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Abstract: 

Dispersion relations and amplitudes of collective pionic modes are derived in a ?T + 
N.N- 1 + .6.N-1 model for use in transport descriptions by means of a local density 
approximation. It is discussed how pionic modes can be converted to real particles 
when penetrating the nuclear surface a.nd how earlier treatments can be improved. 
\Vhen the surface is stationary only free pions emerge. The time-dependent situation 
is also addressed, as is the conversion of non-physical (i.e. unperturbed .6.N-1

) modes 
to real particles when the nuclear density vanishes. A simplified one-dimensional 
scenario is used to investigate the reflection and transmission of pionic modes at the 
nuclear surface. It is found that reflection of pionic modes is rather unlikely, but the 
process can be incorporated into transport descriptions by the use of approximate 
local transmission coefficients. 
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1 Introduction 

In collisions between two heavy nuclei at bombarding energies from a few hundred 
MeV up to several Ge V per nucleon, hadronic matter at high density and temperature 
is formed. In such collisions a large number of energetic particles are produced and 
may be used as probes of the hot and dense phase of the reaction [1, 2, 3]. 

Microscopic transport models, such as BUU and QMD [2, 3, 4, 5] have been fairly 
successful in describing particle production in heavy-ion reactions. In these trans
port models, the nucleons propagate in an effective one-body field while subject to 
direct two-body collisions. Sufficiently energetic nucleon-nucleon collisions may agi
tate one or both of the colliding nucleons to a nucleon resonance, especially b.(1232), 
N*(1440), and N*(1535). Such resonances propagate in their own mean field and may 
collide with nucleons or other nucleon resonances as well. Furthermore, the nucleon 
resonances may decay by meson emission and these decay processes constitute the 
main mechanisms for the production of energetic mesons [3]. 

The transport descriptions normally employ the vacuum properties of the res
onances and mesons, i.e. the needed cross sections, decay widths, and dispersion 
relations are taken according to their values in vacmpn [4]. However, in infinite nu
clear matter, a system of interacting 1r mesons, nucleons, and .6. isobars will couple 
to form spin-isospin modes. Some of these modes are non-collective in their charac
ter, dominated by a single baryon-hole excitation, while other modes are collective 
and correspond to meson-like states (quasi mesons). The non-collective spin-isospin 
modes correspond to those a.lready included in transport simulations by promoting 
a nucleon from below to above the Fermi surface. The collective spin-isospin modes 
can effectively be regarded as pa.rticles of mesonic character ( quasimesons ), which by 
means of a local density and temperature approximation can be incorporated into the 
transport descriptions. 

Some in-medium modifications have already been employed in calculations of 
heavy-ion collisions, both qualitatively [6] and by transport simulations [7, 8, 9]. A 
more elaborate 1r + N j\.f- 1 + .6.N-1 model wa.s employed in ref. [10] to derive several 
quantities useful for implementation of in-medium properties in transport descrip
tions. While it is stra:ightforward to apply the local 9ensity approximation in the 
interior regions of the nuclear system, there are conceptual problems of how to pro
ceed at the nuclear surface where the density approaches zero and the quasimesons 
convert to real physical particles. The problem is that while in a real system no hole 
states exist in vacuum, a collective (.6.JV- 1-like) mode can in a stationary infinite 
system exist for an arbitrary small (but finite) density. This is because the particles 
in the stationary system have infinite time to explore the entire system and form 
collective modes also at extremely low densities. 

In this paper we will therefore discuss how a proper conversion from quasimesons 
to real particles at the surface can be performed. Earlier works [8, 9] have treated 
this conversion by various approximations (see further the discussion in section 4). 
In this work we will present a somewhat different approach, based on ref. [10], and 
discuss how the approximations in the earlier works can be improved upon. 

The present paper constitutes a qualitative investigation of treatment of pionic 
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modes at a nuclear surface in transport simulations. To make the presentation simple 
and transparent we will therefore restrict ourselves to some special cases of the more 
complete investigation in ref. [10]. We will only consider the collective modes in the 
spin-longitudinal channel (pion like), since this is the dominant channel at the energies 
we have in mind in this paper. Collective modes in the spin-transverse channel (p 
meson like) can be treated completely analogously. Furthermore we will consider the 
zero-temperature case, and the ~ width will not be included in the calculation of the 
dispersion relations (denoted a.s the reference ca.se in ref. [10]). 

The justification for considering only T = 0 in this paper is that there is not 
a strong dependence on the dispersion relations of the collective modes for moder
ately large temperatures, especially not at low densities at the surface. Also, the 
temperature is not expected to be very high at the surface. However we want to 
emphasize that there is no principal difficulty associated with incorporating T > 0 in 
the treatment. 

The motivation for omitting the ~ width, in the calculation of the dispersion 
relations, is somev.·hat more involved. Including the ~ width self-consistently in the 
calculation of the spin-isospin modes encompasses decay processes like 

~ . A 1\T-1 ( 1\T + ·· ) 1\T-1 7rJ ---7 4-.ll\ ---7 1\ 7rk j\ • 

However, since such processes are already explicitly contained in the transport simu
lation by processes like 

iri + N ---7 .6. ---7 N +irk , 

it does not seem to be correct to include the entire self-consistent ~ width when 
calculating the collective modes to be used in the transport description. Instead it 
seems more correct to use the results obtained with the .6. width omitted, both for 
the energies of the modes and for the partial .6. widths to be used in the decays 
~ ---7 N + iri. 

However one should note that by omitting the.~ width in the dispersion relations 
one also fails to take into account the fact that the picnic modes have a Breit-Wigner 
like energy distribution, analogous with the ~. The width and center of this distribu
tion are determined by the the self-consistent .6. width and depends on the particular 
picnic mode and its momentum. The center of the distribution approximately corre
sponds to the energy found when the .6. width is omitted [10]. 

In section 2 we will give a. brief presentation of the model. The dispersion relations 
and amplitudes of the spin-isospin mosles obtained in infinite nuclear matter, are 
presented and discussed in section :3. Section 4 is devoted to a. discussion of the 
picnic modes at a nuclear surface and the implications for transport descriptions, 
while our results are summarized in section .5. In addition we present in appendix A 
a discussion of reflection and transmission properties a.t the nuclear surface, and in 
appendix B some technical details for the RPA equations. 
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2 The model 

The model presented in this section is treated and motivated in detail in ref. [10]. 
For convenience we here present a. brief recapitulation of the essential points. Fur
thermore, the presentation in this section only treats the spin-longitudinal channel 
for the special case when T = 0 and the .6. width is omitted i11 the calculation of the 
spin-isospin modes. 

2.1 Spin-isospin modes in an infinite system 

We consider a system of interacting nucleons (.N), delta. isobars (.6.) and pi mesons 
( 1r ). In order to investigate the in-medium properties of the interacting particles, we 
employ a. cubic box with side length L; the calculated properties are not sensitive to 
the actual size, so we need not take the limit L --+ oo explicitly. 

