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Abstract

Design and Simulation of Lithium Rechargeable Batteries
by

Christopher Marc Doyle
Doctor of Philosophy in Chemical Engineering
University of California at Berkeley

Professor John Newman, Chair

Lithium-based rechargeable batteries that utilize insertion electrodes are being considered
for electric-Vehiqle applications bec;,ause of their high energy density and inherent reversibility.
General mathematical models are developed that apply to a wide range of lithium-based sys-
tems, including the recently commercialized lithium-ion cell. The modeling approach is
macroscopic, using porous electrode theory to treat the composite insertion electrodes and con-
centrated solution theory to describe the transport processes in the solution phase. The inser-
tion process itself is treated with a charge-transfer process at the surface obeying Butler-Volmer
kinetics, followed by diffusion of the lithium ion into the host structure. These models are used
to explore the phenomena that occur inside of lithium cells under ‘conditions of discharge,

charge, and during periodé of relaxation.

Also, in order to understand the phenomena that limit the high-rate discharge of these sys-
tems, we focus on the modeling of a particular system with well-characterized material proper-
ties and system parameters. The system chosen is a lithium-ion cell produced by Bellcore in

Red Bank, NJ, consisting of a lithium-carbon negative electrode, a plasticized polymer electro-
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lyte, and a lithium-manganese-oxide spinel positive electrode. This battery is being marketed
for consumer electronic applications. The system. is characterized experimentally in terms of
its transport and thermodynamic properties, followed by detailed comparisons of simulation
results with experimental discharge curves. Next, the optimization of this system for particular
applications is explored based on Ragone plots of the specific energy versus average specific

power provided by various designs.

Due to a lack of data in the literature on transport properties in polymer electrolytes, this
subject is explored in some detail experimentally. A complete set of transport properties for
sodium trifluoromethanesulfonate in poly(ethylene oxide) over a wide range of compositions
0. 1.to 2.6 M) at 85°C is measured. The transport propetﬁes measured include the conductivity,
the salt diffusion coefficient, and the sodium ion transference number. The mean molar activity
coefficient of the salt is alsd determined. The conductivity is measﬁred using the standard ac-
impedance method. The salt diffusion cbefﬁcient is found by using the method of restricted

diffusion.

The transference number and thermodynamic factor are found by combining
concentration-céll data with‘ the results of galvanostatic polérization experiments. This novel
method of measuring the transference number is straightforward to perform experimentally and
yet does not require that the solution be either dilute or ideal. A theoretical analysis of the
experimental method based on concentrated-solution theory is given. The transference
numbers found for the 'srodium 1on are‘much lower than those reported for the lithium ion, espe-
cially in the concentrated solutions. The transference nurﬁber of the sodium ion is negative in
the more cohcentrated solutions and levels off atv its maximun} value of 0.31 in1 the dilutfa—

concentration range.
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Chapter 1

Introduction

1.1 Rechargeable batteries

The worldwide market for electrochemical devices and processes was estimated to be
thirty billion dollars in 1987.1 This includes several extensive areas such as metal winning,
chemical and semiconductor production by electrochemical processes, electroplating, corro-
sion, and batteries and fuel cells. Energy conversion and storage continues to be an important
application for electrochemical systems. Batteries, in particular, accounted for over four billion
dollars in worldwide sales in 1987, a number that is expected to grow to over eight billion in the

current decade. 1

This market is roughly split between primary and rechargeable batteries.
Much of the 'recha.rgeable battery market is for lead-acid batteries for SLI (starting, lighting,

and ignition) automotive applications. However, there is also a sizeable market for recharge-

able batteries for consumer applications. -

The consumer electronics market accounts for a growing portion of rechargeable battery
sales. With the ongoing miniaturization of electronic devices comes the desire to increase the
capacity density and also the specific capacity of current battery systems. It is also increasingly
important for a battery system to have inherent in its structure some amount of design flexibility
so that modern electronic devices will not be compromised by the battery’s shape. An example
of an electronic device to which each of these criteria apply is the laptop computer. In this
market, the desire for ever smaller devices has led to the battery module comprising a substan-
tial portion of the system volume and mass. Newer laptop computers that are very thin (around
3 cm) are ideal for a thin-film battery system. Since the system’s usefulness is inherently lim-

ited by the capacity of the battery, there is always the desire to increase the battery’s capacity
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per unit volume.

In addition, as environmental regulations become more strict, novel areas are being
explored for battery technology, such as the recent resurgence of interest in a battery-powered
automobile. This interest has been driven primarily by legislation instituted in the state of Cali-
fornia by the California Air Resources Board (CARB). This legislation mandates that a certain
percentage of new automobiles sold in the state of California be zero-emmision vehicles.
Presently, the only zero-emmision vehicles available are battery powefed. The legislation set
targets of 2.0% of all vehicles under 1700 kg sold in 1998, increasing to 10.0% in 2003. This
mandate applies only to automobile manufacturers that sell more than a certain number of vehi-
cles in the state per year. The CARB legislation has catalyzed a major research effort in
electric-vehicle batteries in order to produce a zero-emmision vehicle that can compete suc-
cessfully in the automobile market.2 However, to this day, within four years of the first CARB
target date, there are still major problems to be overcome before a zero-emmision vehicle that
will be competitive in cost and performance with current automobiles can be produced. The
major demands for an electric-vehicle battery can be stated in terms of its cost, performance,

and life.

In order to meet the CARB mandate, the Big Three automobile manufacturers (Chrysler,
Ford, and General Motors) joined together with the Department of Energy, and the Electric
Power Research Institute to form the United States Advanced Battery Consortium (USABC).
The USABC has quantified the demands for an electric-vehicle battery by setting mid-term and
long-term performance goals. These goals are given in Table 1.1. The demands on the USABC
electric-vehicle battery are quite rigorous, including specific energy and specific power values

that have not been met by any developed battery technology, as well as the desire to have a
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long cycle life, low cost, maintanence-free operation, and inherent safety. The most stringent
criteria can probably be considered the specific energy long-term goal of 200 Wh/kg. For com-
parison, the traditional lead-acid SLI battery can provide a specific eneré; of at most 40 Wh/kg,
and its theoretical specific energy is only 170.4 Wh/kg. This goal in effect eliminates from con-
sideration a wide range of emerging battery technologies such as most zinc-based systems and

the nickel-metal hydride system.

At the same time, environmental concerns have impacted the battery industry; the dis-
posal of batteries containing toxic materials such as cadmium or lead has increasingly become
an ecological hazard. As an example, the use of mercury as an additive in Zn/MnO2 cells has
been all but eliminated over the last decade.3 Issues surrounding the recyclability of battery
raw materials are being addressed more frequently.4 These concermns have fueled research into

battery chemistries that are more environmentally friendly.

Table 1.1. US ABC battery criteria.

Characteristic Mid-Term Long-Term
Specific energy (Wh/kg) 80 200
Specific power (W/kg) v 150 400
Power density (W/I) 250 600
Lifetime (yr) 5 10
Cycle life 600 1000
Recharge time (hr) <6 3to6
Cost ($/kWh) <150 <100
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1.2 Lithium batteries

One class of systems that has the potential to meet all of the goals addressed above is
lithium-based rechargeable batteries. The advent of nonaqueous solvents brought about the
development of lithium primary batteries beginning over three decades ago.5 The most com-
mon of these are the high-specific-energy systems such as lithium-sulfur dioxide (Li/SOz) and
lithium-thiony! chloride (Li/SOCI) used for military applications. Lithium batteries generally
have a high specific energy, caused by the low equivalent weight and reactivity of lithium
metal. They also have a wide operating temperature range, good life, and a high unit cell vol-
tage.6

Because of the tremendous reducing power of lithium metal (Ue=-3.045 V vs. NHE), the
electrolytic solution in the lithium cell must use a nonaqueous solvent. Several have been
developed for this purpose, including many carbonate-based liquids such as propylene car-
bonate (PC), ethylene carbonate (EC), and dimethyl carbonate (DMC). However, these solu-
tions will usually have a lower ionic conductivity than aqueous-based solutions; this motivates
the use of very thin cells to reduce ohmic drop in the solution phase. Also, even in the most
stable of these solvents, lithium metal will react to some extent. In a successful system, the

reaction of the solvent with lithium will only proceed until passivation of the lithium metal sur-

face occurs.

.A rechargeable lithium battery needs to incorporate a highly reversible cell reaction while
retaining the large specific energy of the lithium systems. Reversibility immediately becomes a
problem due to the poor cycling efficiency of lithium metal.7 This is usually explained as being
caused by a continual reaction of freshly-deposited lithium metal with the solution during

charging. A possible advantage of solid polymer electrolytes in these cells is the potential to
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develop more stable polymers with better lithium plating/stripping efficiencies. This has been
achieved to some extent with poly(ethylene oxide), but many of the more-recently developed

polymer electrolytes react with lithium in the same manner as the nonaqueous liquids.

The reaction between lithium metal and the electrolytic solution can also be a safety
hazard. One type of rechargeable battery put on the cellular phone market in Japan by Moli
Energy in 19888 had to be recalled due to several incidents of flaming while in use. This cell
used the system:

Li| PC/DME, LiAsFg | LiMoS, .
Moli believed that they had solved the problem of the low cycling efficiency of the lithium sur-
face by applying large pressures to the cell stack-.g’10 This suppressed dendritic growth and
minimized shape change, but still led to a large increase in surface area of the lithium metal as
a highly porous, sponge-like deposit developed over the life of the cell. The increase in surface
area meant more sites for the exothermic side reaction, which eventually became autocatalytic
and caused the cell to vent with fiame.11 Unfortunately, cells near the end of their life after

12-14

many low-rate cycles were most suceptible to this problem. In constrast, safety testing of

new cells is usually done with fresh cells and high charge/discharge rates.

The positive electrodes favored in most rechargeable lithium cells use a lithium insertion
reaction. Consider the "Moli Cell" described above, which uses molybdenum disulfide at the
positive side. On discharge, the stoichiometry of the electrode changes continuously from

MoS, to LiMoS2 as lithium ions are inserted into the crystal structure;

2

xLi* +MoS, +xe” & Li _MoS, .

Insertion reactions are inherently reversible because covalent bonds are neither formed nor bro-

ken during the insertion process. With'MoSZ, for example, lithium atoms simply diffuse

i
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between layers of sulfur atoms where they are stabilized by van der Waals forces; the host crys-
tal structure is changed negligibly. Although the insertion process can be very energetic, it is
usually possible to make it proceed in the reverse direction with a high degree of reversibility.

Thousands of materials that insert lithium ions reversibly have been identiﬁedls’16

since
their utility for lithium battery applications was realized in the early to mid 1970°s.!7-18
Presently, the most popular insertion materials are transition metal oxides with very high free
energies for the insertion process, such as C002, Ni02, and the spinel LiO.Zano 4 These
materials can attain large reversible specific capacities of around 100 to 200 mAh/g while
charging up to potentials of 4.0 to 4.5 V versus lithium. This area is still a very popular
research topic, as the goal of a high specific capacity (>200 mAh/g) at lower cost has not yet
been met. Nearly all of the known stable oxides and sulfides have been tested for their
lithium-insertion properties, and novel materials presently being developed are based on meta-

stable low temperature synthesis routes19 and doped or mixed-oxide materials.?‘o’21

Over the last decade, insertion materials have beén identified with energetics for the
lithium insertion process spanning a range of potentials of almost five volts. Surprisingly
enough, lithium insertion into carbon, with its poor energetics (U®=1.5 to 0 V vs. Li), has had
one of the biggest impacts on the field of lithium rechargeable batteries. An early solution to
the poor cyclability of lithium metal attempted to make use of lithium alloys such as LiAl,

22-24

Li3Sb, Li 4 4Si, erc. One such cell was even briefly made commercially available by

Exxon as a coin cell for electronic watches.zs’26

However, as very high potential positive
electrode materials had not yet been synthesized, this battery had only a moderate specific
energy. Obviously, alloying the lithium metal negative electrode with any other material

represents a loss of specific energy; although this may not be too substantial when one consid-
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ers that the lithium foil used will necessarily include at least three times excess capacity.

Once materials were identified that had poor energetics for the insertion process, such as
LizTiSZ, LiWO3, Li6Fe203, and LiMoOz, it was recognized that these could potentially be
cycled against other insertion materials to provide a similar solution to problems with metallic

lithium. This was apparently first attempted by Murphy and Carides,27

and then quickly ela-
borated on by Lazzari and Scrosati.28’29- From the beginning, this concept was quité success-
ful, as the use of insertion compounds presents several advantages over traditional lithium
alloys due to enhanced cyclability and mechanical properties. This concept was dubbed the
"rocking-chair" cell,30 as lithium ions are "rocked" betweén the two insertion materials during
cycling. However, the specific enérgy of these early lithium-ion cells was modest.?’l’3 2 A
schematic representation of the‘ concept of the "rocking-chair” or dual lithium-ion insertion cell
is given in figure 1-1.

The position of lithium-ion cells improved dramatically upon the development of carbon
negative electrodes based on graphite and petroleum coke. These materials combine all of the
necessary features of low cost, reversibility, and high lithium insertion capacity desired in an
insertion electrode. A large number of carbon materials has been synthesized from various pre-
cursor materials and shown to insert lithium ions reversibly; the energetics for the insertion pro-
cess relate critically to the structure of the carbon and thus to the processing route.33 However,
in general, lithium inserts up to the stoichiometry of LiC 6 (372 mAh/g) with a final open-circuit

potential of nearly 0 V vs. lithium. When used beside high voltage transition metal oxides, the

carbon/MO,, couple still provides a high cell potential and a high specific energy.

34,35

The feasibility of lithium insertion into graphite was recognized early on, but the

concept was not exploited in batteries due to severe electrolyte decomposition?’6 and solvent
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Figure 1-1. Schematic representation of

the dual lithium-ion insertion cell.
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cointercalation leading to graphite exfoliation.?’5 Then, in the late 1980’s, a research program
instituted in Japan demonstrated that successful lithium intercalation with good reversibility
into carbons having low crystallinity could be accompli‘shed.?ﬂ'?’9 Disordered carbons gen-
erally have lower capacities for lithium insertion, on the order of one lithium per 12 carbons or
about 180 mAh/g, but they maintain high reversibilities in a large number of electrolytes.
Later, in 1990, the use of ethylene carbonate (EC) as a cosolvent to PC was shown to promote
the formation of a passive layer on graphite that allowed reversible intercalation on subsequent

40

cycles. '~ This opened up the use of higher capacity graphitic carbons for practical battery

applications.

After being a hot research topic during the mid-1980’s, the lithium-ion battery based on a
carbon negative electrode and a cobalt dioxide positive electrode was finally commercialized in
1990 by Sony Corporation for cellular phone applications.d’1 This first generation battery
achieved a specific energy of about 80 Wh/kg and over 600 cycles, with‘ 110 Wh/kg and 1200
cycles claimed for more recent designs using graphitic carborx.42 This easily exceeds the per-
formance of the Cd-NiOOH, Pb-acid, and metal hydride-NiOOH battery systems. Since Sony’s
commercialization of the lithium-ion battery, several other Japanese companies, including
Sanyo, Matsushita, Fuji, Toshiba, and Japan Storage have released their own versions of the
lithium-ion battery. Production of lithium-ion cells in Japan is estimated to be nearly one hun-
dred million per year as of 1995. Although the use of lithium insertion compounds as battery

25

electrodes and the lithium-ion concept were first demonstrated by Exxon™ and AT&T Bell

27

Labs“’ in the late 1970’s, no American battery company has yet made available a lithium-ion

battery on the market.
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1.3 Mathematical modeling

The use of mathematical modeling in the design of batteries has a long history. Macro-
scopic models of the current and potential distribution in porous battery electrodes were first
developed in the late l950’s.43’44 Major strides towards understanding the behavior of porous
electrodes were made in the early 1960’s with the development of porous electrode theory,"’5
which generalized earlier modeling efforts into a macrohomogeneous modeling framework that
is still used in most models to this day. It was not until the early 1970’s, when popular use was
being made of numerical computation, that the scope of battery modeling increased from treat-
ing a single electrode to modeling the full-cell sandwich including two electrodes and the
separator.46’47 The full-cell sandwich modeling approach allowed the treatment of compli-

cated interactions between a wide variety of phenomena that had previously been studied only

separately under limiting conditions.

The lead-acid battery has been the subject of the most extensive mathematical modeling

48-54

efforts to date. Full-cell sandwich models of this system have been developed that

include, in addition to the usual distributions of potential, reaction rate, and species concentra-

tion, also more detailed examinations of the cell behavior during charge and rest periods,53 the

54

precipitation of lead sulfate crystals,” * and temperature effects.so’s2 Models have also been

developed for the two-dimensional current distribution in current collecting grids for the lead-
acid cell.51’55 Many other battery systems have been the object of full-cell-sandwich models,

57,58 59 60

including LiAVFeS,® Cd(OH),/NiOOH,” "8 Zo/Mn0,,% LirsOCL,, % and Li/PPy 5!

The solid lithium and lithium-ion rechargeable batteries, which are just now beginning to
be commercialized, are ideal systems to explore using mathematical modeling. At this point in

the battery development process, once materials selection and preparation procedures have
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been optimized, it is essential to proceed with detailed mathgmatical modeling of the full sys-
tem if one is to produce the optimum cell design and configuration for a given application. Con-
sidering the large number of parameters which can be varied, it is prohibitive from both time
and cost perspectives to develop the optimum design purely from experimental testing of cells.
Mathematical modeling allows the battery designer to explore a wide variety of system para-
meters with a minimum expenditure of time and materials. This requires a certain amount of
confidence in the ability of the battery model to describe properly the behavior of the true sys-
tem. However, in any case,v the optimum design that is identified in the modeling effort can be

built and tested and used as a first approximation to a truly optimized design.

The ability of the battery model to perform this task depends on the knowlédge of the
experimental data that are input to the model. If much of the transport and thermodynamic data
needed in the model are unknown, then it is unlikely that the model will give good results,
especially when extrapolating outside the ranges of explored behavior. With a well-
characterized system, on the other hand, the predictive power of the battery model will be at its

best.

There have been a few previous attempts to model processes occurring in lithium-ion

insertion based cells. The earliest are the mathematical models of rate limitations in the com-

65

posite insertion electrode developed by West ef al. in the 1980’5.62' The most detailed of

these models is the pseudo-two-dimensional model of a single porous insertion electrode

accounting for transport in the solution phase for a binary electrolyte with constant physical

properties and diffusion of lithium ions into the assumed cylindrical electrode particles.63

More recently, White et al. have produced a similar model to this one with the addition of a

66

separator adjacent to the porous insertion electrode.
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The limitation of the model of West et al. is that it covers only a single porous electrode;

thus, it does not have the advantages of a full-cell-sandwich model for the treatment of com-
plex, interacting phenomena between the cell layers and utility for design purposes. In both
cases these previous models confine themselves to treating insertion into TiS, with the kinetics
for the insertion process assumed to be infinitely fast. This may well be a good assumption for
many insertion materials; however, it is best to formulate the model to be as general as possible,
including kinetic expressions at each electrode and an arbitrary choice of electrode materials.
Also, both of these models treat the electrolyte as an ideal, dilute solution, which should be

invalid for the concentrated solutions typically used in lithium batteries.

Another drawback of these models is the pseudo-two dimensional approach taken to
describe the solid-state diffusion problem. This appi‘oabh has the advantage of being able to
treat variable diffusion coefficients, although the authors neglect to use it for this purpose.
However, the increase in computational effort for this approach (by over an order of magnitude)
may not justify the effort needed. A more subtle, yet much mére facile, approach to solving the

diffusion problem in the solid phase will be demonstrated in the present work.

1.4 Scope of thesis

We will focus here on the mathematical modeling of lithium cells that use at least one
insertion electrode. This includes a wide range of rechargable battery systenis that have been
considered in the literature, including the lithium/polymer battery, lithium-ion batteries, and
lithium-based electrochromic devices. The models are developed to be as general as possible;
instead of being confined to one particular electrolytic solution or insertion electrode, the equa-
tions are developed Ifor any choice of materials. The equations used in the mathematical

models will first be outlined in chapter two. Here we will find it most convenient to separate
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the models into two classes, depending on whether a single insertion electrode (FOIL) or two

insertion electrodes (DUAL) are being used.

Next, in chapter three, the use of the simulation package DUAL is demonstrated by appli-
cation to a particular lithium-ion cell being developed at Bellcore in Red Bank, NJ. This sys-
tem has the advantage of being well-characterized experimentally and having very reproducible
cell behavior. Thus, the. comparisons between computer simulations and experimental
discharge curves for cells with various designs should present an excellent test of the
mathematical model. Also, we will use this system to demonstrate the use of the mathematical

model for design purposes.

