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1 Introduction. 

One of us [1] has proposed a new approach to non-perturbative phenomena in 

quantum field theory which could combine the advantages and range of validity 

of ordinary perturbation theory and of variational calculations of systems with 

a finite number of degrees of freedom. In ref. [1], the method was applied to 

the first few orders of the anharmonic oscillator whose Lagrangian is: 

L = ~ (flt</>)2- ~m2</>2- ~A</>4 (1) 
2 2 4 

It gave very intriguing results: for example, the combination of a very simple 

variational idea with a fifth order perturbative calculation of the ground-state 

energy at finite m gave in the purely anharmonic case (m = 0) a value of the 

ground state energy smaller than the true value by only 2.10-5 , and use of the 

seventh order improved the relative approximation to 3.10-6
; similar results were 

obtained for the excited states. This suggests that one could be dealing with a 

convergent sequence of approximations, which, if properly generalized to more 

complicated cases, could provide a useful computational as well as conceptual 

tool. 

In this paper, we present a set of extensive numerical investigations on the 

anharmonic oscillator treated with this method. In spite of the appearance of 

numbers with many significant digits, we do n.ot aim at finding exact results on 

the anharmonic oscillator, a very well known system. On the contrary, this paper 

should be read with a heuristic point of view as presenting numerical evidence 

in favor of a simple yet potentially powerful method to variationally improve 

perturbation theory in a way which remains quite empirical. To generalize the 

method to the more difficult case of a renormalizable field theory, one has to 

understand how to make it compatible with renormalization, and some of the 

empirical evidence gathered here turns out to be crucial for this enterprise. This 

will be done in other publications [2]. 

Some of the methods used here appear m several publications [3, 4, 5, 

6], under the names "optimized perturbation theory", "principle of minimal 

sensitivity" ,and "delta expansion". Here, and in our future publications [2, 10], 

we provide new insights and expand the range of applications of these ideas. 
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In section 2, exploring perturbation theory up to order n = 47, we apply 

the simple variational procedure of ref. [1] · to the calculation of the ground 

state energy in the purely anharmonic easel m = 0, starting from the ordinary 

perturbative expansion at m f:. 0. This is equivalent to extrapolating to infinite 

coupling the asymptotic expansion in the dimensionless coupling constant >.Jw3 , 

useful in principle only for weak coupling. A rather amazing picture emerges; 

at order n, the procedure yields n values for the ground state energy, most of 

them complex with very small imaginary parts, a few of them real, all of them 

within a few percent (most of the time much much less) from the exact answer, 

E'f:act. These values arrange themselves in families, increasingly numerous as the 

perturbative order n increases, each family converging to an approximate value 

of E0 , the set of these approximate values itself having Egxact as an accumulation 

point. We give some arguments to explain this behavior. In particular, it seems 

that the variational procedure generates an effective coupling constant which, 

as the perturbative order increases, decreases fast enough to offset the well

known factorial increase of the perturbation theory coefficients. Such an order

dependence of the effective coupling has been extensively used in refs. [4, 6], 

and our findings are within the range of validity of the results obtained by these 

authors. We show how scaling in a natural way the variational parameter with 

the order indeed provides much information about the large order behavior of the 

procedure, both for the ordinary anharmonic oscillator and on its Hartree-Fock 

approximation which amounts to retaining only the cactus diagrams: in large 

order, one obtains a remarkable improvement oCthe convergence of perturbation 

theory, the variational approximation of the ground-state energy (say) being 

then given by a series with an infinite radius of convergence. Furthermore, this 

series can be computed accurately in perturbation theory, and so the location 

of its extrema. Beyond its intrinsic interest, this large order result is quite 

important, because it turns out [2] that for renormalizable asymptotically free 

field theories, the variational procedure is compatible with renormalization only 

after the large-order limit has been taken exactly in the fashion of this section, 

which thus contains our main results for future use. 

In section 3, we report a study of second order of perturbation theory try

ing to test the practical usefulness of the most general variational procedure 

described in ref. [1], in which the propagator is allowed an arbitrary dependence 
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on its momentum. We have not been able to find the exact dependence which 

optimizes the second order of perturbation theory, but have tried ansatze with 

various functional forms containing a finite number of parameters. None of these 

more complicated forms seems to improve the approximation substantially, indi

cating that the simple variational ansatz of section 2, which modifies the inverse 

propagator by adding a constant, the result of the lowest order, captures most of 

the physics. This constant modification is also the Hartree-Fock approximation, 

or Iarge-N if one is dealing with an O(N) symmetric oscillator. In section 4, we 

apply the method to the calculation of other physical quantities, like< <P >,as 

a prototype of the expectation value of a composite operator, obtaining results 

with similar convergence properties. We also apply the method to the energy of 

the first excited state. 

