

the spectroscopic data with very little inhomogeneity or impurity broadening. 

The present work is motivated by a recent high resolution angle resolved pho­

toemission spectroscopy (ARPES) experiment performed on such an "ideal" H­

Si(lll)lxl surface [67]. The spectra were obtained using the French-Swiss beam 

line (SU3) at SuperACO in LURE [68]. The quality of the surface, combined with 

a state-of-the-art instrumental resolution (25 meV for valence states), yields surface 

states in the ARPES data with a typicallinewitdh of 300 me V, much smaller than 

those measured with samples from other preparation methods such as by adsorb­

ing atomic hydrogen on freshly cleaved Si(lll) surfaces [69] or those of the ideally 

H-terminated Si(lll)lxl surfaces obtained by removal of an indium adalayer by 

atomic hydrogen [70]. 

In this chapter, we address mainly the issue of the surface states located in the 

Si valence bands. Surface states in the conduction bands have also been previously 

studied experimentally and theoretically [71] but these states are weak resonances. 



3.2. Theoretical methods 

Surface states in the valence bands of the H/Si(111) surface have been examined 

in several previous calculations [71, 72, 73, 74]. Although 'the character of these 

states is qualitatively understood, discrepancies in their energy locations as large 

as 1 e V were found between theory and experiment. This is because the previous 

studies were either semi-empirical [72, 73, 74] in nature or were based on the local 

density approximation [71] which does not provide an accurate description of the 

quasiparticle energies measured in the photoemission process. 

In order to make a direct comparison with the experimental data, we have per­

formed a first-principles calculation of the quasiparticle surface state energies. The 

computation of the quasiparticle energies is achieved using the self-energy method 

[2] which has been referenced and discussed in Chapter 1. 

The remainder of this chapter is organized as follows: in section 3.2, we dis-. 

cuss the theoretical methods employed in this study. The ab initio pseudopotential 

method employing a plane wave basis set in a supercell slab geometry was used to 

determine the surface structure and vibrational properties of the Si-H stretching 

mode. The bulk and surface state energies were calculated using the first-principles 

quasiparticle approach. In section 3.3, the theoretical results are presented and 

compared with data from spectroscopic measurements. Finally, a summary and 

conclusions are given in section 3.4. 

3.2 Theoretical methods 

3.2.1 LDA ab initio pseudopotential total energy calculations 

The LDA calculations were carried out using ab initio pseudopotentials. For 

Si, we use the Hamann, Schluter and Chiang pseudopotential scheme [75]. For hy­

drogen, the pseudopotential is obtained using a modified Kerker scheme [76] based 

on the inversion of the exact hydrogenic Schrodinger equation. This scheme pro­

vides a very smooth pseudopotential for hydrogen with excellent transferability. The 
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Ceperley-Alder exchange and correlation potential [77] was used. The potentials and 

eigenstates are expanded in a planewave basis. The calculations were carried out us­

ing a cut-off of Ecut = 16 Ry in the planewave expansion of the wavefunctions. This 

cut-off corresponds to an average of 2200 planewaves in the basis set for the surface 

calculation described below. We exploited an iterative diagonalization technique [6] 

to calculate the desired lowest eigenstates. A 4x4x1 grid in the Monk-Pack scheme 

[78] was used to generate 10 special k-points in the irreducible part of the two -

dimensional surface Brillouin zone (SBZ). 

In each supercell, we have a 12 layer Si slab terminated by hydrogen saturating 

the dangling bond on each side. With this geometry, our slab retains inversion 

symmetry. The vacuum between adjacent slabs was chosen to be 12 a.u. This 

vacuum region is large enough as confirmed by the absence of dispersion for the slab 

band structure in the direction normal to the surface and by the flatness of the total 

potential in the middle of the vacuum region. We checked also the convergence in 

the thickness of the slab: the overlap through the slab for the surface states located 

on two hydrogen atoms on the opposite side induces a splitting of the surface state 

energies which is at most 0.1 eV. The surface state energies given below are taken 

to he simple algebraic average of the energy of the split levels. 

For the specific study of theSi-H stretching mode, we increased the energy cut-off 

up to Ecut = 20 Ry: going from 16 Ry to 20 Ry reduces the fundamental frequency 

by 8%. 

3.2.2 First-principles quasiparticle approach to electron excitation en­

ergies 

The computation of the quasiparticle energies is achieved using a self-energy 

approach. In this formalism, the Schrodinger-like equation solved to obtain the 

one-particle excitation energies Eqp is given by: 

(3.1) 
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where Tis the kinetic energy operator, Yext the external potential, and VH a mean­

field electron-electron interaction potential (the Hartree potential in this case.) The 

self-energy operator 'E includes the effects of exchange and correlation: it is non­

local, energy-dependent and non-hermitian in general. 

In the GW approximation [2, 3] used in this calculation, 'E is taken to be the 

first order term in an expansion in successive powers of the screened interaction W: 

'E(r, r'; Eqp) = i J~!' e-icE' G(r, r'; E- E')W(r, r'; E'), (3.2) 

where G is the dressed one-particle Green's function. Our approach [2] is to make the 

best possible approximation for G and W. As shown in previous GW calculations 

in semiconductors, the LDA wavefunctions accurately describe the quasiparticle 

wavefui:lctions in semiconductors so that we may write: 

G(E) = L Ink>< nk_l , 
E-E k-'l,'n nk n ., 

(3.3) 

with Ink> the LDA eigenfunctions and Enk the self-consistent quasiparticle energies 

( 'fJ is a negative infinitesimal for energies above the Fermi energy and a positive 

infinitesimal below). 

The screened Coulomb interaction W = V * c 1 is calculated in Fourier space 

using the Hybertsen-Louie scheme [2, 79]. Vis the bare Coulomb potential and c 1 

the inverse dynamical dielectric matrix. In calculating E- 1, the static polarizability 

x0 is evaluated in the Adler-Wiser formulation [80, 81] within the Random Phase 

Approximation (RPA): 

n
4 "" < v, kle-i(q+G)·rlc, k + q > < c, k + qlei(q+G')·r' lv, k > 

X~G' ( q) = L..t 
k Ev,k - Ec,k+q + ib c,v, 

(3.4) 

The above equation has been explicitely written for a system with an energy gap 

between occupied and unoccupied states. Local field effects are taken into account 
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so that the polarizability matrix is non-diagonal in reciprocal space. This is the 

most time consuming part of our scheme. The dielectric function Ee,e' ( q) is then 

calculated within RPA: 

(3.5) . 

and the inverse dielectric function is obtained through inversion of Eq. 3.5. Spe­

cial care must be taken for the head (G, G'=O) and wings (G=O and G' =!= 0, or 

vice-versa) of X~G' ( q) when q ---+ 0 and the applicability of Eq. 3.5 relies on the 

knowledge of the coefficients for the q2 dependence of the head and q dependence 

of the wings in the long wavelength limit. Such leading coefficients can be obtained 

from k · p perturbation theory, yielding in particular: 

< v, kle-iq·r1c, k + q >---:- < v, kl- 2iq · Y'r + [VNL, iq · r]ic, k > 
(3.6) 

where VNL is the non-local part of the ionic pseudopotential. This step is one of the 

bottle-neck of the calculation, scaling as N6 for the calculation of the head, where 

N is the number of planewaves used to expand the wavefunctions. We will see in 

Chapter 6 that such a N6 calculation can be avoided in a mixed-space formalism. 

Once the static inverse dielectric matrix c 1 ( q, w == 0) is obtained, we extend c 1 to 

finite frequencies using a generalized plasmon pole model [79] which yields a differ­

ent pole at WG,G' ( q) for each element Ea~G' ( q; w) of the inverse dielectric matrix. 

The strength and position of each pole are uniquely determined by imposing that 

EG~G' ( q; w) satisfies both the Kramers-Kronig relations: 

2 100 

1 ReE(;1,a,(q;w = 0) = Dee'+ - P dw- JmE(;1a,(q;w) , 
Ti 0 w , 

(3.7) 

and the generalized £-sum rule: 

1r 2 ( q + G) · ( q + G') p( G - G') = --w 
2 P lq + Gl2 p(O) ' 

(3.8) 
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where Wp = ne2 /me is the classical plasmon frequency. 

The quasiparticle excitation energies are then calculated using first order per­

turbation theory: 

Eqp = ELDA + < nki:E(Eqp) - vLDAink > 
nk nk nk · (3.9) 

The validity of Eq. 3.9 is based on that the LDA and quasiparticle wavefunctions 

are, in general, in excellent agreement [2]. Thus, one needs only to calculate the 

diagonal elements of the difference Hamiltonian :E(E!t)- VLDA_ 

In the calculation, the static polarizability x0
( q, w = 0) was evaluated using 10 

special q-points in the irreducible part of the SBZ. The X~G' matrix elements were 

calculated for Jq + Gl < 3.0 a.u. which yields dielectric matrices of average size of 

950 x 950 for each special q-point. This is sufficient to describe the local field effects 

in the dielectric screening in the present case. We also included transitions up to 

350 conduction bands for each k-point. 

The calculation of the self-energy matrix elements [2] requires smaller cut-off: we 

used Jq + Gl < 2.8 a.u. to converge the bare exchange energies and Jq + Gl < 2.1 

a.u. for the dynamical part of :E. Over 350 bands in the summation over conduction 

states were used for the Coulomb-hole term [2]. With these cut-offs, the self-energies 

are found to converge to within 0.1 eV. 

3. 3 Results and analysis 

3.3.1 Structure and H/Si stretching mode 

By total energy minimization within LDA, we find that the Si-H bond length for 
I 

the unreconstructed surface is 2.87 a. u, in good agreement with previous calculations 

(2.80 a.u. [71] and 2.90 a.u. [82]). For the silicon substrate, we start with the 

experimental bulk silicon lattice constant. The first layer is found to be slightly 
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relaxed inward by 0.075 a.u. while relaxation of deeper layers is negligible. The 

inward relaxation of the first layer is 0.03 a.u. larger than the value calculated in 

Ref. [82]: difference in the number of layers, width of the vacuum space and k-point 

sampling may account for this discrepancy which has only a very small effect on 

the total energy. The position of the surface states and the parameters of the Si-H 

stretching vibrational mode are insensitive to such a small variation in the first layer 

relaxation. We give in Fig. 3.1 a schematic representation of the H/Si(111)-(1x 1) 

surface with the calculated LDA equilibrium bond lengths given in A. 

The stretching vibrational mode of the Si-H bond was investigated using the 

frozen-phonon method of Ref. [83]. We find that the hydrogen moves in a potential 

well (see Fig. 3.2) which can be well described using the following fourth order 

polynomial expression: 

V(z) = Vo + 0.543z2
- 0.781z3 + 0.771z\ (3.10) 

where the energies are in Ry and z is the deviation from equilibrium of the Si-H 

bond length in Angstrom. With this potential, we find a harmonic frequency of 

fiflo= 251.2 meV (2025.0 cm- 1) and the difference between the overtone frequency 

and twice fifl0 to be -2r= 4.1 meV (33.4 cm- 1) in excellent agreement with the 

theoretical value in Ref. [82] in the case. when no coupling with the wagging modes 

is considered. As described in Ref. [82], these values can be successfully used as 

parameters to describe phonon-phonon interactions through a negative-D Hubbard 

type Hamiltonian which yields an excellent value for the binding energy of the two­

phonon bound state recently observed in this system. 

3.3.2 Surface-state energies 

The results of the LDA and quasiparticle surface-state band structure calcula­

tions are presented in Fig. 3.3 . In the background is the continuum of Si bulk 

quasiparticle states projected along the (111) direction onto the SBZ. For each k 
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parallel to the surface (along f-K-M-f), we projected the energy levels ofthe quasi­

particle bulk states of 100 regularly spaced k-points of the bulk fcc Brillouin zone. 

This presentation of the projected quasiparticle band structure, in contrast to a 

uniform shading of the bulk continuum, allows the detection of lines of high density 

of bulk states in the continuum . They are in excellent agreement with the ARPES 

data [67] and are valuable in identifying bulk peaks as compared to surface related 

peaks in spectroscopic data. These bulk states are calculated in the framework of our 

first-principle quasiparticle approach using the usual diamond-structure unit cell of 

bulk sillcon. Most importantly for the study of surface states, the calculated pockets 

in the projected bulk band structure are in excellent agreement with experiment. 

LDA results 

In Fig. 3.3, the LDA surface state eigenvalues are given by the solid lines while 

the experimental values are given by the black squares. Well-defined surface states 

exist in each local gap (or pocket) of the projected bulk band structure near ]{ 

and M. These states have wavefunctions which are highly localized at the surface 

(Fig. 3.4(a),(c),(d)). The states (a) at]{ (Fig. 3.4(a)) and (a') at M (Fig. 3.4(d)) 

are the results of the hybridization of the Si 3pz orbital with the H ls orbital, 

while interactions of the Si 3s and the H ls orbitals are responsible for the low 

lying surface states (b) at -7.85 e V at K. The enhancement of the k-resolved local 

density of states (LDOS) on the first H layer at the calculated surface state energies 

as compared to the bulk density of states (DOS) at ]{ and M (Fig. 3.5(b),(c)) 

further illustrates the localized character of these states. The state (a') at ]{ is 

found in the LDA calculations to be within the bulk continuum but of a different 

symmetry than the surrounding bulk states. The corresponding wavefunction (see 

Fig. 3.4(b)) is very delocalized as compared to the state (a') atM. However, an 

analysis of the symmetry of this state clearly shows that this state is hydrogen 

induced and is the continuation of the bona fide surface band (a') along ]{ to M. 
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An angular decomposition of the wavefunction around the hydrogen atom and the 

first layer silicon atom showed distinctly a different character for this state from that 

of surrounding bulk states: the states (a') at M and K have the same character at 

the surface. 

To examine whether the larger delocalization of the surface state (a') at K is the 

result of being incorrectly positioned within LDA, we performed a Slater-Koster [40] 

tight-binding (TB) calculation on our 12 Si-layer slab using Pandey's nearest and 

second nearest neighbors parameters [73]. (The TB results do not yield a surface 

resonance for the surface state (a') at K.) We compared first our tight-binding 

surface state energies with Pandey's results for a 36 Si-layer slab. The results are 

quoted in Table 3.1. The energies of the surface states as given by the two TB 

calculations differ by less than 0.11 eV (which also confirms that our slab is thick 

enough). Consistent with Pandey's findings, our tight-binding calculation locates 

the state (a') at K well within the small pocket of the projected bulk continuum. 

Moreover, in agreement with our LDA calculations, the wavefunction at K is much 

less localized than that at M: only 35 % of the wavefunction is localized on the 

two outermost layers at K as compared to 69 % at M. This shows that, because 

of symmetry, the state (a') hardly resonates with the nearby bulk states at K and 

that the corresponding delocalization of the wavefunction is rather insensitive to 

its position in energy as compared to the bulk continuum edge. This will be of 

some importance in our self-energy calculation which assumes that the LDA and 

quasiparticle wavefunctions are in good agreement. 

The LDOS at f is given in Fig. 3.5(a) : the features in the LDOS for the center 

of the slab from -7 e V to -2 e V illustrate the finite size effects related to the slab 

geometry but the enhancement of some of these structures in the H layer LDOS 

indicates that surface resonances exist in this energy range as reported in previous 

calculations [71, 73, 74]. 

The LDA energies of the surface states at K and M are also reported in Table 
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3. 3. Results and analysis 

3.1. As compared to experiment, LDA underbinds the occupied surface states. 

This is consistent with previous calculations [84] for other surfaces, but the effect 

is significantly larger in the present case. This is related to the very localized ls 

hydrogen orbital for:rp.ing the surface states in the present system: Fig. 3.4 shows 

that the wavefunctions of the bonding surface states are not centered in the middle 

of the H-Si bond but fall into the deep well created by the hydrogen nucleus. The 

discrepancy in the energy position between LDA and experiment for the state (a') at 

M and the state (b) at K is larger by a factor 2 to 3 as compared to that for surface 

states at the As-Si(lll) surface [19]. This difference between the two systems can 

be partially understood by examining the atomic calculations. Fig. 3.6 shows the 

error in the LDA eigenvalue energy for the highest occupied state as compared to 

the experimental ionization energy. It is well known that the discrepancy is very 

large for all atoms [85]. This error, resulting from using LDA exchange-correlation 

potential as an approximation to the self-energy operator, is therefore large. In 

the case of surface state energies, we are interested in their relative position to 

bulk states. Thus the energy differences between substrate and adsorbate levels are 

important. The cancellation of error is much more favorable in the As-Si system 

than the H-Si system. These differences are quoted in Table 3.2. One can see that 

the discrepancy is worse for the energy difference H(ls)-Si(3s): this is relevant for 

the state (c) at K. 

In addition to not yielding the correct position of surface states relative to bulk 

states, LDA in the present case does not give the correct dispersion for the surface 

states. For example, for the surface band (a') between M and K, while the exper­

imental data do no show any dispersion, the LDA calculation gives a dispersion of 

0.42 eV. 

Quasiparticle results 

Because spectroscopic measurements can be understood in terms of excitations 
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between quasiparticle states of an interacting electron system, our quasiparticle self­

energy approach yields results in much better agreement with photoemission data 

than LDA. In the present case, very large self-energy corrections to the position of 

the LDA surface states are found: the self-energy corrections for the state (a') at 

M and the state (b) at K are 2 to 3 times larger than those for the surface states 

at the As-Si(111) surface [19]. This can be understood from the important non­

local and dynamical effects induced by the high degree of localization of the surface 

states in the H/Si system. For selected k-points of the surface Brillouin zone, our 

calculated quasiparticle energy levels are given in Fig. 3.3 by the open circles. The 

specific energy levels for the quasiparticle surface states at J{ and M are quoted in 

Table 3.1. The agreement between our quasiparticle theory and the recent ARPES 

experiment is excellent: the discrepancy is at most 0.17 eV for the higher binding 

energy surface state at K. This is much smaller than the 0.79 eV discrepancy for 

this state as calculated within LDA. 