The last chapter will address ﬁe measurement of transport properties in solid polymer
electrolytes commonly used in lithium batteries. These data are essential to the modeling
effort; yet one finds in the literature much confusion regarding the measurement of transference
numbers and diffusion coefficients in these systems. We shall consider one particular system,
NaCF3SO3 in poly(ethylene oxide) at 85°C, and attempt to measure a complete set of transport
properties over a wide range of salt concentrations. The polymer electrolyte solution will be
treated as nonideal and concentrated, and issues surrounding speciation and ionic complexation
and their effect on the macroscopic transport and thermodynamic property measurements will
be discussed. We will also compare and critique various methods that can be found in the

literature to measure the transference number in solid polymer electrolytes.
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Chapter 2

Development of Model Equations

2.1 Modeling approach

In this chapter, we develop the equations to describe the isothermal discharge of several
types of lithium batteries. One must keep in mind that a very large number of different
lithium-based systems have been considered in the literature, many using different electrode
1-10

‘reactions, electrode configurations, or electrolyte phases. The models that we develop here

are intended to be sufficiently general to apply to many of the different specific systems that
follow thé assumptions set forth below. In particular, we consider lithium batteries th:;lt have at
least one electrode which uses an insertion-type reaction. Thus, we can consider two main
classes of lithium cells based on whether a single insertion reaction is employed, with solid
lithium as th;: other electrode, versus a cell using two different insertion reactions, the so-called
dual lithium-ion insertion cell or "rocking-chair" cell. These two classes of systems are
modeled separately and refered to as the "foil" model and the "dual” model, respectively. For
the insertion electrodes, we can also considér whether the system uses a porous-electrode

geometry versus a flat, nonporous geometry, which will also affect the governing equations.

The two main classes of systems considered here are pictured in figure 2-1. The negative
electrode, on the left, is either a solid lithium foil (2-1a) or an insertion-type electrode (2-1b).
The positive electrode, on the right, is in both cases an insertion-type electrode. Nearly all of
the insertion electrodes are configured as porous electrodes; we will reserve the consideration
of nonporous electrodes for later (section 2.7). The electrolyte is assumed to consist of a single
salt in a single solvent in both cases. The analysis of more complex solutions, such as those

containing two salts or two or more solvents, follows directly from the present work. The
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composite ' composite
negative electrode separator positive electrode

Figure 2-1. Lithium insertion cells. (a) Upper cell contains a lithium
foil negative electrode. (b) The lower cell ("rocking-chair" type) uses

an insertion-type negative electrode.
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solvent can either be a nonaqueous liquid or a solid polymer; the treatment is identical.

The full-cell sandwich approach to battery modeling is necessarily a multi-region prob-

lem involving coupled differential equations. In all of the battery models to be considered here,

the cell can be divided into three regions: the negative electrode, separator, and positive elec- -

trode. No external or interior solution reservoirs are considered, and current collectors are
assumed to have infinite conductivity. The models to follow are also all one-dimensional; this

is most adequate for the thin-film configuration used extensively with lithium-based systems.

2.2 Concentrated solution theory

As for most battery systems, the salt concentrations used in lithium batteries are generally
large (¢>1 M). Thus, transport of the electrolyte should be treated rigorously by using concen-
trated solution theory. In concentrated solution theory, the driving force for mass transfer at
constant temperature and pressure is the gradient of the electrochemical potential for an ionic

species. This driving force for the ith species is related to the fluxes of each of the other species

through the multicomponent diffusion equation, 1
C,'C!'
iVl = RTZCTDU [Vj - Vi] . -1
J

Here the D;; are diffusion coefficients describing the interactions between the ith and jth

species. By the Onsager reciprocal relationship, D;;=2;;. Since D;; are not defined, we find
that an n-component solution is described by é-n(n—l) independent transport properties. For a

mixture of »n species, there are (n—1) independent relationships of the form 2-1, as can be

shown easily by summing 2-1 over all species and using the Gibbs-Duhem relation.
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As equation 2-1 gives the driving force for mass transfer in terms of the species fluxes, we
must invert these equations to obtain the flux in terms of the driving forces for use in a material
balance equation. At this point we will limit ourselves to a binary electrolyte, and we will take
the solvent velocity to be the reference velocity. This choice becomes particularly useful for
treating polymer electrolytes, for which v ¢ = 0 can usually be assumed. Substitution of the

definition of the current density

i =F)zN;, (2-2)
i
gives the following flux expressions
N V+D Cr Yu, + i +c,V 2.3
= — -—C C s -
vV_D cr v i . 0
= — +——+c_Vg, -
VRT o ' He® 7 eV (2-4)
and
N0=C0V0. (2"5)

We would prefer to relate these fluxes to a concentration driving force rather than a thermo-
dynamic one,
. to

l Y
DVC+‘Z_i;‘+CiV0. (2-6)

din Co
dlnc

—-v: |1~

Here the salt diffusion coefficient D is the property that is commonly measured; this is related
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to the diffusion coefficient based on a thermodynamic driving force through11
cr din Y+
=D— |1+ —— -
b Co [ dinm 27

Next, we substitute the flux expression into a general material balance for species I of the

form

= =" VNi+R;. (2-8)

Inserting the flux equations 2-3 to 2-5 into this material balance, rearranging, and using elec-

troneutrality, we find the following conservation relationships hold

ac _ dincg ived
a Y [Cv"] =V [D 1= e } T VL F (2-9)
and
aCO :
? =~V [CoVo] . (2—10)

Equation 2-9 is a material balance on the salt, whereas equation 2-10 can be regarded as a con-
tinuity equation for the solvent velocity. In equation 2-9 we have assumed that the separator
region ’is nonporous (& = 1). At this point, we will assume that the solvent velocity is
sufficiently small to be neglected, i.e., v g = 0, an assumption that will be returned to later in

section 4.3. With this assumption, equation 2-9 has the final one-dimensional form,

e TE T AT
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ae_ [, dnco)ac] _i 28
t ox T dinc | 9x| z,V,F ox ' (2-11)

Notice that we have allowed the transport properties D and 3 to be arbitrary functions of the

salt concentration in equation 2-11.

The variation of electrical state in the solution is to be defined with respect to a lithium

reference electrode in solution. This leads to the following expression for the potential in solu-

tion11

RT

RT |, , Sy
F

VO =- dinc

+ 1+

l; [1 —tﬂ} Vinc, (2-12)

where the activity coefficient of the salt, fy, is defined according to

f =RT In [cﬁgag] ) (2-13)

This can be contrasted with an expression employing the mean molar activity coefficient of the
Salt, fi’
dln fs

L+ e

i  2RT
— +

Vo =- ” F [1 —tg] Vine, (2-14)

which will be used later (section 4.2) in connection with measurements of the transport proper-
ties in these solutions. The use of equation 2-12 over 2-14 can be viewed as an arbitrary

assumption regarding the state of dissociation of the salt at infinite dilution.

Equations 2-11 and 2-12 define the three independent, measurable transport properties for
a binary electrolyte: %, £0, and D. These can be related to the three pairwise interaction para-

meters D;; through complicated expressions.11 This situation can be contrasted with the
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dilute-solution theory treatment of a binary electrolyte, which gives only two independent
transport properties. For most battery applications, where large salt concentrations are used, it
is essential to use the more rigorous concentrated solution theory. It has been shown that the
assumptions of dilute-solution theory are particularly poor for the polymer electrolytes com-

monly used in lithium systems.12

2.3 Porous electrode theory

The porous electrode is the preferred configuration for battery applications because of the
large interfacial area that it provides for the electrode reaction as well as the reduction in the
distance between reactants and the surface. The theory of the macroscopic description of
porous electrodes is described by Newman.! 113 The porous electrode is treated as a superpo-
sition of continuous electrode and solution phases, each of known volume fraction. Thus, we
do not consider the detailed pore geometry but, instead, describe the porous electrode by its
specific interfacial area, a, and volume fractions of each phase, €. As there exists interface

between the two phases at each point in the volume of the electrode, the electrochemical reac-

tion at the surface becomes a homogeneous reaction term in the species material balance. Fol-

lowing convention, we refer to properties of the electrode phase with a subscript 1 and those of
the solution phase with a 2.

We consider the solution phase first, still taking the reference velocity to be the solvent
velocity as above. In the absence of homogeneous chemical reactions, a material balance on

the salt in the pores of the electrode gives
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aC dln [ 0 ] +n
oc Ve =V. - \v/ 1-
sat+vch V[eDl JIne c]+ t v,
2-15
+[1_,0J_cz_f-_n__LV_t9:._c & v, @19
*) ov. z V. F ot 0
Similarly, a material balance on the solvent is
dc
Co ‘% +Vev o] ==t _ato - v oVeo +ajon s (2-16)

which can also be viewed as a conservation of pore volume. This equation, along with the fol-

lowing relationship:1 1

J¢e siMy 1. . .
— = Vi, , j=solid , -
e Z l onF i,, j=solid phases 2-17)

can be used to account for solvent flow and changes in the porosity of the electrode due to the
electrochemical reaction. The s; in equation 2-17 are the stoichiometric coefficients for the
electrochemical reaction. We will neglect these effects for the present models. If experimental
data demonstrate their importance, these phenomena can be added to the models in the future.
For example, we may wish to use equation 2-17 to account for expansion or contraction of the

electrode during the lithium ion insertion process.

For the present models, only the lithium ion participates in the electrochemical reaction,
and thus j_, = jo, = 0. We will also assume that ¢ is constant. With the additional assumption

made earlier that v o = 0, the matertal balance on the salt becomes, in one dimension,

dll'lCo
dinc

dc _ 9
8at T ox [Deﬁ

. . 0
i] + [1-—[9_] Q] 1n 12 x ot

ox V.,  z,V,F ox (2-18)
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The potential in the solution phase of the porous electrode, still defined with reépect toa
lithium reference electrode in solution, is given by
i  RT

Vby =——— +
2 Keft F

dinf,
l+—dEc—J [1—:2] Vinc. (2-19)

For a single electrode reaction of the form,
Y sMP 2 ne”
i

the pore-wall flux can be related to the divergence of the superficial current density in the solu-

tion phase

. iL di 2,x
ajip =— nF ox (2'20)
The potential in the electrode phase follows Ohm'’s law,
Vo L 2-21
1= (2-21)

where O is an effective conductivity for the porous electrode. It is common to add an inert,
conducting phase to the porous electrode mixture, such as carbon black. This is essentially
treated as dead volume, but the value of C.r Used above is assumed to be that measured for the
porous electrode in the presence of the additive. The superficial current density in the two

phases is conserved through a charge balance, which leads to

I=ij+i,, (2-22)
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with 7 being the cell current density. This equation can be used to eliminate i ; from all of the

governing equations.

All of the transport properties in the porous medium are modified to account for the poros-
ity by using effective values. It is common to express these in terms of a correction for the

reduced volume of the conducting phase and a correction for the increase in path length

brought about by the tortuosity of the porous material: 14
Koo &K
Keff = 1: or Keff = 7 . (2-23)

The tdrtuosity factor, T or 7, is then usually related to the porosity15
_ oY%
T=€". (2-24)

This naturally leads to the standard Bruggeman correction, which takes the form:16

1.5

K = MK . (2-25)

We will simply use the Bruggeman form to convert the transport properties, including ¥, D, and
G, to their effective values. Note that our convention is in contrast to the usual procedure for
the effective diffusion coefficient of using the exponent 0.5 in equation 2-25 and treating the

porosity correction separately. 1

2.4 Boundary conditions

We will construct the model based on a galvanostatic charge/discharge mode. A poten-
tiostatic charge or discharge is simulated by iterating the cell current density and solving the

galvanostatic equations until the desired cell potential is achieved. The boundary condition on
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the salt concentration at the lithium electrode (figure 2-1a) is found by setting the anion flux to

zZero,

Ill—t‘,’,l
Ve = at x=0. (2-26)

- FD
At the positive electrode/current collector boundary, the flux of ions is equal to zero, and all of

the current is carried by electrons. This leads to boundary conditions on the salt concentration

and solution-phase current density,

Ve=0at x=08;+3,, o (2-27)

and

i,=0at x=8,+8,. (2-28)

This latter condition can also be viewed as a condition on the solid-phase potential gradient,

V<D1=—-(I? at x=8,+9,. (2-29)

For the dual lithium-ion insertion cell (figure 2-1b), the boundary conditions on the nega-
tive electrode/current collector boundary are analogous to those on the positive

electrode/current collector boundary,

Ve=0at x=0, (2-30)

and
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i=0at x=0. (2-31)

We can also arbitrarily set @, = 0 at any point in the domain, as only potential differences are
measurable. For the lithium foil model, it is most convenient to have @, = 0 at x = 0; for the

dual insertion model, we let &, =0 atx=L.

The internal boundaries include x = ; for figure 2-1a and x = 8_ and x = 8_ + &, for figure
2-1b. At these boundaries, all of the variables, as well as the flux of salt, must be continuous.

The current density at these points is equal to the applied cell current density,

i 2 = 1 . (2‘32)

The following condition should be obeyed by the solid-phase potential at either boundary,

Vd, =0. (2-33)
2.5 Solid-state diffusion

The slowest step in the lithium insertion process has long been thought to be the diffusion
of lithium into the oxide lattice. 17 Hence, this diffusion process cannot be ignored in the bat-
tery models. For this purpose, we can imagine that the solid phase of the porous electrode con-
sists of spherical particles of a given average diameter. Taking the direction normal to the sur-

face of the particles to be the r-direction, a material balance on lithium gives

dcs
ot

=Dy (2-34)

arz * r 8r

9%c, 2 9cy J

where ¢, represents the concentration of lithium in the solid electrode particle and Dy is

assumed to be constant. The following boundary condition results from symmetry
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deg
or

=0at r=0. (2-35)

A second boundary condition on this equation is provided by relating the pore-wall flux across
the interface with the rate of transport of lithium ions into the solid phase,
dc

Jn = —Dsa_:' at r=R;. (2-36)

Under this model of the diffusion process, the superficial area per unit volume of the porous

electrode is related to the sphere’s radius through:

31 -¢
a=_%s'l- (2-37)

As we have assumed that the diffusion coefficient in the solid, Dy, does not depend on concen-

tration, this problem is linear and can be solved by the method of superposition.18

Using Duhamel’s superposition integral, the flux into a particle can be expressed as

oc;
or

. [ O Cs :
(R, t)=£ % (R;, 9) > (R;, t-8)d 3, (2-38)

where ¢, represents the solution to equation 2-34 for a unit step change in concentration at the
surface. Equation 2-38 is a Volterra, or initial-value type, integral equation. Thus, it can be
calculated numerically using the method suggested by Wagner19 and by Acrivos and Cham-

bré.20 Whence,

acs n=2 lc.r.k+1—'cs,k! lcs,n—cx,n-l l
HERY Ak + A

(2-39)
or P At At b
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where
Ap— = a[(n—k)At] —al(n-k-1)Ar] (2-40)
and
{ ac,
a@)=] S 2R DL (2-41)
0 r
Additional details on this approach can be found in the work of Matlosz21 and Shain.22

By means of Laplace transforms, two expressions for the dimensionless a(r) were
developed: atlong times,

a(t) = '%‘ i -1—2 [1 —exp [—nznz'v] ] , (2-42)

=1 B

and for short times

Y

a(f)=-1+2 erfc

n=1

1: % o 2
<X 1+2 -t

All] oo
\/f

7 is the dimensionless time, defined as T = tD/R2. These expressions are each uniformly valid;
however, the latter expression converges much more quickly with fewer terms at very short
times. The values of a(t) and A, _; can be calculated separately and used whenever equation
2-39 needs to be evaluated. This approach, applicable only to diffusion with a constant
diffusion coefficient, is much more efficient than solving the pseudo two-dimensional transport

problem directly.23

The numerical solution provides the relationship between two important
quantities for the battery model, which are the values of the lithium flux and solid-phase con-

centration at the surface of the particle. Detailed internal profiles can be derived from these
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results if desired.

An analogous approach can be taken to treat diffusion into either planar or cylindrical
particles. This might be interesting, for example, if the insertion material has a preferred cry-
stallographic orientation for the diffusion process. For the planar geometry, the expressions for

a(7) at long and short times, repectively, are

Y%
a(t)=2 [1]
T

,,
) e

oo 2 %
1+2 Y (=1)" |exp [- 2 —ﬂ—,ierfc
ngl( ) [ P [ T ] T/z

For the cylindrical geometry, these are

a(®=2y -i? [1 —exp [—7\%’6] ] , (2-46)
n=1 n
s =2|% %__1__ 5072 317 0
=2 %] T4 6wt 2048 ’ (247

where in equation 2-46 the eigenvélues, An, are given by Jo(A,) = 0. Equation 2-47 for the

cylindrical short-time solution is not valid at long times.

The optimum time to switch between the long and short-time solutions above must be
determined by examining the accuracy of each solution as a function of the number of terms
employed and the dimensionless time.22 In general, one wants to have the largest possible
accuracy while evaluating a minimum number of terms from each expression. This can be
satisfied by comparing the errors involved in evaluating the solution for a(t) using increasing

numbers of terms in the long and short-time series solutions (for example 2-42 and 2-43). As a

A o
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basis for comparison, we take the long-time solution evaluated out to one hundred terms. To
assure sufficient accuracy, we demand that the log of the relative error should be less than -8.
In this way the error is made to be much less than this at both long and short times (i.e., the
maximum relative error is 10'8). For the spherical case, we find that evaluating 3 terms of the
short-time solution and 5 terms of the long-time solution is satisfactory. The long-time solution

is used to calculate a(t) unless 7 is less than 0.06.

2.6 Electrode kinetics

For cells using a lithium negative electrode, we assume that the charge-transfer reaction

in a liquid electrolyte has the form

Li 2 Lit+e .

The kinetics of this process is described by the Butler-Volmer relation,

aa, lF s, 1
RT

_ ac, ans, 1
RT

I'=ig, [em ] : (2-48)

This equation applies at x = 0 in figure 2-1a. The local value of the surface overpotential 1s

defined by
N1 =91 -9, -Uy, (2-49)

and, in addition, U = 0 because we are measuring the potential with repect to a lithium refer-
ence electrode in solution at the same local concentration. The exchange-current density for

this reaction has the form
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iog = Flkg )™ (ke 1)™'c ™" . (2-50)

For the commonly used polymer electrolyte, poly(ethylene oxide) (PEO), there is experi-

mental evidence for a charge-transfer process of the fonn24

- q -+_ —-—
Li+0, 2 Li"-0,+e",

where ©, represents a site in the polymer lattice. This corresponds to an equilibrium between
occupied and unoccupied lithium sites in the solid-polymer electrolyte. In this case, an identi-

cal kinetic expression will hold, but the exchange-current density is defined as

i0,1 = Flka,1)™' (ke, D™ (€ aax — €)™ ()", (2-51)
where ¢, is the maximum salt concentration permissible in the PEO.

A general lithium ion insertion process is described by a charge-transfer reaction of the

form

Li*+0,+e” 2 Li-0O;,

with ©, representing a site in the solid lattice. This could, for example, represent lithium inser-

tion in the lithium-manganese-oxide spinel

Li++Mn204+e“ & LiMn,0,.

The kinetics of this reaction is also described by the Butler-Volmer equation,

OLa,ZFns. 2
RT

Q, 2Fns,2
RT

ip =102 {exp ] ) (2-52)
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where the normal component of the current density is related to the pore-wall flux by i, = Fj,,,.

The exchange-current density now has the form

i0a = Flkg,2)%(ke,2)™(c; — €5)™(cs) ™ ()™ . (2-53)

The solid-phase lithium concentration, c;, which appears in these expressions is that evaluated
at the surface of the particle, determined previously from the internal diffusion problem. The

surface overpotential is defined as

Ns,2 =P —P - Ule,, 7)), (2-54)

and the open-circuit potential of the insertion process, U, is allowed to be a general function of

" the amount of lithium inserted and the temperature:

U=U®+flc,, T).

For example, the open-circuit potential for lithium insertion into titanium disulfide has the

form1 7

RT
U=217+ 7

In

’

Cr—C
C

s

where ¢, = 29.0 mol/dm3, B=-0.558 dm3/mol, and {=8.10. Any differentiable function can be
used for U in the computer programs. Appendix 2-A gives several additional examples of func-

tional fits to open-circuit potential data for insertion electrode materials (including Mn20 4

CoOz, NiOz, V205, WO3, C6’ and NaCoOz).
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2.7 Nonporous insertion electrodes

Lithium rechargeable batteries based on a flat, nonporous configuration for the insertion
electrode have been considered for very low-rate discharge applications and all-solid-state dev-

25,26

ices. Thin-film microbatteries based on successive deposition of lithium, a solid electro-

lyte, and an insertion compound layer will allow integration of a backup power source with the

electronic circuit board.27

These systems generally use cell components that are very thin, on
the order of ten m or less, so that diffusion limitations in the insertion electrode are not too
severe and ohmic drop through the poorly conducting solid electrolyte is not excessive. A
diagram of the cell under consideration is given as figure 2-2. We will only coﬁsider this
geometry with a single insertion electrode, as the generalization to a dual insertion electrode
cell is trivial. This configuration is also interesting from the perspective of materials characteri-
zation, as a cell of this form may be used to measure properties of the insertion material such as

kinetic or transport parameters. Thus, this model could be useful for the interpretation of exper-

imental data.

