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,This dissertation discusses studies of the electron-hole pair dynamics of 

CdSxSe1_x semiconductor alloys for the entire compositional range from x = 1 to 

x = 0 as examined by the ultrafast fluorescence techniques of time correlated single 

photon counting and fluorescence upconversion. Specifically, samples with x = 1, 

. 75, .5, .25, and 0 were studied each at a spread of wavelengths about its respective 

emission maximum which varies according to ). = 718nm- 210x nm. The decays of 

these samples were found to obey a Kohlrausch distribution, exp [(tjr).B], with the 

exponent f3 in the range .5-. 7 for the alloys. These results are in agreement with 

those expected for localization due to local potential variations resulting from the 

random distribution of sulfur and selenium atoms on the element VI A sub-lattice. 

This localization can be understood in terms of Anderson localization of the holes in 

states whose energy distribution tails into the forbidden energy band-gap. Because 

these states have energy dependent lifetimes, the carriers can decay via many parallel 

channels. This distribution of channels is the ultimate source of the Kohlrausch form 

of the fluorescence decays. 



2 

The lifetimes observed in these experiments depended on the wavelength of 

excitation. In the time correlated single photon counting experiments where ultravi

olet excitation was employed, lifetimes of about 30 ps were observed independent of 

composition, indicative of a strong domination of the decay by nonradiative mechan

isms resulting from surface trapping. By comparison, the decays in the fluorescence 

upconverswn experiments displayed longer decays which varied as a function of 

composition. 

In addition to displaying a Kohlrausch form, the decays of all of the samples 

also included an exponential rise of 1-2 ps consistent with results for other direct 

band-gap semiconductors. On the other hand, none of the samples exhibited a sig

nigicant variation in either their decays or their risetimes as a function of wave

length. 
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Chapter 1 

Introduction 

1.1 General 

Semiconductors and semiconductor technology are fundamental to modern 

existence. From their uses in computers and communications technology in the 

everyday world to their use in the laboratory, semiconductors surround and enrich 

human life. Ideally one would desire to have complete control over the optical and 

electronic properties of these substances. While complete control is undoubtedly 

unattainable, semiconductor alloys do provide an additional means for tailoring such 

materials. For example, substituting selenium atoms for sulfur atoms in cadmium 

sulfide allows one to engineer a spread of properties from those of pure cadmium 

sulfide to those of pure cadmium selenide. An example of the results of such control 

can be observed in the emission edge, which varies smoothly and monotonically from 

2.4 eV for cadmium sulfide to 1.8 eV for cadmium selenide as a greater fraction of 

the VI A element sites are filled by selenium atoms. 

Furthermore, substitutional alloys of semiconductors play an important role 
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in the continuing evolution of the understanding of the fundamental physics of the 

solid state. They occupy an interesting position between well-ordered pure crystals 

and highly disordered amorphous semiconductors. The underlying structure of these 

alloys is regular and well-ordered; the alloy retains a crystalline structure. However, 

due to the random substitution of one type of atom for another, there is a loss of 

symmetry in the local potential even when the crystal structure is relatively un

changed. The question that immediately arises is what effects this loss of symmetry 

will have on the optical and electronic properties of the material and to what degree 

these effects will extend. Under what circumstances will the properties be depend

ent upon the microscopic details of the local potential, and when will the properties 

represent an averaging over many local variations? An example of such an aver

aging is the aforementioned emission edge shift. Nevertheless, situations do arise in 

which a consideration of the microscopic details are necessary, as this dissertation 

will demonstrate. 

Among the many properties of these alloys, the relaxation of a carrier fol

lowing an excitation as by a laser pulse is of particular intere~t. Immediately after 

such an excitation, a rapid thermalization via electron-electron scattering in the con

duction band (or hole-hole scattering in the valence band) occurs; then the carriers 

relax to their respective band edges by means of phonon scattering. Once their re

spective band minima are r~ached, the carriers then undergo interband relaxation, 

recombining by a variety of radiative and nonradiative processes. Because these 

processes occur on the picosecond and sub-picosecond time scales, ultrafast spectro

scopic techniques are critical for their analysis. Fortunately the development of such 

technology in the past decade has made such studies possible. 

The alloy in this study is CdSxSe1_x, which has several features that make 

it ideal. First of all, the alloy exists over the entire compositional range from pure 
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cadmium sulfide to pure cadmium selenide, i.e. from x = 1 to x = 0. Secondly, the 

crystal structure of CdSxSe1-x, the wurtzite, or hexagonal zinc sulfide, structure, is 

unchanged across the entire regime [1]. Finally, it also has a direct band gap across 

its entire substitutional range. The band structures for the two binary materials are 

shown in Fig. 1.1. This retaining of a direct band gap is in distinct contrast to 

AlxGa1-xAs, so prominent for its use in the construction of semiconductor micro-
• 

structures such as quantum wells and multiple quantum wells; AlxGa1_xAs exists 

as an indirect band gap semiconductor over the range .45 :::; x :::; 1. Comparison of 

AlxGa1-xAs samples across the entire range would therefore be complicated, since 

indirect band gap semiconductors relax radiatively via a mechanism which requires 

the creation or destruction of a phonon. Hence, such semiconductors exhibit reduced 

quantum efficiency and radiative decay times of several orders of magnitude greater 

duration [2, 3]. 

In addition to the above structural and electronic properties, CdSxSe1_x al

loys have several advantageous optical properties as well. The maximum wavelength 

of their emission has a linear dependence on composition according to 

Amax = 718 - 210x nm, (1.1) 

where x is the mole fraction of sulfur in the element VI A sites. A sample of the 

fluorescence spectra for the samples studied in the present work will be shown later 

in Figure 4.1. Furthermore, at room temperature the quantum efficiencies for photo

luminescence are on the order of 10-3 to 10-4 [5, 6]. As a result of these properties, 

these alloys have been the object of many photoluminescence studies [7-9]. Finally, 

being semiconductors, these alloys are also amenable to studies by photoconductivity 

[10] and electroluminescence [6]. This latter point is of importance because of the 
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Figure 1.1: Shown above are the band structures for CdS and CdSe in the wurtzite 
structure as calculated by a semi-empirical tight-binding model (solid line) in com
parison to the results of a pseudo-potential calculation (dashed line) [4]. 
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interest in these materials as light emitting diodes and in photoelectrochemical cells 

for the conversion of.optical energy to electronic energy [11, 12]. 

For the present work, a couple of methods of ultrafast fluorescence spectro

scopy have been employed in order to examine the carrier recombination dynamics 

in these alloys. In particular, the methods of time correlated single photon counting 

and fluorescence upconversion have been used. These methods offer several advant

ages over other forms of ultrafast spectroscopy. First of all, fluorescence has a very 

low background signal. In addition, when studying the samples via back fluores

cence, sample thickness is not critical unlike the case for pump-probe absorption 

experiments. Finally, the use of low power, high repetition rate lasers allows for the 

collection of single photons and yields excellent signal to noise ratios in a relatively 

short time. 

1.2 Graded Alloys 

In addition to studying nominally homogeneous alloys of CdSxSe1_x [6], 

Carpenter and coworkers carried out both photoluminescence and electrolumines

cence studies on inhomogeneous samples of CdSxSe1_x in which the composition, 

and hence the band gap, varied smoothly as a function of position. Their samples 

were prepared by vapor-phase diffusion of one of the VI A elements into the bulk 

cadmium compound of the other. Such samples had previously been demonstrated 

to exhibit good fluorescence properties [13]. Samples in which sulfur was diffused 

into cadmium selenide, hereafter referred to as CdSe/S, were studied first [14] and 

later followed by studies of samples prepared by diffusion of selenium into cadmium 

sulfide [15], or CdS/Se. In both cases Auger electron spectroscopy in conjunction 

with Ar ion sputtering indicated a monotonic and nearly linear decrease over a dis-
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tance of about 1 mm in the diffused species with a concomitant increase in. the other. 

These results thus support the conclusion that the diffused species was substituting 

on the lattice rather than entering it interstitially. The CdSe/S samples varied from 

virtually pure CdS at the surface to pure CdSe in the bulk whereas the CdS/Se 

samples varied from CdS.2Se.s at the surface to pure CdS in the bulk. This depth 

profile analysis in combination with the known variation in the emission wavelength 

with composition (Eq. 1.1) then provides a unique and useful probe of the spatial 

origins of the luminescence spectra. 

Hane and coworkers recognized the novelty of this system for studying car

rier transport with both spatial and temporal resolution [16]. Using a time correlated 

single photon counting spectrometer nearly identical to that described in this work, 

luminescence decays were measured for samples excited by 315 nm light. At this 

!'V'avelength and at the intensities used, the light was estimated to be absorbed within 

about .1 f.J,m of the surface and created a carrier density of about 1017 em - 3
• Carriers 

thus produced near the surface then diffused into the bulk under the influence of 

both the concentration gradient and the band gap gradient as described elsewhere 

[17]. In the CdS /Se samples, the concentration gradient had to drive the carriers up 

the band gap gradient. 

Luminescence decays in CdSe/S exhibited 1/e time constants of 100-400 

ps, indicating transport occurred on a time scale comparable to that for the char

acteristic band to band recombination times in these materials. That these decays 

include information beyond just the differences in the carrier lifetimes as a function 

of composition was inferred from the luminescence decays in CdS/Se. If the decays 

in this material were dominated by the intrinsic lifetimes, then the wavelength de

pendence of the decays would be expected to be identical to that for the CdSejS 

samples. This, however, was not observed. In fact, the decays displayed a depend-
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ence on a variety of factors such as the depth at which the recombination occurred 

and the band gap gradient. 

Analysis of the CdSeiS data is the more straightforward of the two, since 

both the concentration gradient and the band gap gradient are in the same direction. 

Luminescence was observed over the entire spectral range from 500 nm to 700 nm 

as expected for transport all the way into the bulk. In addition, the 1 I e decay times 

increased monotonically for wavelengths from 500 nm to 620 nm, corresponding to 

compositions of x = 1.0 to x = .50. Based on this data, estimates of the ambipolar 

mobility were made and found to be in accord with the values for unalloyed CdS and 

CdSe. However, in the range of 620 nm to 700 nm, the trend in 1 I e times reversed 

itself; the decay times became shorter with increasing wavelength. Furthermore, the 

spread in the 1le times was shorter for this wavelength range than for the former. 

In comparison to the CdSeiS results, the analysis of the CdS ISe data proved 

more difficult still, since the band gap increases with depth. Despite this complexity 

emission was observed at the bulk wavelength of 500 nm. That the carriers were 

diffusing into the bulk was further supported by gated spectra, in which the spectra 

were recorded for a narrow time window at a fixed delay time after excitation. More 

interesting still was the trend of the 1/e decay times as a function of wavelength. As 

compared to that of the CdSeiS samples, the trend was completely reversed. For 

the wavelength range from 700 nrn to 620 nm, the 1le times became shorter with 

decreasing wavelength before turning over and increasing with decreasing wavelength 

in the range from 620 nm to 500 nm. 

Hane and co-workers advanced two possible explanations for this turnover 

in CdSISe. First, they noted that after the carriers spread out the band gap gradi

ent could start to drive the carriers back towards the surface. Second, strong self

absorption and re-ernission in the portion of the crystal nearer the surface where the 
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band gap was smallest could account for the initial trend. However, these processes 

could not have occurred in the CdSe/S samples in which the band gap decreases 

with depth. Furthermore, the turnaround in the decay time trends in both samples 

occurred at 620 nm, which corresponds to x = .5, presumably the most disordered 

composition. In order to clarify these results, the behavior of the lifetimes as a 

function of the composition, and hence of the disorder, is therefore appropriate. In 

order to divorce the effects of the band gap gradient from those of the composition,· 

however, examination of the homogeneous alloys is required. The study of the ef

fects of disorder on the room temperature luminescence decays of the homogeneous 

CdSxSe1_x alloys thus constitutes the thrust of the present dissertation. 

The present dissertation is laid out as follows. The next chapter provides a 

brief overview of the theory of composition fluctuations, including an introduction to 

Anderson localization theory, and their effect on the density of states. Some specifics 

as they apply to CdSxSe1_x will be discussed. The third chapter reviews the details 

of time correlated single photon counting and fluorescence upconversion, including 

the important considerations to be made in designing such experiments as well as a 

comparison of the two techniques. Chapter four provides the experimental details 

for all of the present work, including the specifics of the instrumentation employed. 

The results themselves are then presented in chapter five along with a discussion of 

their ramifications. The final chapter summarizes this work. 



Chapter 2 

Localization and the Density of 

States 

2.1 Introduction 

9 

Inhomogeneities in the local crystal potential have been of interest for some 

time. As far back as 1950, Bardeen and Shockley considered inhomogeneities due to 

a varying elastic strain in a crystal that was otherwise homogeneous [18]. That work 

was generalized several years later by Kroemer, who treated arbitrary variations of 

the local crystal potential regardless of the source [19]. In the present case, these in

homogeneities arise from the random substitution of selenium atoms for sulfur atoms 

on the group VI sub-lattice (or vice versa). Despite these local potential variations, 

the delocalization of the carriers is generally sufficient to average out differences loc

ally, resulting in electronic and optical properties that are intermediate to those of 

unalloyed cadmium sulfide and cadmium selenide. This averaging corresponds to 

the virtual crystal approximation (VCA) in which the correct one electron potential, 
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which depends on the specific atomic configuration of the alloy, is replaced by the 

potential averaged over all the possible configurations [21]. This model was suppor

ted by the results of first-order perturbation theory as presented by Muto [23] and as 

corrected for higher order effects by Parmenter [20]. One result of such an averaging 

is the occurence of the band edge at energies which vary smoothly with x, the mole 

fraction of sulfur in the element VI A sites. 

Despite such an averaging of properties, Parmenter found that the density 

of states should penetrate the forbidden band gap while rapidly tailing off. One result 

of this tailing of the density of states can be observed in the band edge smearing 

in substituitional alloys, in which case the tailing results from local composition 

fluctuations. A mechanism for such smearing was proposed by Alferov and co

workers for the pseudobinary alloy CAxB 1-x, where the atoms A and B occupy one 

of the sets of sub-lattice sites and the C atoms occupy the other [24]. In their model 

n is taken to be the concentration of the sub-lattice sites occupied by the A and 

B atoms, and x is the average fraction of these sites occupied by A atoms. Then 

one can estimate the fluctuational change in the fraction of A sites in a volume R3 , 

where R is large in comparison to the interatomic distances. From the binomial 

distribution [25], one can readily show that the mean number of A atoms in the 

volume is given by xnR3 with a standard deviation given by (xnR3
)

112(1- x) 112
. 

This yields a change in the fraction of A atoms given by 

3 I I 
(xnR )2(1- x)2 

.6.x = nR3 (2.1) 

in the volume. As a result of this compositional fluctuation, a shift in local band 

energy E from its virtual crystal average value E(x) would then be expected to 
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occur. For small values of the fluctuation, this can be expressed as 

E = E(x) + a~x, (2.2) 

where a = (dE/ dx) .6.x=o· Equation 2.2 says that a local potential well (or hump) is 

created in the volume of interest and has a depth given by 

3 1 1 a(xnR )2(1- x )2 
E = nR3 

(2.3) 

with respect to the virtual crystal band edge E( x ). Such wells will be particularly 

important if they sustain electronic levels; furthermore, since the well deepens as R 

decreases, the most important wells are those for which R is the minimum capable 

of sustaining such levels. This occurs for 

R = rr/i 
v'sTm 

(2.4) 

where m is the effective mass of the band under consideration. The net result is a 

smearing of the band edge of order 

(2.5) 

Thus, in this simple model, smearing is expected to be a maximum for x = 1/2 when 

the disorder is greatest; furthermore, smearing will be greater for the 'valence band 

where the holes have a greater effective mass. 
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2.2 Anderson Localization Theory 

The treatment of the preceding section focuses on the statistical distribu

tion of atoms, not on averages. As Anderson demonstrated in 1958, this focus is 

crucial to understanding the nature of the states that tail into the band gap [26]. His 

theory predicts that states may exist as a continuum in· energy but be localized in 

space, a prediction that though challenged on several occasions [27, 28] has been sup

ported by experiments [29-31] and simulations [32] alike. Furthermore, there should 

exist a characteristic energy, called the mobility edge, at which the states undergo a 

transition from being localized to being delocalized [33, 34]. Spectral evidence for 

the mobility edge has also been reported [35, 36]. Although this theory has been 

discussed at length in the literature [26, 37-41], a brief review is in order. 

Anderson began with a simple linearized tight-binding model of non-inter~ 

acting particles that could be described by the Hamiltonian 

H = LEini + L~ictcj 
ij 

(2.6) 

where Ei is the energy of a particle at site i and is chosen from a random distribution 

of width W and ~j is the matrix element describing hopping from the site j to the 

site i. The remaining operators are the number operator ni, the creation operator 

ct, and the destruction operator Cj for particles at site i or j as indicated. In this 

general form, the particles could be electrons, phonons, or even spinors, this latter 

being historically related to the development of the theory [42, 43]. In any case, this 

Hamiltonian leads to the linear equation of motion expressed by 

(2.7) 
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If W = 0 such that all Ei are the same, this equation describes a standard band of 

Bloch states. However, when W =J 0, one must consider the size of W relative to 

V = Vii and treat the smaller of the two as a perturbation. Which is chosen crucially 

affects the outcome. If W is chosen as the perturbation, the outcome predicts that at 

every site there exists a continuum of energy states of every energy in the band; i.e. 

the states are extended. On the other hand, if. one chooses Vii as the perturbation, 

localization is predicted. 

In order to demonstrate this result, the initial eigenstates and energies are 

taken as ¢i. = ¢i, the tight binding wave functions, and Ef = Ei respectively with Vii 

taken as the perturbation. Then an approach strikingly similar to a Green's function 

propagator technique [44] is employed. However, whereas the propagator 

(2.8) 

describes the temporal evolution of a particle in a state with a wave vector k, the 

"locator" 

(2.9) 

describes the evolution of a particle at location i. The symbol :E used in these 

equations represents the self-energy, which is itself a perturbation series. For the 

locator case, 

(2.10) 

This expression can perhaps be more clearly represented diagramatically as shown 

in Fig. 2.2 where the expansion of :Ei(E) as a locator series is compared to the 
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analagous expansion of L;k( E) in the standard Feynmann diagrams. 

Using the locator series, the next step is to add a complex component is 

to the energy and consider the result of taking s to 0. If lims-+O lm I;i( E + is) is 

non-zero, then - Im Gii, which is essentially just the density of states, will consist 

of a continuum of energy states of every energy in the band at every site i. Each 

state would then be proportional to N- 112
, where N is the number of sites; therefore, 

as N -+ oo, each state at site i would become infinitesimally small. The states 

would clearly be extended. On the other hand, if lims-+O Im L;i(E +is) is zero, then 

- lm Gii will be the sum of a discrete infinite series of delta functions with convergent 

coefficients. As will be shown, this latter result is true for the case at hand. 

The remaining analysis can be limited to the first term in the series rep

resentation of I;i( E). With a finite s, 

(2.11) 

so that 

(2.12) 

In the limit as s tends t~ zero, the imaginary part of the self-energy also tends to 

zero with Im I; proportional to s in the limit. To see how this tendency gives rise 

to localized states, one should consider the necessary conditions for Im(I;/ s) to be 

peaked at an energy E. For finite s a peak will occur only when IE - Ej I < s and 

Vii > s. Taking 

T/ .. _ Tle-R;j/Ro 
ViJ - Yo , (2.13) 

which is physically reasonable for hopping between states separated sufficiently such 

that only the exponential tails of the wavefunctions overlap, Vii > s implies that 



16 

--

L-= 1 

CHAPTER 2. LOCALIZATION AND THE DENSITY OF STATES 
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Figure 2.2: Shown above is the expansion of the self-energy in terms of (a) a propag
ator series and (b) a locator series. Which expansion is appropriate depends on 
whether the states are best defined as plane waves or spatially localized states. In 
the former case, the propagator expansion applies; in the latter case, the locator 
expansion applies. 
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Rij < Ro ln (s/Vo). Now, as s tends to zero, the probability that a given energy 

E will be a peak also goes to zero as the peaks collapse to infinitesimal width. 

Furthermore, the probability of making a hop from the site j to the site i also goes to 

zero. In the end - Im Gii is the sum of a discrete infinite series of delta functions with 

convergent coefficients. The normalization condition I:i I<Pa(ri)l 2 = I:a I<Pa(ri)l 2 = 1 

is satisfied not because each of the states <l>a(ri) is infinitesimal as in the extended 

case but because the states form a hierarchy with the largest being of order 1, the 

second of order 1/2, etc., in a convergent series. 

One should note that at no time in the preceding analysis was an average 

taken. This is critical for arriving at the prediction of localized states. For example, 

(V2) 
(lim Im~(E +is))~± WtJ 
s-t±O 

If this is used in determining Gii, one arrives at the conclusion that 

(2.14) 

(2.15) 

which implies there is a continuum of states at each site. This clearly contradicts the 

results from above and occurs because of the fundamental failure to treat the system 

in terms of the distribution. Indeed most of the advances in the theory of amorphous 

systems stem from this shift in attitude from treating them as dirty regular systems 

to treating them as fundamentally different. 

In general, the higher order terms do not change these results qualitatively 

but only serve to renormalize the matrix elements l/ij and the energies Ej. However, 

if the higher order terms of the perturbation expansion renormalize V ( Rij) to such 
' 

an extent that it is no longer effectively exponentially localized with respect to the 
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distances between sites, the perturbation treatment fails; the extended case results. 

Furthermore, because the self-energy is a function of energy, there can exist a critical 

energy Em at or above which this perturbation approach does indeed fail. In this 

case there are both extended and localized states within the same energy band, albeit 

at different energies. The energy separating these states is called the mobility edge 

[34, 45], since the states below Em are localized while those above Em are extended. 

This mobility edge can also be predicted by considering the average separ

ation (~j) between tail states within an energy range of ~€ about t, where tis taken 

as the energy of a state below the unsmeared band edge. This value is essentially 

given by 

(2.16) 

where g(t) is the density of states [30]. In order for a resonant transition from one 

site to another to occur, the matrix element Vii must satisfy Vii .:G ~E. For tunneling 

between isolated states, this matrix element can be taken as 

T 1 - (2m~/li2 } 112 (R-) 
Vij "' te •J (2.17) 

as the result of Eqs. 2.4 and 2.13, where m is the appropriate mass for the particle 

under consideration, e.g. the effective mass of the electron or of the hole or of the 

exciton. The state will therefore be delocalized if there exists an energy ~E such that 

(2.18) 

For sufficiently small g( t), that is deep enough in the tail, no such energy will be 

possible; the states will be localized. Higher up in the tail, however, the states become 

delocalized. The energy of this transition is again just the mobility edge Em. 
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2.3 Density of States 

Because these localized states exist in the tail of the density of states, 

excitons immediately come to mind. Indeed at low temperatures the dominant pho

toluminescence band in some semiconductor alloys occurs below the free exciton 

reflectivity structure and has been interpreted as due to the recombination of ex

citons localized due to composition fluctuations [46, 47]. Models of the tail of the 

density of states have been developed by several authors [30, 48-50] and shown to 

vary as 

(2.19) 

where a varies from .5 to 2 depending on the model and t 0 is a characteristic energy. 

In most of these studies, t 0 was taken as a fitting parameter. However, in the 

model of Ouadjaout and Marfaing [50], t 0 was calculated a priori. Thus, in order 

to more fully appreciate the localization of excitons in CdSxSe1_x, the model of the 

density of localized exciton states induced by composition fluctuations as developed 

by Ouadjaout and Marfaing will be explored. 

The model assumes a typical pseudo binary semiconductor alloy of the form 

CAxBI-x as considered previously. Again xis taken as the macroscopic average frac

tion of A-B sub-lattice sites occupied by A atoms. For a small volume V, however, 

the average local composition is given bye such that the fluctuations in the compos

ition can be expressed as ~X = e - X for the particular volume under consideration. 

In order to obtain the crucial probability distribution for the composition fluctu

ations, Ouadjaout and Marfaing took advantage of the fact that the probability p 

should vary as e-8 , where S is the entropy fluctuation and can be obtained from the 
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work of Lifshitz as (51, 52] 

S = ~[a-(~)- o-(x)- (~- x )o-'(x )] (2.20) 

Here a-( x) /Vc is the entropy concentration for a homogeneous concentration x in 

a volume Vc called the interaction volume. Taking this interaction volume as the 

smallest volume in which the fluctuation ~x can exist, one obtains 

1 
Vc = nj~xl ' (2.21) 

where n is the concentration of sub-lattice sites. In this case a-( x) may be expressed 

as 

a-( X) = -X ln X - ( 1 - X) ln ( 1 - X) . (2.22) 

After some rearrangement one can then derive 

p( ~, V) ~ exp {-~ [On ( ~) + ( 1 - ~) ln ( ~ = ! ) ] } (2.23) 

Assuming ~x is small with respect to x and 1 - x, which assumption corresponds to 
-

a reasonably random distribution of the atoms on the sites as is generally the case 

experimentally, one obtains 

[ 
V l~xl 2 l p(~x, V) ~ exp -Yc x(1- x) (2.24) 

If one were to assume that Vc were the volume of a single sub-lattice site, then 

this would correspond to the results of Alferov (24] since the binomial distribution 

converges to the normal distribution for large numbers of sites (25]. However, using 
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Eq. 2.21, this probability becomes 

[ 
n Vj.6.xj 3

] 
p(.6.x, V),...., exp - x(1 _ x) (2.25) 

The next step is to determine how these fluctuations localize excitons and 

at what energies they do so. As it turns out, there are essentially three manners in 

which localization can be achieved dependent on the width and depth of the wells 

associated with the fluctuations. First, the well could localize only one of the electron 

and hole with the other bound by Coulombic attraction. Second, the exciton could 

be localized as a single particle in a well larger than its Bohr radius. Since both of 

these cases correspond to the localization of a single particle, they can be treated 

simultaneously. The third manner of localization is the result of confining both the 

electron and hole in the same narrow well. This approach must be considered when 

the localization is stronger than the electron-hole interaction; the result is a confined 

exciton. 

For the sake of simplicity, the local potential well giving rise to localization 

in the first two cases will be taken as spherical with a radius R and depth .6.E as 

indicated in Fig. 2.3(a). The well can be taken to support a single bound state at 

an energy E below that of the free exciton energy Ex for the average macroscopic 

composition x. A necessary condition for this model to be valid for the localization of 

an entire exciton of mass M = mn + mp, where mn and mp are the effective masses 

of the electrons and holes respectively, is that E is small compared to the exciton 

binding energy. The kinetic energy of confinement can then be given by () = .6.E - E. 

Taking ax = dEx jdx, one obtains 

.6.E = () + E = -ax .6.x , (2.26) 
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where fluctuations are assumed to create a true well, i.e. /::).E > 0. The next step 

is to determine the characteristics of the well, /::).Eop and Rop, which maximize the 

probability p(/::).x, V) for a given L This optimization may be executed by solving 

(2.27) 

subject to the constraints imposed by the relationship of € to /::).E and R. Assuming 

the spherical potential well, this relationship is given by the transcendental equation 

cotV2z =-~, (2.28) 

where the dimensionless variables Z = ()M R2 jli 2 andY= eM R2 /li 2 have been used 

[53]. Ouadjaout and Marfaing numerically solved the constraint as a third degree 

polynomial and substituted the resulting fit into Eq. 2.27, which can then be solved 

to yield 

and 

1i 
Rop = 1.4 ~ 

vMc 

/i2 
/::).Eop = 2.33c = 4.567 M R2 op 

(2.29) 

(2.30) 

Taking the density of states to be proportional to the probability p(Rop, /::).Eop) gives 

(2.31) 

where €0 is the characteristic energy given by 

(2.32) 
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where 
32/3 

/(1) = (1.4 X 2.33)2(411')2/3 = ·036 (2.33) 

Ignoring any variation of Ex with x, ax may be replaced by a 9 = dE9 jdx, where 

E9 is the band gap energy. For electrons and holes, M ai is replaced by mna; and 

mpa; respectively, where an and ap are the conduction and valence band edge rates 

of change with composition. 

For the simultaneous localization of both the electron and hole in the same 

well, a pair of spherical potential wells of radius R as indicated in Fig. 2.3(b) is 

assumed. In this case the following equations apply: 

(2.34) 

(2.35) 

and 

(2.36) 

where E = En + Ep and a9 = an - ap have been used. Again the assumption is 

that ~En and ~EP are both greater than zero. A constrained optimization problem 

similar to the one considered above is then solved to obtain the optimal well radius 

Rap and composition fluctuation ~Xap for a given energy E. The results are 

- 1/2 1i Rap - .617(1 - 4.39u) -
y71i 

(2.37) 

and 

~ 13.7€ 
Xap = (1 - 4.39u )a

9 

(2.38) 
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Figure 2.3: Shown above are the spherical potential wells assumed in the model of 
Ouadjaout and Marfaing [50] for both (a) single particle localization and (b) double 
particle localization. 
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where 

(2.39) 

and f.l is the reduced mass f.l = [m~ 1 + m;1 
]-

1
. Solving for the density of states 

yields the same form as Eq. 2.31 but with 

(2.40) 

where 

( 
3 ) 2/3 

!( u) = 47r ( .0802)( u + .228) . (2.41) 

Using this model of the density of states, the value of €0 can be calculated 

for any alloy if the values of mn, mp, an, a:p, and n are known or can be reasonably 

estimated. For example, for CdS.36Se.64 , one can linearly interpolate the values of 

the effective masses from their values in CdS and CdSe [54] to get mn/m0 = .14 and 

mpjm0 = .5. Similarly one can obtain n = 1.88 x 1022 cm-3 from linearly interpolated 

lattice parameters. Furthermore, since the experimental [56] and calc~lated [57] 

values of a:n have opposite signs, its value can be taken to be zero. Then the value 

of a:P can be taken from the variation of the band gap with composition. Its value at 

x = .36 is then a:P = -.64. Using these values and assuming that hole localization 

is dominant for CdS.36Se.64 , which dominance will be shown in the next section, one 

calculates a value of €0 = 5.2 meV. This compares well with the value of €0 = 4.3 

meV determined from fluorescence lineshape modeling [50]. 

In contrast to Eqs. 2.31 and 2.32, the model of Baranovskil and Efros [48], 

one of the few other models of the density of states that gives an a priori expression 

for c.0 , indicates that the density of states is given by Eq. 2.19 with a = .5. This 

expression can also be used to determine €0 from fluorescence lineshape analyses and 
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gives reasonable values around 3-4 meV. However, using their expression for t 0 and 

the alloy parameters used above gives a value that is several orders of magnitude 

smaller. The primary difference between their model and that of Ouadjaout and 

Marfaing is that they did not use a :fluctuation dependent critical volume, which thus 

appears critical to obtaining good results. 

2.4 Determining the Type of Localization 

Up to this point, the different types of localization have been considered in 

terms of what effect each will have on the density of states. However, no mention 

has been made of what conditions will determine which type of localization. As has 

already been noted, in either the case of single particle or of double particle localiz

ation, the characteristics of the localization of the alloy are expressed in terms of the 

quantities mn, mp, an, ap, and n. In fact, the relative probabilities of the different 

types of localization can actually be determined solely from the :ratios mnfmp and 

an/ aP as will now be shown. 

Localization of the exciton as a whole requires only that the potential well 

be wide with respect to the Bohr radius of the exciton, as. This weak localization 

condition can then be expressed as 

(2.42) 

where Esx is the exciton binding energy. Incorporating the expression for the op

timal radius for such a localization leads to the condition 

t 1.4 
---« ------------------
Esx 1 + mn/2mp + mp/2mn 

(2.43) 
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Since mn/mp is generally around 0.2, t: is typically much smaller than the free exciton 

energy and corresponds to only a small part if any of the luminescence bands. This 

center of mass localization can therefore be ignored in the analysis of the remaining 

three types of localization. 

If the electron alone is to be localized, then the hole potential well must 

satisfy 

(2.44) 

where 

(2.45) 

is the optimum well width for localizing the electron from Eq. 2.29. Condition (2.44) 

as an equality is simply the minimal condition for the well to support a state as 

determined by setting Eq. 2.28 to zero. This condition can then be expressed in 

terms of an/ ap as 

(2.46) 

The probability that this type of excitation will occur must also be greater than the 

probability of localizing the hole alone or of localizing both the electron and hole in 

the same well. Such an optimization is equivalent to ensuring that at a given energy 

t: the density of states, or alternatively t: 0 , is greatest for localizing the electron alone. 

From Eqs. 2.32 and 2.40, this criterion becomes 

(2.47) 

If-( an/ ap) > 0, this is just equivalent to the previous condition (Eq. 2.46) for the 

typical case of m_n < mp. On the other hand, if -(anfap) < 0, the same well will 
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not localize both an electron and a hole, so this condition is reduced to 

(2.48) 

If the hole alone is to be localized, then an analysis symmetrical to that for 

localizing solely the electron can be performed. In this case the condition that no 

electron be localized is given by 

(2.49) 

while the condition of maximum probability is given by 

(2.50) 

If -(o:n/o:p) < 0, the latter condition is reduced to 

(2.51) 

as the well will not simultaneously localize both a hole and an electron. However, 

in contrast to the previous analysis, the case of-( o:n/ o:p) > 0 is more complicated. 

In order to ensure the simultaneous satisfaction of both the conditions (2.49) and 

(2.50), the following inequality must be satisfied [50]: 

4 

P(s, t) = L Ci(t)si < 0 , (2.52) 
i=O 
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where s = -a.n/a.P, t = mn/mP, and the coefficients Cq are given by 

C0 (t) = -.19t-1 
- .815 , 

C1(t) = .369 , 

C2(t) = .805(t + 1) , 

C3(t) = .369t , 

C4(t) = .81t2 + .995 

29 

(2.53) 

If the electron and hole are both localized in the same well, then, from 

the above analyses, - (an/ a.p) > 0 as a result of the criteria for the existence of a 

localized electron and a localized hole given by 

(2.54) 

and 

(2.55) 

respectively. Incorporating the optimal values of R and ..6.x given by Eqs. 2.37 and 

2.38, these conditions are transformed intq 

(2.56) 

The maximum probability condition in this case is given by 

(2.57) 

The combination of the conditions (2.56) and (2.57) then just yields the previously 
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encountered conditions (2.46) and (2.52) with the inequalities reversed: 

(2.58) 

and 

P(s,t)>O, (2.59) 

where P(s, t) is defined by Eqs. 2.52 and 2.53. 

A plot of-( o:n/ o:p) verses ( mn/mp) can then be used to describe the type 

of localization that will occur in a given semiconductor alloy, ignoring the center 
I 

of mass localization. Such a plot is given in Fig. 2.4. This plot consists of four 

regions. The uppermost, for -(o:nfo:p) > 3.7mpfmn > 0, and the lowermost, for 

-(o:nfo:p) < -(mpfmn) 112 < 0, correspond to alloys in which the electron alone is 

localized and the hole is bound to the electron through the Coulombic interaction. 

Of the two remaining regions, the one that straddles -( o:n/ o:p) = 0 corresponds to 

alloys in which the hole alone is localized. The final region corresponds to alloys in 

which both the electron and hole are localized in the same well as a confined exciton. 

Exactly where a given alloy falls on this plot, and hence the type of localization that 

occurs in that alloy, then depends on the specific values for the critical parameters. 

For example, in CdSxSe1_x, the value of O:n is taken to be zero as indicated in the 

last section. Thus, in these alloys the hole alone is localized. While hole localization 

has been assumed in earlier models [55], this was the first a priori prediction of such 

a result. 
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Figure 2.4: Shown is a graph of -a.nf a.p versus mn/ mp with the boundaries separ
ating different types of localization. The *marks the location of CdS.36Se.64 as given 
by Ouadjaout and Marfaing [50]. 
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2.5 Summary 

In summary, the virtual crystal approximation implies that the properties in 

an alloy should be an average of those of the unalloyed materials. However, such an 

approach, which fails to take into account the full statistical nature of the potential 

fluctuations but rather treats them in only an average way, is not always appropriate. 

As Anderson's model shows, there can exist a continuum of states in energy without 

those states being delocalized. Nevertheless, in real alloy systems such localized 

states only exist in a tail of the density of states which extends into the band gap. 

The majority of states in the band are indeed extended and the energy that separates 

the exten,ded states from the localized states is called the mobility edge. 

Furthermore, from the model of Ouadjaout and Marfaing, the density of 

states can be seen to vary with the energy below the virtual crystal average energy 

according to exp [- ( (;/ (; 0 )
312] where the characteristic energy (; 0 has a value of a few 

meV fo~ the alloys CdSxSel-x· In addition, in these alloys localization occurs for the 

holes in the valence band while the electrons are bound to the holes by Coulombic 

attraction. 

Because of the small value of (; 0 , the samples must be cooled to very low 

temperatures in order to observe the localized states directly. Otherwise, the ex

citons are readily excited out of the states through interaction with phonons and 

dissociated into free carriers. In sub-nanosecond resolution studies, the extended 

exciton states were observed to become dominant above about 40 K [58]. However, 

as this dissertation will establish, even at room temperatures the states in the tail 

of the density of states have an effect on the carrier dynamics. While the carriers 

may spend little time in those states, the lifetime dependency on the energies of those 

states gives rise to a distribution of radiative pathways through which the carriers 
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can decay. This distribution affects the shape of the luminescence decay as will be 

demonstrated and discussed in Chapter 5. 
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Chapter 3 

Ultrafast Fluorescence Techniques 

3.1 Time Correlated Single Photon Counting 

Time correlated single photon counting (TCSPC) is a well established in

strumental method for following luminescence decay that has been in use for over 

three decades. It is based on the concept that the probability of emission of a 

single photon corresponds to the intensity as a function of time for all of the emitted 

photons. Collection of the photons emitted following many excitations then yields 

the probability distribution. The technique was first applied in 1961 by Bollinger 

and Thomas to the study of scintillators excited by alpha, beta, and gamma radiation 

(59]. Shortly thereafter scintillator emission decays were measured with resolution 

in the nanosecond regime (60]. Since that early work, TCSPC has been applied to 

many fluorescence decay experiments and seen great improvements in resolution and 

data collection rate through the development of instrumentation for excitation and 

detection. 

One example of improvement in photoexcitation sources is the development 
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of cavity dumped dye lasers synchronously pumped by mode-locked ion or solid state 

lasers, which represent a significant advancement over previous flashlamp sources 

[61]. With pulse widths on the order of 1 ps currently available for such systems, 

resolution of about 40 ps is limited by the detection system. Additionally, the mega

hertz regime repetition rates of these systems have reduced the data collection time 

of high signal to noise ratio decays to a matter of a few minutes or less and made 

feasible the examination of weakly emitting samples. Finally, the dye laser provides 

flexibility in wavelength selection. Using a variety of dyes, wavelengths spanning the 

visible spectrum are available. 

The detector of choice for TCSPC is the microchannel plate (MCP) detector 

[62]. Although the gain of MCP detectors is less than that of photomultiplier tubes 

(PMT's ), the latter are currently limited to a resolution of about 300 ps while the 

former have resolutions as low as 70 ps. This enhancement in resolution results 

from the fact that electron multiplication occurs in small glass capillaries in between 

the photocathode and anode with lengths that can be as small as .5 mm. This is 

compared to a length that can easily be several centimeters for PMT's. Thus, in 

MCP's the transit time spread is greatly reduced. However, because of the lower 

gain of the MCP, amplification of the anode pulses in necessary. To avoid additional 

broadening of the instrument response function, the amplifier should have a 1 GHz 

or better bandwidth. In addition, the shape of the instrument response function of 

PMT's is wavelength dependent; MCP detectors present no such difficulty. 

A standard sequence of events in the collection of data is as follows. A 

small portion of the exciting laser beam is split off from the main beam and directed 

to a fast photodiode which serves as a timing reference. It provides a start signal 

for a time to amplitude converter (TAC), which is just a temporally linear voltage 

ramp. Meanwhile, the remainder of the laser beam excites the sample. When an 
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emitted photon is subsequently collected by the collection optics, it is directed to 

the MCP detector, the anode pulse of which serves as a stop signal to the TAC. 

The resulting output of the TAC is then collected by a computer or a multi-channel 

analyzer in which the channels correspond to linear increments of time. This process 

is repeated until after many excitations a histogram of the probability distribution 

for the emitted photons is mapped out. 

One minor variation of this scheme is to reverse the roles of the photodiode 

and MCP. In this scenario the MCP output starts the TAC while the photodiode 

signal due to the subsequent laser pulse stops it. Because the timing between pulses 

is well defined, the collection of this inverted data is equivalent to normal collection. 

The advantage of this scheme is that the TAC is not started with every laser pulse but 

only when a photon is actually collected. This minimizes the dead time associated 

with the resetting of the TAC. 

Sending the start and stop signals through constant fraction discriminators 

before they pass on to the TAC is necessary to minimize the instrument response 

function width. Without such discrimination, the TAC must trigger on the relatively 

jittery edges of the MCP and photodiode pulses. Such jitter is the result of the 

fluctuations of the amplitude from pulse to pulse. A constant fraction discriminator 

serves as follows to sharpen the edge of the pulses on which the TAC triggers. It 

first splits an incoming pulse into two pulses with a constant amplitude ratio, one 

of which it inverts and delays with respect to the other. It then recombines the two 

pulses. At the point where the voltage of the summed pulses passes through zero, 

the discriminator emits an output pulse which is sent to the TAC. This pulse is far 

less jittery than the output of the MCP. Provided that the shape of the input pulses 

does not vary significantly from pulse to pulse apart from fluctuations in amplitude 

factors, the spread of triggering times for pulses arriving at the same nominal time 
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(as results for scattered excitation pulses, for example) is considerably narrowed. 

In fact, without constant fraction discrimination, the instrument response function 

width can increase from less than 100 ps to greater than 1 ns. A schematic of a 

typical TCSPC setup is presented in Figure 3.1. 

Even with an instrument function as short as 70 ps or 'less, there are many 

phenomena with timescales of the same (or shorter) order. In this case, obtaining 

quantitative information from the decays requires taking into account the size and 

shape of the instrument response function. The measured decay is the convolution of 

the instrument response function with the fluorescence decay of the sample according 

to 

s(r) = <P(t) * r(t) = 1: <P(t)r(r- t)dt , (3.1) 

where s(t), <P(t), and r(t) are the measured signal, the fluorescence decay function, 

and the instrument response function respectively. When the instrument response 

function is much shorter than the characteristic decay times of the fluorescence, it 

may then be treated as if it is a delta function, in which case s(t) = <P(t). On the other 

hand, when the two are of comparable magnitude, they must be deconvolved in order 

to fit the fluorescence decay function. The method by which such a deconvolution is 

achieved will be covered in the next chapter. 