As a consequence of the improvement in the overall position of the surface states, 

the self-energy approach yields also an impressive improvement in the dispersion of 

all the surface states. This again may be understood from the sensitivity of the 

self-energy operator to the localization ofthe surface states. We compare in Fig. 3.7 

the exchange-correlation energies for different states of the band (a') between J{ 

and M as given by different approximations. The bare Fock exchange, the LDA and 

the GW exchange-correlation operators have very different k-dependent behavior. 

Recall that the surface state (a') is more localized at M than at J{. The LDA 

exchange-correlation operator is much less sensitive to localization than the self­

energy operator I: and thus underestimates by 0.3 eV the dispersion of the exchange­

correlation energy for the band (a') between J{ and M. As expected, the bare 

exchange operator, which neglects screening effects, overestimates the dispersion. 

In contrast to both the LDA and bare exchange approximation, the self-energy 

approach yields a dispersion which is in almost perfect agreement with ARPES 
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data. 

The self-energy operator is also more sensitive to wavefunction character as a 

consequence of its non-locality. The state (a') at/{ , which differs from surrounding 

bulk states by its strong hydrogenic character at the sur!ace H site, is successfully 

extracted from the bulk continuum by the self-energy approach. It is important to 

note that even in the tight-binding calculation which locates the surface state (a') 

at J{ well within a pocket, the wavefunction at K is still much less localized than 

atM. This shows that the wavefunction (a') at/{ does not change when extracted 

from the bulk continuum and the use of the LDA wavefunction to describe the 

quasiparticle wavefunction for this state is valid. 

The small discrepancy between theory and experiment for the surface states at 

higher binding energy near J{ could be due to several effects. First, because the 

static part of the dielectric function is calculated exactly within the RPA, we expect 

the generalized plasmon pole model used to extend the dielectric function to finite 

frequency to be more accurate in the low energy range. Therefore, the self-energy of 

the smaller binding energy states are the most accurate within our scheme. Second, 

we neglect the influence of finite lifetime effects on the position of the quasiparticle 

energies. Since states closer to the gap edges have a larger lifetime, we expect these 

effects to be more important for states at higher binding energy. We emphasize that 

these discrepancies are small: the discrepancy is within the combined uncertainties 

of GW theory and experiment. 

3.4 Conclusion 

We calculated within the GW approximation the quasipart.icle energies for occu­

pied surface states of the H-Si(lll)lxl surface. This approach yields quasiparticle 

energies in excellent agreement with a recent high-resolution angle resolved pho­

toemission spectroscopy performed on the "ideally" prepared surface. The ability 

of our first-principles quasiparticle approach to describe the dynamical and non-
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local effects in this highly anisotropic system, exhibiting very localized states on 

the Si-H bond, has been exemplified. Our LDA calculations also confirm that LDA 

combined with a slab model can accurately describes the ground-state properties 

of such surfaces and that the LDA wavefunctions are an excellent starting point 

for quasiparticle calculations in the Hybertsen-Louie formulation within the GW 

approximation. 
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Table 3.1: Energies of surface states at J( and M (in e V with zero at the top 
of the valence band) for the H/Si(lll)-(lxl) surface. 

k-point Tight Binding Present calculations Exp. 

(Ref. [73] ) TB LDA GW (Ref. [67]) 

]( -3.88 -3.82 -3.22 -3.82 -3.80 

-5.02 -4.94 -4.29 -4.76 -4.78 

-8.83 -8.94 -7.85 -8.47 -8.64 

M -4.94 -4.86 -3.87 -4.63 -4.76 

Table 3.2: Energy difference between selected LDA atomic levels for Si, As 
and Has compared to experiment. The energies are given in eV. 

LDA 

Exp. 

H(1s)-Si(3p) As( 4p )-Si(3p) 

-2.17 -1.2 

-5.45a 

H(1s)-Si(3s) 

4.48 

As(4p)-Si(3s) 

5.46 

3.65b 

Upper indices (a) and (b) refer to Ref. [86] and Ref. [87]. 
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Figure 3.1: Schematic view of the H/Si(lll)-(lxl) surface. The equilibrium 
distances as calculates within LDA are given in A . .6-z indicates the magnitude 
of the inward relaxation of the first Si layer. 
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Figure 3.2: Calculated potential well of H-Si bond as a function of the dis­
placement from equilibrium bond length. The open squares are the calculated 
points and the solid line is a fourth order polynomial least-square fit. 
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Figure 3.3: Surface state bands calculated within LDA (full lines) and GW 
(open circles). The black squares represent the experimental data. In the 
background is the projected Si bulk GW band structure. The zero of the 
energy scale is at the top of the valence band. 
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0.5 0.0 0.6 0.0 

0.6 0.0 0.5 0.0 

Figure 3.4: Contour plot in the [110] plane of selected surface-state wave­
functions and corresponding xy-averaged charge density plotted along the sur­
face normal direction z. The values which label the contours correspond to 
(27r) 3 1~1 2 where ~ is the corresponding wavefunction normalized such that 
J dV 1~1 2 = 1 , with De the unit cell volume. The xy-average charge density 

!1c 
is normalized to unity within one unit cell. (a), (b), (c) and (d) correspond 
respectively to the LDA calculated states at -3.22 eV, -4.29 eV, -7.85 eV at 
]{ and the state at -3.87 eV at M. The wavefunctions are plotted from the 
middle of the slab to the middle of the vacuum. The dots represent the sili­
con atoms contained in the [110] plane and the squares represent the hydrogen 
atoms. The dashed lines point to the charge density on the hydrogen or silicon 
atom. 
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Figure 3.5: k-resolved LDOS for selected k-points as calculated in the LDA. 
The solid line correspond to the bulk DOS. The upper long-dash line corre­
sponds to the H-layer LDOS and the middle short- dash line to the "center 
of the slab" LDOS (innermost 4 Si layers included). The arrows indicate the 
position of the surface states as given by the LDA eigenvalues. 
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Figure 3.6: Difference between the LDA highest occupied state eigenvalue 
and the experimental ionization energy (in e V) for selected elements of the 
Periodic Table. 
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Figure 3. 7: Energy dispersion for different approximations to the exchange­
correlation operators for the surface-state band (a') at selected points between 
K and M. The zero of energy scale is taken at K. The solid line corresponds 
to the GW self-energy L: operator, the dashed line to the LDA operator and 
the dotted line to the bare Hartree-Fock operator. The empty squares are the 
points where the energies have been calculated (in eV). 



Chapter 4 

Si 2p core level chemical shifts at the H/Si(lll)-(lxl) 

surface 

4.1 Introduction 

As discussed in the previous chapter, a recently developed method of chemically 

etching silicon in buffered HF solutions allows the preparation of H-Si(lll)-(lxl) 

surfaces with ideal H termination and high degree of homogeneity [63, 64]. The 

excellent quality of the surfaces obtained with this method, both with respect to 

the chemical purity and structural perfection, has been demonstrated by a variety of 

techniques [63, 64, 67]. The availability of such high quality surfaces has permitted 

very accurate experimental studies of the electronic structure of Si-H surfaces [67]. 

In particular the Si 2p core level spectra have been studied in great detail. Using 

surface sensitive spectra, this study was able to separate very clearly the bulk from 

the surface components of the Si 2p core level spectrum. Six lines were resolved 

within the Si 2p312 peak. Two of them were assigned to phonons, one to the bulk 

core level, and three to surface components. The three surface components however 

did not have a clear interpretation. 

Motivated by experiment, we have carried out a first-principles calculation of the 

Si 2p core level shifts for Si atoms near the H/Si(lll)-(lxl) surface. Pseudopoten­

tials and a planewave basis are used to implement the local density approximation 

(LDA) of the density functional theory. All-electron calculations are in principle 

more desirable since they describe explicitly the core-valence interactions and core 

relaxation effects. However, pseudopotential calculations are easier to perform for 

large systems, and recently frozen-core-pseudopotential approaches have been used 
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successfully to calculate core levels shifts [88, 89]. Following this line of work, we 

show in this Chapter that the use of a first-order perturbation theory to describe 

core-valence interaction in the framework of an ab initio pseudopotential approach 

gives good results for the Si 2p core level shift for the H/Si(lll) surface. Contrary 

to methods based on total energy differences [89], our method can describe the split­

ting of a degenerate core level by the surface potential: this is of crucial importance 

in this work. In Ref. [88], a method similar to our approach has been proposed, but 

no experiment was available to demonstrate its validity. Here we show for the first 

time that this scheme gives excellent results when compared to experiment [67]. 

To describe the changes in the chemical environment at the surface as compared 

to the bulk, we must be able to describe accurately the modifications in both the 

ionic and electronic potentials. For the ionic potential, since the core regions do not 

overlap between neighboring atoms, the core electrons of each atom experience the 

tails of the real ionic potentials from neighboring atoms. We checked this by varying 

the extent of the pseudocore of both the H and Si atoms and no significant changes 

in the core level shifts were observed. More challenging is the description of the 

electronic potential felt by the core electrons. We find that the DFT-LDA formal­

ism gives good results to describe such an interaction [90]. In the present scheme, 

we must in addition deal with the core-valence partitioning introduced by the pseu­

dopotential technique. Since the core is frozen in the pseudopotential approach, 

core relaxation effects are not considered. Consequently, our calculations formally 

describe the escape of the core electrons in the sudden (or vertical) approximation 

and relaxation effects are neglected. Alternatively, the present theory corresponds 

to making the assumption that relaxation effects are similar for both surface and 

bulk atoms and that the core level shifts are mainly given by the potential changes. 

We agree with the conclusions of Ref. [89] that this might be a crude approximation 

in the case of surfaces with dangling bonds. However, consistently with Ref. [90], 

we show that in the present case of saturated surfaces, the present approximation 
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gives good results. 

4.2 Test of the method on the isolated atom core-level shifts 

To study the validity of using perturbation theory, we look first at the isolated 

atom and study the shift in energy of the Si 2p atomic core level under a change 

in occupation of the 3p shell. In our perturbative approach, the zeroth-order wave 

function is taken to be the LDA all-electron Si 2p core level wgp of the atom in 

its ground state configuration. Results are reported in Table 4.1. We calculated 

the matrix elements < wgPIV.h~clwgP > in various valence configurations of the 

atom. V.h~c is the Hartree, exchange and correlation potential created by the 

valence electrons in the pseudopot~ntial calculations. The shift of these matrix 

elements going from the ground state configuration to an excited-state configuration 

is compared to the shift t6.Eae of the all-electron Si 2p eigenvalue under the same 

chemical change. Values for < 'lf02plt6. Va~xcl'lf02p > and < 'lf02plt6. VP~xcl'lf02p > are also 

reported. 'lf02P is the all electron Si 2p wavefunction for the given configuration (that 

is we allow the wavefunction to relax from wgP under the valence configuration 

change) and Va~xc the all-electron LDA electronic potential. t6. indicates the changes 

between the studied configuration and the ground state configuration used as a 

reference. We looked at excited configuration with charge transfer comparable to 

or larger than the one expected in the solid, including ionic configurations. The 

agreement between the all-electron and pseudopotential calculations is very good, 

with largest error of about 9 % in the extreme case of complete ionization of the 

valence shell. This shows that the relaxation of the Si 2p wavefunctions is very 

small, that the change in the electronic potential created by the valence electrons 

only is responsible for virtually all the effect and that this change is well described 

in the pseudopotential approach. 
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4.3 Core-level shifts in the crystal 

We turn now to the calculation of the core level shifts at the surface. Since 

the crystal potential is not spherically symmetric, we consider as zeroth-order wave 

functions the set of 6-fold degenerate spin-orbitals associated with the 2p atomic 

level in the (H0 , L2
, Lz) representation, where H0 is the atomic potential in the 

absence of spin-orbit splitting and L the angular momentum operator. The angular 

part of the wavefunctions is written with usual notation: 'll!~(T) = R2p(r) x Y1m(nr-) 

with m taking the values -1, 0, 1. The perturbation Hamiltonian contains the spin­

orbit term -Ai · S, where Sis the spin momentum operator, and the crystal field 

potential V(T). The strength of the spin-orbit coupling A is taken to reproduce the 

experimental [67] splitting between the 2p112 and 2p3; 2 levels in the crystal, and has 

the value A= 410 meV. 
l 

The electronic part of the crystal potential is the same as that calculated in 

Chapter 3. To model the surface, we performed a supercell calculation with each 

supercell containing a 12-layer Si slab terminated by hydrogen saturating the dan­

gling bonds on each side. The potential was expanded in a planewave basis with 

a kinetic energy cut-off Emax = 20 Ry. In the present work, we increase the ionic 

potential cut-off up to 56 Ry. For cut-offs smaller than 25 Ry, we find that the 

fluctuations of the ionic potential contribution to the core level shift as a function 

of Emax is of the same order of magnitude as the final result. We find that the short 

range non-local part of the ionic potential has no contribution to the core level shift. 

We calculate first the matrix elements Vm' ,m of the crystal potential in the 

(H0 , L 2 , Lz) representation. We write then: 

Vm',m(7) = j d3i(-1)m'wz-Pm'(i- 7) V(r) w;;(r- 7), (4.1) 

where 7 indicates the position of a Si atom in the supercell. V(T) is the sum of 

the ionic and electronic potentials. Since we deal only with local potentials, it is 

convenient to work in Fourier space. Using the expansion of planewaves in terms 
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of spherical harmonics, we get a multipole expansion of the potential and we may 

write: 

Vm',m(T) = 2:: Vl~l,(T'), (4.2) 
(L) 

with 

vlf~(T') = 47riLx , 

I:c; V(G)eiG·f fr2 drjL(Gr)R~P(r) LM[Yfl(Dc;)]* (lm' I Yfl(Dr:) llm), (4.3) 

where llm) is the spherical harmonic Y1m(Dr:) and JL the spherical Bessel function 

of order L. 

The selection rules for the angular integrals restrict terms of the sum in Eq. ( 4.2) 

to 1=0,2. This implies that only two radial integrals need to be calculated numeri­

cally for each star of G vectors. Independent of the symmetry of the Hamiltonian, 

Eq. (4.3) yields the following set of relations: 

v:Co) (7) = vco)(T')o , 
m',m m,m 

v,C2) ( -) _ vC2) ( -) __ ~ v;C2) ( -) 
1,1 T - -1,-1 T - 2 0,0 T 

and in the case of a C3v site-symmetry: 

v,C2) ( -) - vC2) ( -) - vC2) ( -) - o 
1,0 T - -1,0 T - -1,1 T -

( 4.4) 

(4.5) 

(4.6) 

Eq. ( 4.4) indicates that the matrix Vl~;m( T') yields a rigid shift of the core level 

but does not induce any splitting of this level. On the other hand, the quadrupolar 

contribution (1=2) can in general couple different m and m' sublevels. However, 

in our geometry, these terms also must be zero because of the C3v site-symmetry. 

Therefore, the matrix V~~;m ( 7) is diagonal and, following Eqs. ( 4.5), only one matrix 

element needs to be calculated. Further, if we now consider the Td symmetry of bulk 

silicon, V0~~) and Vi(,~) must be equal and therefore zero to satisfy Eqs. ( 4.5). This is 
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also confirmed numerically in our calculations. We report in Table 4.2 the evolution 

of V(o) and V(2) = V0(~) for different values of i. At the surface, V(2) is large and , 

is responsible for the splitting of the core level (see below). As we go from the 

surface to the bulk, this matrix element decreases rapidly. This is an effect of the 

rearrangement of the charge density at the surface in order to screen the surface 

potential and restore the Td symmetry of bulk silicon. For the innermost silicon 

atom, we find that V(2)(7) = -1.5 meV; as expected, the crystal field splitting on 

this atom is negligible. 

To diagonalize the perturbation Hamiltonian containing both the crystal field 

potential V ( T) and the spin orbit interaction - "Ai · S, we express first the matrix 

Vm',m in the (H0 ,L2 ,".J2,Jz) representation where J = i +Sis the sum of the 

angular momentum and electronic spin. In this basis set, the spin-orbit matrix is 

diagonal and yields the 2levels 2p1; 2 and 2p3; 2 , with degeneracy 2 and 4, respectively. 

Using Table 4.2 and taking as reference of energy the 2p3; 2 energy level on the 

innermost silicon atom of our slab, we find that the 2p3; 2 core level of a silicon 

atom at the surface is split into two peaks T1 and T2 at positions E(T1 ) = -40 

meV and E(T2 ) = -114 meV on the higher binding energy side of the bulk core 

level (we neglect the -1.5 me V splitting of the "bulk" 2p3; 2 core level). In terms of 

group theory analysis, this splitting can be explained by looking at the dimension 

of the irreducible representations compatible with the Si 2p orbital symmetry for 

respectively the bulk T~ and the surface C~v double groups. The subsurface silicon 

atom 2p3; 2 level (T3 ) is shifted to E(T3 ) = 116 meV at lower binding energy but 

its splitting is negligible as compared to the resolution of the experiment [67). For 

the Si 2p1; 2 core level, the surface potential gives rise to just two peaks, one at -83 

meV and the other at 116 meV relative to the 2p1; 2 bulk level. These peaks are 

associated respectively with the surface and subsurface Si atoms. No splitting is 

expected according to group theory analysis. 

In addition to the position of the peaks, it is important to estimate their height 
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in order to compare theoretical results to experimental results. G~oup theory anal­

ysis predicts that. T1 , T2 and the Si 2p1; 2 surface level are all two fold degenerate. 

Therefore, the relative heights of these peaks should be given by the ratios of the 

corresponding electric dipole matrix elements. We calculated the matrix elements: 

< eiR"riXaiW~ > where Xa is x,y or z according to the polarization of the light 

source. This is consistent with the sudden approximation and the final state is cho­

sen to be a planewave. Using these, we can estimate the relative intensities of the 

peaks T1 , T2 and 2p1; 2 for the surface atom, as well as the ratio of the 2p3; 2 to the 

2p1; 2 peaks for the subsurface and bulk atoms. 

