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Abstract 

The Thomas-Fermi model of Ref. [1] is generalized by the addition of a rotational energy. The 

results are compared with the calculations of A.J. Sierk [2] on the rotating Yukawa-plus-exponential 

model. The heights of the fission barriers are estimated for differrnt angular momenta in the case of the 

super-deformed nuclei I52Dy and 83Sr. 
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1. Introduction 

Last year, at the XXIX Zakopane School of Physics, I presented our basic seven-parameter Thomas

Fermi model of macroscopic nuclear properties [3]. The model reproduces shell-corrected nuclear 

building energies of 1654 nuclei to within an RMS deviation of 0.655 MeV (Fig. 1), gives a good 

account of nuclear charge distributions (Fig. 2), fission barriers and optical model potential depths. We 

thought it would be interesting to see what happens when one spins up these Thomas-Fermi nuclei by 

adding a rotational energy L2f2J, where Lis the angular momentum and J is the moment of inertia 

corresponding to a common angular velocity of all mass elements. Today I will show you some recent 

results of these calculations. · 

2. Comparison with A.J. Sierk's Results 

a) Case ofL = 0 

Available comprehensive studies of idealized rotating nuclei include Refs. [ 4,5] and, in particular, 

the exhaustive 1985 work of A.J. Sierk (Ref. [2]) on the rotating Yukawa-plus-exponential model of 

Krappe and Nix (Ref. [6]). 

As a start, Fig. 3 compares fission barriers for zero angular momentum as calculated by Sierk 

(dashed curve) and according to the Thomas-Fermi model. This model predicts barriers along the upper 

solid curve for nuclei down to about Thorium (fissility -39), gradually drifting down towards the lower 

curve as the fission saddle-point shapes neck in with decreasing fissility. (The reason for the two curves 

has to do with the recently identified "Congruence Energy" [7]. This is an extra binding associated with 

the better overlap of neutron and proton densities for particles with congruent nodal structures of their 

wave functions. Like the shell corrections, this quanta! effect is outside the framework of a Thomas

Fermi treatment, and has been represented in our model by a semi-empirical term. We have only 

recently figured out the approximate shape dependence of the Congruence Energy, and Fig. 3 merely 

shows the predictions for two limiting cases: convex (not necked-in) and very necked-in saddle-point 

shapes.) 

You will note that for the heavy nuclei both Sierk and Thomas-Fermi agree with measurements (the 

solid diamonds). Then the Sierk barriers undershoot the measurements in the region of fissility 31-34. 
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For the very light nuclei 85Br and 90,94,98Mo, Ref. [8], Sierk undershoots and Thomas-Fermi overshoots 

the measurements. 

b) Effect of Angular Momentum 

The broken curves in Fig. 4 show the effect of angular momentum on the fission barriers of three 

nuclei studied by Sierk: Z = 60, 80, 100, with mass numbers chosen to lie on the valley of stability, as 

given by Green's formula N- Z = 0.4 A2f(A + 200). The solid curves are the Thomas-Fermi predictions 

(this time with the shape dependence of the Congruence Energy taken into account). For Z = 100 the 

two predictions are again practically the same. For the lightest nucleus with Z = 60 Sierk' s barriers are 

significantly below the Thomas-Fermi predictions. (The circled points correspond to the upper curve in 

Fig. 3, with the shape dependence of the Congruence Energy disregarded.) 

Sierk's calculations are considered to give a fair representation of the angular momentum 

dependence of fission barriers, as deduced from measurements by way of somewhat involved model

dependent analyses (Ref. [9]). By and large the same should be true of the Thomas-Fermi results. To 

decide whether the somewhat higher values predicted by the Thomas-Fermi model are confirmed in the 

case of high angular momenta (the way they are for L = 0 for fissility 31-34 in Fig. 3) will require 

refined experiments and a painstaking theoretical interpretation of the results. 

3. Fission Barriers of Super-Deformed Nuclei 

Figure 5 shows the deformation energies with respect to an elongation or 'fission' coordinate in the 

case of 152Dy with L = 50, 60, 70, 80, 85 (in units of n). The points with elongation D = 0 refer to the 

binding energies (with the rotational energy included) of the oblate Thomas-Fermi minimum-energy 

configurations. To explore the heights of the associated fission barriers, calculate first the distance 

between the centers of mass of the two halves of the oblate shape (imagined cut by a plane containing 

the axis of rotation). Then ask for a Thomas-Fermi solution of the rotating system, but under the 

constraint that this distance be greater by 2D, with D = 0.2 fm, say. There results a 'stretched' triaxial 

shape (like a piece of soap) rotating about the shortest axis. Repeat the calculation forD= 0.4, 0.6, 0.8 

... etc., thus tracing out a deformation energy curve along a fission valley. A maximum along this curve 

will correspond to the saddle point for fission, from which the fission barrier height may be deduced. 