In order to obtain undistorted data, the detector must receive at most one 

photon per excitation. Because only the first photon to arrive at the detector is 

counted, arrival of multiple photons per excitation will skew the decay curve to early 

times [63]. To ensure that arrival of multiple photons is rare, the excitation intensity 

and collection optics must be adjusted so that detection events occur a maximum of 

once for every twenty excitation pulses. The probability of such a rare event can 
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Figure 3.1: Shown is a schematic of a typical TCSPC setup. The ultraviolet or 
visible laser beam is split at the beamsplitter (BS), with one portion going on to 
excite the sample. The fluorescence is collected and focused into a monochromator 
before reaching the micro-channel plate (MCP) detector. The output of the MCP 
provides the start pulse for the time to amplitude converter (TAC). The stop pulse 
comes from a photodiode (PD) in response to the succeeding laser shot. Both the 
start and stop pulses pass through a constant fraction discriminator ( CDF) before 
passing on to the TAC. The TAC signal is then passed to a computer which serves 
as a multi-channel analyzer. 
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then be calculated via the Poisson distribution 

(3.2) 

where p( n; .X) is the probability of n photons arriving at the detector following a single 

excitation pulse and A is the average number of photons detected per such pulse. An 

average of A = .05 then yields a probability of p(2; .05) = .001 for the arrival of 

two photons at the detector following a single excitation pulse. Attenuation of the 

emission so that detection occurs only once for every one hundred excitation pulses 

is better still, yielding a probability of p(2; .01) = 5 X w-s. Fortunately repetition 

rates of the order of megahertz are available so that data collection at or above 10 

kHz is readily achievable. 

Because semiconductor samples can be damaged if excited by high power 

lasers, low power, high repetition rate lasers should be employed in their study. 

Fortunately these laser systems lend themselves wonderfully to TCSPC experiments 

as described above because of the high sensitivity and need for high repetition rates 

in order to avoid the difficulties imposed by the counting statistics. In addition, 

because the signal counts are synchronized to the laser pulse, th~ dark count rate 

can be kept to a minimum, as low as a few counts per second. Thus, the method 

allows for a superb signal-to-noise ratio. The method of TCSPC is therefore a very 

useful technique for measuring fluorescence decays with lifetimes of 100 ps or longer. 

As a result of these features, fluorescence decays have been measured by 

TCSPC for a wide variety of systems, especially chemical and biological ones. For ex

ample, solvation dynamics have been probed via TCSPC measurements of the fluor

escence decays of probe molecules such as aminophthalamides [64, 65). The fluores

cence decays of trans-stilbene [68], tryptophan [66, 67), and mutants of Chlamydo-
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monas reinhardii (69] have also been measured by this technique. The lattermost 

measurements provided valuable insight into the interactions of photosystems I and 

II during photosynthesis. 

The method does have its drawbacks, however. First is the limit in the 

resolution. Because the timing is provided by the electronics, the full capabilities 

of ultrafast lasers, especially of sub-picosecond lasers, go unused. Furthermore, the 
I 

instrument function can be quite complicated as a result of structured output pulses 

from the MCP. As will be seen later, this can make deconvolution of the instrument 

function from the measured decay quite difficult. Both of these limitations can 
( ' 

be overcome, albeit at the expense of time and noise, by the use of fluorescence 

upconversion as described in the next section. 

3.2 Fluorescence Upconversion 

3.2.1 Introduction 

The second ultrafast fluorescence technique employed in these studies was 

fluorescence upconversion, also known as sum frequency generation, which was first 

employed in 1975 by Mahr and Hirsch [70]. Upconversion is an example of a class of 

nonlinear spectroscopic tecl~_niques known as frequency mixing. In such techniques 

photon~ of two, often different, frequencies are combined in a nonlinear crystal to 

produce photons with frequencies equal to the sum or difference of the two input 

frequencies. In the particular case of fluorescence upconversion, an ultrafast laser 

beam is split into two beams. The first serves as a source of photoexcitation for 

the sample. The luminescence produced is then combined with the second, or probe, 

beam in a nonlinear crystal to produce radiation with a frequency equal to the sum of 
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the frequencies of the luminescence and the laser. The theory of these techniques has 

been well discussed elsewhere [71-73] and will therefore only be briefly considered 

below. 

Since upconversion can occur only when the luminescence spatially and 

temporally overlaps with the probe pulse in the nonlinear crystal, that pulse acts as 

a light gate and allows sampling of the luminescence at the time of overlap. Figure 

3.2 gives a pictoral representation of this action. Furthermore, this gating provides 

temporal resolution on the order of the pulse width, provided certain conditions 

are fulfilled. This is of particular interest due to the advent of femtosecond laser 

systems [74], which can improve resolution to less than .5 ps [75-77] in comparison 

to electronic techniques such as time correlated single photon counting, which is 

limited to at best 40 ps due to the electronics employed. By varying the time at 

which the laser pulse passes through the nonlinear crystal, the researcher can sample 

the luminescence as a function of time. Provided that the gating beam is stable, a 

histogram of the probability for photon emission can therefore be mapped out. 

Control of the time at which the laser pulse passes through the nonlinear 

crystal is achieved by varying the path length of the probe pulse with respect to the 

sum of the path lengths of the excitation and fluorescence. All time-domain optical 

spectroscopies with pulse-width limited resolution employ such path length variation 

as a means of obtaining temporal information. Precise spatial control as small as 1 

11m is routinely achieved with readily available commercial translation stages. Such 

a distance corresponds to advancing or delaying a pulse of light by a mere 3 fs. Thus, 

control of the temporal overlap in the nonlinear crystal need place no restraints on 

the ultimate resolution of this technique. 

Sum frequency generation, of which frequency doubling is but a special case, 
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Figure 3.2: Shown is a schematic of how a gate pulse controlled to pass through 
the nonlinear crystal at various times acts as a light gate for luminescence from the 
sample at those times. By changing when the gate pulse passes through the crystal 
with respect to the excitation of the sample, each part of the decay can be gated. 
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resu)ts from a non-zero second order susceptibility, x}Il(w = w1 + w2 ). The suscept

ibility naturally results from the electronic structure of the material in question and 

must therefore reflect the structural symmetry of that material. An important con

sequence of this fact is that for a material with inversion symmetry x<2> = 0 in the 

electric dipole approximation. Thus, in order to carry out fluorescence upconver

sion, frequency mixing must occur in an anisotropic, or nonlinear, material. In such 

materials the index of refraction depends on the direction of propagation. Let nx, 

ny, and nz be the indexes of refraction along the principal dielectric axes x, y, and 

z of the medium. In the most common nonlinear crystals used for sum-frequency 

generation, nx = ny = no, and nz = ne where no is called the ordinary index, ne 

is called the extraordinary index, and the z axis is termed the optic axis. Light 

polarized normal to the optic axis is said to be ordinary (0) while light polarized 

normal to the ordinary direction is said to be extraordinary (E). The remainder of 

the discussion on the theory of sum frequency generation will therefore be limited to 

these uniaxial crystals. 

3.2.2 Phase-matching 

In order to obtain efficient upconversion of the fluorescence, strict phase

matching conditions must be fulfilled. The equations describing phase-matching are 

Wsum = Wsig + Wgate (3.3) 

and 

(3.4) 
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where Wi and ki are the frequency and wave vector respectively for the fluorescence 

signal to be upconverted (sig), the gate pulse (gate), and the sum frequency photons 

(sum). In the special case of collinear phase-matching, i.e. ksig II kgate II ksum, Eq. 

3.4 reduces to 

nsum nsig ngate 
--=-+--' 
Asum Asig Agate 

(3.5) 

where ni and Ai are the index of refraction and wavelength respectively for the 

indicated photons. Because the index of refraction in an anisotropic crystal depends 

on the direction of propagation, these conditions can often be fulfilled by adjusting 

the angle of incidence () of the incoming photons with respect to the optical axis, 

provided that the three wavelengths bear the appropriate polarization dependence 

for the crystal being used. For negative uniaxial crystals, those in which n 0 > ne, 

phase-matching requires the sum frequency photons to be E polarized. In the case 

of both the signal and gate photons polarized ordinarily, i.e. 0 + 0 --+ E, the 

phase-matching angle ()m is given by (78] 

. 2() _ (1ln~um(Om))- (lln~,sum) 
szn m - ( I 2 ) ( I 2 ) ' 1 ne,sum - 1 no,sum 

where 

) 
Asum Asum 

nsum(Om = no,sig~ + no,gate_>._ 
/\s1g gate 

(3.7) 

and no,i and ne,i are the ordinary and extraordinary indexes of refraction at wave-

length A; respectively. In practice a commercially obtained crystal cut so as to fulfill 

the phase-matching conditions for a given pair of input wavelengths at normal in-

cidence to the crystal surface can be employed over a somewhat narrow frequency 

range by adjusting the angle of incidence to fulfill the phase-matching conditions for 

new combinations of wavelengths. This is referred to as angle tuning. 
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Given perfect phase-matching, the quantum efficiency, 1]q(O), can be calcu

lated by solving the three coupled wave equations subject to the appropriate bound

ary conditions (71, 72]. The result indicates that 1]q(O) depends on L2 and Igate in 

addition to the susceptibility, where Lis the crystal thickness and Igate is the intensity 

of the gating beam. In short, the more intense the gate beam and the greater its 

spatial overlap with the signal beam, the more photons at the sum frequency that 

will be generated. When the phase-matching conditions are not satisfied either due 

to wavelength or angle mismatch, the quantum efficiency is decreased. In terms of 

the phase mismatch, !:::.k = ksum - ksig- kgate, the quantum efficiency falls off with 

increasing !:::.k as 

(3.8) 

The spectral bandwidth of the crystal can therefore determine the spectral 

resolution if the luminescence spectrum is broad. However, the spectral bandwidth 

of the crystal is generally much broader than the desired spectral resolution. To 

improve the resolution, the upconverted signal can be dispersed in a monochromator. 

Such dispersion will also help reduce stray light. The drawback to this technique is 

that the crystal must be angle tuned synchronously with the, wavelength tuning of 

the monochromator in order to cover the entire spectral range of the luminescence. 

Further complication can arise because tuning over a wide angle can displace the 

beam at the entrance slit of the monochromator. 

Because the sum frequency intensity I sum ( r) at a delay time r is pr,opor

tional to the cross correlation of the gate intensity with the fluorescence signal in

tensity, 

fsum(r) = Corr (/gate,lsig) "'I: lgate(t + r)fsig(t)dt , (3.9) 
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both the fluorescence and gate beams are focused into the crystal to increase the 

output. However, the focused beams then form a cone of focused photons only a 

fraction of which can be perfectly phase-matched. The remainder are mismatched to 

a greater degree as their angles deviate further from the phase-matching angle. The 

range of angles over which mismatch can occur without significantly reducing the 

upconversion efficiency is called the acceptance angle and can be expressed as [79] 

fj.O = 471" (ak) -l 
L ao · (3.10) 

Since the acceptance angle varies inversely with crystal thickness L, the beams may 

be more tightly focused into thinner crystals. This focusing roughly offsets the losses 

in sum frequency generation due to decreased crystal thickness, though the benefits 

from tighter focusing are limited by the extent to which the fluorescence can be 

focused. 

Another consideration in designing an upconversion experiment in terms 

of the efficiency of the upconversion process concerns walk-off. This phenomenon 

occurs because the direction ofenergy flow for extraordinary rays, in contrast to the 

case for ordinary rays, differs from the direction of wave propagation given by the 

wave vector. The angle between these two directions is called the walk-off angle, Ow, 

and for the case of the sum frequency ray being extraordinary as considered above 

is given by [78] 

n;i9 (0m) sin (20m) ( 1 1 ) 
tan Ow= - 2---2- • 

2 ne,sig no,sig 
(3.11) 

Clearly this limits the efficiency if the signal and gate rays are not both ordinary, 

since the spatial overlap will decrease as the rays traverse the crystal and walk-off 



.. 

3.2. FLUORESCENCE UPCONVERSION 47 

from one another. Fortunately, for the case 0 + 0--+ E, the gate and signal rays are 

both ordinary and thus undisturbed by this effect. The sum frequency ray, however, 

will emerge from the crystal at a position offset from that of the fluorescence and 

gate. The optical alignment must therefore be adjusted to account for this effect. 

3.2.3 Dispersion 

As has been indicated above, maximizing spatial overlap of the fluorescence 

and gate beams favors thick crystals. However, the dispersive nature of the crystal 

can decrease resolution and therefore places practical limits on the crystal thickness. 

Treating an optical pulse as a wave packet with central frequency w0 , the wave 

riumber k can be expanded in a Taylor's series with respect to frequency w to obtain 

[80] 

(3.12) 

where higher order terms may generally be neglected for pulses with widths exceeding 

10 fs [81, 82]. The inverse of the magnitude of the linear term, l(okjow)l- 1 = v9 , is 

termed the group velocity of the pulse. The quadratic term, (82kj8w 2
), is the group 

velocity dispersion and represents the change in pulse shape during propagation. 

Both of these terms can contribute to the temporal broadening of an ultrafast pulse. 

Noting that k = n(>..)w/c and >.. = 21rcjw, the group velocity can also be 

expressed as 

(3.13) 

where cis the speed of light in a vacuum. Clearly pulses of different wavelengths will 

generally have different group velocities. As a result, in addition to the transverse 

walk-off described previously, the input pulses will move ahead of the sum frequency 
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pulse they are generating. As they continue to generate more sum frequency, the 

upconverted pulse grows wider in time. Fortunately, in fluorescence upconversion 

experiments, the resolution is not determined by the width of the sum frequency 

pulse but rather by the uncertainty in the temporal overlap of the input pulses. 

However, the input pulses themselves will become separated, which does increase 

this uncertainty. Resolution is therefore reduced. Now one might consider attempting 

~o angle tune the crystal in hopes of matching group velocities. Unfortunately, in 

the visible and ultraviolet regions ofthe spectrum, simultaneously matching both the 

phase and the group velocities is generally impossible [80). 

In addition to the group velocity mismatch, the group velocity dispersion 

leads to pulse broadening and thus also to decreased resolution. The group velocity 

dispersion can be expressed as 

(3.14) 

The effect of the group velocity dispersion is to cause the components of the pulse 

with different wavelengths to travel at different rates. In the visible and ultravi

olet regions of the spectrum, the longer wavelengths generally travel faster than the 

shorter wavelengths. The resulting pulse therefore contains a frequency sweep in ad

dition to being broadened. As the input pulses pass through the nonlinear crystal, 

their overlap is increased temporally; and resolution is decreased. 

Broadening due to group velocity dispersion can be compensated by intro-

clueing a grating pair or a prism pair in order to introduce an anomalous dispersion, 

i.e. a group velocity dispersion in which the blue components travel faster than the 

red ones. On the other hand, broadening due to group velocity mismatch cannot be 

corrected; its minimization through the insightful selection of a crystal (and other 
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optics) is the best that can be achieved. Fortunately neither of these broadening 

mechanisms is. serious enough to require correction for pulse widths greater than 

about 1 ps; however, for pulses just one order of magnitude shorter, ignoring these 

- effects can lead to a pulse's broadening by a factor of five or more [83]. 

"· When choosing a nonlinear crystal for the upconversion proce~s, all of the 

factors affecting the upconversion frequency must be considered. In addition, the 

frequency at which the crystal itself absorbs must also be considered. Thus, while 

Lii03 has a quantum efficiency roughly double that of ,8-barium borate (BBO) and 

fifty times that of potassium dihydrogen phosphate (KDP), it absorbs wavelengths 

shorter than 300 nm. As a result, if sum frequencies near or below 300 nm will 

be produced, Lii03 cannot be used. In contrast, BBO does not begin to absorb 

until190 nm. BBO is also much less dispersive than Lii03 ; for sub-picosecond laser 

pulses, Lii03 will introduce much more broadening. Although KDP is less dispersive 

still than BBO, a BBO crystal of 1/3 the length of a crystal of KDP has a higher 

efficiency with comparable broadening as a result of BBO's much higher quantum 

efficiency [83]. In general BBO seems to show the best combination of properties for 

upconversion in the visible region of the spectrum. 

3.2.4 Upconversion Systems 

The laser system to be employed in fluorescence upconversion experiments 

is not as limited as that in the TCSPC experiments. Upconversion has been ex

ecuted using both high power, low repetition rate lasers as well as low power, high 

repetition rate lasers. The former can yield larger signals but only at repetition rates 

of several kHz at best. For semiconductors, however, both damage thresholds and 

carrier densities must be taken into consideration. High power ultrafast lasers can 
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easily deposit sufficient heat to melt or otherwise damage semiconductor samples. 

Furthermore, at carrier densities above about 1018 cm-3 , plasma effects begin to 

complicate the carrier dynamics. Unless damage or plasmas are the particular focus 

of a study, low power lasers are more appropriate to such studies. The lower power 

is not a great limitation in any case, as the high repetition rates of such systems 

allow averaging over several million shots per second. 

In addition to the differences in power and repetition rate, these two sys

tem designs differ in their means of signal averaging. The high power systems often 

achieve their mJ per pulse energies through multipass dye laser amplifiers. Such amp

lification, however, introduces significant noise, which is particularly detrimental in 

upconversion spectroscopy. Because the laser is used both to excite the sample and 

to generate the sum frequency that is ultimately detected, the resulting upconverted 

signal varies in intensity as the square of the laser intensity. Furthermore, if the 

laser is frequency doubled for sample excitation, the upconverted signal varies as the 

cube of the laser intensity. Thus, it is crucial to monitor the laser power fluctuations 

and normalize the upconverted signal to these changes. In contrast, the low power 

systems are unamplified and considerably more stable. As a result, the laser in

tensity fluctuations in these systems, which typically employ single photon counting 

detection, are generally not the major source of noise. Normalization is therefore 

unnecessary, and signal averaging is achieved by collecting data over a period of a 

few million laser shots per data point. Of course, at the available repetition rates, a 

few million laser shots require but a second or two. 

Shah and coworkers at Bell Laboratories have made many of the significant 

recent developments in the application of low power, high repetition rate lasers to the 

fluorescence upconversion studies of semiconductors. The system used for the work 

presented in this dissertation was based primarily on their work; a schematic of such · 
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a typical fluorescence upconversion setup is presented in Figure 3.3. In addition to 

using a laser system very similar to that used in the present work, they extended the 

technique by the application of optical fiber pulse compression techniques. In their 

earlier work [75], they compressed the output of a dye laser to obtain a resolution 

of less than 500 fs. They later compressed the fundamental of their Nd:YAG pump 

laser instead, which allowed them to pump their dye laser with 3.5 ps pulses as 

opposed to the typical 90 ps pulses [84]. This change improved their resolution to 

less than 400 fs. Most recently they improved the resolution to approximately 100 

fs by employing pulse compression in both locations [85]. One should note that in 

this work the consideration of the dispersion of the optics as described above is of 

critical importance. 

As noted above, temporal resolution in fluorescence upconversion exper

iments is pulse width limited. The sum frequency signal is the result of a cross 

correlation of the gate pulse with the fluorescence signal of the sample according to 

Eq. 3.9. However, the fluorescence signal is itself a convolution of the excite pulse, 

Iex(t), with the fluorescence decay function, <I>(t), i.e. 

fsig(r)"" <J>(t) * fex(t) = 1: iP(t)fex(T- t)dt . (3.15) 

Since the excite pulse and the gate pulse are from the same laser pulse, they can be 

taken to differ only in magnitude. The measured decay then varies as the convolution 

of the fluorescence decay function with the autocorrelation of the gate pulse, 

fsum(r) ""<J>(t) * Iresp(t) = 1: iP(t)Iresp(T- t)dt , (3.16) 
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Figure 3.3: Shown is a schematic of a typical upconversion experiment using collinear 
phase-matching. Because the laser is used for both the excite and gate pulses, the 
excite and gate frequencies are the same, i.e. Wex = w9ate· Then, from the phase 
matching conditions, the sum-frequency Wsig must be the sum of the fluorescence and 
gate frequencies, or Wsig = WJLuor .+ W9ate· 
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where 

Iresp( r) rv Corr (Igate(t), lgate(t)) = j_: !gate( T + t)Igate(t)dt (3.17) 

is the autocorrelation of the gate pulse. This autocorrelation serves as the instru

ment response function. If the laser pulse autocorrelation is much shorter than the 

characteristic decay times of the fluorescence, the instrument response function may 

be treated as if it is a delta function, in which case lsum(t) = ~(t). If this is not 

the case, the instrument function must be effectively deconvolved from the measured 

decay in order to fit the fluorescence decay function. 

To obtain the instrument response function, the standard procedure is to 

scatter the excite beam off of the sample and mix it with the gating beam. If the 

two beams are of equal intensity, I, at the nonlinear crystal, then, when they are 

perfectly overlapped, the autocorrelation obtained will have an intensity proportional 

to (2/) 2 = 4/2
• However, in the case of collinear phase-matching, doubling can 

occur between two photons from the same pulse as well as between one photon from 

each. Thus, when the pulses are not overlapped at all, there will be a background 

proportional to 2J2, since each pulse will be individually doubled. The use of non

collinear phase-matching allows one to avoid this difficulty. In that case the phase

matching condition for adding together one photon from each pulse is not the same 

as for adding together two photons from within the same pulse. Furthermore, even if 

some same-pulse doubling does occur, albeit at a reduced efficiency, its wave vector 

will be different, allowing it to be spatially filtered. The drawbacks to non-collinear 

phase-matching are a reduced spatial overlap resulting in reduced efficiency and a 

greater difficulty in optimizing the overlap. 
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3.2.5 Summary 

Clearly fluorescence upconversion is a powerful technique. As such it has 

been applied to a wide range of problems. In studies of semiconductors alone, it 

has seen widespread application from its earliest applications [98]. It has been used 

to study the slow rise of luminescence in GaAs following excitation by pulses at 

about .6 e V above the band gap (86]. This has been interpreted as due to intervalley 

scattering to the L valley from which the carriers only slowly return to the r valley 

where they act as a source of heating before cooling and finally decaying. This 

behavior is is stark contrast to that seen in InP where excitation was insufficient to 

achieve intervalley scattering [87]. In both cases carrier-carrier scattering was seen 

to play an important role. Fluorescence upconversion has also been employed in 

the studies of exciton transfer between the monolayer-flat islands that differ by one 

monolayer in thickness in GaAs single quantum wells [88] as well as in studies of 

spin relaxation in quantum wells of dilute magnetic semicondutor alloys [89]. 

In chemical systems upconversion has also found wide application, though 

generally through the use of high power laser systems as decscribed above [83]. For 

example, such systems have been used to study solvation dynamics by measuring the 

fluorescence decays of coumarin dyes [90, 91]. Fluorescence depolarization has also 

been measured by upconversion to obtain anisotropies for tryptophan (92]. These 

measurements are of interest due to the desire to use tryptophanyl residues as probes 

of protein structure and conformational dynamics. 
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3.3 A Comparison: Upconversion vs. TCSPC 

As a conclusion to this chapter, a brief comparison of fluorescence upcon

version and time correlated single photon counting will be made. Of the two up

conversion clearly has the advantage in temporal resolution. Upconversion is pulse 

width limited whereas TCSPC is electronically limited. As a result, even using the 

same 1 ps laser system, a resolution difference nearly two orders of magnitude ap

plies. With the application of pulse compression techniques or the implementation 

of lasers with inherently shorter pulses such as the Ti:sapphire laser, this difference 

only increases. Finally, the true resolution of TCSPC experiments is hindered by the 

electronic structure that is added to the instrument response function by the detec

tion system. This leads to a difficulty of deconvolving the response from the signal. 

Because the response of the upconversion system is just the laser pulse autocorrela

tion trace, a much less noisy and unstructured response is obtained. Deconvolution 

techniques can then enhance the resolution. 

Nevertheless, fluorescence upconversion does have some drawbacks. In 

comparison to other time resolved fluorescence spectroscopies such as TCSPC, up

conversion yields worse signal to noise ratios. This is rooted fundamentally in the 

fact that even under ideal conditions only that fraction of the fluorescence signal 

which is upconverted can be detected. Because upconversion is a nonlinear process 

depending on the second order nonlinear susceptibility, this generally amounts to 

only a few percent at best. Furthermore, since fluorescence will generally contain a 

mixture of polarizations, only that fraction which is properly polarized for the phase

matching can even be upconverted. This will reduce the output by a further factor 

of 2. In addition, if the beams are poorly overlapped or the angle of the nonlinear 

crystal is not optimally set for phase-matching, still more of the fluorescence will be 
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lost. Optimal overlap can prove particularly difficult to obtain if the fluorescence is 

weak or, worse still, in the infrared where it is invisible. As a result, this technique 

is limited to the study of materials with a good quantum yield for fluorescence such 

as dyes and semiconductors. 

In addition to the poorer signal to noise ratio, fluorescence upconversion 

suffers from the problem of the high background signal from second harmonic of the 

gate beam as discussed above. Even when the wavelengths of second harmonic and 

upconverted fluorescence are separated by as much as 50 nm, second harmonic can 

still be detected since the gate beam is typically about 5-7 orders of magnitued more 

intense. Although this interfering background may be reduced by using filters and a 

monochromator, this will also further reduce the amount of the up converted signal 

that reaches the detector and thus decrease further the signal to noise ratio. One 

direct result of this difficulty is the need to excite well away from the peak of the 

luminescence to be examined. In semiconductors this amounts to exciting well above 

the band gap. Thus, studies of selective excitation, as for example exciting solely 

from the heavy hole sub-band as opposed to the light hole sub-band, are unfeasible. 

A further drawback to fluorescence upconversion lies in the potential drift 

of the laser power over time. In up conversion the data for a single small time window 

is collected at each stage position. Thus, the data collected during a specific time 

interval in the lab corresponds to data from a specific time interval in the decay. If 

the laser drifts appreciably on a time scale of the same order as a full scanning of the 

stage, the data at the different positions will not be properly normalized. As already 

noted, the intensity of the signal is proportional to both the gate and fluorescence 

intensities, so laser drift can be particularly problematic. By comparison, TCSPC 

does not suffer from this difficulty, because there is never a time when it is collecting 

soley from a limited time window. At any given time during an experiment, the data 
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collected apply to all times in the decay with a probability weighted solely by the 

emission probability, provided the limits of the counting statistics are not breached. 

An additional result of this difference in collection is that it takes much longer to 

collect the decay using upconversion. Unfortunately, as already noted, laser drift 

places a practical limit on how long one can collect data with upconversion. 
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Chapter 4 

Experimental 

4.1 Samples 

The CdSxSe1_x samples studied in this work were obtained from Cleveland 

Crystals where they were grown by vapor deposition techniques. They were then 

clea~ed along the major clevage plane perpendicular to the c axis and mounted on 

the end of a glass rod with epoxy without the introduction of any stresses. Samples 

with x = 0.00, .25, .50, . 75, and 1.00 were employed in the time correlated single 

photon counting experiments while only those with x = 0.00, .25, and .50 were 

used in the fluorescence upconversion experiments. Attempts to measure decays via 

fluorescence upconversion using doubled laser fundamental for the excitation proved 

unfruitful in samples with x = . 75 and x = 1. Spectra for the samples are shown in 

Figure 4.1. 
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Figure 4.1: Shown above are the fluorescence spectra for the five samples studied 
in the present work. The spectra correspond to x = 1 ( • ), x = . 75 ( x ), x = .50 
( o), x = .25 ( +), and x = 0 ( *). The fluorescence maxima occur at wavelengths in 
agreement with Eq. 1.1. 
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4.2 The Laser System 

The laser system employed for all of the present work was a Coherent 700 

series dye laser synchronously pumped by a Coherent Nd:YLF laser. The pump 

laser was mode-locked at a 76 MHz repetition rate. The fundamental frequency was 

doubled to 527 nm using a heated KDP crystal. The output pulses were typically 70 

ps wide and provided an average power of 2.0 to 3.0 W. The dye laser contained two 

dye jets, a gain jet and a saturable absorber jet, though the latter was employed only 

in the fluorescence upconversion experiments. The dye laser was cavity dumped at 

3.8 MHz. In single jet mode, the output pulses were typically about 8 ps, far shorter 

than the resolution of 100 ps imposed by the electronics in the TCSPC experiments. 

In this case the average output power was typically _250 to, 300 m W. In dual jet mode, 

pulses as short as 1.0 ps were obtained at the expense of power, which typically 

averaged 150 to 200 m W. In either case the output light was polarized vertically. 

Several gain jet dyes were employed throughout this work, but the most 

frequently used dye was rhodamine 6-G. This dye has a broad gain curve centered 

at 590 nm, is extremely stable, and has the highest gain coefficient of any of the 

dyes us~d in this work. Using rhodamine 6-G, the laser could easily be tuned using 

a single plate birefringent filter from 570-630 nm, though power was of course lower 

for wavelengths away from the center. In addition to rhodamine 6-G, several other 

dyes were employed to provide a greater range of available wavelengths. Chief among 

these was DCM special, which was used at longer wavelengths than the rhodamine 

6-G since its gain curve is peaked at 630 nm. To the blue of the rhodamine 6-G, 

rhodamine 570 was employed for a few experiments. This dye's gain curve is peaked 

at 570 nm. Unfortunately rhodamine 570 is considerably less stable than the other 

dyes employed. It degrades over a period of a few days as evidenced by a drop 
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in power and the concomitant color change from clear yellow to opaque orange

brown. This degradation is believed to be the result of a reaction with brass fittings 

commonly found in dye pumps; thus, the replacement of these parts with those of a 

non-reactive material such as stainless steel could alleviate this problem and extend 

the useful lifetime of this dye. 

In order to obtain the shortest pulses, rhodamine 6-G was used in combina

tion with the saturable absorber dye 3,3'-diethyloxadicarbocyanine iodide (DODCI). 

Its use to optimize pulse widths is, however, non-trivial. At a constant pump power, 

optimization requires carefully increasing the DODCI concentration while continu

ally adjusting the cavity length and simultaneously monitoring the autocorrelation 

trace. For such monitoring a commercially available Femtochrome Research Inc. 

FR-103 autocorrelator was employed. The shortest pulses are achieved just before 

the laser stops lasing. However, since the average output power also decreases- with 

the increase in saturable absorber concentration, the absolutely shortest pulses were 

not always ideal. Pulses in the 1.0-1.4 ps range were generally employed. Under 

the conditions of usage, the DODCI underwent a fairly rapid photodecomposition as 

evidenced by noticeable broadening of the autocorrelation trace. For example, over 

the course of several hours, the pulse could broaden by a picosecond or more unless 

fresh, concentrated DODCI was periodically added to the pump reservoir and the 

cavity dumper was finely adjusted. 

4.3 Time Correlated Single Photon Counting 

For the time correlated single photon counting experiments, the output of 

the dye laser was tuned to 630 nm and doubled in a Lil03 crystal to obtain 315 nm 

ultraviolet pulses for exciting the samples. This excitation was well above the band 
' 
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gap of the widest band gap material in these studies, CdS, which has a band gap 

corresponding to 508 nm. After the remaining fundamental wavelength was filtered 

out, the ultraviolet pulse was focused at an oblique angle onto the semiconductor 

surface. A bright fluorescence spot was readily visible to the naked eye. The glass 

rod on which the semiconductor sample was epoxied was mounted in a post holder. 

This fluorescence was then filtered of scattered ultraviolet light with a KV-470 filter 

before being collected by a low f-number aspheric lens. Afterwards the fluorescence 

was recollimated and focused onto a .1 mm slit of a .10 m ISA single pass grating 

monochromator mounted on the front of the housing of a Hammamatsu Rl564U 

microchannel plate detector. A resolution of less than 2 nm could thus be achieved. 

The anode pulse of the MCP was passed through a Hewlitt-Packard 8447D two

stage GHz pre-amplifier before passing on to an Ortec Model 583 constant fraction 

discriminator. Timing reference was provided by a fast EG&G FND-100 photodiode 

connected to a second Ortec constant fraction discriminator. The discriminator 

outputs were used to trigger a Canberra 2043 time-to-amplitude convert~r with the 

photodiode signal serving as the start pulse. The TAC output was then passed to 

an ADAC Modell023 analog-to-digital converter, the output of which was sent to 

a computer which served the role of a multichannel buffer. 

The instrument function of this TCSPC system was measured by scattering 

the visible dye laser fundamental off the semiconductor surface. A typical instrument 

function is shown in Figure 4.2. As can readily be seen, the instrument function 

possesses a 100 ps rise time and a FWHM of about 70 ps. These values are typical for 

many sub-nanosecond TCSPC systems. Because the samples exhibited characteristic 

decay times within an order of magnitude of this instrument function width, the 

instrument function cannot itself be ignored in fitting data as is the case when the 

width of the instrument function is smaller than the characteristic decay times by a 
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Figure 4.2: Shown above as the solid line is a typical instrument function taken with 
the time correlated single photon counting experimental setup described in the text. 
The structure in the instrument function is due to ringing in the MCP output and 
shows up quite clearly in the data as demonstrated by a sample of CdSe data given 
by the points. 
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factor of 10 or more. Thus, optimization of the instrument function, which has been 

described elsewhere [93], is critical. Furthermore, the output of the MCP detector 

· contained ringing after the main pulse. Despite attempts to remove this feature, the 

ringing persisted. Thus, the instrument function contains structure that complicates 

fitting of the data. 

4.4 Fluorescence Upconversion 

As indicated above, the laser system used in the fluorescence upconversion 

experiments was essentially the same as that used for time correlated single photon 

counting. Whenever possible the dye combination rhodamine 6-G and DODCI was 

used, and the system was operated at 590 nm in which case the output pulses were 

typically 1 ps with an average power of 200 m W. For the x = .50 samples in 

which the band gap corresponds to 613 nm, however, this was not possible: While 

the excitation wavelength of 590 nm was still above the ,band gap, the upconverted 

signal could not be isolated from the frequency doubled gating pulse. In order to 

alleviate this difficulty, rhodamine 570 was employed and the laser was tuned to 550 

nm to yield 9.5 ps pulses with an average power of 250 m W. No saturable absorber 

could shorten the pulses without lowering the power to unusable levels. In all cases 

the laser was operated at a repetition rate of 3.8 MHz and emitted vertically polarized 

pulses. All of the succeeding optics were aligned so as to ensure that this polarization 

was retained. The laser was then split using a Newport model 50GOOAV.2 circular 

variable beamsplitter, which was set to transmit approximately 10% of the beam 

and reflect the remainder. The transmitted portion of the pulse train served as the 

excitation source; the reflected portion served as the gating beam. 

After being split the transmitted beam passed through a path of vari-
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able length consisting of a pair of mirrors mounted on a 150 mm Klinger model 

MT160.150 translation stage and aligned so as to steer the beam along a path paral

lel to the motion of the stage. The stage was driven by a Klinger model UE72 motor 

which was controlled by a Klinger CCl.l programmable stepper motor controller. 

The controller was itself driven by a personal computer running a data collection 

program written by the author of the present work. The full program is given in 

Appendix A. The controller could step the stage in 10 J.lm increments, though the 

stage itself could potentially be stepped in 1 J.lm increments with a slightly different 

controller. In the configuration employed, however, steps of 10 J.lm correspond to a 

pathlength change of 20 J.lm, which advances or delays the pulse by 66.6 fs. With 

pulses of 1 ps FWHM, the resolution is clearly not limited by the stage control. 

Having passed through the variable path, the beam was then focused onto 

the semiconductor sample with a CVI plcx25.4/18.0 uv-grade plano-convex lens hav

ing a 50 mm focal length. The beam was focused onto the surface of the sample at 

an angle less than 45 degrees. As in the TCSPC experiments, the sample itself was 

epoxied on the end of a glass rod which was mounted in a post holder. Luminescence 

was collected off the front side of the sample with an NRC microscope objective hav

ing a 20X amplification and a working distance of 1.8 mm from the tip of the lens. 

Preliminary work demonstrated that such a microscope objective functioned better 

than a low f-number lens by collecting luminescence over a greater solid angle and 

collimating the output into a tighter beam. Because the upconverted signal proved 

extremely sensitive to the fluorescence collection, several degrees of freedom were 

added to this portion of the optical arrangement in order to enhance the optimiza

tion of the collection efficiency. The collection optic could be rotated about a pair 

of perpendicular axes normal to the optical axis as well as be translated in all three 

dimensions. The latter adjustments proved to be the most crucial. The collected 
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fluorescence, having been collimated by the collection lens, then passed along the 

optical axis towards the nonlinear crystal used for upconversion. 

After having been reflected from the variable beamsplitter, the gating beam 

traversed a fixed path to be collimated along the optical axis with the fluorescence 

prior to the nonlinear crystal. To achieve this collimation, a dichroic beamsplit

ter custom made by CVI was employed. The dichroic employed depended on the 

wavelengths of the gate and fluorescence in the particular case. In any case, however, 

the dichroic was designed to transmit the fluorescence while reflecting the gating 

pulse. 

The two beams, fluorescence and gate, having been collimated along the op

tical axis, were then focussed into the nonlinear crystal, a 2 mm thick BBO crystal 

·obtained from CSK, using a 5X microscope objective obtained from NRC. The micro

scope objective mounting assembly was mounted on a translation stage aligned along 

the optical axis to allow the tightness of focus in the BBO to be varied. Furthermore, 

because the orientation of the BBO crystal with respect to the experimental optical 

axis is critical for fulfilling the phase-matching requirements, the BBO crystal was 

mounted in a mirror mount providing rotational adjustment about the experimental 

optical axis as well as about a pair of axes perpendicular thereto. On the far side 

of the BBO crystal, a CVI plcx25.4/25.8 uv-grade plano-convex lens was employed 

to recollimate the upconverted fluorescence. In order to aid with overlapping the 

fluorescence and gate beams in the BBO crystal, a COHU high performance CCD 

camera was occasionally employed to image the back of the BBO crystal. 

Following the upconversion assembly, a pair of filters were commonly em

ployed to remove interfering light of which there were two primary sources. The 

first was remaining visible light, principally the laser fundamental used as a gating 

pulse; the visible was removed with a 3 mm thick UG11 filter. The second source 
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excite pulse 
sample wavelength width filters 

(nm) (ps) 

CdSe 590 .9 WG320, UGll 

CdS.2sSe.1s 590 1.1 WG305, UGll 

CdS.soSe.so 550 9.5 WG290, UGll 

Table 4.1: These are the standard experimental conditions used in the fluorescence 
upconversion experiments. The large pulse widths in the experiments on the x = .50 
sample were the result of not being able to find a saturable absorber at 550 nm that 
didn't cut down the power too greatly. 

of interfering radiation was second harmonic of the laser fundamental. Even though 

the BBO crystal was angle tuned to phase-match the sum frequency of the gate with 

the fluorescence and not the second harmonic of the gatjng pulse, the angle of ac

ceptance was sufficiently wide for the gating pulse, which was much more intense 

than the fluorescence, to add to itself. For the unalloyed CdSe, a 3 mm WG320 was 

standardly employed to remove the second harmonic. For the other samples, high 

pass filters with shorter wavelength cut-offs were used since both the sum frequency 

and second harmonic moved to shorter wavelengths. In general, for the CdS .25Se.75 

samples, a WG305 was used while for the CdS.50Se.50 samples a WG295 was used. 

Table 4.1 contains the details of the standard experimental conditions used in this 

work. 

The filtered signal was then focused by a Melles Griot 01-CMP-119 uv-

grade condenser onto the entrance slit of a monochromator. As with other focussing 
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optics in this assembly, translation along the optical axis allowed adjustment of the 

focus. The monochromator employed was the same .10 m ISA single pass grating 

monochromator mounted on the front of the housing of the Hammamatsu Rl564U 

MCP used in the TCSPC experiments. Due to the lower signal levels, however, .25 

mm slits were generally employed. These provided a resolution of approximately 4 

nm in the ultraviolet region of the spectrum under investigation. The output was 

also amplified with the same Hewlitt-Packard 8447D two-stage GHz pre-amplifier. 

' 
Although temporal information in fluorescence upconversion experiments 

is obtained from the stage position and not from the electronics, similar electronics 

to those employed for TCSPC can be usefully employed. In particular, because the 

upconverted signal is synchronized to the laser shot, time correlated detection can 

be used to eliminate dark counts not arriving in a narrow window, 20 ns for the elec-

tronics employed. In the present case, the dark count rate was generally less than 50 

counts per second, low enough to make such synchronization unnecessary. Neverthe

less, the Ortec Model 583 constant fraction discriminator was again employed. The 

SCA output of the discriminator was passed through a Fast/Slow Logic interface to 

produce larger pulses which were sent to the counter-timer chips of an IOtech Power 

488CT board mounted in a 486 personal computer. This board also conveniently 

contained an IEEE-488.2 interface, which was used to communicate with the Klinger 

CCLI stepper motor controller. 

In brief, the data collection program used a menu-driven interface to allow 

the user to input where the stage would begin, how many data points to collect, 

how many steps to take between points, and how long to collect data at each point. 

This latter point is crucial since the histogram will not accurately represent the 

fluorescence decay if each data point is not collected for the same amount of time. 

To ensure that no error arose from this effect, one of the counter-timer chips was 
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configured to output a single square wave pulse with a resolution of 1 ms or better, 

the duration being set by the user as the amount of time to collect each data point. 

This pulse was then used to gate the counter-timer chips configured to count the 

incoming data pulses. Since data were routinely collected for 1 to 5 seconds, the 

millisecond resolution of the square pulses was well below the other sources of noise 

in the data. 

As noted previously in Chapter 3, the instrument response. function of the 

fluorescence upconversion spectrometer is essentially just an autoc()rrelation of the 

laser pulse. To obtain the response, the dichroic beamsplitter was replaced by a 1 

mm glass flat so that the laser light scattered off of the crystal and the remaining 

laser light in the gating beam could be overlapped. The variable beamsplitter was 

then adjusted so that the intensity of these two beams was roughly the same at the 

nonlinear crystal. The crystal was angle tuned to the second harmonic and the stage 

was scanned. As discussed in the previous chapter, there is a background of roughly 

half the intensity of the peak intensity of the autocorrelation trace. Nevertheless, the 

autocorrelation is quite clear on top of a strong background, provided that noise is 

sufficiently small. An example with the background subtracted is provided in Figure 

4.3. The peak of the autocorrelation trace also marks the time zero point of the 

system, though minor correction must be made for the difference in the optical path 

lengths through the dichroic and the glass flat. 

4. 5 Numerical Fitting 

As already noted in the previous chapter, the instrument response function 

must often be deconvolved from the data. When this is the case, the deconvolution 

is generally achieved by using the convolution theorem, which states that the Fourier 
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Figure 4.3: Shown above as the data points is a sample of the instrument function 
taken with the fluorescence upconversion setup described in the text. The solid line 
is a Lorentzian curve fit to the data using a Levenberg-Marquardt fitting algorithm. 
This autocorrelation has a FWHM of 1.3 ps. 
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transform of a convolution of a function f(t) and a response r(t) is equal to the 

product of the individual Fourier transforms of the functions. In other words, if 

S(f), F(f), and R(f) are the Fourier transforms of s(t), f(t), and r(t) respectively, 

where s( r) = f(t) * r(t) is the convolution of f(t) and r(t), then S(f) = F(f)R(f). 

Given r(t) and s(t), one can then obtain f(t) from F(f) = S(f)/ R(J). 

Because the data are discrete points, discrete Fourier transforms must be 

employed. One can consider N linearly sampled data points given by hk = h(tk) and 

tk = kf:::l., where k = 0, 1, 2, ... , N -1 and tk is the time of the kth data point. Here f:::l. 

is the samPling interval. Clearly, with only N values to be analyzed, at most N inde

pendent values can be produced. ·One therefore seeks estimates of the Fourier trans

form for the discrete frequencies given by fn = n / N !:::l., where n = - N /2, ... , N /2 

and N is assumed even for simplicity. These can be obtained according to 

The final summation in Eq. 4.1, 

N-1 

Hn = L hke21rikn/N ' 
k=O 

is called the discrete Fourier transform of the N points hk. 