With this set of theoretical values, a new fit for the data of Ref. [67] has been 

performed [91]. We present in Fig. 4.1 two of these fits. Both bulk and surface 

sensitive spectra are studied. The incoming light was polarized such that the electric 

field is parallel to the surface [92]. For this new set of fit, the 70 me V splitting 

between T1 and T2 has been respected. Because this splitting is dictated by the 

local properties of the potential at the surface (as shown in Table 4.2, this splitting 

is already negligible for atoms of the subsurface), it is insensitive to finite size effects 

induced by the slab model. Therefore, we believe that this value is well described 

in our calculation. For the same reason, the ratio of 0.4 for the relative height 

I(T1 )/ I(T2 ) that we find in the case of an imposed parallel polarization. With 

these two constraints, the best fit yields surface and subsurface peaks in excellent 

agreement with our theoretical results aside from a rigid shift of -31 me V (allowing 

a ± 6 meV uncertainty on the experimental values). This rigid shift is related to 

the uncertainty on the position of the bulk peaks in our slab calculation. This kind 

of systematic error has been estimated to be 100 meV for a 8 layers Si slab [89] so 

that a rigid shift of 31 meV is reasonable for our larger 12-layer Si slab. 

A comparison between theory and the fit values is presented in Table 4.3. 

In addition to the peak locations, we find that for the surface peaks, the ratios 

1(2p1; 2 )/I(T2 ) is calculated to be 0.79 in very good agreement with the experimen-
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tal value of 0.71 [93]. For the subsurface and bulk peaks, the calculated ratios 

J(2p 1; 2)/1(2p3; 2 ) are 0.50 in both cases. \Ve emphasize that the only constraint on 

the experimental fit is the shape of the T 1.2 peak as plotted in Fig. 4.1. 

4.4 Conclusion 

In conclusion, this work shows that the use of a first-order perturbation theory 

in the framework of a pseudopotential approach gives excellent results for the calcu­

lation of the core level shifts at the surface of a saturated system. We show that the 

surface Si 2p3; 2 peak is split into two components by the surface crystal field. The 

present interpretation of the data of Ref. [67] gives a consistent description of the 

observed surface induced features: both peak positions and intensities are explained 

by the theoretical calculations. Experiment performed with different polarizations 

are suggested to further test the validity of our calculations. In particular, for the 

case of a polarization perpendicular to the surface, we predict the ratio J(T1)/I(T2) 

to be close to 4.1 (instead of 0.4 in the present case). The peak T1,2 , which corre­

sponds to the sum of the peaks T1 and T2 , would then be displaced towards smaller 

binding energies [ 94]. 
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Table 4.1: Core level shift for the Si 2p atomic core level under various 
valence shell configurations. The reference of energy is the all-electron ground 
state s2p2 configuration. The second column gives the core level shift from 
an all-electron calculation. The other columns give the results for various 
approximations. Energies are in e V. 

D..Eae < D. ~~XC > ?/J2p < D..Vhxc > 0 ae 1/;2 
< D..~~xc >?/;~ 

s2p1.sdo.s -0.2295 -0.2232 -0.2295 -0.2281 

s1.sp2do.s -0.2818 -0.2823 -0.2708 -0.2694 

s2p1.s -0.32627 -0.320766 -0.326275 -0.32546 

s1.sp2 -0.38448 -0.37400 -0.384477 -0.37239 

s2pl -0.69999 -0.684577 -0.699979 -0.69540 

s2po -1.571513 -1.520704 -1.571431 -1.547644 

s1po -2.67917 -2.561516 -2.678618 -2.58616 

sopo -3.76403 -3.56228 -3.76225 -3.42411 

Table 4.2: Monopolar and quadrupolar contributions v(o) and V(2) to the 
crystal potential matrix elements for different silicon atoms i. For the 
monopole contribution, only the difference from the value V 0(0), where 0 
is the innermost silicon of our slab, is given. The energies are in meV. 

f I V(O)(f)- V(0l(o) I V(2)(f) 

surface silicon -79 -70 

subsurface silicon 116 2.8 

second layer silicon 9 -0.5 

innermost silicon 0 -1.5 
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Table 4.3: Theoretical and experimental values for the Si 2p core level shift. 
Shifts at the surface and subsurface for the Si 2p3; 2 related peaks are given 
with respect to the bulk Si 2p3; 2 level. The corresponding shifts for the Si 
2p1; 2 level are given with respect to the bulk Si 2p1; 2 level. The theoretical 
values for the subsurface shifts are the same for both the Si 2p3; 2 and Si 2p1; 2 
levels. The energies are in meV. The experimental values have a ± 5 meV 
uncertainty. 

i I This work Exp. 

surface Si 2P3/2 (-114,-44) (-150,-80) 

surface Si 2Pl/2 -83 -120 

subsurface silicon Si :?p 116 88 
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-1.5 -1 -0.5 0 
Relative binding energy ( eV) 

Figure 4.1: (a) Sizp spectrum taken at hv=108 eV and normal emission to 
optimize the bulk component. The light is polarized in a direction parallel 
to the surface. The T1,2 peak is the surface 2p3;z peak composed of the two 
components T1 and Tz as shown in the insert of (b). The peak designated by 
T3 is the subsurface (or backbond) Si 2p3; 2 feature. (b) Surface sensitive Sizp 
spectra at hv= 130 e V. The light is polarized in a direction parallel to the 
surface. 
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Chapter 5 

Quasiparticle band-structure of hexagonal BN 

In this chapter, we study layered hexagonal BN structures. This work is car­

ried out in conjunction with our study of the BN nanotubes. Compared to bulk 

semiconductor calculations, we are here confronted with the added complication of 

describing correctly the interactions between neighboring layers. These interactions 

are, in particular, responsible for the dispersion of the quasiparticle energy bands 

along directions perpendicular to the planes of atoms. In the case of bulk hexagonal 

BN, such dispersions can be as large as 2 e V. This is very large considering that two 

neighboring BN layers are 3.4 A apart. Further, we find that these dispersions are 

nearly identical within LDA and GW. These two facts suggest that the layer-layer 

interactions in hexagonal BN are stronger than Van der Waals forces and are well 

described within LDA. 

A striking feature of hexagonal BN from our calculations is the presence, at the 

bottom of the conduction bands, of an interlayer state with a charge density mostly 

localized in between two neighboring layers. When the BN layers are separated far 

from each other, this state evolves into a "single-layer" state of which the charge 

density has a maximum at 3.3 a.u. away from the plane of atoms. This state 

displays a nearly-free-electron-like character and, unlike other electronic states, the 

self-energy correction to LDA is negligible for this state. This state is the origin of 

the BN nanotubes nearly-free-electron-state described in section 2.3 of Chapter 2. 

5.1 Introduction 

Recently, using an analogy between carbon and BN-based materials, the exis­

tence of BN nanotubes has been suggested [14, 47]. Because these nanotubes can be 
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viewed as being generated by rolling a sheet of hexagonal BN onto itself, this simple 

sheet structure has been the object of current interest [14, 95]. Further, it has been 

shown [14] that, in the case of multi-wall and single-wall BN nanotubes, the effect 

of intra- or inter-wall interactions on the electronic levels could be reproduced in 

a band-folding analysis by allowing the isolated BN sheet to interact appropriately 

with neighboring BN layers. In addition, the intrinsic properties of bulk BN mo­

tivate this study, since cubic BN is an extremely hard material [96] and displays 

the largest band gap of all III-V compounds. In this work, both bulk hexagonal 

BN and the isolated BN sheet are investigated. To our knowledge, this is the first 

quasiparticle calculation for bulk hexagonal boron nitride [97]. We also have exam­

ined intermediate structures composed of a periodic repetition of BN layers with an 

interlayer distance varying from d = 5.5 A to d = 13.5 A and analyzed the effect of 

the ·interlayer interaction on the band structures. We will use the notation, BN (d), 

for such hypothetical compounds. 

As discussed before, because the density functional theory is a ground-state 

formalism, standard local density approximation (LDA) band structure calculations 

do not yield the true quasiparticle energy levels. In particular, it is well known 

that LDA underestimates the band gap of most semiconductors. In this Chapter, 

we show that LDA not only underestimates the gap of the structures under study, 

but also yields an incorrect ordering of the conduction bands in the case of the 

isolated BN sheet. In fact, for this system, the self-energy correction is strongly 

band- and k-dependent and therefore plays a more drastic role than one would 

expect from a simple "scissor" approach sometimes used to describe the results of 

self-energy corrections. As in the previous Chapters, the quasiparticle calculations 

are carried out using the Hybertsen-Louie method [2] which is based on Hedin's GW 

approximation [3] for the electron self-energy operator. 

This Chapter is organized as follows. In section 5.2, the theoretical methods 

and technical details are discussed for the LDA and quasiparticle calculations. In 
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section 5.3.1, the LDA band structures are given and the wavefunctions of the states 

controlling the band gaps are presented. In particular, it is shown that an interlayer 

free-electron-like-state forms the bottom of the conduction band in most structures. 

In the case of an isolated sheet, the interlayer state transforms into a state with a 

large extension into the vacuum, away from the plane of atoms. In section 5.3.2, the 

quasiparticle band structures are given, and the differences between the quasiparticle 

and the LDA results are discussed. Discrepancies with a previous quasiparticle band 

structure calculation performed on an isolated BN sheet [95] is analyzed. In section 

5.4, a summary and conclusions are given. 

5.2 Theoretical methods 

We carry out ab initio pseudopotential LDA calculations, using a planewave 

expansion for the pseudopotentials and wavefunctions. The energy cut-off for the 

electronic w~:wefunctions is set at Ecut= 36 Ry. Boron and nitrogen pseudopotentials 

are generated following the Troullier and Martins pseudopotential generation scheme 

[41]. The Ceperley-Alder exchange and correlation potential [77] is used. The B-N 

bond length is set to the experimental distance of 1.45 A. The distance between 

two layers is chosen to be 3.34 A for bulk hexagonal BN. For this structure, AB 

stacking with each B atom on top of a N atom is imposed in each unit cell. A 4x4x2 

grid in the Monkhorst and Pack scheme [78] is used to generate 20 points in the 

irreducible Brillouin zone (BZ). The conventional notation for the hexagonal BZ are 

reproduced in Fig. 5.1. Among these 20 irreducible k-points, 10 are located in the 

rMK area and 10 in the ALH area. 

For BN (d) structures, we choose an AA stacking with identical atoms on top of 

each other. This permits us to reduce the size of the unit cell by a factor two as 

compared to the stacking in bulk hexagonal BN, and the results make no difference 

in the limit of the isolated sheet. Both the isolated sheet and the intermediate BN (d) 

structures have the D6h symmetry, while bulk hexagonal BN transforms according 
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to the symmetries of the smaller C6h group. The inter-layer distance is varied 

between d = 5.5 A and d = 13.5 A until stabilization of the electronic energy levels 

is achieved. We then obtain the band structure of an isolated BN sheet within this 

supercell approach. 

The quasiparticle calculations are carried out using the scheme presented in 

section 3.2.2 of Chapter 3. The dielectric matrix is truncated at lq + Gl = 3 a.u. 

This is sufficient to describe the local-field effects in the present cases. The k­

point sampling used for the BZ summations involved in the calculation of both the 

dielectric matrix and the self-energy matrix elements is the same as those used in 

the LDA calculations. We include 40 bands per atom in the unit cell to perform the 

summation over the conduction bands for the calculation of the RPA independent­

particle polarizability. The same number of bands is used to calculate the electron 

Green's function. Finally, a cut-off of lq + Gl = 4 a.u. is used to converge the 

bare-exchange contribution to the self-energy. Coulomb-hole and screened-exchange 

terms converge faster, and we set lq + Gl ~ 3 a.u. for these calculations. This set 

of convergency parameters gives quasiparticle energies converged to within 0.1 eV. 

5.3 Results 

5.3.1 LDA calculations 

In Fig. 5.2, the LDA band-structure for bulk hexagonal boron-nitride is plotted 

along high symmetry directions of the BZ . The energy levels at high-symmetry 

points are reported in Table 5.1. Because of layer-layer interactions, the dispersion 

along the c-axis is non-negligible as can be seen from the band structure along the 

r A, ML and KH directions. Within LDA, we find that bulk hexagonal BN is a large 

gap semiconductor, with an indirect gap of 3.9 eV between the top of the valence 

band near K and the bottom of the conduction band at M. The top of the valence 

band, located near K along Kr (we will use the notation T1 for this point), is very 
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close in energy to the highest occupied (HO) state at H (within room temperature 

in our calculations). The direct gap at r is found to be 5.95 eV. Both the indirect 

band gap and the direct gap at rare smaller than in cubic BN [98]. The direct band 

gap at r is most sensitive to the structure. It changes by 2.65 eV between the cubic 

and hexagonal structure (As discussed below, this is due to the "interlayer" nature 

of the conduction band minimum in the case of the hexagonal structure). We note 

that for AlN and GaN compounds [99], the direct gap at r differs by at most 0.3 

eV between the cubic and the wurtzite structure (both exhibit sp3 hybridization). 

By analogy, we conclude that the indirect gap at r must be also smaller by at least 

2 eV for hexagonal BN as compared to wurtzite BN. This should help to identify 

the structurality of tubular BN in its recently predicted novel forms [34]. In Fig. 

5.3(a),(b) and (c), electron densities are given for the bottom of the conduction 

band at M and the HO state at K and H, respectively. For the lowest unoccupied 

(LU) state at M, the charge density is localized on the boron atoms while for the 

HO state at K and H, the charge density is localized on the nitrogen atoms. All 

of these states display a 1r or 1r*-like character. We note the difference of charge 

localization for the HO state at K and H. A phonon-assisted optical transition from 

H to M would require phonons propagating along the c-axis. We expect these two 

features to help in the identification of the character of the states involved in either 

p-type doping or optical experiments. 

We study also the LU state at r. The corresponding charge density is represented 

in Fig. 5.3( d). This state has most of its charge concentrated in the inter-layer region. 

The xy-average charge density plotted along the c-axis shows a strong maximum at 

the midpoint between the two neighboring BN layers. This state is the analog of 

the interlayer-state in graphite. The remaining charge on the BN planes is located 

mostly on the nitrogen atoms. This is in contrast to graphite where the on-plane 

charge for the inter-layer state is equally distributed on each carbon atom. The 

difference in ionicity between B and N explains this feature for hexagonal BN. 
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As intermediate structures between bulk hexagonal BN and an isolated sheet, we 

study the BN(d) "gedanken" compounds. We vary the inter-layer distanced from 

5.5 A to 13.5 A (we note that d=3.4 A is the bulk hexagonal interlayer distance). 

Stabilization of the band-structure is observed for d larger than 11.5 A. This is 

established by comparing with the band structure of the system with d=13.5 A. 

With the interlayer distance increasing from d=5.5 A to larger values, the energy 

of the valence states and lowest unoccupied states hardly changes, except for the 

LU state at r which moves up in energy. This is not surprising since this state 

is the analogue of the inter-layer state in bulk hexagonal BN and has a very large 

extension into the interlayer region. We show in Fig. 5.4 the evolution of the charge 

density for this state for d=5.5, 9.5 and 13.5 A. As one can see, the corresponding 

wavefunctions from neighboring planes strongly overlap for d=5.5A and d=9.5A.. 

Only for d=13.5 A, this overlap begins to be negligible. In the case of d=13.5 A, 

we also plot the average potential along the c-axis. This potential is very flat in 

the middle of the inter-layer region, insuring that indeed the BN layers are not 

interacting. We list in Table 5.2 the energy of the band gap edge states at r, K and 

M. The eigenvalues stabilize for d 2: 11.5 A. We check that for BN( d=13.5) there 

is no dispersion along the r A direc.tion, which confirms that for such a layer-layer 

distance, two neighboring planes are not interacting. For d .:::;; 6.5 A, the bottom 

of the conduction band is at r within LDA. For larger inter-layer distances (and 

therefore for the isolated sheet), it is at K. For all structures, the top of the valence 

bands is atM. The LDA band-structure for d=13.5 A is presented in Fig. 5.5. Using 

our results for BN(d=13.5), we conclude that, within LDA, the isolated BN sheet 

is a 4.3 e V indirect gap semiconductor. 

The lowest unoccupied level at r is a state which extends into the vacuum region 

with a maximum charge density at about 3.3 a. u. away from the plane of atoms. 

Such a state is difficult to understand in terms of B or N atomic orbitals. We note 

in Fig. 5.3(a),(b ),(c) that the Pz-like orbitals associated with the BN sheet have a 
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maximum charge density which is localized at most at 0. 75 a. u. away from the 

atomic layer. Another important feature of the LU state at r is that its in-plane 

effective mass is calculated to be m* = 0.95 ± 0.05 in units of the free electron mass 

(the value varies slightly along the different planar directions). Therefore, this state 

displays a nearly-free electron (NFE) like character, and an electron in this state 

would be mainly sensitive to the crystal potential averaged over the plane parallel to 

the BN layers. We denote this potential Vxy(z), where z is the distance ofthe electron 

from the BN layer to which it is bound [100]. Following this idea, we solve the one­

dimensional Schrodinger equation for an electron in the Vxy(z) potential associated 

with an isolated BN sheet. Practically, we use the Vxy(z) potential calculated for the 

BN(d=l3.5) structure and set the vacuum level to the value of Vxy(z) at 6.5 A away 

from a given BN layer. We plot this potential in Fig. 5.6 together with the charge 

density for the bound state (n=0,1,2) solutions of this one-dimensional Schrodinger 

equation. The most important result is that the n=2 level (located -0.55 eV below 

the .vacuum level) is very similar in shape to the charge density (represented in Fig. 

5.4(c)) of the NFE state in BN(d=l3.5). In particular, the n=2level charge density 

has a maximum at around 4.1 a.u away from the BN layer. This is larger than the 

value of 3.3 a.u. that we find for the NFE-state but the qualitative agreement is 

satisfying, accounting for the simplicity of the model. Thus, our physical picture is 

that the NFE planar state is indeed the n=2loosely bound state due to the attractive 

planar average potential of a BN sheet but slightly modified by the discrete atomic 

potentials. The n=O and n=l states are so tightly bound to the BN sheet that they 

are strongly modified by the crystal potential and become indistinguishable from 

states obtained within a tight-binding description. We believe that such NFE plane 

states could be a very general feature of isolated crystalline sheet. 

