
' -. 

~· . 

-

( 

LBL-37492 
UC-814 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

EARTH SCIENCES DIVISION 

Estimation of Hydraulic Conductivities of 
Yucca Mountain Tuffs from Sorptivity and 
Water Retention Measurements 

R.W. Zimmerman and G.S. Bodvarsson 

June 1995 

-------. 

---

. . . . 

'~ 

\ 
Prepared for the) Department of Energy onder Contract Number DE-AC03-76SF00098 

U1 
lSI 

I"" 
r- CD 
..... I"" 
C" 0 I 
-s 0 w 
PI '0 ~ 
-s '< -'=" 
'< 10 
• ,_. N 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



LBL-37492 
UC-814 

Estimation of Hydraulic Conductivities of Yucca Mountain Tuffs 
from Sorptivity and Water Retention Measurements 

Robert W. Zimmerman and Gudmundur S. Bodvarsson 

Earth Sciences Division 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, CA 94 720 

June 1995 

This work was carried out under Department of Energy Contract No. DE-AC03-76SF00098 for the 
Director, Office of Civilian Radioactive Waste Management, Office of Geologic Disposal, and was 
administered by the Nevada Operations Office, U. S. Department of Energy, in cooperation with the U. 
S. Geological Survey, Denver. 



Estimation of Hydraulic Conductivities of Yucca Mountain Tuffs 
from Sorptivity and Water Retention Measurements 

Robert W. Zimmerman and Gudmundur S. Bodvarsson 

Earth Sciences Division 

Lawrence Berkeley Laboratory 

University of California 

Berkeley, CA 94 720 

Abstract 

The hydraulic conductivity functions of the matrix rocks at Yucca Mountain, 

Nevada, are among the most important data needed as input for the site-scale hydro

logical model of the unsaturated zone. The difficult and time-consuming nature of 

hydraulic conductivity measurements renders it infeasible to directly measure this pro

perty on large numbers of cores. Water retention and sorptivity measurements, how

ever, can be made relatively rapidly. The sorptivity is, in principle, a unique func

tional of the conductivity and water retention functions. It therefore should be possible 

to invert sorptivity and water retention measurements in order to estimate the conduc

tivity; the porosity is the only other parameter that is required for this inversion. In 

this report two methods of carrying out this inversion are presented, and are tested 

against a limited data set that has been collected by Flint et al. at the USGS on a set 

of Yucca Mountain tuffs. The absolute permeability is usually predicted by both 

methods to within an average error of about 0.5- 1.0 orders of magnitude. The 

discrepancy appears to be due to the fact that the water retention curves have only 

been measured during drainage, whereas the imbibition water retention curve is the 

one that is relevant to sorptivity measurements. Although the inversion methods also 

yield predictions of the relative permeability function, there are yet no unsaturated 

hydraulic conductivity data against which to test these predictions. 
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Introduction 

Yucca Mountain, Nevada, is currently being studied by the U. S. Department of 

Energy as a potential site of an underground radioactive waste repository. The poten-

tial repository horizon is located above the water table, in a formation consisting of 

volcanic tuffs. As part of the site characterization process, a three-dimensional numer-

ical hydrological model of the unsaturated zone at Yucca Mountain is being developed 

by scientists from Lawrence Berkeley National Laboratory, in conjunction with the U. 

S. Geological Survey and various other national laboratories (Wittwer et al., 1994). 
I 

Among the most important data that are needed as input to this model are the 

hydraulic conductivity and water retention functions of the matrix rocks. Because of 

the spatial heterogeneity of the rocks found at Yucca Mountain, it will be necessary to 

measure, or otherwise determine, these hydrologic properties at many locations within 

the mountain. Due to the small pore sizes of most of the tuffs found at Yucca Moun

tain, the hydraulic conductivities are generally very low, and laboratory measurements 

of the hydraulic conductivity are extremely time-consuming. Hence, it would be very 

advantageous to be able to estimate the hydraulic conductivity from other, more 

readily measurable, properties. Such a method of estimating the hydraulic conductivity 

would also serve as a check on the measured values. 