(4.1) 

(4.2) 

By a similar analysis, one can show that the discrete inverse Fourier trans-

form is given by 
1 N-1 

h __ "" H -21riknjN 
k- N L.,; ne · 

n=O 
( 4.3) 

The only differences between Eqs. 4.2 and 4.3 besides the swapping of positions 

of Hn and hk are the changing of the sign in the exponential and the division of 

the summation by N. Thus, the same routine that calculates the discrete Fourier 
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transform can also be used with minimal modification to calculate the inverse as 

well. In the present work, these calculations were carried out using a fast Fourier 

transform (FFT) alogrithm based on one originally written by N. Brenner of Lincoln 

Laboratories [94]. 

If Sn, <I>n, and Rn are now taken as the discrete Fourier transforms of s(t), 

<I>(t), and r(t) respectively as calculated by the FFT algorithm, then <I>n = Sn/ Rn. 

By application of Eq. 4.3, one can then obtain 

( 4.4) 

Clearly this procedure will fail if Rn = 0 for some value n. Furthermore, the results 

of the deconvolution are particularly sensitive to any noise in s(t) as well as to the 

accuracy of r(t). For these reasons true numerical deconvolutions can often prove 

troublesome. 

When these difficulties arise, fitting can be achieved by employing a re

cursive routine instead. First, an initial set of parameters for the assumed decay 

function is chosen. Then the instrument response function is convolved with the de-

cay function using the FFT algorithm, and the results are compared to the measured 

data. The results from each such comparison are then used to guide the choice of 

the parameters of the decay function for the next iteration. This process is repeated 

until reasonable fits are obtained as determined by the minimization of the squared 

error. The full fitting program is provided in Appendix B. 

As indicated in the program, fitting was possible for a variety of decay 

functions including single and double exponential decays as well as the stretched 
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exponential decay. A stretched exponential decay is one of the form 

0</3<1. ( 4.5) 

In addition, the fitting program was able to fit exponential rises, which fitting proved 

useful for the upconversion data. 
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Chapter 5 

Results and Discussion 

5.1 Results 

5.1.1 Time Correlated Single Photon Counting 

As already indicated in the last chapter, TCSPC was used to measure the 

fluorescence decays of all five of the samples. For each sample the decays were 

measured for a variety of wavelengths about the fluorescence maximum. Figure 

5.1 shows the results for all five of the samples at their respective emission peaks. 

While the decays for the pure CdS and CdSe samples are barely above the instrument 

function (not shown), the decays for the alloys display much greater 1/e decay times. 

In fact the sample with x = .50, the most disordered sample, shows the longest decay. 

Furthermore, this sample appears to be slightly nonlinear on this logarithmic plot. 

Such nonlinearity could be the result of a decay function more complicated than a 

simple exponential decay. However, the complexity of the instrument function alone 

could be responsible for this minor curvature. 
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Figure 5.1: Shown above are the fluorescence decays of the five samples at their 
respective luminescence maxima. The decays correspond to x = 1 ( • ), x = . 75 ( o ), 
x =.50(*), x = .25 (x), and x = 0 (+). 
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The correlation of the longer 1/e times for the alloys compared to the un

alloyed CdS and CdSe samples is believed to be due to the presence of the localized 

states in the valence band as discussed in Chapter 2. Despite the fact that the holes 

would readily be thermally excited back into the extended states of the band, they 

nevertheless spend sufficient time in the localized states to show the longer 1/e times 

in the disordered systems, particularly in the x = .50 sample. With the 1/e times 

of the CdS and CdSe on the order of 100 ps, the primary form of relaxation must 

be nonradiative since the radiative lifetimes of these materials is approximately 3 ns 

[58, 95]. However, while the holes are in the localized states, they are not able to 

recombine with the electrons at the sites of nonradiative recombination. Thus, the 

1/e times are extended in the alloys with the increase corresponding roughly to the 

increase in disorder. 

This trend is also useful in understanding the results from the graded semi

conductor alloys mentioned in Chapter 1 [16]. The turnaround in that data occurred 

for x = .50 just as the increase in 1/e times in the present data turns around for 

x = .50. In particular, for the CdSe/S samples in which sulfur was diffused into 

the bulk CdSe to form the gradient, the trend in 1/e times can be explained by the 

present data. As the carriers diffuse into the bulk material, they pass through the 

region of greatest disorder in which the greatest number of localized states exist. 

The holes then spend more time in such states as compared to other regions of the 

gradient. While in such states, however, the holes cannot reach the sites of nonradi

ative recombinatio:q. which dominate the dynamics. The observed decay is therefore 

lengthened. Beyond this region the number of localized decreases and the decay 

rate speeds back up. The trend in the CdS/Se samples, on the other hand, is still 

unilluminated by these results. The explanation of the combination of the reversed 

band-gap gradient and the self-absorption and re-emission of emitted photons near 
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the surface [16] is perhaps sufficient to overcome any opposite trends resulting from 

disorder. 

The results for the x = .50 sample at the wavelengths 590, 600, 610, 620, 

630, and 640 nm are shown in Figure 5.2. Although there appears to be some 

difference in the decay curves at different wavelengths, the difference is on the order 

of the noise in the signals. Furthermore, the differences if any are small compared to 

the instrument function. The hump around 700 ps is an artifact of the instrument 

function. A similar structure can be observed in Figure 4.2 as well as in the CdSe 

data of Figure 5.1. These results are typical of all the samples studied. Using 

TCSPC, variation as a function of emission wavelength within a given sample could 

not be clearly observed. 

In order to obtain more quantitative information from these decays and 

determine whether or not the apparent curvature is the result of the instrument 

function or the underlying decay function, the instr~ment function had to be de

convolved from the measured decay in order to fit the fluorescence decay function. 

Attempts at directly deconvolving the data proved futile due to the complex nature 

of the instrument response function, an example of which was shown in Figure 4.2. 

Thus, the recursive method of fitting had to be employed as described in Section 

4.5. Using this method, the unalloyed CdS and CdSe samples both displayed single 

exponential decays with lifetimes of approximately 30 ps, a value on the extreme 

edge of our resolution. On the other hand, the alloys could not be satisfactorily fit 

to a single exponential decay. They all showed stretched tails in the decay which 

required fitting to a stretched exponential decay (Eq. 4.5). The results of these fits 

are displayed in Table 5.1. 
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Figure 5.2: Shown above are the fluorescence decays of CdS.5oSe.so at the wavelengths 
590, 600, 610, 620, 630, and 640 nm. 
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.. 
sample CdS CdS.1sSe.2s CdS .soSe.so CdS.2sSe.1s CdSe 

7 (ps) "-' 30 "-' 30 "-' 30 "' 30 "'30 

{3 1.0 .65 .45 .55 1.0 

Table 5.1: Shown above are the results of the fits for the data presented in Figure 
5.1 for the parameters 7 and {3. 

5.1.2 Fluorescence Upconversion 

As already indicated, upconversion was used to measure the fluorescence 

decays of the samples with x = 0.0, .25, and .50. As in the TCSPC experiments, 

decays were measured for a variety of wavelengths for each sample in hopes of ob

serving a trend in the decays as a function of wavelength. As can be seen from 

samples of the data in Figures 5.3, 5.4, and 5.5, there is little variation in the decay 

within a given sample as a function· of wavelength. The initial edge of the fluores-

cence, however, rises on a timescale of the same order as the instrument function; 

thus, deconvolution is necessary to examine the rising edge quantitatively. 

As discussed in Chapter 3, the autocorrelation of the laser pulse may be 

taken as the instrument response function ·of the fluorescence upconversion spec-

trometer. A sample instrument response has already been shown in Figure 4.3. 

Deconvolution was then carried out using the mathematical routines described in 

Section 4.5. Noise in the measured autocorrelation traces of the laser pulse made fit-

ting problematic as the deconvolution would often produce nonsense. Thus, a similar 

recursive routine of forward convolution followed by fitting was employed. To reduce 
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Figure 5.3: Shown above are a series of fluorescence decays of unalloyed CdSe. The 
decays were measured at wavelengths of 316, 318, and 320 nm. 
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Figure 5.4: Shown above are a series of fluorescence decays of CdS.25Se.75 . The 
decays were measured at wavelengths of 305, 307, and 309 nm. 
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Figure 5.5: Shown above are a series of fluorescence decays of CdS.5oSe.so· The 
decays were measured at wavelengths of 287, 289, and 291 nm. 
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sample wavelength ( nm) T (ps) (3 

316 385 1.0 
CdSe 318 444 1.0 

320 434 1.0 
305 143 .67 

CdS.25Se.15 307 182 .67 
309 160 .70 

287 400 .'66 

CdS .5oSe.5o 289 433 .59 
291 404 .59 

Table 5.2: Shown above are the results of the fits for data presented in Figures 5.3, 
5.4, and 5.5 for the parameters T and (3 at the indicated wavelengths. 

noise in the convolved fit, the autocorrelation trace was first fit to an analytic func-

tion using a Levenberg-Marquardt algorithm [96, 97). In general the autocorrelation 

trace was best fit by a Lorentzian, and this shape was used extensively in the fitting. 

Other functions used to try to fit the autocorrelation trace were the gaussian and the 

sech2. The result of this fit was then used as the response function in the convolution 

with the assumed decay function to produce the convolved fit for comparison to the 

data. 

Using this method of fitting, the data were fit to single exponential, hi

exponential, and stretched exponential decays both with and without exponential 

rises. While the unalloyed CdSe sample could be adequately fit with a single expo

nential decay, the alloys could not. Furthermore, the stretched exponential function 

fit better than the biexponential despite the fact that it contained one less fitting 

parameter. The results of the fits to a stretched exponential decay are presented in 

Table 5.2. Interestingly, the lifetime for the unalloyed CdSe and the x = .50 alloy 
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were both very similar while that for the x = .25 alloy was less than half of that 

value. The reason for these results is unclear; however, as will be discussed in the 

next section, the value of the lifetime in the samples fit with a stretched exponential 

decay is related to the statistical distribution of the localized states in a very com

plicated manner. Thus, the near equivalence of the values for CdSe and the alloy 

with x = .50 is probably just a coincidence. Nevertheless, the observed lifetime for 

the unalloyed CdSe is in good agreement with previously reported values [58, 98]. 

In addition, in order to get good fits to the rising edge of the decays, an 

exponential rise with a rise time of 1 to 2 ps was required, although the exact 

value was indeterminant due to the resolution. An example of the rising edge of the 

fluorescence of a sample of CdSe is given in Figure 5.6 along with fits both including 

and excluding an exponential rise. For the known pulse width, even if there is some 

error in the value of t 0 , 1the position of zero time, the curve calculated assuming no 

exponential rise still rises far too rapidly to match the rising edge of the measured 

signal. This can be explained as being due to the amount of time required for the 

initially excited carriers to relax back to their respective band edges. The measured 

values of 1 to 2 ps for this intraband relaxation is in good agreement with that 

measured in other direct band-gap semiconductors [99-105]. 

5. 2 Discussion 

Although the stretched exponential decay given by Eq. ( 4.5) may seem a 

rather odd choice at first, it has been empirically observed in quite a wide variety 

of relaxations in complex condensed media. As far back as 1847, Rudolf Kohlrausch 

introduced the stretched exponential to describe the loss of charge from Leyden jars 

[106]. Later his son Frederick Kohlrausch used the same function in empirical fits 
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-5 0 5 10 

time (ps) 

Figure 5.6: Shown above are the rising edge of the fiuoresecence emitted by a sample 
of CdSe ( o) as fit with an expression containing an exponential rise (-) verses the 
same expression without such a rise ( * ). 
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of his data on mechanical creep in silk, glass, and rubber [107]. As a result of these 

seminal uses of the stretched exponential in describing relaxations, the stretched 

exponential decay (Eq. 4.5) has also been referred to as the Kohlrausch law in the 

literature. The stretched exponential was reintroduced in 1970 by Williams and 

Watts to describe dielectric relaxation in polymers [108]. Since that time it has been 

found to occur in an increasing number of cases [109-111] including the relaxation 

of remnant magnetization in spin glasses [112], spin relaxation in spin glass alloys 

[113], electronic structure relaxation in amorphous h:ydrogenated silicon [114, 115], 

and luminescence decay in porous glasses [116]. 

With all of the many natural occurrences of this unusual decay law, the fact 

that several different physical mechanisms have been advanced to derive Eq. ( 4.5) 

should come as no surprise. These include the Forster direct transfer model of many 

parallel decay channels [117, 118], the hierarchically constrained dynamics model of 

sequential relaxation [119, 120], and the defect diffusion model [121-123], which has 

been shown to contain parallel decay channels each of which is inherently sequential 

[124]. Despite the fundamental physical differences of all of these models, they have 

been shown to share a common mathematical basis in the form of scale-invariant 

relaxation rates [125]. 

In the present case, the stretched exponential can best be described in 

terms of a parallel decay channel model analagous to the Forster direct transfer 

model. This model begins with an initially excited donor molecule whose position 

defines the origin. For decay via direct energy transfer to a defect at site R; on some 

given structure, the probability that the donor is still excited at time t is given by 

the decay function <I>;(t) according to 

<f>i(t) = e-tW(R;) ' (5.1) 
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where W(Ri) is the relaxation rate that depends on the particular donor defect. For 

a fixed configuration of defects at a collection of sites Ri (excluding the origin where 

the initially prepared donor is), the net configuration dependent relaxation can be 

described by 

,1;. _ II e-tW(R;) 
'*'R;- . (5.2) 

~ 

If one then assumes that the probability for a defect at site R is given by p, averaging 

over the possible configurations gives [117, 118] 

~(t) = n: (1 _ p + pe-tW(Ri)) (5.3) 
t 

If p « 1, Eq. 5.3 can be approximated by 

~(t) ~ exp [ -p 2t (1- e-tW(Ri))] (5.4) 

If one then introduces a site density function given by 

p(R) = :L o(R- Ri) , (5.5) 

the summation in Eq. 5.4 can be transformed into an integral, which transformation 

yields 

~i(t) = exp [ -p j p(R) ( 1- e-tW(Ri)) dR] (5.6) 

Now in the case of Forster transfer, the interaction is taken to be isotropic with a 

rate W(R) that varies with position according to 

W(R) = aR-s , (5.7) 
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where s ~ 6 Taking the underlying structure to be regular, the density p(R) will be 

constant. One then obtains 

q,(t) = exp [( -tfr)~] (5.8) 

and 

/3= dfs , (5.9) 

where r is a constant with units of time and d is the dimensionality. Equation 5.8 is 

of course just a stretched exponential of the form of Eq. 4.5. 

The primary differences between the present case and that described by 

the Forster model begin with the fact that while the lifetimes of the carriers have a 

distribution, that distribution is as a function of energy not of position. Jiang et. al. 

showed that for the states in the tail, the lifetime r( E) varies with the energy E below 

the mobility edge according to [126] 

(5.10) 

Furthermore, the energy is distributed one dimensionally. Thus, since the lifetime is 

related to the rate of relaxation according to r( ci) = 1/W( Ei), one can take s = 2 

and d = 1. Then by Eq. 5.8, the decay should appear as a stretched exponential with 

an exponent of f3 = .5. Despite some weaknesses with this analogy, this is indeed 

what has been observed in the present research. 

One of the most important oversights in the above explanation is in the 

total neglect of nonradiative mechanisms of relaxation. Since the relaxation rates in 

the pure CdSe were around 400 ps, the radiative transition is certainly not dominant 

in that case, as CdSe should have a radiative lifetime of approximately 3 ns as noted 
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in the previous section (58, 95). However, nonradiative transitions cannot account 

for the stretched exponential form of the decays in the alloys. A more accurate 

picture of the decays should therefore include both an account of the nonradiative 

transitions and the stretched decay via the radiative channels. 

That the decays must involve a combination of these two pathways is amply 

demonstrated by the different decay times in the TCSPC and the upconversion de

cays of the unalloyed CdSe. While the decays measured in the two experiments were 

always single exponential, the lifetimes fit to the deconvolved data were markedly 

different. The TCSPC data was fit by a lifetime of approximately 30 ps while the 

upconversion data was fit by a lifetime of over 400 ps. The reason for this differ

ence lies in the different excitation wavelengths used in the two experiments. In the 

TCSPC experiments, the sample was excited with ultraviolet light at 315 nm; in the 

upconversion experiments, on the other hand, the sample was excited with visible 

light at 590 nm. The result of this difference is that in the former case the light will 

only penetrate on the order of .1 f.lm as a result of extinction coefficients of about 

5 x 105 cm-1 [127, 128]. The visible light, however, will penetrate much more deeply, 

. since the extinction coefficient at that wavelength is an order of magnitude lower; for 

CdSe the value at 590 nm is 8 x 104 cm-1 • Similar results can be observed in the 

alloys where, for example, the value at 590 nm is 6 x 104 cm-1 for CdS_25Se.75 [128]. 

Because the surface contains many sites of nonradiative recombination, the carriers 

excited deeper in the bulk will have a decreased likenhood of scattering into these 

sites. In this case the localized states will play a greater role in the relaxation than 

in the case of excitation nearer the surface. 

Understanding the trends in the decay constants Tin relation to the lifetimes 

for the unalloyed samples is not so clear, however. As already noted, the exact 

relation between the observed constants and the physical parameters of the alloys 
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is quite complex. That the values as measured via TCSPC are all about the same 

is undoubtedly due to that fact that the nonradiative mechanisms of relaxation are 

stongly dominant in those experiments. In the upconversion experiments where this 

dominance is not as strong, there is a clear difference in the decay constants of the 

two alloys. Unfortunately, the exact reason for this difference is still unclear. 

In comparison to the constant r, the values of /3, the stretch exponent in 

Eq. 4.5, are easier to understand. The values for CdSe and CdS were of course j3 = 1. 

CdSe and CdS displayed single exponential decays as expected. On the other hand, 

the alloys all displayed values of j3 that are less than one as indicated in Tables 5.1 

and 5.2. While these are not the value of .5 predicted by the simple model above, 

they are close considering the simplifying assumptions of that model. In addition, 

the value is closest for the sample with x = .5, the most disordered sample. Finally, 

in the TCSPC data, the value of j3 for the x = .25 alloy is a little closer to .5 than 

that for the x = . 75 alloy. This assymetry in the values of j3 implies that the disorder 

is not truly greatest for x = .50 but rather for a value of x slightly less than .5. This 

assymetry is in agreement with calculations of the disorder reported elsewhere [47]. 
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Chapter 6 

Summary 

In conclusion, fluorescence decays were measured for the series of substitu

tional semiconductor alloys CdSxSe1_x· These decays were measured by both time 

correlated single photon counting and fluorescence upconversion. The latter tech

nique had a resolution that was two orders of magnitude better than the former 

and had a smoother instrument response function. Deconvolution of the data was 

thereby facilitated. Unfortunately, the lower sensitivity of the method of upconver

sion made obtaining data for the samples with x > .5 impossible by that method 

with the current setup. The method of TCSPC, though suffering from reduced res

olution, did have sufficient sensitivity to obtain data for samples spanning the entire 

compositional range from x = 1 to x = 0. 

The alloys in both sets of data displayed a stretched exponential decay form 

as given in Eq. 4.5 with exponents in the general range .5-.7, while the unalloyed 

CdS and CdSe samples displayed a single exponential decay form. In the upcon

version data, a 1-2 ps rise time could also be observed as evidence of the intraband 

relaxation in all the samples. Although the TCSPC data also displayed the stretched 
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exponential decay form, the decays exhibited very fast decay constants, approxim

ately 30 ps, due to a strong domination of nonradiative recombination via surface 

traps which resulted from near surface excitation by ultraviolet light. Furthermore, 

in addition to the reduced temporal resolution, the instrument function in TCSPC 

displayed electronic structure that made deconvolution and fitting difficult. Finally, 

in neither of the techniques was a clear variation in the decay observed as a function 

of emission wavelength, nor was there any variation in the rise times as a function 

of wavelength in the decays measured by upconversion. 

The observed stretched exponential decay of the fluorescence can be under

stood as resulting from the existence of localized excitons which exist as localized 

holes and Coulombically bound electrons. These states can be explained in terms 

of Anderson localization theory as resulting from potential wells created by local 

compositional fluctuations and give rise to a tailing of the density of states into 

the band gap. Theory predicts that this tailing varies with the energy E below the 

virtual crystal band edge energy according to exp [- ( Ej E0 )312], where E0 is a charac

teristic energy of approximately 4 meV. Despite the fact that such a small value of 

E0 implies that the holes must have spent but a small fraction of their time in any 

given localized state before being thermally excited back into the extended states, 

the stretched exponential was observed at room temperature. Furthermore, because 

these states have radiative lifetimes that are energy dependent, electron-hole pairs 

have many parallel channels of radiative recombination available. This is the source 

of the stretched exponential decay. Obtaining a more thorough understanding of the 

decays, however, requires also taking into account the nonradiative mechanisms of 

decay, particularly in the TCSPC data. 

These results can be used to explain the trend observed in the CdSe/S 

graded samples studied by Hane and co-workers. As the carriers diffuse down the 
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combined band gap and concentration gradients, they pass through the x = .50 

region where the greatest number of localized states. exist. In this region the holes 

therefore spend the greatest proportion of their time in such states as compared to 

other regions. While in such states, the holes cannot recombine with the electrons 

as readily. As they move beyond this region, however, the number of localized states 

again decreases and recombination is enhanced. 
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Appendix A 

( 

Data Collection Program 

A.l 
. 

sma1n.c 

I* Compilation of smain requires the following files: 
smain. c, sdata. c, snice. c, splot. c, ssave. c, slook. c, sconst. c, and 
ieeeio.c. The header files in the local directory are sgadd.h and 
ieeeio.h. 

This file contains the following subroutines: 
main(), readfile(), setupfile(), stage_start(), p_scan(), 
stage_fin(), s_step(), interval(), choose_stage(), set_motor(), 
dur_set(), read_comment(), display(), storefile(), and bound(). 
*I 

#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 
#include <math.h> 
#include <graph.h> 
#include <malloc.h> 
#include <process.h> 
#include <conio.h> 
#include "sgadd.h" 

I* The following variables are system dependent and are based 
on the graphics coordinate system defined in the Microsoft C 5.1 
graphics library. The variables rect_xmin, rect_ymin rect_xmax, 
and rect_ymax are dependent on the type of video board, although 
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the values in this program will work for EGA and VGA cards, 
although the VGA will be running in EGA mode. 
*I 

long int rect_xmin = 50, rect_ymin = 50, rect_xmax = 550, 
rect_ymax = 300; 

struct rccoord rcoord; 
struct videoconfig vc; 
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I* The variables channel_dis1 and channel_dis2 determine which 
of the three data variables are displayed. Currently only 
channel_dis1 is used. 
*I 
int channel_dis1 = 0, channel_dis2 = 0; 

I* 
define 
box. 
*I 

The variables channel_color1, channel_color2, and box_color 
the color of the two channels displayed and the color of the 

int channel_color1 = 12, channel_color2 = 13, box_color = 11; 

I* The variable points_scan describes the number of points 
the stage is going to scan; stage_step describes the number of 
stage/motor steps between these points. nm_per_point, the number of 
nanometers per point, is only used when taking spectra. 0 is an 
invalid value for points_scan while for stage_step the author~s 
birthday has been.used as an invalid value (assuming it to be an 
unusual value to choose), since the user may wish to move 0 stage 
steps per data point. The invalid value of nm_per_point is 0. 
*I 

int points_scan = 0, stage_step = -114, nm_per_point = 0; 

I* The character array dur holds the duration in milliseconds 
that data is to be collected for a given point. The invalid string 
is "0". 'maxdur is the maximum acceptable value for dur. 
*I 
char dur[S]; 
int maxdur = 10000; 

I* multi_count is the number of times that the stage should be 
scanned; reverse_flag is 1 if data is taken in only one direction of 
stage movement and 2 if data is to be taken in both directions. 
*I 

int multi_count = 1, reverse_flag; 
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I* When using the stage, stage_beg stores where the stage 
should begin taking data; when taking spectra, stage_beg is the 
initial wavelength in nanometers of the monochromator. Note that 
this variable is a long integer to allow for values that can be 
greater than 65000. The invalid data value is -11467. When taking 
spectra, stage_end is the final wavelength in nanometers; when using 
the stage, it is the ending stage position. The invalid value is 
-114. steps_per_nm is a conversion factor for converting motor 
steps to nanometers; the invalid value is 0. initpos is the initial 
position of the monochromator in nanometers. Its invalid value is 
0. 
*I 

long int stage_beg = -11467; 
int stage_end = -114, steps_per_nm = 0, initpos = 0; 

I* minwave and maxwave indicate the bounds for stage_beg and 
stage_end when taking spectra. These bounds protect the 
monochromator from being turned too far in either direction. 
*I 

int maxwave = 875, minwave = 250; 

I* These three character arrays store the file name, for 
example "steve"; the file number, for example "1"; and total file 
name respectively. Using the above as an example gives data_file 
-- "steve.!". The data is stored this way to allow multiple scans 
to be easily stored in succession. · 
*I 

char file_name[20], file_num[3], data_file[25]; 

I* The array comment stores the user's comment for a particular 
data file. It can store up to 498 characters and ends with the 
character u-u to indicate the user has finished the comment. stage 
contains the character string for the stage to be used, namely 
"short" or "long", though currently only the former is used. 
"steve" is the invalid string. 
*I 

char comment[500], stage[10]; 

I* *data is an array of pointers to arrays where the data are 
stored. The arrays are dynamically allocated in the program. The 
number of arrays is 4 due to the fact that at a later point in time 
someone may want to use the other channels to collect a reference, 
to collect the actual laser power as a function of time, and/or to 
normalize the data. 
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double *data[4]; 

I* tcolor and ecolor are the color of normal text strings and 
error text strings used in the program. 
*I 

int tcolor=7, ecolor=4; 

I* buffer is exactly that, a general-purpose short-term 
character buffer. 
*I 

char buffer[50]; 

I* main() initializes several 
before printing out the main menu. 
determines a course of action. 
*I 

int main() 
{ 
char 
int 
char 

inputs [3]; 
n, is_set = 0, i, 
*input; 

input = inputs; 
comment[O] = ~-~; 

j' k; 

comment [1] = ~\0 ~; 

strcpy(stage, 11 short 11
); 

strcpy(dur, 11 1000 11
); 

data_file[O] = ~o~; 
data_file[1] = ~\o~; 
strcpy(file_name, 11default"); 

_setvideomode(_DEFAULTMODE); 
do{ 

_settextcolor(tcolor); 
_settextposition(9, 25); 
record= _gettextposition(); 

strings and sets the video mode 
It then reads the input and 
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I* Output the main menu and get input, calling the appropriate 
function for the given input. 
*I 

for (n=1; n<10; n++){ 
_outtext(main_string(n)); 
rcoord.row++; 
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_settextposition(rcoord.row, rcoord.col); 
} 

input= gets(inputs); 
n = atoi(inputs); 

_clearscreen(_GCLEARSCREEN); 
if (n == 1 I I n == 2) 

readfile(n); 
else if (n == 3 I I n == 4) 

setupfile(n- 2); 
else if (n == 5 I I n == 6){ 

is_set = 0; 
_settextposition(10, 25); 
rcoord = _gettextposition(); 
_settextcolor(ecolor); 

I* Check for valid data parameters before allowing data 
to be taken. 
*I 

if ( (stage_step == -114 II stage_ beg == -114671 II 
points_ scan == 0 II (strcmp(stage, "short") ! = 0 && 
strcmp(stage,"long") != 0)) && n == 5){ 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
is_set = 1; 
_outtext(error_string(1)); 
} 

if ((stage_ beg == -11467 II stage_ end == -114 II 
nm_per_point == 0) && n == 6){ 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
is_set = 1; 
_outtext(error_string(2)); 
} 

if ((atoi(dur)) <= 0){ 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
is_set = 1; 
_outtext(error_string(3)); 
} 

I* At this point, if all the parameters are found to be 
valid, the data collection can begin; otherwise, the user 
must acknowledge the error strings printed above by hitting 
any key. Note that before moving on to the menu for taking 
data, memory is allocated for the data by first calling 
p_scan(O) or stage_fin(O) for stage/motor data. 
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if (is_set == 0){ 
_settextcolor(tcolor); 
if (n == 5) 

p_scan(O); 
else if (n == 6) 

stage_fin(O); 
take_data_menu(n- 4); 
} 

else if (is_set == 1){ 

} 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(odd_string(1)); 

while (i == 0) 
i = kbhitO; 

i = getche(); 
_clearscreen(_GCLEARSCREEN); 
} 

else if (n == 7 I I n == 8){ 
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J* The space allocated for data is freed here so that 
other data files can be looked at that may or may not have 
different data lengths. 
*I 

for (i=O; i<4; i++) 
if(data[i] != NULL) 

free (data[i]); 

look_data(n- 6); 

I* If points_scan is defined, the space is 
reallocated. 
*I 

if (points_scan != 0){ 
for (i=O; i<4; i++){ 

data [i] =(double * )malloc (points_scan*sizeof (double)); 
if (data[i] == NULL){ 

for (j=O; j<i; j++) 
free(data[j]); 

points_scan = 0; 
_settextposition(10, 15); 
record= _gettextposition(); 
sprintf(buffer,"%s%i", error_string(11), i); 
_outtext(buffer); 
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rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(odd_string(1)); 

} 
} 

} 

while (k == 0) 
k = kbhit(); 

k = getche(); 
_clearscreen(_GCLEARSCREEN); 
} 

else if (n == 9){ , 
for (i=O; i<4; i++) 

if (data[i] !=NULL) 
free(data[i]); 

_clearscreen(_GCLEARSCREEN); 
exit(O); 
} 

else if (n < 1 I I n > 9){ 
_settextposition(7, 15); 
_settextcolor(ecolor); 
_outtext(error_string(5)); 
_settextcolor(tcolor); 
} 

} while (n != 9); 
exit(-1); 
} 

• 

I* readfile() reads in a file that contains a set of parameters 
for data collection. The type of setup file is determined by the 
value of m, which is 1 for stage setup files and 2 for spectrum 
files. 
*I 

void readfile(int m) 
{ 
FILE *stream; 
char inputs[10], inputs2[2], test[4]; 
char *input, *input2, *d; 
int i, ch, dr; 

I* First a file name is obtained and checked to determine 
whether or not it exists. If not the user may try again or quit. 
*I 

.. 
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do{ 
do{ 

_settextposition(10, 20); 
rcoord = _gettextposition(); 
_settextcolor(tcolor); 
_outtext(prompt_string(1)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
input = gets(inputs); 

if ((stream= fopen(input, "rb")) -- NULL){ 
rcoord.row++; 
_settextcolor(ecolor); 
_settextposition(rcoord.row, rcoord.col); 
_outtext(prompt_string(4)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(prompt_string(5)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext( prompt_string(7)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col);. 
input2 = gets(inputs2); 
if (inputs2[0] != 'y' && inputs2[0] != 'Y'){ 

_settextcolor(tcolor); 
_clearscreen(_GCLEARSCREEN); 
return; 
} 

} 

Ill 

} while ((inputs2[0] -- 'Y' I I inputs2[0] == 'y') && 
stream== NULL); 

I* Then the file is checked to ensure that it is of the 
appropriate type. Setup files for data collection with the stage 
begin with the three characters's', 'e', and 'g'; setup files 
for spectra begin with's', 'p', and 'c'. If the file is of the 
wrong type, the user can try again or quit; if it is of the correct 
type, the values are read into the appropriate parameters. 
*I 

if (stream != NULL){ 
for (i=O; i!=3; i++){ 

ch = fgetc(stream); 
test[i] = (char)ch; 
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} 
test [i] = "\0 .... ; 

if (strcmp(test, "seg") != 0 && m == 1){ 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_settextcolor(ecolor); 
_outtext(error_string(4)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(prompt_string(S)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(prompt_string(7)); 

rcoord.row++; 
, _settextposition(rcoord.row, rcoord.col); 

input2 = gets(inputs2); 
if (inputs2[0] != "y" && inputs2[0] != "Y"){ 

_settextcolor(tcolor); 
_clearscreen(_GCLEARSCREEN); 
return; 
} 

} 
else if (strcmp(test, "spc") != 0 && m == 2){ 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_settextcolor(ecolor); 
_outtext(error_string(7)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(prompt_string(S)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(prompt_string(7)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
input2 = gets(inputs2); 
if (inputs2[0] != "y" && inputs2[0] != "Y"){ 

_settextcolor(tcolor); 
_clearscreen(_GCLEARSCREEN); 
return; 
} 

} 
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else{ 

} 

if (m == 1) 
fscanf(stream, 11 %i %i 11

, &points_scan, &stage_step); 
else if (m == 2) 

fscanf (stream, 11 %i %i 11
-, &nm_per _point, &stage_ end); 

fscanf(stream, 11 %i %li 11
, &dr, &stage_beg); 

d = itoa(dr, dur, 10); 

if (m == 1) 
stage_end=(int)(stage_beg+(points_scan-1)*stage_step); 

else if (m == 2) 
points_scan=(stage_end-(int)stage_beg)lnm_per_point+1; 

for (i = 0; (i < 498) && (ch=fgetc(stream)) != ~-~; i++) 
comment[i] = (char)ch; 

comment[i] = (char)ch; 
i++; 
ch = fgetc(stream); 
comment[i] = (char)ch; 

if (m == 1) 
fscanf (stream, 11 %s 11

, stage); 
else if (m == 2) 

fscanf(stream, 11 %i 11
, &steps_per_nm); 

fclose(stream); 
} 

} while (strcmp(test, 11 seg 11
) != 0 && strcmp(test, 11 spc 11

) != 0); 
_clearscreen(_GCLEARSCREEN); 
return; 
} 

I* setupfile() allows the user to set the values of parameters 
to be used in taking data. The values can also be saved in a set-up 
file. Whether a stage setup or a spectrum setup is being created is 
determined by the value of m, which is 1 or 2 respectively. 
*I 

void setupfile(int m) 
{ 
char *input; 
char inputs [3]; 
int is_set, n, i· 

' 
I* A menu of options is printed from which the user provides a 
choice. This continues until the user provides the choice to return 
to the main menu. Options for setting parameter values are 
accompanied on the right by their values if those values are valid. 
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_settextcolor(tcolor); 
_settextposition(8, 15); 
rcoord = _gettextposition(); 
_settextposition(rcoord.row, rcoord.col); 
if (m == 1) 

_outtext(setup_string(1)); 
else if (m == 2) 

_outtext(specset_string(1)); 

if (stage_ beg ! = -11467) { 
rcoord.col = rcoord.col + 40; 
_settextposition(rcoord.row, rcoord.col); 
sprintf(buffer, "%li", stage_beg); 
_settextcolor(ecolor); 
_outtext(buffer); 
_settextcolor(tcolor); 
rcoord.col = rcoord.col- 40; 
} 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
if (m == 1) 

· _outtext (setup_string(2)); 
else if (m == 2) 

_outtext(specset_string(2)); 

if (points_scan != 0 && m == 1 I I stage_end != -114 && m -- 2){ 
rcoord.col = rcoord.col + 40; 
_settextposition(rcoord.row, rcoord.col); 
if (m == 1) 

sprintf(buffer, "%i", points_scan); 
else if (m == 2) 

sprintf(buffer, "%i", stage_end); 
_settextcolor(ecolor); 
_outtext (buffer); 
_settextcolor(tcolor); 
rcoord.col = rcoord.col - 40; 
} 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
if (m == 1) 

_outtext(setup_string(3)); 
else if (m == 2) 

_outtext(specset_string(3)); 
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if (stage_step != -114 && m == 1 I I nm_per_point != 0 && m -- 2){ 
rcoord.col = rcoord.col + 40; 
_settextposition(rcoord.row, rcoord.col); 
if (m == 1) 

sprintf (buffer, "%i", stage_step); 
else if (m == 2) 

sprintf(buffer, "%i", nm_per_point); 
_settextcolor(ecolor); 
_outtext(buffer); 
_settextcolor(tcolor); 
rcoord.col = rcoord.col - 40; 
} 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
if (m == 1) 

_outtext(setup_string(4)); 
else if (ni == 2) 

_outtext(specset_string(4)); 

if((strcmp(stage,"short") == 0 II strcmp(stage,"long") == 0 ) 
&& m == 1 I I steps_per_nm != 0 && m == 2){ 

rcoord.col = rcoord.col + 40; 
_settextposition(rcoord.row, rcoord.col); 
if (m == 1) 

sprintf(buffer, stage); 
else if (m == 2) 

sprintf(buffer, "%i", steps_per_nm); 
_settextcolor(ecolor); 
_outtext(buffer); 
_settextcolor(tcolor); 
rcoord.col = rcoord.col - 40; 
} 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(setup_string(5)); 

if (atoi(dur) != 0){ 
rcoord.col = rcoord.col + 40; 
_settextposition(rcoord.row, rcoord.col); 
_settextcolor(ecolor); 
_outtext(dur); 
_settextcolor(tcolor); 
rcoord.col = rcoord.col - 40; 
} 

for (i=6; i<10; i++){ 
rcoord.row++; 
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_settextposition(rcoord.row, rcoord.col); 
_outtext(setup_string(i)); 
} 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
input= gets(inputs); 
n = atoi(inputs); 

_clearscreen(_GCLEARSCREEN); 
if (n < 1 I I n > 9){ 

_settextcolor(ecolor); 
_settextposition(5, 15); 
rcoord = _gettextposition(); 
_settextposition(rcoord.row, rcoord.col); 
_outtext(error_string(5)); 
} 

else if (n == 1) 
stage_ start (m); 

else if (n == 2 && m -- 1) 
p_scan(1); 

else if (n == 2 && m == 2) 
stage_fin(1); 

else if (n == 3 && m -- 1) 
s_step(); 

else if (n == 3 && m -- 2) 
interval(); 

else if (n == 4 && m -- 1) 
choose_ stage() ; 

else if (n == 4 && m -- 2) 
set_motor(); 

else if (n == 5) 
dur_set(); 

else if (n == 6) 
read_ comment 0 ; 

else if (n == 7) 
display(m); 

else if (n == 8) 
storefile(m); 

} while (n != 9); 
_clearscreen(_GCLEARSCREEN); 
return; 
} 

I* stage_start() gets the value of stage_beg from the user and 
validates it. 
*I 
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void stage_start(int m) 
{ 
char numbers[10], *result; 
int again; 

do{ 
again = 0; 
_settextcolor(tcolor); 
_settextposition(10, 15); 
rcoord = _gettextposition(); 
if (m == 1) 

_outtext(stage_string(4)); 
else if (m == 2) 

_outtext(specset_string(5)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
result= gets(numbers); 
stage_beg = atol(numbers); 

if (stage_beg == 0 && strcmp(numbers, "0") != 0 II m == 2 && 
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(stage_beg>(long)maxwave I I stage_beg<(long) minwave)){ 
again = 1; 
_clearscreen(_GCLEARSCREEN); 
_settextcolor(ecolor); 
_settextposition(9, 15); 
_outtext(error_string(5)); 
} 

} while(again); 
_clearscreen(_GCLEARSCREEN); 
return; 
} 

I* p_scan() gets the value of points_scan from the user and 
validates it if n is 1; it calculates stage_end and allocates space 
for the points_scan data points if n is 0. Note that this is only 
called for taking data with the stage. For spectra points_scan is 
strictly calculated from other parameters. 
*I 

void p_scan(int n) 
{ 
int i, j, k; 
char numbers[10]; 
char *result; 

for (i=O; i<4; i++) 
if(data[i] != NULL) 
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free (data[i]); 

I* If n == 0, stage_end is calculated and space is allocated 
for the data. Note that this option must not be called until valid 
values of points_scan, stage_step, and stage_beg have been set. 
*I 

if (n == O){ 
stage_end = (int)(stage_beg + (points_scan-1)*stage_step); 
for (i=O; i<4; i++){ 

data[i] =(double *)malloc(points_scan * sizeof(double)); 
if (data[i] == NULL){ 

for (j=O; j<i; j++) 
free(data[j]); 

points_scan = 0; 
_settextposition(10, 15); 
_settextcolor(ecolor); 
rcoord = _gettextposition(); 
sprintf(buffer,"%s%i", error_string(11), i); 
_outtext(buffer); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(odd_string(1)); 

while (k == 0) 
k = kbhitO; 

k = getche(); 
_settextcolor(tcolor); 
_clearscreen(_GCLEARSCREEN); 
return; 
} 

} 
_clearscreen(_GCLEARSCREEN); 
return; 
} 

I* If n != 0, the user is prompted for a value for points_scan, 
which is accepted only if it is positive. 
*I 

do{ 
_settextcolor(tcolor); 
_settextposition(10, 15); 
rcoord = _gettextposition(); 
_outtext(stage_string(1)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
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result= gets(numbers); 
points_scan = atoi(numbers); 

if (points_scan <= 0){ 
_clearscreen(_GCLEARSCREEN); 
_settextcolor(ecolor); 
_settextposition(9, 15); 
_outtext(error_string(5)); 
} 

} while (points_scan <= 0); 

_clearscreen(_GCLEARSCREEN); 
return; 
} 

I* stage_fin() gets the value of stage_end from the user and 
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validates it if n==1; it calculates points_scan and allocates space 
for the points_scan data points if n==O. Note that this is only 
called for taking data with the motor (i.e. spectra). For stage 
data points_scan is strictly calculated from other parameters. 
*I 

void stage_fin(int n) 
{ 
int i, j, k, temp; 
char riumbers[10]; 
char *result; 

for (i=O; i<4; i++) 
if(data[i] != NULL) 

free (data[i]); 

I* If n == 0, then points_scan is calculated and space is 
allocated for the data. This option must not be called until valid 
values for stage_end, stage_beg, and nm_per_point have all been set. 
*I 

if (n == 0){ 
if ((temp= (stage_end- (int)stage_beg) % nm_per_point) != 0) 

stage_end += nm_per_point - temp; 
points_scan = (stage_end - (int)stage_beg) I nm_per_point + 1; 

for (i=O; i<4; i++){ 
data[i] = (double *)malloc(points_scan * sizeof(double)); 
if (data[i] == NULL){ 

stage_end = -114; 
for (j=O; j<i; j++) 

free(data[j]); 
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_settextposition(10, 15); 
_settextcolor(ecolor); 
record= _gettextposition(); 
sprintf(buffer,"%s%i", error_string(11), i); 
_outtext(buffer); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(odd_string(1)); 

while (k == 0) 
k = kbhitO; 

k = getche(); 
_settextcolor(tcolor); 
_clearscreen(_GCLEARSCREEN); 
return; 
} 

} 
_clearscreen(_GCLEARSCREEN); 
return; 
} 

I* If n != 0, the user is prompted for a value for stage_end, 
which is only accepted if it falls within the bounds set by minwave 
and maxwave. 
*I 

do{ 
_settextcolor(tcolor); 
_settextposition(10, 15); 
record= _gettextposition(); 
_outtext(specset_string(6)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
result= gets(numbers); 
stage_end = atoi(numbers); 

if (stage_end < minwave I I stage_end > maxwave){ 
_clearscreen(_GCLEARSCREEN); 
_settextcolor(ecolor); 
_settextposition(9, 15); 
_outtext(error_string(5)); 
} 

} while (stage_end < minwave I I stage_end > maxwave); 

_clearscreen(_GCLEARSCREEN); 
return; 
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} 

I* s_step() gets the value of stage_step from the user and 
validates it. This is called only for stage set up. 
*I 

void s_step(void) 
{ 
char numbers[10]; 
char *result; 

do{ 
_settextcolor(tcolor); 
_settextposition(10, 15); 
rcoord = _gettextposition(); 
_outtext(stage_string(2)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
result= gets(numbers); 
stage_step = atoi(numbers); 

if (stage_ step == 0 && strcmp(numbers, "0") ! = 0 II 
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stage_step -- -114){ 
stage_step = -114; 
_clearscreen(_GCLEARSCREEN); 
_settextcolor(ecolor); 
_settextposition(9, 15); 
_outtext(error_string(5)); 
} 

