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Introduction 
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Small changes in container shape or in contact angle can give rise to large shifts of liquid in a 
-microgravity environment. Such behavior suggests a means for managing fluids in microgravity and, 
as one specific possible application, for the accurate determination of contact angle. In connection 
with this application, we discuss certain containers designed for the forthcoming USML-2 Glovebox 
Interface Configuration Experiment (ICE) and depict their behavior in preliminary drop tower 
experiments. The containers are in the form of a circular cylinder with two diametrically opposed 
"proboscis" protrusions. These shapes are based on the canonical (single) proboscis containers 
introduced mathematically in [1], which have the properties in the absence of gravity that (i) fluid 
rises arbitrarily high over the entire proboscis for contact angles less than or equal to a critical value 
and (ii) the size of the proboscis can be made relatively as large a portion of the container cross 
section as desired. These properties allow overcoming some of the practical limitations of wedge 
containers; for the latter too little fluid may participate in the shift at a critical contact angle to 
be easily observable. 

We include below some background material from [2], where computational results for the 
double proboscis containers are presented. 

Governing equations 

Consider a cylindrical container of general cross-section partly filled with liquid, as indicated in 
Fig. 1. According to the classical theory, an equilibrium interface in the absence of gravity between 
the liquid and gas (or between two immiscible liquids) is determined by the equations 

div Tu = ~ in n, 
'Y 

(1) 

v · Tu = cos 1 on :E, (2) 

where 
'Vu 

Tu = --;:::==::::;:;;: J1 + I'Vul2 ' 

see, e. g., [3, Chap. 1]. In these equations n is the cross section (base) of the cylindrical container, 
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Figure 1. Partly :filled cylindrical container with base Q. 

:E is the boundary of n, v is the exterior unit normal on :E, and 

R
7 

= lf21 
I:EI COS/' 

(3) 

where jQj and j:Ej denote respectively the area and length of nand :E; u(x, y) denotes the height 
(single-valued) of the interface S above a reference plane parallel to the base, and 1 is the contact 
angle between the interface and the container wall, determined by the material properties. The 
volume V of liquid in contact with the base is assumed ~o be sufficient to cover the base entirely, 
and, for the mathematical results, the cylinder is assumed implicitly to be arbitrarily tall so that 
questions of behavior at a top do not arise. We restrict discussion to the case of a wetting liquid 
0 ::s; 1 < 1r /2 (the complementary non-wetting case can be easily transformed into this one). For 
1 = 1r /2, the solution surface is a horizontal plane for any cross-section. 

Wedge container 

For a cylindrical container whose section Q contains a protruding corner with opening angle 
2a, as in Fig. 2, the critical value of contact angle, at which behavior is discontinuous, is /o = f-a. 
For f > 1 ~ /O (and for fluid volume sufficient to cover the base) the height u can be given in 
closed form as the portion of the lower hemisphere with center at 0 meeting the walls with the 
prescribed contact angle /· Thus the height is bounded uniformly in 1 throughout this range. For 
0 ::s; 1 < /o, however, the fluid will necessarily move to the corner and rise arbitrarily high at the 
vertex, uncovering the base regardless of fluid volume. Details of this behavior can be found in [4], 
the initial study that revealed the discontinuous behavior, and in [3], [5], and [6]. Procedures for 
determining contact angle based on the phenomenon can give very good accuracy for larger values 
of 1 (closer to 1r /2) but may be subject to experimental inaccuracy when 1 is closer to zero, as the 
"singular" part of the section over which the fluid accumulates when the critical angle /o is crossed 
then becomes very small and may be difficult to observe. 

2 



., 

Figure 2. Wedge container section. 
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Figure 3. Canonical proboscis container section showing three members of the continuum of 
extremal arcs. 

Canonical proboscis container 

As a way to overcome the experimental difficulty, "canonical proboscis" sections were intro
duced in [1]. These domains consist of a circular arc attached symmetrically to a (symmetric) pair 
of curves described by 