One hydraulic property that can be measured rapidly is the sorptivity, which 

quantifies the rate of imbibition during a one-dimensional imbibition experiment into a 

core that is initially only partly saturated. The sorptivity is jointly controlled and 

determined by the hydraulic conductivity and water retention functions. In principle, 

knowledge of any two of these three functions would enable the third to be deter-

mined. In this report we present two methods for estimating the hydraulic conduc-

tivity function from sorptivity and water retention measurements, and test these 

methods against data on seven Yucca Mountain tuff cores that have been collected by 

Flint et al. (1995). We note, however, that this particular data set is neither 
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sufficiently extensive nor accurate enough to provide a definitive test of the inversion 

procedures proposed in this report. 

Richards Equation for One-Dimensional Imbibition 

The governing equation for one-dimensional isothermal flow of liquid water in a 

partially saturated (also called "unsaturated") porous medium, in the absence of 

trapped gas, is the Richards equation (Hillel, 1980): 

.. (la) 

In the Richards equation, k, with dimensions of [L2], is the absolute (or saturated) per

meability; this is the permeability of the medium to water under conditions of full 

liquid saturation. The permeability is, essentially equivalent to the hydraulic conduc-

tivity K = pgk /Jl, because the liquid density p, the gravitational acceleration g, and the 

liquid viscosity Jl are essentially constant. kr (S) is the dimensionless relative permea-

bility function, which quantifies the extent to which partial saturation with air lowers 

the permeability of the rock to the liquid phase. Jl, with dimensions of [ML - 1 T-1], is 

the viscosity of the water. \jf, with dimensions of [ML-1T-2], is the capillary (or 

"matric") potential of the water in the porous medium. S is the dimensionless liquid 

saturation, which is defined as the volumetric water content, e, divided by the porosity, 

<)>. The two functions \j/(S) and kr (S) are often referred to as the characteristic func-

tions of the porous medium. Note that when modeling core-scale imbibition experi

ments on low permeability tuffs, it is appropriate to ignore the gravitational term that 

is present in the more general form of the Richards equation (see Zimmerman et al., 

1990,1995). 

I 
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When mathematically analyzing eq. (1), it is convenient to rewrite it in a form 

that explicitly shows that it is a diffusion-type equation. Use of the chain rule of 

differentiation yields (Brutsaert, 1976) 

or l[vcs) as]= as , ax ax at (lb) 

where the hydraulic diffusivity for unsaturated flow is given by 

D(S)= kkr(S) d'lf. 

J.L<I> dS 
(2) 

The mathematical problem of one-dimensional absorption is fully-specified by aug-

menting eq. (1) with the following boundary/initial conditions: 

\ji(X, t :::: 0) = 'lfi , ~ -" (3a) 

\jl(x =O,t >O)='lfs. (3b) 

Eq. (3a) states that the potential is initially equal to some value 'Vi. Aside from the 

small gravitational gradient, which we ignore, this represents a core that is initially at 

equilibrium. The potential 'Vs is the potential applied at the wetted boundary of the 

core. The two potentials 'Vi and 'lfs are related to the saturation Si and Ss through the 
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main branch of the water retention relation \ji(S ). The boundary condition used in the 

sorptivity experiments of Flint et al. (1995) is \j/5 =0, which usually corresponds to 

S5 = 1.0, which is to say full liquid saturation. 

Eq. (1) governing the capillary-driven absorption of water into a porous medium 

is in general highly nonlinear. The nonlinearity enters the equation through the two 

characteristic functions, kr (S) and \ji(S ). For those sets of characteristic functions that 

have been shown to accurately model the behav~or of soils or rocks, eq. (1) is not 

solvable in closed-form. If it were possible to develop closed-form solutions that had 

explicit dependences on the parameters that appear in the characteristic functions, we 

could then invert the experimental data to determine these parameters. Inversion of 

the experimental data could also be accomplished by fitting the data to numerical solu

tions of the governing equation. This approach has occasionally been pursued 

(Zachmann et al., 1981; Kool et al., 1985; Finsterle and Pruess, 1995), but involves 

extensive computations. Furthermore, as the sorptivity can be measured without hav

ing to determine the details of the saturation or pressure profile, it would seem that 

inversion methods could be devised that do not require repeated numerical solutions of 

the full governing differential equation. 

