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1 Introd uttion. 

In the preceding paper [2], we presented a study of large orders of a variational 

method which provides convergent sequences of approximations for the quantum 

anharmonic oscillator. In this method, we introduced a mass term (with a mass 

w) in the free Lagrangian and subtracted it in the interaction part. Then, we op

timized at any order in terms of this variational parameter w to get approximate 

values of different quantities. 

We have in perspective the use of such a method in quantum field theory. 

For fermions like those of the Gross-Neveu model [3], or QCD quarks, intro

duction of a mass term causes a priori no problem, but for gluons it would 

break gauge invariance, and there is no obvious modification of the momentum 

dependent part of the gluon propagator and the structure of the ultraviolet in

finities of the theory. However, a space compactification might provide some 

good approximation of quark confinement, like in the M.I.T. bag model [4]. 

In the M.I.T. bag model, the bag is a fundamental ingredient of the theory, 

which hence is not QCD, while we would advocate here an approach in which 

it would be added to the free gluon and quark action in the form of a modifi

cation of their propagators, the subtraction of this modification being done in 

perturbation theory. While formally when going to all orders one would have 

done nothing, and still be dealing with QCD, a finite given order would have to 

be optimized in the size of the bag as the closest one could get to the infinite 

order case. The advantage would be that different physics would be involved, 

hopefully closer to that of the full theory, with confinement, etc ... 

Compactification as an intermediate step in calculations in infrared diver

gent field theories has already been considered by several authors [5] , with 

reasonable success. These authors usually treat the theory in a spatial box 

of length l, and extrapolate the results to l -+ oo. We are here advocating 

a different, if related, strategy, in which the box is in some sense subtracted 

perturbatively, and the calculation at a given order in perturbation theory op

timized with respect to the size of the box, this being supposed to mimick as 

well as it can the true all-orders theory, where formally there is no dependence 
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at all on the size of the box. 

In this paper, we try out this idea on the case of the anharmonic oscillator, 

choosing an action with compactified time as our starting point. We find a 

configuration for the optima and the approximate values of the ground state 

energy very similar to those of the harmonic approach of this problem [2]. In 

the second section, we study the interaction part of the action to be used in order 

to formally leave the total action of a pure anharmonic oscillator unchanged. We 

make a choice which allows relatively simple perturbative calculations starting 

from a theory governed by a compactified action. The perturbation theory for 

such a compactified action is considered in the third section. In the fourth 

section, we establish the variational-perturbative expansion of the mean value 

of the Hamiltonian and optimize it in terms of our variational parameter (the 

size of the box) up to order 16. We interpret the configuration of the extrema 

using the large order behavior of the expansion, which is qualitatively much the 

same as in the harmonic approach of the previous paper, to which we compare 

our results. They turn out to be less accurate numerically for similar orders in 

the approximation, which reflects the fact that approximating an anharmonic 

potential by a compact time dimension is much worse than approximating it by 

a harmonic potential. Nevertheless, the convergence properties are qualitatively 

very similar. 

2 Time compactification of a pure anharmonic 

oscillator. 

The Euclidean action for a pure anharmonic oscillator writes: 

(1) 

Severe infrared divergences prevent any perturbation in powers of A. A way 

to tame these divergences is of course to introduce an w 2 </J2 term as was done 

in the previous paper. Here, we ~ould instead like to replace in some sense the 

free term of the action of equation (1) by the compactified free action S0(7): 
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(2) 

and rewrite the total action S as: 

(3) 

Then, we will be able to perform a perturbative expansion of any quantity in 

powers of the interaction term 5 1 ( T) around the free term 5°( T ). To do so, let 

us consider the Euclidean action Sr of a time compactified pure anharmonic 

oscillator 

(4) 

With Sr, one can compute in perturbation theory in powers of A at any 

given T (provided one uses appropriate boundary conditions, see below). To see 

how S and Sr may be related, we perform the following change of variable: 

t x 2 

x = Ttan T ; dx = (1 + T 2 ) dt, (5) 