5.3.2 Self-energy calculations 

We have performed self-energy calculations for bulk hexagonal BN, BN(d=5.5), 
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BN(d=7.5) and BN(d=l3.5). As a first step, the static inverse dielectric matrix 

cab' ( q) is calculated within the random phase approximation. From this calculation, 

the macroscopic dielectric constant can be extracted using the relation EM = ~:0r} ( q = 

0). We find EM=4.9 for bulk BN and EM=3.3 for both BN(d=5.5) and BN(d=7.5). 

This can be compared to the value of EM = 4.5 for cubic BN [97]. Using the Philips 

and van Vechten empirical relation (see formula (6) of Ref. [97]), one can see that the 

larger the average gap the smaller the macroscopic dielectric constant. Therefore, 

the ordering of the dielectric constants for these materials is consistent with the 

values for their respective gaps, since the band gap for cubic BN was calculated 

[98] to be 4.2 eV within LDA (which is larger than all LDA gaps calculated in the 

present work). However, owing to their different dimensionality, the plasmon energy 

for bulk BN structures and the isolated sheet may be significantly different and such 

an empirical relation cannot be straightforwardly used. 

The quasiparticle band structure of bulk hexagonal BN is represented in Fig. 5. 7. 

The main effect of the self-energy correction is to open the gap from 3.9 e V (LDA 

value) to 5.4 eV. Within GW, the calculated band gap is smaller for bulk hexagonal 

BN than for bulk cubic BN by 0.9 eV [97]. This is consistent with the closing of the 
' 

gap going from diamond to graphite (in the case of BN, the ionicity gap prevents 

the occurrence of a semimetallic behavior). Quasiparticle eigenvalues are reported 

in Table 5.1 together with the LDA energies for high symmetry points. Because 

the self-energy is weakly k-dependent in this case, the GW band structure is very 

similar to the LDA band structure except for the band gap value. In particular, 

the gap remains indirect between the top of the valence band at T 1 near K and the 

bottom of the conduction band at M. We note that the self-energy correction for 

the HO state at H and K are nearly identical so that the LDA energy difference 

between the top of the valence band and the HO state at K is not changed by the 

self-energy correction and both states remain very close in energy. 

For BN(d=5.5), the self-energy correction 6.E(E~fA) = E~{- E~fA is rep-
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resented in Fig. 5.8. Contrarily to bulk hexagonal BN, the self-energy correction 

t::.E(Ef:,f!A) is strongly k-dependent. In particular, the correction to the lowest­

occupied state at r is negligible, while the self-energy correction for the LU state 

at K and M are both equal to 0.6 ± 0.1 eV. As a result, not only is the gap opened 

up in the quasiparticle approach but, in addition, the ordering of the lowest con­

duction bands is modified. In particular, the bottom of the conduction band is 

displaced from K to r by the quasiparticle treatment. Therefore, within GW, the 

gap is indirect between K and r. We note that, because the LU state at r displays 

a nearly-free-electron like character, it is not surprising that the LDA exchange­

correlation potential and the self-energy operator yield the same expectation value 

for this state. 

We performed the same self-energy calculation for BN(d=7.5). The self-energy 

corrections to the LDA eigenvalues are similar to those obtain for BN ( d=5.5) within 

the accuracy of the method. This is presented in Table 5.3 for selected k-points. 

The stability of the quasiparticle corrections for d 2:: 5.5 A allows us to obtain the 

quasiparticle band structure of the isolated boron-nitride sheet. For this structure, 

we find the quasiparticle gap to be 6 eV and the conduction band minimum at r 
(see Fig. 5.9). The gap value is intermediate between the gap for bulk hexagonal 

and cubic BN (respectively 5.4 and 6.3 eV within GW). We note that layer-layer 

interaction increases the dispersion of the electronic bands and tends to reduce the 

gap. This effect can be used to understand the smaller gap of bulk hexagonal BN 

as compared to the isolated sheet [102]. 

We note that the present results show some discrepancies with a recent self­

energy calculation [95] for an isolated BN sheet. The work in Ref. [95] was based on 

the M0ller-Plesset perturbation theory, and ST0-3G gaussian orbitals were used. 

The most important difference between the two sets of results is that the state 

predicted in the present work to be the bottom of the conduction band within GW 

(the NFE state at r) was reported to be 12.3 eV above the LU state at K in Ref. 
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[95]. This state is shown here to have a very large extension iu the vacuum region. 

Such an extended state is easily described using a plane-wave basis. However, a 

localized basis such as ST0-3G or a Slater-Koster type (3s,3px,3Py,3p:) basis [103] 

would have difficulty in reproducing the extension of such a wavefunction away from 

the atoms. A previous tight-binding (TB) calculation performed on bulk hexagonal 

BN [47] shows that the LU state at f is (within TB) located 10 eV above its "LDA­

planewave basis" analogue (we aligned the bottom of the conduction band at K in 

both calculations). This is consistent with the results of Ref. [95] where the use of 

a limited localized basis underbinds the extended states. 

5.4 Conclusion 

We have calculated the quasiparticle band structure of the most common al­

lotropic form of bulk BN which is hexagonal. The band gap is indirect and calcu­

lated to be 5.4 eV (that is 0.9 eV smaller than cubic BN). The isolated BN sheet 

has also been studied. The band gap of the sheet is calculated to be 6.0 eV. The 

bottom of the conduction band is a state with charge density \Vhich has a very large 

extent into the vacuum region. This feature makes its study difficult for theoretical 

methods based ou the use of localized basis functions. The present results have 

been used to calculate the quasiparticle band-structure of BN nanotubes [14]. In 

particular, the LU state for these tube is found to be a nearly-free-electron state 

with charge density localized along the axis of the tubes. This free-electron-tubular 

state is derived from the "sheet" state of the isolated BN sheet when the planar 

structure is rolled into a tubular shape. 
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Table 5.1: Bulk hexagonal BN eigenvalues at high-symmetry points. The 
energies are in eV. The top of the valence band is taken to be the zero of 
energies for both LDA and GW results. 

k-point \LDA GW 

rlv -17.94 -19.87 

r3v -17.65 -19.57 

r3v -6.33 -7.33 

rlv -4.12 -4.80 

fsv -1.45 -1.69 

r6v -1.32 -1.57 

rlc 4.63 5.96 

r3c 10.06 12.61 

K3v -14.14 -15.91 

K1v -8.05 -9.01 

K2v -7.89 -8.82 

K3v -7.17 -8.45 

K3v -0.14 -0.14 

K3c 4.50 6.19 
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Table 5.2: LDA band edge states energies at r, K and M for various BN 
interlayer distances d. The energies are in eV. The top of the valence band 
K3·v is taken to be the zero of energies. 

interlayer distance (A) 

state 5.5 7.5 9.5 11.5 13.5 

r6v -1.43 -1.50 -1.57 -1.57 -1.57 

rlc :3.97 4.19 4.51 4.61 4.61 

K3v 0.00 0.00 0.00 0.00 0.00 

K3c 4.41 4.36 4.33 4.32 4.32 

M3v -0.95 -0.97 -0.99 -0.99 -0.99 

M1c 4.57 4.49 4.45 4.43 4.43 

.. 
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Table 5.3: Selected energy levels at r, K and M for BN(d=5.5), BN(d=7.5) 
and BN(d=l3.5) within LDA and GW. The energies are in eV. The top of 
the valence band is taken to be the zero of energies for both LDA and GW 
results. 

d d=5.5 d=7.5 d=13.5 

LDA GW LDA GW LDA GW 

rlv -17.81 -19.74 -17.81 -19.75 -17.98 -19.92 

r3v -5.31 -6.21 -5.32 -6.23 -5.40 -6.31 

r5v -1.43 -1.64 -1.50 -1.61 -1.57 -1.68 

rlc 3.97 5.52 4.19 5.58 4.61 6.00 

K3v -14.16 -15.82 -14.16 -15.84 -14.37 -16.05 

Klv -7.98 -8.84 -7.99 -8.86 -8.21 -9.08 

K2v -7.18 -8.37 -7.19 -8.40 -7.35 -8.56 

K3v 0.00 0.00 0.0 0.0 0.00 0.00 

K3c 4.41 6.45 4.36 6.46 4.27 6.37 

Klc 12.32 14.44 12.10 14.16 11.93 13.99 

Mlv -14.73 -16.42 -14.73 -16.05 -14.94 -16.26 

M3v -8.92 -10.15 -8.91 -9.92 -9.10 -10.11 

Mlv -4.22 -4.72 -4.24 -4.73 -4.44 -4.93 

M3v -0.95 -1.15 -0.97 -1.08 -0.96 -1.07 

Mlc 4.57 6.65 4.49 6.39 4.43 6.33 

M3c 9.19 11.42 9.24 12.26 9.25 12.27 
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Figure 5.1: High symmetry points and directions axe labeled for the irre-

ducible part of the hexagonal Brillouin zone. · 
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Figure 5.2: LDA band structure for bulk hexagonal boron nitride plotted 
along high symmetry directions of the BZ. The energies are in eV. The top of 
the valence band is taken to be the zero of energies. The edges of the gap are 
indicated by horizontal lines as a guide to the eyes. 



5. 5. Tables a·nd Pig·u.·res 

(3a) (3b) 

0 1 0 1 
(3c) 

0 1 0 1 

Figure 5.3: Contour plots in a plane perpendicular to the BN layers of the 
charge density of selected states for bulk hexagonal BN. BN layers are indi­
cated by horizontal lines. N atoms are represented with filled circles and B 
atoms with empty circles. In addition, the charge density averaged over planes 
parallel to the BN layers is represented as a function of the distance perpen­
dicular to the BN layers; this charge density is normalized to unity within one 
unit-cell. Figures (a), (b), (c) and (d) correspond respectively to the LUMO 
state at M, the HOMO state at K, the HOMO state at H and the LUMO state 
at r. In (d), contours labeled (1) and (2) correspond to a charge density of 
respectively 0.16xlo-4 and 0.63xlo-4 electronja.u. 3 • The maximum charge 
density is 1.26 x 10-4 electron/ a.u. 3 on the nitrogen atoms. 
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Figure 5.4: Contour plot in a plane perpendicular to the BN layers of the 
charge density of the LUMO state at r for (a) BN(d=5.5), (b) BN(d=9.5) 
and (c) BN(d=l3.5). BN layers are indicated by horizontal lines. N atoms are 
represented with filled circles and B atoms with empty circles. In addition, the 
charge density averaged over planes parallel to the BN layers is represented as 
a function of the distance to the BN layers. This charge density is normalized 
to unity within one ur~it-cell. In (~), contours labeled (1), (2j and (3) corre­
spond to a charge density of respectively 0.14x 10-4 , 0.43 x 10- and 0.28 x 10-4 

electronja.u. 3 . The maximum charge density is 0.85xlo-4 electronja.u. 3 on 
the nitrogen atoms. The total potential averaged over planes parallel to the 
BN layers (Vx,y(z)) is also represented. Vx,y(z) varies from -2.05 Ry to the 
vacuum level (origin of energies). 
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Figure 5.5: LDA band structure for an isolated BN sheet plotted along high 
symmetry directions of the BZ. The energies are in eV. The top of the valence 
band is taken to be the zero of energies. The edges of the gap are indicated 
by horizontal lines as a guide to the eyes. 
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Figure 5.6: (a) Vx,y(z) potential and (b) bound eigenstate charge densities are 
represented. The potential is in Rydberg and the distance in a.u. Positions of 
the eigenvalues with respect to the vacuum level are represented by horizontal 
line in (a). 
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Figure 5.7: GW band structure for bulk hexagonal boron nitride plotted 
along high symmetry directions of the BZ. The energies are in eV. The top of 
the LDA valence band is taken to be the zero of energies. The edges of the 
LDA gap are indicated by horizontal lines as a guide to the eyes. 
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Chapter 6 

A mixed-space formalism for quasiparticle energy 

calculations 

6.1 Introduction 

The use of reciprocal space formalisms, in which all quantities of interest are ex­

panded in a planewave (PW) basis, has imposed itself as a privileged tool to study 

the properties of periodic systems. The simplicity of such formalisms, the orthonor­

mality of the PW basis, the unambiguous way of controlling the convergency with 

respect to the number of basis functions, and the efficiency of fast Fourier transforms 

(FFT) explain the success of these methods [104). However, the drawbacks of the 

PW basis are well-known and are related mainly to the difficulty in using them to 

describe localized states and to the fact that each region of real space is necessarily 

described by the same number of planewaves. For systems containing several types 

of atoms, the deepest potential controls the planewave energy cut-off so that the 

shallow atomic potential regions are unnecessarily over-converged. Another com­

mon situation in modern calculations concerns the study of molecules (or surfaces) 

in a supercell (or slab) geometry where the vacuum constitutes a large part of the 

unit cell. Since the number of planewaves needed (at a given energy cut-off) is pro­

portional to the cell volume, a large fraction of CPU-time and memory is spent in 

describing the vacuum region [105). 

For these systems, the use of a real-space formalism presents some advantages. 

First, localized objects are easily described and different basis functions can be used 

to describe different regions of space. Another crucial advantage is related to the 

decay at "large" distance of the screened Coulomb interaction. This is the origin 
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of the success of recent N-liuear tnethods (where N is the number of atoms in the 

unit cell) proposed to perform baud structure calculations in crystals [8, 9, 10, 11]. 

Furthermore, there is a strong motivation for developing a real-space approach for 

the study of response functions such as pair distribution functions, Green's functions, 

polarizability, self-energy operator and vertex correction, which are known to have 

a shorter range than the screened Coulomb potentiaL 

Vve present in this Chapter a mixed-space formalism for the calculation of the 

dielectric response of infinitely extended periodic systems. The response functions 

f(r,r') of interest are directly calculated on a (r,r') grid in real space. No local­

ized basis such as gaussians, Slater-type, or atomic orbitals are used in the present 

scheme. In particular, the problems of convergency, non-orthonormality and explicit 

dependence in ,ionic coordinates associated with these basis are avoided [106]. In 

this respect, our method is significantly different from recent real-space approaches 

based in particular on the use of linear muffin-tin orbitals to express and calculate 

the dielectric matrices [107], self-energy operator, and quasiparticle energies [108] of 

periodic systems. 

The obvious difficulty related to a purely real-space formalism is that a typical 

response function, such as the independent polarizability x0 (r, r'), do not have the 

full translational symmetry of the crystal; that is for two lattice vectors R and R', 

x0 (r + R, r' + R') is in general not equal to x0 (r, r') unless R = R'. Therefore, 

in theory, x0 (r, r') needs to be calculated for r in a single Wigner-Seitz (WS) cell 

and r' in the entire crystal. In practice [109], the response function x0 
( r, r') decays 

rapidly as jr- r'j -+ oo so that for each r, x0 (r, r') would need to be calculated only 

for r' in a sphere of radius Rmax around r. However, for metals, and also small gap 

semiconductors, the decay of the response function may be slow and Rmax could 

span the length of many unit cells so that the computational task would remain 

considerable. 

We show here that x0 (r, r'jw) (and related response functions) can be written in 
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104 Chapter 6. A mixed-space formalism for quasiparticle energy calculations 

terms of a "mixed-spaced" response function x~(r, r') where rand r' are restricted 

to a single Wigner Seitz (WS) cell and q spans the irreducible part of the Brillouin 

zone (BZ). This method is shown to be very general, and its application to the 

calculation of the self-energy operator in the GW approximation [3] is presented. 

This chapter is organized as follows. In section 6.2, the formalism for calculation 

of the polarizability, self-energy operator and quasiparticle energies is presented. In 

section 6.3, some results are given, and in section 6.4, some extensions of this work 

and perspectives associated with this method are given. Section 6.5 concludes this 

chapter. 

6.2 Formalism 

6.2.1 The independent-particle polarizability 

The independent polarizability x0 (r, r'lw), which can be explicitly written in 

terms of the eigen-solutions (ci,1/Ji) of a one-electron Hamiltonian [llO]: 

0 ( 'I ) = "'""' (f· _ f·) 1/Ji(r)'lj;j(r)'lj;j(r')'lj;i(r') x r, r w L....J t J . • , 
. . Ej - cJ· + W + ITJ t,J 

(6.1) 

where TJ is a positive infinitesimal, is the usual starting point for dielectric screening 

and, subsequent, self-energy calculations. Taking the (i,j) pairs of states to be the 

usual (nk,n'k') Bloch states, it is straightforward to show that: 

with 

xo(r, r'lw) = I: eiq-(r'-r) x~(r, r'lw) 
q 

0 "'""' ( ) u~,k+q(r)un'k(r) u~,,k(r')un,k+q(r') 
Xq(r, r'lw) = L....J fn,k+q- fn'k . , 

, k En k+q - En'k + W + ITJ n,n, ' 

(6.2) 

(6.3) 
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where the u's are the periodic part of the Bloch states. Obviously, the x~'s an~ 

periodic in space, so that they need to be calculated only for r and r' within a 

single WS cell. In the following, the variable r will be understood to span the entire 

space, while the variable ( will be restricted to a single WS cell. The fact that x~ 

is a periodic function is the advantage of the present mixed-space formalism over a 

straightforward implementation of Eq. 6.1 in real-space. We can rigorously "fold'' 

the entire space onto a single WS cell without having to rely on the decay rate of 

the response function of interest [111]. In particular, as shown below, the domain 

of integration of all real-space integrals involved in the calculation of the dielectric 

response function, the self-energy operator, and the quasiparticle energies can be 

rigorously restricted to a single WS cell. We emphasize that the combination of 

Eqs. 6.2 and 6.3 is just a partitioning of the double sum over states in Eq. 6.1 

and does not introduce any additional Brillouin zone (BZ) summation. On the 

contrary, because the eiq·(r'-r) phase factor is explicitly preserved in our formalism 

(in particular not integrated as in Eq. 6.1), conservation of momentum can still be 

used to restrict BZ summations. 