2 A Simple variational parameter. 

This section, while self-contained, is an extension of some parts of ref. [1]. 

For the anharmonic oscillator described by the Lagrangian (1), the ordinary 

perturbative expansion of the ground-state energy is of the form: 

(2) 

where the coefficients An can be found in ref [7]. Apart from the asymptotic 

behavior of An 

An"' ( -3tr(n + 1/2) (3) 

which makes the expansion (2) only Borel summable, this result at finite p is 

useless as it stands form going to zero, the extreme strong coupling limit. How

ever, we can introduce w as a variational parameter, rewriting the Lagrangian 

(1) as: 

1 (8 )2 1 2 2 1 ( 2 2) 2 . 1 4 L = - t<P - -w ¢ - - m - w ¢ - ->.¢ = Lo + L1 
2 2 2 4 ' 

(4) 

where L0 = ~ (8t<P) 2
- ~w2¢>2 is our new free Gaussian part. 
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We can then compute at finite order in L1 the ground state energy. This is 

done easily by starting from expansion (2), substituting 

in it, and expanding in powers of m2 - w2 up to total order p in A and m2 - w2 • 

Setting m = 0 then gives an w-dependent approximation of order p for the 

ground state energy of the purely anharmonic case: 

(p) ~An f(p + n/2 + 1/2) A n 
Eo (w) = ~ ~f(3n/2 + 1/2)f(p- n + 1)w(w3 ) ' 

(5) 

where A0 = 1/2. 

Now, if one would have started from the exact expression for the ground 

state energy at finite m, the introduction of w should be irrelevant, and so, 

one may take as best approximation at finite order some value of w such that 

8wE(P)(w) = 0. This gives us a set of energy values which we can compare with 

the numerical value, as found in ref. [8]: 

E~xact(m = 0) = A113 0.420804974478 .... (6) 

Taking A = 1 , we have performed the calculation of the optima of the 

energy in w until the 47th order. These res~lts and comments on them are 

presented below. 

2.1 Solutions of our variational problem. 

The search for solutions of 8wE(P)(w) = 0 is performed in the complex plane. It 

gives a polynomial equation of degree p in w3 . Most solutions of this equation are 

complex and give complex values for the energy, which is of course unphysical. 

However, quite remarkably, the imaginary part of the energy which one obtains 

is generally extremely small, indeed of the same order of magnitude as the error 

in the real part (see figure 1). Rather than simply discarding these complex 

extrema, one may use them as bona fide approximations, keeping only the real 

part and using the imaginary part as an uncertainty estimate . 
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If the method makes sense, of adding and subtracting an arbitrary mass 

term, and claiming that if one were working to all orders this should make no 

difference, then, at least in some range of w, Eap)(w) should be less and less 

dependent on w as p increases. Indeed, figures 2 and 3, where EaP) is plotted as 

a function of w for real w and increasing values of p reveal an increasingly flat 

behavior around the best value, which provides a way of picking the probable 

best approximation when it is real and there is no imaginary part to serve as an 

estimate of the error. 

2.2 Existence of optima families. 

For a given order p, there are p values of w3 which make E~P) stationary. Figure 4 

shows the distribution of these values for w 2 in the first quadrant of the complex 

plane, for all p between 1 and 30 (the reason for choosing w2 will be clear below). 

Obviously, they arrange themselves in families. Closer examination reveals that 

as p is increased by 2, one "new" complex value appears in general, rather close 

to the real axis, which is the first member of a new family, while the other values 

obviously are members of families established in lower orders. The new family 

generally gives a better approximation than the older ones, which lie further 

away from the real axis. Once in a while, instead of one new complex family, 

two new real values appear. Figure 6 plots the values of the real optimizing 

values up to order 30. 

2.3 Asymptotic behavior of the functions E~P)(w). 

We can understand many of the features presented in the previous subsection 

by looking at what happens at very high order in eq. ( 4). 