(6) 

On the other hand, we can rewrite the action S as 

(7) 

where, strictly speaking, c = 1. Comparing (7) with the expression of the 

compactified action (6), we see how to relateS and Sr: following the procedure 

of the previous paper, one computes the quantity of interest to some order in 

A using Sr, sets T = 7(1- c)-112 , expands in powers of c to the same total 

order as in A, sets c = 1 and optimizes the result with respect to T. This should 

provide us with an approximate value of the same quantity computed with S. 

In more detail, we can consider the action (7) as: 
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with S0( T) given by 

(8) 

and 

(9) 

The pth order in perturbation will contain all the terms proportional to 

Ancm with n + m ~ p. Note that in this approach, we do not take into account 

the complete quartic term of ( 4) but that we reconstruct it more and more 

accurately as the order of perturbation increases. This feature does not seem 

to us to carry any pathology, but simply follows from the choice of ST as our 

compactified action and the physics it contains. 

This new choice for a free kinetic term parameterized by T in S will give rise 

for every finite order p of perturbation to an explicit dependence on T. Because 

the total action S remains unchanged at c = 1, one expects this parameter T 

to become irrelevant at infinite order of perturbation. As already explained, 

this suggests to fix this parameter by looking for the regions where the result to 

order p is stationary in T. 

Let us now discuss briefly the boundary conditions in the action of equation 

( 4). Periodic conditions <P-T = <PT are unsuitable for perturbation theory, as 

the Gaussian kernel has an isolated zero eigenvalue. Similarly for Neumann 

boundary conditions. Hence, we shall use Dirichlet boundary conditions in which 

</l±T = 0. (10) 

which preserves the discrete <P ~ -<P symmetry. With this choice, all infrared 

problems disappear at finite T. 

In order to compare the results obtained by this compact time method 

to those of the harmonic one [2], we would like to consider the ground state 

energy. However, the method we described above implies calculation using a 

compactified action which is therefore not invariant under translation in time. 

Then, the ground state energy is not a meaningful concept and we choose instead 
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to consider the mean value of the Hamiltonian operator at some time t0 : 

(11) 

The variation over the size of the box T provides some new approach of the limit 

T --+ oo (substituting T --+ T(l- c:)- 112 , expanding in powers of c: and taking 

c: = 1). In the limit of infinite order of perturbation, the box should disappear 

and we should recover the value of the ground state energy when calculating 

<lito >. 

3 Perturbative expansion for the compactified action. 

In the Euclidean path integral representation, the mean value of the Hamiltonian 

operator at time t 0 in the box writes: 

where 

fi _ < 0; T I lito I 0; - T >. 
< to >- < 0; T I 0; -T > ' 

< 0; T I lito I 0; - T > 

< O·T I O· -T > ' ' 

-ST[<f>] 

and 

(12) 

3.1 The partition function and the mean value of the 

Hamiltonian. 

Dividing by the partition function Z(T) in (12) cancels all the disconnected 

Feynman diagrams. We rewrite it: 

Z(T) =< O;T I 0;-T >=< 0 I {;2T I 0 > 
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Here, in the Schrodinger representation, the evolution operator Ut of a quantum 

system described by fi appears. It satisfies the following equations: 

(13) 

Then, taking the derivative of the partition function with respect to the size of 

the box, we get: 

so that 

d 
dTZ(T) 

d A 

< o 1 dT U2T 1 o > 

- -2 < 0 I fi(J2T I 0 > 

-2 < 0; T I fit I 0; -T >, 

(14) 