VR 2 2 R . ln- J Ro 
2 

- y2 cos 'Yo - y sin 'Yo C 
X = O - y + 0 Sill /O + , 

· Ro + y cos 'Yo + J Ro 2 
- y2 sin 'Yo 

(4) 

and meeting at a point P on the x-axis, see Fig. 3. Here R0 , as well as the particular points of 
attachment, may be chosen arbitrarily. The (continuum of) circular arcs f 0 , of which three are 
depicted by the dashed curves in Fig. 3, are all horizontal translates of one such arc, of radius R0 

and with center on the x-axis, and the curves ( 4) have the property that they meet all the arcs r o 
in the constant angle 'Yo. If the radius p of the circular boundary arc can be chosen in such a way 
that Ro is the value of R-r from (3) for the value 'Y ='Yo, then the arcs fo become extremals for a 
"subsidiary" variational problem [7] (see also [3, Chap. 6], [6]) determined by the functional 

~ = lfl- 1~*1 COS/+ IU*I/ R-y (5) 

defined over piecewise smooth arcs r, where ~* and Q* are the portions cut off from ~ and n by 
the arcs. In the case of the section of Fig. 3, ~* and Q* lie to the right of the indicated arcs. It can 
be shown that every extremal for~ is a subarc of a semicircle of radius R0 , with center on the side 
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of r exterior to Q*, and that it meets E in angles ~ /o on the side of r within Q*, and ~ 1r - /o 
on the other side of r (and thus in angle /o within Q* whenever the intersection point is a smooth 
point of E) [7],[3]. It is remarkable that whenever (3) holds, <P = 0 for every Q* that is cut off in 
the proboscis by one of the arcs ro; see [1] and the references cited there. 

In [1] a value for p was obtained empirically from (3) in a range of configurations, and it 
was conjectured that the angle /o on which the construction is based would be critical for the 
geometry. That is, a solution of (1), (2), (3) should "exist inn if and only if 1 > /O· Additionally, 
the fluid height should rise unboundedly as 1' decreases to /o, precisely in the region swept out by 
the arcs f 0 (the entire proboscis region to the right of the leftmost arc r 0 shown in Fig. 3). For 
these conjectures, which form the basis of our proposed procedure and for which the mathematical 
underpinnings were proved only partially in [1], complete mathematical proofs have been carried out 
[8]. Specifically, it has been established that a unique value of p can be obtained for any specified 
proboscis length and that the conjectured behavior of the fluid rise is the only one possible. 

In [9] numerical solutions of (1), (2), (3) are depicted for canonical proboscis containers. Al
though the fluid rise in the corner is not discontinuous as occurs for a planar wedge, it can be 
"nearly discontinuous" in that the rise height in the proboscis is relatively modest until/ decreases 
to values close to /o, and then becomes very rapid at 1 = /O· Furthermore, since the proboscis can 
be made relatively as large a portion of the section as desired, the shift can be easily observed for 
a broad range of /o. Through proper choice of the domain parameters for the cases considered, an 
effective balance can be obtained between conflicting requirements for contact angle measurement 
of a sharp near discontinuity (for accurate measurement) and a sizable volume of fluid rise (for ease 
of observation). 

Double proboscis container 

For the USML-2 experiment, double proboscis containers will be used. These containers are 
similar to the single proboscis one of Fig. 3, except that there is a second proboscis diametrically 
opposite to the first, in effect combining two containers into one. The values of /o in (4) generally 
differ for the left and right proboscides, whose values of /o we denote by /L and /R, respectively. 
Similarly, we denote the values of R0 for the left and right proboscides by RL and RR. In order for 
(3) to be satisfied for both proboscides, there holds 

Specifying the desired points of attachment and choosing p, the radius of the circular portion of 
the section, so that (3) is satisfied then yields the container section. (Such a p can be chosen for 
the cases discussed here, but a proof that such a choice is possible for any proboscis lengths has 
not yet been carried out for the double proboscis case.) The critical value for the container is the 
larger of IL and IR· For the containers considered here, we shall take /R > /L, so that the critical 
contact angle /o for the container is equal to 1 R· 

The upper half of the sections for the USML-2 experiment, superimposed on one another, are 
shown in Fig. 4. The sections have been scaled so that the circular portions all have radius unity. 
The meeting points of the vertices with the x-axis are, respectively, a distance 1.5 and 1.6 from the 
circle center. For the sections depicted in Fig. 4 the values of /L and /R are respectively 20° and r 
26° for the uppermost section, 30° and 34° for the middle section, and 38° and 44° for the lowest 
section. 