For any fixed n, p very large, we can use Stirling's formula, and write: 

E(p)(w),...... L An 1 p3n/2-l/2wl-3n. 

O n=O 4n r(3nj2 + 1/2) 
(7) 

where we have intentionally left the upper value of n undefined. Now, from the 

asymptotic behavior (3) An ,...... ( -3)nr(n + 1/2) we see that eq. (7) , up to an 
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overall factor y-113 , defines an entire series in y = (pfw2 )312
), and we call this 

function Eo(Y ). 

Many features of figures 2 and 3 can be understood in terms of this construc

tion, which has manufactured in a new way an entire series out of an asymptotic 

expansiOn. 

Let us for example explain the existence of families in figures 2 and 3. When 

p increases, for finite values of y, EaP) as given in eq. (4) can increasingly well 

be approximated with E0(y ). Hence, each extremum of E0(y) corresponds to 

a family. Furthermore, we can easily see that, in each family, w 2 fp and the 

corresponding extremum value of EaP) approach their asymptotic value as lfp. 
Hence, we can fit each family with an expansion in powers of lfp. Let us do 

this for the first three real families. For the first one,which starts at 6th order, 

we obtain: 

E~~~ ~ 0.4207987- 11.98 X 10-5 fp + 8.991 X 10-5 !l + O(p-3
). (8) 

For the second one, which begins at 15th order, 

E~~~ ~ 0.420804977 + 5.029 X 10-7 fp- 5.284 X 10-7 fp2 + O(p-3
). (9) 

For the third one, which begins at 30th order, 

E£~~ ~ 0.420804974472 - 1.25 X 10-9 fp -1.38 X 10-8 fp2 + O(p-3
). (10) 

Including higher orders in 1/p does not significantly change the asymptotic val

ues of these families. 

Hence, the first real family forms a sequence of approximations which ap

parently converges from below to 0.4207986 ... , which is significantly, by about 

6.10-6 , less than the exact value. The second family converges from above to 

0.420804977 ... , significantly above the exact value, by only 3.10-9 • The third 

family converges to 0.420804974472 ... , still significantly below the exact value, 

by only about 6.10-12 , which is truly remarkable. These values correspond to 

the successive real extrema of the function E0 (y), which seems to display an 

oscillatory behavior as y increases, which unfortunately seems to require going 
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to much higher order than 4 7 to be seen: at that order, one sees only the first 

extremum. For this extremum, one finds an energy value: 

Eo ~ 0.42079845 ... (11) 

Comparing this value with (8), we see that it is remarkably in agreement with 

the asymptotic value of the first family. 

It is rather natural that no given family converge to the exact answer, as 

in practice this would essentially involve only a finite, if extremely large, order 

of. the perturbative series, because of the convergence properties of the series 

in Eo(Y ). The exact value can only be the value of E0 (y) at y = oo, as the 

data seems to show. So, we can try to estimate the ground state energy by an 

extrapolation of E0 (y) at y = oo. 

2.4 Extrapolation of Eo(y). 

Instead of extrapolating E0(y) to y = oo, we find it more convenient to perform 

the change of variable X= y-113 and then extrapolate the function 

( ) 
~An 1 -3n 

Eo X =X~ ~r(3n/2 + 1/2)X (12) 

to X= 0, knowing that: 

i) E0 (X) behaves asymptotically as X for X--+ oo, 

ii) for X < < 1, this function has a sequence of very flat extrema, and goes 

exponentially fast to the exact value E8xact as X --+ oo, which is the number 'we 

are looking for. 

For this extrapolation, it seems easiest to consider the derivative of E0 (X), 

which satisfies 

lim ox Eo(X) = 
2 

1
;::;;, 

X-+oo y7r 
(13) 

impose a decreasing exponential behavior at X = 0, and find the value of 

Eo(X = 0) by integration from infinity to zero. For example, we can fit this 

function, ox E0(X), at X--+ oo, using the functional form 
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8xEo(X) = 2~exp(-a/X3)[1 + bjX3 + cjX6 + ... ]. (14) 

with appropriate values of the parameters a, b, c ... 