We have taken two approaches to this inversion problem. The first is to assume 

that the characteristic functions are of the van Genuchten - Mualem (Mualem, 1976; 

van Genuchten, 1980) form, and then develop an approximate expression for the sorp

tivity as a function of parameters that appear ·in the characteristic functions. These 

parameters can then be found by fitting the approximate expressions to the sorptivity 

data. The other approach is based on the assumption that the sorptivity is a linear 

function of the initial saturation, which implies that the diffusivity is constant. In this 

case the hydraulic conductivity can be inferred directly from the measured water reten

tion function, using eq. (2). In this report, both of these methods are applied to data 

that has been collected by Flint et al. (1995) on Yucca Mountain tuffs. 

/ 
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Sorptivity -Saturation Relationship 
' 

As the Richards equation ( 1) is a one-dimensional diffusion equation, its solution 

for the boundary/initial conditions given by eqs. (2,3) can be expressed in terms of the 

Boltzmann similarity variable, 11 = x t..Jt (see Hillel, 1980, p. 208; Hill, 1992). One 

consequence of this similarity behavior is that the cumulative volumetric influx into the 

medium, I (t ), which has dimensions of [L3], will be proportional to t 112, regardless of 

the specific form of the characteristic functions (Gardner and Mayhugh, 1958; Zimmer

man et al., 1995). The constant of proportionality was called the "sorptivity" by Phi

lip (1955), and denoted by S, so that 

l(t) = ASt 112 , (4) 

where A is the surface area of the wetted boundary. This ..J( dependence holds only 

prior to the time at which the wetting front begins to interact with the far boundary of 

the core, at x = L, after which the cumulative flux asymptotically levels off to the 

The sorptivity will depend on the hydraulic properties of the porous medium, as 

well as on its initial saturation. The sorptivity can be found (mathematically) by solv

ing the Richards equation by analytical or numerical means. Analytical solutions are 

not feasible for commonly-used characteristic functions such as those of Mualem 

(1976) and van Genuchten (1980), and numerical solutions do not display the manner 

in which the sorptivity depends on the parameters that appear in the characteristic 

functions. One approach that can be used to develop closed-form, albeit approximate, 

solutions is the integral method (Goodman, 1964). Another approach is to appeal to 

one of the numerous sorptivity approximations that have been proposed, which express 

the sorptivity as an integral functional of the diffusivity. One of the simplest of these 

isthe approximation proposed by Philip (1955): 
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(5) 

According to eq. (5), the sorptivity of the soil at an initial saturation Si depends on the 

hydraulic diffusivity of that soil over the range of saturations from Si to Ss. This is to 

be expected, as the saturation profile will vary from Ss at the wetted boundary to Si 

slightly ahead of the wetting front. In an extensive numerical study of the applicabil

ity of various sorptivity approximations to soils having diffusivities of the form 

D(S)=D0 exp(~S), Kutilek and Valentova (1986) found that eq. (5) is reasonably 

accurate. 

Van Genuchten - Mualem Characteristic Functions 

The characteristic functions that have been most widely used within the Yucca 

Mountain Project are those proposed by Mualem (1976) and van Genuchten (1980), 

which have the form 

(6) 

(7) 

where S =(S -Sr)I(Ss -Sr), a is a parameter that has dimensions of inverse pressure, 

i.e., [M-1UT2], and m and n are dimensionless parameters that ,are related by 

m = 1 ~ lin . The parameter a is, in some rough sense, proportional to the mean pore 

size of the rock. The parameter n is inversely related to the broadness of the pore-size 

distribution, in the sense that smaller values of n are associated with broader distribu-

tions, and vice versa. Sr is the "residual" saturation at which the liquid phase 
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becomes practically immobile. If eq. (6) is used to fit drainage data, the parameter S5 , 

which is the saturation at which the matric potential goes to zero, is usually very close 

to 1.0. 