Thus, the mean value of the Hamiltonian operator does not depend of the time 

when it is taken in the box. Moreover, its perturbative expansion in powers 

of T is obtained from the one of Z(T). However, the variational procedure 

implies that at the order pin perturbation, the nth order contribution which is 

proportional to >.nr11(1- e)- 1112 has to be expanded in powers of e up to order 

p- n. This nth power of>. does not take into account the >. present in front of 

the quartic part of the Hamiltonian. But the two sides of equation (14) identify 

themselves in perturbation, mixing that >. with the perturbative one *. So, we 

have to know kinetic and potential contributions for each order in the expansion 

of dZ(T)/dT. Nevertheless, we will use this equality to compute at any order 
A 2 A 

the value of< (8t<P)t >in term of< <Pi> and Z(T). We decided to compute 

the mean value of the Hamiltonian where its kinetic and potential contributions 

do not much vary and are the least dependent on the size of the box, i.e. in the 

middle of the box at t = 0. 

*For example, in the perturbative expansion of dZ(T)jdT, the zeroth order contribution 
' ' 2 

of < c/Jt > is mixed with the first order of < ( OtcP )t > . 
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3.2 The perturbative calculation at any order. 

In order to develop a feeling on how the variational method works, we have to 

reach high orders of perturbation, i.e. calculate a large number of coefficients. 

The Feynman diagrams approach implies the calculation of an increasing num

ber of graphs. Instead, we prefer a perturbative expansion of the evolution 

operator closer to the usual Rayleigh-Ritz method. Expanding Ut in powers of 

the coupling constant \ we get the following expansions for Z(T), < ¢6 > and 
A 2 

< (8t<l>)o >: 

with 

< O;TIO; -T > 

< O;TI¢610; -T > 

A 2 
< 0; T!(8t</>) 0 IO; -T > 

~ f (-A/4tT3n Zn, 
vT n=O 

_1_ f ( -A/4tT3n+2 Qn, 
VT n=O 

_1 f (-A/4tT3n-I Pn, 
VT n=O 

o A4 A4 A4 A4 A4 o 

x < 0, 11</>t · · · <l>t <Po <l>t 1 · • • <l>t !O, -1 >o, n p+l p- 0 

The zero subscripts appended to ket vectors mean that the corresponding expec

tation values are computed using free propagators with the boundary conditions 

discussed in section 2 . 

In the above expressions, we have extracted the T dependences of the co

efficients Zn, Qn and P n· In appendix, a systematic calculation of the Zn 'sand 

Qn 's is performed with the help of a recursive formula. The values of the P n 's 
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are deduced from these using (14), which gives: 

Pn = (3n- 1/2)Zn- 2Qn-1· 

After performing the division by Z(T) order by order in perturbation, the 

expansion of the mean value of the Hamiltonian writes: 

< ii, >(p)= f..[-~(-A)n pc T3n-1 + ~(-A)n Qc T3n+2] 
OT L....t 24 n 44 n ' 

n=O 
(15) 

where the c superscripts of P and Q refer to the contribution of the connected 

diagrams only. We have computed these coefficients up to order 16, and we give 

here the first few of them: 

Qg ~ pc -1 
4 0 2 

Q~ 33 pc 9 
10 1 10 

Q2 
15661 pc 349 
700 2 175 (16) 

Q3 
3798833 pc 2363729 

19250 3 250250 

Q~ 
634428694707 pc 14511295339 

297797500 4 223348125 

Q~ 
10113181264708 pc 8165883862419 

372246875 5 14145381250 . 

4 The results and their interpretation. 

Starting from expansion (15) at order p, we perform the replacement Tv --7 

rv(l - c )-v/2 . Expanding in powers of c up to order p- n, we get the required 

expansion, which then has to be optimized with respect to our variational pa

rameter r: 

E(p)(r) = t[-~(-At pc f(p + n/2 + 1/2) 73n-1 
0 n=O 2 4 n f(3nj2 + 1/2)f(p- n + 1) 

A(-A)nQc f(p+n/2+2) 
7

3n+2]. 