} while (stage_step == -114); 
_clearscreen(_GCLEARSCREEN); 
return; 
} 

I* interval() gets the value of nm_per_point from the user and 
validates it; thus, it is only called during set up for spectra. 
*I 

void interval(void) 
{ 
char numbers[10]; 
char *result; 

do{ 
_settextcolor(tcolor); 
_settextposition(10, 15); 
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rcoord = _gettextposition(); 
_outtext(specset_string(7)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
result= gets(numbers); 
nm_per_point = atoi(numbers); 

if (nm_per_point <= 0){ 
_clearscreen(_GCLEARSCREEN); 
_settextcolor(ecolor); 
_settextposition(9, 15); 
_outtext(error_string(5)); 
} 

} while (nm_per_point <= 0); 
_clearscreen(_GCLEARSCREEN); 
return; 
} 

I* choose_stage() allows the user to choose between the short 
and long stages. However, at present only the short stage is a valid 
option. Obviously this is called only when setting parameters for 
stage data. 
*I 

void choose_stage(void) 
{ 
int i, ch; 
char *tmp; 
char inputs2[3]; 
char *input2; 

do{ 
_settextcolor(ecolor); 
_settextposition(10, 15); 
rcoord = _gettextposition(); 

strcpy (stage, 11 short 11
) ; 

_outtext("Currently the only choice for stage is short"); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(odd_string(1)); 

while (i = 0) 
i = kbhit(); 

i = getche(); 
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} while(strcmp(stage, 11 short 11
) '= 0 && 

strcmp(stage, 11 long11
) != O); 

return; 
} 

I* set_motor() gets the value of steps_per_nm (needed when 
taking spectra) from the user and validates it. 
*I 

void set_motor(void) 
{ 
char numbers[10]; 
char *result; 

do{ 
_settextcolor(tcolor); 
_settextposition(10, 15); 
rcoord = _gettextposition(); 
_outtext(specset_string(8)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
result= gets(numbers); 
steps_per_nm = atoi(numbers); 

if (steps_per_nm == 0){ 
_clearscreen(_GCLEARSCREEN); 
_settextcolor(ecolor); 
_settextposition(9, 15); 
_outtext(error_string(5)); 
} 

} while (steps_per_nm == 0); 
_clearscreen(_GCLEARSCREEN); 
return; 
} 

dur_set() gets the string dur from the user and validates it . 

void dur_set(void) 
{ 
int i, dr; 
char *result; 

do{ 
_settextcolor(tcolor); 
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_settextposition(10, 15); 
rcoord = _gettextposition(); 
_outtext(stage_string(3)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
result= gets(dur); 
dr = atoi(dur); 

if (dr < 0 I I dr > maxdur){ 
dr = 0; 
_clearscreen(_GCLEARSCREEN); 
_settextcolor(ecolor); 
_settextposition(9, 15); 
_outtext(error_string(5)); 
} 

} while (dr == 0); 
_clearscreen(_GCLEARSCREEN); 
return; 
} 

I* read_comment() gets a comment string from the user. Note 
that the user must indicate the end of the comment with a ,_, 
*I 

void read_comment(void) 
{ 
int i, ch; 

_settextcolor(tcolor); 
_settextposition(10, 15); 
rcoord = _gettextposition(); 
_settextposition(rcoord.row, rcoord.col); 
_outtext(stage_string(5)); 

rcoord.row++; 
_settextposition(rcoord.row, 0); 
for (i = 0; (i < 498) && (ch = getchar()) != i++) 

comment[i] = (char)ch; 
comment [i] = '- ' ; 
i++; 
ch = getchar(); 
comment [i] = '\n' ; 
i++; 
comment[i] = '\0'; 
_clearscreen(_GCLEARSCREEN); 
return; 
} 



A.l. SMA IN. C 

I* display() shows all of the validated parameters both input 
and calculated as well as the comment. 
*I 

void display(int m) 
{ 
int i = 0; 

_settextcolor(tcolor); 
_settextposition(7, 15); 
rcoord = _gettextposition(); 
if (m == 1) 

_outtext(set_string(1)); 
else if (m == 2) 

_outtext(set_string(4)); 

if (stage_beg != -11467){ 
rcoord.col = rcoord.col + 40; 
_settextposition(rcoord.row, rcoord.col); 
sprintf(buffer,"%li", stage_beg); 
_settextcolor(ecolor); 
_outtext(buffer); 
_settextcolor(tcolor); 
rcoord.col = rcoord.col - 40; 
} 

if (m == 1){ 
if (stage_beg!=-11467 && points_scan!=O && stage_step!=-114) 

stage_end = (int)(stage_beg + (points_scan-1)*stage_step); 
else 

stage_end = -114; 
} 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
if (m == 1) 

_outtext (set_.string(2)); 
else if (m == 2) 

_outtext(set_string(5)); 

if (stage_end != -114){ 
rcoord.col = rcoord.col + 40; 
_settextposition(rcoord.row, rcoord.col); 
sprintf (buffer, "%i", stage_ end); 
_settextcolor(ecolor); 
_outtext(buffer); 
_settextcolor(tcolor); 
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rcoord.col = rcoord.col - 40; 
} 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
if (m == 1) 

_outtext(set_string(3)); 
else if (m == 2) 

_outtext(set_string(6)); 

if (stage_step != -114 && m == 1 II nm_per_point != 0 && m -- 2){ 
rcoord.col = rcoord.col + 40; 
_settextposition(rcoord.row, rcoord.col); 
if (m == 1) 

sprintf (buffer, 11 %i 11
, stage_ step) ; 

else if (m == 2) 
sprintf (buffer, 11 %i 11

, nm_per _point); 
_settextcolor(ecolor); 
_outtext(buffer); 
_settextcolor(tcolor); 
rcoord.col = rcoord.col - 40; 
} 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(set_string(7)); 

if (atoi(dur) != 0){ 
rcoord.col = rcoord.col + 40; 
_settextposition(rcoord.row, rcoord.col); 
_settextcolor(ecolor); 
_outtext(dur); 
~settextcolor(tcolor); 
rcoord.col = rcoord.col - 40; 
} 

if (m == 2){ 
if (stage_end!=-114 && stage_beg!=-11467 && nm_per_point!=O) 

points_scan = (stage_end-(int)stage_beg) I nm_per_point + 1; 
else 

points_scan = 0; 
} 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(set_string(8)); 

if (points_scan != 0){ 
rcoord.col = rcoord.col + 40; 
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_settextposition(rcoord.row, rcoord.col); 
sprintf(buffer, "%i", points_scan); 
_settextcolor(ecolor); 
_outtext(buffer); 
_settextcolor(tcolor); 
rcoord.col = rcoord.col - 40; 
} 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(set_string(9)); 

if (low ! = -1){ 
rcoord.col = rcoord.col + 40; 
_settextposition(rcoord.row, rcoord.col); 
sprintf(buffer,"%i", low); 
_settextcolor(ecolor); 
_outtext(buffer); 
_settextcolor(tcolor); 
rcoord.col = rcoord.col - 40; 
} 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(set_string(10)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(set_string(11)); 
_wrapon(_GWRAPON); 

if(comment[O] != ,_'){ 
rcoord.row++; 
_settextcolor(ecolor); 
_settextposition(rcoord.row, 5); 
_outtext(comment); 
_settextcolor(tcolor); 
} 

record= _gettextposition(); 
rcoord.row++; 
_settextposition(rcoord.row, 15); 
_outtext(odd_string(1)); 

while (i == 0) 
i = kbhit(); 

i = getche(); 
_clearscreen(_GCLEARSCREEN); 
return; 

127 



128 APPENDIX A. DATA COLLECTION PROGRAM 

} 

I* storefile() stores the current set of parameters. The type 
of setup file is determined by the value of m, with 1 indicating a 
stage setup file and 2 indicating a spectrum setup file. 
*I 

void storefile(int m) 
{ 
FILE 
int 
char 
char 

*stream; 
i, dr; 
inputs[10], inputs2[2]; 
*input, *input2; 

I* A file name is obtained from the user; and, if that file does 
not exist, the current set of parameters is written thereto. If the 
file does exist, the user is given the opportunity to overwrite, 
quit, or try again. Note that for stage setup files the first three 
characters in the file are ~s~, ~e~, and ~g~; for motor set-up files 
they are ~s~, ~p~, and c . 
*I 

do{ 
_settextposition(10, 15); 
rcoord = _gettextposition(); 
_outtext(prompt_string(1)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
input= gets(inputs); 
if (strcmp(input, "") == 0) 

return; 

if ((stream= fopen(input, "rb")) !=NULL){ 
fclose(stream); 
rcoord.row++; 
_settextcolor(~color); 
_settextposition(rcoord.row, rcoord.col); 
_outtext(prompt_string(2)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(prompt_string(3)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(prompt_string(6)); 
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rcoord.row++; 
_settextpositiqn(rcoord.row, rcoord.col); 
input2 = gets(inputs2); 
if (inputs2[0] == ~Q' I I inputs2[0] == ~q~){ 

_clearscreen(_GCLEARSCREEN); 
return; 
} 

} 
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} while ((inputs2[0]==~n' I I inputs2[0]==~N~) && stream !=NULL); 

stream= fopen(input, "wb") ;) 
if (m == 1){ 

fprintf(stream, "seg "); 
fprintf(stream, "%i %i " points_scan, stage_step); 
} 

else if (m == 2){ 
fprintf(stream, "spc "); 
fprintf(stream, "%i %i" nm_per_point, stage_end); 
} 

dr = atoi(dur); 
fprintf(stream, "%i %li ", dr, stage_beg); 
fprintf (stream, "%s ", comment) ; 
if (m == 1) 

fprintf (stream, "%s", stage); 
else if (m-== 2) 

fprintf(stream, "%i", steps_per_nm); 

fclose (stream) ; 
_clearscreen(_GCLEARSCREEN); 
return; 
} 
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A.2 sdata.c 

I* This file contains the routines take_data_menu(), 
set_multi()~ getdata(), gp_talk(), and gp_read(). 
*I 

#include <string.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <graph.h> 
#include <conio.h> 
#include 11 sgadd.h 11 

#include 11 ieeeio.h11 

extern struct rccoord rcoord; 
extern int tcolor, ecolor; 

extern int points_scan, stage_step; 
extern long int stage_ beg; 
extern char dur[], buffer[]; 
extern int multi_count, reverse_flag; 
extern char comment[] , stage[] ; 
extern double *data[]; 

I* take_data_menu() offers the user a choice of operations 
including changing the comment, setting multi-scan parameters, 
setting the file name to which to save data, collecting a new 
data set, looking at previously collected data, and returning 
to the main menu. The value of the parameter m determines whether 
the user intends to take data with the stage (m==1) or the 
monochromator (m==2). 
*I 

void take_data_menu(int m) 
{ 
int count, i=O, j, k; 
char inputs[3]; 
char *input; 

do{ 
_settextcolor(tcolor); 
_settextposition(10, 25); 
rcoord = _gettextposition(); 
if (m == 1) 

_outtext(data_string(O)); 
else if (m == 2) 
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_outtext(specset_string(O)); 

for (i=1; i<7; i++){ 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(data_string(i)); 
} 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
input= gets(inputs); 
count= atoi(inputs); 

_clearscreen(_GCLEARSCREEN); 
if (count < 1 I I count > 6){ 

_settextposition(7, 20); 
rcoord = _gettextposition(); 
_settextcolor(ecolor); 
_outtext(error_string(5)); 
} 

else if (count == 1) 
read_ comment(); 

else if (count == 2) 
set_multiO; 

, else if (count == 3) 
open_data_file(m); 

else if (count -- 4) 
screen(m); 

else if (count == 5){ 

I* In order to look at another file data space must be 
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freed for the new data. Note that this new data file might not 
have the same number of points per scan as the current set-up 
has defined; therefore, even though points_scan is defined in 
look_data(), it is done so statically. It is thus separate 
from the points_scan defined for the rest of the program. The 
same holds true for the rest of the set.-up parameters. This 
allows the user to look at different data files without losing 
the current set-up. 
*I 

for (i=O; i<4; i++) 
if (data[i] != NULL) 

free (data[i]); 

look_data(m); 
_setvideomode(_DEFAULTMODE); 

if (points_scan != 0 ){ 
for (i=O; i<4; i++){ 
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} 
} 
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data[i] =(double*)malloc(points_scan*sizeof(double)); 
if (data[i] == NULL){ 

} 

for (j=O; j<i; j++) 
free (data [j]); 

points_scan=O; 
_settextposition(10, 15); 
rcoord = _gettextposition(); 
sprintf(buffer,"%s%i", error_string(11), i); 
_outtext(buffer); 

rcoord. r'ow++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(odd_string(1)); 

while (k == 0) 
k = kbhit(); 

k = getche(); 
} 

} while (count != 6); 
_clearscreen(_GCLEARSCREEN); 
return; 
} 

I* set_multi() allows the user to set up the stage or motor to 
take multiple scans in one or both directions. If the user elects 
to do so, he inputs the number of scans to be taken, which number 
must be even and is assigned to multi_count. For scans to be taken 
in one direction only, reverse_flag==1; otherwise reverse_flag==2. 
*I 

void set_multi(void) 
{ 
char inputs[4]; 
char *input; 

do{ 
_settextcolor(tcolor); 
_settextposition(10, 25); 
rcoord = _gettextposition(); 
_outtext(multi_string(9)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(multi_string(10)); 
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rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
input= gets(inputs); 
multi_count = atoi(inputs); 

if (multi_count == 1){ 
reverse_flag = 1; 
_clearscreen(_GCLEARSCREEN); 
return; 
} 

else if (multi_count != 2){ 
_clearscreen(_GCLEARSCREEN); 
_settextcolor(ecolor); 
_settextposition(9, 25); 
_outtext(multi_string(5)); 
} 

} while(multi_count != 2); 

_clearscreen(_GCLEARSCREEN); 
do{ 

_settextcolor(tcolor); 
_settextposition(10, 15); 
rcoord = _gettextposition(); 
_outtext(multi_string(1)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
input= gets(inputs); 
multi_count = atoi(inputs); 

if (multi_count % 2 != 0 I I multi_count <= 0){ 
multi_count = 0; 
_clearsc~een(_GCLEARSCREEN); 
_settextcolor(ecolor); 
_settextposition(9, 15); 
_outtext(multi_string(2)); 
} 

} while (multi_count == 0); 

_clearscreen(_GCLEARSCREEN); 
do{ 

_settextposition(10, 20); 
_settextcolor(tcolor); 
rcoord = _gettextposition(); 
_outtext(multi_string(3)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
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_outtext(multi_string(4)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
input= gets(inputs); 
reverse_flag = atoi(inputs); 

if (reverse_flag != 2 && reverse_flag != 1){ 
_clearscreen(_GCLEARSCREEN); 
_settextcolor(ecolor); 
_settextposition(9, 20); 
_outtext(multi_string(5)); 
} 

} while(reverse_flag != 2 && reverse_flag != 1); 
_clearscreen(_GCLEARSCREEN); 
return; 
} 

f* getdata() is the routine that handles the counter-timers. 
On each call it configures them as follows (see also the IO-TECH 
manual): CT3 is configured to output a single square pulse of width 
dur milliseconds at a delay of 100 ms after being triggered; CT4 is 
configured as a counter with input from external source 2 and is 
gated by the output from CT3 which is connected externally (see also 
notes in sgadd.h); CT5 is configured as a clock with a kHz source and 
is zeroed. All three counter-timers are triggered at the same time. 
When CT5 indicates that dur + 150 milliseconds have elapsed, the 
counter is read. Errors are given by the pointer pe, which is 
interpreted by timerror(). 
*I 

void getdata(double dtemp[], int *pe) 
{ 

char acounts[10], clok[12]; 
int i; 

*pe = 0; 
dtemp[O] = dtemp[1] = dtemp[2] = dtemp[3] = 0; 

sprintf(buffer, "CONF:ONES3:SOUR 1KHZ;DEL 100;WIDT %s", dur); 
if (gp_talk("timer", buffer) == -1){ 

*pe = 1; 
return; 
} 

if (gp_talk("timer", "CONF:COUN4:SOUR SOURCE2") -- -1){ 
*pe = 1; 
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return; 
} 

if (gp_talk("timer", 
*pe = 1; 
return; 
} 

/ 

"CONF:CLOC5:SOUR 1KHz;TIME 0") -- -1){ 

if (gp_talk("timer", "START:DNES3;COUN4;CLOC5; :*TRG") -- -1){ 
*pe = 2; 

do{ 

return; 
} 

gp_talk("timer", "CAPT:CLOC5; :*TRG"); 
gp_talk("timer", "READ:CLOCK5?"); 
gp_read("timer", clok); 
} while (atol(clok) <= atol(dur) + 150); 

if (gp_talk("timer", "READ:COUN4?") == -1){ 
*pe = 4; 
return; 
} 

if (gp_read("timer", acounts) -- -1){ 
*pe = 4; 
return; 
} 

dtemp[O] = atof(acounts); 

if (gp_talk("timer", "STOP:DNES3;COUN4;CLDC5;:*TRG") -- -1){ 
*pe = 6; 
return; 
} 

} 
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I* gp_talk() sends the string *data to *device via the IEEEIGPIB 
interface and returns error info. 
*I 

int gp_talk(char *device, char *data) 
{ 
return(ieeeprtf("output %s;%s\n", device, data)); 
} 

I* gp_read() reads 1n ASCII data from *device via the IEEEIGPIB 
interface and places it into the string *data. 
*I 
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int gp_read(char *device, char *data) 
{ 
ieeeprtf("enter %s\n", device); 
if (ieeescnf ("%s", data) == 0) 

return(-1); 
else 

return(O); 
} 
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. 
A.3 sntce.c 

I* This file contains the following subroutines: 
screen(), replot(), top(), timerror(), stage_return(), 
gp_stage_wait(), finderr(), and error(). 
*I 

I* Data is collected through an IOtech 488CT board via the 
counter-timer input. The actual data collection is handled by 
the subroutine getdata() in SDATA.C. At present it does not 
use all of the available channels as proveded for in the original 
incarnation. Currently only a single data collection channel is 
used and no data processing is required. However, it may be 
necessary to normalize the signal in the future, thereby making 
use of the other channels. 
*I 

#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 
#include <math.h> 
#include <graph.h> 
#include <malloc.h> 
#include <conio.h> 
#include <time.h> 
#include "ieeeio.h" 
#include "sgadd.h" 

I* The following variables are used for plotting two of 
the possible channels, although at present only the one channel 
is actually used. 

The variables max, min, maxi, and mini, are the maximum 
and minimum of the two data channels that are being displayed to 
allow appropriate scaling of the data in the data window. 
*I 

float max, min, maxi, mini; 

I* The following variables are values for experimental 
conditions. 
*I 

I* The variable stage_d keeps track of the direction that 
the stage/motor should move next. stage_direction is the string 
sent to the stage controller to communicate that direction. 
*I 
int stage_d; 
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char *stage_direction; 

I* This a temporary place to store data in the code for 
the subroutine getdata(). 
*I 

double dtemp[4]; 

I* scan is the actual number of scans taken. 
*I 

int scan; 

I* These variables are associated with communication 
subroutines. device and numdev are variables the GPIB-PC 
software associates with the Klinger stage. 
*I 

char *device, *numdev; 

extern struct rccoord rcoord; 
extern int channel_dis1, channel_dis2; 
extern int channel_color1, channel_color2, box_color; 
extern int ecolor, tcolor; 
extern float ymin_tick1, ymax_tick1, ymin_tick2, ymax_tick2; 
extern long int rect_xmin, rect_ymin, rect_xmax, rect_ymax; 

extern int points_scan, stage_step, nm_per_point, stage_end, 
steps_per_nm; 

extern long int stage_beg; 
extern char durO; 
extern int multi_count, reverse_flag, scan; 
extern int initpos, minwave, maxwave; 
extern double *data[]; 

extern char stage[], comment[], buffer[]; 
extern char file...:name [], file_num [] , data_file D ; 

I* screen() is the main data collection routine. It controls 
the stage and the output to the screen. The value of m determines 
whether the data is being taken with the stage (m==1) or with the 
motor (m==2). 
*I 

void screen(int m) 
{ 

I* These are temporary variables to hold partial stage movements 
in case the desired stage movement is a larger number than a 16 bit 
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integer can hold. This is a constraint due to the stage controller. 
This feature is currently unnecessary, but would be necessary for a 
longer stage. 
*I 

unsigned int step1, step2, step3, step4; 

I* These variables hold the lengths of character strings that 
are sent to the stage controller. 
*I 

int stage_beg_l, stage_step_length; 

I* These provide space for various strings used in 
communication. 
*I 

char 
char 

inputs[3], stage_s[10], *input, present[S]; 
stage_beg_s[10]; 

I* point_scan_tak and point_scan_tak2 are the number of 
points in the scan that have been taken, although point_scan_tak 
starts counting at 1 and point_scan_tak2 starts at 0. i is a 
dummy counter for a loop, and e is an error flag from getdata(). 
flag is a variable to find out if there is a data point out of the 
window bounds. init is used in setting up the monochromator. 
*I 
int point_scan_tak, point_scan_tak2, i; 
int e = 0, flag, init; 

device= "CC1"; 
numdev = "07"; 

I* If the data to be collected is a spectrum (m==2), the user 
inputs the current monochromator position, which is validated as 
falling between the minimum and maximum allowable values. 
*I 
if (m == 2){ 

do{ 
stage_step = steps_per_nm * nm_per_point; 
_settextcolor(tcolor); 
_settextposition(10, 15); 
rcoord = _gettextposition(); 
_outtext(specset_string(9)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
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input= gets(inputs); 
initpos = atoi(inputs); 

if (initpos < minwave I I initpos > maxwave){ 
_clearscreen(_GCLEARSCREEN); 
_settextcolor(ecolor); 
_settextposition(9, 15); 
_outtext(error_string(5)); 
} 

} while (initpos < minwave II initpos > maxwave); 
_clearscreen(_GCLEARSCREEN); 
init = (int)stage_beg - initpos; 
} 

I* The IEEE board is initialized and the presence of the device 
CC1 (the Klinger controller) is verified. 
*I 

if (ieeeinit() == -1){ 
_settextcolor(ecolor); 
_settextposition(10, 20); 
rcoord = _gettextposition(); 
_outtext(odd_string(8)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(odd_string(1)); 

while (i = 0) 
i = kbhit(); 

i = getche(); 
_clearscreen(_GCLEARSCREEN); 
return; 
} 

ieeewt("Error Off\n"); 

ieeeprtf("CheckListener %s\n", numdev); 
ieeerd(present); 
if (atoi(present) == 0){ 

finderr(); 
return; 
} 

ieeeprtf("Remote %s\n", numdev); 

I* The stage speed/acceleration parameters, travel direction, 
and position are set. See the Klinger CC-1 manual for more details. 
*I 
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stage_d = 1; 

I* First the parameters for the case of data collected with 
a stage are set ... 
*I 

if (m == 1){ 
if (gp_talk(device, "R 253") < O){ 

error(); 
return; 
} 

if (gp_talk(device, "S 2") < O){ 
error(); 
return; 
} 

if (gp_talk(device, "F 20") < O){ 
error(); 
return; 
} 

if (gp_talk(device, "A") < O){ 
error(); 
return; 
} 

if (stage_beg > 0){ 
if (stage_d == 1) 

stage_direction = "+"; 
stage_d = -1; 
} 

else{ 
stage_direction = "-"; 
stage_d = 1; 
} 

if (gp_talk(device, stage_direction) < 0){ 
error(); 
return; 
} 
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if (stage_beg < 65000 && stage_beg > -65000){ 
stage_beg_l = sprintf(stage_beg_s, "N %li", labs(stage_beg)); 
if (gp_talk(device, stage_beg_s) < 0){ 

error(); 
return; 
} 

if (gp_talk(device, "G") < O){ 
error(); 
return; 
} 

} 
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I* The following "else" is necessary only for the long 
long stage, which is not used in the current set-up. 
*I 

else{ 
step1 = abs((int)(stage_beg I 4)); 
step2 = abs((int)((stage_beg- step1) I 3)); 
step3 = abs((int)((stage_beg- step1- step2) I 2)); 
step4 = abs((int)(stage_beg- step1- step2- step3)); 

stage_step_length = sprintf(stage_s, "N %u", abs(step1)); 

if (gp_talk(device, stage_s) < 0){ 
error(); 
return; 
} 

if (gp_talk(device, "G") < O){ 
error(); 
return; 
} 

gp_stage_waitO; 
stage_step_length = sprintf (stage_s, "N %u", abs (step2)); 
if (gp_talk(device, stage_s) < 0){ 

error(); 
return; 
} 

if (gp_talk(device, "G") < O){ 
error(); 
return; 
} 

gp_stage_wait(); 
stage_step_length = sprintf(stage_s, "N %u", abs(step3)); 
if (gp_talk(device, stage_s) < 0){ 

error(); 
return; 
} 

if (gp_talk(device, "G") < O){ 
error(); 
return; 
} 

gp_stage_waitO; 
stage_step_length = sprintf(stage_s, "N %u", abs (step4)); 
if (gp_talk(device, stage_s) < 0){ 

error(); 
return; 
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} 
if (gp_talk(device, 11 G11

) < O){ 
error(); 
return; 
} 

} 

gp_stage_wait(); 

if (stage_step > 0){ 
ir (stage_d == 1) 

stage_direction = "+"; 
stage_d = -1; 
} 

else{ 
stage_direction = "- 11

; 

stage_d = 1; 
} 

stage_step_length = sprintf(stage_s, "N %i", abs(stage_step)); 

if (gp_talk(device, stage_s) < 0){ 
error(); 
return; 
} 

if (gp_talk(device, stage_direction) < 0){ 
error(); 
return; 
} 

} 

I* ... then the parameters for spectra, data collected with a 
motor, are set. 
*I 

else if (m == 2){ 
if (gp_talk(device, "R 196") < O){ 

error(); 
return; 
} 

if (gp_talk(device, "S 2") < O){ 
error()_; 
return; 
} 

if (gp_talk(device, "F 20") < O){ 
error(); 
return; 
} 
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if (init * steps_per_nm > 0) 
stage_direction = "+"; 

else 
stage_direction = "-"; 

if (gp_talk(device, stage_direction) < 0){ 
error(); 
return; 
} 

stage_step_length = 
sprintf(stage_s, "N %i", abs(init * steps_per_nm)); 

if (gp_talk(device, stage_s) < 0){ 
error(); 
return; 
} 

if (gp_talk(device, "G") < O){ 
error(); 
return; 
} 

gp_stage_wai t 0 ; 
if (gp_talk(device, "A") < 0){ 

error(); 
return; 
} . 

if (((init = (stage_end - (int)stage_beg)) * steps_per_nm) > 0){ 
stage_direction = "+"; 
stage_d = -1; 
} . 

else{ 
stage_direction = "-"; 
stage_d = 1; 
} 

if (gp_talk(device, stage_direction) < 0){ 
error(); 
return; 
} 

stage_step_length = sprintf (stage_s, "N %i", abs (stage_step)); 
if (gp_talk(device, stage_s) < 0){ 

error(); 
return; 
} 

} 

I* The program now enters the main loop. On each pass of the 
loop, data is collected as the stage moves in the "forward" direction 
as defined by stage_step, and if reverse_flag==2 in the opposite 
direction as well. 
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scan = 1; 
inputs [0] = 'y'; 
while (scan <= multi_count){ 

point_scan_tak = 1; 
point_scan_tak2 = 0; 

I* The following graphics routines prepare the data window. 
*I 

top(scan- 1, m); 

_setcolor(O); 
_rectangle(_GFILLINTERIOR, 0, 50, 620, 330); 
_setcolor(box_color); 
_rectangle(_GBORDER, (short)rect_xmin, (short)rect_ymin, 

(short)rect_xmax, (short)rect_ymax); 
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I* The following loop consists of getting a data point, plotting 
it, and then advancing the stage to the next position. The loop can 
be exited prematurely by hitting any key on the keyboard. The user 
is then prompted to continue, save and quit, or quit without saving. 
*I 

do{ 
gp_stage_wait(); 

getdata(dtemp,&e); 

if (e != 0){ 
if (timerror(e, point_scan_tak, m) -

return; 
} 

} 

if (gp_talk(device, "G") < O){ 
error{); 
return; 
} 

1){ 

I* The window bounds for the first point are initialized. Note 
that the currently unused second channel is commented out. Also at 
present the minimum bound is set to zero; since the fluorescence data 
consists of counts, it is strictly non-negative. 

Then the data are transferred from the temporary variable to 
the dynamically allocated data arrays, and the data point is compared 
to the previous maximum to see if it supersedes it. If it does, the 
window needs to be redrawn as signified by flag== 1. 
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if (point_scan_tak == i){ 
max = (float)dtemp[channel_disi] + .Oi; 

/*maxi = (float)dtemp[channel_dis2] + .Oi;*/ 
min= 0; 

/*min = (float) dtemp[channel_disi] - .Oi;*/ 
/*mini = (float) dtemp[channel_dis2] - .Oi;*/ 

rboundi((float)stage_beg, min, (float)stage_end, max); 
/*rbound2(mini, maxi);*/ 

} 

for (i=O; i!=4; i++){ 
*(data[i] + point_scan_tak2) = dtemp[i]; 
} 

flag= 0; 
if ((float)dtemp[channel_disi] > ymax_ticki){ 

flag = i; 
max= (float) dtemp[channel_disi]; 
} 

l*if ((float)dtemp[channel_disi] < ymin_ticki){ 
flag = i; 
min= (float)dtemp[channel_disi]; 
} 

if ((float)dtemp[channel_dis2] > ymax_tick2){ 
flag = i; 
maxi= (float)dtemp[channel_dis2]; 
} 

if ((float)dtemp[channel_dis2] < ymin_tick2){ 
flag= i; 
mini= (float)dtemp[channel_dis2]; 
}*/ 

I* If the new data point is out of the window bounds, the window 
is redrawn and new bounds are determined. Then the new point is 
plotted. 
*I 

if (flag == i) 
replot(point_scan_tak, m); 

if (m == i) 
rpointi((float)(stage_beg + point_scan_tak2*stage_step), 

(float)dtemp[channel_disi]); 
else if (m == 2) 

rpointi((float)(stage_beg+point_scan_tak2*nm_per_point), 
(float)dtemp[channel_disi]); 

_settextposition(25, 65); 
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_settextcolor(box_color); 
sprintf(buffer, "%i %li " point_scan_tak, 

(long)dtemp[channel_dis1]); 
_outtext(buffer); 

l*rpoint2( (float)point_scan_tak, (float)dtemp [channel_dis2]); *I 

point_scan_tak++; 
point_scan_tak2++; 

I* The keyboard is checked; and, if it was hit, the following 
allows the user to continue, quit, or quit while saving the data 
collected up to this point. 
*I 

if (kbhit() != 0){ 
i = getche(); 
_setcolor(O); 
_rectangle(_GFILLINTERIOR, 0, 30, 620, 330); 

_setcolor(tcolor); 
_settextposition(10, 15); 
record= _gettextposition(); 
_outtext(window_string(9)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(window_string(10)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(window_string(11)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(window_string(12)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
input= gets(inputs); 

if (inputs[O] == ~s~ I I inputs[O] -- ~s~){ 
gp_stage_wait(); 
gp_talk(device, "P 0"); 
_setvideomode(_DEFAULTMODE); 

open_data_file(m); 
save(scan- 1, point_scan_tak- 1, m); 
return; 
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} 
else if (inputs[O] == ~y~ I I inputs[O] -- ~y~) 

replot(point_scan_tak, m); 
else{ 

} 

gp_stage_wait(); 
gp_talk(device, "P 0"); 
_setvideomode(_DEFAULTMODE); 
return; 
} 

} while (point_scan_tak <= points_scan && 
(inputs [0] == ~y ~ II inputs [0] -- ~y ~)); 

I* Having collected a data set for one complete pass of the 
stage (or motor), the data are s_aved. Then the stage (or motor) 
is moved back one position to that the of last collected data point. 
*I 

_setvideomode(_DEFAULTMODE); 
save(scan- 1, points_scan, m); 
scan++; 
point_scan_tak--; 
point_scan_tak2--; 

if (stage_d == 1){ 
stage_direction = "+"; 
stage_d = -1; 
} 

else{ 
stage_direction = "-"; 
stage_d = 1; 
} 

gp_stage_wait(); 
if (gp_talk(device, stage_direction) < 0){ 

error(); 
return; 
} 

if (gp_talk(device, "G") < O){ 
error(); 
return; 
} 

I* The next section of code takes data in the "reverse" 
direction if reverse_flag == 2. In all other respects, it is 
essentially the same as the previous section. If reverse_flag == 1, 
the stage returns to the starting position. 
*I 

if (reverse_flag == 2){ 
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top(scan - i, m); · 

_setcolor(O); 
_rectangle(_GFILLINTERIOR, 0, 45, 620, 330); 
_setcolor(box_color); 
_rectangle(_GBORDER, (short)rect_xmin, (short)rect_ymin, 

(short)rect_xmax, (short)rect_ymax); 

do{ 
gp_stage_wait(); 

getdata(dtemp,&e); 

if (e != O){ 
if(timerror(e, point_scan_tak, m) -- i){ 

return; 
} 

} 
if(gp_talk(device, "G") < O){ 

error(); 
return; 
} 

if (point_scan_tak == points_scan){ 
max = (float)dtemp[channel_disi] + .Oi; 

/*maxi = (float)dtemp[channel_dis2] + .Oi;*/ 
min = 0; 

/*min= (float)dtemp[channel_disi] - .i;*/ 
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/*mini = (float)dtemp[channel_dis2] - .Oi;*/ 
rboundi((float)stage_beg, min, (float)stage_end,max); 

l*rbound2( mini, maxi);*/ 
} 

for (i=O; i!=4; i++){ 
*(data[i] + point_scan_tak2) = dtemp[i]; 
} 

flag= 0; 
if ((float)dtemp[channel_disi] > ymax_ticki){ 

flag = i; 
max = (float)dtemp[channel_disi]; 
} 

/*if ((float)dtemp[channel_disi] < ymin_ticki){ 
flag = i; 
min = (float)dtemp[channel_disi]; 
} 

if ((float)dtemp[channel_dis2] > ymax_tick2){ 
flag = i; 
maxi = (float)dtemp[channel_dis2]; 
} 
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if ((float)dtemp[channel_dis2] < ymin_tick2){ 
flag = 1; 
mini = (float)dtemp[channel_dis2]; 
}*/ 

if (flag == 1) 
replot(point_scan_tak, m); 

if (m == 1) 
rpoint1((float)(stage_beg+point_scan_tak2*stage_step), 

(float)dtemp[channel_dis1]); 
else if (m == 2) 

rpoint1((float)(stage_beg+point_scan_tak2*nm_per_point), 
(float)dtemp[channel_dis1]); 

_settextposition(25, 65); 
_settextcolor(box_color); 
sprintf(buffer, "%i %li ", point_scan_tak, 

_outtext(buffer); 
(long)dtemp[channel_dis1]); 

l*rpoint2((float)point_scan_tak, 
(float)dtemp[channel_dis2]);*/ 

point_scan_tak--; 
point_scan_tak2--; 

if (kbhit() != 0){ 
i = getche(); 
_setcolor(O); 
_rectangle(_GFILLINTERIOR, 0, 30, 620, 330); 

_settextcolor(tcolor); 
_settextposition(10, 15); 
rcoord = _gettextposition(); 
_outtext(window_string(9)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(window_string(10)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(window_string(11)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(window_string(12)); 

rcoord.row++; 



.• 

A.3. SNICE.C 

_settextposition(rcoord.row, rcoord.col); 
input= gets(inputs); 

if (inputs[O] == 'S' I I inputs[O] == 's'){ 
gp_stage_wait(); 
gp_talk(device, "P 0"); 
_setvideomode(_DEFAULTMODE); 

open_data_file(m); 
save(scan-1, points_scan-point_scan_tak+1, m); 
return; 
} 

else if (inputs[O] == 'Y' I I inputs[O] == 'y') 
replot(point_scan_tak, m); 

else{ 

} 

gp_stage_wait(); 
gp_talk(device, "P 0"); 
_setvideomode(_DEFAULTMODE); 
return; 
} 

} while (point_scan_tak>=1 && (inputs[O]=='Y' I I 
inputs[O]=='y')); 

_setvideomode(_DEFAULTMODE); 
save(scan- 1, points_scan, m); 
scan++; 
point_scan_tak++; 
point_scan_tak2++; 

gp_stage_wait(); 
if (stage_d == 1){ 

if(gp_talk(device, "+") < O){ 
error(); 
return; } . 

} 
else{ 

if(gp_talk(device, "-") < 0){ 
error(); 
return; 
} 

} 
if (gp_talk(device, "G") < O){ 

error(); 

} 
else{ 

return; 
} 
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stage_return((long int)point_scan_tak2*(long int)stage_step); 
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if (gp_talk(device, stage_s) < 0){ 
error(); 
return; 
} 

} 

if (stage_d == i){ 
stage_direction = 11 +11

; 

stage_d = -i; 
} 

else{ 
stage_direction = 11

-
11

; 

stage_d = i; 
} 

gp_stage_wai t () ; 
if (gp_talk(device, stage_direction) < 0){ 

error(); 
return; 
} 

} 
gp_stage_wait() ,; 
gp_talk(device, 11 P 0 11

); 

}, 

I* replot() redraws the data window and replots all the points 
up to but not including the point_scan_tak- 11th 11

• 

*I 

void replot(int point_scan_tak, int m) 
{ 
int i; 

_setcolor(O); 
_rectangle(_GFILLINTERIOR, 0, 45, 620, 330); 
_setcolor(box_color); 
_rectangle(_GBORDER, (short)rect_xmin, (short)rect_ymin, 

. (short)rect_xmax, (short)rect_ymax); 
rboundi((float)stage_beg, min, (float)stage_end, max); 
/*rbound2( mini, maxi);*/ 

if ((scan%2) == 0 && reverse_flag == 2){ 
for (i=points_scan; i>point_scan_tak; i--){ 

if (m == i) 
rpointi((float)(stage_beg + (i- i) * stage_step), 

(float)*(data[channel_disi]+i-i)); 
else if (m == 2) 

rpointi((float)(stage_beg + (i - i) * nm_per_point), 
(float)*(data[channel_disi]+i-i)); 
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l*rpoint2((float)i, (float)*(data[channel_dis2]+i-1));*1 
} 

} 
else{ 

} 

for (i=1; i<point_scan_tak; i++){ 
if (m == 1) 

} 

rpoint1((float)(stage_beg + (i- 1) * stage_step), 
(float)*(data[channel_dis1]+i-1)); 

else if (m == 2) 
rpoint1((float)(stage_beg + (i- 1) * nm_per_point), 

(float)*(data[channel_dis1]+i-1)); 
l*rpoint2((float)i, (float)*(data[channel_dis2]+i-1));*1 
} 

I* top() plots the information at the top of the screen. 
The variable n is the number of scans taken in multi mode. This 
allows top() to print the right file name for that scan (n starts 
counting at 0). 
*I 

void to~(int n, int m) 
{ 
char *p, file_numt[3]; 
int num1, i; 
time_t ltime; 

strcpy(data_file, file_name); 
if (m == 1) 

strcat(data_file, "."); 
else if (m == 2) 

strcat (data_file, ".S"); 
num1 = atoi(file_num); 
num1 = num1 + n; 
p = itoa(num1, file_numt, 10); 
strcat(data_file, file_numt); 

if (_setvideomode(_ERESCOLDR)) 

' else{ 
_setvideomode(_DEFAULTMODE); 
_settextposition(10, 15); 
rcoord = _gettextposition(); 
_settextcolor(ecolor); 
_outtext(odd_string(6)); 

rcoord.row++; 
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_settextposition(rcoord.row, rcoord.col); 
_outtext(odd_string(1)); 

while (i == 0) 
i = kbhit(); 

i = getche(); 
_clearscreen(_GCLEARSCREEN); 
return; 
} 

_settextcolor(tcolor); 
_settextposition(1, 1); 
rcoord = _gettextposition(); 
_outtext(window_string(1)); 
_outtext(data_file); 

rcoord.col = rcoord.col + 25; 
_settextposition(rcoord.row, rcoord.col); 
time(&ltime); 
_outtext((ctime(&ltime))); 

rcoord.col = rcoord.col + 35; 
_settextposition(rcoord.row, rcoord.col); 
sprintf(buffer, "Display %i " channel_dis1); 
_settextcolor(channel_color1); 
_outtext(buffer); 

_settextcolor(tcolor); 
_settextposition(2, 1); 
rcoord = _gettextposition(); 
_outtext(window_string(4)); 
if (m == 1) 

sprintf(buffer, "%li", stage_beg); 
else if (m == 2) 

sprintf(buffer, "%li nm", stage_beg); 
_outtext(buffer); 

rcoord.col = rcoord.col + 20; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(window_string(5)); 
sprintf(buffer, "%i", points_scan); 
_outtext(buffer); 

rcoord.col = rcoord.col + 20; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(window_string(3)); 
sprintf(buffer, dur); 
_outtext(buffer); 
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l*rcoord.col = rcoord.col + 20; 
_settextposition(rcoord.row, rcoord.col); 
sprintf(buffer, 11 Display %i 11 channel_dis2); 
_settextcolor(channel_color2); 
_outtext(buffer); 
_settextcolor(tcolor);*l 

if (multi_count != 1){ 
_settextposition(3, 1); 
rcoord = _gettextposition(); 
_outtext(window_string(6)); 

rcoord.col = rcoord.col + 20; 
_settextposition(rcoord.row, rcoord.col); 
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sprintf(buffer, 11 Scan %i out of %i scans 11
, n + 1, multi_count); 

_outtext(buffer); 

} 

if (reverse_flag == 2){ 

} 

rcoord.col = rcoord.col + 30; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(window_string(8)); 
} 

I* timerrorO handles errors involved with the counter-timer 
portion of the Power 488CT board. 
*I 

timerror(e, point_scan_tak, m) 
int e, point_scan_tak, m; 
{ 
char 
char 
int 

inputs [3]; 
*input; 

i; 

while (e ! = O){ 
_setcolor(O); 
_rectangle(_GFILLINTERIOR, 0, 30, 620, 330); 
_setcolor(ecolor); 
_settextposition(10, 15); 
rcoord = _gettextposition(); 
if (e == 1) 

_outtext( 11 An error was encountered during TIMER configuration11
); 

else if (e == 2) 
_outtext( 11 An error occurred while starting counter-timers11

); 

else if (e == 4) 
_outtext( 11 An error occurred while reading the data11

); 
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else if (e == 6) 
_outtext("An error occurred while stopping counter-timers"); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(odd_string(S)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
input= gets(inputs); 

if (inputs[O] != 'Y' && inputs[O] != 'y'){ 

I* If the user wants to quit, the stage should be returned to 
the place where it began. 
*I 

gp_stage_wait(); 
gp_talk(device, "P 0"); 

return(1); 
} 

I* Here data collection continues and there are two cases: 
either the data window doesn't need to be redrawn because no data 
has been taken yet, or the window must be redrawn because data 
already exist. 
*I 

else if ((inputs[O]=='Y'IIinputs[O]=='y') && point_scan_tak==1) 
getdata(dtemp,&e); 

else if ((inputs[O]=='Y'I linputs[O]=='y') && point_scan_tak!=1){ 
getdata(dtemp,&e); 
replot(point_scan_tak, m); 
} 