Zimmerman and Bodvarsson ( 1989) used the integral method (see Goodman, 

1964) to find the following approximate expression for the sorptivity of a van Genu-

chten medium: 

S(S·) = s r s 1 
[

2nk<)>(S -S ) [ S -S·]l+l/nll/
2 

1 a(n+1)Jlm Jln Ss -Sr 
(8) 

Eq. (8) becomes increasingly accurate for larger values of n, and for high initial 

saturations (see Zimmerman and Bodvarsson, 1995), but it is not uniformly accurate 

over all ranges of n and Si. Guided by the algebraic form of eq. (8), and utilizing 

numerical solutions of the Richards equation, Zimmerman et al. (1995) derived the fol-

lowing more accurate expression for the sorptivity: 

(9) 

As m can vary (at most) from 0 to 1, the exponent p will vary only between 0.50 and 

0.62. In other words, the exponent is not very sensitive to m. As we are interested in 

inverting eq. (9), it is clear that this inversion is ill-posed with respect to m. More-

over, it is much easier to estimate m by fitting the water retention data to a van Genu-

chten curve, as was done by Flint et al. (1995). Finally, we point out that the scatter 

in the sorptivity data is in most cases large enough to render meaningless any attempt 

to use the data to distinguish between an exponent of 0.5 and, say, 0.62. Hence, in 

our inversions we will replace the exponent in eq. (9) with 0.5, in all cases: 
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(10) 

Fig. 1 shows the predictions of eq. (10), along with numerically computed values of 

the sorptivity, as functions of the initial saturation, for different values of n. Note that 

as m will be estimated from the water retention data, it is not necessary that eq. (10) 

be able to discern subtle differences in shape between the different curves, which 

depend on m. It will suffice if eq. (10) gives the correct "magnitude" of the sorp-

tivity curve, which it clearly does. 

Linear Sorptivity - Constant Diffusivity Approximation 

Some of the sorptivity functions that have been measured by Flint and Flint 

(1990) on volcanic tuffs from Yucca Mountain, Nevada, have seemed to be roughly 

linear functions of Si . These data can be represented by functions of the form 

(11) 

Sorptivities of this form cannot be accurately fit to van Genuchten-Mualem model, 

which leads to sorptivities that vary as ci-si )112• A similar conclusion would hold if 

we attempted to use a Brooks-Corey model for the characteristic functions (see Brooks 

and Corey, 1966; Zimmerman and Bodvarsson, 1991). In order to fit these data, we 

must broaden the family of characteristic functions under consideration. 

We start by examining the implications of the the result S(Si) = SmaxCl - Si ). We 

first note (Warrick and Broadbridge, 1992) that if D (S) = D 
0 

, where D 
0 

is some con

stant, the sorptivity will have the form S=2<J>(Ss-Si)-/D0 11t. Hence, a constant 

diffusivity is consistent with the result S(Si) = SmaxC 1 - Si ). The question next arises as 
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to whether or not D (S) = D 0 is the only diffusivity function that leads to a sorptivity 

of this form. Although we have not been able to prove that this is true, there seems to 

be strong evidence that it is the case. For example, if we use Philip's approximation, 

we can prove that a linear S(Si) relationship implies that D (S) = D 0 , as follows. If 

S(Si) =Smax(l-Si ), Philip's approximation takes the form 

(12) 

' 
Differentiating both sides of eq. (12) with respect to Si, and using Liebnitz' rule to 

account for the appearance of Si both inside the integral and as one of the endpoints, 

leads to 

(13) 

where use has been made of the fact that the integrand goes to zero at the lower end

point, S = Si . Another differentiation with respect to Si yields 

(14) 

which can be solved to yield 

(15) 
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Hence, according to Philip's sorptivity approximation, a diffusivity of the form 

S (Si) = SmaxO - SJ corresponds uniquely to a constant diffusivity D 0 , with 

Smax = 24>(S s- S r ),.Y Do /1t. 

Further evidence suggesting that linear sorptivities correspond only to a constant 

diffusivity can be found in the numerical solutions computed by Kutilek and V alentova 

(1986) for the family of diffusivities of the form D (S) = D 0 exp(~S ). They found that 

the S(Si) curve is concave up for ~ < 0, concave down for ~ > 0, and linear only when 

~ = 0, i.e., for D (S) = D 
0

• In light of the evidence presented above, it seems reason

able to conclude that D (S) = D 0 is the only diffusivity function that will lead to a 

linear sorptivity function. 