+4 4 n f(3n/2+2)f(p-n+1) 
(17) 

The values of this expression at its optima in r will serve as variational estimates 

of the value found in [6]: 

E~xact = A 1/ 30.420805 ... (18) 

8 

,, 

i 

·-



Such a polynomial (17) has a number of optima which increases with the order 

of perturbation p. Most of them are complex and give a small imaginary part to 

the estimated value of the energy as in the harmonic approach [2]. All of these 

estimated values exhibit the expected >.113 factor. We take ).. = 1 and compute 

all the optima up to order 16. Results and comments follow in the next section. 

4.1 Solutions of our variational problem. 

E~P) ( T) is plotted in figures 1 and 2 versus the variational parameter for several 

even and odd orders. 

Since T is supposed to be irrelevant at infinite order of perturbation, as 

expected, as p increases, the curves E~P) ( T) flatten around the exact value over 

an increasingly large range of values of T as p increases. 

We can follow on these figures the evolution of the optima with the orders 

of perturbation. The first minimum to appear provides a rather poor estimate 

(Eo ~ 0.34 ... ) but moves to the left of the figure as the order increases, and 

is replaced by a much more accurate maximum (Eo ~ 0.43 ... ). It is clear 

that a third extremum, a minimum, appears with a still more accurate value 

Eo ~ 0.417 ... , and, from the trend of the odd orders, another, presumably even 

better maximum would appear if one would push the calculation to a couple 

more orders. 

The polynomial E~P) to be optimized has an increasing number of station

ary points as the order of perturbation increases. Plotting real optima versus 

the order of perturbation up top= 16 (figure 3) reveals how they arrange them

selves: Optimal values ofT belong to families characterized by the straight lines 

in figure 3 with slopes decreasing proportionally to the inverse of the square root 

of the order p. Such a family is created at first order, followed by another one at 

fourth order. One reasonably expects other families to appear at orders greater 

than 16, providing some even more accurate values. Figure 4 plots the location 

in 1/r2 of the all the optima up to order 16 in the first quadrant of the complex 

plane. One thus easily follows each family up to order 16. 
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Such a regular behavior of all these optima is explained in the next subsec

tion by considering the asymptotic expression of EaP) ( T) for large p. 

4.2 The large order behavior. 

For large p, using the Stirling formula, we find: 

~[ 1(-1)n pc 1 (Tplf2)3n-l + 
~ 2 4 n f(3n/2 + 1/2) 

1(-1)n Qc 1 (Tplf2)3n+2], 
4 4 n f(3n/2 + 2) 

(19) 

where we have taken ,\ = 1. So, at large orders, the function to be optimized 

becomes a series in powers of T p112
• We voluntarily omitted its upper bound 

in n. Using our knowledge of the first coefficients, we establish empirically the 

following asymptotic behaviors: 

pc 
n ""' :o 2nr(n), 

3 ""' 4 2nf(n+2). 

With these behaviors, the nth term of the series decreases like 1/.Jni. and the 

series has an infinite radius of convergence. For large orders p, the search for 

stationary values of EaP\ T) in T is nothing but the search for those of the 

series (19) in Y = 1/(T2p). Then, real extremal values of Y are the slopes 

of the families on figure 3. Using the optima already calculated, we can then 

extrapolate the T optima and the corresponding values of the energy for large 

orders. 

The optima of the real family appearing at first order behave asymptotically 

as: 
0.025 

1j(Topt)2 ~ 1.1612 + 2.31156 p + -- · 
p 

(20) 

The corresponding value for the energy tends toward a rather bad approximation 

from above: 
E~pt ~ 0.335 + 0.038 

p 

10 
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For the second real family which appears at the fourth order 

1/(ropt)2 ~ 0.4651 + 0.3578 p + 0
·
1245 

p 

the corresponding energy tends towards a better value from below: 

0.014 Egpt ~ 0.434 -
p 

(22) 

(23) 

The asymptotic value provided by a family is more accurate when the family 

appears later in perturbation. We also verify that the slopes tend to decrease. 