Equation 6.2 can be inverted and we obtain: 

x~((, (') = ~ L e-iq·((+R-(') xo(( + R, (') 
R 

(6.4) 

In particular, if x0 is known from the calculation of x~ on a given q-grid in the 

irreducible part of the whole BZ, then one can calculate easily x~ at any q-point in 

the BZ. We note also that the independent polarizability in reciprocal space can be 

written: 

X~,G·(qlw) = n~s I I d(d(' e-iG·( x~((, ('lw) eiG'·(' . (6.5) 

The inversion of equation 6.5 reads: 
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X~((, ('jw) = I: eiG·( X~,G,(qjw) e-iG'·(' . (6.6) 
G,G' 

The set of equations 6.1, 6.3, 6.4, 6.5 and 6.6 establishes the relations among the 

present "mixed-space" formalism, the direct real-space formalism, and the reciprocal 

space formalism. The same set of relations will be used throughout this chapter to 

define other mixed-spaced quantities (such as the full polarizability Xq, the inverse 

dielectric matrix c:q: 1
, the screened potential Wq, and the self-energy operator 2::q) 

and relate them to their real-space or reciprocal space counterparts. 

Compared to the usual Adler-Wiser reciprocal-space formalism, where the 

X~ G' ( q) are written (for systems with a gap and w=O): 
' 

0 
4 < v, kje-i(q+G)·rjc, k + q > < c, k + qjei(q+G')·r' jv, k > 

XGG'(q) = n I: 
~~ cvk Ev,k-Ec,k+q 

' ' 
(6.7) 

the present "mixed-space" scheme (as also the "direct" real-space scheme) does 

not require the calculation of any matrix elements. This simplification contributes 

largely to the efficiency of the present scheme as compared to a reciprocal-space 

approach. Indeed, the calculation of the matrix elements in Eq. 6.7 scales as N~w 

in reciprocal space, where Npw is the number of planewaves used to expand the 

electron wavefunctions. Further, since such matrix elements must be computed for 

each combination of valence and conduction bands and G-vector, the calculation in 

reciprocal space of the polarizability matrix x~ scales as N~tomN~wNc, where Natom 

is the number of atoms in the unit cell and Nc the size of the dielectric matrix. (Nc 

and Npw scale also as Natom, but we keep distinct notations here because Npw 

accounts also for the chemical nature of the atoms. This is a crucial information in 

this type of calculation. N c is usually one order of magnitude smaller than N PW). 

This should be compared to the N~tomN{ scaling of the mixed-space approach, where 

N ( is the number of real-space grid point in the WS cell. Therefore, the ratio of 

the mixed-space approach to the reciprocal space approach scales as N{ jN~wNc, 
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where Nc, and Nc are formally equivalent through Fourier transform. Thus, the 

reduction in computational effort is then equal to Nc/Npw. In addition, the 

scaling given above does not take into account the use of a cut-off technique in real­

space which, formally, reduces by another factor Nc, / N PW the cost of the mixed-space 

approach in the limit of large unit cells. 

We note that an alternative scheme would be to adopt a "reciprocal-space" ap­

proach but with calculation of the matrix elements in real-space using fast Fourier 

transform techniques. In this case, the "reciprocal-space" approach would scale as 

N;tomNcNc,Log(Nc,). This is then equivalent to the N;tomNl scaling given above 

for the mixed-space approach. Also, it is important to consider the fact that in 

the reciprocal-space appro,ach, the number Nc taken to be the size of the dielec­

tric matrix is the number of G-vectors within the sphere of radius Gmax which is 

inscribed inside the polyhedron defined by Gi ::::; Gmax (with Gi the components of 

the G vectors). For a typical BCC or FCC packing, the sphere is roughly 30 % 

smaller in volume than the corresponding polyhedron, which means that Nc may 

be actually smaller than Nc,. This explains why, in the case of bulk silicon (see 

below), we find "only" a 50 % saving for the mixed-space approach as compared 

to the reciprocal-space approach (and not one order of magnitude as stated above). 

As mentioned above, in the case of large unit cells, the scaling of the mixed-space 

approach reduces to NatomN!, that is one Natom factor less that the "alternative'' 

reciprocal-space approach. It is obvious that for large unit cells and for unit cells 

containing vacuum and/or several types of atom, the saving over the number of grid 

points effectively used in real-space can easily over-reach the 30% factor described 

above. 

6.2.2 The inverse dielectric response function 

Within RPA, the dielectric matrix E(r, r'lw) can be calculated from the indepen­

dent polarizability x0 ( r, r'lw) using the following equation: 
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(6.8) 

where V is the bare Coulomb potential. We may define a "mixed-space" dielectric 

function Eq by the following equation: 

(6.9) 

where V is related to the Coulomb potential V by the following transformation: 

Vq((, (I) = I: V(( + R, (I) e-i q·((+R-(I) (6.10) 
R 

Further, the inversion of Eq yields c::q:1. It is easy to verify that ca~G'(q), C 1(r,r') 

and c::q: 1 ((, (')are related to each other through similar relations written in Eq. 6.2, 

6.4, and 6.5 for the independent polarizability. 

We note that Vq can be efficiently calculated using standard Ewald summation 

techniques [112]. However, the definition of Vq as q --7 0 requires special care. It is 

a standard result that (in 3D): 

1 e-i q·((+R-CI) 1 

n ~ I(+ R- (II = O(q2 ) · 
(6.11) 

As expected (see the analysis by Pick et al [113]), Vq, and also Eq, are non-analytic 

for q --7 0. We describe in the Appendix to this Chapter how such singularities can 

be handled in the present formalism. 

In the case of isolated molecules in a supercell geometry, one can formally argue 

that the length of the smallest lattice vector R is infinite. Then, the summation 

over R's in the definition of V can be dropped, leading to a perfectly well defined 

expression for q = 0. Physically, this means that we switch off the undesirable 

cell-cell interactions. 
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6.2.3 The self-energy operator and quasiparticle energies 

In this section, we extend the mixed-space formalism to the calculation of the 

quasiparticle energies in the GW approximation. Following the expression for the 

self-energy operator :E in real-space: 

( 
1 ) • J dE' -i8E' ( 1 ') ( 1 ') :Er,r;E =z -e Gr,r;E-E Wr,r;E , 

27r 

we define the mixed-space screened interaction 

and the mixed-space Green's function 

It is then straightforward to show that 

where 

:E(r, r'; E) = 2:: eiq-(r-r') :Eq((, (';E) 
q 

( 
1 ) . "- J dE' -i6E' ( 1 ') ( 1 ') :Eq (,(;E =z 6 - e Gq-q' (,(;E-E Wq' (,(;E . 

q' 27r 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

Further, the matrix elements of :E with the electron wavefunctions can be written 

< nkj:E(E)jn'k' >= N b(k- k') j d(d(' 'lj)~k(() :Ek((, (';E) 'lj)n'k'((') (6.17) 

where conservation of momentum has been used. Equation 6.17 is the key equation 

for quasiparticle self-energy calculations. 
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6.3 Results and discussions 

We perform test calculations on bulk silicon and on the H/Si(111)-(1x1) surface 

in a supercell slab geometry. For each case, we generate first the electron wave­

functions in a planewave basis using standard pseudopotential LDA calculations. In 

the case of the H/Si(111)-(1x1) slab, the details of the unit cell geometry and the 

LDA calculations are described in Chapter 3. The wavefunctions are then Fourier 

transformed into real space onto a grid with dimensions equivalent to the G-space 

grid used in the LDA calculation (e.g. a 18x18x18 grid for bulk silicon which 

corresponds to a 12 Ry energy cut-off for the expansion of the wavefunctions in 

reciprocal-space). Further, one grid point out of n is kept in each direction to build 

the real-space grid on which x~((, (') will be calculated. The convergency with 

respect to the real-space grid size (that is with respect to n) is then studied by 

Fourier transforming x~((, (') back to reciprocal-space using Eq. 6.5. The resulting 

matrix elements, which will be written FT[x~((, (')]G,G'' are then compared to the 

x~(G, G') calculated in reciprocal-space using the existing method [2]. The com­

parison is performed for lq + Gl and lq + G'l up to the typical cut-off value Gmax 

used in reciprocal space to determine the dielectric matrix size (e.g. Gmax= 3 a.u. 

for bulk silicon). As expected, we verify that a good agreement is reached when the 

real-space grid is equivalent to the G-space grid on which x~(G, G') is calculated 

in the reciprocal space approach. In the examples treated below, this corresponds 

roughly to selecting n=3 (that is Npw= 27 N( with the notations of section 6.2.1). 

Similar tests are performed for Eq((, (') and Eq:1((, ('). 

6.3.1 Bulk Silicon 

We calculate for selected q-points the independent polarizability x~ ( (, (') on dif­

ferent real-space grids. The summation over the BZ in equation 6.3 is performed 

with a 4x4x4 Monkhorst-Pack grid in the BZ and 80 states are used in the sum-
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mation over conduction bands. The results are presented in Table 6.1 where we 

compare FT[x~((, (')]G,G' to x~,G,(q) for various set of (G, G'). The x~,G,(q)'s 

were calculated using the same BZ sampling and the same number of conduction 

bands. We include sets of (G, G') such that lq + Gl and lq + G'l are smaller than 

3 a.u. (which is the typical cut-off used for self-energy calculations on bulk Si). We 

see that the diagonal elements are excellently converged for a 6 x 6 x 6 grid in the 

WS cell, and the non-diagonal elements are well converged for small and medium 

G vectors and reasonably well converged for the largest G vectors considered. We 

note that large G vectors account for the very short-range behavior of the screening 

effects, and we do not expect the small discrepancy observed for these G vectors to 

have a large effect on the values of c 1 . 

Further, with x~((, (') calculated on the 6x6x6 grid, we calculate Eq((, (') fol­

lowing Eq. 6.9 and by inversion we obtain cq: 1 ((, ('). The results are summarized in 

Fig. 6.1 where we compare FT[cq:1 ((, (')]G,G' to the cq: 1 (G, G)'s calculated in recip­

rocal space. In Fig. 6.1(a), the diagonal elements FT[cq((, (')]G,G and Ea~G(q) are 

given (filled circles and left vertical axis) together with the corresponding percent 

error (open triangles and right vertical axis). The results are in nearly perfect agree­

ment, and the two sets of data are nearly indistinguishable. The maximum per cent 

error is smaller than 0.1 %, indicating the accuracy of the present calculation. In 

Fig. 6.1(b), the non-diagonal elements FT[cq((, (']G,G' are plated versus the corre­

sponding EG~G' ( q). The points obtained land nicely on the diagonal line, indicating 

again the accuracy of the present calculations. The largest errors are related to the 

large G-vectors off-diagonal elements near the origin on the graph. These matrix 

elements, which are smaller than 1 % of the diagonal elements, hardly contribute 

to the screening properties. We emphasize that the accuracy of the mixed-space 

approach as compared to the reciprocal space approach has more significance than 

simply noting that, via Fourier transform, a 6x6x6 grid in real-space contains for­

mally as much information as a 6 x 6 x 6 grid in reciprocal space. Indeed, the matrix 
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elements calculated in the reciprocal-space approach require to include (for the same 

accuracy) Fourier components of the wavefunction up to Gmax = 12 Ry in reciprocal 

space, which amounts to a 18x18x18 sampling grid. This illustrates the power of a 

real-space approach as compared to the reciprocal approach and explains why, even 

for bulk silicon, we find the mixed-space approach to be already as efficient as the 

fully reciprocal space approach. Therefore, the present method has significantly bet­

ter scaling properties than the reciprocal-space approach, with a crossover between 

the two methods which occurs for systems as small as bulk silicon. 

In a recent study, a "direct" real-space scheme, based on the straightforward 

implemep.tation of Eq. 6.1 combined with a real-space cut-off technique, has been 

tested for silicon [109]. We note that in the calculation of x0 (r, r') given by Eq. 6.1 

the entire point group ofthe crystal can be used to reduce the number of independent 

matrix elements needed to be actually calculated. Practically, one of the variable 

(say r) can be restricted to the irreducible part of the Brillouin zone (IBZ), the 

other variable spanning a sphere of radius Rmax around r (see Fig. 6.2). In the 

mixed-space approach, for a given x~(r, r'), only the small group of q can be used 

to reduce the number of (r, r') pairs for which the summation over k-points, valence 

and conduction bands must be performed. However, as soon as Rmax is larger than 

the "average" WS cell radius Rw 8 , the effective folding of the entire space on a single 

WS cell in the mixed-space approach quickly counter-balance this disadvantage. 

This is illustrated in Fig. 6.2 where we compare the WS cell for bulk silicon to 

a sphere a radius Rmax (Rmax rv 16 a.u.) centered on a given point r in the WS 

cell. As soon as Rmax is larger than Rws (Rws rv 7 a.u. for bulk silicon), the 

area spanned by r' becomes rapidly much larger in the real-space approach than in 

the present scheme. For a more quantitative analysis, we calculate the number of 

"independent" (r, r') pairs needed in the calculation of x0 (r, r') as a function of the 

cut-off radius Rmax· Our 6x6x6 grid in a single WS cell is periodically repeated 

over the entire space for use in the direct method. The curve corresponding to the 
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real-space method is plotted in Fig. 6.3 (long dash line). As expected, the number 

of pairs scales as R~ax (that is as the volume ofthe sphere built around each r in the 

IBZ). We discuss now the number of independent pairs required in the calculation 

of the x~(r, r')'s. The average number of pairs for the q's on a 4x4x4 Monkhorst­

Pack mesh in the BZ is given in solid line. Because, for each ( r, r') pair accounted 

for in this graph, a double summation over the BZ need to be performed in both 

formalisms ( compare Eq. 6.1 for the real-space approach to Eqs. 6.2 and 6.3 for 

the mixed-space approach), the ratio of the long dash line to the solid line (for a 

given Rmax) gives really the ratio of the total number of operations performed to get 

x 0 (r, r') to the number of operations performed to obtain all x~(r, r'). The cross­

over between the two schemes takes place at Rmax "' 6 a.u. Following Ref. [109] 

(and as confirmed in the next section), a cut-off of 16 a.u. is needed in the case of 

bulk silicon for a good convergency of x 0 (r, r') in the direct real-space approach. For 

such a cut-off, the mixed-space approach is manifestly advantageous over the direct 

method. Even in the case where "no-symmetry" q-points are used in the present 

mixed-space approach (upper dotted line), the cross over takes place at Rmax "' 10 

a.u. This illustrates the advantage of the mixed-space scheme as compared to the 

direct scheme. We emphasize that the advantage should be even more considerable 

in the case of metals or small gap semiconductors for which Rmax may be very large. 

We note however that, in the limit of large size unit-cell (that is when Rmax is 

smaller than Rws), both methods are identical. In particular, if the BZ sampling 

reduces to the center of the zone r, then obviously x~=r(r, r') = x0 (r, r'). 

6.3.2 H/Si(lll)-(lxl) slab 

As in the case of silicon, we calculate first x~ ( (, (') on various grids cover­

ing the unit cell (with decreasing spacing between the grid points) and compare 

FT[x~((, (')]G,G' to the x~,G,(q)'s calculated in chapter 3 (as for silicon, the recip­

rocal space cut-off used for the dielectric calculations in H/Si(111)-(1x1) is lq + Gl :::; 
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3 a.u.). Results are reported in Table 6.2. With a 6x6x40 grid covering theWS cell, 

a good convergency of both diagonal and non-diagonal matrix elements is achieved. 

This grid is similar to the reciprocal space G-vectors sampling grid imposed by the 

3 a.u. cut-off. 

We test now the possibility of taking off the grid sampling points which are 

located in the vacuum between neighboring slabs. We proceed by subtracting from 

the mesh entire planes of 6x6 grid points, starting from the planes in the middle 

of the vacuum and progressing towards the surfaces (the planes of grid points are 

symmetrically removed from the mesh on both sides of the slab). We find that 

seven 6x6 layers of grid points can be kept out of the summation in Eq. 6.5 while 

keeping the FT[x~((,(')]G,G' within 1% of their value on the initial 6x6x40 grid. 

This procedure yields a 6x6x33 grid in real-space and 35% of the CPU-time can 

be saved by using this grid instead of the 6x6x40 one. 

Further, we plot in Fig. 6.4 the maximum value of lx~=r((, (')I for a given I(- ('I 

as a function of I(- ('I· We see that x~ has a decay length which is significantly 

smaller than Rws in this case (the maximum I(- ('I allowed by the WS cell is rv 

45 a.u.). Thus, we impose a real-space cut-off Rmax upon the 6x6x33 grid, that is 

we calculate only the x~ ( (, (') such that I( - ('I ::::; Rmax· The results are reported 

in Table 6.2 for different Rmax· We see that a cut-off a 16 a.u. can be used which 

keeps the calculated FT[x~((, (')]G,G' within 1% of the values given in Table 6.4 

for the 6x6x33 grid. As expected, it is the "long-range" matrix elements which are 

the most sensitive to a cut-off in real space. This cut-off is the same as used in Ref. 

[109] for bulk silicon in the direct method. It is important to note that, within a 

unit-cell, the decay rate of the x~((, (')'sis comparable to the decay rate of x0 (r, r'). 

The combination of both neglecting sampling points in the vacuum and impos­

ing a real-space cut-off adds up to a "' 58 % saving in CPU-time as compared to 

the initial regular 6x6x40 grid (see Table 6.3). We plot in Fig. 6.5 a schematic 

representation of the intersection of the [110] plane with the WS cell. On the left 
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panel, we schematically represent in shaded the "effective" size of the unit cell once 

the vacuum (unshaded areas) have been "subtracted off" the sampling grid. On the 

right panel, we symbolize in addition the effect of imposing a real-space cut-off by 

drawing the portion of effective material (excluding the vacuum) which is intersected 

by a 16 a.u. radius circle centered on a surface H atom. We note that the number of 

G-vectors needed in the reciprocal-space approach would roughly correspond (via 

Fourier transform) to a real-space grid covering the entire WS cell, including vac­

uum. In the "direct" real-space method, the entire shaded semi-circle would need 

to be sampled. In the mixed-space approach, only the portion of this semi-circle 

which intersects theWS cell need to be considered. This illustrates the efficiency of 

the mixed-space approach as compared to both the real-space and reciprocal space 

approaches. 