If the diffusivity is constant, eqs. (2) and (15) can be inverted to yield 

(16) 

Hence, if the water retention function is known, the hydraulic conductivity function 

can be found from eq. (16). An advantage of this equation is that any water retention 

function that fits the data can be used; there is no restriction of the \j/(S) function to 

any particular algebraic form. The simplest function that can be used to fit water 

retention data is a power-law relationship between S and \jf, as has been used by 

Brooks and Corey (1966) and others: 

[ 
s -s ]1 

\j/(S) = -\jla Ss -~ ' (17) 

where -'l'a is the air-entry potential; the minus sign is included so that 'l'a can be 
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treated as a positive number. Combining eqs. (16) and (17) leads to 

(18) 

from which we immediately see that that 

(19) 

Inversion Procedure 

The purpose of the inversion methods developed above is to enable accurate pred

ictions of the hydraulic conductivity to be made based on sorptivity and water reten-

tion measurements. In order to test the accuracy of these methods, however, we need 

a data set that includes measurement of all three functions. We will analyze data from 

seven Yucca Mountain cores that have been collected by the USGS. Water retention 

measurements have been made on each of these cores (Flint et al., 1995); in most 

cases the data were fairly smooth, and were fit reasonably well with both van Genu

chten or power-law functions. These curve fits will be used to find the pore-size 

parameters such as m and a. As explained in detail below, when fitting the sorptivity 

data we use measured values of porosity, and the inferred values of the pore-size dis-

tribution parameters, leaving only one parameter, such as Smax' as a fitting parameter. 

Although there is typically much scatter in the sorptivity-saturation data, if we assume 

that the scatter is due to random experimental errors, rather than some systematic bias, 

it seems Smax is probably accurate to within ±50% (see Figs. 2-8). As the conduc

tivity predictions depend on S~ax' the uncertainty in Smax will lead to an uncertainty of 
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a factor of two in our conductivity predictions; this is in addition to any uncertainty 

stemming from the the water retention data. Zimmerman et al. (1993) tested the inver

sion method that was based on the linear-sorptivity model on one vitrified tuff from 

the Calico Hills unit, and found reasonable agreement with measured conductivities 

over a range of saturations from 0.4- 1.0. The seven cores discussed below have only 

had their conductivities measured at S = 1.0, i.e., k = ksat. Our inversion methods will 

therefore only be tested as to their predictions of the saturated conductivity. To sim

plify the inversion procedures, we will take Ss = 1.0 and S, = 0 for each specimen, 

although finite values of S, have been measured by Flint et al. (1995). In all cases, S, 

was less than 0.1 0. As the predicted values of k will depend on (Ss- S, )2, the effect 

of neglecting the finite value of S, will be negligible compared to other sources of 

uncertainty. 

One factor that must be accounted for when performing the inversions is that, in 

some cores, the saturation behind the wetting front (i.e., at x =0) did not reach 100%. 

This saturation, Sbwf, can be estimated by performing a mass balance on the raw imbi

bition data, as described below. The permeability k that appears in the sorptivity 

equation (11) is intended to represent the conductivity behind the wetting front. 

Hence, we can account for the fact that Sbwf < 1 by replacing k with ksatk,(S=Sbwf ). 

This procedure is not exact, for the following reason. The potential behind the wetting 

front is 'lfbwf =0, so we see that Sbwf and 'lfbwf are not related to each other through 

the van Genuchten water retention function (6). This is because' eq. (6) is the drainage 

branch of the water retention relation, whereas the relevant portion of the water reten

tion relation during a sorptivity measurement is the imbibition curve. Porous rocks 

such as tuffs often exhibit hysteresis in their water retention relations, in the sense that 

drainage and imbibition do not follow the same curves (see Niemi and Bodvarsson, 

1988). A schematic of a typical hysteresis curve is shown in Fig. 9, where it is seen 

that, during imbibition, the saturation corresponding to zero matric potential is often 



- 14-

appreciably less than 1.0. As hysteresis measurements have not been made on these 

cores, we have little choice but to use the water retention curves that were measured 

during drainage to estimate parameters such as the van Genuchten a and m. How-

ever, we also assume, as is customary, that kr is a one-to-one function of S, which is 

to say· that there is no hysteresis in the kr (S) curve. 