} 
return(O); 
} 

void stage_return(back) 
long int back; 
{ 
char stage_s[10]; 
int stage_step_length; 
unsigned int step1, step2, step3, step4; 

gp_stage_waitO; 
if ((back) > 0){ 
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stage_ direction 
gp_talk(device, 
} 

else{ 
stage_ direction 
gp_talk(device, 
} 

= "-"· ' stage_direction); 

= "+"; 
stage_direction); 

if (labs(back) < 65000){ 
stage_step_length = sprintf (stage_s, "N %li 11

, labs (back)) ; 
gp_talk(device, stage_s); 
gp_talk(device, "G"); 
} 
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I* As in screen() the following is only needed for long stages. 
*I 

else{ 

} 

step1 = abs((int)(stage_beg I 4)); 
step2 = abs((int)((stage_beg- step1) I 3)); 
step3 = abs((int)((stage_beg- step1- step2) I 2)); 
step4 = abs((int)(stage_beg- step1- step2- step~)); 

stage_step_length = sprintf(stage_s, "N %u", step1); 
gp_talk(device, stage_s); 
gp_talk(device, "G"); 

gp_stage_wait(); 

stage_step_lengtl:l = sprintf(stage_s, "N %u", step2); 
gp_talk(device, stage_s); 
gp_talk(device, "G"); 

gp_stage_wait(); 

stage_step_length = sprintf(stage_s, "N %u", step3); 
gp_talk(device, stage_s); 
gp_ talk(device, "G"); 

gp_stage_wait(); 

stage_step_length = sprintf(stage_s, "N %u", step4); 
gp_talk(device, stage_s); 
gp_talk(device, "G"); 
} 

I* gp_stage_wait() is nominally written to cause the program 



158 APPENDIX A. DATA COLLECTION PROGRAM 

to wait while the stage controller is busy; however, I do not believe 
that it works correctly. After the time out interval set up 
in the driver~s install program, the driver itself crashes. 
*I 

gp_stage_wai t () 
{ 
int dummy = 0; 
int ierrno = 0, i; 
char errnum[4], buffer[70]; 

do{ 

} 

gp_talk(device, stage_direction); 
ieeewt ("status\n"); 
ieeerd(buffer); 
for(i=O; i<3; i++) 

errnum[i] = buffer[13 + i]; 
errnum[i] = ~\o~; 

ierrno = atoi(errnum); 
} while(ierrno != 0); 

I* This routine indicates a CheckListener failure. 
*I 

void finderr() 
{ 
int i=O; 

_settextcolor(ecolor); 
_settextposition(10, 15); 
rcoord = _gettextposition(); 
_outtext(odd_string(2)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(odd_string(3)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(odd_string(1)); 

while (i == 0) 
i = kbhit(); 

i = getche(); 
_clearscreen(_GCLEARSCREEN); 
return; 
} 
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I* This error checking routine will upon the occurrence of 
an error during communication with the Klinger controller check 
the error number and the error message to determine the exact 
cause of the error condition. 
*I 

void error() 
{ 
char buffer[70] ; 
int i; 
char errmes [41], errnum[4]; 

_clearscreen(_GCLEARSCREEN); 
_settextcolor(4); 
_settextposition(10, 15); 
rcoord = _gettextposition(); 
_outtext(odd_string(4)); 

ieeewt( 11 status\n 11
); 

ieeerd(buffer); 
for(i=O; i<3; i++) 

errnum[i] = buffer[13+i]; 
errnum[i] = '\0'; 
for(i=O; i<40; i++) 

errmes[i] = buffer[26+i]; 
errmes[i] = '\0'; 
sprintf(buffer, 11 Error %s: %s 11

, errnum, errmes); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(buffer); 

rcoord.row+=2; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(odd_string(1)); 

while (i == 0) 
i = kbhit(); 

i = getche(); 
_clearscreen(_GCLEARSCREEN); 
return; 
} 
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A.4 splot.c 

I* This file contains the following subroutines: 
rbound1(). rtickxy1(). rpoint1(). text_point(). rbound2(). 
rtickxy2(). rpoint2(). csave(). rpointc(). and cend(). 
*I 

#include <graph.h> 
#include <conio.h> 
#include <stdio.h> 
#include <malloc.h> 
#include <math.h> 
#include "sgadd.h" 

I* cimage stores the,portion of a plot occupied by the cursor 
so that it may be restored when the cursor is moved elsewhere. 
ixold and iyold store the logical coordinates where this image is 
to be put. 
*I 

static char far *cimage; 
int ixold, iyold; · 

I* xycoord stores physical pixel coordinates. 
*I 

struct xycoord xycoord; 

I* rect_xdiff and rect_ydiff store the full width and height 
of the data window in terms of pixels. xdiff. ydiff1, and ydiff2 
store the full spread of the data in the appropriate directions in 
terms of the input units. in the present case wavelength or time in 
the x direction and counts in the y direction. xmin. ymin1, and 
ymin2 are the minima of the data in the appropriate directions. 
xs. ys1, and ys2 are the scale factors used to convert from input 
units to pixels. 
*I 
float 
float 
float 
float 

rect_xdiff. rect_ydiff; 
xdiff. ydiff1. ydiff2; 
xmin, ymin1, ymin2; 
xs. ys1. ys2; 

I* The variables xmin_tick, xmax_tick, ymin_tick1, etc .• are 
the real minima and maxima for the data window. These ensure that 
the tick marks on the axes are reasonable and all the data points 
can be seen. 
*I 
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float 
float 

xmin_tick, xmax_tick; 
ymin_tick1, ymax_tick1, ymin_tick2, ymax_tick2; 

extern long int rect_xmin, rect_ymin, rect_xmax, rect_ymax; 
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I* rbound1() sets up the boundaries of the data in terms of the 
spread of the values as passed down through the arguments; it thus 
begins the mapping of data to the screen's coordinates. rbound1() 
does this for the first set of data points, both x and y coordinates. 
*I 

void rbound1(float a, float b, float xmax, float ymax1) 
{ 
xmin = a; 
ymin1 = b; 
xdiff = xmax - xmin; 
ydiff1 = ymax1 - ymin1; 
rect_xdiff = (float)(rect_xmax- rect_xmin); 
rect_ydiff = (float)(rect_ymax- rect_ymin); 
rtickxy1(); 
} 

I* rtickxy1() finishes the mapping (but not the plotting) of 
data and plots and labels the tick marks (but not the axes) for the 
first set of data points, both x and y coordinates. 
*I 

void rtickxy1(void) 
{ 
extern int 
extern char 

box_color, channel_color1; 
buffer[]; 

float temp, temp2, temp_tick; 

xmin_tick = floor(xmin); 
xmax_tick = ceil(xmin + xdiff); 
temp_tick = xmin_tick; 

xdiff = xmax_tick - xmin_tick; 
temp = (xdiff) I 5; 
xs = rect_xdiff I xdiff; 
xm1n = xmin_tick; 

_settextcolor(box_color); 
_setcolor(box_color); 
while (temp_tick <= xmax_tick){ 

temp2 = (temp_tick - xmin_tick) * xs + rect_xmin; 
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_moveto((int)temp2, (int)rect_ymax); 
_lineto((int)temp2, (int)rect_ymax- 10); 

text_point((long int)temp2, rect_ymax + 10); 

if (temp> (float)1.) 
sprintf(buffer, ••%.Of", temp_tick); 

else if (temp> (float) .1) 
sprintf(buffer, "%.1f", temp_tick); 

else if (temp< (float) .1) 
sprintf (buffer, "%. 2f", temp_ tick); 

_outtext(buffer); 
temp_tick = temp_tick + temp; 
} 

ymin_tick1 = floor(ymin1); 
ymax_tick1 = ceil(ymin1 + ydiff1); 
temp_tick = ymin_tick1; 

ydiff1 = ymax_tick1 - ymin_tick1; 
temp = ydiff1 I 5; 
ys1 = rect_ydiff I ydiff1; 
ymini = ymin_tick1; 

_setcolor(channel_color1); 
_settextcolor(channel_color1); 
while (temp_tick <= ymax_tick1){ 

} 

temp2 = rect_ymax- (temp_tick- ymin_tick1) * ys1; 
_moveto ( (int)rect_xmin, (int)temp2,); 
_lineto((int)rect_xmin + 10, (int)temp2); 

text_point(rect_xmin- 30, (long int)temp2); 

if (temp > (float)1.) 
sprintf(buffer, "%.Of", temp_tick); 

else if (temp> (float) .1) 
sprintf(buffer, "%.1f", temp_tick); 

else if (temp > (float) .01) 
sprintf(buffer, "%.2f", temp_tick); 

else if (temp < (float) . 01) . 
sprintf(buffer, "%.3f", temp_tick); 

_outtext(buffer); 
temp_tick = temp_tick + temp; 
} 



.. 

A.4. SPLOT. C 163 

I* rpoint1() plots one point per call using the mapping set up 
in rbound1() and rtickxy1(). 
*I 

void rpoint1(float rxO, float ryO) 
{ 
extern int channel_color1; 

int ix, iy; 

ix = (int)((rxO- xmin_tick) * xs + rect_xmin); 
iy = (int)(rect_ymax- (ryO- ymin_tick1) * ys1); 
_setcolor(channel_color1); 
_setpixel(ix~ iy); 
} 

I* text_point() moves the text coordinate to the location where 
a label for a tick mark should be. 
*I 

void text_point(ix, iy) 
long int ix, iy; 
{ 
extern struct videoconfig vc; 

_getvideoconfig(&vc); 

xycoord = _getphyscoord((int)ix, (int)iy); 
ix = (long int)((float)xycoord.xcoord I 

(float)vc.numxpixels * ((float)vc.numtextcols)); 
iy = (long int)(1 + (float)xycoord.ycoord I 

(float)vc.numypixels * ((float)vc.numtextrows)); 
_settextposition((int)iy, (int)ix); 
} 

I* rbound2() is the same as rbound1() except the mapping is for 
the second set of data points (currently not used). Note that the 
x-axis mapping is already defined from rbound1 (). 
*I 
void rbound2(float b, float ymax2) 
{ 
ymin2 = b; 
ydiff2 = ymax2 - ymin2; 
rtickxy2(); 
} 
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I* rtickxy2() is for channel 2 as rtickxy1() is for channel 1 
except that the x-axis tick marks have already been drawn by 
rtickxy1(). 
*I 

void rtickxy2(void) 
{ 
extern int 
extern char 

channel_color2; 
buffer[]; 

float temp, temp2, temp_tick; 

ymin_tick2 = floor(ymin2); 
ymax_tick2 = ceil(ymin2 + ydiff2); 
temp_tick = ymin_tick2; 

ydiff2 = ymax_tick2 - ymin_tick2; 
temp = ydiff2 I 5; 
ys2 = rect_ydiff I ydiff2; 
ymin2 = ymin_tick2; 

_setcolor(channel_color2); 
_settextcolor(channel_color2); 
while (temp_tick <= ymax_tick2){ 

} 

temp2 = rect_ymax - (temp_tick - ymin_tick2) * ys2; 
_moveto((int)rect_xmax, (int)temp2); 
_lineto((int)rect_xmax- 10, (int)temp2); 
text_point(rect_xmax + 20, (long int)temp2); 

if (temp> (float)1.) 
sprintf (buffer, "%. Of 11

, temp_ tick); 
else if (temp > (float) .1) 

sprintf (buffer, "% .1f 11
, temp_ tick); 

else if (temp> (float).01) 
sprintf (buffer, "%. 2f 11

, temp_ tick); 
else if (temp< (float).01) 

sprintf (buffer'· "%. 3f 11
, temp_ tick) ; 

_outtext(buffer); 
temp_tick = temp_tick + temp; 
} 

I* rpoint2() is the channel 2 analog of rpoint1() but maps to 
the screen according to the mapping set up in rbound2() and 
rtickxy2(). 
*I 
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void rpoint2(float rxO, float ryO) 
{ 
extern int channel_color2; 

int ix, iy; 

ix = (int)((rxO- xmin_tick) * xs + rect_xmin); 
iy = (int)(rect_ymax- (ryO- ymin_tick2) * ys2); 
_setcolor(channel_color2); 
_setpixel(ix, iy); 
} 

I* csave() initializes cursor movements by saving space 
for the original image and then writes the cursor image. 
*I 

void csave(float rxO, float ryO) 
{ 
extern int ecolor; 

int ix, iy, i; 

ix = (int)((rxO- xmin_tick) * xs + .rect_xmin); 
iy = (int)(rect_ymax- (ryO- ymin_tick1) * ys1); 
ixold = ix; 
iyold = iy; 
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cimage = _fmalloc((unsigned int)_imagesize(ix-5, iy-5, ix+5, iy+5)); 

if (cimage == (char far *)NULL){ 
_settextposition(24, 1); 
_settextcolor(ecolor); 
printf(" _fmalloc failed \n"); 
printf(" %s ", odd_string(1)); 
while (i -- 0) 

i = kbhit(); 
i = getche(); 
return; 
} 

_getimage(ix- 5, iy- 5, ix + 5, iy + 5, cimage); 

_setlinestyle(Oxaaaa); 
} 

I* rpointc() plots the cursor at the new position. 
*I 
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void rpointc(float rxO, float ryO) 
{ 
extern int 
extern char 

int ix, iy; 

box_ color; 
buffer[]; 

_putimage(ixold- 5, iyold- 5, cimage, _GPSET); 

ix = (int)((rxO- xmin_tick) * xs + rect_xmin); 
iy = (int)(rect_ymax- (ryO- ymin_tick1) * ys1); 
_getimage(ix- 5, iy- 5, ix + 5, iy + 5, cimage); 

_setcolor(15); 
_moveto(ix, iy + 5); 
_lineto(ix, iy- 5); 
_moveto(ix- 5, iy); 
_lineto(ix + 5, iy); 

ixold = ix; 
iyold = iy; 

_setcolor(O); 
_rectangle(_GFILLINTERIOR, 520, 330, 640, 350); 

_settextposition(25, 65); 
_settextcolor(box_color); 
sprintf(buffer, "%i %li", (int)rxO, (long)ryO); 
_outtext(buffer); 
} 

I* cend() frees up the space used for cursor movements. 
*I 

void cend() 
{ 
_ffree(cimage); 
} 

• 



.. 

A.5. SSAVE. C 167 

A.5 ssave.c 

I* This file contains the routines open_data_file() and save(). 
*I 

#include <time.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <graph.h> 
#include <conio.h> 
#include <math.h> 
#include "sgadd.h" 
#include <string.h> 

extern struct rccoord rcoord; 
extern int tcolor, ecolor; 
extern int channel_dis1, channel_dis2; 
extern int channel_color1, channel_color2, box_color; 

extern int points_scan, stage_step, nm_per_point, stage_end, 
steps_per_nm; 

extern int multi_count, reverse_flag; 
extern long int stage_beg; 
extern char dur[]; 
extern double *data[]; 

extern char file_name[], file_num[], data_fileO; 
extern char comment[], stage[], buffer[]; 

I* open_data_file() obtains a file name from the user for 
data storage. If that file already exists, the user has the options 
of overwriting or trying again. Choosing to overwrite a file results 
in that file~s being deleted. Note that spectral files are indicated 
by the insertion of ~s~ after the and before the file number. 
*I 

void open_data_file(int m) 
{ 

char 
char 
FILE 

do{ 

inputs2 [2] ; 
*input, *input2i 
*stream; 

_settextposition(8, 15); 
rcoord = _gettextposition(); 
if (strcmp(data_file, "0") != O){ 

sprintf (buffer, "The last file was %s", data_file); 
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_settextcolor(ecolor); 
_outtext(buffer); 
} 

_settextcolor(tcolor); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(multi_string(7)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
input= gets(file_name); 
if (! strcmp( 1111

, file_name) ){ 
_clearscreen(_GCLEARSCREEN); 
return; 
} 

strcpy(data_file, file_name); 
if (m == 1) 

strcat (data_file, 11
• 

11
); 

else if (m == 2) 
strcat(data_file, 11 .s•i); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(multi_string(8)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
input= gets(file_num); 
strcat(data_file, file_num); 

if ((stream= fopen(data_file, "rb")) !=NULL){ 
fclose(stream); 
rcoord.row++; 
_settextcolor(ecolor); 
_settextposition(rcoord.row, rcoord.col); 
_outtext(prompt_string(2)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.c~l); 
_outtext(prompt_string(3)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(prompt_string(7)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
input2 = gets(inputs2); 
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if (inputs2[0] == ~y~ I I inputs2[0] -- ~y~) 
unlink(data_file); 

} 
} while(inputs2[0] !=~y~ && inputs2[0] !=~y~ && stream!=NULL); 

_clearscreen(_GCLEARSCREEN); 
return; 
} 

I* save() saves the current data set in the file given by 
file_name and file_num with file_num incremented by n (the number 
of scans-1, non-zero only in multi-mode). Note that the variable 
point_scan_tak is passed to save because the data collection may 
have been stopped prematurely and points_scan may not be equal to 
the number of data points that were actually taken. If the file 
already exists, open_data_file() is called. Note that for stage 
files the first three characters in the header are ~g~, ~a~, and 
~ d ~, while for spectra they are ~t ~, ~r ~, and ~m ~. 

*I 

void save(int n, int point_scan_tak, int m) 
{ 
time_t ltime; 
int i; 
int num1, numwritten; 
char *p, file_numt[3], *input, inputs[2]; 
FILE *stream; 

if (file_name[O] 
return; 

strcpy(data_file, file_name); 
if (m == 1) 

strcat(data_file, "."); 
else if (m == 2) 

strcat (data_file, ". S"); 
num1 = atoi(file_num); 
num1 = num1 + n; 
p = itoa(num1, file_numt, 10); 
strcat(data_file, file_numt); 

if ((stream= fopen(data_file, "rb")) !=NULL){ 
fclose(stream); 
_settextcolor(ecolor); 
_settextposition(10, 15); 
rcoord = _gettextposition(); 
_outtext(data_file); 

rcoord.row++; 
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_settextposition(rcoord.row, rcoord.col); 
_outtext(prompt_string(2)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(prompt_string(3)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(prompt_string(7)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
input= gets(inputs); 
_clearscreen(_GCLEARSCREEN); 

if (inputs[O] != 'y' && inputs[O] != 'Y') 
open_data_file(m); 

} 

stream = fopen(data_file, "wb"); 

if (m == 1) 
fprintf(stream, "gad"); 

else if (m == 2) 
fprintf(stream, "trm"); 

fprintf(stream, "%li ", ltime); 
if (m == 1) 

fprintf(stream, "%i %i ", point_scan_tak,, stage_step); 
else if (m == 2){ 

stage_end = (point_scan_tak - 1) * nm_per_point + (int)stage_beg; 
fprintf(stream, "%i %i ", nm_per_point, stage_end); 
} 

fprintf(stream, "%s %li ", dur, stage_beg); 
fprintf(stream, "%i %i %i ", reverse_flag, multi_count, n+1); 
fprintf(stream, "%s", comment); 
for (i=O; i!=4; i++) 

numwritten=fwrite(data[i],sizeof(double),point_scan_tak,stream); 
if (m == 1) 

fprintf(stream, " %s", stage); 
else if (m == 2) 

fprintf(stream, "%i", steps_per_nm); 
fclose(stream); 
} 
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A.6 slook.c 

I* This file contains the following routines: look_data(), 
plot(), dat_plot(), plottop(), edit_comment(), and resave(). 
*I 

#include <malloc.h> 
#include <time.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <graph.h> 
#include <conio.h> 
#include <bios.h> 
#include <math.h> 
#include "sgadd.h" 
#include <string.h> 

I* Note the use of static variables in this file. This is to 
allow the user to look at data with different set-up parameters 
without affecting the set-up parameters used in taking the data. 
*I 

static int points_scan, stage_step, nm_per_point, stage_end, 

static 
static 
static 

steps_per_nm; 
int multi_count, reverse_flag, scan; 
long int stage_beg; 
double *data[4]; . 

static char file_name[20], file_num[3], data_file[32]; 

static 
static 
static 
static 

int 
char 
char 
float 

point_scan_tak, multi_flag; 
comment[500], stage[50]; 
dur[S]; 

dmax, dmin, dmax1, dmin1; 
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extern int tcolor, ecolor, box_color, channel_color1, channel_dis1; 
extern long int rect_xmin, rect_ymin, rect_xmax, rect_ymax; 
extern char buffer[]; 
extern struct rccoord rcoord; 

time_t ltime; 
int commnum; 

I* look_data() allows the user to view previously collected 
data. 
*I 

void look_data(int m) 
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{ 
int 
int 
FILE 
char 
char 

i , chan , j , k ; 
numwritten, ch; 
*stream; 
inputs2[2], test[4], inputs[2]; 
*input, *input2; 

inputs2[0] = 'a'; 
stream = NULL ; 
input2 = inputs2; 
input = inputs; 

I* First, the user inputs a file name. If it does not exist or 
is not of the correct type as indicated by its first three header 
characters the user may quit or try again. Note also that after 
viewing one file, the user may then view another, continue to the 
next file in the number series, view or edit the comment, or quit. 
The string in inputs2[] indicates which option will be pursued having 
respective values 'a', 'c', 'e', and 'q'. 
*I 

do{ 
_settextcolor(tcolor); 
_settextposition(9, 20); 
rcoord = _gettextposition(); 

if (inputs2[0] == 'a'){ 
_outtext(multi_string(7)); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
input= gets(file_name); 
if (strcmp(file_name, 1111

) == 0){ 
_setvideomode(_DEFAULTMODE); 
return; 
} 

} 

strcpy(data_file, file_name); 
if (m == 1) 

strcat(data_file, 11 
•

11
); 

else if (m == 2) 
strcat(data_file, 11 .S 11

); 

if (inputs2[0] == 'a'){ 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(multi_string(8)); 

rcoord.row++; 



A.6. SLOOK.C 

_settextposition(rcoord.row, rcoord.col); 
input= gets(file_num); 
} 
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I* If 'C' or 'c' has been hit the next data file with the same 
name but incremented by one number is read in. For example, if the 
user was looking at "steve.1" and the 'C' or 'c' key was hit, 
"steve.2" would be read in. 
*I 

if (inputs2[0] == 'c'){ 
i = atoi(file_num); 
i++; 
itoa(i, file_num, 10); 
} 

strcat(data_file, file_num); 
if (inputs2[0] == 'e') 

edit_comment(m); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext (data_file) ; 

if ((stream= fopen(data_file, "rb")) --NULL){ 
rcoord.row++; 
_settextcolor(ecolor); 
_settextposition(rcoord.row, rcoord.col); 
_outtext(prompt_string(4)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(prompt_string(5)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(prompt_string(7)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
input2 = gets(inputs2); 
} 

_clearscreen(_GCLEARSCREEN); 

if (stream != NULL){ 
for (i=O; i!=3; i++){ 

ch = fgetc(stream); 
test[i] = (char)ch; 
} 



174 APPENDIX A. DATA COLLECTION PROGRAM 

test [i] = '\0'; 
if (strcmp(test, 11 gad 11

) !=0 && m==1 II strcmp(test, 11 trm 11
) !=0 && 

m == 2){ 
_settextcolor(ecolor); 
_settextposition(9, 20); 
rcoord = _gettextposition(); 
_outtext(data_file); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
if (m == 1) 

_outtext(error_string(9)); 
else if (m == 2) 

_outtext(error_string(10)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(prompt_string(5)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(prompt_string(7)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
input2 = gets(inputs2); 
_clearscreen(_GCLEARSCREEN); 
} 

else{ 
fscanf(stream, 11 %li 11

, &ltime); 
if (m == 1) 

fscanf(stream, 11 %i %i 11 &points_scan, &stage_step); 
else if (m == 2) 

fscanf(stream, 11 %i %i 11
, &nm_per_point, &stage_end); 

fscanf(stream, 11 %s %li 11 dur, &stage_beg); 

if (m == 1) 
stage_end = (int)(stage_beg + 

(points_scan-1)*stage_step); 
else if (m == 2) 

points_scan = (stage_end - (int)stage_beg) I 
nm_per_point + 1; 

fscanf(stream, "%i %i %i 11 &reverse_flag, &multi_count, 
&scan); 

for (i = 0; (i < 498) && (ch=fgetc(stream)) I= 
comment[i] = (char) ch; 

comment[i] = (char) ch; 

,._,.. 
' 

i++) 
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i++; 
ch = fgetc(stream); 
comment[i] = (char)ch; 
i++; 
comment [i] = (char) ~\0 ~; 
commnum = i; 

for (i=O; i<4; i++) 
if (data[i] != NULL) 

free (data[i]); 

for (i=O; i<4; i++){ 
data[i]=(double*)malloc(points_scan*sizeof(double)); 
if (data[i] == NULL){ 

} 

for (j=O; j<i; j++) 
free(data[j]); 

_settextposition(10, 15); 
rcoord = _gettextposition(); 
_settextcolor(ecolor); 
sprintf(buffer, 11 %s%i 11

, error_string(U), i); 
_outtext(buffer); 

rcoord.row++; 
_settextposit~on(rcoord.row, rcoord.col); 
_outtext(odd_string(1)); 

while (k == 0) 
k = kbhitO; 

k = getche(); 
_settextcolor(tcolor); 
_setvideomode(_DEFAULTMODE); 
return; 
} 

for (i=O; i!=4; i++) 
numwritten=fread(data[i],sizeof(double),points_scan, 

stream); 

if (m == 1) 
fscanf (stream, 11 %s 11

, stage); 
else if (m == 2) 

fscanf(stream, 11 %i 11
, &steps_per_nm); 

fclose(stream); 

I* With the current data collection system, only one channel 
is utilized, namely channel 0. Thus, this next section is commented 
out but is saved for possible future use. 
*I 
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chan = 0; 

/*if (inputs2[0] == 'a'){ 
do{ 

_settextposition(10, 20); 
_settextcolor(tcolor); 
rcoord = _gettextposition(); 
_outtext(look_string(1)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
input2 = gets(inputs2); 
chan= atoi(inputs2); 

if (chan < 0 I I chan > 3){ 
_clearscreen(_GCLEARSCREEN); 
_settextcolor(ecolor); 
_settextposition(10, 20); 
_outtext(error_string(5)); 
} 

} while (chan< 0 I I chan> 3); 
_clearscreen(_GCLEARSCREEN); 
}*/ -

I* The data having been read from the input file, plot() is 
then called to display the data and retrieve from the user the 
aforementioned options regarding further viewing. 
*I 

} 

inputs2[0] = (char)(plot(chan, m) & OxOFF); 

/*while (inputs2[0] == '0' I I inputs2[0] == '1'1 I 

} 

inputs2[0] == '2' II inputs2[0] == '3'){ 
chan= atoi(inputs2); 
inputs2[0] = (char)(plot(chan, m) & OxOFF); 
}*/ 

} while (inputs2[0]=='c' I I inputs2[0]=='a' I I inputs2[0]=='e'); 

for (i=O; i<4; i++) 
if (data[i] != NULL) 

free (data[i]); 

, I* cend() frees space that was allocated for some of 
the plotting routines. 
*I 
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cend(); 
_setvideomode(_DEFAULTMODE); 
return; 
} 
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I* plot() displays the data and retrieves options from the user 
regarding future viewing. It also allows the user to move a cursor 
from point to point and see the actual data value. This can be done 
singly, in steps of ten, or by jumping directly to the first, last, 
maximal, or minimal points. The screen can also be toggled between 
a full scale plot with 0 minimum and an expanded view scaled to the 
minimum of the data. 
*I 

int plot(int chan, int m) 
{ 
int i, ch, j, imin, imax, scale= i; 
int imini, imaxi, fitflag = 0; 
float max, min, maxi, mini; 

I* The top of the screen is plotted by plottop() and the 
boxes are drawn. 
*I 

ch = 'n'; 
plottop(m); 

_settextcolor(tcolor); 
_settextposition(24, i); 
rcoord = _gettextposition(); 
_outtext(look_string(2)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(look_string(3)); 

_setcolor(box_color); 
_rectangle(_GBORDER, (short)rect_xmin, (short)rect_ymin, 

(short)rect_xmax, (short)rect_ymax); 

I* If there is data in the second array as the result of some 
other program, for example a fitting program, it will be displayed 
in this routine as well. It is shown as the second channel. 
*I 

if (*data[i] > .Oi) 
fitflag = i; 
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dmax = (float)*(data[chan]) + .Oi; 
dmin = (float)*(data[chan]) - .Oi; 
imin = 0; 
imax = 0; 

dmaxi = (float)*(data[i]) + .Oi; 
dmini = (float)*(data[i]) - .Oi; 

I* The max and min values of the data are determined, and the 
data are drawn by dat_plot(). 
*I 

for (i=O; i<points_scan; i++){ 
if (*(data[chan] + i) > dmax){ 

dmax =(float) *(data[chan] + i); 
imax = i; 
} 

else if (*(data[chan] + i) < dmin){ 
dmin =(float) *(data[chan] + i); 
imin = i; 
} 

if (fitflag == i){ 

} 

if (*(data[i] + i) > dmaxi){ 
dmaxi = (float) *(data[i] + i); 
imaxi = i; 
} 

else if (*(data[i] + i) < dmini){ 
dmini = (float) *(data[i] + i); 
imini = i; 
} 

} 

max = dmax; 
min = dmin; 
if (fitflag == i){ 

if (dmax < dmaxi) 
max = maxi = dmaxi; 

else 
maxi = max = dmax; 

if (dmin > dmini) 
min = mini = dmini; 

else 
mini = min = dmin; 

} 
dat_plot(chan, m, max, 0, fitflag, maxi, 0); 

i = 0; 
j = i; 
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I* csave() and rpointc() deal with cursor allocation, placement, 
and movement. See also splot.c. 
*I 

if (m == 1){ 
csave((float)(stage_beg+i*stage_step), (float)*(data[chan]+ i)); 
rpointc((float)(stage_beg+i*stage_step), (float)*(data[chan]+i)); 
} 

else if (m == 2){ 
csave((float)(stage_beg+i*nm_per_point), (float)*(data[chan]+i)); 
rpointc((float)(stage_beg+i*nm_per_point),(float)*(data[chan]+i)); 
} 

I* The next section of code moves the cursor around the 
screen and allows the user to provide other input. The values 
of ch returned by _bios_keybrd correspond as follows: 

exit characters: 
'q' == Ox1071, '0' == Ox0b30, '1' == Ox0231, '2' == Ox0322, 
'3' == Ox0433, 'c' == Ox2e63, 'a' == Ox1e61, and 'e' == Ox1265; 

cursor/rescale characters: 
Ox4700 --HOME moves cursor to the first point; 
Ox4f00 -- END moves cursor to the last point; 
Ox4900 -- PGUP moves cursor to the maximal point; 
Ox5100 -- PGDN moves cursor to the minimal point; 
Ox4800 --UPARROW moves cursor forward 10 points (if possible); 
Ox5000 -- DNARROW moves cursor backward 10 points (if possible); 
Ox4d00 -- RTARROW moves cursor forward 1 point (if possible); 
Ox4b00 -- LFARROW moves cursor backward 1 point (if possible); 
Ox1372 -- 'r' rescales the y-axis. 
*I 

ch = _bios_keybrd(_KEYBRD_READ); 
while (ch!=Ox1071 && /*ch!=Ox0b30 && ch!=Ox0231 && ch!=Ox0332 && 

ch!=Ox0433 &&*/ ch!=Ox2e63 && ch!=Ox1e61 && ch!=Ox1265){ 
if (ch == Ox4700 && j != 1){ 

j = 1; 
i = 0; 
if (m == 1) 

rpointc((float)(stage_beg + i * stage_step), 
(float)*(data[chan] + i)); 

else if (m == 2) 

} 

rpointc((float)(stage_beg + i * nm_per_point), 
(float)*(data[chan] + i)); 

if (ch == Ox4f00 && j < points_scan){ 
j = points_scan; 
i = points_scan- 1; 
if (m == 1) 
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rpointc( (float) (stage_beg + i * stage_step), 
(float)*(data[chan] + i)); 

else if (m == 2) 
rpointc((float)(stage_beg + i * nm_per_point), 

(float)*(data[chan] + i)); 
} 

if (ch == Ox4900){ 
j = imax + 1; 
i = imax; 
if (m == 1) 

rpointc((float)(stage_beg + i * stage_step), 
(float)* (data[chan] + i)); 

else if (m == 2) 
rpointc((float)(stage_beg + i * nm_per_point), 

(float)*(data[chan] + i)); 
} 

if (ch == Ox5100){ 
j = imin + 1; 
i = imin; 
if (m == 1) 

rpointc((float)(stage_beg + 

else if (m == 2) 

i * stage_step), 
(float)*(data[chan] + i)); 

rpointc((float)(stage_beg + i * nm_per_point), 
(float)*(data[chan] + i)); 

} 
if (ch == Ox4800 && j <= points_scan - 10){ 

j = j + 10; 
i = i + 10; 
if (m == 1) 

rpointc((float)(stage_beg + i * stage_step), 
(float)*(data[chan] + i)); 

else if (m == 2) 
rpointc((float)(stage_beg + i * nm_per_point), 

(float)*(data[chan] + i)); 
} 

if (ch -- Ox5000 && j > 10){ 
j = j - 10; 
i = i - 10; 
if (m == 1) 

rpointc((float)(stage_beg + 

else if (m == 2) 

i * stage_step), 
(float)*(data[chan] + i)); 

rpointc((float)(stage_beg + i * nm_per_point), 
(float)*(data[chan] + i)); 

} 
if (ch -- Ox4b00 && j != 1){ 

j--; 
i--; 
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if (m == i) 
rpointc((float)(stage_beg + i * stage_step), 

(float)*(data[chan] + i)); 
else if (m == 2) 

} 

rpointc((float)(stage_beg + i * nm_per_point), 
(float)*(data[chan] + i)); 

else if (ch == Ox4d00 && j < points_scan){ 
i++; 
j++; 
if (m == i) 

rpointc((float)(stage_beg + i * stage_step), 
(float)*(data[chan] + i)); 

else if (m == 2) 

} 

rpointc((float)(stage_beg + i * nm_per_point), 
(float)*(data[chan] + i)); 

else if (ch == Oxi372){ 
scale = -scale; 

cend(); 
plottop(m); 
_settextcolor(tcolor); 
_settextposition(24, i); 
rcoord = _gettextposition(); 
_outtext(look_string(2)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(look_string(3)); 

_setcolor(box_color); 
_rectangle(_GBORDER, (short)rect_xmin, (short)rect_ymin, 

(short)rect_xmax, (short) rect_ymax); 

if (scale == i) 
dat_plot(chan, m, max, 0, fitflag, maxi, 0); 

else 
dat_plot(chan, m, max, min, fitflag, maxi, mini); 

i = 0; 
j = i; 
if (m == i){ 

csave((float)(stage_beg + i * stage_step), 
(float)*(data[chan] + i)); 

rpointc((float)(stage_beg + i * stage_step), 
(float)*(data[chan] + i)); 

} 
else if (m == 2){ 

csave((float)(stage_beg + i * nm_per_point), 

181 
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(float)*(data[chan] + i)); 
rpointc((float)(stage_beg + i * nm_per_point), 

(float)*(data[chan] + i)); 
} 

ch = _bios_keybrd(_KEYBRD_READ); 
} 

_setvideomode(_DEFAULTMODE); 
return(ch); 
} 

I* dat_plot() takes care of plotting out the axes and data. 
*I 

dat_plot(int chan, int m, float max, float min, 
int fitflag, float maxi, float mini) 

{ 
int i· 

' 
rboundi((float)stage_beg, min, (float)stage_end, max); 

if (fitflag == i) 
rbound2(mini, maxi); 

for (i=O; i < points_scan; i++){ 
if (m == i){ 

} 

rpointi((float)(stage_beg + i * stage_step), 
(float)*(data[chan] + i)); 

if (fitflag == i) 
rpoint2((float)i + i, (float)*(data[i] + i)); 

} 
else if (m == 2){ 

} 

rpointi((float)(stage_beg + i * nm_per_point), 
(float)*(data[chan] + i)); 

} 

if (fitflag == i) 
rpoint2((float)(stage_beg + i * nm_per_point), 

(float)*(data[i] + i)); 
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I* plottop() plots the information that is above the window 
of data. Note that this is a different subroutine than top() 
because of the use of the static variables for looking at data. 
*I 

void plottop(m) 
int m; 
{ 
char *p, file_numt[3]; 
int num1, i; 

if (_setvideomode(_ERESCOLOR)) 

' else{ 
_setvideomode(_DEFAULTMODE); 
_settextposition(10, 20); 
rcoord = _gettextposition(); 
_settextcolor(ecolor); 
_outtext(odd_string(6)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(odd_string(1)); 

while (i == 0) 
i = kbhitO; 

i = getche(); 
_clearscreen(_GCLEARSCREEN); 
return; 
} 

_settextcolor(tcolor); 
_settextposition(1, 1); 
rcoord = _gettextposition(); 
_outtext(window_string(1)); 
_outtext(data_file); 

rcoord.col = rcoord.col + 25; 
_settextposition(rcoord.row, rcoord.col); 
time(&ltime); 
_outtext((ctime(&ltime))); 

rcoord.col = rcoord.col + 35; 
_settextposition(rcoord.row, rcoord.col); 
sprintf(buffer, "Display %i " channel_dis1); 
_settextcolor(channel_color1); 
_outtext(buffer); 

~settextcolor(tcolor); 
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_settextposition(2, 1); 
record= _gettextposition(); 
_outtext(window_string(4)); 
if (m == 1) 

sprintf (buffer, "%1i", stage_ beg); 
else if (m == 2) 

sprintf (buffer, "%1i nm", stage_ beg); 
_outtext(buffer); 

rcoord.col = rcoord.col + 20; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(window_string(5)); 
sprintf (buffer, "%i", points_ scan); 
_outtext(buffer); 

rcoord.col = rcoord.col + 20; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(window_string(3)); 
_outtext(dur); 

if (multi_count != 1 && multi_count I= 0){ 
_settextposition(3, 1); 

} 

record= _gettextposition(); 
_outtext(window_string(6)); 

rcoord.col = rcoord.col + 20; 
_settextposition(rcoord.row, rcoord.col); 
sprintf(buffer, "Scan %i out of %i scans", scan, multi_count); 
_outtext(buffer); 

if (reverse_flag == 2){ 

} 

rcoord.col = rcoord.col + 30; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(window_string(8)); 
} 

I* edit_comment() allows the user to change the comment in a 
safer manner than directly editing the file via the OS. 
*I 

void edit_comment(int m) 
{ 
int i, ch; 
char *input, inputs[2]; 

_settextcolor(tcolor); 
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_settextposition(5, 5); 
record= _gettextposition(); 
_settextposition(rcoord.row, rcoord.col); 
_outtext(set_string(11)); 
_wrapon(_GWRAPON); 

if(comment[O] != ~-~){ 

rcoord.row++; 
_settextcolor(ecolor); 
_settextposition(rcoord.row, rcoord.col); 
_outtext(comment); 
_settextcolor(tcolor); 
} 

rcoord.row+=2; 
_settextposition(rcoord.row, rcoord.col); 
_outtext("Hit e to change the comment."); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
input= gets(inputs); 
if (inputs[O] == ~e~ I I inputs[O] == ~E~){ 

_clearscreen(_GCLEARSCREEN); 
_settextposition(15, 5); 
record= _gettextposition(); 
_settextposition(rcoord.row, rcoord.col); 
_outtext(stage_string(5)); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
for (i=O; (i<498) && (ch=getchar()) I= ~-~; i++) 

comment[i] = (char)ch; 
comment[i] = (char)ch; 
i++; 
ch = getchar(); 
comment[i] = (char)ch; 
i++; 
comment [i] = ~\0 ~; 

resave(m); 
} 

_clearscreen(_GCLEARSCREEN); 
return; 
} 

I* If the user edited the comment, resave() is called to save 
the new comment as well as to resave all the old data in the same 
file. 
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void resave(int m) 
{ 
int i; 
int numwritten; 
FILE *stream; 

stream= fopen(data_file, "wb"); 

if (m == 1) 
fprintf (stream, "gad"); 

else if (m == 2) 
fprintf (stream, "trm"); 

fprintf(stream, "%li ", ltime); 
if (m == 1) 

fprintf(stream, "%i %i" points_scan, stage_step); 
else if (m == 2) 

fprintf(stream, "%i %i ", nm_per_point, stage_end); 
fprintf(stream, "%s %li ", dur, stage_beg); 
fprintf(stream, "%i %i %i ", reverse_flag, multi_count, scan); 
fprintf(stream, "%s", comment); 
for (i=O; i!=4; i++) 

numwritten = fwrite(data[i],sizeof(double),points_scan,stream); 
if (m == 1) 

fprintf(stream, " %s", stage); 
else if (m == 2) 

fprintf (stream, " %i", steps_per _nm) ; 
fclose(stream); 
} 
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A.7 sconst.c 

I* This file contains the following routines: 
main_string(), error_string(), setup_string(), stage_string(), 
specset_string(), set_string(), prompt_string(), data_string(), 
multi_string(), window_string(), look_string(), and odd_string(). 