For these containers the explicit behavior has not yet been determined mathematically in 
complete detail, as it has for the single proboscis containers. However, numerical computations 
in [2] and the known behavior of the single proboscis solution surfaces suggest that the behavior 
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Figure 4. Three superimposed double proboscis container sections. From uppermost to lowest, 
the pair of values of 'Yo for the left and right proboscides of each section are 20°/26°, 30°/34 °, and 
38°/44°. 

will be as follows: For contact angles 1 ~ /o, as 1 decreases to 'Yo the fluid will rise higher in the 
right than in the left proboscis, with the rise becoming unbounded in the right proboscis at /O· 
For contact angles between /L and 'YR the fluid will rise arbitrarily high in the right proboscis, but 
the height in the left will still be bounded. For smaller contact angles the fluid will rise up both 
proboscides arbitrarily high. By observing the liquid shift, one can then bracket the contact angle 
relative to the values of 'YL and 'YR· For a practical situation in which the container is of finite 
height with a lid on the top, the fluid will rise to the lid along one or both of the proboscides in 
the manner described above (providing the fluid volume is adequate). 

The selected values of /L and /R for the three containers are based on the value of approxi
mately 32° measured in a terrestrial environment for the contact angle between the experiment fluid 
and the acrylic plastic material of the container. The spread of values of contact angle covered by 
the three containers is intended to allow observation of possible effects of contact angle hysteresis, 
which is not included in the classical theory. 

Typical behavior of the numerical solutions of (1), (2), (3) for the three double proboscis 
container sections in Fig. 4, for a range of contact angles 1, is illustrated in Fig. 5, which is taken 
from [2). The numerically calculated solution surface u(x, y) for (the upper half of) the 30°/34° 
domain is shown for four values of contact angle, 60°, 50°, 40°, and 35°. (The critical value for 
the domain is 'Yo = 34 °.) Contour levels of the surfaces are indicated by the shading. As for the 
single proboscis containers, the computations indicate that rise heights are relatively modest until 
1 gets close to the critical value. At the container critical contact angle of 34 °, the solution would 
rise arbitrarily high in the right proboscis. For contact angles less than or equal to 30°, the fluid 
would rise arbitrarily high in the left as well. 

Drop tower tests 

The results of preliminary experiments carried out at the NASA Lewis Zero Gravity Facility 
5.18-Sec. drop tower are shown in Fig. 6 for the three vessels of Fig. 4 and for two different liquids. 
The figure depicts the configurations after approximately five seconds of free fall. In the top row 
of Fig. 6, the liquid is a 50% ethanol solution (the liquid to be 'used for ICE), for which the 
equilibrium contact angle with the container wall was measured to be approximately 32°, with a 
measured receding/advancing hysteresis interval of approximately 18° to 43°. In the lower row the 
liquid is a 60% ethanol solution, for which the equilibrium contact angle is approximately 20°, with 
a 12°-30° receding/advancing hysteresis interval. 

In the approximately five seconds of reorientation from an initial 1-g configuration, an indica
tion could be observed of what might occur under the longer-term period of weightlessness of the 
orbiting Spacelab environment. For the 50% ethanol mixture, the fluid interfaces rise somewhat 
along the proboscis portions of the vessel, with a noticeably greater rise in the right proboscis than 
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Figure 5. Equilibrium interface for the 30°/34 ° (upper-half) double proboscis section for contact 
angles 60°, 50°, 40°, and 35°. /o = 34 °. 
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Figure 6. (Transient) drop tower configurations after""' 5 sec. of free fall. Upper row: 
50% ethanol solution. Lower row: 60% ethanol solution. From left to right in each row are 
the 20°/26°, 30°/34°, and 38°/44° vessels, respectively. 
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in the left for the 38° j 44 o vessel. For the 60% ethanol mixture the rise is more pronounced; in 
the 44° proboscis the substantial rise suggests that the fluid may be proceeding to the top of the 
container, in accordance with the mathematical results. In the other proboscides the less virgorous 
rise could be attributed to reorientation forces being smaller when the departure of contact angle 
from the critical value for the container is less. In a longer term low-g environment and with 
astronaut "tapping" of the vessels to encourage overcoming of contact line friction and hysteresis 
effects, we anticipate that information can be obtained as to what extent the mathematical and 
numerical predictions based on the classical Young-Laplace theory can be observed in practice and 
what the physical effects might be of factors not included in the classical theory. 

ICE experiment 

In addition to the three double proboscis containers depicted in Fig. 4, the USML-2 ICE 
experiment has also a wedge container. This container is constructed to allow the interior wedge 
angle 2a (see Fig. 2) to be varied, so as to permit observation of the wedge phenomenon for both 
the advancing and receding cases. 
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