Van Genuchten Model 

Our van Genuchten inversions are based on the following versiOn of eq. (11), 

with Ss = 1.0 and Sr =0, but with k replaced by ksatkr(Sbwf ), as explained above: 

S(S·) = . sat rC bwJ)<I> (1-S·)o.s = S (1-S·)o.s_ 
[ 

2m
413

k k S ]
112 

1 a!J. . 1 max 1 
(20) 

We fit the measured sorptivities to the function S=SmaxCl-Si)0·5, with Smax as the 

fitting parameter. With m and a taken from the curve fit to the water retention data 

performed by Flint et al. ( 1995), and using the measured porosity and a room

temperature water viscosity of 1.0 x w-3 Pas, we find a predicted permeability behind 

the wetting front of 

(21) 

The predicted saturated permeability is then found by dividing by kr (Sbwf ), where the 

relative permeability function kr (S) is taken from eq. (7): 

(22) 
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Linear Sorptivity Model 

To carry out the inversions based on the linear sorptivity model, we need a func-

tiona! form for the water retention curve. We will use the Brooks-Corey water reten-

tion curve-fits that were calculated by Flint et al. (1995), because they are essentially 

power-law functions, and have a simpler form than the van Genuchten equation. If we 

again set Ss = 1.0 and Sr =0, and identify k with ksatkr(Sbwf ), eq. (19) takes the form 

(23) 

which can be solved for 

(24) 

Note that \jla plays a role as a characteristic potential that is somewhat analogous to 

1/a in the van Genuchten model. The van Genuchten parameter n = 11(1-m) can be 

related toy by noting that, at low saturations, eq. (6) takes the form \j/=(1/a)S-(n-1), 

which shows that y is analogous to n -1. Hence, we see that the predictions of the two 

models, given by eqs. (19) and (24), are actually quite similar. 

Permeability Predictions and Comparison with Measured Data 

The measured sorptivities of the seven samples are shown in Figs. 2-8. The sorp-

tivity was usually measured at six different initial saturations. However, at high values 

of Si it was often not possible to determine the sorptivity from the imbibition data, as 

the I vs . ..J( curves did not exhibit a clear straight-line region at small times. This is 

because the wetting front becomes very diffuse when si is close to 1.0 (see 
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Zimmerman and Bodvarsson, 1989), and so the effect of the far boundary at x = L 

begins to influence the imbibition rate at relatively early times. For the purposes of 

the curve fits, we added in an additional point { S = 0, Si = 1.0}, as the sorptivity must 

be zero when the rock is initially at full saturation. The sorptivities of four of the 

seven samples were fit more closely with a linear sorptivity-saturation function, eq. 

(12), whereas the other three were fitted more accurately with the van Genuchten 

model, eq. (17). The samples that exhibited nearly linear relationships between sorp-

tivity and initial saturation tended to be those with lower porosities. For each sample, 

the maximum sorptivities Smax corresponding to the two types of curve fits differed by 

about 15-25%. 

The saturation behind the wetting front was calculated by assuming that the. 

saturation in the core asymptotically reaches a uniform level, Sbwf, as t --7 =. If the 

asymptotic cumulative volumetric imbibition is denoted by I 00, then Sbwf is found 

from 

(25) 

. where A is the cross-sectional area of the core, L is the length of the core, <1> is the 

porosity, and Si is the initial saturation. In general, Sbwf will depend on the initial 

saturation; for example, as Si --7 1.0, Sbwf must also approach 1.0. For each core w·e 

calculate a single value of Sbwf, using the data from the imbibition tests that were con

ducted on cores that were initially totally dry, i.e., Si = 0, This initial saturation was 

used for two reasons, one being that I 
00 

will be a maximum for Si = 0, so small abso-

lute errors in estimating I oo will lead to smaller relative errors in the estimate of Sbwf. 

Another reason is that, in many cases, the curve fits were somewhat more accurate at 

si = 0 than at intermediate values of si. 



- 17 -

For samples BB13A, BB68, and CH47, the value of Sbwf calculated from eq. 