This file contains most of the string constants used ~n 
the program. This was done for two reasons: it saves data space 
for str~ngs that are used more than once; and it allows some 
menus to oe output with for loops instead of having one line 
for each output. Basically, these are subroutines that return 
a string. The first part ~s the definition of the static char 
which is an array of character strings. The function then returns 
the string element indexed by the input argument if that argument 
is of an acceptable value; otherwise it returns the Oth str~ng. 
*I 
#include 11 sgadd.h 11 

I* main_string() is used for the main menu. 
*I 
char *main_string(n) 
int n; 
{ . 
stat~c char *string[] = { 

11 error 11
, 

11 1: Read in stage setup file 11
, 

11 2: Read in spectrum setup file 11
, 

11 3: Create stage setup file 11
, 

11 4: Create spectrum setup, file 11
, 

11 5: Take DATA with stage 1
, 

11 6: Take a SPECTRUM11
, 

"7: Look at DATA taken with stage 11
, 

11 8: Look at a SPECTRUM .. , 
"9: Quit", 
}; 

return((n < 1 I In> 9) ? string[O] string[n]); 
} 

I* error_string() is used for a variety of errors. 
*I 
char *error_string(n) 
int n· { . 
static char *string[] = { 

"error11
, 

"Stage parameters not set 11
,, 

"Monochromator not set 11
, 

"Duration not set 11
, 

"This is not a stage setup, file 11
, 

"Not an acceptable number 1
, 

"Bounds not set", 
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11This is not a spectrum setup file 11
, 

11 You must type e~ther long or short 11
, 

11 This is not a data file 11
, 

11This is not a spectrum file 11
, 

11 Malloc failed on 11 

}; 
return((n < 1 I I n > 11) ? string[O] : string[n]); 
} 

I* setup_string() is used for the set-up menu for stage data; 
strings 5 - 9 are also used in the set-up menu for spectra. 
*I 
char *setup_string(n) 
int n; 
{ 
static char *string[] = { 

error11
, 

1: Stage starting position.,, 
2: #of points in scan11

, 

3: # of stage steps between points 11
, 

4: Choose stage 11
, 

5: Duration (in ms) 11
, 

6: Comment of 498 characters or less - end with -., 
7: Display all 11

, 

' 8: Save setup11
, 

11 9: Return to main menu 11 

}; 
return((n < 1 I I n > 9) ? string[O] string[n]); 
} 

I* stage_string() is used in the routines in which the user 
enters the parameters for data taken with the stage or for parameters 
used the same for both stage data and spectra. 
*I 
char *stage_string(n) 
int n; 
{ 
static char *string[] = { 

11 Invalid string11
, 

11 Input total # of points in scan 11
, 

11 Input # of stage steps between points 11
, 

11 lnput duration (in ms) - maximum 10000 11
, 

11 Input stage position where scan should begin 11
, 

11 Input comment of 498 characters or less and end with a -., 
11 Input stage name (short or long) 11

, 
11 Input lower bound 11

, 
11 Input upper bound 11 

}; 
return((n < 1 I I n > 8) ? string[O] string[n]); 
} 

I* specset_string() is used for the set-up menu for spectra and 
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in the routines in which the user enters the parameters for spectra. 
*I 
~har *specset_string(n) 
1nt n; 
{ 
static char *string[] = { 

"Take a SPECTRUM menu:", 
1: Initial wavelength in nm", 
2: Final wavelengtli in nm", 
3: #nanometers oetween p,oints", 
4: #steps per nanometer', 

Input initial wavelength (in nm)", 
Input final wavelength (in nm)", 
Input# nanometers oetween points", 
Input# motor steps per nanometer (2 or -8(surf))", 
Input the current monochromator position (in nm)" 

}; 
return((n < 1 I I n > 9) ? string[O] : string[n]); 
} 

I* set_string() is used by the routine display(). 
*I 
char *set_string(n) 
int n· 
{ ' 
static char *string[] = { 

"error", 
"Stage start", 
"Stage end", 
"Stage steps between points", 
"Initial wavelength in nm", 
"Final wavelengtli in nm", 
"Nanometers between points", 
"Duration per point", 
"Points in scan", 
"Lower bound on data", 
"Upper bound on data", 
"Comment" 
}; 

return((n < 1 I I n > 11) ? string[O] string[n]); 
} 

I* prompt_string() is used in a variety of routines to prompt 
the user for information regarding file management and to display 
warnings for the same. 
*I 
char *prompt_string(n) 
int n· 
{ ' 
static char *string[] = { 

"error", 
"Enter a file name " 
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"File Already Exists! ! ! 11
, 

"Do you want to OVERWRITE?", 
"File Does NOT Exist! ! ! 11

, 

"Do you want try another?", 
"Answer Y or Nor Q", 
"Answer Y or N" 
}; 

return((n < 1 I I n > 7) ? string[O] string[n]); 
} 

I* data_string() is used for the data taking menu. 
*I 
char *data_string(n) 
int n; 
{ 
static char *string[] = { 

"Take DATA with stage menu:", 
"1 : Change comment" , 
"2: Set up multi", 
"3: Open aata files", 
"4: Take DATA", 
"5: Look at DATA", 
"6: Return to main menu" 
}; 

return((n < 1 I I n > 6) ? string[O] string[n]); 
} 

I* multi_string() is used by the routine set_multi(). 
*I 
char *multi_string(n) 
int n; 
{ 
static char *string[] = { 

"error", 
"Input number of scans (must be even number)", 
"Must be an even, positive number", 
"1: Stage takes data in one direction", 
"2: Stage takes data in both directions", 
"Input I or 2", 
"5: Return to main menu", · 
"Input data fil.e name (maximum 8 characters) 11

, 

"Input data file number (maximum 3 digits) 11
, 

"1: Turn multi off", 
"2: Turn multi on", 
}; 

return((n < 1 I I n > 10) ? string[O] string[n]); 
} 

I* window_string() is used by top() and plottop() for strings 
appearing at the top of data display windows. 
*I 
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char *window_string(n) 
int n; 
{ 
static char *stringO = { 

"error", 
"File Name", 
"Date ", 
"Duration (ms) " 
"Begin", 
"Po1nts ", 
"Multi is on", 
"Scans", 
"Reverse", 
"Input Y if you wish to continue", 
"InputS if you wish to save and quit", 
"Input Q if you wish to quit without saving", 
"Remember if you quit to put the stage bac:K to origin" 
}; 

return((n < 1 I I n > 12)? string[O] : string[n]); 
} 

I* look_string() is used for strings to be displayed below 
the data display w1ndow when viewing previously collected data. 
*I 
char *look_string(n) 
int n; 
{ 
static char *string[] = { 

"error", 
"Input channel: 0, 1, 2, or 3", 

"Input q=quit, a=do another file, c=continue to the next file,", 
"r=rescale, e=edit comment, or new channel in current file" 
}; 

return((n < 1 I I n > 3) ? string[O] : string[n]); 
} 

I* odd_string() contains a wide variety of strings used 
throughout the program. 
*I 
char *odd_string(n) 
int n; 
{ 
static char *string[] = { 

"error", 
"Hit a key to continue", 
"CheckListener error; does device or board", 
" name match given confiiiuration name?", 
"GPIB function call error: , 
''Input a y to continue or a q to quit", 
"Graphics not supported.", 
"Input q to quit y for another" 
"Cannot init1alize IEEE system" 
}; 

return((n < 1 I I n > 8) ? string[O] : string[n]); 
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} 



Appendix B 

Data Fitting Program 

B.l fitX.c 

I* The following files are necessary to compile this program: 
1fitaux.c, fitgraph.c, calc.c. Also required are the numerical 
recipes routines convlv.c, covsrt.c, four1.c, gaussj.c, mrqcof.c, 
mrqmin.c, nrutil.c, realft.c, and twofft.c. See also Makefile for 
more information on compiling. 

This file contains the following routines: 
main(), create_control_panel(), create_file_popups(), 
create_set_popups(), mc_proc(), file_open_proc(), 
file_save_proc(), file_close_proc(), func_proc(), conv_proc(), 
flag_proc(), ibase_proc(), mc_set_proc(), file_saveas(), 
func_choose(), conv_choose(), flag_set(), ibase_set(), mc_set(), 
and quit_proc(). 
*I 

#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 
#include <xviewlxview.h> 
#include <xviewlpanel.h> 
#include <xviewlnotice.h> 
#include <xviewlcms.h> 
#include <xviewlsvrimage.h> 
#include <xviewlicon.h> 
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#include "fitX.h" 
#include "lhomelxenonlsteveiBitmapslbill.bmp" 
#include "lhomelxenonlsteveiBitmapslbill_mask.bmp" 

I* The structure dat_set is used to hold all of the important 
data needed by each window. This includes all of the data imported 
from the data file and the parameters of the fit. The variables 
loaded from the data files are detailed in the data collection 
program. The remainder are described below. 

file_name is the name of the data file whose data is being 
fit by the current window. 

func indicates the analytical function being convolved with 
the response: 1:biexponential, 2:Kohlrausch. 

conv indicates the response function: 1:Gaussian, 
2:sech squared, 3:Lorentzian, 4:input response data. 

time_per_point is the conversion for data points to time in 
picoseconds. 

data is the array of pointers to the data. 
datmax and datmin hold the maximum and minimum data values 

after correction for the calculated baseline value. 
param stores the values of the fitting parameters, starting 

with the FWHM in the zeroth element and progressing in the order a1, 
a2, b1, b2, c1, c2, c3, and c4. 

tzero holds the position of the time zero point. The default 
value is 1. 

left_bnd and right_bnd indicate the points between which 
the squared error is calculated. Default values are 1 and 
data.points_scan, respectively. 

flags indicates the type of data being examined in the first 
three bits: 1: 0 => fs data, 1 => ps data; 2: 0 => absorption, 
1 => fluorescence; 3: 0 => not a bleach, 1 => a bleach. Bit four is 
used to let the program know that autocorrelation data is going to 
be fit. This data will be fit by one of the bare response functions 
(that is unconvolved). This also changes the effect of the Fit 
button. The fifth bit indicates whether or not the contribution of 
each residual to the squared errors is weighted by dividing it by 
the corresponding data value divided by 100 or not (1 or 0). The 
default value is 3, that is non-bleach ps fluorescence with 
unweighted errors. 
*I 

struct dat_set data; 

I* lstsqer is the squared error and ibase is the first point of 
the baseline. 
*I 

double lstsqer = 0; 
int ibase; 
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I* The array buffer is a generic char buffer. Its size ensures 
that it can accept the comment from opened data files; the comment is 
not saved. 
*I 

char buffer[500]; 

I* The array pdelta holds the incremental values for changing 
the parameters by the keypad. The arrays pmax and pmin hold upper 
and lower bounds on the values of the parameters. p~elta is set up 
in set_pdelta_mat(). The values depend upon the type of data as 
indicated by data.flags. pmax and pmin are set up in 
set_pextrema_mats(). Note that their values depend on the function 
selected. 
*I 

float pdelta[12], pmin[9], pmax[9]; 

I* saved stores the save status of the data corresponding to the 
identically indexed canvas in dat_wins. Values are -1:no data yet; 
O:saved; 1:never saved; and 2:saved, but changed since last save. 
*I 
int saved; 

I* The nine least significant bits in mc_flags indicate which of 
the parameters are to be randomly varied when the 11 Fit 11 button is 
selected. The bits correspond in increasing order to the parameters 
FWHM and a1-c4. If the bit is 11 on 11

, the corresponding parameter is 
active; otherwise it's not. flag_mask indicates which parameters are 
valid for the current decay function. 
*I 
int mc_flags, flag_mask; 

I* def_event_proc is a pointer to a function returning a type 
void. It is used to store the location of the default event handler 
for a text item. See also keypad(). 
*I 

void (*def_event_proc)(); 

I* The following variables are used for input response data. 
Note that only _one_ set of response data can be used by the program 
at a time. fcnv_name is the array containing the name of the file 
containing the response data. cnvpts is the num~er of points of 
said data. resp_step is the number of stage steps per point in 
gathering the response data. icnvmax is the maximum value of the 
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response data set. cnv is a pointer to the dynamically allocated 
array of response data. 
*I 

char fcnv_name[51]; 
int cnvpts, resp_step, icnvmax; 
double *cnv; 

I* The following are the indices into the colormap segment used 
in this program for both plotting and the control panel. Their 
values are set_ in setup_graphics 0. 
*I 

int data_color, fit_color, resid_color, tO_color, box_color; 
int label_color; 
int white, black; 

I* The following are many of the xview structures used in 
constructing the user interface for this program. main_frame and 
control_panel are the frame and panel of the control panel 
respectively. 

file_menu and set_menu are the menu structures invoked by the 
"File" and "Set" buttons respectively. 

file_open_frame and file_saveas_frame are the frames for the 
windows invoked by selecting the "Open" and "Save As" options in 
file_menu respectively. 

sd_text, tO_text, left_bnd_text, and right_bnd_text are the 
panel items, in this case text items, corresponding to the displayed 
items for FWHM, tO, left, and right on the control panel. error_item 
is the panel item (a panel message) used to display the value of the 
squared error. 

func_frame, conv_frame, flag_frame, ibase_frame, and 
mc_set_frame are the frames for the windows displayed upon selecting 
the corresponding item from the set_menu. fcnv_open_frame is 
displayed upon selecting to use response data in place of an 
analytical response function. 

fname_item, sname_item, and fcnv_name_item are the panel 
items for the file names entered in the file_open_frame, 
file_saveas_frame, and fcnv_open_frame respectively. comment_item 
is the item for the comment that can be saved in the header. 

func_item and conv_item are the panel (choice) items on the 
panels owned by func_frame and conv_frame respectively. flag_item 
and mc_set_item are the panel (toggle and checkbox) items on the 
panels owned by flag_frame and mc_set_frame respectively. ibase_item 
is the panel (text) item on the panel owned by ibase_frame. 

ems is the colormap segment created in setup_graphics() and 
used by both control panel and canvases alike. 

dat_win is the data window canvas. 
Note that for all of the above there is always and exactly 
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one such item created. 
*I 

Frame main_frame; 
Panel control_panel; 
Menu file_menu, set_menu; 
Panel_item sd_text, tO_text, left_bnd_text, right_bnd_text; 
Panel_item error_item; 

Frame file_open_frame, file_saveas_frame, fcnv_open_frame; 
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Frame func_frame, conv_frame, flag_frame, ibase_frame, mc_set_frame; 

Pari.el_item 
Panel_item 
Cms ems; 

fname_item, sname_item, comment_item, fcnv_name_item; 
func_item, conv_item, flag_item, ibase_item, mc_set_item; 

Canvas dat_win; 

I* The main routine first presets several variables. Note that 
the value of flag_mask corresponds to the default value of 
data.func = 1, which corresponds to the biexponential. 

xv_init strips and applies any command line arguments 
intended for the server and initializes the connections thereto. At 
most there should remain one argument (beside the program name), a 
file to be opened initially. If there are too many arguments, the 
program returns after printing an error message. 

Next the main frame is created and a routine is interposed on 
the destruction to ensure proper cleanup of dynamically allocated 
variables. Then the remainder of the setup is carried out in several 
routines and the frame is fit around its panel. 

If an initial file was indicated, it is opened. In any case 
the the main loop is entered. 
*I 

static Notify_value fit_destroy_func(); 

main(int argc, char *argv[]) 
{ 
Server_image bill_image, bill_mask_image; 
Icon bill_icon; 

data.tzero = 1; 
data.left_bnd = 1; 
data.right_bnd = 1; 
data.func= 1; 
data.conv= 1; 
data.flags = (unsigned) 3; 
mc_flags = 0; 
flag_mask = 367; 
saved= -1; 
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xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL); 
if (argc > 2){ 

fprintf(stderr, "Too many command line arguments.\n"); 
exit(-2); 
} 

setup_ colors 0; 

main_frame = (Frame)xv_create((int)NULL, FRAME, 
FRAME_LABEL, "fitX", 
WIN_CMS, ems, 
NULL); 

if (main_frame == 0){ 
fprintf(stderr, "Allocation error for the main frame.\n"); 
exit(-1); 
} 

notify_interpose_destroy_func(main_frame, fit_destroy_func); 

setup_graphics(); 

create_control_panel(); 
create_file_popups(); 
create_set_popups(); 
window_fit(main_frame); 

bill~image = (Server_image)xv_create((int)NULL, SERVER_ IMAGE, 
XV_WIDTH, 64, 
XV_HEIGHT, 64, 
SERVER_IMAGE_X_BITS, bill_bits, 
NULL); 

bill_mask_image = 
XV_WIDTH, 
XV_HEIGHT, 

(Server_image)xv_create((int)NULL, 
64, 

XV_DEPTH, 
SERVER_IMAGE_X_BITS, 
NULL); 

64, 
1, 
bill_mask_bits, 

bill_icon = (Icon)xv_create(main_frame, ICON, 
ICDN_IMAGE, bill_image, 
ICON_MASK_IMAGE, bill_mask_image, 
NULL); 

xv_set(main_frame, FRAME_ICON, bill_icon, NULL); 

if (argc == 2){ 
xv_set(fname_item, PANEL_VALUE, argv[1], NULL); 
file_open(fname_item, (Event *)NULL); 
} 

window_main_loop(main_frame); 
exit(O); 

SERVER_ IMAGE, 
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} 

I* create_control_panelO creates all of the panel items and 
menus associated with the control panel. 
*I 

void create_control_panel() 
{ 
int i; 
char error [18] ; 
char alerstr[18]; 
Attr_avlist list; 
Panel_item item, text_item; 

dat_win = (Canvas)xv_create(main_frame, CANVAS, 
CANVAS_X_PAINT_WINDOW, TRUE, 
CANVAS_AUTO_SHRINK, FALSE, 
CANVAS_AUTO_EXPAND, FALSE, 
CANVAS_WIDTH, 600, 
CANVAS_HEIGHT, 600, 
XV _WIDTH, 600, 
XV_HEIGHT, 600, 
NULL); 

if (! dat_win){ 
allocation_error("the data canvas."); 
xv_destroy(main_frame); 
exit(-1); 
} 

xv_set(canvas_paint_window(dat_win), 
WIN_BACKGROUND_COLOR, white, 
NULL); 

strcpy(alerstr, "the control panel"); 

control_panel = (Panel)xv_create(main_frame, PANEL, 
PANEL_LAYOUT, PANEL_VERTICAL, 
xv_x, 6oo, 
XV_HEIGHT, 600, 
NULL); 

if (control_panel == 0){ 
sprintf(buffer, "%s.", alerstr); 
allocation_error(buffer); 
xv_destroy(main_frame); 
exit(-1); 
} 

file_menu = (Menu)xv_create((int)NULL, MENU, 
MENU_ITEM, 
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MENU_STRING, 
MENU_NOTIFY_PROC, 
MENU_ VALUE, 
NULL, 

MENU_ITEM, 
MENU_STRING, 
MENU_NOTIFY_PROC, 
MENU_ VALUE, 
MENU_INACTIVE, 
NULL, 

MENU_ITEM, 
MENU_STRING, 
MENU_NOTIFY_PROC, 
MENU_ VALUE, 
MENU_INACTIVE, 
NULL, 

MENU_ITEM, 
MENU_STRING, 
MENU_NOTIFY_PROC, 
MENU_ VALUE, 
MENU_INACTIVE, 
NULL, 

MENU_ITEM, 
MENU_STRING, 
MENU_NOTIFY_PROC, 
MENU_ VALUE, 
NULL, 

NULL); 
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"Open", 
file_open_proc, 
1, 

"Save", 
file_save_proc, 
2, 
TRUE, 

"Save As", 
file_saveas_proc, 
3, 
TRUE, 

"Close", 
file_close_proc, 
4, 
TRUE, 

"Quit", 
quit_proc, 
5, 

if (file_menu == 0){ 
allocation_error("the file menu."); 
xv_destroy(main_frame); 
exit(-1); 
} 

set_menu = (Menu)xv_create((int)NULL, MENU, 
MENU_ITEM, 

MENU_STRING, 
MENU_NOTIFY_PROC, 
MENU_ VALUE, 
NULL, 

MENU_ITEM, 

"Choose Fitting Function", 
func_proc, 
1, 

MENU_STRING, "Choose Response Function", 
MENU_NOTIFY_PROC, conv_proc, 
MENU_VALUE, 2, 
NULL, 

MENU_ITEM, 
MENU_STRING, 
MENU_NOTIFY_PROC, 
MENU_ VALUE, 

"Set Parameters", 
flag_proc, 
3, 

.. 
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NULL, 
MENU_ITEM, 

MENU_STRING, 
MENU_NOTIFY_PROC, 
MENU_ VALUE, 

"Set Baseline", 
ibase_proc, 
4, 

NULL, 
MENU_ITEM, 

MENU_STRING, 
MENU_NOTIFY_PROC, 
MENU_ VALUE, 

"Fit Setting", 
mc_set_proc, 
5, 

NULL, 
NULL); 

if (set_menu == 0){ 
allocation_error("the set 
xv_destroy(main_frame); 
exit(-1); 
} 

menu."); 

item= (Panel_item)xv_create(control_panel, PANEL_BUTTON, 
PANEL_ITEM_COLOR, black, 
PANEL_LABEL_STRING, "File", 
PANEL_LABEL_WIDTH, 35, 
PANEL_ITEM_MENU, file_menu, 
xv_x, 20, 
NULL); 

if (item == O){ 
sprintf(buffer, "%s file button.", alerstr); 
allocation_error(buffer); 
xv_destroy(main_frame); 
exit(-1); 
} 

item= (Panel_item)xv_create(control_panel, PANEL_BUTTON, 
PANEL_ITEM_COLOR, black, 
PANEL_LABEL_STRING, "Set", 
PANEL_LABEL_WIDTH, 35, 
PANEL_ITEM_MENU, set_menu, 
xv_x, 20, 
NULL); 

if (item == o){ 
sprintf(buffer, "%s set button.", alerstr); 
allocation_error(buffer); 
xv_destroy(main_frame); 
exit(-1); 
} 

list = attr_create_list(PANEL_VALUE, 
PANEL_VALUE_DISPLAY_LENGTH, 6, 
PANEL_VALUE_STORED_LENGTH, 6, 

"0.0000", 
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PANEL_NOTIFY_PROC, 
WIN_CONSUME_EVENTS, 

NULL); 
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param_proc, 
WIN_RIGHT_KEYS, 
NULL, 

if (list == 0){ 
sprintf(buffer, "%s attribute list.", alerstr); 
allocation_error(buffer); 
xv_destroy(main_frame); 
exit(-1); 
} 

sd_text = (Panel_item)xv_create(control_panel, PANEL_TEXT, 
ATTR_LIST, list, 
PANEL_ ITEM_ COLOR, fit_ color, 
PANEL_LABEL_STRING, param_string(O), 
PANEL_CLIENT_DATA, (caddr_t)O, 
NULL); 

if (sd_text == 0){ 
sprintf(buffer, "%s sd item.", alerstr); 
allocation_error(buffer); 
free(list); 
xv_destroy(main_frame); 
exit(-1); 
} 

def_event_proc = (void (*)())xv_get(sd_text, PANEL_EVENT_PRDC); 
xv_set(sd_text, PANEL_EVENT_PROC, keypad, NULL); 

for(i=1; i<9; i++){ 
text_item = '(Panel_item)xv_create(control_panel, PANEL_TEXT, 

ATTR_LIST, list, 
PANEL_ITEM_COLOR, fit_color, 
PANEL_LABEL_STRING, param_string(i), 
PANEL_CLIENT_DATA, (caddr_t)i, 
NULL); 

if (text_item == 0){ 
sprintf(buffer, "%s text_item %d.", alerstr, i); 
allocation_error(buffer); 
free(list); 
xv_destroy(main~frame); 
exit(-1); 
} 

xv_set(text_item, PANEL_EVENT_PROC, keypad, NULL); 
} 

tO_text = (Panel_item)xv_create(control_panel, PANEL_TEXT, 
ATTR_LIST, list, 
PANEL_ITEM_COLOR, tO_color, 
PANEL_LABEL_STRING, param_string(9), 
PANEL_ VALUE, "1", 
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PANEL_CLIENT_DATA, (caddr_t) 9, 
NULL); 

if (tO_text == 0){ 
sprintf(buffer, "%s tO item.", alerstr); 
allocation_error(buffer); 
free(list); 
xv_destroy(main_frame); 
exit(-1); 
} 

xv_set(tO_text, PANEL_EVENT_PROC, keypad, NULL); 

(Panel_item)xv_create(control_panel, left_bnd_text = 
ATTR_LIST, 
PANEL_ITEM_COLOR, 
PANEL_LABEL_STRING, 
PANEL_ VALUE, 
PANEL_CLIENT_DATA, 
NULL); 

if (left_bnd_text == 0){ 

list, 
resid_color, 
param_string(10), 
"1", 
(caddr_t) 10, 

sprintf(buffer, "%s left bound item.", alerstr); 
allocation_error(buffer); 
free(list); 
xv_destroy(main_frame); 
exit(-1); 
} 

PANEL_TEXT, 

xv_set(left_bnd_text, PANEL_EVENT_PROC, keypad, NULL); 

right_bnd_text = (Panel_item)xv_create(control_panel, PANEL_TEXT, 
ATTR_LIST, list, 
PANEL_ITEM_CDLOR, resid_color, 
PANEL_LABEL_STRING, param_string(11), 
PANEL_ VALUE, "1", 
PANEL_CLIENT_DATA, (caddr_t) 11, 
NULL); 

if (right_bnd_text == 0){ 
sprintf(buffer, "%s right bound item.", alerstr); 
allocation_error(buffer); 
free(list); 
xv_destroy(main_frame); 
exit ( -1); 
} 

xv_set(right_bnd_text, PANEL_EVENT_PROC, keypad, NULL); 
free(list); 

sprintf(error, "%s = %.3E", param_string(12), lstsqer); 
error_item = (Panel_item)xv_create(control_panel, PANEL_MESSAGE, 

PANEL_LABEL_STRING, error, 
PANEL_ITEM_CDLOR, resid_color, 
NULL); 
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if (error_item == 0){ 
sprintf(buffer, "%s least squares item.", alerstr); 
allocation_error(buffer); 
xv_destroy(main_frame); 
exit(-1); 
} 

item= (Panel_item)xv_create(control_panel, PANEL_BUTTON, 
PANEL_LABEL_STRING, "Fit ", 
PANEL_LABEL_ WIDTH, 35, 
PANEL_NOTIFY _PROC, mc_proc, 
xv_x, 35, 
NULL); 

if (item == 0){ 
sprintf(buffer, "%s fit button.", alerstr); 
allocation_error(buffer); 
xv_destroy(main_frame); 
exit(-1); 
} 

window_fit(control_panel); 
} 

I* create_file_popups() creates the frames, panels, and items 
pertaining to the file_menu choices. 
*I 

void create_file_popups() 
{ 
Panel file_open_panel, file_saveas_panel; 
Panel_item item; 

file_open_frame = (Frame)xv_create(main_frame, FRAME_CMD, 
FRAME_LABEL, "Open a Data File", 
NULL); 

if (file_open_frame == 0){ 
allocation_error("the file open frame."); 
xv_destroy(main_frame); 
exit(-1); 
} 

file_open_panel = (Panel)xv_get(file_open_frame, FRAME_CMD_PANEL); 
xv_set(file_open_panel, PANEL_LAYOUT, PANEL_VERTICAL, NULL); 

item = (Panel_item)xv_create(file_open_panel, PANEL_MESSAGE, 
PANEL_LABEL_STRING, "Enter the data file to be opened.", 
NULL); 

if (item == 0){ 
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allocation_error( 11 the file open message. 11
); 

xv_destroy(main_frame); 
exit(-1); 
} 

fname_item = (Panel_item)xv_create(file_open_panel, PANEL_TEXT, 
PANEL_VALUE_STORED_LENGTH, 
PANEL_VALUE_DISPLAY_LENGTH, 
PANEL_LABEL_STRING, 
PANEL_NOTIFY_PROC, 
NULL); 

if (fname_item == 0){ 
allocation_error( 11 the file 
xv_destroy(main_frame); 
exit(-1); 
} 

window_fit(file_open_panel); 
window_fit(file_open_frame); 

50, 
50, 
11 0pen: 11

, 

file_open, 

open text item. 11
); 

file_saveas_frame = (Frame)xv_create(main_frame, FRAME_CMD, 
FRAME_LABEL, 11 Save to a File11

, 

NULL); 
if (file_saveas_frame -- 0){ 

allocation_error( 11 the file save as frame. 11
); 

xv_destroy(main_frame); 
exit(-1); 
} 

file_saveas_panel = (Panel)xv_get(fife_saveas_frame,FRAME_CMD_PANEL); 
.xv_set(file_saveas_panel, PANEL_LAYOUT, PANEL_VERTICAL, NULL); 

item= (Panel_item)xv_create(file_saveas_panel, PANEL_MESSAGE, 
PANEL_LABEL_STRING, 11 Enter the file to which to save.", 
NULL); 

if (item == O){ 
allocation_error("the file save as message."); 
xv_destroy(main_frame); 
exit(-1); 
} 

comment_item = (Panel_item)xv_create(file_saveas_panel, PANEL_TEXT, 
PANEL_VALUE_STORED_LENGTH, 120, 
PANEL_VALUE_DISPLAY_LENGTH, 50, 
PANEL_LABEL_STRING, "Comment: " 
PANEL_VALUE, "" 
NULL); 

if (comment_item == 0){ 
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allocation_error("the comment text item."); 
xv_destroy(main_frame); 
exit(-1); 
} 

sname_item = (Panel_item)xv_create(file_saveas_panel, PANEL_TEXT, 
PANEL_VALUE_STORED_LENGTH, 50, 
PANEL_VALUE_DISPLAY_LENGTH, 50, 
PANEL_LABEL_STRING, "Save as: ", 
PANEL_NOTIFY_PROC, file_saveas, 
PANEL_ VALUE, 111

1 

NULL); 
if (sname_item == 0){ 

allocation_error("the file save as text item."); 
xv_destroy(main_frame); 
exit(-1); 
} 

window_fit(file_saveas_panel); 
window_fit(file_saveas_frame); 
} 

I* create_set_popups() creates the frames, panels, and items 
pertaining to the set_menu choices. This includes the frame, panel, 
and item associated with electing to use response data. 
*I 

void create_set_popups() 
{ 
Panel func_panel, conv_panel, fcnv_open_panel, flag_panel; 
Panel ibase_panel, mc_set_panel; 
Panel item item; 

func_frame = (Frame)xv_create(main_frame, FRAME_CMD, 
FRAME_LABEL, "" 
NULL); 

if (func_frame == 0){ 
allocation_error("the function frame."); 
xv_destroy(main_frame); 
exit(-1); 
} 

func_panel = (Panel)xv_get(func_frame, FRAME_CMD_PANEL); 
xv_set(func_panel, PANEL_LAYOUT, PANEL_VERTICAL, NULL); 

func_item = (Panel_item)xv_create(func_panel, PANEL_CHOICE, 
PANEL_LAYOUT, PANEL_VERTICAL, 
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PANEL_LABEL_STRING, 
PANEL_CHOICE_STRINGS, 

PANEL_NOTIFY_PROC, 
xv_x, 
NULL); 

"Fitting Function:", 
function_string(1), 
function_string(2), 
NULL, 
func_choose, 
15, 

if (func_item == 0){ 
allocation_error("the function 
xv_destroy(main_frame); 
exit(-1); 

item."); 

} 

item= (Panel_item)xv_create(func_panel, PANEL_BUTTON, 
PANEL_LABEL_STRING, "Done", 
PANEL_LABEL_WIDTH, 35, 
PANEL_NOTIFY_PROC, func_done_proc, 
xv_x, 40, 
NULL); 

if (item == 0){ 
allocation_error("the function done button."); 
xv_destroy(main_frame); 
exit(-1); 
} 

window_fit(func_panel); 
window_fit(func_frame); 

conv_frame = (Frame)xv_create(main_frame, FRAME_CMD, 
FRAME_LABEL , "" 
NULL); 

if (conv_frame == 0){ 
allocation_error("the convolution frame."); 
xv_destroy(main_frame); 
exit ( -1); 
} 

conv_panel = (Panel)xv_get(conv_frame, FRAME_CMD_PANEL); 
xv_set(conv_panel, PANEL_LAYOUT, PANEL_VERTICAL, NULL); 

conv_item = (Panel_item)xv_create(conv_panel, PANEL_CHOICE, 
PANEL_LAYOUT, PANEL_VERTICAL, 
PANEL_LABEL_STRING, "Convolving Function:", 
PANEL_CHOICE_STRINGS, convolution_string(1), 

PANEL_NOTIFY_PROC, 

convolution_string(2), 
convolution_string(3), 
convolution_string(4), 
NULL, 
conv_choose, 
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xv_x, 15, 
NULL); 

if (conv_item == 0){ 
allocation_error("the convolution item."); 
xv_destroy(main_frame); 
exit(-1); 
} 

item = (Panel_item)xv_create(conv_panel, PANEL_BUTTON, 
PANEL_LABEL_STRING, "Done", 
PANEL_LABEL_WIDTH, 35, 
PANEL_NOTIFY_PROC, conv_done_proc, 
xv_x, 55, 
NULL); 

if (item == 0){ 
allocation_error("the convolution done button."); 
xv_destroy(main_frame); 
exit(-1); 
} 

window_fit(conv_panel); 
window_fit(conv_frame); 

fcnv_open_frame = (Frame)xv_create(conv_frame, FRAME_CMD, 
FRAME_LABEL, "Open a Response File", 
NULL); 

if (fcnv_open_frame == 0){ 
allocation_error("the convolution file open frame."); 
xv_destroy(main_frame); 
exit(-1); 
} 

fcnv_open_panel = (Panel)xv_get(fcnv_open_frame, FRAME_CMD_PANEL); 
xv_set(fcnv_open_panel, PANEL_LAYOUT, PANEL_VERTICAL, NULL); 

item = (Panel_item)xv_create(fcnv_open_panel, PANEL_MESSAGE, 
PANEL_LABEL_STRING, "Enter the convolution file to be opened.", 
NULL); 

if (item == 0){ 
allocation_error("the convolution file open message."); 
xv_destroy(main_frame); 
exit(-1); 
} 

fcnv_name_item = (Panel_item)xv_create(fcnv_open_panel, PANEL_TEXT, 
PANEL_VALUE_STORED_LENGTH, 50, 
PANEL_VALUE_DISPLAY_LENGTH, 50, 
PANEL_LABEL_STRING, "Open: " 
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PANEL_NOTIFY_PRDC, fcnv_open, 
NULL); 

if (fcnv_name_item == 0){ 
allocation_error("the convolution file open text item."); 
xv_destroy(main_frame); 
exit(-1); 
} 

window_fit(fcnv_open_panel); 
window_fit(fcnv_open_frame); 

flag_frame = (Frame)xv_create(main_frame, FRAME_CMD, 
FRAME_LABEL, 111

1 

NULL); 
if (flag_frame == 0){ 

allocation_error("the flag frame."); 
xv_destroy(main_frame); 
exit(-1); 
} 

flag_panel = (Panel)xv_get(flag_frame, FRAME_CMD_PANEL); 
xv_set(flag_panel, PANEL_LAYOUT, PANEL_VERTICAL, NULL); 

flag_item = (Panel_item)xv_create(flag_panel, PANEL_TOGGLE, 
PANEL_LAYDUT, PANEL_VERTICAL, 
PANEL_LABEL_STRING, " Data Parameters: 
PANEL_CHDICE_STRINGS, " picosecond data (else fs) 

PANEL_ TOGGLE_ VALUE, 
PANEL_ TOGGLE_ VALUE, 
PANEL_NOTIFY_PROC, 
xv_x, 
NULL); 

11 fluorescence (else absorption) 
" bleach (else no) 
"autocorrelation data (else decays) , 
" weighted errors (else not) 
NULL, 
0, TRUE, 
1, TRUE, 
flag_set, 
10, 

if (flag_item == 0){ 
allocation_error("the flag 
xv_destroy(main_frame); 
exit(-1); 

item."); 

} 

item·= (Panel_item)xv_create(flag_panel, PANEL_BUTTDN, 
PANEL_LABEL_STRING, "Done", 
PANEL_LABEL_ WIDTH, 35, 
PANEL_NOTIFY_PROC, flag_done_proc, 
xv_x, 90, 
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NULL); 
if (item == 0){ 

allocation_error("the flag done button."); 
xv_destroy(main_frame); 
exit(-1); 
} 

window_fit(flag_panel); 
window_fit(flag_frame); 

ibase_frame = (Frame)xv_create(main_frame, FRAME_CMD, 
FRAME_LABEL, 1

"
1 

NULL); 
if (ibase_frame == 0){ 

allocation_error("the baseline frame."); 
xv_destroy(main_frame); 
exit(-1); 
} 

ibase_panel = (Panel)xv_get(ibase_frame, FRAME_CMD_PANEL); 
xv_set(ibase_panel, PANEL_LAYOUT, PANEL_VERTICAL, NULL); 

ibase_item = (Panel_item)xv_create(ibase_panel, PANEL_TEXT, 
PANEL_LAYOUT, PANEL_VERTICAL, 
PANEL_LABEL_STRING, "Last Point of Baseline=", 
PANEL_VALUE_STORED_LENGTH, 5, 
PANEL_VALUE_DISPLAY_LENGTH, 5, 
PANEL_NOTIFY_PROC, ibase_set, 
NULL); 

if (ibase_item == 0){ 
allocation_error("the baseline text item."); 
xv_destroy(main_frame); 
exit(-1); 
} 

window_fit(ibase_panel); 
window_fit(ibase_frame); 

mc_set_frame = (Frame)xv_create(main_frame, FRAME_CMD, 
FRAME_LABEL, .,., 
NULL); 

if (mc_set_frame == 0){ 
allocation_error("the mc_set frame."); 
xv_destroy(main_frame); 
exit(-1); 
} 
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mc_set_panel = (Panel)xv_get(mc_set_frame, FRAME_CMD_PANEL); 
xv_set(mc_set_panel, PANEL_LAYOUT, PANEL_VERTICAL, NULL); 

mc_set_item = xv_create(mc_set_panel, PANEL_CHECK_BOX, 
PANEL_LAYOUT, PANEL_VERTICAL, 
PANEL_LABEL_STRING, "Parameters to Fit:", 
PANEL_CHOICE_STRINGS, param_string(O), 

PANEL_NOTIFY_PROC, 
PANEL_ VALUE, 
NULL); 

param_string(1), 
param_string(2), 
param_string(3), 
param_string(4), 
param_string(S), 
param_string(6), 
param_string(7), 
param_string(8), 
NULL, 
mc_set, 
0, 

if (mc_set_item == 0){ 
allocation_error("the mc_set 
xv_destroy(main_frame); 
exit(-1); 

item."); 

} 

item = (Panel_item)xv_create(mc_set_panel, PANEL_BUTTON, 
PANEL_LABEL_STRING, "Done", 
PANEL_LABEL_WIDTH, 35, 
PANEL_NOTIFY_PROC, mc_set_done_proc, 
xv_x, 40, 
NULL); 

if (item == O){ 
allocation_error("the mc_set done button."); 
xv_destroy(main_frame); 
exit ( -1); 
} 

window_fit(mc_set_panel); 
window_fit(mc_set~frame); 
} 

I* mc_proc() is the event procedure invoked by selecting the 
"Fit" button on the control panel. 
*I 

void mc_proc(Panel_item item, Event *event) 
{ 
Xv_notice notice; 
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if (saved >= 0){ 

} 

if (! (data.flags & 8)){ 
mc_flags = mc_flags & flag_mask; 
if(monte()){ 

} 

notice = (Xv_notice)xv_create(main_frame, NOTICE, 
NOTICE_MESSAGE_STRINGS, "Set parameters to fit", 

11 and try again . " , 

NOTICE_BUTTON_YES, 
XV_SHOW, 
NULL); 

xv_destroy_safe(notice); 
} 

NULL, 
"Confirm", 
TRUE, 

else if (data.param[O]!=O.O && data.param[5] !=0.0 && 
data.param[7] !=0.0) 

fittO; 
else{ 

} 

notice = (Xv_notice)xv_create(conv_frame, NOTICE, 
NOTICE_MESSAGE_STRINGS, "Please enter initial estimates", 

"for FWHM, c1, and c3 and try again.", 
NULL, 

NOTICE_BUTTON_YES, 
XV_SHOW, 
NULL); 

xv_destroy_safe(notice); 
} 

"Confirm", 
TRUE, 

I* file_open_proc() is the procedure invoked by choosing the 
"Open" option from the file_menu. 
*I 

void file_open_proc(Menu menu, Menu_item menu_item) 
{ 
Xv_notice notice; 
int notice_stat; 

I* If a data set is already opened, close it. 
*I 

if (saved > 0){ 
notice = (Xv_notice)xv_create(main_frame, NOTICE, 

NOTICE_MESSAGE_STRINGS, "File has changed since last save.", 
"Do you want to save before opening?", 
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NULL, 
NOTICE_BUTTON_YES, "Cancel open", 
NOTICE_BUTTON_NO, "Open new data without saving old", 
NOTICE_STATUS, &notice_stat, 
XV _SHOW, TRUE, 
NULL); 

if (notice_stat -- NOTICE_YES){ 
xv_destroy_safe(notice); 
return; 
} 

xv_destroy_safe(notice); 
} 

clear_window(); 
xv_set(file_open_fr,ame, XV_SHOW, TRUE, NULL); 
} 

I* file_saveas_proc() is the procedure invoked by choosing the 
"Save As" option from the file_menu. 
*I 

void file_saveas_proc(Menu menu, Menu_item menu_item) 
{ 
xv_set(file_saveas_frame, XV_SHOW, TRUE, NULL); 
} 

I* file_save_proc() is the procedure invoked by choosing the 
"Save" option from the file_menu. 
*I 
void file_save_proc(Menu menu, Menu_item menu_item) 
{ 
file_save(1); 
} 

I* file_close_proc() is the procedure invoked by choosing the 
"Close" option from the file_menu. 
*I 
void file_close_proc(Menu menu, Menu_item menu_item) 
{ 
file_close(); 
} 

I* func_proc() is the procedure invoked by choosing the "Choose 
Fitting Function" option from the set_menu. 
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void func_proc(Menu menu, Menu_item menu_item) 
{ 

- xv_set(func_frame, XV_SHOW, TRUE, NULL); 
} 

I* conv_proc() is the procedure invoked by choosing the "Choose 
Response Function" option from the set_menu. 
*I 

void conv_proc(Menu menu, Menu_item menu_item) 
{ 
xv_set(conv_frame, XV_SHOW, TRUE, NULL); 
} 

I* flag_proc() is the procedure invoked by choosing the "Set 
Parameters" option from the set_menu. 
*I 

void flag_proc(Menu menu, Menu_item menu_item) 
{ 
xv_set(flag_frame, XV_SHOW, TRUE, NULL); 
} 

I* ibase_proc() is the procedure invoked by choosing the "Set 
Baseline" option from the set_menu. 
*I 

void ibase_proc(Menu menu, Menu_item menu_item) 
{ 
char *cibase; 

sprintf(cibase, "%d", ibase); 
xv_set(ibase_item, PAN~L_VALUE, cibase, NULL); 
xv_set(ibase_frame, XV_SHOW, TRUE, NULL); 
} 

I* mc_set_proc() is the procedure invoked by choosing the "Fit 
Setting" option from the set_menu. 
*I 

void mc_set_proc(Menu menu, Menu_item menu_item) 
{ 
mc_flags = mc_flags & flag_mask; 
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xv_set(mc_set_item, PANEL_VALUE, mc_flags, NULL); 
xv_set(mc_set_frame, XV_SHOW, TRUE, NULL); 
} 

I* file_saveas() is the notify procedure for the sname_item. 
*I 

Panel_setting file_saveas(Panel_setting item, Event *event) 
{ 
file_save(O); 
return(PANEL_NONE); 
} 
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I* func_choose() is the notify procedure for the func_item. If 
there is at least one open data window, it updates the window, the 
pseudo-data, and all associated parameters and variables necessary to 
reflect the newly selected fitting function. 
*I 

void func_choose(Panel_item item, int value, Event *event) 
{ 
Xv_notice notice; 
char temp_name[SO]; 

if (data.flags & 8){ . 
xv_set(func_item, PANEL_VALUE, data.func-1, NULL); 
notice = (Xv_notice)xv_create(func_frame, NOTICE, 

NOTICE_MESSAGE_STRINGS, "For autocorrelations fit", 
"with a convolution function.", 
NULL, 

NOTICE_BUTTON_YES, 
XV_SHOW, 
NULL); 

xv_destroy_safe(notice); 
return; 
} 

data.func = value+ 1; 

if (saved >= 0){ 
if (data.conv != 4) 

"Confirm", 
TRUE, 

strcpy(temp_name, convolution_string(data.conv)); 
else 

strcpy(temp_name, fcnv_name); 

sprintf(buffer, "%s- %s wl %s", data.file_name, 
function_string(data.func), temp_name); 
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xv_set(main_frame, XV_LABEL, buffer, NULL); 

set_pextrema_mats(); 
calc(); 
plot(); 
} 

I* conv_choose() is the notify procedure for the conv_item. If 
there is an open data set, it updates the window, the pseudo-data, 
and all associated parameters and variables necessary to reflect the 
newly selected response function/data. 
*I . 

void conv_choose(Panel_item item, int value, Event *event) 
{ 
Xv_notice notice; 
char *temp_name; 

if (!(data.flags & 8) I I value != 3) 
data.conv = value + 1; 

else{ 
xv_set(conv_item, PANEL_VALUE, data.conv-1, NULL); 
notice = (Xv_notice)xv_create(conv_frame, NOTICE, 