The mathematical model of this configuration is just a simplification of the previous
models. Identical equations apply in the separator (equations 2-11 and 2-12) and at the surface
of the lithium electrode (equation 2-48). However, in the positive-electrode region
(8,<x<d, + 8,), we can simplify the previous treatment. At the separator/positive electrode

boundary (x=90,), a charge-transfer reaction with the following kinetic expression occurs

aa, 2F Ns, 2
RT

O 2FM; 2

—exXp RT

I = i0,2 [exp

] ) (2-55)

with i¢, and 1, , defined identically as earlier. The solid-phase concentration appearing in ig »

is just that evaluated at the surface, c‘v=c_v('x=5x). Also, the boundary condition for the diffusion
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lithium foil insertion material
negative electrode positive electrode

solid
separator

Figure 2-2. Lithium-based cell sandwich
consisting of lithium foil negative electrode,
solid electrolyte, and nonporous insertion

material positive electrode.
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problem in the solid phase is now (compare with equation 2-36)
I oc,
o -D,-é;‘ at x=5;. (2-56)

The diffusion process into the positive electrode is best viewed as a planar problem, and
no longer needs to be solved by using a superposition integral as before. For a galvanostatic
discharge, the boundary condition equation 2-56 is now a constant, so we can solve the

diffusion problem exactly. The diffusion problem is:

dc; -D d%c, 05
or  Toxt’ (2-57)
with boundary conditions:
acs I
5 & =0, t) = — D, ° (2-58)
~ oc
a; (x=8, +8,,0)=0, (2-59)
and
cs(x, t=0) = c? . (2-60)

The solution to this problem can be found28
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2
iy 8.,.1 D_‘-t 3 [x - (6_‘- + 8+)] - 8%_ _
clx, t)y=c¢g + D, | 82 + 632
- (2-61)
8. | 2 = (1) Din“n“e nT
;E): -1?-”2::1 2 exp |~ 5 cos 5, [(83 +8+)—x]

As was the case earlier, at short times it is easiest to use a different solution for the concentra-
tion rather then have to evaluate many terms of the above series. Using a variable transforma-
tion from the concentration to the flux, one finds that the above problem reduces to a more fam-
iliar one involving an error function solution. At short times, the back of the insertion electrode

is taken to be infinitely far away and the concentration profiles have the form:

o 207 . x = &
colx, ) =cg + — jerfc - -
s(% 1) =cs FDF 2D (2-62)
This is just a simplification of the full solution:
% 2n+1)8, — (8, + &, —
e (%, t)=C?+ 211']/ Zierfc ( )0, —( +./ s — X)
: FDg' »=0 2(Ds)” 2-63
at = [@n+DB, + B, 48— x) @63
+ = 3 derfc ” :
FD_; n=0 2(D.Yt) :

The most important quantity to extract from the diffusion problem is the surface value of
the solid-phase lithium concentration, which is needed to evaluate both the exchange-current
density and the open-circuit potential in the kinetic expression. This quantity is easy to extract

from the latter short-time solution, giving:

20"
Fr*D%

c‘\.(x =0,1) = C? + (2-64)
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Otherwise, a long-time approximation to the surface concentration may be used:
o, Sl Dt 1 2 | Dt
C(x=0,2)=c5 + D, | 5 + 32 exp |- 52 . (2-65)

The surface concentration cannot exceed its maximum value, c,, and still provide the constant
current that is being drawn from the cell. If we wish to obtain detailed solid-phase concentra-
tion profiles, they can be evaluated from either equation 2-61 or 2-63, whichever is more con-

venient.

Equation 2-64 or 2-65 for the surface concentration should be substituted directly into the
Butler-Volmer equation 2-55. Then, for a constant electronic conductivity, we recognize that

Ohm’s law in the solid phase can be integrated directly, giving:

15,

By (x=d, +8,) = By (r=8) = (2-66)

The value of @, needed in the Butler-Volmer equation can then be substituted directly into
equation 2-55. This eliminates the nonporous electrode region completely from the coupled

differential equations in the separator.

Considering the simplicity of this model, we may wish to consider adding more complex-
ity by treating the solid-phase diffusion coefficient and electronic conductivity as functions of
the electrode’s state of charge. This is possible for the nonporous insertion electrode with little
added difficulty. The electrode region would then need to be discretized, and the diffusion
equation and Ohm's law solved simultaneously with known forms for D;=D(c,) and 6=06(c;).

The diffusion equation to be solved is:
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(2-67)

ds _ 3 |, %
ot —ax[Dxax]’

where we have not assumed that D, is a constant. In éddition, for generality, we should like to
relax the assumption of a constant current density in equation 2-56 and instead allow the
current density to be any known function of time. This would allow, for example, the ability to
simulate cycling and driving profiles that are commonly used in electric-vehicle applications.

This could be accomplished by making use of the superposition‘integral framework already in

place.

28 Sumhary of model equations

In summary, the equations to be solved for the lithium foil model (figure 2-1a) are given
below. The model can be divided into the separator and porous positive electrode regions. In

the solution phase of the positive electrode the equations are

dc 9 _dlnco | 3¢ [_0] ) _iz'xat?, |
sat = ox [Deﬂ' dlnc ] axJ + i1 {4 n F ox ' (2—68)

T ome | U775 o (2-69)

M] [1 O]M

. i al.2’x

A= 5" (2-70)

In the solid phase of the positive electrode
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a(I)l _ I-i 2,x 5 71
ox B Oecff ) ( g )
The solid-phase diffusion problem
ac D d%c; L2 ac;
ot | or2 r or|’ 2-72)
is solved and relegated to a surface integral equation leading to:
n=2 |Csk+1"Csk !Cs.u"c.\',n—l |
oy = — A, + ) -
Jon=—Ds k2=20 Ar n—k N~ Ay (2-73)
The two phases are also related through the Butler-Volmer kinetic expression,
. ﬂ,_Z_ ex (xa,ZFT\:,Z _ ac.ZFns,Z 74
Jan =T SR T Ry RT ‘ (274

If we now combine equations 2-69 and 2-71, we find that the variables ®; and ®, always

appear in the combination @, — @,; thus we define n = @; —- 6152 and instead solve the equation,

_ET
F

Ocf Keff

, 1 1
Tl + (2-75)

alan 0 dln ¢
* alnc] [1—t+] ox

In the separator region, the first two equations apply with j,,=0 and €=1.0. We have two

independent variables (x and ) and five dependent variables (c, M, ¢;, i, and j ,,).

For the dual insertion electrode model (figure 2-1b), the equations are similar to the above
set; however, the cell now has three regions. We still have the same two equations (2-11 and

2-12) in the separator. In either porous electrode, we have the six equations above (2-68 to 2~

TR g
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71, 2-73, and 2-74), but with different electrode properties in each region. We do not use the
combined variable 1 in the dual model because different values of @, apply in each electrode
and this would cause 1 to be discontinuous. Thus, in this model we have two independent vari-

ables (x and 7) and six dependent variables (c, 5, c;, i x, J +n, and ;).

The above sets of equations are solved simultaneously at each time step according to the
procedure detailed in section 2.9. A quantity of primary interest is the cell potential, which can
be calculated after each time step by taking the difference in solid-phase potentials between the

two current collectors. For example, for the dual lithium-ion insertion cell model,

V=®,(x=L)-D(x =0). (2-76)

This quantity is next used to calculate average values of the specific energy and power that the

cell has provided from

t
[1vd: 2-77)
0

and
(2-78)
Here M is the mass per unit area of the cell, in units of kg/mz; this can be calculated for the

dual lithium-ion insertion cell, for example, from

M=p8_(1-e.—¢ )+ p.O_g_+ppd& _ +p.0

(2-79)
+ p+8+(1 —& - af, +) + pe5+€+ + pf8+8f,+ .

This mass includes the two composite electrodes and separator, but not current collectors or

residual masses. The instantaneous cell temperature can also be calculated at each time step
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from an energy balance of the form11
s dT 0 au
ME, 2L =1|U@®)-vV-ToSL | + ko [Tam —-T] , (2-80)

where T? is the initial temperature and T, is the ambient temperature. However, we shall
generally refrain from discussing nonisothermal simulation results, as this has been covered

elsewhere. 2931

2.9 Numerical solution procedure

The method used here to solve the above sets of coupled, nonlinear differential and alge-
braic equations has been summarized previously, and we will only touch on the most important
points.11 First, the nonlinear equations must be linearized about a trial solution. The solution
to these linear equations is then used as the next trial solution, and this process is iterated until
the desired degree of convergence is achieved. The variable physical properties are treated as
known functions of the salt concentration, which are expanded in Taylor series about a trial
value. For example, a term involving the gradient of the transference number (such as in equa-

tion 2-11) would become

+d2t9,
dx  dc ox | dc

° dc?

c=c c=c?

where ¢? represents the trial solution. Notice that not only is A2 =19 (¢c) required, but also the

first and second derivatives of this function are needed.

The linearized differential equations are cast into finite-difference form accurate to O (h2)

for solution by the subroutine BAND.11 _The central-difference form is used for second-order

e
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differential equations such as the salt material balance, while either the forward or backward-
difference form is used for first-order differential equations. For a first-order differential equa-
tion, the choice of whether to use the forward or backward-difference form depends on the posi-
tion of the boundary condition. Time derivatives are approximated using the Crank-Nicolson

implicit method, which consists of weighting solutions at the old and new time steps equally.

We should take a morhent to discuss the application of boundary conditions at an internal
boundary. In order to ensure the desired O (h2) accuracy for the second-order differential equa-
tions, it is necessary to perform a local material balance about the boundary region. This neces-
sity arises because the matrices that are solved with the subroutines BAND and MATINV must
be tridiagonal. There exist different methods for dealing with internal boundaries in multiple-

region problems like this one.32 33

The boundary material balance can be formulated as the sum of material balances applied
at either side of the boundary. For example, at the separator/positive electrode boundary in the
foil model (x=0,), we can perform material balances around the half-node points on either side

of the boundary (node j) to find the following two expressions:

. [3@ + (=1~ 32(;')—20—1)] )

4A¢
_ (2-82)
N+(l'-l/2)‘N+(i) N+(/_l/2)“N+(i)
by * hy ’
. [3c(f)+c(;+1)—3z(i)—z(i+1) _ND=NGHA
P 4At h
(2-83)

No()=N.G+A)  a
h

[350) + iaG +D)] + & [3720) +7nG+D)] |
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where x(j) is the value of x (j) at the previous time step and k, and 4 are the mesh spacings in
the two regions. Multiplying by the mesh spacings, adding these together, canceling the fluxes
N.(H) whiéh are identical by the continuity condition, and using properly averaged flux expres-

sions such as

oo IO Y . .
N (- = — e, Dy | €=el=1) | | LU=A) | 1G-1) + I() (2.84)
h F 2
gives a difference expression for the boundary node.
34-36

This procedure for deriving difference equations, called the control-volume method,
can also be used to formulate the materiai balance across the whole cell. The equations at the
two external boundary nodes (j =0 and j =nj) are simply derived from material balances around
the points j =% and j =nj-' using the boundary conditions at j=0 and j=nj. An advantage of
this technique is that the total amount of salt 'contained in the cell will be rigorously equal to a
constant. It has not been proven that this method will be accurate to O (h2), but it does appear
to be.36 The computer programs DUAL and FOIL given in Appendix 2-C, and alsé the com-
puter program CHECK given in Appendix 4-A, have been progrlammed using the control-

volume method.

2.10 Computer programs

Two primary computer programs have been written for full-cell simulation of lithium sys-
tems. The lithium foil model (figure 2-1a) is solved in FOIL; the dual lithium-ion insertion
model (figure 2-1b) is solved by DUAL. The data files for these programs are given in Appen-
dix 2-B; both of these computer programs are written in FORTRAN and are given in Appendix

2-C. We shall only briefly discuss the capabilities of the computer programs here; the code is
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well documented already and is also easy to use because of its extensive use and upgrading by

industrial and academic collaborators.

There are several choices of modes in which one can discharge or charge the cell using
the models. In the galvanostatic mode, one may choose to discharge for a sef amount of time or
until the cell reaches a prescribed cutoff potential. One also has the option to discharge in the
potentiostatic mode for a set amount of time. In addition, one may perform any number (up to
50 with the dimensions given) of these options successively in a single run, including, if
desired, relaxation periods of arbitrary lengths in between. This feature allows one to simulate
potentiostatic taper cha.rging37 and signature curve discharges,38 for example. The flexibility
of the code allows the user to simulate a large variety of experimental conditions to which bat-
teries are exposed, a point that will be explored in some detailv in the next chapter.

The standard output that both codes provide includes values of the following quantities at
each time step: utilization of positive electrode material, cell potential (V), material balance
check, and time (min). The utilization is given in terms of the stoichiometric coefficient of

lithium in the insertion electrode, which can be calculated from the average state of charge,

<cg>

y:

Ct

The material balance calculates the amount of salt in the solution phase divided by the initial
amount of salt and should always be equal to unity. At the end of the discharge, one is also
given the values of the average specific energy and power and the mass per unit area of the cell.

This set of information is referred to as the "short" output option from the input file.

The "long" output option includes all of the above information, as well as detailed profiles

of all of the variables across the cell at specified time steps. One is able to choose'the
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frequency of nodes and time steps at which all of the profiles are given. Thus, for example, one

could request the values of each variable at every other node point and every fifth time step.

In addition to these standard output choices, there are a handful of more specialized out-
put modes that arise for specific applications. For instance, with nonisothermal modeling, one
can obtain information on either the adiabatic cell temperature as a function of time or the cell
temperature during a nonisothermal discharge using a given heat-transfer coefficient with the
exterior. Also, one has the option of calling either one of two specialized subroutines: SOL
and PEAK. The subroutine SOL provides concentration profiles of lithium in the solid elec-

trode pa:ticlés at specified positions in either electrode and at specified times into the discharge.

Subroutine PEAK, on the other hand, interrupts the discharge at a given point and ramps
the current until a maximum in the specific power is reached. The ramp involves passing
increasing values of the current for a thirty-second period, each from the same initial condition.
The peak power obtained thus represents the average value over a thirty-second current pulse.
The output from this subroutine includes the values of the cell potential, current density, and
power densitj during the current ramp. The power density should go through a maximum if the
current is ramped out to a sufficiently large value. Occasionally numerical problems can
prevent the power from going through this maximum. This occurs because the power output
from a battery as a function of discharge rate drops off very quickly after going through its

maximum value.39

A substantial number of parameters is required to simulate the full-cell sandwich. The

complete list of the necessary parameters, as well as a brief description of how each can be

obtained experimentally, is available.40 These parameters can be classified according to

whether they are design-adjustable parameters or material properties. The material properties
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can be further broken down into thermodynamic and transport properties. In general, the
design-adjustable parameters, such as for exzfmple electrode thicknesses and porosities, are
entered in the input file. Many of the material properties, on the other hand, are installed into
the main body of the codes FOIL or DUAL. These properties are entered into one of two sub-
routines, subroutine EKIN and subroutine PROP. These two subroutines represent the only sec-

tions of the code that the user needs to access.

Subroutine EKIN generates the Butler-Volmer kinetics expression for each insertion elec-
trode (for DUAL) or for the single insertion electrode (for FOIL). The user may enter into
EKIN th§ open-circuit potential for each insertion electrode being used. Currently, the user is
able to select one of the many options for materials of interest whose open-circuit potentials
have been previously fit to functional forms and used in past simulations. These materials and

the open-circuit potential functions are given in Appendix 2-A.

The transport properties for the binary electrolyte are entered into subroutine PROP. This
includes the concentration-dependent values of x, 19, and D. Also, the thermodynamic factor

for the salt is entered into this subroutine. This parameter is input in the form:

dinf, dZnf,
de ’ d(:2 )

As stated earlier, not only is a functional fit to the concentration dependence of each of these
properties required, but also the first derivative with respect to concentration is needed (and the
second derivative of the thermodynamic factor in the form shown above). If desired, of course,
constant values of each of these properties can be used. This will be the case in some of the

simulation results to follow, where the concentration dependence of many of the properties is

" not available.
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Appendix 2-A Opeh-circuit potential functional fits

The open-circuit potential data given below generally correspond to the potential of the
insertion material versus a lithium reference electrode in solution during a very-low-rate
discharge at 25°C, often referred to as a coulometric titration curve. Each of the curve fits

given below is provided in figures 2-3 to 2-11.

1. Disordered carbon (Conoco petroleum coke):41 LixC6 (0<x<0.7)

U = -0.132056 + 1.40854 exp (-3.52312x). (A-1)

2. Tungsten oxide:* Li WO, (0<<0.67)

U = 2.8767 — 0.9046x + 0.76679x% — 0.15975 exp [IO0.0(x - 0.671)] L A2

3. Titanium disulfide: 1’ Li,TiS, (0<y<D)

U=2.17+£Z

- logl—;l] -16.2y +8.1} . (A-3)

4, Cobalt dioxide:43 LinoO2 (0.3<y<0.9)

20

U = 4.82551 —0.950237 exp [— [ = 0913511 (A-4)

0.600492

| DU

5. Sodium cobalt dioxide (P2 phase):44 NayCoO2 (0.3<y<0.92)

U = 4.4108 — 2.086y + 0.10465 tanh [—133.42y + 89.825]
+0.16284 tanh [-145.01y + 71.92] +0.01 exp [—200.0@ - 0.30)] (A-5)
~0.01 exp [200(y - 0.885)] .
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6. Manganese dioxide (lower plateau):45 Li1 +yMn02 (0<y<0.8)

U = 2.06307 — 0.869705 tanh [8.65375(y - 0.981258)] . (A-6)

7. Lithium-manganese-oxide spinel:d'6 LinnZO 4 (0.19<y<1)

U =4.06279 + 0.0677504 tanh [-21.8502y + 12.8268]

—0.105734 [(1.00167—y)‘°'379571 - 1.575994] (A-T)

—0.045 exp (~71.69%) + 0.01lexp [~200(y—-0.19)] .

8. Nickel dioxide: %’ Li, NiO, (0.45<y<1)

U = 6.515 + 23192y — 5.3342y" + 0.41082 exp [200(0.44~y)] A
—0.24247 exp [60.0(y~0.99)] . ”

9. Vanadium oxide: 3 Li,V,05 (0<y<0.96)

U = 3.3059 + 0.092769 tanh [-14.362y +6.6874| — 59)
0.034252 exp [100(y~0.96)] + 0.00724 exp [80.0(0.01-y)] .
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Figure 2-3. The open%circuit potential

of carbon (petroleum coke) as a function

of state of charge relative to the potential
of solid lithium at the same electrolyte

concentration.
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Figure 2-4. The open-circuit potential of
tungsten trioxide (Li,WO;) as a function of
state of charge relative to the potential
of solid lithium at the same electrolyte

concentration.
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Figure 2-5. The open-circuit potential of
titanium disulfide (Li,Tis,) as a function
of state of charge relative to the potential
of solid lithium at the same electrolyte

composition.
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Figure 2-6. The open-circuit potential of
cobalt dioxide (Li,Co0O;) as a function of
state of charge relative to the potential
of solid lithium at the same electrolyte
concentration.
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Figure 2-7. The open-circuit potential of
sodium cobalt oxide (Naycéoz, P2 phase) as a
function of the state of charge relative to
the potential of solid sodium at the same

electrolyte concentration.
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Figure 2-9.
manganese dioxide (Li,Mn,0,, spinel phase)
as a function of state of charge relative

to the potential of solid lithium at the

same electrolyte concentration.

The open-circuit potential of



U(v)

Open-circuit potential,

4.4

4.2

3.6

3.4

3.2

1 l | I

3.0
0.4 0.5

Figure 2-10.

of nickel dioxide (LiNiO,) as a function

0.6 0.7 0.8 0.9
Yy

The open-circuit potential

1.0

of state of charge relative to the potential

of so0lid lithium at the same electrolyte

concentration.

62

PR T

g

i I

AR P R R e



.

I =

AR
L !

3.6 I T I I
2 Li,V,0s
N Y
3'50— -
— A
©
.|—| _
KB
o
Q
B
O |
(O
49
-
P ST o, |
3]
Y
o
9
& 3
Q
OF
O
3.0 [ | | [ |
0.0 0.2 0.4 0.6 0.8 1.0

Yy

Figure 2-11. The open-circuit potential of
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of state of charge relative to the potential
of solid lithium at the same electrolyte

concentration.
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20
240.d-06
25.d-06
190.d-06
0.0

0.0

80

40

80
298.15
1000.
0.6440
0.0366
120.0
.00
5.0d-13
5.0d-13
1.0d-06
1.0d-06
0.36
0.00
0.117
0.38
0.00
0.26
0.00
0.04

10.