6.4 Perspectives 

An important issue not addressed in this chapter is how to deal with the fre­

quency dependence of the response functions and with the energy integration in­

volved in the calculation of the self-energy operator. We note that the approach 

used throughout the previous chapters was based on the Hybertsen-Louie's general­

ized plasmon pole model [79] for EG,G' ( q, w). Such an approach, although has been 

proven successful for all the systems studied in the previous chapters, may fail to 

describe correctly the dynamics of electronic excitations in complex materials where 

more than one "type" of electron is involved. This is exemplified in Appendix A 

where it is shown that the generalized plasmon-pole model probably fails to describe 

correctly the dynamics of both the very localized Zn 3d electrons and the valence 

s-p electrons of cubic ZnS. Further, it is obvious that a plasmon-pole-type model 

is not easily adaptable to a real-space approach. For these two reasons, it appears 

preferable to "explicitly calculate" Eq1 ( (, ('jw). On a more general point of view, the 

knowledge of the frequency dependance of c 1 yields straightforwardly the quasi par-
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ticle lifetime. Also, this would allow the calculation within the present many-body 

approach of quantities such as Compton profiles or the total energy of the system. 

The explicit calculation of the dynamical behavior of the response functions is 

a problem which has attracted a lot of attention recently. We note first that the 

direct use of Eq. 6.1 with w on the real axis yields singularities which are difficult 

to handle. A cure to this problem is to calculate ~:q: 1 ((, ('lw') for a set of w' slightly 

off the real axis, that is take w' = w + il::i, where w is on the real axis and l::i is a 

small real number. This is equivalent to introducing a lorentzian broadening of the 

electronic energy levels (that is a finite lifetime) and the problem of the singularities 

is circumvented. This method is straightforward to implement and has been used 

with success to look at the dynamical behavior of atoms [114], clusters [115, 116) 

and crystals [117). We note however that, in the case of molecules or small clusters, 

the plasmon modes may be very sharp (less than 1 e V) so that the spacing needed 

between successive w's for which c 1 is calculated may be quite small. Since typical 

plasmon frequencies range from 10 to 30 eV, the calculation of ~:q: 1 ((, (')may have 

to be repeated 10 to 30 times, which is computationally very expensive for large 

systems. 

Another method, which has been used in some early GW calculations [109], is 

to calculate the Green's function G(w), the polarizability x0 (w) and further the di­

electric function c 1(w), for w on the imaginary axis. The advantage here is that 

these functions are relatively structure-less on the imaginary axis, so that much less 

w-frequencies need to be included in the integration of Eq. 6.12 to calculate the 

self-energy operator. The integration along the imaginary axis can be then contin­

uated onto the real-axis by use of the Cauchy theorem. However, a serious problem 

related to this method co·mes from the fact that the self-energy operator ~(E) must 

be calculated on the quasiparticle energy E=EQP_ Practically, ~(E = EQP) is eval­

uated from ~(E = ELDA) through a Taylor expansion of ~(E) around E=ELDA_ If 

~(E) is known only for E on the imaginary axis, such a Taylor expansion is valid 
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only for E outside the E(k) spectrum, so that only the self-energy of the band edge 

states can be obtained. In addition, if the explicit w-dependancy of c 1 (w), for w 

along the real axis, is of interest, then this method cannot be used. 

More recent approaches [118, 119, 109] are based on the possibility of analytically 

continuing x0 (r, r'jw) from win the complex plane tow near the real axis. The basic 

idea is to seek if a response functions f ( w) can be written (for a large range of w 

slightly off the real axis) in the form: 

(6.18) 

with a small number N of complex pairs ( ai, bi) which may be determined by ex­

plicitly calculating f(w) on selected w's in the complex plane. Recent calculations 

performed on bulk silicon [109] suggest that N=2 yields good results for the calcu- · 

lation of the quasiparticle energy. 

Further, a promising approach is to combine the present MS approach to the 

imaginary-time technique introduced in Ref. [109]. The idea is to define MS­

Imaginary-Time Green's functions 

G~(r, r'jiT) = i I:v 1/Jvk(r)'I/J;k(r') e-svk'~" , 7 :S 0 

-i I::c '1/Jck(r)'I/J;k(r') e-€ck'~" ' 'T > 0 

and calculate x~(r, r'jiT) as follows 

(6.19) 

(6.20) 

x~(r, r'jiT) = -i L G~(r, r'jiT) G~+q(r', rj- iT) (6.21) 
k 

The important advantage of this approach is that the summations over valence and 

conduction bands can now be decoupled, leading in the large system size limit to a N2 

scaling for the calculation of an entire x~(r, r'jiT) matrix. We note that "imaginary 

frequency" quantities can be obtained as the Fourier transformed oftheir "imaginary 

time" analogues and that, as mentioned above, analytical continuation techniques 

c9-n be used to map the imaginary-frequency axis to the real-frequency axis. 
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The possibility of including such methods in the present formalism is currently 

under study. 

Another important issue in dielectric response and self-energy calculations is 

related to the possibility of calculating x0 (w) without performing any summation 

over conduction states as done in Eqs. 6.1 and 6.3. These methods are based on 

the use of the following relation [114]: 

n,k 

(6.22) 

instead of Eq. 6.1. The needed Green's functions are then calculated by inverting 

their equation of motion, that is, formally: 

G(r,r'!w) = < r!H _ ~ _ iolr' > (6.23) 

so that no summation over the conduction bands is needed. Such an approach has 

been successfully applied to the calculation of the dynamical dielectric response of 

atoms [114, 120], clusters [116], crystal semiconductors [121] and metals [117]. This 

is an important improvement because the number of conduction states which need 

to be included may be very large for unit cells containing a large number of atoms 

(an average of 30 to 40 bands per atom is usually included in the calculation of 
-x0

). Using iterative schemes, the inversion required in Eq. 6.23 scales as N2Niter, 

where N is the number of grid points r and Niter the number of iterations needed to 

reach convergency. Since practically Niter is usually much smaller than the number 

of conduction bands, this method offers a significant saving. In addition, such an 

approach saves the calculation of the conduction states in the step preceding the 

. actual calculation of x0
. State-of-the-art LDA band structure algorithms scales 

linearly in CPU-time and memory with the number of bands to be calculated. We 

note also that all pseudopotentials, and in particular the most popular (because it 
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is the most efficient!) non-local Kleinman-Bylander pseudopotentials, are not as 

reliable for the calculation of conduction states as they are for the valence bands. 

6.5 Conclusion 

We presented in this chapter a method which aims at providing a more efficient 

self-energy calculation scheme. A particularly important domain of application for 
' 

the new formalism is the calculation of the dielectric function and, furt~er, of the 

self-energy effects on "low-dimension" systems, such as surfaces, nanotubes, small 

molecules or clusters in a supercell geometry. It is well known that the self-energy 

corrections to the LDA eigenvalues for such systems is in general larger than the typ­

ical self-energy corrections calculated for extended crystalline systems. For example, 

it was shown in Chapter 3 that the self-energy correction for H chemisorption, which 

resemble molecular orbitals, was much larger than the self-energy corrections to the 

extended bulk states. It is this "differential" correction which led to improving 

within GW the position of the surface states as compared to the bulk state energy 

continuum. 

However, both dielectric function and self-energy calculations in the framework of 

the GW approximation are relatively scarce for "rear' low-dimension systems such as 

molecule or clusters. Excitations in metallic clusters, such as alkali or alkaline-earth 

clusters [116, 118], were mostly investigated in the jellium model. This approach is 

justified by the fact that the atomic potential for these atoms is very soft, leading 

to a nearly-free-electron like charge distribution in the cluster environment. In such 

a jellium model, the goal is merely to study the effect on the dielectric response of 

confining these nearly-free electrons on given geometrical shapes such as spheres, 

cylinders or "dots". 

It was shown however that the "introduction'' of the crystal lattice can change 

dramatically the position of the plasmon peaks of metallic clusters [122, 123] or 

crystals [117]. A specific example is the dramatic dependence, for Sbn clusters 
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[123], of the photoionization spectra on the molecular architecture. Further, for 

semiconducting or insulating systems, we expect the introduction of the discrete 

atomic structure to have even more important effects on the dynamical dielectric 

response and further the self-energy corrections. As emphasized in Chapter 2, a 

study of the dielectric response of nanotubes beyond the jellium model [124] would 

be very interesting. Further, the study of the polarizability and dielectric response 

of open-ended nanotubes would bring much insight in fundamental questions such 

as the growth mechanism and capillarity of nanotubes. 

Other systems of interest to which the mixed-space approach would be useful 

are those composed of several types of atoms combining soft and "deep" potentials 

in the same unit cell. An important example is the II-VI wide gap semiconductors 

involved in particular in the making of blue-green lasers. We show in Appendix 

A, where we study cubic ZnS, that while s or p-like valence wavefunctions can be 

described with an average of 300 planewaves, more localized 3d electrons requires 

a minimum of 5000 planewaves to be accurately described. In a reciprocal space 

formalism, the 3d electrons define the number of plane-waves used to describe all 

states. In real-space, it is straightforward to build a fine mesh around the Zn atoms 

(on which the 3d levels are localized) and a much coarser mesh in the remaining 

part of the unit cell. This scheme would constitute a considerable saving. Another 

example of interest would be the study of impurities in metals, where typically the 

metallic ionic potentials are very soft but the impurity potential very deep (e.g. 

oxygen). Because the unit cell is usually very large (depending on the effective Bohr 

radius ofthe impurity state), a study in reciprocal space of the quasiparticle energies 

of such systems would be prohibitively costly using the energy cut-off imposed by 

the impurity. As in the case of ZnS, a mixed-space approach with an "adaptive" 

grid should allow such a study. 

The above list of examples is of course not exhaustive. We expect that the new 
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formalism presented here will open many doors and allow the study of new systems. 

Because the work presented in this Chapter is, in some sense, more "technical" 

and conceptual, most of its interest lies ahead in the variety and interest of the 

applications it will allow to tackle. 

6.6 Appendix: The long-wavelength limit 

In the long-wavelength limit ( q -t 0), the mixed-space potential V can be written 

(see Ref. [112]): 

- ( ') ..fi 1 ( ') Vq (, ( = n- 2 + Aq (, ( , 
HWS q 

(6.24) 

where Aq is analytic for q -t 0. Further, using k · p perturbation theory, one can 

write (see below): 

(6.25) 

where Bq and Cq are analytic for q -t 0. To obtain Eq:1 we need therefore to invert 

a matrix which can be symbolically written: Djq2 +E/q+F+qG, where again D, 

E, F and G are analytic in q. We note that it is important to "keep track", beyond 

the leading term, of the singularities all through the inversion (see Ref. [113]) in 

order to obtain the analytic behavior of Eq:1. One could then formally expand the 

inverse matrix as follows: 

D E 
( 2 +- + F + qG)- 1 = q2D-1 [I- n- 1E + ... ] 
q q 

(6.26) 

but it is straightforward to show that D is a singular matrix so that the above 

expansion cannot be used as such. 

An alternative approach is to Fourier transform x~ to reciprocal space where the 

singularities are easy to handle (see Ref. [113]). We note however that the Fourier 

transform of x~=0 ((, (') to reciprocal space yields (because of the wavefunctions 
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orthogonality) zero for the head and wings of x~ G' ( q ---t 0). This is consistent with 
' 

the fact that the matrix elements of x~ G' ( q ---t 0) are proportional to lql for q 
' 

going to zero and G (or G') equal to zero. Taking the exact q ---t 0 limit requires 

therefore the calculation of the proportionality coefficient for each of these matrix 

elements. This can be done using k · p perturbation theory. In the case of non-local 

pseudopotentials VNL, this leads to 

'l/Jv,k+q(() = 'l/Jvk(() + q eiq·( I: an(vk)'l/!nk(() , (6.27) 
n::;i:v 

with (n = m = 1 in Rydberg) 

( k) 
_ < n, kl - iq · \7 r + [VNL, iq · r] lv, k > 

CXn V -
En,k- Ev,k 

(6.28) 

where q is the unitary vector in the direction of q. This is equivalent to the reciprocal 

space formulation for the long-wavelength matrix elements (see Appendix B, Ref. 

[79]) 

< v, kle-iq·r1c, k + q >= < v,kl- 2iq · 'Vr + [VNL,iq · r]lc,k > 
(6.29) 

The calculation of such matrix elements, which involves the commutator [VNL, iq · r], 

is a serious bottleneck in the generation of the independent-particle polarizability 

since such matrix elements have to be computed for each valence and conduction 

bands. We note in addition that the use of k · p perturbation theory disables 

the decoupling of the valence and conduction bands which could be gained in an 

imaginary-time formalism. 

For these reasons, a "direct" approach is preferable. In this approach, the addi­

tional cost related to treating the q ---t 0 limit is transferred to the s·olving of the 

Kohn-Sham Hamiltonian for a set of k-points on a slighlty shifted grid {k + q}, 

where {k} is the k-point grid used in the summation of Eq. 6.3. We note that only 

the valence wavefunctions in the {k + q} set are required, so that modern iterative 
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techniques can be used to calculated efficiently the eigenfunctions needed. Prelim­

inary results show that the present method is numerically very stable with respect 

to the choice of q. For example, in the case of bulk silicon, we verify that q = 0.01 

(1, 1, 1) and q = 0.001 (1, 1, 1) yield both excellent results for the matrix elements 

of the independent-particle polarizability and dielectric response in the long wave­

length limit. We note that, as expected, the q -t 0 singularity of Vq in Eq. 6.24 

comes from the infinite summation over lattice vectors in Eq. 6.10, that is from 

the long-range behavior of the Coulomb potential. In practice, the Ewald summa­

tion is truncated to a finite number of unit cells, that is IRI :::; N a where a is the 

lattice constant and N the number of unit cells considered in each direction in the 

Ewald summation. This imposes the size of the smallest non-zero BZ k-point to be 

roughly 2n / N a. In the case of bulk silicon, the q-points selected above correspond 

to including N = 35 to 350 unit-cells in the Ewald summation. We verify that for 

N 2:: 30, the Ewald summation is indeed extremely well converged. 

An important case is the one of an isolated cluster or molecule in a supercell 

geometry. In this case, the BZ summations are restricted to the center of the zone r 
point and the MS formalism is identical to the direct real-space approach. Indeed, 

Eq. 6.2 reads then 

(6.30) 

and Eq. 6.9 become identical to Eq. 6.8. This means that Vis now the real Coulomb 

potential restricted to a single unit cell, consistently with taking the R -t +oo limit 

in Eq. 6.10. In practice, this is equivalent to cutting off the spurious cell-cell 

interactions which arise from the long-range tail of the Coulomb potential. As a 

consequence, one can take q exactly equal to 0 in Eq. 6.3. This is a considerable 

advantage of a real-space approach as compared to a reciprocal-space method since 

(a) we do not need to calculate the valence wavefunctions on a slightly shifted grid 

and (b) the full group of the crystal can be used to reduce the cost of the calculations. 
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I 

Finally, we note that even if time-dependent LDA (TDLDA) is preferred over 

RPA, 

dVxc(r) 
V(r, rt) = Vc(r- r1) + dn(r) 8(r- r1) , (6.31) 

then the LDA exchange-correlation kernel does not introduce any singularity in 

q since the summation over lattice vectors R is prevented by the locality of the 

LDA exchange-correlation potential (in other words, the LDA kernel is infinitely 

short range). In the case where non-local kernels may be preferable (to include for 

example vertex correction beyond TDLDA), one expects such kernels to decay much 

faster than the bare Coulomb potential and therefore to be analytic in the q - 0 

limit [125]. 
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Table 6.1: Convergency of selected FT[x~=x(C ('lw = O)]G,G' for bulk Si as 
a function of the mesh used in real space. 

G and (IGI 2
) G' and (IG'I 2

) 4x4x4 6x6x6 8x8x8 10x10x10 

0 0 0 (0.281) 0 0 0 (0.281) -0.02754 -0.02721 -0.02720 -0.02720 

01-2 (4.781) 0 1 -2 ( 4.781) -0.02892 -0.01593 -0.01592 -0.01592 

1 3 2 (8.532) 1 3 2 (8.532) -0.02593 -0.00374 -0.00369 -0.00369 

0 1 0 (1.031) -1 0 -1 (1.031) 0.00841 0.00716 0.00715 0.00715 

1 3 2 (8.532) 1 1 0 (1.031) -0.00161 -0.00153 -0.00150 -0.00150 

1 3 2 (8.532) 2 3 2 (7.782) -0.00945 -0.00155 -0.00147 -0.00148 

Table 6.2: Convergency of selected FT[x~=r((, ('lw = O)]G,G' for H/Si(lll) 
as a function of the mesh used in real space. 

G G' 6x6x32 6x6x36 6x6x40 6x6x48 6x6x64 

0 0 -1 0 0 -1 -0.00426 -0.00421 -0.00421 -0.00421 -0.00421 

3 2 7 3 2 7 -0.00208 -0.00205 -0.00205 -0.00205 -0.00205 

3 2 7 1 -2 7 0.00029 0.00028 0.00028 0.00028 0.00028 

0 0 14 0 0 14 -0.02494 -0.01933 -0.01819 -0.01792 -0.01790 

0 0 14 -1 0 11 0.00642 0.00530 0.00517 0.00510 0.00509 
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Table 6.3: Convergency of selected FT[x~=r(C ('lw = O)]G,G' for H/Si(lll) 
as a function of the number of grid points in the vacuum taken off the real 
space mesh. Starting from a 6 x 6 x 40 grid covering the entire Brillouin zone, 
successive "layers" of grid points in the vacuum are subtracted to the mesh. 

G G' 6x6x39 6x6x37 6x6x35 6x6x33 6x6x31 

0 0 -1 0 0 -1 -0.00421 -0.00421 -0.00420 -0.00419 -0.00427 

3 2 7 327 -0.00205 -0.00205 -0.00205 -0.00205 -0.00204 

3 2 7 1 -2 7 0.00028 0.00028 0.00028 0.00028 0.00028 

0 0 14 0 0 14 -0.01819 -0.01818 -0.01819 -0.01826 -0.01813 

0 0 14 -1 0 11 0.00517 0.00516 0.00516 0.00518 0.00508 

CPU saved (%) 4.9 14.4 23.4 31.9 39.9 

Table 6.4: Convergency of selected FT[x~=r(C (')]G,G' for H/Si(lll) as a 
function of the real-space cut-off Rmax. We study the 6x6x33 mesh and 
impose in addition I(- ('I ~ Rmax to determine the pairs ((, (') for which 
X~ ( (, (') is calculated. 