NOTICE_MESSAGE_STRINGS, "Autocorrelations cannot be", 

NOTICE_BUTTON_YES, 
XV_SHOW, 
NULL); 

xv_destroy_safe(notice); 
return; 
} 

if (data.conv == 4) 

"fit by input functions.", 
NULL, 
"Confirm", 
TRUE, 

xv_set(fcnv_open_frame, XV_SHOW, TRUE, NULL); 

if (saved >= 0){ 
if (data.conv != 4) 

temp_name = convolution_string(data.conv); 
else if(!strcmp(fcnv_name, "")){ 

data. conv = 1; 
temp_name = convolution_string(data.conv); 
} 

else 
strcpy(temp_name, fcnv_name); 

if (data.flags & 8) 
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} 

sprintf (buffer, "%s - %s", data. file_name, temp_name); 
else . 

sprintf(buffer, "%s- %s wl %s", data.file_name, 
function_string(data.func), temp_name); 

xv_set(main_frame, XV_LABEL, buffer, NULL); 

if (data.flags & 8) 
calctO(); 

else 
calc(); 

plot(); 
} 

I* flag_set() is the notify procedure for the flag_item. If 
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there is an open data set, it updates the window, the pseudo-data, 
and all associated parameters and variables necessary to reflect the 
newly selected data parameters. 
*I 

void flag_set(Panel_item item, int value, Event *event) 
{ 
if ((data.flags & 8) && !(value & 8)){ 

xv_set((Menu_item)xv_find(set_menu, MENUITEM, MENU_VALUE, 1,NULL), 
MENU_INACTIVE, FALSE, NULL); 

xv_set((Menu_item)xv_find(set_menu, MENUITEM, MENU_VALUE, 4,NULL), 
MENU_INACTIVE, FALSE, NULL); 

} 
if (!(data.flags & 1) && (value & 1)) 

data.time_per_point *= 10.; 
else if ((data.flags & 1) && !(value & 1)) 

data.time_per_point I= 10.; 
data.flags = value; 

if (data.flags & 8){ 
xv_set((Menu_item)xv_find(set_menu, MENUITEM,.MENU_VALUE, 1,NULL), 

MENU_INACTIVE, TRUE, NULL); 
xv_set((Menu_item)xv_find(set_menu, MENUITEM, MENU_VALUE, 4,NULL), 

MENU_INACTIVE, TRUE, NULL); 
if (data.conv == 4) 

data.conv = 1; 
set_flag_mask(); 
mc_flags =_99; 
} 

if (saved >= 0){ 
set_pextrema_mats(); 
set_pdelta_mat(); 



218 

} 

if (data.flags & 8) 
calctOO; 

else 
calc(); 

plot(); 
} 
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I* ibase_set() is the notify procedure for the ibase_item. 
*I 

Panel_setting ibase_set(Panel_item item, Event *event) 
{ 
Xv_notice notice; 

if (!(data.flags & 2)){ 
sprintf(buffer, "%d", ibase); 
xv_set(ibase_item, PANEL_VALUE, buffer, NULL); 
notice = (Xv_notice)xv_create(conv_frame, NOTICE, 

NOTICE_MESSAGE_STRINGS, "Baseline adjusted only", 

NOTICE_BUTTON_YES, 
XV_SHOW, 
NULL); 

xv_destroy_safe(notice); 
return(PANEL_NONE); 
} 

"for fluorescence data.", 
NULL, 
"Confirm", 
TRUE, 

ibase = atoi((char *)xv_get(ibase_item, PANEL_VALUE)); 
if (ibase <= 0 I I ibase > data.points_scan && saved >= 0){ 

strcpy(buffer, "1"); 
xv_set(ibase_item, PANEL_VALUE, buffer, NULL); 
return(PANEL_NONE); 
} 

if (saved >= 0){ 
baseline_adjust (); 
calc_err(); 
plot(); 
} 

return(PANEL_NONE); 
} 

I* mc_setO is the notify procedure for the mc_set_item. 
*I 

void mc_set(Panel_item item, unsigned value, Event *event) 
{ 
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if (value != (value & flag_mask)){ 
value = value & flag_mask; 
xv_set(mc_set_item, PANEL_VALUE, value, NULL); 
} 

mc_flags = value; 
} 

I* func_done_proc() closes the func_frame when depressed. 
*I 

void func_done_proc(Panel_item item, Event *event) 
{ 
xv_set(func_frame, XV_SHOW, FALSE, NULL); 
} 

I* conv_done_proc() closes the func_frame when depressed. 
*I 

void conv_done_proc(Panel_item item, Event *event) 
{ 
xv_set(conv_frame, XV_SHOW, FALSE, NULL); 
} 

I* flag_done_proc() closes the func_frame when depressed. 
*I 

void flag_done_proc(Panel_item item, Event *event) 
{ 
xv_set(flag_frame, XV_SHOW, FALSE, NULL); 
} 

I* mc_set_done_proc() closes the func_frame when depressed. 
*I 

void mc_set_done_proc(Panel_item item, Event *event) 
{ 
xv_set(mc_set_frame, XV_SHOW, FALSE, NULL); 
} 

I* quit_proc is called to terminate the program. 
*I 
void quit_proc(Menu menu, Menu_item menu_item) 
{ 



220 APPENDIX B. DATA FITTING PROGRAM 

xv_destroy_safe(main_frame); 
} 

I* fit_destroy_func is the function interposed on the 
destruction of the main_frame. It frees as necessary any dynamically 
allocated dat_set structs and any dynamically allocated .data 
elements of dat_set structs, including that of the struct data. It 
also frees any allocated memory associated with the pointer cnv. 
*I 

static Notify_value fit_destroy_func(Notify_client client, 
Destroy_status status) 

{ 
int i, j; 

/*if (status == DESTROY_CHECKING && confirm_quit() -- 0){ 
notify_veto_destroy(client); 
return(NOTIFY_DONE); 
} . 

else*/ 
if (status == DESTROY_PROCESS_DEATH I I status -- DESTROY_CLEANUP){ 

for (i=O; i<4; i++) 

} 

if (data.data[i] != NULL) 
free(data.data[i]); 

return(notify_next_destroy_func(client, status)); 
} 
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B.2 fitaux.c 

I* This file contains the following routines: 
allocation_error(), param_string(), function_string(), 
convolution_string(), keypad(), adjust_value(), param_proc(), 
file_open(), fcnv_open(), file_save(), set_menu_greyed(), 
reset_control_panel(), set_flag_mask(), and file_close(). 
*I 

#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 
#include <xviewlxview.h> 
#include <xviewlpanel.h> 
#include <xviewlnotice.h> 
#include <xviewlcms.h> 
#include <X11IXlib.h> 

#include "fitX.h" 

extern Frame main_frame, file_open_frame, file_saveas_frame, 
fcnv_open_frame; 

extern Panel control_panel; 
extern Menu file_menu, set_menu; 
extern Panel item fname_item, sname_item, comment_item; 
extern Panel_item fcnv_name_item, sd_text, tO_text; 
extern Panel_item left_bnd_text, right_bnd_text, error_item; 
extern Panel_item func_item, conv_item, flag_item; 
extern Canvas dat_win; 
extern Cms ems; 

extern struct dat_set data; 
extern int saved, flag_mask, mc_flags, cnvpts, resp_step, white; 
extern float pdelta[], pmax[], pmin[]; 
extern char buffer[], fcnv_name[], namesD; 
extern double *cnv, lstsqer; 

extern void (*def_event_proc)(); 

I* allocation_error() is called if and when a dynamic memory 
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allocation error occurs. It is passed a string indicating the item 
for which allocation failed and activates an appropriate alert 
window. 
*I 

void allocation_error(char *serror) 
{ 
Xv_notice notice; 
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notice = (Xv_notice)xv_create(main_frame, NOTICE, 
NOTICE_MESSAGE_STRINGS, "Allocation error for:", 

NOTICE_BUTTON_YES, 
XV_SHOW, 
NULL); 

xv_destroy_safe(notice); 
} 

serror, 
1111 

' "Exiting", 
NULL, 
"Confirm", 
TRUE, 

I* The following three routines, param_string(), 
function_string(), and convolution_string(), return a constant 
string as indicated by the integer argument n. Values of n that 
are too great or too small result in the return of some default 
string. 
*I 

char *param_string(int n) 
{ 
static char *string[] = { 

"FWHM = II 

"a1 = II 

"a2 = II 

"b1 = II 

' "b2 = II 

"c1 = II 

"c2 = II 

"c3 = II 

"c4 = II 

"tO = II 

' 
' "left = II 

"right = " 
"error" 
}; . 

return((n < 0 I I n > 11) ? string[12] 
} 

char *function_string(int n) 
{ 
static char *string[] = { 

"error", 
"Biexponential ", 
" Kohlrausch II 

string [n] ) ; 
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}; 
return((n < 1 I I n > 2) ? string[O] 
} 

char *convolution_string(int n) 
{ 
static char *string[] = { 

"error", 
"Gaussian", 
"Sech Squared", 
"Lorentzian", 
"Input File" 
}; 

return((n < 1 I I n > 4) ? string[O] 
} 

string [n]) ; 

string [n]) ; 

I* keypad() is the event procedure for the text items on the 
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control panel. It is designed to handle the events associated with 
the right-hand keys, that is those on the keypad with num-lock off. 
In particular, the following actions should occur. Arrow up (down) 
should move the caret up (down) one item. Right (left) arrow should 
increase (decrease) the current item by an amount as indicated in the 
array pdelta, which is indexed identically to the parameters. The 
page up (page down) and home (end) increase (decrease) the values by 
10·or 100 times the base value in pdelta. Note that in order to 
handle other events, the default event procedure for text items had 
to be obtained in create_control_panel(); a pointer to this function 
is stored in def_event_proc(). 
*I 

void keypad(Panel_item pitem, Event *event) 
{ 
int p, id, keycode; 
char disp [10]; 
XEvent *xev; 

if (saved == -1) . 
return(def_event_proc(pitem, event)); 

id = event_id(event); 
xev = event_xevent(event); 

if (id==46 I I id<32 && id>O I I id>=48 && id<=57 I I id==127) 
return(def_event_proc(pitem, event)); 

else if (xev->type == KeyPress){ 
p = (int)xv_get(pitem, PANEL_CLIENT_DATA); 

keycode = ((XKeyEvent*)xev)->keycode; 
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if (id == 0){ 
strncpy(disp, DisplayString(((XKeyEvent *)xev)->di~play), 4); 
disp[4] = "'\0"'; 

if (!strcmp(disp, "hoek")){ 
switch(keycode){ 
case 98: 

' id = 32596; 
break; 

case 104: 
id = 32602; 
break; 

case 102: 
id = 32600; 
break; 

case 100: 
id = 32598; 
break; 

case 99: 
id = 32597; 
break; 

case 105: 
id = 32603; 
break; 

case 97: 
id = 32595; 
break; 

case 103: 

} 

id = 32601; 
break; 
} 

else{ 
switch(keycode){ 
case 76: 

id = 32596; 
break; 

case 120: 
id = 32602; 
break; 

case 100: 
id = 32600; 
break; 

case 98: 
id = 32598; 
break; 

case 77: 
id = 32597; 
break; 
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case 121: 
id = 32603; 
break; 

case 75: 
id = 32595; 
break; 

case 119: 

} 
} 

switch ( id){ 
case 77: 
case 109: 

id = 32601; 
break; 
} 

case KEY_RIGHT(14): 
panel_advance_caret(control_panel); 
return; 

case 85: 
case 117: 
case KEY_RIGHT(8): 

panel_backup_caret(control_panel); 
return; 

case 75: 
case 107: 
case KEY_RIGHT(12): 

adjust_value(p, pitem, pdelta[p]); 
break; 

·case 72: 
case 104: 
case KEY_RIGHT(10): 

adjust_value(p, pitem, -pdelta[p]); 
break; 

case 73: 
case 105: 
case KEY_RIGHT(9): 

adjust_value(p, pitem, 10*pdelta[p]); 
break; 

case 44: 
case 60: 
case KEY_RIGHT(15): 

adjust_value(p, pitem, -10*pdelta[p]); 
break; 

case 89: 
case 121: 
case KEY_RIGHT(7): 

adjust_value(p, pitem, 100*pdelta[p]); 
break; 
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} 

case 78: 
case 110: 
case KEY_RIGHT(13): 

adjust_value(p, pitem, -100*pdelta[p]); 
break; 

default: 
return; 
} 

if (saved == 0) 
saved = 2; 

if (data.flags & 8) 
calctO(); 

else 
calc(); 

plot(); 
return; 
} 

I* adjust_value() is called by keypad() to change the value of 
the parameter associated with the control panel item pitem, which 
has an integer p associated with it. That parameter is adjusted by 
adjustment provided such a change does not place its value outside 
of the acceptable limits (indicated by the identically indexed arrays 
pmax[] and pmin[] for FWHM, a1-c4). 
*I 

void adjust_value(p, pitem, adjustment) 
int p; 
Panel_item pitem; 
float adjustment; 
{ 

if (p == 9){ 
data.tzero += (int)adjustment; 
if (data.tzero > data.points_scan) 

data.tzero = d~ta.points_scan; 
else if (data.tzero < 1) 

data. tzero = 1; 
sprintf(buffer, "%d", data.tzero); 
xv_set(pitem, PANEL_VALUE, buffer, NULL); 
return; 
} 

else if (p == 10){ 
data.left_bnd += (int)adjustment; 
if (data.left_bnd > data.right_bnd) 

data.left_bnd = data.right_bnd; 
else if (data.left_bnd < 1) 
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data.left_bnd = 1; 
sprintf(buffer, 11 %d 11

, data.left_bnd); 
xv_set(pitem, PANEL_VALUE, buffer, NULL); 
return; 
} 

else if (p == 11){ 
data.right_bnd += (int)adjustment; 
if (data.right_bnd > data.points_scan) 

data.right_bnd = data.points_scan; 
else if (data.right_bnd < data.left_bnd) 

data.right_bnd = data.left_bnd; 
sprintf(buffer, 11 %d 11

, data.right_bnd); 
xv_set(pitem, PANEL_VALUE, buffer, NULL); 
return; 
} 

else if (p >= 0 && p < 9){ 
data.param[p] += adjustment; 
if (data.param[p] > pmax[p]) 

data.param[p] = pmax[p]; 

} 

else if (data.param[p] < pmin[p]) 
data.param[p] = pmin[p]; 

sprintf(buffer, 11 %f 11
, data.param[p]); 

xv_set(pitem, PANEL_VALUE, buffer, NULL); 
return; 
} 

I* param_proc() is the notify procedure for the panel text 
items. It handles keyboard entry of values for those items and 
·ensures the input values fall within the acceptable limits. 
*I 

Panel_setting param_proc(Panel_item item, Event *event) 
{ 
int p, itemp; 
float param_temp; 

if (saved >= 0){ 
p = (int)xv_get(item, PANEL_CLIENT_DATA); 
if (p == 9){ 

itemp = atoi((char *)xv_get(item, PANEL_VALUE)); 
if (itemp < 1 I I itemp > data.points_scan){ 

sprintf(buffer, "%d", data.tzero); 
xv_set(item, PANEL_VALUE, (caddr_t)buffer, NULL); 
return(PANEL_NDNE); 
} 

data.tzero = itemp; 
} 
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else if (p == 10){ 
itemp = atoi((char *)xv_get(item, PANEL_VALUE)); 
if (itemp < 1 I I itemp > data.right_bnd){ 

sprintf(buffer, "%d", data.left_bnd); 
xv_set(item, PANEL_VALUE, (caddr_t)buffer, NULL); 
return(PANEL_NONE); 
} 

data.left_bnd = itemp; 
} 

else if (p == 11){ 
itemp = atoi((char *)xv_get(item, PANEL_VALUE)); 
if (itemp < data.left_bnd I I itemp > data.points_scan){ 

sprintf(buffer, "%d", data.right_bnd); 
xv_set(item, PANEL_VALUE, (caddr_t)buffer, NULL); 
return(PANEL_NONE); 
} 

data.right_bnd = itemp; 
} 

else if (p >= 0 && p < 9){ 
param_temp = atof((char *)xv_get(item, PANEL_VALUE)); 
if (param_temp > pmax[p] I I param_temp < pmin[p]){ 

sprintf (buffer, "%f", data. param [p]); 
xv_set(item, PANEL_VALUE, (caddr_t)buffer, NULL); 
return(PANEL_NONE); 
} 

data.param[p] = param_temp; 
} 

if (data.flags & 8) 
calctOO; 

else 
calc(); 

plot(); 

if (saved == 0) 
saved = 2; 

} 
return(panel_text_notify(item, event)); 
} 

I* file_open() is the notify procedure for the text item 
fname item. It carries out many important tasks as indicated below. 
*I 

Panel_setting file_open(Panel_item item, Event *event) 
{ 
Xv_notice notice; 

FILE *stream; 

. . 
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int i, j, idum; 
time_t ltime; 
long ldum; 
char ch, *temp_name; 
double dtemp; 

I* The entered file name is copied into a buffer to check 
its validity. If the string is empty, the window is dismissed; 
and file_open() returns. Otherwise, the buffer is copied into 
the file_name field of the working data structure data; and the 
the file is checked to ensure its existence as a readable file. 
If it does not exist, a notice is sent after the confirmation of 
which the window is dismissed and file_open() returns. 
*I 

strcpy(buffer, (char *)xv_get(fname_item, PANEL_VALUE)); 
if (!strcmp(buffer, "")){ 

xv_set(file_open_frame, XV_SHOW, FALSE, NULL); 
return (PANEL_NONE) '; 
} 

strcpy(data.file_name, buffer); 

if ((stream = fopen(data. file_name, "rb")) == NULL){ 
notice = (Xv_notice)xv_create(file_open_frame, NOTICE, 

NOTICE_MESSAGE_STRINGS, "File does not exist!", 
NULL, 

NOTICE_BUTTON_YES, "Confirm", 
XV_SHOW, TRUE, 
NULL); 

xv_set(file_open_frame, XV_SHOW, FALSE, NULL); 
xv_destroy_safe(notice); 
return(PANEL_NONE); 
} 

I* At this point the file input via the fname_item in the 
file_open_frame is known to exist as a readable file. The first 
three characters are then read to verify its nature as a data file 
appropriate for this program as well as a few specifics about its 
nature as such. Acceptable strings and their meanings are: 
"gad" -> picosecond fluorescence; "djr" -> picosecond absorption; 
"bjs" -> femtosecond absorption. Other acceptable parameters 
(bleach or not, weighted or not, a response function instead of a 
decay) are masked to remain on if they are valid for the new data 
set. Note, however, that this does not ensure their correctness. 
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If the file is not an appropriate data file, the file is 
closed; a notice is sent; and, after the confirmation of the notice, 
the window is dismissed; and file_open() returns. 

Otherwise the window is dismissed and data are read into the 
appropriate variables. Note that some of the values are not needed 
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and are therefore read into dummy variables *dum or buffer[]. The 
time_per_point element of data is calculated here. Also the memory 
for the data is allocated. This will require freeing upon later 
closing the data window and/or destruction. After the data are all 
read in, the file is closed. 
*I 

for (i=O; i!=3; i++) 
data.test[i] = (char)fgetc(stream); 

data.test[i] = '\0'; 

if (strcmp(data. test, "gad") == 0) 
data.flags = (data.flags I 3) & 27; 

else if (strcmp(data.test, 11 djr") == 0) 
data.flags = (data.flags I 1) & 13; 

else if (strcmp(data.test, 11 bjs") == 0) 
data.flags = data.flags & 12; 

else{ 
fclose(stream); 
notice = (Xv_notice)xv_create(file_open_frame, NOTICE, 

NOTICE_MESSAGE_STRINGS, "This is not a proper data file! 11
, 

NULL, 
NOTICE_BUTTON_YES, 11 Confirm", 
XV_SHOW, TRUE, 
NULL); 

xv_set(file_open_frame, XV_SHOW, FALSE, NULL); 
xv_destroy_safe(notice); 
return(PANEL_NONE); 
} 

xv_set(flag_item, PANEL_VALUE, data.flags, NULL); 

xv_set(file_open_frame, XV_SHOW, FALSE, NULL); 

fscanf(stream, 11 %li ", &ltime); 
fscanf (stream, "%i %i ", &data. points_scan, &data. stage_step) ; 
data.time_per_point = (float)abs(data.stage_step) * 20.0/299.8; 
if (!(data.flags& 1)) 

data.time_per_point /= 10; 
fscanf(stream, "%s %li 11

, buffer, &ldum); 
fscanf(stream, "%i %i %i ", &idum, &idum, &idum); 

for (i=O; (i<498) && (ch=fgetc(stream)) != ,_,; i++) 
buffer[i] = (char) ch; 

ch = fgetc(stream); 
buffer[i] = (char) '\0'; 

for (i=O; i<4; i++){ 
data.data[i] = (double *)malloc(data.points_scan*sizeof(double)); 
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if (data.data[i] == NULL){ 
allocation_error("the loaded data."); 
xv_destroy_safe(main_frame); 
exit(-1); 
} 

} 

for (i=O; i<data.points_scan; i++){ 
fscanf (stream, "%lf\n", &dtemp); 
*(data.data[O] + i) = dtemp; 
for (j=1; j <4; j++) 

*(data.data[j] + i) = 0.0; 
} 

fscanf(stream, "%s", buffer); 
fclose(stream); 

I* Having all been read in, the data are initialized (including 
setting the values of the arrays pdelta, pmax, and pmin - see also 
initialize()). Then the appropriate label for the new data is 
determined and the saveas and close options in the file menu are 
activated if inactive. 
*I 

initialize(); 

if (data.conv != 4) 
temp_name = convolution_string(data.conv); 

else 
temp_name = fcnv _name; . 

if (data.flags & 8) 
sprintf(buffer, "%s- %s", data.file_name, temp_name); 

else 
sprintf(buffer, "%s - %s wl %s", data.file_name, 

function_string(data.func), temp_name); 

xv_set(main_frame, XV_LABEL, buffer, NULL); 

if (saved == -1){ 
xv_set((Menu_item)xv_find(file_menu,MENuiTEM,MENU_VALUE,3,NULL), 

MENU_ INACTIVE, FALSE, 
NULL); 

xv_set((Menu_item)xv_find(file_menu,MENUITEM,MENU_VALUE,4,NULL), 
MENU_INACTIVE, FALSE, 
NULL); 

} 
saved = 1; 
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I* Finally an initial plot of the data is made before 
file_open() returns. 
*I 

ini tial_plot (); 
return(PANEL_NONE); 
} 

I* fcnv_open() plays the same role for opening an input 
response function for convolution with theoretical decay functions 
as file_open() does for decay data. 
*I 
Panel_setting fcnv_open(Panel_item item, Event *event) 
{ 
Xv_notice notice; 
char ch, rtest[4], *temp_name; 
int i, j, dumi; 
long int duml; 
FILE *stream; 
time_t ltime; 
double dtemp; 

I* First fcnv_open ensures that the current data are not 
intended to be fit as response functions themselves. Such data are 
not fit by the same techniques and require the analytic functions 
provided. If the current data are indicated to be response functions 
(the fourth bit of data.flags on), a notice is sent after the 
confirmation of which the window is dismissed if unpinned and 
fcnv_open() returns. 
*I 

if' (data.flags & 8){ 
notice = (Xv_notice)xv_create(fcnv_open_frame, NOTICE, 

NOTICE_MESSAGE_STRINGS, 11 Autocorrelations cannot be 11
, 

11fit by input functions. 11
, 

NULL·, 
NOTICE_BUTTON_ YES, 11 Confirm 11

, 

XV_SHOW, TRUE, 
NULL); 

xv_destroy_safe(notice); 
xv_set(fcnv_open_frame, XV_SHOW, FALSE, NULL); 
return(PANEL_NONE); 
} 

I* As in file_open(), fcnv_open() returns if given an empty 
string via the fcnv_name item or if the file does not exist as a 
readable file. Also as in file_open(), in the latter case, a notice 

•. 
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is sent; and in both cases the window is dismissed if unpinned. 
*I 

strcpy(fcnv_name, (char *)xv_get(fcnv_name_item, PANEL_VALUE)); 
if (! strcmp(fcnv _name, "")) { 

xv_set(fcnv_open_frame, XV_SHOW, FALSE, NULL); 
return(PANEL_NONE); 
} 

if ((stream= fopen(fcnv_name, "rb")) ==NULL){ 
notice = (Xv_notice)xv_create(fcnv_open_frame, NOTICE, 

NOTICE_MESSAGE_STRINGS, "File does not exist!", 
NULL, 

NOTICE_BUTTON_YES, 
XV_SHOW, 
NULL); 

strcpy(fcnv_name, ""); 

"Confirm", 
TRUE, 

xv_set(fcnv_open_frame, XV_SHOW, FALSE, NULL); 
xv_destroy_safe(notice); 
return(PANEL_NONE); 
} 

I* Given that the file is indeed a readable file, the first 
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three characters are checked to ensure that the file is acceptable. 
At the present time, only files beginning with "gad" are acceptable. 
All others cause the file to close and cause fcnv_open() to send a 
notice following confirmation of which the window is dismissed if 
unpinned after which fcnv_open() returns. 

Otherwise, the window is dismissed; and the data are read 
into the appropriate variables. Some are read into dummy variables 
*dum and buffer, as they are not needed. Memory allocation is 
carried out for the response data here as well. The file is then 
closed. 
*I 

for (i=O; i!=3; i++) 
rtest[i] = (char)fgetc(stream); 

rtest [i] = '\0"; 

if (strcmp(rtest, "gad") ! = O){ 
fclose(stream); 
notice = (Xv_notice)xv_create(fcnv_open_frame, NOTICE, 

NOTICE_MESSAGE_STRINGS,"This is not a proper response file!", 
NULL, 

NOTICE_BUTTON_YES, 
XV_SHOW, 
NULL); 

strcpy(fcnv_name, '"'); 
xv_set(fcnv_open_frame, 

"Confirm", 
TRUE, 

XV_SHOW, FALSE, NULL); 
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xv_destroy_safe(notice); 
return(PANEL_NONE); 
} 
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xv_set(fcnv_open_frame, XV_SHOW, FALSE, NULL); 

fscanf(stream, 11 %li 11
, &ltime); 

fscanf(stream, 11 %i %i 11
, &cnvpts, &resp_step); 

fscanf(stream, 11 %s %li 11
, buffer, &duml); 

fscanf(stream, 11 %i 11 &dumi); 
fscanf(stream, 11 %i 11

, &dumi); 
fscanf (stream, 11 %i 11

' &dumi) ; 

for (i=O; (i<498) && (ch=fgetc(stream)) 1= ---; i++) 
buffer[i] = (char)·ch; 

ch = fgetc(stream); 
buffer[i] = (char) '\0'; 

for (i=O; i<4; i++){ 
if (cnv != NULL) 

free(cnv); 
cnv = (double *)malloc(cnvpts * sizeof(double)); 
if (cnv == NULL){ 

} 

allocation_error( 11the loaded response. 11
); 

xv_destroy_safe(main_frame); 
exit(-1); 
} 

for (i=O; i<cnvpts; i++){ 
fscanf(stream, 11 %lf\n 11

, &dtemp); 
*(cnv + i) = dtemp; 
} 

fscanf(stream, 11 %s 11
, buffer); 

fclose(stream); 

I* Finally, prior to returning, fcnv_name item is truncated to 
remove the path if present and the response data are preprocessed by 
resp_prep() prior to their use in calculations. 
*I 

temp_name = strrchr(fcnv_name, (int)'l'); 
if (temp_name != NULL){ 

strcpy(fcnv_name, temp_name+1); 
xv_set(main_frame, XV_LABEL, buffer, NULL); 
} 

resp_prep () ; 
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return(PANEL_NONE); 
} 

I* File save is the routine called to save files to new file 
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names as well as old ones as indicated by the value of the parameter 
again. If again = 0, a new file name is provided by the sname_item; 
on the other hand, if again = 1, the data are saved to 
data.file_name. 
*I 

void file_save(int again) 
{ 
Xv_notice notice; 
char ch, hdr[54], *temp_name; 
int i, notice_stat; 
float fpt; 
FILE *stream; 

I* For new file names, file_save() first ensures a non-null 
string, returning otherwise after dismissing the window. Then it 
checks to see if the file has changed since its last save. If not, 
it sends a notice, obtaining from the user instructions to cancel or 
to continue. If cancelling, the window is first dismissed. Then the 
file is checked to see if it already exists as a readable file 
(assuming that if it exists, it is readable). If it does, a notice 
is sent to the user requesting confirmation to cancel or overwrite. 
Again, if cancelling, the window is first dismissed. 

If at this point the file does not exist (at least not as a 
readable file) or overwriting has been confirmed, the window is 
dismissed; and data.file_name is updated to the new file name. 
*I 

'if ( ! again) { 
strcpy(buffer, (char *)xv_get(sname_item, PANEL_VALUE)); 
if (! strcmp (buffer, 1111

)) { 

xv_set(file_saveas_frame, XV_SHOW, FALSE, NULL); 
return; 
} 

if (saved == 0){ 
notice = (Xv_notice)xv_create(file_saveas_frame, NOTICE, 

NOTICE_MESSAGE_STRINGS, "File has not changed.", 

NOTICE_BUTTON_YES, 
NOTICE_BUTTON_NO, 
NOTICE_STATUS, 
XV_SHOW, 

"Do you want to save anyway?", 
NULL, 
"No"·, 
"Yes", 
&notice_stat, 
TRUE, 
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NULL); 
if (notice_stat == NOTICE_YES){ 

xv_destroy_safe(notice); 
xv_set(file_saveas_frame, XV_SHOW, FALSE, NULL); 
return; 
} 

xv_destroy_safe(notice); 
} 

if ((stream= fopen(buffer, "rb")) !=NULL){ 
fclose(stream); 
notice = (Xv_notice)xv_create(file_saveas_frame, NOTICE, 

NOTICE_MESSAGE_STRINGS, "File already exists!", 

NOTICE_BUTTON_YES, 
NOTICE_BUTTON_NO, 
NOTICE_STATUS, 
XV_SHOW, 
NULL); 

"Do you want to overwrite?", 
NULL, 
"No", 
"Yes", 
&notice_ stat, 
TRUE, 

if (notice_stat -- NOTICE_YES){ 
xv_set(file_saveas_frame, XV_SHOW, FALSE, NULL); 
xv_destroy_safe(notice); 
return; 
} 

xv_destroy_safe(notice); 
} 

xv_set(file_saveas_frame, XV_SHOW, FALSE, NULL); 
strcpy(data.file_name, buffer); 
} 

I* If the data are to be saved to the same file as previously 
and no changes have occurred since the last save, a notice is sent 
and no save takes place. 
*I 

else if (saved == 0){ 
notice = (Xv_notice)xv_create(main_frame, NOTICE, 

NOTICE_MESSAGE_STRINGS, "File has not changed.", 
"No new save will occur.", 
NULL, 

NOTICE_BUTTON_YES, 
XV_SHOW, 
NULL); 

xv_destroy_safe(notice); 
return; 
} 

"Confirm", 
TRUE, 

I* Since saving is to take place, the data are written to the 
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file indicated (after opening for writing). Also some of the 
important information such as the parameters of the fit are saved to 
a separate header file with the same file name except for an 
additional .hdr extension. At the conclusion of writing each file, 
it is closed. 
*I 

fpt = (float)(1- data.tzero) * data.time_per_point; 

if((stream = fopen(data.file_name, "wb")) == NULL){ 
notice = (Xv_notice)xv_create(file_saveas_frame, NOTICE, 

NOTICE_MESSAGE_STRINGS, "File is not writeable!", 
"Try another file name. 11

, 

NULL, 
NOTICE_BUTTON_YES, 
XV_SHOW, 
NULL); 

xv_destroy_safe(notice); 
return; 
} 

"Confirm", 
TRUE, 

for (i=O; i<data.points_scan; i++){ 
fprintf(stream, 11 %f ", fpt + i*data.time_per_point); 
fprintf(stream, "%lf %lf\n 11 ,*(data.data[O]+i) ,*(data.data[1]+i)); 
} 

fclose(stream); 

strcpy(hdr, data.file_name); 
strcat (hdr, " . hdr") ; 
stream= fopen(hdr, "wb"); 

temp_name=(char *)xv_get((Frame)xv_get(dat_win,XV_OWNER),FRAME_LABEL); 
fprintf (stream, "%s\n", temp_name); 

fprintf(stream, "number of points= %i\n", data.points_scan); 

fprintf(stream, 11 time per point= %f ps, first point= %f ps\n11
, 

data.time_per_point, fpt); 
fprintf(stream, "zero time point= %i, FWHM = %f ps\n", 

data.tzero, data.param[O]); 
fprintf(stream, "a1 = %f, a2 = %f, b1 = %f, b2 = %f\n", 

data.param[1], data.param[2], data.param[3], data.param[4]); 
fprintf(stream, "c1 = %f, c2 = %f, c3 = %f, c4 = %f\n", 

data.param[5], data.param[6], data.param[7], data.param[8]); 
fprintf(stream, "error= %lf from %d through %d\n 11

, 

lstsqer, data.left_bnd, data.right_bnd); 

strcpy(buffer, (char *)xv_get(comment_item, PANEL_VALUE)); 
fprintf(stream, "%s\n", buffer); 
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fclose(stream); 

I* Finally, the apporpriate entry in saved[] is updated to 
reflect the nature of the current data as unchanged since saving. 
Also the save menu option is inactivated, and the data frame label 
is updated. 
*I 

saved = 0; 
if (!again) 

xv_set((Menu_item)xv_find(file_menu,MENUITEM,MENU_VALUE,2,NULL), 
MENU_INACTIVE, FALSE, 
NULL); 

if (data.conv != 4) 
temp_name = convolution_string(data.conv); 

else 
temp_name = fcnv_name; 

sprintf(buffer, "%s - %s wl %s", data.file_name, 
function_string(data.func), temp_name); 

xv_set(main_frame, XV_LABEL, buffer, NULL); 
return; 
} 

I* set_menu_greyed() is used to activate or deactivate the 
"Save" and "Save As" options of the file_menu as dictated by its 
save status as stored in save. 
*I 

void set_menu_greyed() 
{ 
if (saved == 1){ 

xv_set((Menu_item)xv_find(file_menu,MENUITEM,MENU_VALUE,2,NULL), 
MENU_INACTIVE, TRUE, 
NULL); 

xv_set((Menu_item)xv_find(file_menu,MENUITEM,MENU_VALUE,3,NULL), 
MENU_INACTIVE, FALSE, 
NULL); 

} 
else{ 

xv_set((Menu_item)xv_find(file_menu,MENUITEM,MENU_VALUE,2,NULL), 
MENU_INACTIVE, FALSE, 
NULL); 

xv_set((Menu_item)xv_find(file_menu,MENUITEM,MENU_VALUE,3,NULL), 
MENU_INACTIVE, FALSE, 
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NULL); 
} 

} 

I* reset_control_panel() updates the values displayed on the 
control panel to ensure agreement with the current values of the 
associated variables. 
*I 

void reset_control_panel() 
{ 
int i; 
Panel_item item, next_item; 

sprintf (buffer, "%f", data. param[O]); 

xv_set(sd_text, PANEL_VALUE, (caddr_t)buffer, NULL); 
item= sd_text; 

for (i=1; i<9; i++){ 
next_item = (Panel_item)xv_get(item, PANEL_NEXT_ITEM); 
item = next_item; 
sprintf(buffer, "%f", data.param[i]); 
xv_set(item, PANEL_VALUE, (caddr_t)buffer, NULL); 
} 

sprintf(buffer, "%d", data.tzero); 
xv_set(tO_text, PANEL_VALUE, (caddr_t)buffer, NULL); 

sprintf(buffer, "%d", data.left_bnd); 
xv_set(left_bnd_text, PANEL_VALUE, (caddr_t)buffer, NULL); 

sprintf(but'fer, "%d", data.right_bnd); 
xv_set(right_bnd_text, PANEL_VALUE, (caddr_t)buffer, NULL); 

sprintf(buffer, "error= %.3E", lstsqer); 
xv_set(error_item, PANEL_LABEL_STRING, (caddr_t)buffer, NULL); 
} 

I* set_flag_mask sets the value of flag_mask for the current 
value of data.func. Note that if the data are actually a response 
and not a decay, the flag_mask is preemptively set to 99. Also, 
mc_flags is masked by the new value of flag_mask. 
*I 

void set_flag_mask() 
{ 
if (data.flags & 8) 
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flag_mask = 99; 
else if (data.func == 1) 

flag_mask = 367; 
else if (data.func == 2) 

flag_mask = 315; 
else 

flag_mask = 0; 
mc_flags &= flag_mask; 
} 

APPENDIX B. DATA FITTING PROGRAM 

I* file_close() is called as a result of choosing the close 
option under the file button. It first gets the private data 
structure for the data set, freeing both the data memory and then 
the structure itself as well as the memory allocated for the 
path-removed filename. Then the frame is destroyed. Finally, the 
selected menu options are inactivated if appropriate. 
*I 

void file_close() 
{ 
Xv_notice notice; 

int i, notice_stat; 

if (saved > 0){ 
notice = (Xv_notice)xv_create(main_frame, NOTICE, 

NOTICE_MESSAGE_STRINGS, "File has changed since last save.", 
"Do you want to close without saving?", 
NULL, 

NOTICE_BUTTON_YES, "Cancel close", 
NOTICE_BUTTON_NO, "Close without saving", 
NOTICE_STATUS, &notice_stat, 
XV_SHOW, TRUE, 
NULL); 

if (notice_stat -- NOTICE_YES){ 
xv_destroy_safe(notice); 
return; 
} 

xv_destroy_safe(notice); 
} 

for(i=O; i<4; i++) 
if (data.data[i] != NULL) 

free(data.data[i]); 

xv_set((Menu_item)xv_find(file_menu, MENUITEM, MENU_VALUE, 2, NULL), 
MENU_INACTIVE, TRUE, 
NULL); 
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xv_set((Menu_item)xv_find(file_menu, MENUITEM, MENU_VALUE, 3, NULL), 
MENU_INACTIVE, TRUE, 
NULL); 

xv_set((Menu_item)xv_find(file_menu, MENUITEM, MENU_VALUE, 4, NULL), 
MENU_INACTIVE, TRUE, 
NULL); 

clear _window(); 
saved = -1; 
return; 
} 
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B.3 fitgraph.c 

I* This file contains the following routines: 
setup_graphics(), initial_plot(), clear_window(), plot(), 
print_function_text(), fit_fn_string(), draw_boxes(), rboundd(), 
rtickxyd(), draw_data(), draw_fits(), and draw_resids(). 
*I 

#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 
#include <math.h> 
#include <xviewlxview.h> 
#include <xviewlcanvas.h> 
#include <xviewlpanel.h> 
#include <xviewlcms.h> 
#include <X11IXlib.h> 
#include <xviewlxv_xrect.h> 
#include <xviewlfont.h> 

#include "fitX.h 11 

extern Frame main_frame; 
extern Canvas dat_win; 
extern Cms ems; 

./ 

extern Panel_item error_item; 

extern struct dat_set data; 
extern double lstsqer; 
extern char buffer[]; 
extern int data_color, fit_color, resid_color, tO_color; 
extern int box_color, label_color, white, black; 

I* 
file. 
*I 

Following are the plotting variables used solely in this 

I* *pixel_table is used to hold the real indices into the 
colormap for the colormap segment created in setup_graphics(). 
*I 
unsigned long *pixel_table; 

I* The rect_?min? and rect_max? variables mark the boundaries 
for the boxes. The *d variables apply to the data box; *r, to the 
residual box. 
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short rect_xmind = 60, rect_ymind = 40; 
short rect_xmaxd = 560, rect_ymaxd = 390; 
short rect_xminr = 60, rect_yminr = 430; 
short rect_xmaxr = 560, rect_ymaxr = 580; 

I* The func_* variables mark the location of the string 
indicating the fuctional form chosen to convolve. 
*I 

int func_x = 110, func_y = 20; 
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I* The dat_box[] and resid_box[] arrays are used to pass the box 
boundaries for the data box and the residual box respectively to some 
of the graphics functions. 
*I 
XPoint dat_box[5], resid_box[5]; 

I* The rect_xdiff and rect_ydiffd variables are for the width 
and height of the data box respectively. 

The xdiff and ydiffd variables are used to hold the 
differences in the maximum and minimum values of the abscissa and 
ordinate respectively of the actual data. . 