The in-medium properties are obtained by using the Green's function technique, 
starting from non-interacting hadrons. The non-interacting Hamiltonian can be writ
ten 

't' ·t· Ho = L ekbkbk + L nu . .:,.,(qi)?r/11"1 . (1) 
k I 

Here the index k = (pk; Sk, msk; tk, mtk) represents the baryon momentum, spin, and 
isospin. The spin and isospin quantum numbers, Sk and tk, take the values ~ and ~ 
for N and .6., respectively. The energy of baryon k moving in a (spatially constant) 
potential is denoted ek. The baryon creation and annihilation operators, b! and bkl 
are normalized such that they satisfy the usual anti-commutation relation, 

(2) 

In the pion part of H0 , the index l represents the pion momentum and isospin, l = 
(p1, >.1 = 0, ± 1 ). The meson energy is given by 1i.w-rr = [m;. + q2]112 and the creation 
and annihilation operators of the pion are normalized such that they satisfy the usual 
commutation relation, 

(3) 

Note that the .6. isobar described by H0 has no decay width, r ~ = 0. When the 
interactions are turned on, the .6. width will emerge and it will then automatically 
include also the free width. 

2.1.1 Basic interactions 

At the N1r .1\T a.nd N1r .6. vertices \Ve \vill use effective ]J-\vave interactions, VN-rrN and 
VN-rr~, which in the momentum representation can be written as [10, 11] 

1 
(!i.e) 'i 

VN A= ic--
-;r,.,. L3 

[ 
2mNC2 l ~ fr.JN - _. 

2 + JS -2 F,.,(q) (u·qcm) 7 • </>,., (q) 
m.Nc s m.,.,c 

(4) 

1 ' 

[ 
2m~c2 ]2 .fl.r~ F ( ) (S+ • ) --+ ( ) h ( ) 

2 r;. 2 ;r q qcm T • 4>-rr q + .C. 5 
m~c + vs m,..c 



In these expressions, Js is the center-of-mass energy in the N 7r system and q em is 
the pion momentum in the N 1r center-of-mass system, which in the non-relativistic 
limit is given by 

(6) 

where nw and q is the pion energy a.nd momentum, and PN is the nucleon momentum 
in an arbitrary fra.me. The Pauli spin and isospin matrices are denoted u and i, and 
s+ and f+ are spin and isospin ~ to ~ transition operators normalized such that 
< ~' ~1St1 1~, ~ >= 1.1 The momentum representation of the pion field is taken as 

(7) 

The interactions contain a monopole form fa.ctor, 

(8) 

and the coupling constants are determined at (cq) 2 = (nw) 2
- (cq) 2 = (m?rc2

)
2 and 

Vs = mNc
2 or Js = rn.b.c2

• 

In addition we will also include effective short-range interactions at nucleon-hole 
vertices, again written in momentum space, 

(9) 

and the corresponding interactions obtained when one (or two) of the nucleons is 
replaced by a. 6. The strength of the short-range interactions is determined by the 
correlation parameters g~v N, g'N b., and g~b.. 

2.2 RPA approximation 

We want to calculate a. spin-isospin mode Green's function within the RPA approxi
mation, symbolically 

GRPA (a, ,8; '-'-') = Go( a:, ;1; w) + L G0 ( a:, -y; '-'-') Vb, n.; w) GRPA ( n., ,8; w) (10) 

'"" 
The spin-isospin modes, here represented by the Green's function GRPA, will in this 
approximation be obtained as an infinite iteration of (non-interacting) pion, nucleon
hole, and 6-hole states, represented by the diagonal Green's function Go, coupled with 
the interactions specified in eqs. ( 4-9) which here are summarized by the symbolic 
interaction V. 

1 For clarity, we generally employ bold-face characters to denote quantities with vector and tensor 
properties under ordinary spatial rotations, while arrows are employed to indicate the transformation 
properties under rotations in isospa.ce. 
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In nuclear collisions at beam energies up to about one GeV per nucleon, which 
is the domain of application that we have in mind, only relatively few mesons and 
isobars are produced and so the associated quantum-statistical effects may be ignored. 
Accordingly, we assume nA ~ 1, and nrr ~ 1. 

A set of RPA equations, equivalent to eq. (10) were derived in ref. [10]. From these 
equations eigenvectors and eigenenergies are obtained for the different spin-isospin 
modes. The eigenvectors will yield the amplitudes of the different components ( 1r, 

N N-1
, !:::.N-1

) forming the particular spin-isospin mode with the given eigenenergy. 
These RPA amplitudes contain important information about the nature of the differ
ent spin-isospin modes. The spin-isospin modes (or excited RPA states), IWv >,are 
created by an operator Qt, 

QUq, >.) = L Xjk( q, J.)b]bk + L Zk( q, J.) n-t- L lVk'(q, >.) ~k . (11) 
jk k k 

The quantity Xjk(q, J.) is here the amplitude of the baryon-hole (N N- 1 or !:::.N-1
) 

component of the spin-isospin mode I W11 > at momentum q and isospin >., while 
Zk(q, >.)and lV{(q, >.),in the same way, are the amplitudes of the picnic component. 
The summation over baryon and meson states in eq. ( 11) is restricted by taking 
Xjk ex: bpi'pk+q, Zk ex: bpk,qb,\k,,\, and Wk ex: bpk,-qb>..b->..· 

The RPA equations are obtained from the relation 

(12) 

with bQ = b!bj, 7Tr, or ?f,~, and \Vhere the brackets < · > denote the expectation 
value in the interacting ground state. It can be shown that the set of RPA solutions 
constitutes an orthonormal set. For convenience the solutions of the RPA equations 
of ref. [10], are recapitulated in appendix B. 

2.2.1 The total 1:::. width 

The 1:::. self energy :EA is calculated according to the diagrams in fig. 1, by taking into 
account all the diagrams corresponding to the 1:::. decaying into a spin-isospin mode 
and a nucleon, which then again form a 6. In the spin-longitudinal channel we obtain 
(ref. [10]) 

1 2 lie ~ _ . ( )3 rA(EA,p~) = Im 3 L 2i [O(t) -n(p~ -q)]J\1(!:1N,N6). (13) 

where the energy available for the spin-isospin mode is given by 

(14) 

and J\f(34, 12) can be expressed as 

M- (3 ?) = """ { h(:31; v)h(24; 11) _ h(:31; 11)h(24; 11)} !Itf{4 F 2 , 
4,1~ w t: t: . t: t: . +( 2)2 g934,12' 

Wv>O /I.W - fi.Wv + l17 n.w + fiWv - zry 7?~1!'c 
(15) 



The factor h(jk, 1J) is obtained from the interactions a.t the vertex consisting of 
baryons j and k, a.nd the spin-isospin mode 11. The interactions to be used depend on 
the non-interacting states tha.t the mode consists of and must therefore be multiplied 
by the amplitude of the corresponding state, 

where {) 1(j k) is a short hand notation for the spin-isospin matrix elements in the spin
longitudinal channel, 1-Jrrk is defined in (4) and (5), 1-Jk,mn is defined in (9), and the 
amplitudes x:nn, Z 1, Hl1 are defined in eq. (11). The explicit expression for h(jk,11) 
is somewhat lengthy and has therefore also been relegated to appendix B. 