10.
1.0d-11
1.0d-11
0.0

0.0
324.2d0
332.8d0
1204.
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Appendix 2-B Data files for DUAL and FOIL

DUAL data file

! 1im, limit on number of iterations

! h1, thickness of negative electrode (m)

1 h2, thickness of separator (m)

! h3, thickness of positive electrode (m)

! hen, thickness of negative electrode current collector (m)
! hep, thickness of positive electrode current collector (m)
! nl, number of nodes in negative electrode

! n2, number of nodes in separator

!'n3, number of nodes in positive electrode

I'T, temperature (K)

1 xi(1,1), initial concentration (mol/m3)

csx, initial stoichiometric parameter for carbon

!csy, initial stoichiometric parameter for positive

! tmmax, maximum time step size (s)

! veut, cutoff potential

1 dfs1, diffusion coefficient in negative solid (m2/s)

! dfs3, diffusion coefficient in positive solid (m2/s)

! Radl, radius of negative particles (m)

! Rad3, radius of positive particles (m)

lepl, volume fraction of electrolyte in negative electrode
leppl, volume fraction of polymer phase in negative electrode
! epfl, volume fraction of inert filler in negative electrode
!ep2, volume fraction of electrolyte in separator

!epp2, volume fraction of polymer phase in separator
1ep3, volume fraction of electrolyte in positive electrode
!'epp3, volume fraction of polymer phase in positive electrode
! epf3, volume fraction of inert filler in positive electrode

! sigl, conductivity of negative matrix (S/my)

!sig3, conductivity of positive matrix (S/my)

!rkal, reaction rate constant for negative reaction

! ka3, reaction rate constant for positive reaction

! ranode, anode film resistance (ochm-m2)

! rcathde, cathode film résistance (ohm-m2)

! cotl, coulombic capacity of negative material (mAh/g)

! cot3, coulombic capacity of positive material (mAh/g)
!re, density of electrolyte (kg/m3)
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2000. !'rs1, density of negative insertion material (kg/m3)
4400. ! rs3, density of positive insertion material (kg/m3)
2000. !'rf, density of inert filler (kg/m3)
2200. ! tpl, density of polymer phase (kg/m3)
2200. !'rc, density of separator material (kg/m3)
0.0 !'ren, density of negative current collector (kg/m3)
0.0 ! rcp, density of positive current collector (kg/m3)
6.0 ! htc, heat transfer coefficient at ends of cell stack (W/m2K)
0.0 ! dUdT, temperature coefficient of open circuit potential (V/K)
2000.0 !Cp, heat capacity of system (J/kg-K)
298.0 ! Tam, ambient air temperature (K)
1 ! ncell, number of cells in a cell stack
2 !lht, Ouses htc, 1 calculates htc, 2 isothermal
0 1ill, 1 for long print-out O for short print-out
2 1il2, prints every il2 th node in long print-out
1 '1il3, prints every il3 th time step in long print-out
1 ! lflag, O for electrolyte in separator only, 1 for uniform
0 !lpow 0 for no power peaks, 1 for power peaks
0 !jsol calculate solid profiles if 1 < jsol < nj
2 !nneg see below
4 ! nprop see below
6 !npos see below
2 ! lcurs, number of current changes
10.00d0 5.0d0 1
-10.00d0  5.0d0 1
0.00d00 30.0d0 1
0.0001d0  15.0d0 1
5.00d0 2.0d0 2
0.0001d0  15.0d0 1
17.50d0 2.5d0 2
0.0001d0  15.0d0 1
8.75d0 2.5d0 2
0.0001d0  15.0d0 1
4.40d0 2.5d0 2
0.0001d0  15.0d0 1
2.20d0 2.5d0 2
0.0001d0  15.0d0 1
1.25d0 2.5d0 2
DUAL data file comments

line 34,35: cotl,cot3

cotl coulombic capacity of negative electrode (mAh/g)
when x=1 in LixC6

cot3 coulombic capacity of positive electrode (mAh/g)
when y=1 in LiyCoO2 (332.8), Lil+yMn204(144.50)
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lines 50 to 52: il1,i12,il3
il O gives short print-out no matter if a run converges or not
1 gives long print-out no matter if a run converges or not
The long print-out stops at t(noncovergence).
2 gives short print-out if a run converges but a long
print-out if the run does not converge.
il2 1/i12 = fraction of nodes in long print-out
i3 1/il3 = fraction of time steps in long print-out

line 59: Icurs, number of current changes

line 60 onward: cu(i), tt(i), mc(i) .
cu(i) The ith value of the current (A/m2) or potential (V) of
the discharge
tt(i) The ith value of the time (min) or cutoff potential (V)
of the discharge
mc(i) The mode of discharge; O for potentiostatic, 1 for galvanostatic
for a given time, 2 for galvanostatic to a cutoff potential

nneg:
1! Li foil (not active)
2 ! Carbon (petroleum coke)
3 I MCMB 2510 carbon (Bellcore)
41 TiS2
5 ! Tungsten oxide (LixWO3 with 0<x<0.67)
6 ! Lonza KS-6 graphite (Belicore)

nprop:
1 ! AsF6 in methyl acetate
2 ! Perchlorate in PEO
3 ! Sodium Triflate in PEO
4 ! LiPF6 in PC (Sony cell simulation)
5 ! Perchlorate in PC (West simulation)
6 ! Triflate in PEO
7 ! LiPF6 in EC/DMC and p(VdE-HFP) (Belicore)

npos:
1!TiS2
2 ! Spinel Mn204 (lower plateau)
3 1 NaCoO2: Sodium cobalt oxide
4 ! Spinel Mn204 (upper plateau)
5 ! Tungsten oxide (LixWO3 with 0<x<0.67)
6 ! CoO2 (Cobalt dioxide)
7 1 V205 (Vanadium oxide)
8 I NiO2 (Nickel dioxide)
9 ! Spinel Mn204 (Bellcore)
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40
50.d-6
200.d-6
25.d-6
25.d-6
80
80
398.15
1200.
0.38
120.0
0.0
1.0d-13
1.0d-05
0.300
0.100
0.000
0.38
0.00
100.
148.0
8.5d03
1.0d-11
0.03750
1
1.2041d3

4.210d3
2.0d3

2.2d3
2.0d3

4.0
8.93d3
2.70d3

0.0

0.0

2.0

0.0

2000.0

333.1
1

FOIL data file

!lim limit on number of iterations

'hl thickness of separator (m)

'h2 thickness of positive electrode (m)

! hen thickness of negative electrode current collector (m)
! hep thickness of positive electrode current collector (m)
!nl number of nodes in separator

! n2 number of nodes in positive electrode

!'T temperature (K)

! xi(1,1) initial concentration (mol/m3)

!y initial stoichiometric parameter for electrode

! tmmax maximum time step size (s)

! veut cutoff potential

1 dfs diffusion coefficient in solid (m2/s)

! Rad radius of particles (m)

!ep volume fraction of electrolyte in composite electrode
!'epf volume fraction of inert filler in composite electrode
!epp volume fraction of polymer phase in composite electrode
!eps volume fraction of electrolyte in separator

!'epps volume fraction of polymer phase in separator

! sig conductivity of solid matrix (S/m)

! capt coulombic capacity of insertion material (mAh/g)

! cmax maximum concentration in electrolyte

! rka reaction rate constant for insertion reaction

! rkf exchange current density for lithium foil

1114 1 for polymer, O for liquid electrolyte

! re density of electrolyte (kg/m3)

!'rs density of insertion material (kg/m3)

! rf density of inert filler (kg/m3)

!'rp density of polymer phase (kg/m3)

! rc density of separator material (kg/m3)

! ef excess capacity of lithium foil

!'ren density of negative current collector (kg/m3)

! rcp density of positive current collector (kg/m3)

! ranode anode film resistance (ohm-m2)

! rcathde cathode film resistance (ohm-m2)

! htc heat transfer coefficient with external medium (W/m2K)
1 dUdT temperature coefficient of EMF (V/K)

1Cp heat capacity of cell (J/kg-K)

! Tam ambient temperature (K)

! ncell number of cells in a cell stack
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2 I'1ht O uses hte, 1 calculates htc, 2 isothermal
0 !'ill 1 for long print-out O for short print-out
2 1il2 prints every iI2 th node in long print-out
5 !'il3 prnts every il3 th time step in long print-out
4 ! nprop (see below)
6 ! npos (see below)
1 ! lcurs number of current changes
1.00d01 1.0d0
-7.0d0 4.0d0
0.001d0 60
7.0d0 120
-0.001d0 60
7.0d0 180
0.001d0 60
-3.50d0 360
-0.001d0 60
FOIL data file comments

line 48 onward: cu(i) tt(i)
cu(i) operating current density (A/m2)
tt(i)  time (min)

nprop:
1 ! LiAsF6 in methyl acetate
2 1 Li Perchlorate in PEO
3 ! Sodium triflate in PEO
4 1 LiPF6 in PC (Sony cell simulation)
5 ' Li Perchlorate in PC (West simulation)
6 ! Li Triflate in PEO

npos:
1! TiS2
2 ! Spinel Mn204 (lower plateau)
3 I NaCo02: Sodium cobalt oxide
4 ! Spinel Mn204 (upper plateau)
5 ! Tungsten oxide (LixWO3 with 0<x<0.67)
6 ! CoO2 (Cobalt dioxide)
7 1 V205 (Vanadium oxide)
8 1 NiO2 (Nickel dioxide)
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Appendix 2-C Computer programs DUAL and FOIL

DUAL program

Tokkkkhhk kb kA h T A Ak bk kb bk kb h kA kb khkhkkhkkhkhkhkkhkhkhhkhkhdhhdhkhdhk

dual.f (version 2.0) July 20, 1995
Dual lithium ion insertion cell

Note: For lflag=0, the model works only for initially zero current.

O 0 a0 000

c*********************************************************************
implicit real*8({(a-h,o0-2z)
parameter (maxt=900)
common /n/ nx,nt,nl,n2,nj,n3,tmmax
common /calc/ ai(maxt),ai2(maxt),u(223,maxt),ts (maxt),
1h,hl,h2,h3,hen, hep, rr, rrmax
common/const/ fc,r,t, frt,cur,ep3,ep2, pi,nneg, nprop, npos,
lepl,epf3,epfl, eppl, epp2, epp3, shape3, shapel
common/power/ ed,Vold, ranode, rcathde
common/ssblock/ xp0(6) ,xx0(6,221),term(221),£5(221)
common/var/ xp(10),xx(6,221) ,xi(6,221),xt(6,221,maxt)
common/cprop/ sig3,area,rka3,ct3,dfs3,Rad3,
1sigl,area2,rkal,ctl,dfsl,Radl, tw
common/tprop/df(221),cd(221),tm(221),
14df (221) ,ded(221),dtm(221) ,dfu(221) ,d2fu(221)
common/temp/ thk,htc,dudt,Cp,dens, tam,gl,ncell, 1ht
dimension tt(50),cu(50),mc(50),tot (50)

44 format(/’ mass = ‘,£7.4,’ kg/m2’)
45 format(’ specific energy = ',£8.2,’ W-h/kg’)
46 format(’' specific power = /,£8.2," W/kg')
c
c n is number of equations
n=6
1im2=20
data fc/96487.040/, r/8.314d0/, pi/3.141592653589d0/
c
c**************************************************************
c read in parameters and boundary conditions
c

read *, lim !limit on number of iterations

read *, hl !thickness of negative electrode (m)

read *, h2 !thickness of separator (m)

read *, h3 t‘thickness of positive electrode (m)

read *, hcn !thickness of negative electrode current collector (m)
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read *, hcp !thickness of positive electrode current collector (m)
thk=hl1+h2+h3

read *, nl !number of nodes in negative electrode

read *, n2 !number of nodes in separator

read *, n3 !'number of nodes in positive electrode

read *, t ltemperature (K)

print 1101, 1im,1.d6*hl,1.46*h2,1.d6*h3,1.d6*hcn,1.d6*hcp
&,nl,n2,n3,t

nl=nl+1 ! from foil
nj = nl + n2 ! from foil
n2=nz+l

nj=nl+n2+n3

read *, xi(1l,nl+2)!initial concentration (mol/m3)

guess for PHI2

xi(2,1)=0.0540

xi(2,nj)=0.0d40

read *,csx tinjitial stochiometric parameter for negative
read *,csy tinitial stochiometric parameter for positive
read *, tmmax!maximum time step size (s)

read *, vcut !cutoff potential

read *, dfsl !diffusion coefficient in negative solid (m2/s)
read *, dfs3 !diffusion coefficient in positive solid (m2/s)
read *, Radl !radius of negative particles (m)

read *, Rad3 !radius of positive particles (m)

print 1102, xi(1l,nl+2),csx,csy, tmmax,vcut,dfsl,dfs3,1.d6*Radl
&,1.d46*Rad3

read *, epl !volume fraction of electrolyte in neg. electrode
read *, eppl!volume fraction of polymer phase in neg. electrode
read *, epfl!volume fraction of inert filler in neg. electrode
read *, ep2 !volume fraction of electrolyte in separator

read *, epp2!volume fraction of polymer phase in separator
read *, ep3 !volume fraction of electrolyte in pos. electrode
read *, epp3!volume fraction of polymer phase in pos. electrode
read *, epf3!volume fraction of inert filler in pos. electrode
read *, sigl!conductivity of solid negative matrix (S/m)

read *, sig3!conductivity of solid positive matrix (S/m)

read *, cmax!maximum concentration in electrolyte (mol/m3)
read *, rkallreaction rate constant for negative reaction

read *, rka3!reaction rate constant for positive reaction

read *, ranode !anode film resistance (out of place)

read *, rcathde !cathode film resistance (out of place)

read *, 114 !1 for polymer, 0 for liquid electrolyte

read *, cotl !coulombic capacity of negative material (mah/g)
read *, cot3 tcoulombic capacity of positive material (mAh/g)
print 1103, epl,eppl,epfl,ep2,epp2,ep3,.eppl,epfl,sigl,sig3,cotl
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£ &,cot3,cmax,rkal,rka3,ild
= 4 read *, re ! density of electrolyte (kg/m3)
read *, rsl ! density of negative insertion material (kg/m3)
E\ read *, rs3 ! density of positive insertion material (kg/m3)
3 read *, rf ! density of inert filler (kg/m3)
read *, rpl ! density of polymer phase (kg/m3)
{% read *, rc ! density of separator material (kg/m3)
: read *, rcn ! density of negative current collector (kg/m3)

. read *, rcp ! density of positive current collector (kg/m3)
’? print 1104, re,rsl,rs3,rf,rpl,rc,rcn,rcp

read *, htc 'heat transfer coeff. with external medium (W/m2K)
read *, dUAT !temperature coefficient of EMF (V/K)
o read *, Cp theat capacity of cell (J/kgK)
ji read *, Tam !ambient temperature (K)
read *, ncell!number of cells in a cell stack
- read *, lht !0 uses htc, 1 calcs htc, 2 isothermal
k} print 1105, ranode,rcathde,htc,dudt,Cp,tam,ncell, lht
read *, ill !1 for long print-out 0 for short print-out
fr read *, il2 11/i12 = fraction of nodes in long print-out
| read *, il3 11/i13 = fraction of time steps in long print-out
read *, lflag ! 0 for electrolyte in sep. only, 1 for uniform
read *, lpow ! 0 for no power peaks, 1 for power peaks
»‘{ read *, jsol ! calculate solid profiles if l<jsol<nj
1 read *, nneg ! designates negative electrode system
/7 read *, nprop ! designates electrolyte system
I read *, npos ! designates positive electrode system
v/ read *, lcurs ! number of current changes

print 1106, il11,112,i13,1flag,lcurs

read *, (cu(i),tt (i), mc(i),i=1,lcurs)

’ c read *, (cu(i),tt(i), i=1,lcurs) ! from foil
f c cu(i) operating current density (A/m2)
c tt (i) time (min)
c
! 1101 format (i7,’ 1lim, limit on number of iterations’
. &/1x,f6.2,’ hl, thickness of negative electrode (microns)’
&/1x,£6.2,’ h2, thickness of separator (microns)’
h &/1x,£6.2,’ h3, thickness of positive electrode (microns)’
ot &/1x,£6.2,’ hen, /.,
&' thickness of negative electrode current collector {(microns)’
&/1x,£f6.2,’ hcp, thickness of positive electrode current’
&, collector {(microns)’ :
&/i7,' nl, number of nodes in negative electrode’
&/i7,' n2, number of nodes in separator’
" &/i7,’ n3, number of nodes in positive electrode’
&/1x,f6.2, ' T, temperature (K) ')
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1102 format (/1x,£6.1,’' xi(l,n1+2), initial concentration (mol/m3)
&/1x,£6.4,' csx, initial stoichiometric parameter for negative-’
&/1x,£6.4,' c¢sy,  initial stoichiometric parameter for positive’
&/1x,£f6.1,’ tmmax, maximum time step size (s)’

&/1x,f6.2,' vcut, cutoff potential’

&/1x,e6.1,’ dfsl, diffusion coefficient in negative solid (m2/s)’
&/1x,e6.1,’ dfs3, diffusion coefficient in positive solid (m2/s)’
&/1x,£f6.2,’ Radl, radius of negative particles (microns)’
&/1x,f6.2,' Rad3, radius of positive particles (microns) ‘)

1103 format (/1x,£6.3,’ wepl,’

&, volume fraction of electrolyte in negative electrode’
&/1x,£6.3, eppl,’

&,’ volume fraction of polymer phase in negative electrode’
&/1x,£6.3,’ epfl,’

&,’ volume fraction of inert filler in negative electrode’
&/1x,£f6.3,' ep2, volume fraction of electrolyte in separator’
&/1x,f6.3,’ epp2, volume fraction of polymer phase in separator’
&/1x,f6.3,' ep3,’

&, volume fraction of electrolyte in positive electrode’
&/1x,£6.3,' epp3,’

&,' volume fraction of polymer phase in positive electrode’
&/1x,£6.3,' epf3,’

&, ' volume fraction of inert filler in positive electrode’
&/1x,f7.2,’ sigl, conductivity of negative matrix (S/m)’
&/1x,£7.2," sig3, conductivity of positive matrix (S/m)’
&/1x,f6.2,' cotl, coulombic capacity of negative material’

&,’ (mdh/g)’

&/1x,£f6.2,' cot3, coulombic capacity of positive material’

&,’ (mAh/g)’

&/1x,£6.0,’ cmax, maximum concentration in electrolyte (mol/m3)
&/1x,e6.1," rkai, reaction rate constant for negative reaction -
&/1x,e6.1,’ 1rka3, reaction rate constant for positive reaction
&/17,’ il4, 1 for polymer, 0 for liquid electrolyte’)

1104 format (/1x,£f6.1,’ re, density of electrolyte (kg/m3)°
&/1x,f6.1,’ 1rsl, density of negative insertion material (kg/m3)
&/1x,£6.1,’ 1rs3, density of positive insertion material (kg/m3) "’
&/1x,£6.1, " «rf, density of inert filler (kg/m3)°
&/1x,£f6.1,’ 1rpl, density of polymer phase (kg/m3)’

&/1x,f6.1,' rc, density of separator material (kg/m3)’
&/1x,£6.1,' rcn, density of negative current collector (kg/m3)’
&/1x,£6.1," rcp,. density of positive current collector (kg/m3) ‘)

1105 format (/1x,f6.1,’ ranode, anode film resistance (ohm-m2)’
&/1x,f6.1,' rcathde, cathode film resistance (ohm-m2) "’
&/1x,f6.2,' htc, heat transfer coefficient with’

&,' external medium (W/m2K) '’

&/1x,

£f6.2,' dUdT, temperature coefficient of EMF (V/K)°’
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&/1x,f6.1,’ Cp, heat capacity of cell (J/kg-K)'’
&/1x,£6.2, Tam, ambient temperature (K)’
&/i7,’ ncell, number of cells in a cell stack’
&/i7,' 1ht, 0 uses htc, 1 calcs htc, 2 isothermal’)
1106 format {(/i7,’ 1il1, 1 for long print-out 0 for short print-out’
&/17, ilz, prints every il2 th node in long print-out’
&/1i7,' 113, prints every 113 th time step in long print-out’
&/i7,' lflag, 0 for electrolyte in separator only, 1 for uniform’
&/1i7,’ 1lcurs, number of current changes’)
go to (111,112,113,114,115,116) ,nneg
print*,’ '
111 print *, ‘Li foil’
go to 117
112 print *, ‘Carbon (petroleum coke)’
go to 117
113 print *, 'MCMB 2510 Carbon (Bellcore)'’
go to 117
114 print *, 'TiS2’
go to 117
115 print *, ‘Tungsten oxide (LixWO3 with 0<x<0.67)°
go to 117 '
116 print *, ‘Lonza KS-6 graphite (Bellcore)’
117 go to (101 102,103,104,105,106,107) ,nprop
101 print *, ‘AsF6 in methyl acetate’
go to 200
102 print *, ’‘Perchlorate in PEO’
go to 200
103 print *, ’‘Sodium Triflate in PEO’
go to 200
104 print *,A’LiPFG in PC (Sony cell simulation)’
go to 200
105 print *, ‘Perchlorate in PC (West simulation)’
go to 200
106 print *, ‘Triflate in PEO’
go to 200
107 print *, ’‘LiPF6 in EC/DMC and p(VAF-HFP) '
go to 200
200 go to (201,202,203,204,205,206,207,208,209) ,npos
201 print *, ’'TiS2’
go to 300
202 print *, ’‘Spinel Mn204 (lower plateau) ’
go to 300
203 print *, ’'NaCo02: Sodium Cobalt Oxide’
go to 300
204 print *, ‘Spinel Mn204 (upper plateau)’
go to 300
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205 print *, ‘Tungsten oxide (LixWO3 with 0<x<0.67)’
go to 300

206 print *, ‘Co02 (Cobalt dioxide) '’
go to 300

207 print *, V205 (Vanadium oxide)’
go to 300

208 print *, ‘NiO2 (Nickel dioxide)
go to 300 :

209 print *, ‘Spinel Mn204 (Bellcore)’
go to 300

300 continue

Convert coulombic capacity to total concentrations:
ctl=3.6d03*cotl*xrsl/fc

ct3=3.6d03*cot3*rs3/fc

xi(3,1)=ctl*csx

xi(3,nl+1)=xi(3,1)

xi(3,n2+nl)=ct3*csy

xi(3,nj)=xi(3,n2+nl)

shapel=3.0d0

shape3=3.0d0

assume current density linear in electrodes
cur=cu(l)

xi(4,1)=0.0d40

xi(4,nl+1)=cur

xi(4,n2+nl)=cur

xi(4,nj)=0.0d0

Convert times to seconds and sum up times of mode changes
if (me(l).1t.2) then
tot(1)=6.0401*tt (1)
else
tot (1)=0.0d0
end if
do 51 i=2,lcurs
if (mc(i).lt.2) then
tot(i)=tot(i-1)+6.0d401*tt (i)
else
tot (i)=tot (i-1)
end if