This corresponds to the successive extrema of (22) appearing at smaller and 

smaller values of Y, corresponding to those of the function Egs (Y) 

f:[-~(-1t pc 1 y-(3n-1)/2 + 
n=O 2 4 n f(3nj2 + 1/2) 

1 ( -1 )n Qc 1 y-(3n+2)/2] . 

4 4 n f(3n/2 + 2) 
(24) 

Using the available coefficients up to order 16 is sufficient to see that this function 

has a minimum: 

y ~ 2.2629 

One recognizes the slope and the asymptotic energy of the first real family within 

a few percents. Using the empirical asymptotic behaviors of the coefficients P 
and Q would extend the range of Y where one could compute Egs, revealing the 

asymptotic properties of the other families. 

5 Conclusion 

The results presented in this paper are qualitatively very similar to those ob

tained in the harmonic approach (2]: In the same way as in the harmonic ap

proach, the optima arrange themselves in families which are understood using 

a large order behavior. The set of these families provide a sequence of approxi

mate values which converges to the exact one. However, for a given perturbative 
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order, our estimated values were more accurate in the harmonic approach. In

deed, for the first family, we obtain an estimated value of the ground state 

energy with a precision of 2.10-5 in the harmonic case and of 2.10-1 in the 

present approach. This is presumably due to several causes: in the compact time 

case, there is no time translation invariance, hence no Hamiltonian, and we only 

compute the expectation value of an operator which becomes the Hamiltonian 

in the large time box limit. Furthermore, as explained in section 2, our per

turbative expansions do not take into account the complete cjy4 interaction term 

but only reconstruct it more and more accurately as the perturbative order in

creases. Finally, a compact Euclidean time is clearly quite far from the physics 

of an anharmonic oscillator, much farther than a harmonic approximation. One 

may even consider it quite remarkable that the procedure nevertheless seems to 

converge in the same manner, albeit much more slowly. One could thus con

template using such a compactification, which could involve only the spatial 

coordinates or both space and time coordinates as a gauge invariant variational 

approach to gauge theories. 

6 Appendix: Calculation of coefficients. 

6.1 Calculation of the Zn 's 

< O;TIO;-T > 

For each time t1, t 2 , ••. , tn , one uses the closure relation in position space. 

The ¢Y operator is diagonal in this basis. One thus rewrites the integrand in the 

following way: 

< 0; 1l~t ... ~i1 IO; -1 >o = l: dxn ... dx1 < 0; 1 I Xni tn >o x; 
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Fort'> t, the free propagator writes: 

, 1 (y- x) 2 

< y; t lx; t >= J exp- 2( ) . 
27r(t'- t) t'- t 

This product of expectation values of operators is a Gaussian function in terms 

of Xt, x 2 , .•• , Xn.One thus performs integrals over all positions simultaneously to 

obtain: 

exp(~JT. A. J) IJ:o 

1 1 T 2n 
(2n)! 42n (J . A. J) ' 

where 

n 

det A 2n-1 IT (ti+I - ti)· 
i=O 

djn is the fourth derivative with respect to in· Now, we build a recursive proce

dure which performs the four derivatives with respect to in ( djJ together with 

the integral over tn E [tn_1 ; 1]. To do so, one will use the following identity: 

1 1 1 ex ' 

1 dt(1 + t)Ci(1 - t) 13 = """' 2j C13 . (1 + t')cx-j(1- t') 13+1 
t' 1 + Q + f3 c/3 ~ cx+/3-J ' cx+/3 J=O 

with 

' CP= n. 
n p!(n- p)! 