2.2.2 Specific .6. channels 

The total .6. width gives the transition probability per unit time for the .6. resonance to 
decay to any of its decay channels. In a. transport description one explicitly allows the 
.6. resonance to decay into specific final particles. Consequently, one needs not only 
the total .6. width (which is the sum of a.ll decay channels) but also the partial widths 
governing the decay into specific RPA channels. These decay channels consist of a 
nucleon and one of the spin-isospin modes. Since we have access to all the amplitudes 
of a given spin-isospin mode on the different unperturbed states, it is possible to 
derive an expression for the partial contribution tor~ from the .6. decay to a specific 
mode 11. The right-hand side of fig. 1 shows a. diagrammatic representation of such 
a process. The partial .6. width for a .6. decay to a nucleon and a spin-longitudinal 
mode 11 becomes [10] 

( 17) 

where the factor, fl.·i\i = 1 - nN, takes into account the Pauli blocking of the nucleon. 
Note tha.t when this expression is to be used in transport models the factor nN should 
be omitted since the Pauli blocking is treated explicitly in the transport description. 
The expression ( 17) is identical to the contribution from one of the 11 terms in eq. 
(13). 

3 Dispersion relations and amplitudes 

From eq. (59) in appendix B we calculate the energies of the spin-isospin modes that 
are formed in the interacting system, i.e. their dispersion relations. Fig. 2 displays 
the dispersion relations at normal nuclear density, p = p0 = 0.153 fm-3

. In fig. 2 
a number of different modes in the spin-longitudinal ( 1r-like) channel are apparent. 
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Some of those are non-collective JV N- 1 modes (solid curves), which have their energies 
within the regions 

0 < 1iw < _i_ + qpp 
q < 2pp' 

') * * ' -1nN mN 
q2 qpp 

< n.w < 
q2 Q]JF 

q > 2pp. (18) ----- ?7+-.-' 2m'N m.'N -mN mN 

Since we are presenting our results for a. box normalization with a finite side length L, 
we obtain a discrete number of non-collective N N- 1 modes. The total number of spin
isospin modes within the region (18) depends on L and tends towards a continuum 
in the limit L --+ oo. Similarly, a. number of non-collective ~N-1 states emerge in fig. 
2 which, for a fixed q, have their energies constrained to a band, 

q2 qpp . 'q2 qpp 
m~ - 1'1lN + -- - - :=::; fi.w :=::; m~ - 1nN + -- + - (19) 

2m~ m~ · 2m~ m~ 

The non-collective baryon-hole modes correspond in a transport description to prop
agation of uncoupled baryons (Nor .6.). This was discussed and studied in detail in 
ref. [10] and will therefore not be further discussed in this paper. 

In addition, two collective modes appear in fig. 2, represented by dot-dashed 
curves. The lower one starts at n.w = mrrc2 at q = 0 and continues into the ~N-1 

region ai'ound q :::::: :360 MeV/ c. This mode will in the following be referred to as 7r1 . 

The upper collective mode starts slightl.Y above n.w :::::: 1n~c2 
- mNc

2 at q = 0 and 
approaches li.wrr = [( m;rc

2
)

2 + ( cq )2 ]112 a.t large q. This mode is denoted 7r2 • 

The incorporation of the two collective spin-isospin modes into transport equa
tions is more involved. These modes can be regarded a.s separate particles of pionic 
character, 7r1 and ?T- 2 , a.nd treated in a manner analogous to the standard treatment of 
the pion. Since the pion is then fully included in the description, it should no longer 
be treated explicitly. The propagation of t.he two collective pionic modes is governed 
by the effective Hamiltonians 

ff1(r,q) 

Hz(r,q) = 

tu._•I( q; p( r)) _ 1i.w1 , 

liwz ( q; p( r)) - hwz , (20) 

where 1iw1 and 1iw2 are the energy-momentum relations for the lower and upper 
collective modes displayed in fig. 2 for p = p0

. Note that the spatial dependence of 
H1 ( r, q) is incorporated by representing p( r) a.s a. local quantity. To facilitate center
of-mass transformations we parametrize the dispersion relations of the pionic modes 
in the form 

I 

nw(q: p):::::: {[cq- cqo(p)] 2 + mo(p) 2c4
} 

2 + Uo(P) (21) 

For convenience in the transport simulations, we have chosen to use relatively simple 
expressions for the parametrization, rather than to try to optimize the fit. In this 
way a qua.sipion moves like a. relativistic particle with the group velocity determined 
by an effective momentum and energ:y 

dliw c( q - qo) cq* 
-- = c =c--. 
dq n.C.: - Uo n.w" 

(22) 



The density-dependent parameters q0 , m 0 and U0 are presented in fig. 3. 
Furthermore, in the collision term of the standard transport description the pro

cess for the production and absorption of pions .6 ~ N + 1r, should be replaced by 
the two distinct processes 

(23) 

The .6 decay is governed by the .6. decay width in the medium to these two specific 
channels, f~. These partial widths, should be employed in the same manner as the 
free width, i.e. they describe the probability for the .6 isobar to decay into a nucleon 
and a pion. The only difference is that several collective pionic modes are available 
in the final state. In fig. 4 we present total and partial .6 widths for a .6 with the 
momentum 300 MeV jc. The reverse processes in (2:3) are characterized by cross 
sections that were presented a.nd discussed in ref. [10]. To obtain the partial .6 width 
from eq. (17) it is necessary to know the amplitudes Z, I: x~N-1 and "L XNN-1. We 
therefore also present a. parametrization of these quantities. On the lower pionic mode 
the pionic component dominates for small momenta., q, and the .6N-1 component 
dominates at larger momenta.. Therefore the sum of all individual .6N-1 components 
will for small q increase \Vith q. However, \Vhen the lower pionic mode enters the 
.6N-1 region the collectivity disappears gradually, and the sum of all individual 
.6N- 1 components starts to decrease with q. Thus we employ the form 

with 

2:X~1N-l(q;p) :::::; f~(q, C[X~1N-l])' 
L .Y:JN-1 (q; p) :::::; hr(q, C[x~~N-d) , 

C•2 C' . - ± ·1 + 2 cq 
.t~(q,C) = C 2 + ( c F 

N ·3 cq- 4 

(24) 

(25) 

(26) 

The density-dependent coefficients C are presented in fig .. 5. On the upper pionic 
mode we instead parametrize the amplitudes as 

""' vii-2 ( ) ~ ."'.NN-1 q; p 

where 

:::::; C~[_\:-~2N-dV.f"2(q, C'[X~2N-I]) 

:::::; C~[.\".~2JV-l]Vl ~ .f2(q, C'[X~2N-I])' 

(27) 

(28) 

(29) 

with the density-dependent coefficients C', displayed in fig. 6. The amplitudes z of 
the pion component are obtained from the parametrization of the squared amplitudes, 
eqs. (30) and (:31) below, as Z = JP. 

The total .6 decay width, has apart from the partial contributions f~, also the 
partial contributions r~N-I and r~N-I. The partial width r~N-I gives the probabil
ity for the .6 to decay into a nucleon and a. N N-1 state. In a transport description, 
this implies that we initially have a .6 and after the decay process we have two nu
cleons above the Fermi surface and a. hole left in the Fermi sea .. But this is the same 
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process as if the .6. vvould collide with a nucleon below the Fermi surface to give two 
nucleons above the Fermi surface. This process is normally already included in the 
collision term in a standard tra1~sport description, and the probability for such a. col
lision is given by the cross section for the process .6. + N ---+ N + N. In a. transport 
description it is therefore not correct to both include a .6. decay according to f~N-

1 

and a. collision term with .6. + N ---+ N + N. Instead, the correct procedure should 
be to exclude r~ N-

1 
and modify the cross section a-( .6. + N ---+ N + N) to be the 

in-medium cross section. Calculations of such in-medium cross sections was discussed 
in ref. [10]. In the same \Va.y, r~N-I should be excluded in a. transport description, 
and o-(.6. + N ---+ .6. + N) be the in-medium cross section. 