(25) was somewhat greater than 1.0; we attribute this to experimental error, and set 

Sbwf = 1.0. In these cases, the term kr (Sbwf) in the denominator of eq. (22) was set 

equal to 1.0 when calculating ksat. The values of Sbwf estimated for the other four 

cores were each in the range of 0.5-0.6 (see Table 1). The predicted values of ksat 

are shown in Table 1. Measured values of ksat are given by Flint et al. (1995) for five 

of the samples. For the other two, BB 13A and BB68, we estimated ksat using the 

regression equations for ksat as a function of porosity that were developed by Flint et 

al. (1995) based on a large number (a few dozen) measurements on cores taken from 

rock outcrops at Yucca Mountain. These regressions were accurate (on average) to 

within about one order of magnitude, although in some cases the errors were as large 

as 2- 3 orders of magnitude. The mean of the absolute value of the error in log ksat 

was 0. 7 for the van Genuchten inversions, arid 1.1 for the inversion based on the linear 

sorptivity model. The van Genuchten inversion tended to be more accurate ·for those 

cores whose sorptivities were fit more closely by the van Genuchten model (BT17, 

BT3V, and BTll) than by the linear sorptivity model, and vice versa. If in each case 

we use the prediction based on the model that provided the best fit to the sorptivity, 

the mean error. in log ksat is about 0.6, which corresponds to a factor of Jour in ks~t 

itself. · This may well be within the error bars of the conductivity measurements per

formed by Flint et al. (1995). 

Discussion and Conclusions 

As part of the process of characterizing the suitability of Yucca Mountain as a 

potential location of an underground radioactive waste repository, a detailed three

dimensional numerical model is being constructed to study the hydrological behavior 

of the unsaturated zone (Wittwer et al., 1994). In order for the model to be as realistic 

as possible, accurate hydrological data are needed for the various geological strata. 
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The numerical model requires water retention and hydraulic conductivity curves for 

each rock type. The sorptivity is not explicitly required as an input, since sorptivity is 

a process-dependent property, and not a fundamental constitutive parameter. As men-

tioned above, it is very difficult and time-consuming to make accurate measurements 

of hydraulic conductivity curves on the relatively impermeable volcanic tuffs that are 

found at Yucca Mountain. Sorptivity measurements, on the other hand, can be made 

relatively quickly and accurately. 

We have presented two methods of estimating the hydraulic conductivity function 

from sorptivity and water retention data. Both methods have been seen to yield rea-

sonable, although not extremely accurate, predictions of the saturated permeability. 

The main source of error in the predictions is probably the fact that the water retention 

curves were measured during drainage, whereas the imbibition water retention curve is 

actually the relevant curve for modeling sorptivity experiments. Measurements of the 

imbibition water retention curves would therefore seem to be needed for more accurate 

predictions. Moreover, the imbibition (rather than drainage) curves are the ones that 

are relevant to fracture/matrix flow that will occur during transient infiltration 

processes at Yucca Mountain, and which will control the time required for water to 

reach the water table. We note also that unsaturated hydraulic conductivity measure-

ments have been made on very few cores from Yucca Mountain. Such data are 
., 

needed to test our predictions of the relative permeability function. However, we point 

out that the relative permeability function kr (S) is in fact used in our inversion pro-

cedure to find ksat> as eq. (22) shows. In the absence of saturated hydraulic conduc-

tivity measurements, our proposed inversion procedure can be used to give estimates 

of the matrix properties that are needed as input to the site-scale hydrologic model. 
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Fig. 1. Sorptivity of a van Genuchten medium, as a function of initial saturation, for 

various values of the parameter n. The normalized sorptivity is defined by 

[aJ.I}kq>(Ss-Sr)] 112S; the normalized initial saturation is defined by 

Si =(Si-Sr)I(Ss-Sr). The curves are generated from eq. (11); the symbols are 

values computed by numerically solving eqs. (1-3). 
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BB13A - Linear Sorptivity Model 

Sorp = Smax•(1.0-Si) 

Parameter Value 

Smax 4.3745e-06 

Chi"2 1.0618e-12 

R 0.9529 

0 

0 

0 
0 

0.2 0.4 0.6 0.8 

Initial Saturation, Si 

BB13A - van Genuchten Model 

Sorp = Smax"(1.0-Si)"'.5 

Parameter Value 

Smax 3.5469e-06 

Chi"2 2.0828e-12 

R 0.9053 
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0.2 0.4 0.6 0.8 

Initial Saturation, Si 

Fig. 2. Sorptivities of sample BB 13A, a mottled tuff from the Topopah Spring 

member. The top graph shows the results of a fit to the linear sorptivity model, 

the bottom graph shows the results of a fit to the van Genuchten model, eq. (20). 
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8868 - Linear Sorptivity Model 
7 10-6 