G G' 40 30 20 16 

0 0 -1 0 0 -1 -0.00419 -0.00419 -0.00417 -0.00413 

3 2 7 3 2 7 -0.00205 -0.00205 -0.00205 -0.00205 

3 2 7 1 -2 7 0.00028 0.00028 0.00028 0.00028 

0 0 14 0 0 14 -0.01826 -0.01826 -0.01826 -0.01823 

0 0 14 -1 0 11 0.00518 0.00518 0.00518 0.00518 

CPU saved (%) 31.93 36.5 49.79 58.0 
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Figure 6.1: (a) The diagonal elements of t:;;x for bulk silicon are plotted 

as a function of \q + G\ 2 in a. u. ( left vertical axis and filled circles). The 
corresponding error in % between t:(;~G(q = X) and FT[t:;2x(C (')]G,G is 
also given ( right vertical axis and empty triangles). (b) The non-diagonal 
elements of t:{] G' ( q = X) are plotted as a function of the corresponding 

FT[t:;2x((, (')]~,G' non-diagonal elements. The solid line is a guide to the 
eyes. 
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~ax 

Figure 6.2: The Wigner-Seitz cell for bulk Si is drawn. For a selected r in the 
Wigner-Seitz cell, a circle of radius "' 16 a.u., centered on r, is represented to 
indicate the domain spanned by r' in the "direct" real-space approach. 
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Figure 6.3: Number of "independent" pairs (r, r') (see text) in the case of 
bulk silicon corresponding to a 6x6x6 grid in the Wigner Seitz (WS) celL 
The long dash line (with the label "real-space --t") corresponds to the real­
space approach. The solid line (with the label "q=4x4x4") corresponds to the 
average number of pairs sampled for q's on a 4x4x4 Monkhorst-Pack grid in 
the BZ, and the upper dotted line (with the label "q arbitrary") corresponds 
to the case where the small group of each q considered is restricted to the 
identity. The lower dotted line (with the label "q=f") applies when all BZ 
summations are restricted to the center of the zone. 
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Figure 6.4: Value of lx~=r((, (')lmax as a function of I( -('1 for the H/Si(lll)­
(lxl) slab. lx~=r(C (')lmax is renormalized by its value for I( -('1 = 0. I( -('1 
is in a.u. 
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Figure 6.5: Symbolic representation of the cross-section in the [110] plane of 
a Wigner Seitz (WS) cell of the H/Si(lll)-(lxl) surface. The left panel shows 
in shaded area the effective Wigner Seitz cell excluding vacuum. The right 
panel shows the effective Wigner Seitz cell spanned by (' in the calculation of 
x~((, (') for ( on an hydrogen atom. In the mixed-space approach, only the 
portion of the shaded semi-circle which intersects theWS cell is sampled, while 
in the real-space method, the entire shaded semi-circle need to be considered. 
The empty circles represent the Si atoms and the empty squares the hydrogen 
atoms. Bonds are symbolically represented by thick solid lines. 
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Appendix A 

Quasiparticle energy calculations for cubic ZnS 

The technological importance of II-VI semiconducting compounds is mainly re­

lated to the making of blue-green short-wavelength lasers [126]. From the theoretical 

point of view, II-VI semiconductors are challenging compounds; it is known [127] 

that their structural and electronic properties (in particular the band gap) are im­

portantly related to the position of the metal 3d levels in the valence bands. In 

the case of cubic ZnS, in addition to the usual problem with the LDA gap, because 

LDA underestimates the binding energy of the Zn 3d levels by as much as 4 eV, the 

p-d repulsion is severely overestimated, leading to a 1.56 eV band gap as compared 

to the experimental value of 3.8 e V. To explore this problem, we perform in this 

Appendix a quasiparticle calculation of the band-structure of cubic ZnS. To describe 

the influence of the Zn 3d levels on the electronic band structure, we study both 

cubic ZnS with the 3d levels frozen into the core and with the 3d levels fully included 

in the valence band. We use, respectively, the notations ZnSsp and ZnSspd for these 

two systems. 

The LDA calculations for ZnSspd are carried out using the Zn and S pseudopoten­

tials described in Ref. [128]. In the case of ZnSsp, the non-local d channel is derived 

from the atomic unoccupied 4d level and core correction is used in generating the 

pseudopotential. Eigenfunctions and pseudopotentials are expanded in a planewave 

basis. For ZnSsp, planewaves with energy up to Ecut= 20 Ry are used to describe 

the wavefunctions. For ZnSspd, the cut-off is increased up to Ecut= 80 Ry in order 

to describe correctly the Zn 3d component of the pseudopotential. 

LDA calculations are performed using the experimental lattice constant, that is 

a= 10.22 a.u. for ZnS in the zinc-blende structure. The Ceperley-Alder exchange 



and correlation potential is used. We present in Fig. A.1 the LDA band structure 

for ZnSsp (dotted lines) and ZnSspd (full lines) and the energy levels at rare given 

in Table A.1 for both systems. The two band structures have been aligned at 

the bottom of the conduction band at r. In the zinc-blende structure, the crystal 

symmetry is the tetrahedral T d group. The top of the valence band at r is a 3-fold 

p-like state which transforms according to the r 15 representation of the group. The 

bottom of the conduction band is a singly degenerate s-like state at rand transforms 

according to the r 1 representation. r 1 and r 15 levels do not couple in the tetrahedral 

environment. In the crystal potential, the 5-fold 3d atomic level is split into a 2-fold 

f 1zv complex and a 3-fold f 25v complex. In the tetrahedral environment, the f 12v , 

does not couple to neither f 1 or f 15 levels. We note on Fig. A.1 that the (f1v -f1c) 

energy difference is indeed insensitive to the introduction of the 3d levels. However, 

the f 25v states can couple with the p-like f 15v states at the top of the valence band 

and p~d hybridization may be expected to occur between the top of the valence band 

and the 3d levels. The top of the valence band is pushed up to higher energy while 

the bottom of the conduction bands does not move (since it does not couple to the 

d levels). As a result, the LDA band gap reduces from 2.37 eV (for ZnSsp) to 1.56 

eV (for ZnSspd) under introduction of the d level in the valence complex. 

We perform first a quasiparticle calculation on ZnSsp following the procedure 

described in section 3.2.2. We calculate the static dielectric response in the random 

phase approximation (RPA). In the summation over the conduction bands, 80 bands 

are included. Local field effects are taken into account by calculating the off-diagonal 

elements of the inverse dielectric response c(j~, ( q) with a cut-off of lq + G I ::S 3 a. u. 

The dielectric constant is calculated to be 5.43 for ZnSsp· This is 4.5-6.5 % larger 

than the experimental value of 5.1-5.2. Calculations performed on IV or III-V 

compounds show that the RPA macroscopic dielectric constant is on the average 

larger than the experimental one by at least 10 %. The relatively better agreement 

found here indicates that the 3d levels are also slightly polarizable and that they 
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should yield a small, but not negligible, contribution to the polarizability of the 

present system. 

We turn now to the calculation of the quasiparticle energies. Results are reported 

in Table A.1 along with the LDA values. The self-energy corrections to the LDA 

energy for states at r for ZnSsp are represented in Fig. A.2 (empty circles). In 

particular, the band gap opens from 2.37 eV (LDA value) to 3.97 eV. We study 

also the influence of using core-correction when generating the Zn pseudopotential. 

Results are reported in Table A.2. We do not observe any significant modification 

of both the LDA and quasiparticle band-structures. We also test the accuracy of 

using the Levine-Louie model dielectric function [129] as compared to RPA (see 

Table A.2). Consistently with previous calculations [17), the two approaches give 

very similar results for states around the gap, even though (see Fig. A.2), the model 

yields too small a screening in the intermediate range. We note that the GW band 

gap of 3.97 eV obtained in this calculation is actually larger than the experimental 

band gap. This is unusual since previous calculations on s-p bonded semiconductors 

show that the GW band gap is usually slightly smaller than the experimental value. 

This fact is just a reminder that in real cubic ZnS, p-d repulsion is a factor of 

importance and that a quasiparticle calculation performed on ZnSspd should yield a 

smaller gap. 

We then perform the self-energy calculation of the band-structure of ZnSspd· We 

include 120 bands in the summation over the conduction states and the dielectric 

matrix is cut at jq + Gl ~ 4 a.u. With these values, the macroscopic dielectric 

constant is calculated to be EM = 7.58. This is at least 43 %larger than the exper­

imental value. This means that the use of the LDA eigenvalues and eigenfunctions 

to calculate within RPA the dielectric constant of cubic ZnS leads t.o a severe over­

estimation of the polarizability of the 3d levels. Both the severe reduction within 

LDA of the Zn 3d to conduction band energy differences and the introduction of too 

strong a p character in these 3d levels (which allows transitions which should be by 



symmetry disallowed), can explain this fact. If we use further this static dielectric 

function to calculate the quasiparticle energies of ZnSspd, we obtain the self-energy 

corrections to LDA as plotted in Fig. A.2 (filled circles). The most striking result 

is that the self-energy correction, instead of bringing the 3d levels down to a larger 

binding energy, worsens the situation by pushing them up in energy by as much as 

2.90 eV. In addition, the self-energy correction for states near the gap is reduced 

as compared to the ZnSsp case, while the self-energy for the bottom of the valence 

band is increased. We do not have, at the time of redaction of this section, a clear 

explanation for such a failure of GW. However, we feel that this "unsuccessful" 

calculation contains novel and important informations concerning the limits of the 

present self-energy approach. In the following, we enumerate some facts and the 

results of some "computational experiments" which suggest the possible origin(s) of 

the problem: 

a) We look at the Hartree-Fock eigenvalues associated with the Zn 3d levels, that is 

we calculate: 

(A.1) 

where Vx is the bare exchange operator. Since the bare exchange operator does 

not require the knowledge of the screening, it is free from the errors found.Jor the 

dielectric matrix. Further, since the 3d levels system does not couple to the r lc 

LUMO state, we are confident that the self-energy correction to LDA found for 

this state in the ZnSsp system (0.42 e V) applies to the ZnSsp·d system. With this 

correction, we can estimate the "correct" quasiparticle energy for this state in ZnSspd· 

We find that the "Hartree-Fock" 3d levels obtained from Eq. A.1 are located around 

12.8 eV below the "correct" quasiparticle energy of the LUMO state at r. This is 

in excellent agreement with the experimental value of 13-13.5 e V for this transition 

energy. This computational "experiment" seems to indicate that vertex corrections 

should not contribute significantly to the Zn 3d quasiparticle energy. 
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b) We find that the LDA wavefunctions are not in the present case a good approx­

imation for the quasiparticle wavefunctions. As explained above, the p-d coupling is 

severely over-estimated within LDA, so that both the r 25v and the r 15v levels have, 

respectively, too much p and d character. We check this by calculating the non­

diagonal elements of the self-energy operator. Results are reported in Table A.3. 

We look first at the ZnSsp system. Most non-diagonal elements are zero because of 

symmetry arguments. For example, the non diagonal elements between the f 1v and 

r 15v occupied states are strictly equal to zero in ZnSsp· Nevertheless, as exemplified 

in Table A.3, the r 1v and r 1c levels can couple arid the self-energy operator yields 

indeed a large non-diagonal element between these two levels. However, this matrix 

element is equal, within 0.27 %, to the LDA exchange-correlation potential expecta­

tion value between the same states, SO that for the difference operator (:E- Vx~DA), 

this non diagonal element is negligible as compared to the diagonal terms. Turn­

ing now to the case of ZnSspd, we calculate the non-diagonal elements that couple 

the r 25v to the r 15v levels. As· shown in Table A.3, the non-diagonal elements of 

(:E- Vx~DA) between these levels can be of the same order of magnitude as compared 

to the diagonal self-energy correction itself. However, we notice that the r 12v levels 

cannot couple to the r 15v p-like levels and we check indeed that the non-diagonal 

elements of :E and vx~DA are zero with the r 1' r 15 or r 12 levels. This indicates that 

the problem does not entirely lie in the quality of the LDA wavefunctions. 

c) To improve upon the mediocre quality of the LDA eigenvalues and wave­

functions, we build an ansatz pseudopotential for Zn designed to yield better Zn 3d 

eigenvalues and eigenfunctions in the LDA self-consistent calculation. Our scheme is 

to add to the Zn pseudopotential a short range attractive potential 8V(\ri) adjusted 

such th.at it pulls down the 3d levels to their experimental position. Formally, the 

energy levels obtained with such a potential can be written 

E =< T > + < vionic > + < VH > + < Vxc > (A.2) 



where T is the kinetic operator, yionic the ionic pseudopotential, VH the Hartree 

potential and Vxc = vx~DA + 8V(Iri)Fd. Because of the projector pd on the L=2 

spherical harmonic, 8V(Irl) will be seen only by the 3d electrons. Roughly speaking, 

Vxc is an effective exchange-correlation potential designed to mimic the Hartree-Fock 

exchange operator for the 3d levels only. We verify indeed that for the 3d levels: 

< Vxc >3d rv < Vx >3d· With this ansatz Hamiltonian, we find that the s and p 

levels are very similar to those obtain for the ZnSsp system, except for the band gap 

which we find to be 2.50 eV instead of 2.41 eV for the ZnSsp system. This may seem 

surprising since the 3d levels, even located 10 e V below the top of the valence band, 

should still exert a small repulsion effect on the r 15 states, leading to a smaller gap as 

compared to ZnSsp· However, because indeed there is still a small p-d coupling, 'the 

r15 states feel, through their d component, the attractive 8V(Iri)Pd potential. We 

find the expectation value of 8V(Iri)Fd with the f 15 states to be -0.4 eV. Without 

this contribution, the band gap would be 2.1 eV, that is 0.31 eV smaller than in 

the ZnSsp case. This 0.31 eV is therefore an estimate of the ''real" p-d repulsion 

in cubic ZnS. We check that, as expected, 8V(Iri)Fd has no matrix elements with 

the r lc and r lv levels. Further, with this new set of eigenvalues and eigenfunctions, 

we calculate the RPA response function. We find EM to be 5.68, that is in much 

better agreement with experiment. We perform then the self-energy calculations. 

The quasiparticle energies are obtained through 

(A.3) 

where (E, -J;) are the eigenvalues and eigenfunctions obtained from the LDA cal­

culation performed with 8V(Iri)Fd added to the original LDA Hamiltonian. The 

quasiparticle band gap is calculated to be 3. 73 e V in excellent agreement with ex­

periment. However, the Zn 3d levels land around 4-4.5 eV below the top of the 

valence band. This is comparable to the position of the 3d levels in the quasipar­

ticle approach for the original ZnSspd system. Therefore, even with a "correct" p-d 
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coupling and a good static dielectric function, yielding quasiparticle s-p levels in 

excellent agreement with experiment, the 3d levels are not well treated within the 

present GW approach. However, again, we verify that the Hartree-Fock treatment: 

(A.4) 

yields the experimental position for the 3d levels. Therefore, the failure of the present 

GW approach for the 3d levels lies in the fact that self-energy operator 2: = iGW 

and the bare Fock operator Vx do not yield the same expectation value for the 

3d levels. Equivalently, the Coulomb-hole and screened-exchange contributions to 

2: = iGW do not cancel out as they should. Since the GW approximation per se 

is found to be reasonable, this suggests that the dynamical effects are ill-described 

within the present generalized plasmon-pole approach. 

In conclusion, we suggest the following scheme to perform a fully ab initio study 

of the ZnA compounds, with A= 0, S, Se or Te. We follow the prescription of 

(c) to yield a better basis for the self-energy calculation. However, to avoid the 

"empirical" aspect of the scheme presented in (c), we perform both an atomic LDA 

and HF calculation for Zn and build 6V(Ir!) to be: 

(A.5) 

Because the 3d levels do not relax significantly in the crystal, we can write: 

< t5V(jrj) > + < Vx~DA,crystal > rv < VxHF,atom > rv < VxHF,crystal > (A.6) 

where the expectation value is understood to be taken over the 3d states. The-3d 

levels are therefore treated in an Hartree-Fock way while the s and p electrons feel 

the standard LDA exchange-correlation potential. We have tested this approach and 

find similar results as the one given in (c), but this scheme has the advantage of being 

parameter free [130]. Further, it appears necessary to go beyond the generalized 
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plasmon-pole model to describe correctly the dynamical effects on the self-energy 

operator for the 3d levels. A recent self-energy calculation performed on Ni [108] 

yielded reasonable results within the GW approximation, while calculating explicitly 

the energy dependence of the dielectric function. Further, the spectral function 

calculated in this work exhibited two peaks around -20 and -.30 e V. These peaks 

were identified as plasmon peaks. This confirms that the one plasmon pole model 

may fail for such systems. It is not surprising that the localized 3d levels and 

extended s-p states do not share the same dynamics, and we expect the 3d levels 

to yied a plasmon peak at higher energy than the s-p electrons. We indicate to the 

reader that a systematic study, within the GW approximation. of the quasiparticle 

band structure of II-VI compounds with d electrons in the core has been carried out 

in Ref. [131] . 
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Table A.1: LDA and GW eigenvalues at r for zinc-blende ZnSsp and ZnSspd· 
The zero of energy is set at the top of the valence bands. Energies are in e V. 

ZnSsp ZnSspd exp. 

LDA GW LDA GW 

rlv -12.63 -12.73 -13.47 -14.55 

r25v -6.93 -4.47 rv -10 

rl2v -6.46 -3.49 rv -10 

rl5v 0.00 0.00 0.00 o:oo 0.00 

rlc 2.37 3.97 1.56 2.26 

r 15c 6.83 8.87 5.96 6.91 
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Table A.2: Quasiparticle energies at high-symmetry points for ZnSsp· The 
influence of the core-correction in the pseudopotential and of the use of the 
Levine-Louie model dielectric function as compared to full RPA .is presented. 
Energies are in e V and referenced to the top of the valence band in each case. 

level Without core correction With core correction Exp. 