Although the collective pionic modes can thus be effectively treated as ordinary 
particles, the fact that their wave functions contain components from 1r, N N-1 and 
L':::.N-1 states makes it difficult to picture them in a physically simple manner. Fortu
nately, their specific structure is not important for the transport process, as a.s long as 
these quasiparticles 1:emain well inside the nuclear medium. First when such a quasi
particle penetrates a nuclear surface and emerges as a free particle is it physically 
meaningful to determine what kind of real particle it is. The gradual transformation 
of the collective quasiparticle occurs automatically within the formalism, because as 
the density is lowered, p - 0, a pionic mode will acquire 100% of either the pion com
ponent or the L':::.N- 1 component, depending on w and q. That is to say, it will turn 
into either a. free pion or an unperturbed 6.N- 1 state. The squared amplitudes have 
their values between zero and unity and we therefore employ the pa.rametrizations 

zirl(q;p)2 ~ f( C"[Z;c1])· . 2 q, ' (30) 
zir2(q;p)2 ,...., 1-'- .f2(q, C"[Zir2]) (31) ,...., 

:z:::: xir1 ( )2 ,...., 1- h(q, c:"[X1iv-~D (32) • t:.N-1 q; p ,...., 

:z:::: x·""2 ( )2 ,...., 
f2(q, C"[X1~rv-d) ' (33) • .:::.N-1 q; p ,...., 

with f 2 (q, C") from eq. (29), while the sum of the squared NN- 1 amplitudes are 
obtained from the normalization, i.e. all squared amplitudes sum up to unity. The 
density-dependent coefficients C", are presented in fig. 7. There remains the practical 
problem of how to represent an unperturbed 6.N-1 state when p ---+ 0. However, as 
will be discussed in section 4, only a very small fraction of the pionic modes (vanishing 
for a stationary density profile) will emerge as unperturbed L':::.N- 1 states. 

Note that this approach is different from earlier works [8, 9, 12] where the nature 
of the pionic mode was determined already in the creation process, i.e. when the mode 
was created it was determi11ed vvhether it represented a free pion or an unperturbed 
L':::.JV-1 state. This difference in approach will have crucial effects for the collective 
modes that escape the system, as will be seen in the next sections. 

4 Quasipions at the nuclear surface 

In previous works the quasipions at a surface have been treated in various approx
imations. In ref. [8] effective dispersion relations were introduced, corresponding to 
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modes with either 100% pionic or !::::.N- 1 component. The pionic mode was then prop
agated as a quasipion, emerging as a free pion at the surface, while the t::.N-1 mode 
was used to derive a ~ potential for the uncoupled !:::.s. In this Way only pions and 
!:::.s escape the system, but the dra\vba.ck is that the effective dispersion relations are 
quite distorted compared to the original ones, and that the in-medium effects seem 
to be over-estimated by allowing all uncoupled !:::.s propagate in a collective potential. 

In [9] both collective modes were propagated, and hence some modes escape the 
system as unperturbed !::::.N-1 states. This was effectively taken care of by converting 
these modes to free !:::.s (neglecting baryon number conservation), with the justification 
that the number of modes escaping the system as unperturbed t::.N-1 states were 
found to be small. \Ve will in this paper report on alternative ways to treat the 
modes at the surface based on ref. [10], a.nd how this treatment can improve the 
descriptions in refs. [8, 9]. 

We first consider the simplified case when the nuclear surface is stationary i.e. 
p(r, t) = p(r, 0) for all times t. This means that there is no explicit time dependence 
in the effective Hamiltonians in equation (20), and thus the energies of the collective 
pionic modes are conserved. For a. pionic mode with energy liwv(Q; p) propagating in 
a varying density this means that the momentum q will change as p changes. That 
is to say, the pionic mode effectively feels a. potential In addition to momentum 
changes, also the amplitudes X.jk(q; p), zv(q: p) a.nd H1 v(q; p) of the baryon-hole and 
pion components vvill change a.s the density changes .. In the limit of vanishing density 
either X~N-1 or zv vvill turn to unity, depending on the mode v and its energy and 
momentum. 

In the latter case no problems arise, the collective mode has simply been con
verted to a free pion escaping the system. However, in the former case there is some 
inconsistency in the forma.lism since there are no hole states in vacuum (p = 0). In a 
quanta.! description of spin-isospin modes propagating at a. surface different scenarios 
could emerge. There is some small probability that the mode could be reflected at 
the surface. Alternatively the mode could break up in an uncoupled !::::. escaping the 
system, with the hole is trapped inside the nucleus. In a. transport description this 
could be handled by a.llowing the test particle representing the mode v to absorb a 
nearby nucleon, converting it into a !::::. isobar. 

Vve consider in this section the quasipions at a. surface propagating from normal 
nuclear density to vacuum. In this case the amplitude Hlv will be very small and we 
will therefore omit it in the qualitative discussion of this section. 

In fig. Sa we present the energy 1iw1 ( q) of the lower collective mode 7r1 for different 
densities in the range O.lp0 ~ p ~ p0

. The line closest to the free pion relation 
(dotted line) represents the dispersion relation at the lowest density. As the density 
is increased the energy relation is (for each fixed q) lowered. For small q values the 
mode is completely dominated by the pion component. As q is increased also the 
!::::.N- 1 components starts to contribute substa.ntiall.Y (although to different extent 
depending on the density). In the approximate range :300 MeV jc ~ q ~ 400 MeV jc 
(depending on density) the mode enters the !::::.iV- 1 continuum and changes character 
from collective mode to non-collective. 

We will in this section discuss four different examples, suitably chosen to illustrate 
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the main features. 

4.-1 Lower pionic mode 

In our first example we consider the mode 71- 1 created a.t normal density with energy 
nw1 = 200 MeV propagating towards vacuum without any interactions. Initially this 
mode has the following characteristics: 

As the density decreases it will, clue to the energy conservation, follow the path 
indicated by the dashed line in fig. Sa, from q ~ 220 MeV jc to q ~ 150 MeV jc. In 
fig. 9a we see how the squared amplitudes vary with the density for this particular 
energy of the mod~ ir1 • As seen in fig. 9a only the pion component remains, as the 
zero density limit is rea.checl. Thus in this particular case, the mode will escape the 
system as a free pion. In fig. lOa vve show the squared amplitudes of the individual 
~N-1 amplitudes for the energy 1i.w1 = 200 l'vfeV of the mode ir1 . We see that the 
mode is collective at all densities. 

In the discussion so far we ha.ve not addressed the creation process. How probable 
is it that we produce the mode ir1 at the particular energy nw1 = 200 MeV? This 
information is given by the partial ~ decay width to the mode ir1 . In fig. lla we 
display the partial ~ decay width, f1, for different densities, as a function of the 
energy of the emitted quasipion 1r1 • Note that the width displayed in fig. lla is for a 
~at rest, and that the Pauli blocking of the emitted nucleon has not been taken into 
account (the Pauli blocking is treated explicit.ly in a. transport description). As seen 
in fig. lla the width is quite substantial at the qua.sipion energy nw1 = 200 MeV, 
about SO MeV compared to the free width, which is about :30 MeV at this energy. 
Thus it is quite probable for a ~ to decay to the mode ir1 around this quasipion 
energy. 