This extrapolation procedure can be considered as an alternative to the 

extremization procedure of the previous subsections, using the same numerical 

information, encoded in the values of the successive perturbation theory coeffi

cients A0 , A 1 , A 2 ••• We thus obtain: 

- Using only A0 and A 11 i.e. setting b = c = ... = 0: 

E~ppr = 0.420014 ... (15) 

which must be compared with the usual variational value Ea1
) = 0.429268 ... 

and the exact E8xact ~ 0.420805. Remarkably, taking into account only the first 

order Feynman diagram, we thus obtain an approximate value below the exact 

ground state energy by only 8 X 1 o-3! This is actually due to the fact that in the 

next approximations, the coefficient b is accidentally very small. An accuracy 

of a few percent would probably be more generic. 

E~ppr = 0.4204619 ... 

b d . h E(2) c . • to e compare wit 0 = 0.421218 ... + 0.0014 ... I, 

E~ppr = 0.420474 ... 

to be compared with E~3) = 0.420983 ... 

(16) 

(17) 

We see that this extrapolation method of the entire function E0 (y) gives 

remarkably good numerical values, and has the further advantage of giving real 

numbers. The functions analogous to E0(y) will play a crucial role in the quan

tum field theory case, as it turns out to be the main feature of this paper which 

survives renormalization and its infinities. 
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2.5 Oscillatory behavior of E0(X) in the case of the 

Hartree-Fock approximation. 

In this subsection, we report the results of the procedures of the previous sub

sections applied to the theory restricted to the Hartree-Fock approximation (if 

we were dealing with an N-component symmetric oscillator, this would corre

spond to taking the Iarge-N limit). The advantage of the Hartree-Fock case is 

that ordinary perturbation theory of the Lagrangian (1) has a finite radius of 

convergence in 'A/m3 . We shall see that the features discovered in the previous 

subsections are naturally also present in this approximation, together with a 

couple of extra ones. 

The Hartree-Fock approximation of the ground-state energy is given by the 

sum of all vacuum to vacuum cactus Feynman diagrams. Applying the same 

procedure as in section 1, we obtain for the order-p approximation at 'A = 1: 

E(p) W _ .f., Cn f(p + n/2 + 1/2) W .2_ n 

H.F.( ) - ~ 4n f(3n/2 + 1/2)f(p- n + 1) (w3 ) ' 
(18) 

where the coefficients Cn give the sum of all cactus graphs of order n. This is 

the expression, identical in form to equation (5), which has to be studied in our 

variational approximation. 

In the framework of this approximation, 'we obtain many real solutions of 

the variational equation (see figure 5) to be compared with the exact value 

Elf.F.t = 0.4292678409575 ... (19) 

Remarkably, at any order, the exact value is one of the solutions of the 

variational procedure, the one corresponding to the smallest value of w, which 

sits precisely at the edge of the convergence region of the original perturbative 

series. This coincidence is of course a pathology unique to the Hartree-Fock 

approximation, which corresponds to the fact that in the full theory, the varia

tional value for the energy which gives the best numerical value is the one for 

the smallest w. Apart from that, the grouping of the values of win families, and 
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the oscillatory behavior of the function E}:!F.(w) are much the same as in the 

full theory. 

Next, as in subsection (2.3), we go to the limit p --+ oo with the same 

rescaling of w, and define the function: 

E ( ) _ -1/3(~ Cn 1 n) 
H.F. y - y ~ 4n r(3n/2 + 1/2) y . (20) 

Because the Cn coefficients are those of a series with finite radius of con

vergence, one can obtain much better estimates of the series in this equation for 

large values of y, and thus see very well its oscillating behavior in that region, 

which was not the case for the full theory. This is displayed in figures 7 and 8. 

We can for example compare several asymptotic energy values associated 

with the families displayed in fig. 5 with the stationary values of EH.F.(y). For 

the first three families, we find: 

- First family: 

E~:~ = 0.428584- 0.00382794/p + 0.00244357 fp2 + O(p-3
), (21) 

and for the corresponding extremum of EH.F.(y): 

Elf.~. = 0.4285 7 ... (22) 

- Second family: 

E~~~ = 0.4292937645- 0.00051/p + 0.00031/p2 + O(p-3
), (23) 

and 

Elf.~.= 0.429297 ... (24) 

- Third family: 

E~~~ = 0.4292674287- 0.000096/p-:- 0.00021/p2 + O(p-3
), (25) 

and 

Elf.~.= 0.4292659 ... (26) 