Sorp = Smax*(1.0-Si) 
6 10-6 

Parameter Value 

Smax 5.1418e-06 

5 10-6 Chi"2 3.1974e-12 

(i) A 0.93097 
"? --.s 4 1Q-6 

.?;-
:~ 3 10-6 a. 
'-
0 en 

2 10-6 

1 10-6 

0 
0 0.2 0.4 0.6 0.8 1 

Initial Saturation, Si 

8868 - van Genuchten Model 
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Fig. 3. Sorptivities of sample BB68, a tuff from the upper lithophysal zone of the 

Topopah Spring member. The top graph shows the results of a fit to the linear 

sorptivity model, the bottom graph shows the results of a fit to the van Genuchten 

model, eq. (20). 
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CH47 - linear Sorptivity Model 

Sorp= Smax*(1.0-Si) 

Parameter Value 
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CH47 - van Genuchten Model 
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Fig. 4. Sorptivities of sample CH47, a zeolitized tuff from the Calico Hills member. 

The top graph shows the results of a fit to the linear sorptivity model, the bottom 

graph shows the results of a fit to the van Genuchten model, eq. (20). 
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BT22H - Linear Sorptivity Model 

Sorp = Smax• ( 1. 0-Si) 

Parameter Value 

Smax 2.2869e-04 

Chi"2 1.671 Oe-1 0 
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BT22H - van Genuchten Model 
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0 

0 Neglect - outlier 

0.2 0.4 0.6 0.8 1.0 

Initial Saturation 

Fig. 5. Sorptivities of sample BT22H, a tuff from the shardy base of the Tiva Canyon 

member. The top graph shows the results of a fit to the linear sorptivity model, 

the bottom graph shows the results of a fit to the van Genuchten model, eq. (20). 
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BT17 - Linear Sorptivity Model 
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Fig. 6. Sorptivities of sample BT17, a tuff from the Yucca Mountain member. The top 

graph shows the results of a fit to the linear sorptivity model, the bottom graph 

shows the results of a fit to the van Genuchten model, eq. (20). 
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BT3V - Linear Sorptivity Model 

Sorp=Smax*(1.0-Si) 

Parameter Value 

Smax 1.7789e-04 
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BT3V - van 'Genuchten Model 
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Fig. 7. Sorptivities of sample BT3V, a nonwelded tuff from the Topopah Spring 

member. The top graph shows the results of a fit to the linear sorptivity model, 

the bottom graph shows the results of a fit to the van Genuchten model, eq. (20). 
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BT11 - Linear Sorptivity Model 
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Fig. 8. Sorptivities of sample BTll, a tuff from the Pah Canyon member. The top 

graph shows the results of a fit to the linear sorptivity model, the bottom graph 

shows the results of a fit to the van Genuchten model, eq. (20). 
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Fig. 9. Schematic drawing of typical water retention hysteresis curve (after Niemi' and 

Bodvarsson, )988). During drainage of water, the saturation approaches 1 as the 

matric potential goes to zero. During imbibition, however, the saturation will 

only reach Sbwf at zero potential, due to air being encapsulated and trapped in the 

core. 
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Table 1. Predicted values of the saturated permeabilities of seven tuffs from outcrops at 

Yucca Mountain. The two sets of predicted values are from the two inversion methods 

described in the text. The measured values are taken from Flint et al. (1995). The 

"measured" values for cores BB13A and BB68 are estimated from the regression curves 

found by Flint et al., based on a data set of a few dozen cores. 

Sample <I> Sbwt log Ksat {m2
) log Ksat (m2

) log Ksat {m2
) 

van G model linear model measured 
8813A 0.06 1.00 -18.1 -18.3 -19.0 
8868 0.06 1.00 -18.5 -18.5 -19.0 
CH47 0.23 1.00 -16.6 -17.9 -17.5 
8T22H 0.37 0.57 -13.5 -14.0 -12.8 
8T17 0.39 0.56 -13.0 -14.2 -12.5 
8T3V 0.39 0.60 -13.7 -14.3 -13.3 
8T11 0.57 0.58 -13.6 -14.5 -12.5 
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