51 continue

specific area calculated from geometry
area=shape3* (1.0d0-ep3-epf3-epp3) /Rad3
area2=shapel* (1.0d0-epl-epfl-eppl) /Radl
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assume uniform rate of insertion in electrodes
xi(5,1)=cur/fc/hl/area2
x1i(5,nl+1l)=cur/fc/hl/area2
x1i(5,n2+nl)=-cur/fc/h3/area
xi(5,nj)=-cur/fc/h3/area

sig3=sig3*((1.0d0-ep3-epp3)**(1.540))
sigl=sigl*((1.0d0-epl-eppl)**(1.540))

h2=h2/(n2-1)
h3=h3/n3
hli=hl/nl
h=h2
frt=£fc/(r*t)

Find initial solid phase potential guesses
from initial solid concentrations:

call ekin(l,kk,1,csx)

xi(6,1)=g0

xi(6,nl+l)=xi(6,1)

call ekin(nj,kk,1,csy)

xi(6,nj)=g0

xi(6,n2+nl)=xi(6,nj)

fj is flag to cut off parts of the electrode when c=0
Not currently active (10/1/94-CMD)
do 52 j=1,nj

£3(3)=0
print*,’
print*,’ DUAL INSERTION CELL VERSION 2.0°
print*,’
if (lht.eq.2) then
print*,’ util cell pot material time cur’
print*,’ N (V) balance (min) A/m2’
else 1if (lht.eqg.0) then
print*,’ util ‘.’ cell pot ‘,’ temp ‘,’ time ‘,
S 1 U ocp cur’
print*,’ Yy ! (V) AP (o) I (min) ‘.,
1 (v) -
else if (lht.eg.l) then
print*, * util ‘,’ cell pot ‘,’ Thtcoeff ’,- time ‘,
1’ U ocp cur’
print*, ' Y L, (V) Y (W/m2K) ’,° (rnin) ‘.,

1 (V) ‘
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end if
print*,’
c
R R R R X R Z AR RS RS R R R R 2SR SRR XXX R R R R R EEERE R SRR ET TR E L I graprages
c * %

c
c initialize time counting variables
k=1
time=0.040
time2=0.0d0
rr=0.0d0
ts(1)=0.0d40
c
c Must activate lpow=l in data file if you want peak powers:
kkflag=0
nflag=0
call guess(lflag)
c calculate mass (kg/m2) of the cell
call mass(re,rs3,rsl,rf,rpl, rc,xrcn, rcp)
dens=tw/thk
c
call comp(n,lim,k,rr,0,nflag, 0, jcount)
call cellpot(k,vv,1,0,1flag)
c
c rr is the size of a time step.
c initial time step is 1 second
rr=1.0d0
c
iflag=0
L=0
53 L=L+1
c do 53 1=1,lcurs
123 k=k+1
nt=k-1
c
c adjust time step to match time of change in current
- time=ts(k-1)+rr
if(time .ge. tot(l) .and. mc(l).lt.2) then
rr=tot(l)-ts(k-1)
time=tot (1)
iflag=1l
end if
c

129 ts(k)=ts(k-1)+rr
call calca (k)

if(mc(l) .gt. 0) then

e

il ﬂ]}

e

=4

e
[N

[P——

iy

“ i T\ru T

B v‘\:y(lwnm P

T



A
|
.f

I
A

T vt
L
PR,

prap

{:‘J/u———'v

& 2
T

T
L

mc is 1 or 2 so run galvanostatically
dtnow=rr

call comp(n,lim,k,rr,0,nflag, 0, jcount)
if(rr.1t.0.9999*dtnow) iflag=0
if(mc(l).1t.2) call cellpot(k,vv,1,0,1flag)
if(mc(l).eq.2) call cellpot(k,vv,0,0,1flag)
frt=fc/r/t

else
mc is 0 so run potentiostatically

je2=0
£1=1.0d0
curl=cur
cpl=vv

jc2=jc2+1

cur=curl + (cu(l)-cpl)/f1l

rr=10.40

ts(k)=ts(k-1l)+xrxr

call calca(k)

call comp(n,lim,k,rr,0,nflag, 0, jcount)
call cellpot(k,vv,0,0,1flag)
frt=fc/xr/t

if (dabs(vv-cu(l)) .gt. dabs(1.0d4-05*cu(l))) then
if (jc2 .gt. 1lim2) then

print*, ’'this run did not converge’
stop

else

fl=(vv-cpl)/ (cur-curl)

cpl=vv

curl=cur

go to 609

end if

else

call cellpot(k,vv,1,0,1flag)
frt=fc/r/t

end if

end if

IF(VV.LT.VCUT) GO TO 100

1

check to see if cutoff potential is exceeded if mc is 2

if (mc(l).eqg.2) then
IF ((vv.LT.7T(L) .AND. CU(L).GT.0.0) .OR.



&(VV.GT.TT(L) .AND. CU(L).LT.0.0)) THEN
if (dabs(vv-tt(l)) .gt. 1.04-04) then
print*, ‘not quite right yet ‘,vv,rr
rr=rr/2.0d0
iflag=1
go to 129
else
time2=time2+rr
call cellpotik,vv,1,0,1flag)
frt=fc/xr/t
iflag=1
end if
else
iflag=0
time2=time2+rr
call cellpot(k,vv,1,0,1flag)
frt=fc/r/t
end if
end if

Increasing time steps:
rrmax=tmmax
if(k.le.20) rrmax=10.040
if(jcount.lt.5 .and. k.gt.2 .and. rr.lt.rrmax .and.
liflag.eq.0) then
rr=rr*2.0d4d0
print*, ‘next time step increased to ‘', rr,’ (s)’
end if

if(k.GE.maxt-1) then
print*, 'kmax=‘,k,’ a larger matrix needed for xt~’
go to 100
endif
if (k.GE.501) then ! trim stored solid concentrations
should we have been printing long output as we go along?
do 92 kk=3,401,2
kput=(KK+1) /2
ts (kput) =ts(kk)
"do 92 j=1,nj
do 92 i=1,n
92 xt(i,j,kput)=xt(i,j,kk)
do 93 kk=402,K
ts (kk-200) =ts (kk)
do 93 j=1,nj
do 93 i=1,n
93 xt(i,j,kk-200)=xt(i,3.kk).
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k=k-200
endif

if (iflag .eq. 0) go to 123
iflag=0
if (me(l).eq.2) then
do 124 m=1,lcurs
124 tot(m)=tot (m)+time2
time2=0.040
] end if
T IF(L.EQ.LCURS .AND. LCURS.GE.10) THEN
L=0
- tot (1)=TOT (LCURS)
— if (mc(1).1t.2) TOT(1)=TOT(1)+60.0DO*TT(1)
do 403 i=2,1lcurs
- if (mc(i).1t.2) then -
tot(i)=tot(i-1)+6.0d401*tt (i)

else
"} tot(i)=tot(i-1)
N end if
403 continue
Y ENDIF
3{ if(mc(1l+1) .gt. 0) cur=cu(l+l)
I c calculate zero time solution for change in current
-y if(mc(1l+1) .gt. 0) then
o k=k+1
o ts(k)=ts (k-1)
. rr=0.0
J call comp(n,lim,k,rr,0,nflag,0,jcount) i
. call cellpot(k,vv,1,0,1flag)
| endif
' rr=2.040
IF(L.LT.LCURS) GO TO 53
c
: PR et e e R R T T -t
- c Additional features section:
’ c 014 method of calculating utilization:
| c call util
i c
c peak-power subroutine:

o if(lpow.eqg.l) then
S i11=0 :
call peak(n,lim,cu(l))
o endif
c Solid-phase concentration profiles at given time and position :

N o=y L‘“"(J' -

oy R
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if(jsol.gt.0 .and. jsol.lt.nj) call sol(85,jsol)

c
c print detailed information if requested
100 if(ill .eqg. 1) call nucamb(il2,il3)

c

c calculate average energy and power: .
ed=ed/tw/3.6d03 E
pow=3.6d03*ed/ts (nt+1)
print44,tw
printd5,ed
print46,pow

c
end

c

c*********************************************************************

subroutine comp(n,lim,kk, tau,kkflag,nflag, lpow, jcount)
implicit real*8(a-h,o-z)

parameter (maxt=900)

common /n/ nx,nt,nl,n2,nj,n3, tmmax

common /calc/ ai(maxt),ai2{maxt),u{223,maxt),ts(maxt),
1h,hl,h2,h3,hcen, hep, rr, remax

common/const/ fc,r,t,frt,cur,ep3, ep2,pi,nneg, nprop, npos,
lepl,epf3,epfl, eppl, epp2, epp3, shape3, shapel
common/power/ ed,Vold, ranode,rcathde

common/ssblock/ xp0(6),xx0(6,221),term(221),£fj(221)
common/var/ xp(10) ,xx(6,221) ,xi(6,221),xt (6,221, maxt)
common/cprop/ sig3,area,rkal,ct3,dfs3,Rad3,
lsigl,area2,rkal,ctl,dfs2,Radl, tw '
common/tprop/df(221),cd(221),tm(221),
144£(221) ,dcd(221),dtm(221),d4fu(221),d2fu(221)
common/mat/ b,d

common/bnd/ a,c¢,g,x%x,y

dimension b(10,10),d(10,21),texrmn (221)

dimension a(10,10),¢c(10,221),9(10),x(10,10),v(10,10)

99 format (1h ,//5x,’'this run just did not converge’//)

nx=n
666 kadd=0
if(rr.eq.0 .and. lpow.eq.l) kadd=1l
do 1 j=1,nj
do 1 i=1,n
c(i,j)=xt(i,3j,kk-1+kadd)
1 xx(i,j)=xt(i,j,kk-1+kadd)
c sets first guess to last time-step values
c initialize variables to begin each iteration
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(jcount is iteration #)
jcount=0

do 4 i=1,n

xp(i)=0.040

j=0

jecount=jcount+1

calculate physical properties
call prop(nj,n2,nl)

initialize x and y for iteration
do 9 i=1l,n

do 9 k=1,n

x(i,k)=0.0d0

y{i,k})=0.040

store previous iteration of (xp in xp0) & (xx in xx0)
do 6 i=1,n

xp0(i)=xp (i)

xx0{(i,n1-10)=xx(i,n1-10)

xx0(i,nl1+n2+10)=xx(i,nl+n2+10)

for a given iteration, set up governing equations and bc’s
start at the left interface and move across polymer
initialize a,b,d,g arrays for each node

j=3+1

do 11 i=1,n
g{i)=0.0d40
xx(i,3j)=c(i,3])
do 11 k=1,n
a(i,k)=0.0d40
b(i,k)=0.0d40
d(i,k)=0.0d0

if(rr.le.0.0) then ! treat as a zero time step
b(1,1)=1.0d0

g(l)=xt(1l,3,kk-1)-c(1,3) ! fix electrolyte concentration
b(4,3)=1.0d40

g(4)=xt{3,7,kk-1)-c(3,3) ! fix solid concentration

go to 112

endif

Equation 1, mass balance.
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termn(j)=0.
fac=1.
if(j.eq-nl+2) fac=((ep2+epp2)/(epl+eppl))**1.5
if(j.eqg.-nl+n2+1) fac={((ep3+epp3)/(ep2+epp2))**1.5
epn=epl+eppl
hn=hl
if(j.gt.nl+l) then
epn=ep2+epp2
hn=h2
endif
if (j.gt.nl+n2) then
epn=ep3+epp3
hn=h3
endif
if(j.ne.l) then ! deal with box to left of point.
termn (j)=-(df(j)+fac*df(j-1))*(c(1,3)-c(1,3-1))/hn/2.
&-(1.-0.5*(tm(j)+tm(j-1)))*({c(4,7)+c(4,j-1))/2./fc
a(l,l)=epn*hn*0.125/xr
&-(Af(j)+fac*df(j-1))/hn/4.+fac*ddf(j-1)*(c(1,j)-c(1,5~1))/hn/4.
&-dtm(j-1)*(c(4,j)+c(4,3-1))/8./fc
b(l,1)=epn*hn*0.375/rr
&+ (df(j)+fac*df(j-1))/hn/4.+ddf(3) *(c(1,j)~-c(1,j-1))/hn/4.
&-dtm(j) *(c(4,3)+c(4,3-1))/8./fc
a(l,4)=(1.-0.5*(tm(j)+tm(3-1)))/4./fc
b(1,4)=(1.-0.5*(tm(j)+tm(j-1)))/4./fc
g(l)=-epn*hn*(0.375*(c(1,J)-xt(1,5,kk-1})
&+0.125*(c(1,3-1)-xt(1,3-1,kk-1)))/rr
endif
fac=1.
if(j.eqg.nl+l) then
fac=((ep2+epp2)/(epl+eppl) ) **1.5
epn=ep2+epp2
hn=h2
else 1f(j.eqg.nl+n2) then
fac=((ep3+epp3)/(ep2+epp2))**1.5
epn=ep3+epp3
hn=h3
endif
if(j.ne.nj) then ! deal with box to right of point.
termn(j)=termn(j)~(fac*df(j)+df(3+1))*(c(1,3)-c(1,j+1))/hn/2.
&+(1.-0.5*(tm(j)+tm(3+1)))*(c(4,j)+c(4,3+1)})/2./fc
d(1l,1l)=epn*hn*0.125/rr
&- (fac*df (j)+df(j+1))/hn/4.+ddf(j+1)*(c(1,j)-c(1,3+1))/hn/4.
&+dtm(j+1) *(c(4,j)+c(4,3+1))/8./fc
b(1,1)=b(l,1)+epn*hn*0.375/rr
&+ (fac*df (j)+df(j+1))/hn/4.+fac*ddf(j)*(c(1l,j)-c(1,j+1))/hn/4.
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&+dtm(3) *(c(4,3)+c(4,3+1))/8./fc z
d(1,4)=-(1.-0.5*(tm(5)+tm(j+1)))/4./fc -
b(1,4)=b(1,4)-(1.-0.5*(tm(j)+tm(j+1)))/4./fc
g(1)=g(1)-epn*hn*(0.375* (c(1,3)-xt(1,3,kk-1))

&+0.125*(c(1,j+1)-xt(1,j+1,kk-1)))/rr
endif L
g(l)=g(l)+(termn(j)+term(j))/2.

e T‘mﬂﬂ

§

Equation 4, material balance in solid insertion material.

Q

sum=0.0d0
if(j.le.nl+l) then
| if (kk .gt. 2) then ,
- do 54 i=1, kk-2 R
54 if(ts(i+l)-ts(i).ne.0.0)
;7 &sum=sum + (xt(3,j,i+l) - xt(3,3.,1i))*ai2(kk-1i)/(ts{(i+1l)-ts(i)) -
./ end if '
b(4,3)=ai2(1)/rr
b(4,5)=1.040/Radl
g(4)=ai2(1)*xt(3,j,kk-l)/rr - sum -ai2(l)/rr*c(3,j)-c(5,37)/Radl
else if(j.ge.nl+n2) then
" if (kk .gt. 2) then
¢ do 95 i=1, kk-2
95 if(ts(i+l)-ts(i).ne.0.0)
&sum=sum + (xXt(3,J,1+1) - xt(3,3,1i))*ai(kk-1i)/(ts(i+1l)-ts(i))
end if
b(4,3)=ai(l)/rr
b(4,5)=1.040/Rad3
g(4)=ai(l)*xt(3,j,kk-1)/rr - sum -c(3,3j)*ai(l)/rr-c(5,j)/Rad3

i o
[SS—

else
a b(4,3)=1.0d0
' g(4)=-c(3,3)
endif
, c
% c Equation 2, Ohm‘'s law.
' c
. 112 if(j.le.nl) then
J h=hl
- else if(j.lt.nl+n2) then
N h=h2
B else :
- h=h3
endif :
33 fac=1.0 ;
- if(j.eqg.nl+l .and. nprop.ne.7) :
1fac=((ep2+epp2)/ (epl+eppl) ) **1.5 i

e
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if(j.eq.nl+n2 .and. nprop.ne.7)
lfac=((ep3+epp3)/(ep2+epp2))**1.5
if(j.eqg.nl+l .and. nprop.eq.7)
1fac=((ep2+epp2)/ (epl+eppl) ) **4.2
if(j.eq.nl+n2 .and. nprop.eq.7)
1fac=((ep3+epp3)/ (ep2+eppl))**4.2

if(j.eq.nj .or. fj(j).ne.0.0) then

b(2,2)=1.0d40

g(2)=-c(2,3)

go to 12

endif

def=(xx(1,j+1)-xx(1,3))/h
ri=(xx(1,3j+1)+xx(1,3))/2.0d0
r4=(xx(4,j+1)+xx(4,3))/2.040
pl=(tm(j)+tm(j+1))/2.040
p2=(fac*cd(j)+cd(j+1))/2.040
pd=(dfu(j)+dfu(j+1))/2.0d0
d(2,1)=(1.040-p1)*(1.040/xrl+p4) /h
b(2,1)=-d(2,1)+((1.0d40-p1)*(d2fu(j)-1.040/r1/xrl) *dct
1-(1.040/r1+p4) *dcf*dtm(j) +frt*rd*fac*ded(3j) /p2/p2)/2.040
d(2,1)=4(2,1)+((1.0d0-pl)*(d2fu(j+1)-1.040/r1/rl) *dcf

1-(1.040/rl+pd) *dcf*dtm(j+1) +frt*rd*ded(j+1) /p2/p2)/2.040

d(2,2)=-frt/h

b(2,2)=frt/h

b(2,4)=-frt/p2/2.0d0

d(2,4)=-frt/p2/2.0d40
g(2)=-(1.040-pl) *(1.040/r1+pd) *dcf+frt*(c(2,3+1)-c(2,3))/h

&+frt/p2* (c(4,3)+c(4,3+1))/2.0480

Equation 3, Butler-Volmer kinetics

12 if((j.gt.nl+l .and. j.lt.nl+n2) .or. £3j(j).ne.0.0) then

b(3,5)=1.0d0
g(3)=-c(5,3)

else

call ekin(j,kk,0,0)
endif

if(j-ne.l) go to 13

specify boundary conditions at left interface (j=1)
anode/current collector
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= h=h1 \
c
b(5,4)=1.040/h
d(5,4)=-1.040/h
- b(5,5)=area2*fc/2.040 :
l d(5,5)=area2*£c/2.0d0 .
i g(5)=(c(4,d+1)~c(4,3)) /h-area2*fc/2.040* (c(5,5+1)+c(5,5)) T
) c
i ? b(6,4)=1.0d0
. g(6)=-c(4,3)
c
; c do 501 i=3,3
s call band(j) N
go to 10
; c
c specify governing equations in composite anode [l<j<nl+1]
“’2 13 if (3 .ge. (nl+l)) go to 110
. c

b(5,4)=1.040/h
. d(5,4)=-1.040/h
v b(5,5)=area2*fc/2.0d0
d(5,5)=area2*£fc/2.0d0 )
g(5)=(c(4,j+1)-c(4,3)) /h-area2*£fc/2.040* (c(5,9+1)+c(5,3))

b(6,6)=1.0d0/h
‘ a(6,6)=-1.0d40/h
jj b(6,4)=-0.5d0/sigl
i a(6,4)=-0.5d0/sigl
g(6)=-cur/sigl+0.5/sigl*(c(4,j-1)+c(4,]))+(c(6,3-1)-c(6,3))/h

c
c do 502 i=3,3
, call band(3j)
: go to 10
! c
‘ 110 if (j .ne. (nl+l)) go to 120
| c
. c Now for the boundary between anode and separator(j=nl+1l)
. c .
/eg b(5,4)=1.040 .
-7 g(5)=cur-c(4,3) ;
P c
ij b(6,6)=1.040/h1
: a(6,6)=-1.0d0/h1 -

b(6,4)=-0.5d0/sigl
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120

130

140

86

a(6,4)=-0.5d0/sigl
g(6)=-cur/sigl+0.5/sigl*(c(4,j-1)+c(4,3))+{c(6,j-1)-c(6,3))/hl

do 503 1i=3,3
call band(j)
go to 10

if(j .ge. (nl+n2)) go to 130
specify governing equations [ nl < j < n2+nl ]
in separator

h=h2

b(5,4)=1.040
g(5)=cur-c(4,3)

b(6,6)=1.0d0
g(6)=-c(6,3)

do 504 i=3,3
call band(j)
go to 10

if (j .ne. (n2+nl)) go to 140
Boundary between positive and separator(j=n2+nl):

b(5,4)=1.0d40
g(5)=cur-c(4,3)

d(6,6)=1.040/h3

b(6,6)=-1.040/h3

d(6,4)=-0.540/sig3

b(6,4)=-0.5d0/sig3
g(6)=-cur/sig3+0.5/sig3*(c(4,j+1l}+c(4,3))-(c(6,3+1)-c(6,5))/h3

do 505 i=3,3
call band(j)
go to 10

if (j .eqg. nj) go to 16

specify governing equations [ n2+nl < j < nj 1]
composite cathode

h=h3

o
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b(5,4)=-1.040/h

a(5,4)=1.040/h

b(5,5)=area*fc/2.040

a(5,5)=area*fc/2.040

g(5)=(c(4,3)-c(4,j-1)) /h~area*£fc/2.040*(c(5,7-1)+c(5,5))

d(6,6)=1.040/h

b(6,6)=-1.0d40/h

d(6,4)=-0.5d0/sig3

b(6,4)=-0.540/sig3 .
g(6)=-cur/sig3+0.5/sig3*(c(4,j+1l)+c(4,3))-(c(6,3+1)-c(6,3))/h

do 506 i=3,3
call band(3j)
go to 10

continue
specify boundary conditions at right interface(j=nj)

b(5,4)=-1.0d40/h

a{(5,4)=1.040/h

b(5,5)=area*fc/2.0d40

a(5,5)=area*fc/2.040

g(5)={(c(4,3)-c(4,3-1)) /h-area*£c/2.040* (c(5,3-1)+c(5,3))

b(6,4)=1.040
g(6)=-c(4,3)

do 507 i=3,3

call band{j)

do 607 jj=1,nj

do 607 i=1,n
c(i,jj)=xx(i,3j)+c(i,F7)

. check for convergence

do 56 i=1,n
xp(i)=(4.040*c(i,2)~3.0d0*c(i,1)-c(1,3))/2.040/h1

nerr=0
do 25 j=1,nj
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25

shoe horns:
if(c(1l,7).1t.xx(1,3)/100.) c(1,3)=xx(1,3)/100.

if
if
if
if
if
if
if
if

if

(c(2,3)
(c(2,3)
(c(6,3)
(c(6,3)
{(c(2,3)
(c(2,3)
(c(6,3)
(c(6,3)

L1t
.gt.
L1t
.gt.
.gt.
.1t.
.gt.
1t

(xx(2,3)-0.02)) c(2,j)=xx(2,3)-0.02
(xx(2,3)+0.02)) c(2,3j)=xx{(2,3)+0.02
(xx(6,3)-0.02)) c(6,3)=xx(6,3)-0.02
(xx(6,3)+0.02)) c(6,3)=xx(6,3)+0.02
9.9) c(2,j)= 9.9
-9.9) c(2,3)=-9.9
9.9) c(6,3)= 9.9

9

.-9.9) c(6,3)=-9.