10 



By applying our variational procedure to the Hartree-Fock approximation 

and comparing with the full theory, we thus see which features are more generic, 

and hence have a better chance of surviving in field theory. We think that the 

main lesson to be learned is that the exact Hartree-Fock result, already found 

at lowest order, and common in that order to the Hartree-Fock case and to 

the complete theory may. be misleading, in the sense that it seems to give too 

much weight to the fact that the variational method gives the exact result for 

the Hartree-Fock case. In contrast to this possibly pathological coincidence, the 

behavior of the large-order limit function E0 (X) is common to the Hartree-Fock 

case and to the complete theory. This large-order limit also sheds light on the 

general behavior of the curves of figures 2 and 3 : the regular shift to the right of 

the right-hand parts of the curves exactly corresponds to the rescaling of w 2 by 

the order in the large-order limit. For the left-hand parts of the curves, they do 

not shift to the right in the case of the Hartree-Fock approximation, and shift 

to the right in the complete theory only as w 3 proportionnal to the order. Thus, 

in both cases, there is an increasing region in w where the curves become flatter 

as the order increases and hence, the approximation more and more accurate. 

These scaling behaviors correspond to those found in reference [6]. Furthermore, 

the limiting function E0 (X) can be computed in perturbation theory for large 

X, and, as we have seen in subsection (2.4), accurately extrapolated to X = 0 

to give an excellent value of the energy, and we shall see in our extension to 

quantum field theory [2] that this is indeed the most robust feature of this 

section, robust enough to survive renormalization. 

3 More sophisticated approach: the use of several 

parameters. 

In the previous section, our variational improvement of perturbation theory has 

been severely restricted to the class of variational ansatze where the modification 

of the inverse propagator is a constant. It would be worthwhile to have an idea 

of the improvement which a more general modification would give. 

The variational improvement of perturbation theory provides an order-
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dependent equation for the modified propagator G = 1/(k2
- K) which at first 

and second orders is depicted by the Feynman diagrams of figures 9 and 10, in 

which the internal lines involve the modified propagator G itself. 

In principle, the most arbitrary G could involve a complicated kernel, but 

it is obvious that there should exist solutions of these equations of the form 

G(k) = 1/[k2 - K(k)] (more general kernels G(k,k') would occur naturally if 

one were looking for solutions corresponding to bound states, and must exist, as 

indeed the functional equation of figure 9 is identical to equation (2.14) of refer

ence [11] which has a very rich set of solutions. However, pursuing investigations 

in that direction would go beyond the scope of the present paper). In lowest 

order, a solution of this form will automatically lead to a constant K, solution 

of the Hartree-Fock approximation. In second order, because of the non-trivial 

structure of the last diagram in Fig. 10, K(k) must be non constant. The equa

tion which K satisfies is an unusual non-linear integral equation for which we 

have found no clever trick. Hence, we resort once more to a further approxima

tion, in which we restrict K(k) to certain functional forms with a finite number 

of variational parameters in them with respect to which we optimize. We now 

list these various functional forms in Euclidean notation and the corresponding 

results of the optimization. 

For reference, we first give the values for the simple ansatz of the previous 

section: 

i)For G(k) = 1/(k2 + m 2
) : 

m ~ 1.2980 + 0.0083 i 

which gives: 

Eopt ~ 0.42142 + 0, 00013 i 

Moving to increasingly complicated ansatze, we have: 

ii)For G(k) = af(P + m 2
) : 

a r-.J 0.9836 + 0.1511 i 

m r-.J 1.3102 + 0.0427 i 

12 
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·~ 

which give: 

and 

which give: 

Eopt ~ 0.42169 + 0.00014 i. 

a "' 0.9423 + 0.087 i 

m "' 1.1957 + 0.1915 i 

Eopt ~ 0.42049 + 0.00152 i . 

iii)For G(k) = aj(P + m2
) + (1- a)j(P + n2

) : 

a "' 0.8979 - 0.0442 i 

m "' 1.1833 + 0.0655 i 

n "' 7.6246 - 2.0266 i 

which give: 

Eopt ~ 0.42096 + 0.00099 i. 

a "' 0.9105 + 0.0678 i 

f3 "' 0.0989 - 0.0233 i 

m "' 1.1902 - 0.0458 i 

n "' 3.1798 + 5.1317 i 

u "' 5.1534 + 18.30 i 

which give: 

Eopt ~ 0.42095- 0.00098 i. 

iv)For G(k) = 1/(k2 + aiki + m 2
) : 

a "' 0.1751 - 0.1459 i 

m "' 1.2222 + 0.1509 i 

13 
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(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 



which give: 

and 

which give: 

Eopt ~ 0.42084 + 0.00129 i. 

a "' 0.0198 + 0.2957 i 

m "' 1.2844 + 0.0459 i 

Eopt ~ 0.42149 + 0.00090 i. 