Apart from penetrating the surface there is also some probability for the mode ir1 

to be reflected at the surface. This is difficult to exactly predict since the reflection 
coefficient, R, will depend on the actual density profile. However a first estimate 
can be obtained by considering a one-dimensional scenario with a density profile 
that corresponds to a vVood-Saxon potential \vith a surface thickness a = 0.65 fm. 
The height of the potential is then given by the change in the momentum of the 
pionic mode, and for the case of 1ir..:·1 = 200 MeV we obtain R ~ 0.017, see further 
the discussion in appendix A. This number is very small, which implies that the 
reflection can practically be neglected for this particular case. However, in other 
situations where the momentum change is different or the density profile is sharper, 
the reflection coefficient may be larger. We have therefore devoted appendix A to 
discuss how effective local reflection coefficients can be obtained and implemented in 
transport descriptions. 

In our second example we also consider the mode 7.- 1 , but now with energy nw1 = 
29.5 MeV. Initially this mode will now have the characteristics: 
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As the density decreases it follows the path indicated by the dot-dashed line in fig. 8a, 
from q:::::::: 450 MeV /c to q:::::::: 2.50 lVIeV /c. In fig. 9b \Ve see how the squared amplitudes 
vary with the density for this particular energy of the mode ir1 . As seen in fig. 9b also 
in this case only the pion component remains, a.s the zero density limit is reached, 
although ir1 initially· \Vas completely dominated by the !J..N-1 component. Thus also 
in this case the mode will escape the system a.s a. free pion. 

In fig. lOb we show the squared amplitudes of the individual !J..N-1 amplitudes 
for the energy n.w1 = 295 MeV of the mode 71- 1 . Here the situation is different from 
the case at 1iw1 = 200 MeV, since initially the mode is dominated by a single !J..N-1 

component, i.e. the mode is non-collective. However as the density is lowered the 
strength is spread over more !J..N-1 components and a.t low densities the mode is 
completely collective. 

From fig. lla we see that the partial width f1, is vei·y close to zero at the quasipion 
energy 1iw1 = 29.5 MeV (dot-dashed curve) at normal nuclear density. Thus a !J.. at 
normal nuclear density will not decay to a. quasipion with this energy. The partial 
!J.. width becomes very small because the collective strength, a.s well as the pion 
component, is negligible in this case. Although the mode at this energy cannot be 
created at normal nuclear density, it may still be created a.t lower densities, as can 
be seen in fig. lla. 

Making the same assumptions as in the first example, we find tha.t the reflection 
coefficient, becomes smaller than 10-4 for this case. 

vVe thus conclude that the lower pionic mode penetrating the surface will always 
emerge a.s a. free pion. For low energies this is natural because as the density decreases 
the dispersion relation of the pionic mode approaches the free pion relation. The cases 
of sufficiently large energy to approach the unperturbed !J..N-1 branch as the density 
is lowered will never occur since no such modes will be created from a. decaying !J.., 
because the partial !J.. width will be zero. 

4.2 Upper pionic mode 

Also on the upper collective mode, ;r2 a. similar effect will occur. However some 
properties are somewhat different so we will therefore illustrate also this case with 
two typical examples. In our third example we thus consider the mode ir2 , with energy 
1iw2 = 320 MeV. Note that at this energy the mode can only exist at densities up to 
about 0 .. 5p0

• Initially·, a.t p = 0.5p0
, this mode will have the characteristics: 

As the density decreases we follow the path indicated by the clashed 'line in fig. 8b, 
from q:::::::: 0 MeV/c to q:::::::: 270 MeVjc.· Note tha.t on the upper collective mode the 
momentum increases as the density decreases, corresponding to a negative potential 
step. 

In fig. 9c we see how the squared amplitudes vary with the density for this par
ticular energy of the mode 71- 2 . As seen in fig. 9c, contrary to previous examples, 
only the !J..JV-1 component remains, a.s the zero density limit is reached. In fig. lOc 
we show the squared amplitudes of the individual tJ..N- 1 amplitudes for the energy 
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(u:;;2 = 320 MeV of the mode ir2 . Initially the mode is collective, but as the density is 
lowered the mode becomes more and more non-collective. From fig. llb we however 
see that the partial width f'i actually is zero at the quasipion energy nw2 = 320 MeV 
(dot-dashed curve) a.t a.ll densities. Thus a .6. will not decay to a. quasipion with this 
energy. 

A mode at this energy with a very low momentum at half nuclear density, which 
could occur in a. time-dependent density, could have a. very large reflection coefficient, 
approaching unity as the initial qua.sipion momentum approaches zero. 

In our fourth and last example in this section \Ve consider the mode ir2 with energy 
nw2 = 380 MeV. Initia.lly this mode will now have the properties: 

As the density decreases we follow the path indicated by the dot-dashed line in fig. Sb, 
from q :::::::: 170 MeV I c to q :::::::: :3.50 MeV I c. In fig. 9d we see how the squared amplitudes 
vary with the density for this particular energy of the, mode ir2 • As seen in fig. 9d 
in this case only the pion component remains. as the zero density limit is reached, 
although ir2 initially was dominated by the .6-N-1 component. Thus also in this case 
the mode will escape the system as a. free pion. 

In fig. lOd we show the squared amplitudes of the individual .6.N-1 amplitudes 
for the energy 1i.w2 = :380 MeV of the mode ir2• We see that the mode at all densities 
is completely collective .. From fig. llb we see that the partial width f'i is quite 
substantial a.t the quasi pion energy 1ir:;.,·2 = :380 MeV (dot-clashed curve) a.lso at normal 
nuclear density. The reflection coefficient, making the same assumptions as in the first 
example, becomes for this case smaller than 10-3 . 

\\le thus conclude that also the upper pionic mode penetrating the surface will 
always emerge as a. free pion. For high energies this is natura.! because as the density 
decreases the dispersion relation of the pionic mode approaches the free pion relation. 
The cases of low energy when the unperturbed .6-N-1 branch is approached as the 
density is lowered, will never occur since no such modes will be created from a decaying 
.6., because the pa.rtia.l .6. width will be zero. 

4.3 Refined scenarios 

If the surface changes \vith time the energy of the pionic mode need not to be con
served, and there is some sma.ll possibility for the pionic mode to end up as an unper
turbed .6.-hole state. The actual fraction of such modes is hard to estimate without 
an explicit transport simulation, but based on the scenario for the time-independent 
density profile, it is reasonable to expect that only a. very small fraction of the pionic 
modes ·will end up as unperturbed .6.-hole states in vacuum. 

In a quantum description such a. mode could be either reflected at the surface, or 
the mode could break up into an uncoupled .6. and hole, where the hole is trapped 
inside the nucleus, and the .6. escape the system as a. free .6.. Based on the results 
discussed in the explicit examples of this section, and the presentation in appendix 
A we expect that the reflection a.t. the surface wil1 be very small. 



In a transport description the reflection can be incorporated by a. local transmis
sion coefficient a.s discussed in appendix A. If the pionic mode is not reflected at the 
surface, and its amplitude approaches 100% of the !:lN-1 component as the density 
approaches zero, the mode should thus break up into an uncoupled !:l and hole. In 
a. transport simulation this could be practically handled by allowing the pionic mode 
to absorb a. nearby nucleon, forming an uncoupled !:l, when the density falls below a. 
specified value. This prescription has some quantum mechanical justification by the 
fact that at very low density a. wave packet representing the pionic mode, will not be 
very well localized, but instead have a. large spatial spread. 