(j .ge. nl+n2) then
if(c(3,3)-1t.xx(3,3)/100.) nerr=nerr+l
if(c(3,3).1t.xx¢(3,3)/100.) c(3,3)=xx(3,3)/100. ! use cs min
if(ct3-c(3,]).le. (ct3-xx(3,3))/100.) nerr=nerr+l
if(ct3-c(3,7j).le.{(ct3~-xx(3,3))/100.)

1c(3,j)=ct3-(ct3~-xx(3,3))/100.
if(c(3,3).ge.ct3) c{3,3)=0.999999*ct3
if(c(3,3).1t.1.04-12) c(3,j)=1.0d4-12

else if (3
if(c(3,3).1t.xx(3,3)/100.) nerr=nerr+l

if(c(3,3).1t.xx(3,3)/200.) c(3,3)=xx(3,3)/100.

.le

. nl+l) then

if(ctl-c(3,j).le.(ctl-xx(3,3j))/100.) nerr=nerr+l
if(ctl-c(3,3).le. (ctl-xx(3,3))/100.)
1c(3,j)=ctl-(ctl-xx(3,3))/100.

if(c(3,3).ge.ctl) c(3,3)=0.999999*ctl
if(c(3,3).1t.1.04~12) c(3,3j)=1.0d-12

endif
to avoid underflow or overflow:
if(ec(l,3).1t.1.04-12) <(1,3j)=1.0d-12
if(c(1,3).1t.1.04-10) c(5,3)=0.0

do 25 i=i,n

xx(i,j)=c(i,3)

if (jcount .gt. 3*lim .and. rr.eq.0.0d0) then

print 99
stop
endif

Decreasing time steps:
if (jcount

.gt.

lim .and. rr.gt.0.0d40) then

! use

88
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ég tau=tau/2.0d0
h rr=tau
ts(kk)=ts (kk-1)+tau -
print*,'time step reduced to ‘, tau, ts(kk)

if (tau.lt.1.0d-4) then
if (lpow.eq.l) then Ipeak power activated
nflag=1
go to 66
endif
nt=nt-1
ed=ed/tw/3.6d03
pow=3.6403*ed/ts(nt+1)
print*, ‘mass is ’,tw
i print*, 'energy is ’,ed
, print*, ‘power is ’,pow
23 print*,kk~1,’ this time step did not converge’ -
; call nucamb(1,5)
stop
Tx else
] iflag=0
call calca(kk)
a go to 666
\g end if

else

S
¢}

if (nerr.ne.0) go to 8
- do 55 ii=1,n
?X errlim=1.4-10
- if (ii.eq.5) errlim=1.d-16
dxp=dabs( xp(ii)-xp0(ii) )
dxx=dabs( xx(1i,nl1-10)-xx0(ii,n1-10) )
dxx2=dabs( xx(ii,nl+n2+10)-xx0(ii,n1+n2+10) )
if (dxx.gt.l.d-9*dabs(xx(ii, nl1-10)) .and.dxx.gt.errlim) go to 8
if(dxx2.gt.1.d~-9*dabs (xx(ii,nl+n2+10)).and.dxx2.gt.errlim)

lgo to 8
c if(dxp.gt.l.d-7*dabs(xp(ii)) .and. dxp.gt.errlim) go to 8
55 continue
- c
c

L
o]
‘

if(lpow.ne.l) print*,jcount,’ iterations required-’

do 60 1ll=1, nj ! save present time results in xt() :
do 60 lk=1,n .
60 xt(1lk,11l,kk)=xx(1lk,11) :

g
T
il
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do 57 j=1,nj
if(xx(1,3j) .1t. 1.048-03) £f3j(j)=1
if(xx(1,3) .gt. 1.04-01) fj(j)=0

if(rr.ne.0.0d40) then

do 58 j=1,nj ! fix to calculate here for zero time step
term(j)=termn(j)

else

do 65 j=1,nj

term(3j)=0.

fac=1.

if(j.eqgq.nl+2) fac=((ep2+epp2)/(epl+eppl))**1.5
if(j.egq.nl+n2+1) fac=((ep3+epp3)/(ep2+epp2))**1.5
epn=epl+eppl

hn=hl

if(j.gt.nl+l) then

epn=ep2+epp2

hn=h2

endif

if (j.gt.nl+n2) then

epn=ep3+epp3

hn=h3

endif

if(j.ne.l) term(j)=

&-(df(j)+fac*df (j-1))*(c(1,3j)-c(1,3-1))/hn/2.
&-(1.-0.5*(tm(j)+tm(j-1)))*(c(4,j)+c(4,3-1))/2./fc

65

fac=1.

if(j.eqg.nl+l) then
fac=((ep2+epp2) / {epl+eppl) ) **1.5
epn=ep2+epp2

hn=h2

else if(j.eqg.nl+n2) then
fac=((ep3+epp3)/ (ep2+epp2))**1.5
epn=ep3+epp3

hn=h3

endif

if(j.ne.nj) term(j)=term(j)

&-(fac*df (j)+df(j+1))*(c(1l,3)-c(1,3+1))/hn/2.

&

+(1.-0.5*(tm(Jj)+tm(j+1)))*(c(4,3)+c(4,j+1))/2./fc
endif
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g% 66 continue
= return
end
g?
£ c

c*********************************************************************

subroutine calca(kk)
: implicit real*8(a-h,o-z)
2 parameter {(maxt=900)

common /n/ nx,nt,nl,n2,nj,n3,tmmax

common /calc/ ai(maxt),ai2(maxt),u(223,maxt),ts(maxt),
1h,hl,h2,h3,hen, hep, rr, rrmax

common/const/ fc,r,t,frt,cur,ep3, ep2,pi,nneyg, nprop, npos,
lepl,epf3,epfl, eppl, epp2, epp3, shape3, shapel
N common/cprop/ sig3,area,rka3,ct3,dfs3,Rad3,
1lsigl,area2,rkal,ctl,dfsl,Radl, tw

= dimension ar(4,maxt),bz(6)

do 319 1l=1,nt
T ai2(1)=0.0d0
J 319 ai(l)=0.0d40

a do 70 i=1,kk-1
| ar(1,i)=dfs3* (ts(kk)-ts(i))/Rad3/Rad3
ar(2,i)=dfs3* (ts(kk)-ts(i+1))/Rad3/Rad3
y ar(3,i)=dfs1* (ts(kk)-ts(i))/Radl/Radl
-l ar(4,i)=dfsl*(ts(kk)-ts(i+1))/Radl/Radl

do 69 m=1,2
tl=ar(m, i)
t2=ar((m+2),1)

al=0.0d0
al2=0.0d0

$=1.64493406684840

c Bessel’s function zeros:
bz (1)=2.404825557740

- bz (2)=5.520078110340

bz (3)=8.653728110340

bz (4)=11.791534439140

bz (5)=14.93091770864d0

o b

Nl it

sl ‘q

ij if (shape3.gt.2.0d40) then
. c spherical particles:
if (tl .gt. 0.06d0) then




0

do 59 j=1,5
yl=j*j*pi*pi*tl

59 if (yl1 .le. 1.5402) al=al+(expf(-yl))/j/]
al=2.0d40*(s-al)/pi/pi

else

if (tl1.LE.0.0d0) then
al=0.04d0
else
do 60 j=1,3
z=j/dsqrt(tl)
call erfc(z,e)
y2=3j*j/tl
if(y2 .ge. 1.5402) then
da=-j*dsqgrt(pi/tl)*e
else
da=expf (-y2) -j*dsqrt (pi/tl)*e
end if
60 al=al+da
al=-tl + 2.0d40*dsqgrt(tl/pi)*(1.040+2.0d40*al)
end if

end if
else

if (shape3.1t.2.0d0) then
planar particles:
if(tl .gt. 0.0640) then

do 61 j=1,5

da=((-1.040)**(3))*(1.040 - expf(-(2.040*j+1.040)~*

1(2.040*j+1.0d0) *pi*pi*tl))/(2.040*j+1.040)/(2.040*5+1.0480)
61 al=al+da

al=4.0d0*al/pi/pi

else

do 62 j=1,3

z=3/2.0d0/dsqgrt (tl)

call erfc(z,e)

da=((-1.040)**(3))* (expf(-j*j/4.0d40/t1l)-3/2.040*dsqgrt (pi/tl)*e)
62 al=al+da

al=2.0d0*dsqgrt(tl/pi) *(1.040+2.040*%al)
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end if

else

cylindrical particles:
if (tl.gt.0.0640) then

R e AT TR TIRET

R

do 63 j=1,5
da=(1.0d0-expf (-bz(j) *bz(j)*tl)) /bz(j)/bz(7)
al=al+da

al=2.04d0*al

else

al=2.0d0*dsqrt(tl/pi)-t1l/4.0d40-5.040* (£t1**1.5d0)/96.040
1/dsqgrt(pi)-31.0d40*t1*t1/2048.0d40

end if
end if
end if

if (shapel.gt.2.0d0) then
spherical particles:
if(t2 .gt. 0.0640) then

do 64 j=1,5

y2=j*j*pi*pi*t2

if(y2 .le. 1.5d02) al2=al2+(expf(-v2))/3/3
al2=2.040* (s-al2) /pi/pi

else

if (t2.eqg.0.040) then
al2=0.0d40

else

do 65 j=1,3

z=j/dsqgrt (t2)

call erfc(z,e)
y2=3*j/t2

if(y2 .gt. 1.5d402) then
da=-j*dsqrt(pi/t2) *e
else

da=expf (-y2)-j*dsart(pi/t2) *e
end if

al2=al2+da :

al2=-t2 + 2.040*dsqgrt(t2/pi)*(1.040+2.040*%al2)
end if

end if . é
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else

if (shapel.lt.2.0d40) then
planar particles:

if(t2 .gt. 0.06d0) then

do 66 j=1,5
da=((-1.040)**(j))*(1.0d0 - expf(-(2.040*3j+1.0d40)*
1(2.0d40*3+1.040) *pi*pi*t2))/(2.040*j+1.040)/(2.040*35+1.0d0)

66 al2=al2+da

67

68

al2=4.0d0*al2/pi/pi
else

do 67 j=1,3

z=3/2.0d40/dsqrt (t2)

call erfc(z,e)
da=((-1.0d40)**(3))*(expf(-7j*3/4.040/t2)-3/2.0d40*dsqrt (pi/t2)*e)
al2=alZ+da

al2=2.0d0*dsqgrt (t2/pi) *(1.040+2.0d40*al2)

end if

else

cylindrical particles:
if (t2.gt.0.06d40) then

do 68 j=1,5
da=(1.0d0-expf(~bz(j)*bz(j)*t2))/bz(3j)/bz{(])
al2=al2+da

al2=2.0d4d0*al2

else

al2=2.0d0*dsqgrt(t2/pi)-t2/4.040-5.040*(t2**1.540) /

196.0d0/dsqgrt (pi)~31.040*t2*t2/2048.040

69

70

end if
end if
end if

ar{(m,i)=al
ar({(m+2),i)=al2

ai(kk~i)=ar(l,i)-ar(2.1i)
ai2(kk-i)=ar(3,i)-ar(4,1i)
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return
end
c*********************************************************************
subroutine erfc(z,e)
implicit real*8(a-h,o~z)
common/const/ fc,r,t,frt,cur,ep3,ep2,pi,nneyg, nprop, npos,
lepl,epf3,epfl, eppl, epp2, epp3, shape3, shapel

c
al=0.25482959240
a2=-0.28449673640
a3=1.42141374140
a4=-1.45315202740
a5=1.06140542940
if(z .1lt. 2.74719240) then
£3=1.0d40/(1.040+0.3275911d0*z)
e=(al*t3+a2*t3*t3+al3* (£3**3.0d40)+ad* (t3**4.040)
1+aS5* (£3**5.0d0)) *expf(-z*z)
else
c
if(z .gt. 25.040) then
e=0.0d0
else
c
sum=0.0d0
max=z*z + 0.5
fac=-0.540/z/z
sum=fac
tl=fac
n=1
10 n=n+1
if(n .gt. max) go to 15
tn=tl*(2.040*n-1.0d0) *fac
sum=sum + tn
if(tn .1lt. 1.048-06) go to 15
tl=tn
go to 10
15 e={expf(-z*z))*(1.0d40+sum) /dsqgrt(pi)/z
end if
end if
c
return
end

c*********************************************************************

subroutine band(j)
implicit real*8(a-h,o-z)
common /n/ nx,nt,nl,n2,nj,n3, tmmax
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common/mat/ b,d

common/bnd/ a,c,g,x,vy

dimension b(10,10),d4(10,21)
dimension a(10,10),c¢(10,221),g(10),x(10,10),v(10,10)
dimension e(10,11,221)

format (15h determ=0 at j=,i4)
n=nx

if (j-2) 1,6,8

npl=n + 1

do 2 i=1l,n

d(i,2*n+l)= g(i)

do 2 1=1,n

lpn= 1 + n

d(i,lpn)= x(i,1)

call matinv(n,2*n+l,detexrm)

if (detexrm) 4,3,4

print 101, 3

do 5 k=1,n

e(k,npl,1l)= d(k,2*n+1)

do S 1l=1,n

e(k,1,1)= - d(k,1)

lpn=1 + n

x(k,l)= - d(k,1lpn)

return

do 7 i=1l,n

do 7 k=1,n

do 7 1=1,n

d(i,k)= d(i,k) + a(i,1)*x(1,k)
if (j-nj) 11,9,9

do 10 i=1,n

do 10 1=1,n

g(i)= g(i) - y(i,1l)*e(1l,npl,j-2)
do 10 m=1,n '
a(i,l)= a(i,l) + y{(i,m)*e(m,1,3j-2)
do 12 i=1,n

d(i,npl)= - g(i)

do 12 1=1,n

d(i,npl)= d(i,npl) + a(i,l)*e(l,npl,j-1)
do 12 k=1,n

b(i,k)= b(i,k) + a(i,l)*e(l,k,j-1)
call matinv(n,npl,determ)

if (determ) 14,13,14

print 101, 3

do 15 k=1,n

do 15 m=1,npl

e(k,m,j)= - a(k,m)
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if (j-nj) 20,16,16
16 do 17 k=1,n
17 ¢c(k,j)= el(k,npl,j)
do 18 jj=2,nj
m=nj - jj + 1
do 18 k=1,n
c{k,m)= e(k,npl,m)
do 18 1=1,n
18 c(k,m)= c{(k,m) + e(k,1l,m)*c(l,m+l)
do 19 1=1,n
do 19 k=1,n
19 c(k,1)= c(k,1l) + x(k,1)*c(1,3)
20 return
end
c*********************************************************************
subroutine matinv(n,m,determ)
implicit real*8(a-h,o0-2)
common/mat/ b,d
dimension b(10,10),d4(10,21)
dimension id(10)
determ=1.0
do 1 i=1,n
1 id(i)=0
do 18 nn=1,n
bmax=1.1
do 6 i=1,n
if(id(i).ne.0) go to 6
bnext=0.0
btry=0.0
do 5 j=1,n
if(id(j) .ne.0) go to 5
if(dabs(b(i,j)).le.bnext) go to 5
bnext=dabs (b(i,3))
if (bnext.le.btry) go to 5

bnext=btry
btry=dabs(b(i,j))
je=3

5 continue
if (bnext.ge.bmax*btry) go to 6
bmax=bnext /btry
irow=i
jcol=jc
6 continue
if(id(jc).eg.0) go to 8
determ=0.0
return
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8 id(jcol)=1
if(jcol.eqg.irow) go to 12
do 10 j=1,n
save=b(irow, j)
b(irow,j)=b(jcol,j)
10 b(jcol,j)=save
do 11 k=1,m
save=d(irow, k)
d(irow,k)=d(jcol, k)
11 d(jcol,k)=save
12 £=1.0/b(jcol,jcol)
do 13 j=1,n
13 b(jcol,jl=b{(jcol,j)*f
do 14 k=1,m
14 d(jcol,k)=d(jcol, k)*f
do 18 i=1,n
if{(i.eqg.jcol) go to 18
f=b (i, jcol)
do 16 j=1,n
16 b(i,j)=b(i,j)-£f*b(jcol,J)
do 17 k=1,m
17 d(i,k)=d(i,k)-£f*d(jcol k)
18 continue
return
end
c*********************************************************************
subroutine nucamb(il2,113)
implicit real*8(a-h,o0-~2z)
parameter (maxt=900)
common /n/ nx,nt,nl,n2,nj,n3,tmmax
common /calc/ ai(maxt),ai2(maxt),u(223,maxt), ts(maxt),
1h,hl,h2,h3,hcn, hep, rr, rrmax
common/const/ fc,r,t,frt,cur,ep3, ep2,pi,nneg, nprop, npos,
lepl,epf3,epfl, eppl, epp2, epp3, shapel, shapel
common/var/ xp(l0),xx(6,221),x1(6,221),xt(6,221,maxt)
common/cprop/ sig3,area,rkal3,ct3,dfs3,Rad3,
lsigl,area2,rkal,ctl,dfsl,Radl, tw
common/tprop/df(221),cd(221),tm{(221),
1ddf (221),ded(221),dtm(221) ,dfu(221),d2fu(221)
dimension zz(221)
109 format(f6.1,‘, ',£7.1,', ',£7.4,', ‘gl0.4,', *,f6.2
‘ 1,", *,gl0.4,’, *,gl0.4)
309 format(£8.5,', ‘,f8.5)
44 format(’ t = ’,£12.6," min‘)

do 5 i=1,nl+1
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w=i-1

5 zz(i) = w*hl*1.0406
do 71 i=nl+2,n2+nl
w=i-(nl+1)

71 zz(i)=zz(nl+l)+w*h2*1.0d406

do 72 i=nl+n2+1,nj
w=i-(nl+n2)

72 zz(i)=zz(n2+nl)+w*h3*1.0406

do 11 1=1,nt+1
if (1.1lt.nt-5 .and. mod(1l-1,il3).ne.0) go to 11
print*,

print*, ‘distance concen PHIZ2 c solid’,
1 current 3 PHI1’
print*, ‘microns (mol/m3) (V) xory ',
1 (A/m2) (A/m3) (v)’

printd4,ts(1l)/60.040

do 10 j=1,nj,il2

if (3 .le. nl+l) then
csol=ctl

else

csol=ct3

end if

if(j.le.nl+l) then
curden=area*fc*xt (5,3, 1)
else if(j.ge.nl+n2) then
curden=areal*fc*xt(5,7,1)
else

curden=0.0

endif

10 printl109,zz(j),xt(1,3,1),xt(2,3,1),.xt(3,3,1)/cso0l,xt(4,5,1)

1,curden,xt(6,3,1)

11 continue

return
end

C*********************************************************************

subroutine guess(lflag)

implicit real*8(a-h,o-z)

parameter (maxt=900)

common /n/ nx,nt,nl,n2,nj,n3,tmmax

common /calc/ ai({maxt),ai2(maxt),u(223,maxt),ts(maxt),
1h,hl,h2,h3,hen, hep, rr, rrmax

common/const/ fc,r,t, frt,cur,ep3,ep2,pi,nneg,nprop, npos,
lepl,epf3,epfl,eppl, epp2, epp3, shape3, shapel