(38) 

(39) 

(40) 

We should note that these results are not as exhaustive as in the previous 

section, because we must look for the extrema in the complex planes of several 

parameters, where it is easy to get lost: there may be other extrema, in some 

far away regions of parameter space. Nevertheless, we believe that the following 

qualitative picture emerges: Such optimizations do not seem to increase appre

ciably the accuracy on the ground state energy whether measured by the value 

of the imaginary part of Eopt or by the difference of the real part with the true 

value: this accuracy remains around 10-3 . We may reasonably conjecture that 

this is indeed as well as the method can do at this second order, and that solv

ing the variational equation exactly for the propagator at that order would not 

give any substantial improvement beyond the result of the simple ansatz of the 

previous section. 

4 Calculation of other physical quantities. 

4.1 Mean value of < <j;2 >: 

Vacuum expectation values of composite operators are objects of great physical 

interest in quantum field theories, much more than in ordinary quantum me

chanics. For example, they play an important role in chiral perturbation theory, 

and it would be most welcome to have even rather crude approximations for 

their values. Hence, in this section, we shall investigate the accuracy with which 

our method can give < <P2 > in the ground state of the anharmonic oscillator. 
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We shall also use this calculation to test another idea: although it is clear 

that, as in any variational procedure, one would in principle get the best results 

by optimizing the quantity of interest with respect to the variational parame

ters, it is sometimes tempting to use the values of the parameters obtained in 

the optimization of some quantity (in the present case the ground state energy) 

in order to compute other quantities with them, particularly if these other quan

tities give rise to some unwieldy set of variational equations (this could occur for 

example for a propagator or some more complicated correlation function which 

have some space-time variables in them). We are thus going to compare the 

results of these two procedures for the ground state expectation value < ¢} >. 
From 

(41) 

we have simply 

(42) 

so that the perturbative expansion at non-zero m of < <P2 > is rather trivially 

obtained from equation (2), and one can then proceed as in section (2): At 

m = 0, we have thus computed the optima with respect to w up to order 30, 

and compared them with the value found in ref. [9]: 

< </J2 >exact=).. -l/
3 0.456119955748 ... (43) 

We have found convergence and accuracy pioperties very similar to those of 

the ground-state energy itself as described in section (2), and we do not report 

here the details. 

Next, we compare the results of optimizing directly < <P2 > with the value 

obtained by using the w obtained from the optimization of the ground-state 

energy in the same order. For the direct calculation to orders p = 1 to 3, we 

obtain: 

for p = 1 : w ~ 1.25992 < <P
2 >~ 0.44645 

for p = 2 : w ~ 1.34807 + 0.11106 i < <P
2 >~ 0.45575- 0.00227 i 
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(44) 

for p = 3: w ~ 1.43806 < ¢2 >~ 0.45592 

W ~ 1.40288 + 0.17821 i < cp2 >= 0.45723 - 2. 7 X 10-5i 

while using the values of w obtained from the optimization of the ground-state 

energy at the same order, we obtain 

for p = 1 : w ~ 1.14471 < ¢2 >~ 0.43678 

for p = 2 : w ~ 1.27264 + 0.12645 i < ¢2 >~ 0.45424- 0.00389 i 

(45) 

for p = 3: w ~ 1.37080 < ¢2 >~ 0.45549 

w ~ 1.35091 + o.19488 i < ¢2 >~ 0.45744- 6.8 x w-4 i 

Comparing these numbers with the exact value (43), we see that these two 

approaches lead to results with the same order of accuracy, the direct optimiza

tion doing only slightly better. In the next subsection, we shall perform a similar 

comparison for another quantity. 