5 Summary 

In-medium properties obtained in an infinite sta.tiona.ry system consisting of inter
acting nucleons, nucleon resonances and mesons, can be incorporated into transport 
descriptions by a. local density approximation. \iVhile such a. prescription is rather 
straightforward to implement in the interior regions of the nuclear system, concep
tual problems exist a.t the nuclear surface. \\ihen the nuclear density approaches zero, 
collective mesonic modes formed in the medium have to be converted to real particles 
in vacuum. The problems arise since some collective modes (e.g. /:lN-1-like) may 
exists in the infinite stationary system at arbitrary low (but non-vanishing) density, 
but no corresponding real particle exists in vacuum. This problem has been apparent 
in previous works [8, 9] where collective modes ha.ve been incorporated into transport 
descriptions a.s quasi mesons. The character of the quasi mesons (i.e. realization in 
vacuum) were in those \vorks determined a.lrea.cly at the time of creation. 

Based on the formalism of ref. [10], we have in this paper employed a more elabo
rate 1r + 1\T N-1 + !:lN-1 model (relative t.o the works [8, 9]) to investigate a somewhat 
different treatment of the collective pionic modes at a nuclear surface. In this formal
ism we have obtained not only density dependent dispersion relations of the pionic 
modes, but also density dependent amplitudes of the components constituting the 
pionic mode. These quantities are conveniently parametrized with density dependent 
parameters, in section :3. 

For the transport process it is not needed to determine the character of the pionic 
modes until they penetrate the surface and emerge a.s free particles. This is auto
matically determined within our formalism from the amplitudes at zero density. We 
have further showed in section 4 that for a. stationary density profile, the conserva
tion of the energy of the pionic mode and the partial .6. decay width, together leads 
to the fact that only real pions are realized as free particles when the pionic mode 
penetrates the surface. Note that this finding is different from earlier works, and it 
demonstrates the importance of deriving dispersion relations and partial !:l widths 
consistently within a. realistic2 !:lN- 1 model. 

In a more refined scenario, \Vhere the density changes with time, deviations from 
this picture can be expected and also the unperturbed !:lN- 1 component may be 

2 By "realistic" we here mean that. the D.N- 1 model contains a continuum of D.N- 1 a.nd N N- 1 

states, as compared to the more simple t.wo-level D.I\1
-

1 model used for example in refs. [8, 9]. 
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realized in the limit of vanishing density. The actual fraction of such modes is hard 
to estimate without an explicit transport simulation, but based on the arguments in 
section 4 for the stationary surface, we expect this fraction to be very small. 

For the rare cases when the unperturbed .6.N- 1 component is realized in the 
limit of vanishing density, the pionic mode must be converted to real particles. In 
an extended description this could be made by allowing the mode to break up into 
an uncoupled .6. and a N- 1

, where the hole remains trapped in the ni1clear system 
and the .6. escapes the system. Based on our formalism, this seems to be the most 
probable scenario, since the collective strength disappears on these modes as the 
density approaches zero. This could be implemented in a transport simulation by 
letting the pionic mode absorb a nearby nucleon to form an uncoupled .6., as may be 
justified by the quantum-mechanical feature that the wave packet representing the 
pionic mode is not well localized a.t. very low density. 

Alternatively the pionic modes could in a. quanta.! description be reflected at the 
surface. \h/e have investigated the reflection and transmission probabilities for the 
collective modes in a. simplified one-dimensional scenario, where the modes propagate 
perpendicular to the surface. Exploring typical scenarios, we have found that (with 
only very few exceptions) the reflection of the pionic modes will be smaller than a 
few percent, however, in appendix A we have suggested how the reflection and trans
mission probabilities could be incorporated into the transport descriptions by using 
approximative local transmission coefficients. 

Stimulating discussions \vith Volker Koch are acknowledged. This work was supported 
by the Swedish Natural Science Research Council, and by the Director, Office of En
ergy Research, Office of High Energy and Nuclear Physics, Nuclear Physics Division 
of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. 

A Reflection and transmission at a surface 

In the semi-classical transport descriptions all (test )particles are treated as classical 
particles. \iVhen such a classical particle propagates in a. spatially varying potential 
its velocity will change. But assuming its energy exceeds the maximum value of the 
potential, the particle will continue to propagate through the varying potential. This 
is in contrast to a quanta! description where the particle is represented by a wave 
packet. This wave packet has some probability to be reflected in a spatially varying 
potential. The reflection probability depends on several factors, such as the energy 
of the wave packet, and the height and shape of the potential. 

In this section we investigate reflection and transmission probabilities in differ
ent idealized situations for a one-dimensional scenario, corresponding to the direction 
normal to the nuclear surface. \Ve will also discuss how these effects could be ap
proximately incorporated into transport descriptions. The treatment is intended to 
be used for the collective spin-isospin modes (quasi-pions) approaching a nuclear sur
face. The formalism, though, is quite general and could be applied also for other 
particles. 
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vVe will start to investigate some special cases when the potential is stationary. 
Subsequently we will discuss how the non-stationary case could be treated. In all 
cases we will assume that the potentia.! is constant outside a finite interval, 

(34) 

For x < XL we have an incoming wave and vve ask for the probability that we have 
an outgoing wave at .1: > x R, i.e. \Ve seek the transmission and reflection coefficients, 
T and R respectively, with T + R = 1. Only for some special simple forms of the 
potential V(x) can the coefficients Rand T be obtained analytically. 

Note that both the stationary Schrodinger equation 

(35) 

and the stationary Klein-Gordon equation 

(36) 

for a particle with energy E = nr.,.:, can be re\vrit.ten in the form 

(37) 

by introducing a local wave number 

k(:r) = J2m[E- V(:r)]/fi , (38) 

or 
(39) 

respectively. The results ohta.ined in the sequel in this section are derived using the 
Schrodinger equation, but from eqs. (:35) to (TT) it follows that the results are valid 
also for a particle described by the 1\:lein-Gordon equation, if the local wave number 
is taken according to equation (:39) instead of equation (:38). 

The simplest case is a potentia.! step at :r = 0, 

l/( ·) _ { 0 :r < 0 
I :1_. - l" 0 

~"o < :r (40) 

This case can be found in elementary textbooks on quantum mechanics. Here we 
briefly recapitulate the main steps a.s a preparation for more complicated cases. The 
Schrodinger equation has the solution 

(41) 
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where J..~L = J2mEfn. and kn = J2m(E- V0 )/h, for a particle with energy E > Vo. 
Taking only an outgoing solution at x > :en (i.e. D = 0), and relating the coefficients 
A, B and C by a smooth joining at :r = 0, 

( 42) 

the reflection and transmission coefficients are obtained as 

R -
IBI 2 

( J.~L - kn) 2 

IAI 2 (J.~L + l.~nF 
ICI 2 4l.~Lh~R 
IAI 2 - (l.~L + kn)2 · 

(43) T = 

Also for other special forms of the potential can the reflection and transmission 
coefficients be derived analytically, such as for the Woods-Saxon type of potential, 

( 44) 

Here the reflection coefficient R is given b_y [1:3] 

( 45) 

and the transmission coefficient is obtained from T = 1 - R. Note that the case of 
the potential step, eq. ( 40), emerges in the limit a -+ 0. 