LDA GW-RPA LDA GW-model GW-RPA 

rlv -12.61 -12.71 -12.63 -13.42 -12.73 -13.5 

rl5v 0 0 0 0 0 0 

rlc 2.47 4.22 2.373 3.98 3.97 3.80 

rl5c 6.82 8.91 6.83 8.74 8.87 8.35 

Xlv -10.89 -11.06 -10.92 -11.71 -11.08 -12.0 

X3v -4.61 -4.82 -4.591 -4.89 -4.80 -5.5 

Xsv -1.93 -2.00 -1.935 -2.06 -2.01 -2.5 

Xlc 3.66 5.45 3.548 5.14 5.30 

X3c 4.40 6.31 4.339 6.025 6.20 4.9 

Llv -11.33 -11.48 -11.352 -12.15 -11.50 -12.4 

Llv -4.89 -5.10 -4.90 -5.2 -5.11 -5.5 

L3v -0.74 -0.76 -0.73 -0.78 -0.78 -1.4 

Llc 3.66 5.53 3.60 5.28 5.425 

L3c 7.33 9.38 7.29 9.17 9.289 
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Table A.3: Real-part of the non-diagonal elements for the self-energy I:, 
the LDA exchange-correlation potential Vx~DA and the difference I: - vx~DA 
operators. Values are given for selected levels of Si, ZnSsp and ZnSspd· ZnS is 
in the zinc-blende structure. Energies are in eV. 

(i,j) I < 2: >ij 
VLDA < XC >ij 2: VLDA < - XC >ij 

Si 

(1,9) -1.7741 -1.7759 0.0018 

ZnSsp 

(1,5) 2.9827 2.9745 0.0082 

ZnSspd 

(2,7) 0.4664 0.7894 -0.3230 

(2,8) -2.3520 -3.8349 1.4823 

(2.9) -0.0558 -0.0396 -0.0162 
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Figure A.l: LDA band structures for ZnSsp (solid lines) and ZnSspd (dotted 
lines). Both band structures have been aligned at the bottom ofthe conduction 
bands at r. The zero of energies is the top of the valence band of ZnSspd· The 
energies are in e V. 
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Figure A.2: Self-energy corrections (EGW - ELDA) as a function of ELDA 

for selected states at r for ZnSsp (open circles) and ZnSspd (filled circled). 
Energies are in e V. 
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Two-phonon bound states at the H/C{lll)-(lxl) surface 

In order to explain an anomaly in the Raman spectrum of bulk diamond [132], 

the existence of a two-phonon bound state was suggested [133]. Even though it 

was shown later [134] that such a state cannot exist in bulk diamond (the effective 

anharmonic coupling between optical phonons is actually repulsive in this system), 

the mechanism for the pairing of two delocalized vibrational quanta was understood. 

Because the localization of two phonons over a few bond lengths requires a lar-ge 

negative phonon-phonon coupling compared to the one-phonon energy dispersion, 

two-phonon bound states were suggested to be found mainly in molecular crystals, 

where the intra-molecular forces are usually much larger than the Van der Waals 

inter-molecular forces. However, recently, the existence of a two-phonon bound 

state was observed at the hydrogen covered Si(111) surface [135]. Two reasons 

favor the existence of this state. First, the bond formed by the adsorbate with the 

substrate atom exhibits a strong molecular character. Second, the lower dimension 

of a surface, as compared to bulk, favors the existence of bound states. We present 

in this paper a calculation of the binding energy of a two-phonon bound state at the 

H/C(111)-(1x1) surface. We show that the anharmonic phonon-phonon coupling 

is larger than in the case of the H/Si(l11)-(1x1) surface. In addition, the one­

phonon energy dispersion is much smaller in the present case of carbon susbtrate. 

Both arguments lead to a larger binding energy for the two-phonon bound states at 

the H/C(111)-(1x1) surface. The dispersion of the two-phonon bound state band is 

calculated to be 14 times smaller than its analogue at the H/Si(111) surface, leading 

to very localized two-phonon bound states. 

We use a slab rgodel to study theoretically the vibrational modes of H on the 



C(111)-(1x1) surface. Total energies are calculated within the local density ap­

proximation ~f the density functional theory. The wavefunctions are expanded in a 

planewave basis and the ionic potentials are described by ab initio pseudopotentials. 

Technical details for the slab geometry, energy cut-off and carbon pseudopotential 

can be found in Ref. [136]. Following a previous work on H/Si(111)-(1x1) surface 

[67, 137], an hydrogen pseudopotential has been generated to describe the proton 

Coulombic potential. 

We perform a large number of frozen-phonon calculations and determine the 

coefficients of the fourth-order polynomial used to model the potential in which 

each hydrogen atom is moving in phase with others: 

V(x, y, z) 
m 

Vo + 2[w~zz2 + w~x(x2 + y2)] + a3z3 + b3(x2 + y2)z 

+a4z4 + b4(x2 + y2)z2 + c4(x2 + y2)2 (B.1) 

This potential includes the effects of both the anharmonicity of the stretching mode 

and the coupling between stretching and wagging motions. The mass m is the 

reduced mass of the C-H two-body problem. We plot in Fig. B.1(a) the calcu­

lated potential for the (x=y=O) stretching motion and in Fig. B.1(b) for the (z=O) 

wagging motion. In Fig. B.1 (b), for each value of p = J x 2 + y2 that we consid­

ered, we plot two points which correspond to the maximum and minimum value of 

V(x,y,z=O). One can see that for the range of p-values considered, (which corre­

sponds to wagging angles smaller that emax < 1.2°), the anisotropy is very small. 

This justifies the choice of a (x,y)-symmetrical potential for the motion of H at the 

diamond surface. The values for the coefficients of Eq. B.1 are reported in Table 

B.1, together with the results of Ref. [136] for the uncoupled C-H stretching mode. 

The small difference between the two studies can be accounted for by the use of 

a pseudopotential for hydrogen instead of the full Coulombic potential. We report 

also the coefficients obtained in Ref. [138] for the H/Si(111)-(1 x1) system. We note 

that while the frequency Woz and Wox for the uncoupled motions are much larger in 
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the H/C case, the wagging-stretching coupling coefficients b3 and b4 are comparable 

in both systems. Therefore, the coupling between the wagging and stretching modes 

is relatively less effective in the case of the diamond substrate. 

This model potential is then diagonalized in the basis of the 3D harmonic oscilla­

tors I nx, ny, nz >,and quantum numbers up to nx = ny=10 and nz=20 are included 

to converge the lowest eigenvalues up to the second excited stretching mode. The 

eigenmodes I v > are no longer pure wagging or stretching modes. We present in 

Fig. B.2 the potential felt by the hydrogen around its equilibrium position, together 

with the ground-state, first excited stretching mode, first excited wagging mode and 

second excited stretching level densities. The deviation of the potential shape from 

an ideal ellipsoid is mainly due to the anharmonicity of the stretching mode. In par­

ticular, the extra node observed in the plot of l'ljlstretch, 2 1
2 originates from the coupling 

through anharmonicity to higher stretching modes. Because the stretching-wagging 

coupling is relatively weak, the identification of the lowest eigenstates as (renormal­

ized) wagging or stretching modes is still unambiguous. We present in Fig. B.3(b) 

(solid line) the theoretical absorption spectrum for transition from the ground state 

for as-polarized light, that is, we plot: Lv I< v = 0 I z lv >l 26(w- wo,v) as func­

tion of w, where wo,v = E(v) - E(v = 0). The theoretical "spectrum'' clearly 

isolates a transition corresponding to a state at 27 40 em - 1 above the ( v=O) ground 

state. This state, with a weight of 84 % on the I nx = ny = 0, nz = 1 > basis 

vector, is clearly identified as the first excited stretching level lv1 > for the cou­

pled system. Because of the anharmonicity, this state has also a 7% weight on the 

I nx = ny = 0, nz = 2 > vector. A 3.4% weight on both I nx = 2, ny = 0, nz = 0 > 

and I nx = 0, ny = 2, nz = 0 > expresses the coupling between the stretching 
·~ 

and the wagging. Further, we plot (dotted line) Lv I< v1 I z lv >l 28(w - Wv1 ,v) 

where Wv1 ,v = E(v) - E(v1 ). This again isolates a transition corresponding to a 

state at 2633 cm- 1 above the (vi) energy level with a weight of 46.6 % on the 

1 nx = ny = o, nz = 2 > basis vector and 16.4 % on the lnx = ny = o, nz = 3 > 
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vector. This state is associated with the second excited stretching level lv2 > for 

the coupled system. 

Results for the theoretical and experimental wagging and stretching frequen­

cies are reported in Table B.2, together with an anharmonic shift -2r = (E(v2) -

E(v1))- (E(v1)- E(v0)) of 107 cm-1 for the calculated stretching mode. The agree­

ment between theory and experiment seems good. In particular, the position of the 

absorption peaks in figures B.4(a) and B.3(b) .match excellently if we allow a 97 

cm- 1 rigid shift of the theoretical spectrum to larger energy. We note that -2r is 

rather insensitive to the stretching-wagging coupling (we calculate the anharmonic 

shift oft he uncoupled stretching mode to be 107.7 em - 1). This is consistent with the 

fact that the stretching-wagging coupling is relatively weak in the present system. 

In the case of H/Si(111)-(1x1), the effect of the coupling with the wagging modes 

has been calculated [138] to result in nearly doubling the anharmonic shift of the 

stretching mode. 

In terms of the phonon picture, the above I v = 1 > mode corresponds to the 

one-phonon mode at the Brillouin zone center f. We can also calculate the frequency 

w1 ( M) of the one-phonon mode at the zone edge M using the frozen-phonon scheme 

with neighboring atoms moving out of phase. We find w1(r)- w1(M) = 2 cm-1 , 

indicating a rather weak dispersion. The entire one-phonon band w1 (k) can then be 

calculated using the tight-binding model for the surface hexagonal C-H bond lattice, 

which yields, in the first-nearest-neighbor approximation: 

(B.2) 

with k = (k1, k2 ) in reciprocallatttice vector coordinates. This is presented in Fig. 

Fig. B.5( a) fork along the high-symmetry directions of the hexagonal Brillouin zone. 

The very small dispersion and rather large anharmonicity suggests the existence of 

two-phonon bound state. Moreover, in view of the very narrow phonon dispersion, 

we may take the anharmonic shift r' for a single C-H bond to be the same as 
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that calculated r above for the zone center mode, that is -2f'=107 cm- 1 with an 

uncertainty much less than 2 cm-1 . To study the interaction between the stretching 

modes of the C-H bonds at the H/C(111)-(1 x 1) surface, we use the Hubbard-like 

Hamiltonian proposed in Ref. [138]: 

H = t 2: bt bj + r' 2: bt bt bi bi , (B.3) 
<i,j> t 

where bi and bt are the harmonic oscillator annihilation and creation operators 

for a C-H bond on site i (the energy reference is taken to be the ground-state 

frequency of the .C-H modes). The pairs < i, j > index neighboring sites. The 

one-body operator is the usual hopping term which yields the phonon bands in the 

harmonic approximation. The two-body term expresses the fact that, because of the 

anharmonicity, the system gains an energy 2f' by localizing two vibrational quanta 

on the same C-H bond. This model Hamiltonian is valid in the limit of a large f' /t 

ratio [138]. We shall see that this condition is fully satisfied in the present case. To 

study the extended and localized collective modes of the surface 2D hexagonal lattice 

of interacting C-H bonds, we go from the harmonic single-bond oscillators basis to 

the surface extended harmonic phonon basis by building the phonon creation and 

destruction operators at and ak: 

1 2: eiq·Ri b· 
JN R; t 

(B.4) 

where ~ runs over the N sites of the system and Eq. B.3 becomes then, in the C-H 

surface phonon basis: 

f' 
H = 2: w1(k) at ak + N 2: at aQ-k ak' aQ-k' , 

k Q,k,k' 
(B.5) 

where w1 (k) is the energy of a phonon with vector k. Q is the momentum associated 

with the two-phonon states solution of Eq. B.3. Therefore, the on-site "negative f'" 

term of Eq. B.3 yields an effective attractive phonon-phonon interaction. Within the 



nearest-neighbor tight-binding model, w1(k) depends on t and w1(f)- w1(M) = 2t. 

We therefore find t=0.25 cm- 1 . We note that the hopping parameter t obtained 

here is much smaller than the value tsi=0.8 cm-1 calculated for the H/Si(111)­

(1x1) surface [138]. This can be understood from the much smaller polarizability of 

the C-H bond which over compensates the fact that the nearest-neighbor distance 

for the C-H lattice is smaller than the one at the H/Si(111)-(1x1) surface. Our 

values fort. and f' yield a ratio f' ft. which is much larger at the H/C(111) surface 

than at the H/Si(ll1) surface. This indicates that a strongly bound two-phonon 

state should exist in the present system [139]. 

The inversion of the Hubbard equation is standard [140]. Because Q is a good 

quantum number for the two-phonon states solution of the Hamiltonian B.5, the 

eigenstates of this Hamiltonian can be written: 

!'¢(Q >= L Xk at a~-k !O > , (B.6) 
k 

where !O > is the ground state of the system. It is easy to show then that: 

H i'¢(Q >= L [w1(k) + w1(Q- k)] Xk ata~-kiO > 
k 

(B.7) 

where boson commutation relations have been used, so that the eigenvalue equation 

H!'¢(Q) >= w2 (Q)!'¢(Q) > can then be written: 

1 1 

. N t= w1 (k) + w1 ( Q - k) - Wz ( Q) 
1 

2f 
(B.8) 

This equation, for excitations with wave-vector Q, yields (N-1) energies in the quasi­

continuum of unbound two single-particle states w2(Q) = w1(k)+w1(Q-k) (shown 

in Fig B.5(b)) and one solution w2(Q) out of this continuum (shown in Fig B.5(c)). 

With the calculated values of t. and f', we find that this latter solution is located 
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110 cm- 1 below the one-phonon state energy at f. This value is taken to be the 

two-phonon binding energy Eb for the H/C(111)-(1x1) surface [141]. The agreement 

with experiment is excellent (see Table B.2). As expected, the present binding 

energy for H/C is much larger than the one measured [135] and calculated [138] for 

the H/Si(111)-(1x1) surface. The dispersion of the two-phonon bound state band is 

calculated to be 0.01 cm-1 , which is 14 times smaller than the dispersion calculated 

for the two-phonon bound state on the H/Si(111) surface. Both the larger binding 

energy and the absence of dispersion indicates a very localized two-phonon bound 
' . 

state. 
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Table B.l: Parameters for the potential felt by an hydrogen atom at the 
C(111)-(1 x 1) surface. 

H/Diamond H/Si 

This work Ref. [136] I Ref. [138] 

Woz(meV) 355.74 250.84 

Wox(meV) 146.40 69.35 
0 3 

a3 (eV/ A ) -28.34 -28.01 -11.13 
0 3 

b3 (eV /A ) 5.45 4.00 
0 4 

a4 (eV /A ) 28.23 27.41 9.94 
0 4 

b4 ( eV /A ) -12.46 -11.66 
0 4 

c4 (eV/A) 0.68 0.78 

Table B.2: Experimental and theoretical stretching and wagging frequencies 
Wz and Wx, together with the anharmonic shift -2f and the two-phonon bound 
state energy Eb, are given in cm- 1 (1 meV = 8.04 cm- 1). 

I Theory Experiment 

Wz 2740 2838 ± 2 

Wx 1189 1331 ± 1 

-2r 107 

Eb -110 -110 ± 5 
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Figure B.l: (a) Calculated potential well for (a) the (x=y=O) hydrogen mo­
tion as a function of the displacement z from equilibrium bond length and 
for (b) the wagging mode (z=O) as a function of the displacement p from the 
equilibrium position. The open squares are the calculated points and the solid 
lines are a fourth order polynomial least-square fit. 
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Figure B.2: Presented from left to right: contour plots in the y=O plane of 
the potential felt by the hydrogen atom at the surface and of the wavefunction 
squared of the ground state, first excited wagging mode, first excited stretch­
ing mode and second excited stretching mode. For the potential, the contours 
correspond to energies ranging from Woz/2 to 7woz/2 by increment of woz/2. 
For each eigenstate density, we plot 10 density contours with constant incre­
ment between the minimum and maximum in-plane density. The position of 
the carbon atom is indicated as a guide to the eyes. All figures have rotational 
symmetry around the z axis. 
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Figure B.3: In the upper panel, contour plots in the y=O plane of the poten­
tial felt by the hydrogen atom in the harmonic case (left), when the stretching 
anharmonicity is included (center) and finally when both anharmonicity and 
coupling to the wagging are included (right). The contours correspond to en­
ergies ranging from Woz/2 to 7woz/2 by increment of Woz/2. In the lower panel, 
the second-excited stretching mode wavefunction l'l,bstretch,21 2 corresponding to 
the potential plotted right above are presented in the y=O plane. 
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(a) Expt. 

2650 2700 2750 2800 2850 

(b) Theory 

2550 2600 2650 2700 2750 
Frequency (cm- 1) 

Figure B.4: a) Infrared SFG probe spectrum on the H/C(lll)-(lxl) surface 
showing the fundamental v0_, 1 vibrational transition (open circles) and the 
v1_, 2 vibrational transition (solid squares). The inset is expanded five times. 
Solid lines are fit to the experimental data points. b) Theoretical absorption 
spectrum for the stretching modes of the C-H bond with incomings-polarized 
light. The solid line corresponds to the v0_,1 transition and the dashed line 
to the v1_,2 transition. A 1 meV gaussian broadening for the energy levels 
has been used and the relative peak height between the two transitions is 
arbitrary. Frequencies are in em - 1 . 
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Figure B.5: Dispersion along high-symmetry directions for (a) the one­
phonon states, (b) the unbound two-phonon continuum and (c) the two­
phonon bound states. Energies are in cm- 1. Note that the energy scale 
of (c) is 150 smaller that the energy scale for (a) and (b). However, (a), (b) 
and (c) share the same energy reference. 
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