4.2 Energy of the first excited state 

We can use the perturbative expansion for the energy of the first excited state, 

E m A _ ~m 15 ~ _ 165 ~ 3915 ~ 
1

( ' ) - 2 + 16m2 128 m 5 + 1024 m8 
(46) 

and repeat on it the optimization of section (2) up to order 3. We obtain a 

sequence of approximations with very similar features. The results for the first 

three orders p are: 

for p = 1 : w ~ 1.35721 ( 47) 
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for p = 2 : w ~ 1.49893 + 0.08752 i E~2) ~ 1.50739 + 0.001 i 

for p = 3: w = 1.69418 

w ~ 1.53709- 0.11684i E~3) ~ 1.50750 + 5.8 X 10-4i 

which can be compared to the accurate value: 

E~xact = 1.50790125 ... (48) 

One may now compare these results with those obtained by evaluating Ef 
at the optima of E'C for the same value of p. This gives: 

for p = 1: w ~ 1.14471 (49) 

for p = 2: w ~ 1.29802 + 0.00828 i E~2) ~ 1.49323 + 0.0016 i 

for p = 3 : w ~ 1.37080 EP) ~ 1.51382 

w ~ 1.35091 - 0.19449 i E~3) ~ 1.49385 + 0.00075 i 

Although the true optima of EfP) are indeed much closer to the exact answer 

than the values at the optima of E~P), these nevertheless provide quite reasonable 

approximations, which improve when the order increases, due to the increasingly 

fiat character of the corresponding function, analogous to what can be seen on 

figures 2 and 3. 

Another way to compute the energy of the first excited state is to use the 2-

point 1-P-I function at order p, f(P)(k) which vanishes fork= E1-E0 • Figure 11 

shows the Feynman diagrams to be computed up to second order of perturbation 

theory. 

In general, a direct optimization of this function would have to be made 

for each value of k. In first order, taking 1/(k2 + w2 ) as variational ansatz, one 
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obtains 
2 3 ,\ 

r(2)(k,w) = k + 2w' 

... _ .... ···- ..... ~ ...... -....... ··~····· . 

(50) 

which has no extremum in w: the only natural thing to do at that order is thus 

to plug in the value of w obtained in the optimization of the ground-state energy: 

this gives back the Hartee-Fock value for the mass gap, 1.1447142 ... (at,\= 1), 

while the correct value is Efact- E8xact = 1.087096 ... 

In second order, taking again simply l/(k2 + w2 ) as variational ansatz, one 

obtains: 

Hence, one can solve the sytem 

obtaining at ,\ = 1: 

Owf(p)(k,w) = 0, 

r(p)(k,w) = 0, 

w ~ 1.4107698 

k = E1- Eo~ 1.092026 

(51) 

(52) 

(53) 

(54) 

(55) 

which is about 10-3 away from the correct value, i.e. an error of the same order 

of magnitude as in the calculations of Eo or E1 at the same order, except that it 

has the advantage of being real (by chance, as far as we can tell). By contrast, 

plugging in r(p)(k,w) the (complex) value of w obtained from the optimization of 

Ea2
) and looking for the zero gives an error of a few percents in E1 - E0 , compared 

to the ~ 10-3 error seen in equation (55). Using the more complicated anstze 

of the end of section 3 give similar results, and we do not report them here. 

In this section, we have seen that the procedure of [1] can be used success

fully to compute a variety of physical quantities. In each case, as expected from 

a variational approximation, directly optimizing the quantity of interest gives 

the best answer, but using the values of the variational parameters from the 

optimization of another quantity is not necessarily bad: the loss of numerical 

accuracy seems of the same order as working in one order less in perturbation 

theory. 
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5 Conclusion 

. In this first paper, we have first explored in numerical detail the remarkable 

convergence properties of the variational method proposed in [1] on the particu

lar case of the ground-state energy of the anharmonic oscillator. We have found 

how the extrema arrange themselves in families, and how these families converge 

to the exact answer. We have seen that these families are also present in the 

Hartree-Fock approximation, and in the calculation of other physical quantities. 

Although higher orders of the variational procedure do not give bounds 

(contrary to the usual lowest order), this is compensated by its straighforward 

applicability to the calculation of excited states or expectation values. 

Going to infinite order in the (easy) variational procedure (which involves 

only a modification of the free Lagrangian) but finite order in the (hard) per

turbative calculation (which involves the quartic interaction term), we have put 

some order in these families, improved the convergence of the perturbative se

ries by a factorial, and defined an extrapolation procedure which is not only 

numerically excellent, but will be seen in future publications [2] to generalize to 

the case of renormalizable field theory. 

In the next paper [10], we shall see how a similar variational improvement of 

perturbation theory can be achieved through a variational ansatz ·corresponding 

to putting the anharmonic oscillator in a finite time. box. 
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