.
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common/var/ xp(10),xx(6,221),xi(6,221),xt(6,221,maxt)
common/cprop/ sig3,area,rkal,ct3,dfs3,Rad3,
lsigl,area2,rkal,ctl,dfsl,Radl, tw
common/tprop/df(221),cd(221),tm{221},
1ddf(221) ,ded(221) ,dtm(221),dfu(221),d42fu(221)
dimension del(6)

del(2)=cur*h/2.5

del (3)=cur/(nl)

del(4)=cur/(n3)
del(5)=(x1(5,nj)-xi(5,1))/(nj-1)

do 73 i=1, (nl+l)
xi(2,1)=xi(2,1)*(nj~-1i)/n3
xi(3,1)=xi(3,1)
xi(4,i)=xi{4,1)+del (3} *(i-1)
xi(5,1)=x1(5,1)
xi(6,1)=x1i(6,1)

do 74 i={(nl+2), (n2+nl-1)
xi(2,i)=xi(2,1)-del(2)*(i-nl-2)
xi(2,i)=xi(2,1)*(nj~1i)/nj
xi(3,1)=0.0d40

xi{4,1)=cur

xi(5,1)=0.0d0

xi(6,1)=0.0d0

do 75 i=(n2+nl),nj
xi(2,i)=xi(2,1)*{(nj-1)/nj
xi(3,1)=x1i(3,n3)
xi(4,1)=xi{4,n2+nl)-del(4)*(i-nl-n2)
xi(5,1)=xi(5,n2+nl)

xi(6,1i)=x1i(6,n3j)

do 15 i=1,nj

xt(6,1,1)=xi(6,1)
xt(5,1,1)=xi(5,1)
Xxt{4,i,1)=xi(4,1)
xt(3,1i,1)=x1(3,1)
xt(2,1,1)=xi(2,1)

do 16 i=1,nj

Xi(1,1i)=xi(1,nl+2)

Uniform initial concentration if 1lflag=1

Step function initial concentration if 1flag=0
if(lflag.eq.0 .and. (i.le.nl+l .or. i.ge.nl+n2))
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&xi(1,i)=1.04-01

16 xt(1,i,1)=xi(1,1)

return
end

c*********************************************************************

76

77

10

78

79

20

80

81

subroutine util

implicit real*8(a-h,o0-z)

parameter (maxt=900)

common /n/ nx,nt,nl,n2,nj,n3,tmmax

common /calc/ ai(maxt),ai2(maxt),u(223,maxt),ts (maxt),
1h,hl,h2,h3,hen, hep, rr, rrmax

common/const/ fc,r,t, frt,cur,ep3,ep2, pi,nneyg, nprop,npos,
lepl,epf3,epfl, eppl, epp2, epp3, shape3, shapel
common/var/ xp(l0),xx(6,221),xi(6,221),xt(6,221,maxt)
common/cprop/ sig3,area,rka3,ct3,dfs3,Rad3,
lsigl,area2,rkal,ctl,dfsl,Radl, tw

do 10 j=(n2+nl),nj

u(j,1)=0.0d40

do 76 k=2,nt+l
u(j,k)=u(j,k-1)-1.5d0*(xt(5,7,k)+xt(5,7,k-1))*
1(ts(k)-ts(k-1))/Rad3

do 77 k=2,nt+l

u(j,k)=(u(j,k)+xt(3,3,1))/ct3
u(j,1)=xt(3,j,1)/ct3

continue

do 20 j=1,nl

u(j,1)=0.0d0

do 78 k=2,nt+1l

u(j,k)=u(j,k-1)-1.5d0* (xt(5,7,k)+xt(5,3,k-1))~*
1(ts(k)~-ts(k-1))/Radl

do 79 k=2,nt+1

u(j,k)=(u(j, k)+xt(3,3,1))/ctl
u(j,l)=xt(3,3,1)/ctl

continue

calculate average utilization in cathode:

do 81 k=1,nt+l

u(nj+1,%k)=0.0d40

do 80 j=n2+nl+l,nj-1
u(nj+l,k)=u(nj+1,k)+u(j, k)
u(nj+l,k)=u{nj+1,k)+0.5d0* (u(n2+nl,x)+u(nji,k))
u{nj+1,k)=u(nj+l,k)/(nj-n2-nl)

calculate average utilization in anode:
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do 83 k=1,nt+1
u(nj+2,k)=0.0d40
do 82 j=2,nl-1
82 u(nj+2,k)=u(nj+2,k)+u(j, k)
u(nj+2,k)=u{nj+2,k)+0.540* (u(l,k)+u(nl,k))
83 u{nj+2,k)=u{nj+2,k)/nl

return
end
c*********************************************************************

subroutine peak(n,lim,curr)

implicit real*8(a-h,o-z)

parameter (maxt=900)

common /n/ nx,nt,nl,n2,nj,n3, tmmax

common /calc/ ai(maxt),ai2(maxt),u(223,maxt),ts(maxt),
1h,h1,h2,h3,hen, hep, rr, rrmax

common/const/ fc,r,t,frt,cur,ep3,ep2,pi,nneg,nprop, npos,
lepl,epf3,epfl,eppl, epp2, epp3, shape3, shapel
common/var/ xp(l0),xx(6,221),xi(6,221),xt(6,221,maxt)
common/cprop/ sig3,area,rka3,ct3,dfs3,Rad3,
1sigl,area2,rkal,ctl,dfsl, Radl, tw
311 format(£8.5,°, *,£7.3,*', ',£7.2)

c Peak power current ramp section:
print*,’
print*,’ PEAK POWER
print*,’
print*,‘cell pot ’,‘’ current’,’ power’
print*,’ (V) ‘,’ (A/m2) ", (W/m2) *
c Duration of current pulse is 30 seconds.
kcount=0
fact=20.0d40
rrmax=30.0d0
127 k=nt+2

do 126 j=1,nj
do 126 i=1,n
126 xt(i,j,k)=xt(i,j, k-1)
ppow=0.0
opow=ppow
ii=0
mflag=1
curinit=curr
cur=curr
Ramp current:
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128 continue
if (ppow.ge.opow.and.ii.lt.200) then

OPOW=pPOW
ocur=cur
energ=0.0
ii=ii+l
cur=cur+fact
kkflag=0
iflag=0
nflag=0
k=nt+2
i timpk=0.0d0
rr=0.0d0
ts(k)=ts(k-1)
call comp(n,lim, k,rr,kkflag,nflag,1, jcount)
call cellpot(k,vv,0,1,1flag)
| vlast=vv
S rr=0.2d40
129 kkflag=kkflag+l
" k=k+1
; ts(k)=ts(k-1)+rr
call calca(k)

Sl call comp(n,lim, k,rr,kkflag,nflag,1, jcount)

if (nflag.eq.l.and.kcount.lt.20) then

cur=cur-2.0*fact -
fact=fact/2.

) kcount=kcount+1

: print*, 'Peak current decreased’, kcount, fact

go to 128

endif

if (kcount.ge.1l0) return

A
e

call cellpot(k,vv,0,1,1flag)
energ=energ+ (vlast+vv) * (ts (k) ~ts(k-1) ) *cur/2.0d40

timpk=timpk+rr
if (dabs(timpk-30.0d0).gt.0.1) then

-

if (timpk.1t.30.0) then : :
vliast=vv i
Increasing time steps: -
if(jcount.lt.6 .and. kkflag.gt.5 .and. (2.0d0*rr

e l
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1+timpk) .1t.30.040 .and. iflag.eq.0) then
rr=rr*2.0d40
C print*, ‘next time step increased to ‘', rr,’(s)’
end if
if (timpk+rr.gt.30.0) iflag=1
if (timpk+rr.gt.30.0) rr=30.040-timpk
go to 129
end if

end if

ppow=energ/30.0d0

print 311, ppow/cur,cur,ppow
go to 128

else

if (kcount.ne.0) mflag=0
if (ii.gt.2.and.mflag.eqg.0) print 311, opow/ocur,ocur, opow
if (mflag.eqg.l) then
opow=0.0d40

DPOW=0pOowW
cur=cur-2.0*fact
fact=1.0d0

mflag=0

go to 128

end if

end if

if (ii.le.2) then
curr=curinit/2.0
go to 127 A
end if

return

end
C*********************************************************************

subroutine cellpot(kk,v,1i,lpow,1lflag)

implicit real*8(a-h,o-2z)

parameter (maxt=900)

common /n/ nx,nt,nl,n2,nj,n3,tmmax

common /calc/ ai(maxt),ai2(maxt),u(223,maxt),ts(maxt),

1h,h1,h2,h3,hen, hep, rr, remax

common/const/ fc,r,t,frt,cur,ep3,ep2,pi,nneg, nprop,npos,

lepl,epf3,epfl, eppl,epp2, epp3, shape3, shapel

common/power/ ed,Vold, ranode, rcathde

common/var/ xp(l0),xx(6,221),xi(6,221),xt (6,221, maxt)

common/cprop/ sig3,area,rkal3,ct3,dfs3,Rad3,

R
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1sigl,area2,rkal,ctl,dfsl,Radl, tw
common/temp/ thk,htc,dudt,Cp,dens, tam,g0,ncell, 1ht

309 format(f£8.5,’, ’,f8.5,’, r,£8.3,’, ', ,£8.3,",'," ',£7.3

307 format(f8.5,’, ’,£8.5,', *,£9.5,’, *,£f11.6,°,',"

1”’ Ilf7'3)

Material balance criteria:
sum=0.040
do 85 j=2,nl

85 sum=sum+xt (1,3, kk)* (epl+eppl) *hl

sum=sum+ (xt (1,1,kk)+xt (1,nl+1,kk))*(epl+eppl) *hl/2.0d40
do 86 j=nl+2,n2+nl-1

86 sum=sum+xt (1,j,kk)* (ep2+epp2)*h2

87

sum=sum+ (xt (1,nl+1,kk)+xt (1,n2+nl,kk))* (ep2+epp2)*h2/2.040
do 87 j=n2+nl+l,nj-1

sum=sum+xt (1, j,kk) * (ep3+epp3) *h3

sum=sum+ (xt (1,n1+n2,kk)+xt(1,nj,kk) ) *h3* (ep3+epp3)/2.0d40
calculate total salt in cell from initial profile:

w=xt (1,nl+2,1)*((n2-1) *(ep2+epp2) *h2+nl* (epl+eppl) *hl
1+n3* (ep3+epp3) *h3)

if(lflag.eq.0) w=w-(xt(1l,nl+2,1)-xt(1,1,1))*(nl*(epl+eppl)*hl
1+n3* (ep3+epp3) *h3)

if(lflag.eq.0) w=w-(xt{(1l,nl+2,1)-xt(1,1,1))* (ep2+epp2)*h2
material balance parameter should be ca=1.00

ca=sum/w

if (kk.eg.l) then
ut=xt(3,nj,1)/ct3
ut2=xt(3,1,1)/ctl
end if

Calculate cell potential from dif of solid phase potentials:
v=xt{6,nj, kk)~-xt(6,1,kk)

Calculate util. of two electrodes based on coulombs passed:
if(li.eg.1l) then

Calculate energy density by running sum of currentxvoltage:
ed=ed+ (Vold+v) * (ts (kk) -ts (kk-1) ) *cur/2.040

Vold=v

ut=cur* (ts(kk) -ts(kk~1))/£fc/(1.0d0-ep3-epf3-epp3) /n3/h3/ct3+ut
ut2=ut2-cur*rr/fc/(1.040-epl-epfl-eppl)/nl/hl/ (ctl)
th=ts(kk)/6.0d401

if(lht.ne.2) call temperature(kk,v,q,ut,ut2, Uoc)
tprint=t£-273.15
if(lpow.ne.0) then

105
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| isothermal peak power output:
print309,v,ca,cur,v¥cur

else

if (lht.eqg.0) then ! T varies, uses htc:
print309,ut,v, tprint,th,Uoc, cur

else if (lht.eqg.1l) then ! calculated htc:
print309,ut,v, htc, th,Uoc¢,cur

else if (lht.eq.2) then ! isothermal output:
print307,ut,v,ca, th, cur, kk

endif

endif

endif

return
end

c*********************************************************************

88

subroutine sol (nmax, jj)

implicit real*8(a-h,o-z)

Calculate the solid phase concentration profiles.
parameter (maxt=900)

common /calc/ ai(maxt),ai2(maxt),u(223,maxt), ts(maxt),
1h,h1,h2,h3,hen, hep, rr, rrmax '
common/var/ xp(10),xx(6,221),xi(6,221),xt (6,221, maxt)
common/const/ fc,r,t, frt,cur,ep3, ep2, pi, nney, nprop, npos,
lepl,epf3,epfl,eppl, epp2, epp3, shape3, shapel
common/cprop/ sig3,area,rka3,ct3,dfs3,Rad3,
lsigl,area2,rkal,ctl,dfsl,Radl, tw

dimension cs(50)

set initial value of solid concentration
do 88 i=1, 50

cs(i)=0.040

cs(i)=xt(3,33,1)

complete calculations for 50 points along radius of particle
do 10 i=1,50
y2=2.0d-02*1

suml=0.0d0
do 20 kk=1,nmax

k=nmax+1-kk

tl=(ts (nmax+1)-ts(k)) *dfsl/Radl/Radl
sum2=suml '

calculate ¢ bar (r,tl)

LR
Uhaadinit,
g
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suml=0.0d40
rl=1.0d40

do 89 j=1,15

ri=-rl

yl=j*j*pi*pi*tl
y3=j*pi*y2

if (yl .gt. 1.50d402) then
da=0.0d0

else

da=expf (-v1)

end if

89 suml=suml-2.0d0*rl*da*dsin(y3)/j/pi/y2

suml=1l.0d0-suml
perform superposition

cs(i)=cs(i)+(xt (3,33, k+1)+xt(3,57,%k)-2.040*xt(3,33,1)
1) *{suml-sum2) /2.0d40

20 continue

10 continue

print*,’ '

print*, ‘time is ’,ts(nmax)
print*,’ '

do 90 i=1, 50, 1

90 print*,.02*i,’ ’,cs(1)

return
end

subroutine mass(re,rs3,rsl,rf,rpl,xc,rcn,rcp)

implicit real*8(a-h,o-z)

parameter (maxt=900)

common /n/ nx,nt,nl,n2,nj,n3, tmmax

common /calc/ ai(maxt),ai2{maxt),u(223,maxt),ts(maxt),
1h,hl,h2,h3,hen, hep, rr, rermax

common/const/ fc,r,t,frt,cur,ep3, ep2,pi,nneg,nprop,npos,
lepl,epfl,epfl, eppl, epp2, epp3, shape3, shapel
common/var/ xp{10),xx(6,221),xi(6,221),xt (6,221, maxt)
common/cprop/ sig3,area,rka3,ct3,dfs3,Rad3,
1sigl,area2,rkal,ctl,dfsl,Radl, tw

mass of positive electrode
cl=h3*n3* (re*ep3+rpl*epp3d+rs3*(1.0d0-ep3-epfl3-eppl3)+rf*epf3)

107
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mass of separator
gs=(re*ep2+rpl*epp2+rc* (l-ep2-epp2)) *h2* (n2-1)

mass of negative electrode
al=hl*nl*(re*epl+rpl*eppl+rsl*(1.040~epl-epfl-eppl)+rf*epfl)

-

3
{
!

[aF

mass of current collectors
ccl=rcn*hen+rcp*hep

tw=cl+s+al+ccl

return
end

'c*********************************************************************

o]

subroutine temperature(kk,v,q,ut,ut2,Uoc)

implicit real*8(a-h,o-z)

parameter (maxt=900)

common /n/ nx,nt,nl,n2,nj,n3,tmmax

common /calc/ aif{maxt),ai2(maxt),u(223,maxt),ts(maxt),
ih,hl,h2,h3,hen hep, rr, rrmax

common/const/ fc,r,t,frt,cur,ep3, ep2,pi,nneg, nprop, npos,
lepl, epf3,epfl, eppl, epp2, epp3, shape3, shapel
common/cprop/ sig3,area,rka3,ct3,dfs3,Rad3,
lsigl,area2,rkal,ctl,dfsl, Radl, tw

common/temp/ thk,htc,dudt,Cp, dens, tam,g0,ncell, lht

LN ———

calculate open-circuit potential of cell at current state
of charge:

call ekin(l,kk,1,ut2)
Ua=g0 .
call ekin(nl+n2,kk,1,ut)
Uc=g0

Uoc=Uc-Ua

if (kk.eqg.2) print*,htc,dudt,ncell,cur, tam-273.15

per cell heat generation

g=cur* (Uoc-v~-t*dudt)

The heat transfer coefficient is for heat transferred out of S

one side of the cell; it is defined based on cell area. 'J
" htcec is a per-cell heat transfer coefficient.

if {(lht.eqg.0) then

htce=htc/Ncell

t=(dens*Cp*thk*t+rr* (Uoc-v) *cur + rr*htcc*tam)
&/ (dens*Cp*thk+rr*dudt*cur + rr*htcc)

else . ?j
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cr*xx*x*x*x¥Calculate htc instead of Temp ****xkrkkkdkkdkdkddrkdh
For this case the temperature is assumed constant, and the
heat transfer coefficient required to keep it constant is
calculated as a function of time. The heat transfer coef.
is calculated for heat transferred out of one side of the
cell stack. Htcc is defined as a per-cell heat transfer
coefficient.
if (t.ne.tam) then
htc=cur*Ncell* (Uoc-v-t*dudt) / (t-tam)
else
hte=0
endif
htce=htc/Ncell

c*************************************************************

Q0 a0aa0aa0a

endif

return
end
c*********************************************************************
double precision function expf(x)
implicit real*8 (a-h,o-2z)
expf=0.d0
if(x.gt.~700.d40) expf=dexp(x)
return
end
c*********************************************************************
subroutine ekin(j,kk, lag,utz)
implicit real*8(a-h,o-z)
c - This subroutine evaluates the Butler-Volmer equations.
parameter (maxt=900)
common /n/ nx,nt,nl,n2,nj,n3, tmmax
common/const/ fc,r,t, frt,cur,ep3,ep2,pi,nneg,nprop, npos,
lepl,epf3,epfl, eppl, epp2, epp3, shape3, shapel
common/power/ ed,Vold, ranode, rcathde
common/var/ xp(10),xx(6,221),x1i(6,221),xt (6,221, maxt)
common/cprop/ sig3,area,rka3,ct3,dfs3,Rad3,
1sigl,area2,rkal,ctl,dfsl,Radl, tw
common/temp/ thk,htc,dudt,Cp,dens, tam,gl,ncell, 1ht
common/mat/ b,d
common/bnd/ a,c,g.x,y
dimension b(10,10),d(10,21)
dimension a(10,10),¢c(10,221),g(10),x(10,10),v(10,10)

Calculate average open-circuit potential in either
electrode if lag=1l, otherwise lag=0

o Q0 a0
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OPEN-CIRCUIT POTENTIAL FUNCTIONS:

g0 is the open-circuit potential in terms of the solid
concentration, xx(3,3),
gl is the derivative of the open-circuit potential wrt
the so0lid concentration

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

FOR THE NEGATIVE ELECTRODE I

O00000000000

if (j .le. nl+l) then

0

if (lag.eqg.l) xx(3,j)=utz*ctl

GGG &b bbb b bbb bbb bbb bbb &b & & bbb &b & & &

0

go to (11,12,13,14,15,16),nneg
11 go to 111 ! Li foil
12 go to 112 t Carbon (petroleum coke)
13 go to 113 ! MCMB 2510 Carbon (Bellcore)
14 go to 114 ! TiS2
15 go to 115 ! Tungsten oxide (LixWO3 with 0<x<0.67)
16 go to 116 ! Lonza KS-6 graphite (Bellcore)

Q

ORI VYTV T v VY A vE YT VA ST T VIV ITIZITILIT YL vIIL LT vE TTvE 3 ¥3 I V23

111 stop ! save space for Li foil
C LSS & &b e BB bbb & S BB S B b 8o & & b S b e & S & b S & &
c Carbon (petroleum coke):

112 ¢c1=-0.132056d0
c2=1.4085440
¢3=-3.5231240
gO=cl+c2*expf (c3*xx(3,]) /ctl)
gl=c2*c3*expf(c3*xx(3,3) /ctl)/ctl
go to 97
(SR Y Y YE VY YT T VS VP NEIFITIT I VIIT VI VRITIT VYLV VEII I YT ITIT IS ;3
MCMB 2510 carbon (Bellcore) ij

9]

113 ¢1=-0.16040 )
c2=1.32d0 3
¢3=-3.040
gO=cl+c2*expf (c3*xx(3,7) /ctl) =
gl=c2*c3*expf (c3*xx(3,3) /ctl)/ctl .

e )
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go to 97 .
S B B e b B e S B B b S B Be 8o B 6 B 8 B 8 K e & Sc & Ee & & & &
Tis2

114 delt=-5.584-04
zeta=8.1d0
ctl=2.9d404
g0=2.17+(dlog({ctl-xx(3,]) ) /xx(3,7))+delt*xx(3,]) +zeta) /frt
gl=(delt-ctl/xx(3,3j)/(ctl-xx(3,3)))/frt
go to 97
Sl bbb S bbb S b & & & & S &b & & & & & & & & & & & &
Tungsten oxide (LixWO3 with 0<x<0.67):
literature data from Whittingham

115 ¢1=2.876740
c2=-0.904640
¢3=0.7667940
c4=-0.1597540
¢5=0.67140
gO0=cl+c2*xx(3,j) /ctl+e3*xx(3,]) *xx(3,]) /ctl/ctl+
1lcd*expf(100.040* (xx(3,7)/ctl-0.671))
gl=c2/ctl+2.040*c3*xx(3,j)/ctl/ctl+
1c4*100.040*%expf (100.040* (xx(3,7j)/ctl-0.671))/ctl
go to 97
S8 e BB b Be e Be e S be b Be S Se e Be S S G e b be & S S & & & &
Bellcore graphite (Lonza KS-6)