Let us define: 

n(n, m, a, {3) = 11 

dt1 ... {
1 

diN djl ... djN (J.A.Jt (J.A)m IJ:O 
-1 ltN 1 ~ '-v-" - N N 

X ({0,)m+2i-4 (1 + iN-1)4-i+cx(l- iN-1)i+/3 IJ:O 

N-1 
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where: 
N N 

J.A.J ..__... 
N 

L jiAidk and l:j. 
i,k=1 N 

:E Ji (ti + 1). 
i=1 

So that n satisfies: 

4 4+a-i 

n(n, m, a '!3) = 4! L Ai(n, m) L ei,j(a, !3) 
i=O j=O 

X n(n-i,m+2i-4,4+a-i-j,i+f3+1) (25) 

0· ·(a /3) t,J ' 

with the boundary conditions: 

n( n, m, a, !3) = 0 as soon as n or m is negative, 

n(o, 0, a, !3) = lim (1 + tt(1- t) 13 = 8(a) 213 , 
t--+-1 

for the last integration to be performed between -1 and 1. The coefficients Zn 

of the pe_!turbative expansion are: 

1 1 1 
Zn = 2J?f (2n)! 42n n(2n, 0, 0, 0). 

6.2 · Calculation of the Qn 's. 

< 0; TIJ6JO; -T > 

n 

:E Q~-1 
p=1 

X < 0; 1l¢t4 
• • • ¢t4 ¢o4 ¢t4 

• • • ¢t4 JO; -1 >o n p+1 p-1 1 

14 
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The preceding method must now be adapted to a slightly different domain of 

integration over the times (now ip = 0). We will consider four different regions 

in order to build the recursive definition of a new function np( n, m, a, ,B); 

1° dt1 . . . ro dtp-1 "(tp = 0)" 
-1 ltp-2 ..._,_._... 

(4) 
(3) 

1
1 

din 
tn-1 

(1) 

These four different domains of integration can enter the preceding frame. The 

quantity (2n + m)/4 = n, ... , 1 counts the remaining iterations to be performed 

and decreases by one unit at each step. One then builds the np's for each of 

these steps, writing: 

I . n =n-z , m' = m + 2i - 4, · 

I . • 
a =a-z-; , (3' = i + f3 + 1. 

Sums over i and j are respectively performed between 0 and 4, and 0 and 4+a-i. 

1. When (2n + m)/4 is greater than p + 1: nP is just as n: 

np(n,m,a,,B) = L L Ai(n,m) ei,j(a,,B) np(n',m',a',,B'). 
t j 

2. When (2n + m)/4 equals p + 1: Here ip, the lower bound of the integral 

is driven to zero: 

Then, choosing a', (3' = 0, one can incorporate this case in the preceding frame: 

np(n,m,a,,B) = L L Ai(n,m) ei,j(a,,B) np(n',m',O,O) 
t j 

3. When (2n + m)/4 equals p: At this step, no integral has to be taken over 

ip so that there is no sum over j and the exponents a' and (3' remain zero: 

15 



4. When (2n + m)/4 is smaller than p: The domain of integration is 

obtained subtracting case (2) from case (1): 

l~l dti = li~l dti - fo
1 

dti 

:L :L Ai(n,m) Gi,i(o:,/3) 
j 

x(np(n', m', o:', /3') - np(n', m', 0, 0)). 

This together with the boundary conditions 

np( n, m, o:, !3) = 0 as soon as n or m is negative, 

np(o, o, o:, !3) = 8( o:) 2(3. 

defines np for every p. 

The coefficients Qn-I are then: 

1 1 1 n 

Qn-1 = 2 li (2n)! 42n :L np(2n, 0, 0, 0). 
y II p=l 

The values of the P n 's are then deduced using formula (16) which writes in 

terms of the other coefficients: 

Pn = (3n - 1/2) Zn - 2 Qn-1 "in. (26) 
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Figure 1: EaP)(T) versus T for p =4, 6, 8 and 10. 
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Figure 2: EaP)(T) versus T for p =7, 11 and 15. 
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Figure 3: Real optima (1/ropt? versus the order p. 
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Figure 4: All the optima (1/ropt) 2 in the complex plane up to order 16. 
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