For an arbitrary potential the coefficients R and T do not have an analytical form. 
An approximate solution can be obtained by approximating the potential V ( x) by a 
piecewise constant potential 

V(:r) = { ~'(x) ~ L:j\:d \:j(;r) 
Vo 

with 

.T < .'Vo = .T£ 

:ro = ;t:L <X< Xn = XR 

;VN = :rL <X 

\lj(x) = V(x.i + ~:~.:j2)[0(J:.i+I- :~.:)- O(;r.i- J:)], 
XL+ J b.x 

[xn- xL]jn 

and by making the ansatz, 

n-1 

'1/J(x) ~ L '1/Jj(x)[O(xj+I- :r)- O(a:.i- ;r)] Xo = ;rL < X < Xn = XR , 

j=O 

with 
1, ( ) A.i iln: Bj -ik x 

1f/j .T = --e J + --e 1 

A A 
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' ( 47) 

( 48) 

( 49) 



and 
(50) 

The coefficients Aj and Bj are determined from the condition of smooth joining, 

E ---+ o+ 
' 

(51) 

and the boundary condition of an outgoing solution at x > XR, i.e. An-I = 1 and 
Bn-l = 0. Not that in the especially simple case of no reflection, the ansatz above 
becomes identical to the \VKB approximation, in which the the coefficients Aj and 
Bj are constants, i.e. A j = A and Bj = B for all j. 

The transmission coefficient, T, is obtained from 

(52) 

and R = 1 - T. \Ve have numerica.lly checked that for the \Voods-Sa.xon type of 
potential a.bo':·e, this approximation procedure, with a very high accuracy, yields 
the sa.me reflection and transmission coefficients as the ana.lytical result. We have 
compared the analytical and numerical results for many different energies (E) and 
parameters of the potentia.! (l10, a), and only forE very close to l/0 are there deviations 
larger than a few percent. 

In a heavy-ion collision the potential is not stationary, but changes with the time. 
The formalism above can be generalized to a. time-dependent potential. The particles 
to be propagated are in a. quanta.! description represented by wave packets. We 
therefore generalize the definition of the trcwsmission coefficient to be valid also for a 
propagating wave packet in a. non-stationary potentia.!. As before we assume that we 
have a.n incident wave or wave packet, 7/'inc( :r, t), at x = :r L· V/e associate a probability 
current with this wave packet by 

1i (dl/Jinc(:r) t •. ( ·)") jinc(X, t) = - lm l 1Pmc X 
1n c,:r 

(53) 

Similarly we assume that we have an outgoing wave or wave packet, '!j;out(x, t), at 
x = XR, and we associate a. probability current, iou1(:r, t), with this wave packet. 
A transmission coefficient can then be defined as the ratio between the outgoing 
probability flowing through the point :rR and the incident probability flowing through 
the point :rL, 

T = J/1

2 Jout(:rR, i)dt 

J/J2 Jinc(:rL, t)dt 
(54) 

where the times t 1 and t 2 are chosen such that a wave packet will propagate through 
both the points .TL and :rR within the time interval Note that this definition ofT 
agrees with the results stated for the stationary case. By solving the time-dependent 
Schrodinger equation numerically, and expanding a. wave packet in this basis set, a 
transmission coefficient could in principle be obtained from eq. (54) for an arbitrary 
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(known) potentia.! V(.-r, t). In a. transport description, however, the potential V(x, t) 
is not known in advance, and the described method is not so useful. Instead it 
would be more useful with a local transmission coefficient t(xj), which would give 
the probability for the wave packet to be transmitted from the point Xj to the point 
Xj+l = Xj + ~x, where the total transmission coefficient is given by T = Ilj,:~ t(xi)· 
Such a local coefficient can formally be obtained by •vriting 

(55) 

and by approximating the integral in the exponent by a discrete sum, 

(56) 

However, also in this expression the local reflection coefficient r(:r:) will depend on 
the particle energy, and the shape and magnitude of the potential, and it is therefore 
not straightforward to implement a local transmission coefficient into a transport 

. description. 
It is therefore our strategy to approximate the function r( x) with a relative simple 

expression depending on a. few parameters, that are adjusted such that eq. (55) will 
yield a good approximation to the total transmission coefficient for a large class of 
realistic particle energies and potential parameters. We have empirically found that 
the a.nsatz 

) C1 (dlnA:(;r))
2 

r(;z: = -- . 
A:( ;r) rLr 

(57) 

with cl :::::::: 0.116, yields a good approximation for a range of different particle energies 
and a range of different values of a and l 10 in the \Voods-Saxon type of stationary 
potential. In fig. 12 we present some examples of this approximation, compared to 
the analytical solutions. 

As was discussed in section 4 it is only in rather few and special cases that the 
transmission coefficient for the collective pionic modes will deviate substantially from 
unity. V/e therefore conclude t.his section by summarizing that the reflection of pionic 
modes can be approximately incorporated int.o transport descriptions by an approxi
mate local transmission coefficient 

( )

2 C1 dlnA:(:r) 
t(:r);:::::: exp[-~) l· 6.:r] . 

1\. ( .1 (,J. 
(58) 

The error in this approximation is in most. realistic cases smaller than 10%. Those 
events where a larger error may occur for pionic modes at a nuclea.:r surface are ex
pected to be very rare in transport simulations. Thus the total error in a transport 
treatment by using a local transmission coefficient according to eqs. (56) and (58) 
should be very small. However, the importance of incorporating the effects of reflec
tion of pionic modes at the surface seems to be quite small, since in most events the 
total transmission coefficient will be close to unit,y. 
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B RP A equations for spin-isospin interaction 

In this section we recapitulate the RPA equations, derived in ref. [10], in the spin 
longitudinal channel for the case when T = 0 and the .0. width is omitted in the RPA 
equations. 

The spin-isospin excitations are characterized by the momentum q and the isospin 
.-\. The energy of the spin-isospin modes are obtained from the determinant of the 
equation 

( 
1 + wNN MNq,N wN~ M~q,~ ) ( xN) -
w~N MNq_,N 1 + w~~ M~q,~ x~ - 0 ' 

while the amplitudes are obtained from the solution of eq. (.59), 

and 

with 

z 1 [MN v;; q,N :1:N + M~v~q,~x~] 
hw:r - 1i.w 

HI = 
1 [MN v:! q,N:rN + M~v~q,~x~] 

nw;r + 1iw " " 

a:(1/2,1/2; q; .-\, w) 

"'(lj') '3/')• q· \ ·) ._f.., -.,· .-, 'A.,~ 

x(:3j2, :3/2; q; .-\, w) 

;?:N 

"'('3j·) 1/')· q· ' w) - x~ ·l· • -., -, , A., = . 