Figure 5 also illustrates the well known fact that for a sufficiently high angular momentum(? 75 in the 
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case of 152Dy) a rotating macroscopic nucleus would spontaneously develop a triaxial equilibrium 

shape. Of course, a Thomas-Fermi calculation without shell effects cannot explain the superdeformed 

configuration of I52Dy, which is triaxial already for much smaller values ofL. But suppose you 

represent the shell correction by a narrow potential dimple, a few MeV deep, superimposed on the 

curves in Fig. 5 at some value D of the elongation. The spacing of such curves for ~L = 2 will then 

correspond to the implied quadrupole y-ray transition energies. Figure 6 shows these energies as a 

function of angular momentum for different choices of D. ForD= 1.2 fm one actually gets a 

quantitative fit to the lower part of the measured spectrum (the circled points, Ref. [10]). The 

subsequent deviations show that the 152Dy nucleus has a moment of inertia more nearly constant than 

the Thomas-Fermi model, even when the elongation Dis frozen in this model. This is because the 

Thomas-Fermi nucleus is able to stretch in other degrees of freedom besides D (e.g., by a further 

flattening). By contrast, the actual Dy nucleus is a pretty stiff piece of nuclear matter, with its shape 

frozen solid by the shell effect. 

Figure 7 gives an indication of the shape of 152Dy with L = 60 forD = 1.2, as well as for the 

corresponding saddle-point shape with D = 4.4 (see Fig. 5). The fission barrier height is estimated as 

some 13 MeV (disregarding possible shell effects at the saddle point). L:::: 60 is the maximum angular 

momentum observed experimentally, and a cut-off somewhere around this value is consistent with 

Fig. 5, since for high L the fission barrier would soon drop below the neutron binding energy and the 

survival probability of the system would become small. 

Figures 7, 8, and 9 show a similar analysis in the case of the recently identified superdeformed band 

in 83Sr, with L = 20.5-38.5 (Ref. [11]). Figure 9 suggests a value of D somewhere around 0.8-1.0 fm. 

From Fig. 8 one estimates that at L = 38.5 the barrier height would be around 25 MeV, falling to about 

13 MeV at L = 50.5. This suggests that with further experimental refinements one might be able to 

extend the super-deformed band in 83Sr by several units of L. (In the case or' the heavier isotope 86Sr 

the Thomas-Fermi calculation estimates the fission barrier to be about 12 MeV for L =54.) 

4. Conclusions 

Over the past years we have polished up a basic macroscopic model of nuclei which rests on two 

physical inputs: a) the 1927 semi-classical approximation of Thomas and Fermi of two fermions per h3 
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of phase space, and b) a seven-parameter density- and momentum-dependent effective Yukawa 

interaction between nucleons. The parameters have been determined by a fit to a vast database. We 

believe the result is a reliable description of the bulk and surface properties of the nuclear fluid, and a 

useful representation of what finite nuclei would look like if shell oscillations were averaged out. 

It is a pleasure to dedicate this work to Zdzislaw Szymanski, who has done so much to further our 

understanding of real nuclei, as contrasted with the idealized macroscopic model nuclei with which this 

paper is concerned. 
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Figure Captions 

Fig. 1. The bottom part shows deviations between measured nuclear masses and the Thomas-Fermi 

results corrected for (Strutinsky) shell effects, an even-odd term and a semi-empirical 

congruence energy (Ref. [7]). The upper part is a simil~r plot for the shape-dependent droplet 

model (Ref. [12]). Lines connect isotopes of a given element. 

Fig. 2. The solid curves are the Thomas-Fermi charge distributions for three nuclei (with the proton 

size folded in). The dot-dashed and dashed curves are representations of measurements, as 

fitted with a Woods-Saxon function or a "three-parameter gaussian," respectively. 

Fig. 3. Calculated and measured fission barriers from 8Be to 252Cf (corrected for ground state shell 

effects) as function of a fissility parameter defined as z2tA(l-2.2I2), where I= (N-Z)/A. The 

dashed curve refers to A.J. Sierk's calculations for nuclei on the valley of stability. The upper 

solid curve refers to Thomas-Fermi results which assume that the Congruence Energy is the 

same at the saddle point as in the ground state, the lower curve that it has doubled (as expected 

for very necked-in shapes). The point near fissility 16 is 85Br, those near fissility 19 are 

90,94,98Mo. 

Fig. 4. Fission barriers as a function of angular momentum. The broken curves are Sierk's results 

from Ref. [2], the solid curves used the Thomas-Fermi model together with a shape-dependent 

congruence energy, and the circles show what the barriers would have been if the shape 

dependence had been ignored. 

Fig. 5. The binding energy (including rotational energy) for 152Dy rotating with 50, 60, 70, 80, and 

85 units of angular momentum. The "elongation" is defined as half the distance between the 

centers of mass of the two-halves of the triaxial shape (cut by a plane orthogonal to the longest 

axis), less its value for the oblate shape at D = 0. The two curves without symbols show the 

effects of ignoring the shape-dependence of the Congruence Energy~ 

Fig. 6. The curves are quadrupole transition energies (~ = 2) for 152Dy, calculated with the Thomas-

Fermi model assuming that the elongation parameter D had been frozen at the values 

indicated. The circles are experimental data. 
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Fig. 7. The upper part shows the approximate shape of 152Dy with L = 60 and the elongation frozen 

at D = 1.2 fm. The corresponding saddle-point shape, for which D is equal to 4.4 fm, is also 

shown. The lower part is the analogous plot for 86Sr with L = 54. The dotted curves are 

meant to give an impression of the diffuseness of the density distributions. The rotation axis is 

indicated. 

Fig. 8. This is like Fig. 5 but for 83Sr. 

Fig. 9. This is like Fig. 6 but for 83Sr. 
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