The xs and ysd variables hold scaling factors for conversion 
to pixel locations from x (point number) andy values respectively. 

rect_yO is for the y-position in pixels of the y==O line for 
the residual box. 
*I 

float 
float 
float 
short 

rect_xdiff, rect_ydiffd; 
xdiff, ydiffd; 
xs, ysd; 
rect_yO; 

I* The *_tick? variables are used in determining the laqels for 
the tick marks for the boxes. 
*I 

float 
float 

xmin_tick, xmax_tick; 
ymin_tickd, ymax_tickd; 

I* dpy is the default display. gc is the graphics context used 
throughout this program except for with the pseudo-data. Note that 
the foreground color is nevertheless changed often. gc_fits, which 
is used with the pseudo-data, has a different line width as well as a 
different color. 
*I 
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Display *dpy; 
GC gc, gc_fits; 
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I* setup_colors() makes the colormap segment and defines the 
colors. 
*I 

void setup_graphics () 
{ 
static Xv_singlecolor 

{255, 255, 255}, 
{60, 190, 60}, 
{0, 0, 230}, 
{230, 0, 230}, 
{230, 0, 0}, 
{0, 230, 255}, 
{0' 0' 230}' 
{0, 0, 0}, 
}; 

colors[] = { 
/*white*/ 
/*data color - green*/ 
/*fit color - blue*/ 
/*tO color - purple*/ 
/*resid color - red*/ 
/*box color - bright cyan*/ 
/*label color - blue*/ 
/*black*/ 

ems = (Cms)x~_create((int)NULL, CMS, 
CMS_SIZE, 8 + CMS_CONTROL_COLORS, 
CMS_COLORS, colors, 
CMS_CONTROL_CMS, TRUE, 
NULL); 

xv_set(main_frame, WIN_CMS, ems); 

pixel_table = (unsigned long *)xv_get(cms, CMS_INDEX_TABLE); 

white = CMS_CONTROL_COLORS; 
data_color = 1 + CMS_CONTROL_COLORS; 
fit_color = 2 + CMS_CONTROL_COLORS; 
tO_color = 3 + CMS_CONTROL_COLORS; 
resid_color = 4 + CMS_CONTROL_COLORS; 
box_color = 5 + CMS_CONTRDL_COLORS; 
label_color = 6 + CMS_CONTROL_COLORS; 
black = 7 + CMS_CONTROL_COLORS; 
} 

I* setup_graphics() sets up the important graphics variables and 
assigns values to the *_box[] arrays as well as several of the other 
variables derived from the box boundary variables. 
*I 
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void setup_graphics() 
{ 
XGCValues gcvalues; 

dpy =(Display *)xv_get(main_frame, XV_DISPLAY); 
gcvalues.graphics_exposures = False; 
gcvalues.background = pixel_table[CMS_CONTROL_COLORS]; 
gc = XCreateGC(dpy, xv_get(main_frame, XV_XID), 

GCBackground I GCGraphicsExposures, &gcvalues); 
gcvalues.line_width = 3; 
gcvalues.foreground = pixel_table[fit_color]; 
gc_fits = XCreateGC(dpy, xv_get(main_frame, XV_XID), 
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GCForeground I GCLineWidth I GCBackground I GCGraphicsExposures, 
&gcvalues); 

dat_box[O] .x = dat_box[4] .x = rect_xmind; 
dat_box[O] .y = dat_box[4] .y = rect_ymind; 
dat_box[1].x = rect_xmaxd; 
dat_box[1].y = rect_ymind; 
dat_box[2] .x = rect_xmaxd; 
dat_box[2] .y = rect_ymaxd; 
dat_box[3] .x = rect_xmind; 
dat_box[3].y = rect_ymaxd; 

resid_box[O] .x = resid_box[4] .x = rect_xminr; 
resid_box[O] .y = resid_box[4].y = rect_yminr; 
resid_box[1] .x = rect_xmaxr; 
resid_box[1] .y = rect_yminr; 
resid_box[2] .x = rect_xmaxr; 
resid_box[2] .y = rect_ymaxr; 
resid_box[3] .x = rect_xminr; 
resid_box[3] .y = rect_ymaxr; 

rect_yO = (rect_ymaxr - rect_yminr) I 2 + rect_yminr; 

rect_xdiff = (float)(rect_xmaxd- rect_xmind); 
rect_ydiffd = (float)(rect_ymaxd- rect_ymind); 
} 

I* ini tial_plot () handles the first plotting of a data set after 
opening its window. The function string is printed, the boxes are 
drawn, and the data are drawn. 
*I 

void initial_plot() 
{ 
Window xwin; 
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xwin = (Window)xv_get(canvas_paint_window(dat_win), XV_XID); 

draw_boxes(xwin); 
print_function_text(xwin); 

rboundd((float)1, data.datmin, (float)data.points_scan, 
data.datmax, xwin); 

draw_data(xwin); 
} 

I* clear_window() clears the window after closing a data set. 
*I 

void clear_window() 
{ 
Window xwin; 

xwin = (Window)xv_get(canvas_paint_window(dat_win), XV_XID); 
XClearWindow(dpy, xwin); 
} 

I* plot() handles subsequent plottings of the data. Note that 
while the function string does not need to be reprinted, the data, 
residuals, and even the axis labels themselves do (the latter being 
necessary, for example, after changing the tO value). Also, unlike 
the initial plot, the pseudo-data and residuals are plotted. This 
is also the location where the squared error is updated after a 
calculation. 
*I 

void plot() 
{ 
Window xwin; 

xwin = (Window)xv_get(canvas_paint_window(dat_win), XV_XID); 

XClearWindow(dpy, xwin); 

draw_boxes(xwin); 
print_function_text(xwin); 

rboundd((float)1, data.datmin, (float)data.points_scan, 
data.datmax, xwin); 

draw_fits(xwin); 
draw_data(xwin); 
draw_resids(xwin); 

., 
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sprintf(buffer, "error= %.3E", lstsqer); 
xv_set(error_item, PANEL_LABEL_STRING, (caddr_t)buffer, NULL); 
} 
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I* print_function_text() prints the function string. Note that 
the actual strings are provided by the routine fit_fn_string(). 
*I 

void print_function_text(Window xwin) 
{ 
if (! (data.flags & 8) ){ 

XSetForeground(dpy, gc, pixel_table[label_color]); 
XDrawString(dpy, xwin, gc, func_x, func_y, 

fit_fn_string(data.func), strlen(fit_fn_string(data.func))); 
} 

else{ 

} 

XSetForeground(dpy, gc, pixel_table[label_color]); 
XDrawString(dpy, xwin, gc, func_x, func_y, 

fit_fn_string(2+data.conv),strlen(fit_fn_string(2+data.conv))); 
} 

char *fit_fn_string(int n) 
{ 
static char *string[] = { 

"error", 
"c1*exp(-tla1) + c2*exp(-tla2)- (c1+c2)exp(-tlb1) + c4 ", 
" c1*exp((-tla1)**b2) - c1*exp(-tlb1) + c4 ", 
"c1*exp((-112)*((t-a1)lsigma)~2) + c2; c3=noise; c4=chisq", 
" c1*(sech((t-a1)lsigma))~2 + c2; c3=noise; c4=chisq ", 

" c11(1+((t-a1)lsigma)~2) + c2; c3=noise; c4=chisq " 
}; 

return((n < 1 I I n > 5) ? string[O] : string[n]); 
} 

I* draw_boxes() handles the drawing of the boxes including the 
tick marks but not the labeling of the axes. 
*I 

void draw_boxes(Window xwin) 
{ 
short dtempx, tempx, dtempy, tempy; 
int i; 

dtempx = (rect_xmaxd - rect_xmind) I 5; 
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tempx = rect_xmind + dtempx; 
dtempy = (rect_ymaxd - rect_ymind) I 5; 
tempy = rect_ymind + dtempy; 

XSetForeground(dpy, gc, pixel_table[box_color]); 

XDrawLines(dpy, xwin, gc, dat_box, 5, CoordModeOrigin); 

for(i=1; i<5; i++){ 
XDrawLine(dpy, xwin, gc, tempx, rect_ymaxd, tempx,rect_ymaxd-10); 
XDrawLine(dpy, xwin, gc, rect_xmind, tempy, rect_xmind+10,tempy); 
tempx+=dtempx; 
tempy+=dtempy; 
} 

XDrawLines(dpy, xwin, gc, resid_box, 5, CoordModeOrigin); 
XDrawLine(dpy, xwin, gc, rect_xminr, rect_yO, rect_xmaxr, rect_yO); 
} 

I* rboundd() determines the full width (xdiff) and height 
(ydiffd) of the current data set. The range of the data is extended 
by 5% in both directions for graphing purposes to keep the data from 
overlapping the top or bottom of the box. Then rtickxyd() is called 
to label the tick marks. 
*I 

void rboundd(xmin, ymind, xmax, ymaxd, xwin) 
float xmin, ymind, xmax, ymaxd; 
Window xwin; 
{ 
float fy; 

xdiff = xmax - xmin; 
ydiffd = ymaxd - ymind; 

fy = ydiffd I 20; 
ymind -= fy; 
ymaxd += fy; 
ydiffd += 2*fy; 

rtickxyd(xmin, ymind, xwin); 
} 

I* rtickxyd() labels the tick marks of the x and y axes for the 
data box. For a data range exceeding 10, as would be the case in the 
fluorescence data, integer values are used; otherwise, floats are 
used. 
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void rtickxyd(xmin, ymind, xwin) 
float xmin, ymind; 
Window xwin; 
{ 
Xv_Font font; 
Font_string_dims fdims; 
float temp, temp_tick, tempt; 
int temp2; 

font= (Xv_Font)xv_get(dat_win, XV_FONT); 

if (data.flags%2){ 
xmin_tick = floor(xmin); 
xmax_tick = ceil(xmin + xdiff); 
} 

else{ 
xmin_tick = xmin; 
xmax_tick = xmin + xdiff; 
} 

temp_tick = xmin_tick; 

xdiff = xmax_tick - xmin_tick; 
temp= xdiff I 5.; 
tempt = temp * data.time_per_point; 
xs = rect_xdiff I xdiff; 
xmin = xmin_tick; 

while (temp_tick <= xmax_tick){ 
if (tempt > (float)10.) 

sprintf (buffer, "%.Of" , 
(temp_tick- data.tzero) * data.time_per_point); 

if (tempt > (float)1.) 
sprintf (buffer, "%.if", 

(temp_tick- data.tzero) * data.time_per_point); 
else if (tempt> .1) 

sprintf (buffer, "%. 2f", 
(temp~tick- data.tzero) * data.time_per_point); 

else if (tempt<= .1) 
sprintf (buffer, "%. 3f", 

(temp_tick- data.tzero) * data.time_per_point); 

(void)xv_get(font, FONT_STRING_DIMS, buffer, &fdims); 
temp2 = (int)((temp_tick- xmin_tick) * xs + rect_xmind

fdims.widthl2); 
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XDrawString(dpy, xwin, gc, temp2, rect_ymaxd+fdims.height+5, 
buffer, strlen(buffer)); 
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temp_tick = temp_tick + temp; 
} 

if (ydiffd > 10){ 
ymin_tickd = floor(ymind); 
ymax_tickd = ceil(ymind + ydiffd); 
} 

else{· 
ymin_tickd = ymind; 
ymax_tickd = ymind + ydiffd; 
} 

temp_tick = ymin_tickd; 

ydiffd = ymax_tickd - ymin_tickd; 
temp = ydiffd I 5; 
ysd = rect_ydiffd I ydiffd; 
ymind = ymin_tickd; 

while (temp_tick <= ymax_tickd){ 
if (temp> (float)1.) 

} 

sprintf (buffer, "%.Of", temp_ tick); 
else if (temp> (float) .1) 

sprintf(buffer, "%.1f", temp_tick); 
else if (temp > (float) .01) 

sprintf(buffer, "%.2f", temp_tick); 
else if (temp < (float) .01) 

sprintf(buffer, "%.3f", temp_tick); 

(void)xv_get(font, FONT_STRING_DIMS, buffer, &fdims); 
temp2 = (int)(rect_ymaxd- (temp_tick- ymin_tickd) * ysd + 

fdims.heightl3); 

XDrawString(dpy, xwin, gc, rect_xmind-fdims.width-5, temp2, 
buffer, strlen(buffer)); 

temp_tick = temp_tick + temp; 
} 

I* draw_data() handles the drawing of the data. As it 
calculates the location of each point in pixels,, it plots that point 
as a 3x3 cluster of pixels centered on the calculated point. It 
also calculates the graphics coordinate of the zero time point for 
special treatment, namely overplotting in a different color from the 
rest of the data. Similarly it calculates the x-coordinates of the 
left and right boundaries for calculation of the squared error and 
plots vertical lines for those bounds. 
*I 

.. 
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void draw_data(Window xwin) 
{ 
int ptx, pty, tOx, tOy, leftx, rightx; 
int i, j , k; 

XSetForeground(dpy, gc, pixel_table[data_color]); 
for (i=O; i<data.points_scan; i++){ 

ptx = (int)((i + 1- xmin_tick) * xs + rect_xmind); 
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pty = (int)(rect_ymaxd- (*(data.data[O]+i) - ymin_tickd) * ysd); 
for(j=-1; j<2; j++){ 

} 

for(k=-1; k<2; k++){ 

} 

XDrawPoint(dpy, xwin, gc, ptx+j, pty+k); 
} 

XSetForeground(dpy, gc, pixel_table[tO_color]); 
tOx = (int)((data.tzero- xmin_tick) * xs + rect_xmind); 
tOy= (int)(rect_ymaxd-

· (*(data.data[O] + data.tzero- 1) - ymin_tickd) * ysd); 
for(i=-1; i<2; i++){ 

for(j=-1; j<2; j++){ 

} 

XDrawPoint(dpy, xwin, gc, tOx+i, tOy+j); 
} 

XSetForeground(dpy, gc, pixel_table[resid_color]); 
leftx = (int)((data.left_bnd- xmin_tick) * xs + rect_xmind); 
rightx = (int)((data.right_bnd- xmin_tick) * xs + rect_xmind); 
XDrawLine(dpy, xwin, gc, leftx, rect_ymind, leftx, rect_ymaxd); 
XDrawLine(dpy, xwin, gc, rightx, rect_ymind, rightx, rect_ymaxd); 
} 

I* draw_fits() plots the constructed data in the form of a 
connected line plot. Use of a point list and the filling thereof 
are as above. 
*I 

void draw_fits(Window xwin) 
{ 
XPoint *ptlist; 
int i, j=O, temp; 

ptlist = (XPoint *)malloc((data.points_scan+1) * sizeof(XPoint)); 
if(ptlist == NULL){ 

allocation_error("the ptlist. "); 
xv_destroy_safe(main_frame); 
} 
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for (i=O; i<data.points_scan; i++){ 
(ptlist + i)->x = (int)((i + 1- xmin_tick) * xs + rect_xmind); 
temp= (int)(rect_ymaxd-

if(temp < rect_ymind) 
temp = rect_ymind; 

(*(data.data[1]+i)- ymin_tickd) * ysd); 

else if (temp > rect_ymaxd) 
temp = rect_ymaxd; 

(ptlist + i)->y = temp; 
} 

XDrawLines(dpy. xwin, gc_fits, ptlist, 
data.points_scan, CoordModeOrigin); 

free(ptlist); 
} 

I* draw_resids() handles the plotting of the residual points in 
the residual box. As with the data, each point is plotted as a 3x3 
cluster of pixels. Again the zero time point is overplotted in a 
different color for easy identification, and the left and right 
bounding lines are added. 
*I 

void draw_resids(Window xwin) 
{ 
int ptx. pty. tox. tOy. leftx. rightx; 
int i. j. k; 

XSetForeground(dpy. gc, pixel_table[resid_color]); 
for (i=b; i<data.points_scan; i++){ 

ptx = (int)((i + 1- xmin_tick) * xs + rect_xminr); 
pty = (int)(rect_yO- (*(data.data[2] + i)) * ysd); 
if (pty < rect_yminr) 

pty = rect_yminr; 
else if (pty > rect_ymaxr) 

pty = rect_ym~r; 
for(j=-1; j<2; j++){ 

for(k=-1; k<2; k++){ 

} 
} 

XDrawPoint(dpy. xwin, gc. ptx+j, pty+k); 
} 

leftx = (int)((data.left_bnd- xmin_tick) * xs + rect_xmind); 
rightx = (int)((data.right_bnd- xmin_tick) * xs + rect_xmind); 
XDrawLine(dpy. xwin, gc. leftx, rect_yminr, leftx. rect_ymaxr); 
XDrawLine(dpy. xwin, gc. rightx, rect_yminr, rightx, rect_ymaxr); 

" 
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XSetForeground(dpy, gc, pixel_table[fit_color]); 
tOx = (int)((data.tzero- xmin_tick) * xs + rect_xminr); 
tOy= (int)(rect_yO- (*(data.data[2] + data.tzero- 1)) * ysd); 
if (tOy < rect_yminr) 

tOy = rect_yminr; 
else if (tOy > rect_ymaxr) 

tOy = rect_ymaxr; 
for(i=-1; i<2; i++){ 

for(j=-1; j<2; j++){ 

} 
} 

XDrawPoint(dpy, xwin, gc, tOx+i, tOy+j); 
} 
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B.4 calc.c 

I* This file contains the following routines: 
calc(), convander(), calc_err(), biexp(), stretch(), normal(), 
sech_squared(), lorentzian(), calctO(), initialize(), 
baseline_adjust(), set_pextrema_mats(), set_pdelta_mat(), 
resp_prep(), monte(), and fitt(). 
*I 

#include <math.h> 
#include <stdlib.h> 
#include <stdio.h> 
#include <time.h> 
#include <xviewlxview.h> 
#include <xviewlpanel.h> 
#include <xviewlnotice.h> 

#include "nr3.h" 
#include "fitX.h" 

extern struct dat_set data; 
extern double lstsqer, *cnv; 
extern int ibase, cnvpts, resp_step, icnvmax; 
extern int mc_flags, flag_mask, saved; 
·extern float pdel ta [] , pmax [] , pmin [] ; 
extern char buffer[]; 
extern Frame main_frame; 
extern Panel_item right_bnd_text; 

I* calc() is the primary calculational subroutine for fitting 
decays. (For fitting response functions, see calctO().) It is 
responsible for allocating (and at the end freeing) space for the 
matrices used in constructing the pseudo-data after determining the 
appropriate sizes. All three of the necessary arrays are zeroed and 
the response function array rspns[] is then filled, using either the 
analytical function selected or the response data in conv. Then the 
decay array fitfn[] is filled by calling the appropriate subroutine. 
Lastly the convolution is carried out and the squared error is 
calculated in convander() before the dynamically allocated array 
space is freed. 
*I 

void calc() 
{ 
Xv_notice notice; 
float *fitfn, *rspns, *conv, ftemp; 
double sigma; 
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int ps, i, hwid, diff; 

if (saved == -1) 
return; 

I* First the size of the arrays to be used in the convolution 
is ensured to be of a length equal to an integer power of two of 
sufficient size to hold at least points_scan points plus a 2*hwid 
extenstion of the function and hwid padding. For more information 
on padding, see Numerical Recipes in C. Then this space is 
allocated. 
*I 

switch(data.conv){ 
case 1: 
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sigma= (double)(data.param[O] I (data.time_per_point*2.35482)); 
hwid = ((int)sigma + 1) * 3; 
break; 

case 2: 
sigma= (double)(data.param[O] I (data.time_per_point*1.76275)); 
hwid = ((int)sigma + 1) * 3; 
break; 

case 3: 
sigma= (double)(data.param[O] I (data.time_per_point*2.)); 
hwid = dat·a. points_scanl2; 
break; 

case 4: 
hwid = (icnvmax < cnvpts-icnvmax-1) ? cnvpts-icnvmax-1 icnvmax; 
if (resp_step != data.stage_step){ 

notice = (Xv_notice)xv_create(main_frame, NOTICE, 
NOTICE_MESSAGE_STRINGS, "Data-Response Mismatch!", 

"Steps per Point Differ!", 
"Results Will Be Distorted!", 

} 

NDTICE_BUTTON_YES, 
XV_SHDW, 
NULL); 

xv_destroy_safe(notice); 
} 

NULL, 
"Confirm", 
TRUE, 

for(ps=64; ps<data.points_scan+3*hwid; ps*=2) 

' fitfn = vector(1, ps); 
rspns = vector(1, ps); 
conv = vector(1, 2*ps); 
for (i=1; i<=ps; i++) 

rspns[i] = conv[i] = conv[i+ps] = 0.0; 

I* Next the response function is determined and calculated. 
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Note that for data.param[O] == 0 no convolution is performed, as 
indicated by hwid==1. This is equivalent to using a delta function. 
Also, note that the function is stored in wrap-around order in the 
first elements of the array rspns[] as required for the numerical 
recipes routine convlv(). 
*I 

if (data.param[O] < 0.00001) 
hwid = 1; 

else switch (data.conv){ 
case 1: 

rspns[1] = 1.0 I (2.50663*sigma); 
for (i=1; i<=hwid; i++){ 

rspns[i+1] = exp(-(float)(i*i)l(2.0*sigma*sigma)) * rspns[1]; 
rspns[2*hwid + 2- i] = rspns[i+1]; 
} 

break; 
case 2: 

rspns[1] = 1.0 I (2.*sigma); 
for (i=1; i<=hwid; i++){ 

ftemp = 1 I cosh((float)i I sigma); 
rspns[i+1] = ftemp * ftemp * rspns[1]; 
rspns[2*hwid + 2- i] = rspns[i+1]; 
} 

break; 
case 3: 

rspns[1] = 1.0 I (3.14159*sigma); 
for (i=1; i<=hwid; i++){ 

rspns[i+1] = rspns[1] I (1 + (float)(i*i) I (sigma*sigma)); 
rspns[2*hwid + 2- i] = rspns[i+1]; 
} 

break; 
case 4: 

for (i=1; i<=cnvpts-icnvmax; i++) 
, rspns [i] = *(cnv + i - 1); 

diff = abs(cnvpts- 2*icnvmax- 1); 
for (i+=diff; i<=2*hwid+1; i++) 

rspns[i] = *(cnv + i- 1- diff); 
break; 
} 

I* Now the fitting function is calculated by calling an 
appropriate subroutine. The results are arranged in fitfn in the 
first data.points_scan+2*hwid elements, although the first tzero-1 
are set to 0. The array is then padded out to the end; thus, 
there are at least hwid padded O's. 
*I 

if (data.func == 1) 
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'" 
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biexp(fitfn, hwid); 
else if (data.func == 2) 

stretch(fitfn, hwid); 
for (i=data.points_scan+2*hwid+1; i<=ps; i++) 

fitfn[i] = 0.0; 

I* Next the subroutine convander() calculates the convolution 
and unweighted squared error, which is stored in the external 
variable lstsqer. The fitted curve values are stored in 
data.data[1] and. the residuals are stored in data.data[2]. 
*l 

convander(hwid, fitfn, rspns, conv, ps); 

I* Finally the arrays allocated above are freed. 
*I 

free_vector(fitfn, 1, ps); 
free_vector(rspns~ 1, ps); 
free_vector(conv, 1, 2*ps); 
return; 
} 

I* convander() calls convlv(), a routine from numerical recipes, 
to calculate the convolution as long as hwid!=1. If hwid==1, no 
convolution is performed; this is the equivalent to convolving with 
a delta function. Note that convlv() also requires twofft(), 
realft(), four1() and some routines in nrutil.c. Then the 
constructed data are copied into data.data[1] and calc_err() 
is called to calculate residuals and the squared error. 
*I 
void convander(hwid, fitfn, rspns, conv, ps) 
int hwid; 
float *fitfn, *rspns, *conv; 
int ps; 
{ 
int i; 

if (hwid > 1) 
convlv(fitfn, ps, rspns, 2*hwid+1, 1, conv); 

else{ 
for (i=1; i<=data.points_scan; i++) 

conv[i] = fitfn[i]; 
} 

for (i=O; i<data.points_scan; i++) 
*(data.data[1]+i) = (double)conv[i+1]; 
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calc_err(); 
} 

I* calc_err() calculates the residuals for all of the points and 
the squared error between the left and right bounds as marked by 
data.left_bnd and data.right_bnd. The former are stored in 
data.data[2]; the latter, in lstsqer. 
*I 

void calc_errO 
{ 
int i; 
double dtemp; 

for (i=O; i<data.left_bnd-1; i++) 
*(data.data[2]+i) = *(data.data[O]+i)- *(data.data[1]+i); 

if (!(data.flags & 16)){ 
for (lstsqer=O.O; i<data.right_bnd; i++){ 

*(data.data[2]+i) = *(data.data[O]+i) - *(data.data[1]+i); 
lstsqer += (*(data.data[2]+i)) * (*(data.data[2]+i)); 
} 

} 
else{ 

for (lstsqer=O.O; i<data.right_bnd; i++){ 

} 

*(data.data[2]+i) = *(data.data[O]+i) - *(data.data[1]+i); 
if (*(data.data[O]+i) == 0.0) 

*(data.data[O]+i) += data.datmax I 100000.0; 
dtemp = (*(data.data[2]+i))*data.datmaxl(*(data.data[O]+i)); 
lstsqer += dtemp * dtemp; 
} 

for (; i<data.points_scan; i++) 
*(data.data[2]+i) = *(data.data[O]+i)- *(data.data[1]+i); 

} 

I* biexp() calculates the values for a biexponential decay 
function with possible exponential rise and constant offset. In 
order to avoid unnecessary calculations of exponentials, the program 
takes advantage of the fact that the exponential of the sum of the 
exponents is the product of the exponentials. Note also the 
protection versus underflow errors. 
*I 

void biexp(fitfn, hwid) 
float fi tfn [] ; 
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int hwid; 
{ 
float fie, fi, f2c, f2, f3c, "f3; 
int i; 

if (data.time_per_point/(data.param[i] + .OOi) > i8 I I 
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data.param[i] -- 0){ 
fie= 0.0;' 
fi = 0.0; 
} 

else{ 
fie= exp(-data.time_per_point/data.param[i]); 
fi = 1.0; 
} 

if (data.time_per_point/(data.param[2] + .OOi) > i8 I I 

f2c = 0.0; 
f2 = 0.0; 
} 

data.param[2] -- 0){ 

else{ 
f2c = exp(-data.time_per_point/data.param[2]); 
f2 = 1. 0; 
} 

if (data.time_per_point/(data.param[3] + .OOi) > i8 I I 

f3c = 0.0; 
f3 = 0.0; 
} 

data.param[3] -- 0){ 

else{ 
f3c = exp(-data.time_per_point/data.param[3]); 
f3 = i. 0; 
} 

for (i=i; i<data.tzero; i++) 
fitfn[i] = 0.0; 

for (; i<=data.points_scan+2*hwid; i++){ 

} 

fitfn[i] = data.param[5]*fi + data.param[6]*f2 
- (data.param[5] + data.param[6])*f3 + data.param[8]; 

fi *= fie; 
f2 *= f2c; 
f3 *= f3c; 
} 

I* stretch() calculates the values for a stretched exponential 
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decay function (aka Kohlrausch) with possible exponential rise and 
constant offset. Note that in general the trick used above to avoid 
calculating excessive exponentials cannot be used here. 
*I 

void stretch(fitfn, hwid) 
float f i tfn [] ; 
int hwid; 
{ 
float f3c, f3, fi, fie; 
int i; 

if (data.time_per_pointl(data.param[3] + .OOi) > i8 I I 

f3c = 0.0; 
f3 = 0.0; 
} 

else{ 

data.param[3] -- 0){ 

f3c = exp(-data.time_per_pointldata.param[3]); 
f3 = 1.0; 
} 

for (i=i; i<data.tzero; i++) 
fitfn[i] = 0.0; 

if (data.param[i] < .OOi){ 
for (; i<=data.points_scan+2*hwid; i++) 

fitfn[i] = data.param[8]; 
} 

else{ 
if (data.param[4] < .OOi I I data.param[4] > .999){ 

if (data.time_per_pointl(data.param[i] + .OOi) > i8){ 
fie= 0.0; 
f1 = 0.0; 
} 

else{ 
fie= exp(-data.time_per_pointldata.param[i]); 
fi = 1.0; 
} 

for (; i<=data.points_scan+2*hwid; i++){ 

} 
else{ 

fitfn[i] = data.param[5]*(fi-f3) + data.param[8]; 
f3 *= f3c; 
fi *= fie; 
} 

for (; i<=data.points_scan+2*hwid; i++){ 
fi = pow((i - data.tzero)*data.time_per_point I 

data.param[i], data.param[4]); 
if (fi > i2.0) 
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} 
} 

} 

f1 = 12.0; 
fitfn[i] = data.param[5]*(exp(-f1)-f3) + data.param[8]; 
f3 *= f3c; 
} 

I* The subroutine normal calculates they-value, *yfit, of a 
gaussian curve of the variable x, using the parameters stored in 
array, a, of length, na (in the present case this is unimportant 
but retained for consistency). Note that a was allocated in the 
main routine to run from element 1 to element na, not from 0 to na-1. 
This is for consistency with NR routines. normal() also determines 
the values of the first derivatives with respect to the appropriate 
parameters at the point x and stores those values in the array dyda. 
The subroutines sech_squared() and lorentzian() do exactly 
the same thing but for the functions hyperbolic secant squared and 
lorentzian respectively. 
*I 

void normal(x, a, yfit, dyda, na) 
float x, a[], *yfit, dyda[]; 
int na; 
{ 
float f1, f2, f3, sd; 

sd = a[1] I 2.35482; 
f1 = (x - a [2]) I sd; 
f2 = exp(-f1 * f1 I 2); 
f3 = a[3] * f2 * f1; 

*yfit = a[3] * f2 + a[4]; 
dyda[4] = 1; 
dyda[3] = f2; 
dyda[2] = f3 I sd; 
dyda[1] = f3 * f1 ·I a[1]; 
} 

void sech_squared(x, a, yfit, dyda, na) 
float x, a[], *yfit, dyda[]; 
int na; 
{ 
float f1, f2, f3, f4, sech; 
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f4 = a[1] I 1.76275; 
f1 = (x- a[2]) I f4; 
sech = (float)(1 I cosh(f1)); 
f2 = sech * sech; 
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f3 = (float)(2 * a[3] * f2 * tanh(f1)); 

*yfit = a[3] * f2 + a[4]; 
dyda[4] = 1; 
dyda[3] = f2; 
dyda[2] = f3 I f4; 
dyda[1] = f3 * f1 I a[1]; 
} 

void lorentzian(x, a, yfit, dyda, na) 
float x, aD, *yfit, dyda[]; 
int na; 
{ 
float f1, f2, f3, f4; 

f4 = a[1] I 2; 
f1 = (x - a[2]) I f4; 
f2 = (1 + f1 * f1); 
f3 = 2 * a[3] * f1 I (f2 * f2); 

*yfit = a[3] I f2 + a[4]; 
dyda[4] = 
dyda[3] = 
dyda[2] = 
dyda[1] = 
} 

1· 
' 1 I f2; 

f3 I f4; 
f3 * f1 I a[1]; 

I* calctO() is the primary calculational sub-routine for fitting 
response functions. It allocates some space for parameters used in 
the actual calculational routines and then calls the appropriate 
one depending on the value of data.conv, the variable that determines 
which response function the user wants fit to the data. Afterwards 
it calls calc_err() to calculate the squared error and frees up the 
memory it allocated. 
*I 

void calctO () 
{ 
int i, ma=4; 
float *a, dummya[5], temp; 
void (*funcs) (); 
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a= vector(1, ma); 
a [1] = data. par am [0] ; 
a[2] = data.param[1]; 
a[3] = data.param[5]; 
a[4] = data.param[6]; 

a[1] I= data.time_per_point; 
a[2] I= data.time_per_point; 

if (data.conv == 1) 
funcs = normal; 

else if (data.conv == 2) 
funcs = sech_squared; 

else if (data.conv == 3) 
funcs = lorentzian; 

for (i=1; i<=data.points_scan; i++){ 
funcs((float)i, a, &temp, dummya, ma); 
*(data.data[1] + i - 1) = (double)temp; 
} 

calc_err(); 
free_vector(a, 1, ma); 
} 
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I* initialize() determines the maximum and m1n1mum values of the 
data set. Also, if the data is of the non-bleach, fluorescence 
variety (ps or fs), the baseline is adjusted based on the current 
value of ibase by the routine baseline_adjust(). After some 
additional initializations, including zeroing the parameters in 
param[], the control panel is reset by reset_control_panel(), and 
the values in the arrays pdelta[], pmax[], and pmin[] are set by 
set_pdelta_mat() and set_extrema_mats(). 
*I 

void initialize() 
{ 
int 
char 

i; 
*input; 

I* The maximum and minimum are first determined. For 
fluorescence data the baseline is determined and the data are 
corrected therefor in baseline_adjust(). 
*I 

data.datmax = (float)(*(data.data[O]) + .00001); 
data.datmin = (float)(*(data.data[O])); 
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for (i=O; i<data.points_scan; i++){ 
if (*(data.data[O] + i) > data.datmax) 

data.datmax = (float) *(data.data[O] + i); 
else if (*(data.data[O] + i) < data.datmin) 

data.datmin =(float) *(data.data[O] + i); 
} 

if ((data.flags & 2) && !(data.flags & 8)) 
baseline_adjust(); 

I* Next the array data.param is initialized to zero. Then pmax, 
pmin, and pdelta are set in set_pmats(). 
*I 

data. tzero = 1; 
data.left_bnd = 1; 
data.right_bnd = data.points_scan; 
sprintf (buffer, "%d", data.right_bnd); 

xv_set(right_bnd_text, PANEL_VALUE, (caddr_t)buffer, NULL); 

for (i=O; i<9; i++) 
data.param[i] = 0.0; 

set_pextrema_mats(); 
set_pdelta_mat(); 
reset_control_panel () ; 
return; 
} 

I* baseline_adjust() averages the values of the first ibase 
points, subtracts this value from all of the points, and scales the 
maximum to 100. 
*I 

void baseline_adjust() 
{ 
int i; 
double baseline; 

I* The baseline is calculated by averaging the points up through 
the point ibase, in which case data.datmax is then corrected for the 
baseline, after which correction the data is corrected for the 
baseline as well and rescaled to the maximum times 100. data.datmin 
is then rescaled by subtracting off the baseline and multiplying by 
100idata.datmax; data.datmax is then set to 100, the new maximum. 
*I 
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if (ibase > data.points_scan I I ibase <= 0) 
ibase = 1; 

baseline = 0.0; 
for (i=O; i<ibase; i++) 

baseline+= *(data.data[O] + i); 
baseline I= (double)ibase; 
data.datmax -= (float)baseline; 

for (i=O; i<data.points_scan; i++) 

265 

*(data.data[O] + i) = (*(data.data[O] + i) - baseline) * 100.0 I 
(double)data.datmax; 

data.datmin = (data.datmin- (float)baseline) * 100.0 I data.datmax; 
data.datmax = 100.0; 
} 

I* set_pextrema_mats () sets the values in pmax [] and pmin 0, 
depending on the decay function chosen as well as the type of data. 
*I 

void set_pextrema_mats() 
{ 
int i. 

' 
set_flag_mask(); 

I* pmax and pmin are first set to 0; elements corresponding to 
parameters used by function data.func are reset later if necessary 
(usually not the case for pmin except for the constant offset, which 
is generally c4=param[8]). Finally, corrections for bleaches to both 
pmax and pmin are made as necessary .. 
*I 

for (i=O; i<9; i++) 
pmax[i] = pmin[i] = 0.0; 

pmax [0] = 1. OE6; 
if (data.flags & 8){ 

pmax[1] = (float)data.points_scan * data.time_per_point; 
pmax[5] = pmax[6] = pmax[7] = pmax[8] = 1.0E6; 
pmin[1] = 1.0E-6; 
return; 
} 

if (data.func == 1 I I data.func == 2){ 
pmax[1] = pmax[3] = pmax[5] = pmax[8] = 1.0E6; 
pmin[8] = -1.0E6; 
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} 
if (data.func == 1) 

pmax[2] = pmax[6] = 1.0E6; 
else if (data.func == 2) 

pmax [ 4] = 1. 0 ; 

if (data.flags & 4){ 

} 

for (i=S; i<8; i++){ 
pmin[i] = -pmax[i]; 
} 

} 

I* set_pdelta_mat() sets the values in pdelta[], depending on 
the type of data. 
*I 

void set_pdelta_mat() 
{ 
int itemp; 
int i; 

pdelta[9] = pdelta[10] = pdelta[11] = 1.0; 
if (data.flags & 1){ 

pdelta[O] = .01; 
pdelta[1] = pdelta[2] = 1.0; 
} 

else{ 
pdelta[O] = .001; 
pdelta[1] = pdelta[2] = .1; 
} 

pdelta[3] = pdelta[4] = .01; 

if (data.flags & 8){ 
itemp = (int)log10(data.datmax); 
itemp = (int)exp10((double)itemp); 
pdelta[S] = (float)itemp I 1000.0; 
pdelta[6] = (float)itemp I 100.0; 

- pdelta[7] = (float)itemp I 10000.0; 
pdelta[8] = 0; 

return; 
} 

if (data.flags & 2) 
pdelta[S] = pdelta[6] = pdelta[7] = pdelta[8] = .1; 

else 
pdelta[S] = pdelta[6] = pdelta[7] = pdelta[8] = .001; 

} 
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I* The following routine prepares a real response function for 
use in convolution. It has to find the maximum, which is defined to 
be time zero, scale the values to unit area, and rearrange them into 
wrap-around format. It is called only from fcnv_open(). 
*I 

void resp_prep() 
{ 
int i; 
double area, dmax, *dtemp; 

dtemp '= (double *)malloc(cnvpts * sizeof(double)); 
if (dtemp == NULL){ 
allocation_error( 11 the dtemp in resp_prep; don't use a real response"); 

return; 
} 

I* First find the maximum and move the data to dtemp. 
*I 

dmax = *dtemp = *cnv; 
icnvmax = 0; 
for (i=1; i<cnvpts; i++){ 

*(dtemp + i) = *(cnv + i); 
if (dmax < *(cnv + i)){ 

dmax = *(cnv + i); 
icnvmax = i; 
} 

} 

I* Next normalize the 11 pulse 11 area. 
*I 

area = (*dtemp) I 3.0; 
area+= *(dtemp + 1) * (4.013.0); 
for (i=2; i<cnvpts-1; i+=2){ 

area+= (2.0I3.0)*(*(dtemp + i)) + (4.0I3.0)*(*(dtemp+i+1)); 
} 

if (cnvpts % 2) 
area+= (*(dtemp + cnvpts - 1)) I 3.0; 

if (area> 0.0){ 
for (i=O; i<cnvpts; i++) 

*(dtemp + i) I= area; 
} 



268 APPENDIX B. DATA FITTING PROGRAM 

Now a~range the response in wrap-around order. 

for (i=O; i<icnvmax; i++) 
*(cnv + cnvpts- icnvmax + i) = *(dtemp + i); 

for (; i<cnvpts; i++) 
*(cnv + i- icnvmax) = *(dtemp + i); 

free(dtemp); 
return; 
} 

I* monte() is the routine that randomly searches through a 
subspace of the parameter space as determined by the bits in mc_flags 
for a better "fit" of the constructed data to the real data as 
determined by a smaller value for lstsqer. This routine is replaced 
by fitt() for fitting response functions. 

The routine first determines which if any of the parameters 
are to be varied by determining if the corresponding bit is on and 
a non-zero value has been entered via the control panel. If no such 
parameters exist, the routine returns. Otherwise it seeds the random 
number generator with the squared error and enters a loop 5000 
iterations long in which it randomly and independently selects a 
value for each of the varied parameters over a range from 50% to 150% 
of its current value, calculates the new constructed data set, 
determines the squared error, and compares it to the saved value in 
old_error. If the new value is less than the old, the new parameters 
are copied over and the control panel and plot are updated. 
*I 

int monte() 
{ 
Panel_item pitem, nitem; 
int i, iterations=O, j=O, num_fit_params=O, fit_params[9]; 
float mcmin[9], mcdelta[9], temp_params[9]; 
double old_error; 
unsigned u2to32less1; 
time_t lt; 

u2to32less1 = OxFFFFFFFF; 
time(&lt); 

for (i=O; i<9; i++){ 
if ((mc_flags & (1 << i)) && data.param[i] != 0.0){ 

fit_params[num_fit_params] = i; 
num_fit_params++; 
} 

.. 
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} 

if (num_fit_params -- 0) 
return(1); 

for(i=O; i<num_fit_params; i++){ 
mcmin [i] = data. par am [f i t_params [i]] I 2; 
if (3*mcmin[i] < pmax[fit_params[i]]) 

mcdelta[i] = mcmin[i]*2; 
else 

mcdelta[i] = pmax[fit_params[i]] - mcmin[i]; 
} 

for(i=O; i<9; i++) 
temp_params[i] = data.param[i]; 

old_error = lstsqer; 

srand((int)lt); 
do{ 

iterations++; 
j++; 

for(i=O; i<num_fit_params; i++) 
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data.param[fit_params[i]] = (float)rand()l(float)u2to32less1 
* mcdelta[i] + mcmin[i]; 

calc(); 
if (old_error > lstsqer){ 

for(i=O; i<9; i++) 
temp_params[i] = data.param[i]; 

old_error = lstsqer; 
reset_control_panel(); 
plot(); 
} 

} while(iterations < 5000); 

for(i=O; i<9; i++) 
data.param[i] = temp_params[i]; 

calc(); 
reset_control_panel(); 
plot(); 
return(O); 
} 

I* fitt() is called as a result of hitting the "Fit" button 
when the data being fit are for a response function as indicated 
by the appropriate bit in data.flags. This routine is only called 
by mc_proc () ; 
*I 

.,. 

., 
'. 
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void fitt() 
{ 

APPENDIX B. DATA FITTING PROGRAM 

int i, j, k, count=O, num_fit_params; 
float *a, *X, *y, *sig, alamda, olamda, oldchisq, dchisq, 

**covar, **alpha; , 
float dummy,' dummya[5], chisq; 
int ma=4, *lista; 
void (*funcs) (); 
unsigned u2to32less1; 

u2to32less1 = OxFFFFFFFF; 

I* First set up the x and y vectors which contain the data. 
Also set up the vector a, which will hold the parameters of the fit. 
In the current case, this will have a fixed length of 4. Note that 
the user inputs a noise value to use as the estimated standard 
deviation, which is kept constant for all the points. Finally, set 
up a vector lista, also of length 4. This should be a permutation 
of the numbers 1 to ma. The first mfit values (in our case mfit 
is usually just ma) are actually fit; the remainder are left fixed. 
*I 

x = vector(1, data.points_scan); 
y = vector(1, data.points_scan); 
sig = vector(1, data.points_scan); 

if (data.conv == 1) 
funcs = normal; 

else if (data.conv == 2) 
funcs = sech_squared; 

else if (data.conv == 3) 
funcs = lorentzian; 

a= vector(1, ma); 

covar = matrix(1, ma, 1, ma); 
alpha= matrix(1, ma, 1, ma); 

list a = ivector(1, ma); 
a[1] = (float)data.param[O]; 
a[2] = (float)data.param[1]; 
a[3] = (float)data.param[5]; 
a[4] = (float)data.param[6]; 

a[1] I= data.time_per_point; 
a[2] I= data.time_per_point; 

chisq = (float)data.param[8]; 
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for (num_fit_params=O, k=4, i=O; i<2; i++){ 
for (j=O; j<2; j++){ 

} 

if (mc_flags & (1 << (i*5+j))){ 
num_fit_params++; 
lista[num_fit_params] = 2*i + j + 1; 
} 

else{ 

} 

lista[k] = 2*i + j + 1; 
k--; 
} 

if (num_fit_params -- 0) 
return; 

for (i=1; i<=data.points_scan; i++){ 
x[i] = (float)(i) ; 
y[i] = (float)*(data.data[O]+i-1); 
sig[i] = (float)data.param[7]; 
} 

271 

I* Next the Levenberg-Marquardt fitting method is used in a loop. 
to determine best fit values as outlined in "Numerical Recipes in C" 
pp. 545-546. The procedure must be carried out at least twice. 
Convergence is considered as achieved when the value of chi-squared 
has decreased by less than .1 or by a fractional amount less than 
1E-3. As a result, the numerical routine mrqmin() is called first 
in order to initialze the routine (as indicated by *alamda=-1); then 
a loop is entered which calls mrqmin() until convergence is achieved. 
Then mrqmin() is called one last time with *alamda set to 0. This 
causes mrqmin to set covar and alpha to the covariance and curvature 
matrices for the converged parameter values. 
*I 

alamda = -1; 
mrqmin(x, y, sig, data.points_scan, a, ma, lista, num_fit_params, 

covar, alpha, &chisq, funcs, &alamda); 
dchisq = .2 + chisq; 
do{ 

count++; 
oldchisq = chisq; 
olamda = alamda; 
mrqmin(x, y, sig, data.points_scan, a, ma, lista, num_fit_params, 

covar, alpha, &chisq, funcs, &alamda); 
if (olamda > alamda) 

dchisq = oldchisq - chisq; 
} while (dchisq > .1 && (dchisql(chisq + 1)) > .001 && 

count< 10000); 
alamda = 0; 
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mrqmin(x, y, sig, data.points_scan, a, ma, lista, num_fit_params, 
covar, alpha, &chisq, funcs, &alamda); 

data. param[O] = (double) a[1]; 
data.param[1] = (double) a [2] ; 
data. par am [5] = (double) a [3] ; 
data.param[6] = (double)a[4]; 
data. param[8] = (double)chisq; 

data.param[O] *= data.time_per_point; 
data.param[1] *= data.time_per_point; 
for(i=1; i<=data.points_s~an; i++){ 

funcs(x[i], a, &dummy, dummya, ma); 
*(data.data[1]+i-1) = (double)dummy; 
} 

calc_err(); 
reset_control_panel (); 
plot(); 

free_vector(x, 1, data.points_scan); 
free_vector(y, 1, data.points_scan); 
free_vector(sig, 1, data.points_scan); 
free_ivector(lista, 1, ma); 
free_matrix(covar, 1, ma, 1, ma); 
free_matrix(alpha, 1, ma, 1, ma); 
free_vector(a, 1, ma); 
} 
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