0 

(59) 

(60) 

(61) 

(62) 

and analogously for other quantities. In the above expressions a, f3 = N, ~' and we 
ha.ve used the notations 

f;..,oJN,'3 [IF 12 ' + Ro·R,'JjF· 12(. ·)2DO] 
( 2)2 g 9ot3 I I ;r cq, ;r l 117.;rC 

· RO'F f,\ro lcqcm I 
l • -- --F======== 
. i "m"c2J21i(J,·"(q) 

2n7. 0 C
2 

qcm 

(63) 

(64) 

(65) 

(66) 

(67) 

(68) 

The numerical factors .MN = 4 and .M~ = 1G/9 originates from the spin-isospin 
summa.tion, and we have defined the Linclhard functions 

3 . 

q_,N (w, q) = (1ic) L n(p)- n(p + q) 
T P (p + q)2 /2m?v- p 2 /2m"fv- n.w (69) 
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1 :3 :3 1 ( nc) 3 
{ n(p) n(p) } 

- <I>(?,:);w,q)+<I>(?,;:);w,q)= -L L ~+c::- (70) 
_ _ _ _ P vet:.N vet:.N 

with 

( + )2 2 
p .Cl P A l :efT( + +) '1:. 
-----+~m+vt:. E"',Pt:. -nw 
2mt:. 2m~ -

(71) 

( )
2 2 

Pb. P A t reff( - -) '1:. ----- + ~171. + 11 " iS"',p" + flW •) •) * '-" - '-" -n?.t:. -m·N 
(72) 

L\rn = mt:. - mN; 
2 

€~ = ffiN + _!!_ ± nw; 
- 2m'N 

p~ = p ± q. (73) 

The quantities ;rN and :rt:. are determined from the normalization of the RPA 
sta.tes 

with 

T/N(w, q) (75) 

Ttt:.(w,q) = (76) 

and where we have assumed av~rr 1 oliv.,; ~ o. 
The factor h(jk; Jl), motivated in eq. (16), can using the RPA solution be explicitly 

expressed a.s 

h(jk, 11; w, q) = L A1a<I>o.(Wv ):ro.(Wv) [ ( qjk·q;)v~'jk(w) 
'"=N,t:. 

·)t:. Do( . ) jk( ·) o-( )] - _n.wrr rr v.;v v" w v" Wv , (77) 

where 
f•;r f"" o-,jk( , ) _ 1 • N,o. N,ik F2( ) 

VB w, q - g,,. __ ji,: ( .2)2 !1 w, q . 
17?;rC. 

(78) 
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mN = 940 MeV /c2 9~VN = 0.9 f1vN = 1.0 
mil= 1230 MeV/c2 9N.6. = o.:3s f" - ·) •) 

. N!:J.- -·-

m;r = 140 MeV/c2 9~.6. = 0.:3.5 f;r - 0 
.!:J.!:J.-

A9 = 1..5 GeV Ar.=l.OGeV Po= 0.15:3 fm- 3 

v!:J. - VN = 2.S.Op/ Po MeV 1nj.,r = mN/[1 + 0.4049(p/po)] 

Table 1: Parameter values used in the numerical calculations. 

Figure 1: 
Diagrammatic representations of the b. self energy :B!:J. (left-hand side) and the partial 
b, decay width to the particular spin-isospin mode 11, f~ (right-hand side). 

Figure 2: 
The dispersion relations for the spin-isospin modes in the spin-longitudinal channel, 
in infinite i1t1clear matter at normal nuclear density and zero temperature. The non
collective modes are shown b.Y solid curves, while collective modes ?T-1 and ?T-2 are 
represented by dot-dashed curves. As a reference, the free pion dispersion relation 
n,w;r(q) = [(m7rc2 ) 2 + (cq) 2j1f2 , and the unperturbed b..JV-l relation nW!:J.N-l(q) = 
nl6 c2 - mNc2 + q2/2m.6., are included a.s a. clotted curves. 

Figure :3: 
The density-dependent parameters [/0 (solid curve), q0 (dashed curve) and m 0 (dot
dashed) used in eq. (21) for fitting the dispersion relations of the lower collective 
mode ?T-1 (part a) and the upper collective mode ir2 (part b). 

Figure 4: 
The total 6 ·width f~1 and its partial contributions from different spin-isospin modes 
for a. b. with momentum 300 l\1eV jc. The solid curve represents the total width, 
the long-dashed line is the contribution from the non-collective NN-1 modes, the 
short-dashed line is the contribution from the non-collective b.N-1 modes, the dot
dashed line is the contribution from the lower pionic mode ir1 , and the dot-dot-dashed 
line is the contribution from the upper pionic mode 7.2 . The intermediate nucleon in 
the b. decay is not Pauli blocked. The error bars indicate the estimated uncertainty 
associated with the classification procedure (see ref. [10]). 

Figure 5: 
The density-dependent parameters, C1 (dot-dashed curve), C2 (short-dashed), C3 

(dot-dot-dashed) and C 1 (long-dashed), for t.he amplitudes of the b.N-1 (part a) and 
theN N- 1 (b) components on the lower pionic branch, eq. (24) and (2.5). 

Figure 6: 
The density-dependent parameters, Cb (part a), C~ (b), C~ 1 (c) and C!v (d), for the 
amplitudes of the ~JV- 1 (long-dashed curve) and theN N- 1 (dot-dashed) components 
on the upper pionic branch, eqs. ( 27) and ( 28). 



Figure 7: 
The density-dependent parameters, C~ (part o.), C~' (b), and C~1 (c), for the squared 
amplitudes of the 1r (dot-dashed curve) and the ~N-1 (short-dashed) components 
on the lower pionic branch, eqs. (:30) and· (:32) and of the 1r (dot-dot-dashed) and the 
~N-1 (long-dashed) components on the upper pionic branch, eqs. (31) and (33). · 

Figure 8: 
The energy nw(q) for different densities in the range 0.1p0 s; p s; p0 . In part a is 
presented the energies of the lower collective mode 1i-1 while the energies of the upper 
collective mode 1i-2 is shown in part b. As references the free pion dispersion relation 
and the unperturbed ~]V- 1 relation have been plotted as dotted lines. The dashed 
and dot-dashed horizontal lines indicate the energies considered in the four examples 
of sections 4.1 and 4.2. 

Figure 9: 
Sum of all squared amplitudes of the ~N- 1 and N N-1 components, as well as squared 
amplitude of the pion component. In part. a and b is shown the squared amplitudes 
for the lower pionic mode 1i-1 at the energies /i.w1 = 200 MeV and nw1 = 295 MeV, 
respectively. In c and d is displayed the squared amplitudes for the upper pionic 
mode 7r1 at the energies nw2 = :320 MeV and 1i.C.,•2 = :380 MeV, respectively. The dot
dashed curve represents the pion component, the ~N- 1 component is represented by 
a short-dashed curve, and the long-clashed curve represents the N N-1 component. 

Figure 10: 
Squared amplitudes of the individual ~N- 1 , components. In part a and b is shown 
the squared amplitudes for the lower pionic mode 71' 1 at the energies nw1 = 200 MeV 
and nw1 = 295 l\1eV, respectively. In c and d is displayed the squared amplitudes 
for the upper pionic mode 1i-2 at the energies 1iw2 = :320 MeV and nw2 = 380 MeV, 
respectively. 

Figure 11: 
Partial ~ decay width for a. ~ at rest, for different densities in the range 0.1p0 < 
p ::; p0

• In part a is presented the partied ~ width for the lower collective mode 1i-1 
while the partial ~ width for the upper collective mode 1i-2 is shown in part b. As a 
reference the free .0. width has been plotted as a dotted line. The dashed and dot
dashed vertical lines indicate the energies considered in the four examples of sections 
4.1 and 4.2. 

Figure 12: 
Total transmission coefficient, T, obtained for a. Woods-Saxon type of potential, eq. 
(44), for a. range of potential parameters \l0 and a. The solid curve represents the 
exact expression, eq. ( 45 ), while the dashed curve represents the approximative result 
obtained from the local transmission coefficient, eqs. (.56) and (.58). 
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Amplitudes on upper pionic mode 
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Squared amplitudes on lower and upper pionic modes 
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