116 c1=0.7222d40
c2=0.1386840
c3=0.02895240
c4=0.01718940
c5=0.00191444d0
c6=0.28082d0
c7=0.798444d0
c8=0.4464940
xtem=xx(3,j) /ctl
g0=cl+c2*xtem+c3* (xtem**0.5d0) -c4* (xtem**-1.0d4d0)
l+ch* (xtem**-1.5d0) +c6*expf (15.040*(0.06d0-xtem) ) -c7*
lexpf (c8* (xtem-0.9240))
gl=c2/ctl+c3*0.580* (ctl**-0.5d0) *(xx(3,3)**-0.540) +
led*ctl* (xx(3,])**-2.0d40) -c5*1.540* (ctl1**1.5d40) *
1(xx(3,7)**-2.5d0)-c6*15.0d0/ctl*expf(15.0d40*(0.0640-xtem))
1-c7*c8/ctl*expf(c8* (xtem-0.9240))
go to 97
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

111
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KINETIC EXPRESSIONS FOR NEGATIVE ELECTRODE

h0 is the exchange current density (A/m2)
hl is the derivative of io wrt solid concentration, xx(3,3)
h2 is the derivative of io wrt electrolyte concen., xx(1,3)

8 bbb &b bbb EEEEEEELEEEEE&EEE&EEELELS
NONAQUEOUS LIQUIDS

97 if (lag.eqg.l) go to 99
alpha=0.5d0
alphc=0.5d0
hO=rkal*dsqrt (xx(1,J))*dsqart{ctl-xx(3,7j)) *dsqgrt (xx(3,3))
hl=-rkal*dsqrt(xx(1l,3j))*dsgrt{ctl-xx{3,3j)) *dsqgrt(xx(3,j))*
1(1.0d0/ (ctl-xx(3,3))-1.040/xx(3,3))/2.0d0 '
h2=rkal*dsqrt(ctl-xx(3,3)) *dsqgrt(xx(3,3)) /dsgrt(xx(1,3))/2.0d40

S & S b S e b & e b e b b e be S e S B e be b be & Se S & & & & &
POLYMER
cmax=3.92d03
alpha=0.5d0
alphc=0.540
hO0=rkal*dsqgrt(xx(1,j))*dsqgrt(cmax-xx(1,3)) *dsgrt(ctl-xx(3,3))
1*dsqrt(xx(3,3))
hl=-rkal*dsqrt(xx(1,j))*dsqgrt(cmax-xx(1,3j) ) *dsqrt(ctl-xx(3,3))
1*dsqrt (xx(3,3))*(1.040/ (ctl~xx(3,37))-1.040/xx(3,3))/2.040
h2=-rkal*dsqgrt(xx(3,j))*dsqgrt({ctl-xx(3,37)) *dsgrt (cmax-xx(1,3))
1*dsqrt (xx(1,7))*(1.040/ (cmax-xx(1,3j))~1.0d0/xx(1,3))/2.0d40
S G e S S S e S & S S b S b S b b S B b b e b B & & & & & & &
end if
S S S e S B S G e b & S B B b G G B S e S S e & e S e & G S & S & S & & S & S B S S S S e & S e e & & & &
FOR THE POSITIVE ELECTRODE
if {(j .ge. nl+n2) then

bbb &b S &b bbb &b &b b & bbb bbb & &b & &b &

if (lag.eq.l) xx(3,j)=utz*ct3
go to (1,2,3,4,5,6,7,8,9),npos

112

i
}
7

-

R———

r



.

P——

Jrr—

dgabadin

AT

- rw.‘m*ym

At

™
[——

[T
| R —— .

I
E
st e

§

QO a0 0

Q0

C
C
(o]

W oo Jo U b WM

go to 101 ! Tis2

113

go to 102 ! Spinel Mn204 (lower plateau)
go to 103 ! NaCoO2: Sodium cobalt oxide
go to 104 ! Spinel Mn204 (upper plateau)
go to 105 ! Tungsten oxide (LixWO3 with 0<x<0.67)

go to 106 ! Co02 (Cobalt dioxide)
go to 107 ! V205 (Vanadium oxide)
go to 108 ! NiO2 (Nickel dioxide)
go to 109 ! Spinel Mn204 (Bellcore)

8 888 S 8o 8 Be Be be e 6 S 8 S Se 8o e e 8 8 S Sc Se Se e S S S & & & &

TisS2

101 delt=-5.58d-04

zeta=8.140

g0=2.17+(dlog((ct3-xx(3,3) ) /xx(3,3))+delt*xx(3,]) +zeta) /frt

gl=(delt-ct3/xx(3,j)/(ct3-xx(3,3)))/frt
go to 98

8 8 8 S S e 8 8c e 82 8 8 8 & 8 e e 8 8 8 8c b 8 8o b S e 5 S & & & &

Spinel Mn204 (lower plateau)

102 ¢1=2.0630740

c2=-0.86970540

c3=8.6537540

c4=0.98125840

al=c3*(xx(3,37)/ct3-c4)
gO=cl+c2*(dtanh(al))
gl=c2*c3/ct3/(dcosh(al))/(dcosh(al))
go to 98

ScBcbe8ebo o8 S8 b b Sebo b e e S ScBe Se e o be Se e 6 S b be & e & &

NaCo02: Sodium Cobalt Oxide (P2 phase,

103 c1=4.4108d0

c2=-2.086d0
¢3=0.10465d0
c4=133.4240
¢5=89.825d0

. c6=0.16284d0

c7=145.0140
c8=71.9240
c9=0.0140
c10=200.0d0
c11=0.340
c12=0.88540
al=xx(3,3j) /ct3

0.3<y<0.92)

gO0=cl+c2*al+c3*dtanh(~-c4*al+ch)+c6*dtanh(-c7*al+c8)+c9*
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114

lexpf(-cl0*{al-cll))-c9*expf (clO* (al-cl2))
gl=c2/ct3-c3*c4/dcosh({-cd4*al+c5) /dcosh(-c4*al+c5) /ct3-c6*c7
1/dcosh(~c7*al+c8) /dcosh(-c7*al+c8) /ct3-cO9*cl0*

lexpf(-cl0* (al-cll)) /ct3-c9*cl0*expf(cl0*(al-cl2)) /ct3

go to 98 ‘

S G &G b e b bbb b e b b & & bbb bbb & bbb &

Spinel Mn204 (upper plateau 0.2<y<1.0)
Literature version

104 al=4.06279d0

a2=0.067750440

a3=21.8502d40

a4=12.826840

ab=0.10573440

a6=1.0016740

a7=-0.379571d0

a8=1.5759944d0

a9=0.045d0

al0=71.69d0

all=0.01d0

al2=200.040

al3=0.194d0

g0=al+a2*dtanh(-a3*xx(3,3j) /ct3+ad)-aS*((ab6-xx(3,3j) /ct3)**a7~
la8)-a9*expf (-al0* ((xx(3,3j)/ct3)**8.040))+all
l*expf(-al2* (xx(3,3j) /ct3-al3))

gl=(1.040/ct3)*(-a2*a3/dcosh(-a3*xx(3,j)/ct3+a4d)/dcosh(-a3
1*xx(3,3j)/ct3+ad)+a5*a7*(a6-xx(3,3) /ct3) **(-1.0d40+a7)+
1a9*%al0*8.040* ((xx(3,3)/ct3)**7.040) *expf (-all*
1(xx(3,])/ct3)**8.040))~all*al2/ct3*
lexpf(-al2* (xx(3,j)/ct3-al3))

if (g0.gt.4.5) then

g0=4.5d0

gl=0.0d0

print*, ‘U theta overflow - positive’
else if (g0.1t.3.0) then

g0=3.0d0 )

gl=0.040

print*, ‘U theta underflow - positive’
end if

go to 98

8 be S b &b b S b & & & S b &b b bbb bbb & &b &

Tungsten oxide (LixW03 with 0<x<0.67)
literature data from Whittingham

105 ¢c1=2.8767d40

ATt SR L N
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c2=-0.9046d0
c3=0.7667940
c4=-0.1597540
c5=0.671d0 .
g0=cl+c2*xx(3,3) /ct3+c3*xx(3,]) *xx(3,3) /ct3/ct3+
lcd*expf (100.040* (xx(3,7) /ct3-0.671))
gl=c2/ct342.0d0*c3*xx(3,3j) /ct3/ct3+
1c4*100.040*expf (100.0d0* (xx(3,3) /ct3-0.671)) /ct3
go to 98
C &Sl bbb bbb S be b S e S S b be S & &S e e b & & &
c Co02 (Cobalt dioxide)
c

£
.

g

Ay

GRgl

‘ 106 rl=4.825510
T r2=0.950237 i
r3=0.913511
o r4=0.600492
- g0=rl-r2*expf (- ({xx(3,3)/ct3-x3)/rd)**2,.0d40)
gl=2.0a0*xr2* (xx(3,j) /ct3-r3) *expf (- { (xx(3,3) /ct3
1 1-r3)/rd)**2.040)/rd/rd/ct3
: f go to 98
C &bl bbb e bbb e S S bebe S be b Qe b Se S b be & & & be &
- c V205 (Vanadium oxide 0<y<0.95)
ol c
107 r1=3.305%40
T r2=0.082769d0
r3=14.36240
rd=6.687440
iy r5=0.03425240
: r6=100.040
r7=0.9640
\ r8=0.007244d0
r9=80.0d40
rl0=0.01480
a2=xx(3,3j)/ct3 :
gO0=rl+r2*dtanh(-r3*a2+r4) -rS5*expf (r6* (a2-r7))+r8*expf (r9*
1(xrl10-a2))
gl=-r2*r3/dcosh(-r3*a2+r4)/dcosh(-r3*a2-r4d) /ct3-rS5*ré6*expf (ré6*
1(a2-xr7))/ct3-r8*r9*expf(r9* (rl0-a2))/ct3
W go to 98
C &G E &S E e a S e S e S S b S B e e & e S bbb & & & &c & &
c NiO2 (Nickel dioxide 0.45<y<1.0) :
e c

[
Fa————

108 rl=6.515d0

: r2=2.319240
o r3=5.3342d40
r4=0.410824d0




C
C
C

r5=200.040

r6=0.4440

r7=0.2424740

r8=60.0d40

r9=0.9940

a3=xx(3,3j)/ct3
g0=rl+r2*a3-r3*a3**0.5d0+rd*expf (r5* (r6-a3)) -
lr7*expf(r8* (a3-r9))

gl=r2/ct3-0.5d0*r3* (xx(3,3j)**-0.540) /ct3**0.540
l-rd*rS5*expf(x5*(r6-a3d))/ct3-r7*r8*expf(r8* (a3-r9)) /ct3
go to 98
e S S B S b b b e BB b &b e e b Be S e be S S e e bc 6 & & & &
Spinel Mn204 (Bellcore 0.17<y<1.0)

109 al=4.1982940

a2=0.0565661d0

a3=14.5546d0

a4=8.6094240

a5=0.027547940

a6=0.99843240

a7=-0.49246540

a8=1.90111040

a9=0.15712380

al0=0.0473840

all=0.81023940

al2=40.0d0

ali3=0.133875d0

gO=al+a2*dtanh{-a3*xx(3,J) /ct3+ad)-a5*((ab6-xx(3,3)/ct3) **a7-
la8)-a9*expf (-al0* ((xx(3,])/ct3)**8.040) )+all
l*expf(-al2*(xx(3,3j) /ct3-all))
gl=(1.0d0/ct3)*(-a2*a3/dcosh(-a3*xx(3,j)/ct3+ad)/dcosh(-a3
1*xx%(3,3j) /ct3+ad)+ab*a7*(a6-xx(3,3)/ct3)**(-1.0d40+a7)+
1a9*al0*8.0d0* ({xx(3,3j) /ct3) **7.0d40) *expf (-alO*
1(xx(3,3j)/ct3)**8.0d40))-all*al2/ct3*
lexpf(-al2* (xx(3,3j)/ct3-al3))

if (g0.gt.4.5) then

g0=4.5d0

gl=0.0d0

print*, ‘U theta overflow - positive’
else if (g0.1t.3.0) then

g0=3.0d0

gl=0.0d0

print*, ‘U theta underflow - positive’
end if

go to 98
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c .
c KINETIC EXPRESSIONS FOR THE POSITIVE ELECTRODE
o .
c h0 is the exchange current density (A/m2)
c hl is the derivative of io wrt solid concentration, xx(3,7)
c h2 is the derivative of io wrt electrolyte concen., xx(1,3j)
c
(ORI P T v VT YT ITIT I ILIT VLTI AIIT Y VT ITVILIT VI AL AT VNS IFITIL ¥ T2 LY
c
c NONAQUEQOUS LIQUIDS
c
98 if (lag.eqg.l) go to 99
alpha=0.5d0
alphc=0.5d40
hO=rka3*dsqgrt (xx(1l,3)) *dsqgrt(ct3-xx(3,3)) *dsqgrt (xx(3,3))
hl=-rka3*dsqrt(xx(1l,j)) *dsqrt(ct3-xx(3,3)) *dsqgrt (xx¢(3,3))
1*(1.040/(ct3-xx(3,3))-1.040/xx(3,3))/2.0d40
h2=rka3*dsqrt (ct3-xx(3,3) ) *dsgrt (xx(3,3))/dsgrt (xx(1,5))/2.040
c
C &b &b b8l bobio oSS be 8o b Be eSSBS e & 8BS be & & &
c
c POLYMER
c
c alpha=0.5d40
c alphc=0.5d0
c hO=rka3*dsqgrt (xx(1,j) ) *dsgrt (cmax-xx(1,3j)) *dsqgrt(ct3-xx(3,3))
c 1*dsqgrt (xx(3,3))
c hi=-rka3*dsqrt(xx{1l,])) *dsqgrt(cmax-xx(1,j)) *dsqrt(ct3-xx(3,3))
c 1*dsqrt(xx(3,3))*(1.040/ (ct3-xx(3,3))-1.0d0/xx(3,7))/2.040
c h2=-rka3*dsqgrt (xx(3,j)) *dsqgrt(ct3-xx(3,3) ) *dsagrt (cmax-xx(1,3))
c 1*dsqgrt(xx(1,3))*(1.040/ (cmax-xx(1,3))-1.040/xx(1,3))/2.040
c
[o] &&&&&&&&&&&&&&&:&&&&&&&&&&&&&&&&&&
c

end if
PR e R R e R T
if (lag.eq.l) go to 99

rl=alpha*frt
if(j.le.nl+l) then
anl=1.040
an2=0.0d0 ~
else
anl=0.0d0
an2=1.040

117
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endif
r2=rl*(xx(6,3)-xx(2,3j)~-g0-fc*xx(5,3) * (anl*ranode+an2*rcathde) )

de=-2.d0*r2-r2**3/3.40

if(dabs(r2) .gt.1.04-7) de=expf(-r2)-expf(r2)

pe=expf (-r2)+expf(r2)

b(3,1)=h2*de

b(3,2)=h0*rl*pe

b(3,6)=-b(3,2)

b(3,3)=hl*de+h0*rl*gl*pe

b(3,5)=1.040+£fc*b(3,2)* (anl*ranode+an2*rcathde)

g(3)=-h0*de+b(3,1) *xx(1,3)+b(3,2)*xx(2,3)+
1b(3,3)*xx(3,7)+b(3,6) *xx(6,])+(b(3,5)-1.0d40) *xx (5, 3)
&-b(3,1)*c(1,3)-b(3,2)*c(2,3)-b(3,6)*c(6,3)-b(3,3)*c(3,3)
&-b(3,5)*c(5,3])

99 return
end

c*********************************************************************

0O 0 0 0

subroutine prop(nj,n2,nl)

implicit real*8(a-h,o~z)

parameter (maxt=900)

common/const/ fc,rxr,t,frt,cur,ep3,ep2,pi,nneg, nprop, npos,
lepl,epfl3,epfl, eppl, epp2, epp3, shape3, shapel

common/var/ xp(10),xx(6,221),xi(6,221),xt (6,221 ,maxt)
common/tprop/df(221),cd(221),tm(221),
1ddf(221),dcd(221),dtm(221) ,dfu(221),d2fu(221)
common/temp/ thk,htc,dudt,Cp,dens, tam,gl,ncell, lht

do 99 j=1,nj
ee=ep2+epp2
if(j .lt. nl+2) ee=epl+eppl
if(j .gt. n2+nl) ee=ep3+epp3
go to (1,2,3,4,5,6,7),nprop

1 go to 101 ! AsF6 in methyl acetate

2 go to 102 ! Perchlorate in PEO

3 go to 103 ! Sodium Triflate in PEO

4 go to 104 ! LiPF6 in PC (Sony cell simulation)

5 go to 105 ! Perchlorate in PC (West’s simulation)

6 go to 106 ! Triflate in PEO

7 go to 107 ! LiPF6 in EC/DMC and p(VAF-HFP) (Bellcore)

S S B b &b 6 b & G e b b S &b & 6 & 8 & & & & & & &6 & &
AsF6 in methyl acetate
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diffusion coefficient of the salt (m2/s)
101 df(j)=(ee**1.5d0)*1.544-09
ddf(j)=0.0d0
conductivity of the salt (S/m)
cd(j)=2.540* (ee**(1.540))
dcd(j)=0.0d0
transference number of lithium
tm(j)=0.20d0
dtm(j)=0.0d40
activity factor for the salt
dfu(j)=0.0d0
d2fu(j)=0.0d0
go to 99
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Perchlorate in PEO

diffusion coefficient of the salt (m2/s)
102 df(j)=(ee**1.540)*1.78d4-12
ddf (j)=0.040
conductivity of the salt (S/m)
cd(j)=1.6d4-02*ee**(1.540)
dcd(j)=0.0d40
transference number of lithium
tm(j)=0.1040
dtm(3j)=0.040
activity factor for the salt
dfu(j)=0.040
d2fu(j)=0.0d0
go to 99
8o 88 b B Be S B e & e Be e B Be Sc S Be S S Be be e b & Ee S e Ee be & &c &
Sodium Triflate in PEO

103 r0=1.30414-07
rl=4.49784-07
r2=-3.12484-07
r3=-2.23834-07
r4=8.92644-09

diffusion coefficient of the salt (m2/s)

df (§)=0.0001d0* (ee**1.5d40) * (rO+rli*xx(1,3)/1000+

1r2* ({xx(1,3)/1000)**0.540) + r3*((xx(1l,7)/1000)**1.5d80)
1+ rd*((xx(1,3)/1000)**3.0d40))

ddf(j)=0.000140* (ee**1.5d0)*(r1/100040 + v

10.5d0*r2* (xx(1,3)**(-0.5d0))/(1000.040**0.540)

1+ 1.5d40*r3*(xx(1,3)**0.5d40)/100040**1.540 +

13.0d0*rd* (xx(1,3)**2.0d40)./100040**3.040)

119
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; - 23
if (xx(1,37).ge.3.0403) then
Af(j)=(ee**1.5d0)*1.6477a-12
Aadf(j)=0.0d40
end if
conductivity of the salt (S/m) .
r7=4.324-05
r8=0.0001740
r9=0.00015340
ri0=3.734-05
cd(j)=100*(ee**(1.5d0)) * (r7+r8*xx(1,3) /1000+r9*xx (1, J) *xx(1,3)
1/1000000+r10*xx(1,7) *xx(1,j)*xx(1,3)/1000000000)
dcd(3)=100*(ee**(1.540)) *(xr8/1000+2.0*r9*xx(1,3j)/1000000+
13.0*rl0*xx(1,3j) *xx(1,5)/1000000000)
transference number of lithium
if(xx(1,3).1t.0.3d03) then
r5=0.3214140
r6=2.576840
r11=71.369d0
r12=643.6340
r1l3=1983.740
r14=2008.40 f
r15=287.4640 ;
tm(j)=r5-ré6*xx(1,3)/1000.+rll*xx(1,3) *xx(1,5)/1000000.
1-r12*({xx(1,3)/1000.)**(3.040))+rl3*((xx(1,3)/1000.)**4.040) ,%
1-rid*((xx(1,3)/2000.)**(5.0d40))+r1iS*((xx(1,3)/1000.)**6.0d0) )
dtm(j)=~r6/1000.+2.040*r11*xx(1,35)/1000000. -~
13.040*r12* (xx(1,3)**2.0480)/(1000.**3.040) +
14.040*r13* (xx(1,3)**3.0480)/(1000.**4.0d40) -
15.0d0*r1d* (xx(1,5)**4.0d40)/(1000.**5.0d40) +
16.0d40*r15* (xx{1,5)**5.040)/(1000.**6.0d40)
else
tm(3)=0.0d0
dtm(3)=0.040
end if
if{xx(1,7).ge.0.70403) then -1
r5=4.5679d0 ij
r6=4.50640 -

r11=0.60173d0
rl2=1.069840 )
tm(j)=-rS+ré6*expf (- ((xx(1,3)/1000.-ril)/rl2)**2.) -
dtm(3)=-r6*(xx(1,3)/1000.-r11)*2.
l*expf (- ((xx(1,3)/1000.-xr11)/xr12)**2.)/r12/r12/1000.
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T

end if

g

if(xx(1l,3j).ge.2.58403) then
tm(j)=-4.420440
dtm(j)=0.0d40

end if

Ty

c activity factor for the salt: (dlnf/dc) and (d21nf/dc2)

if (xx(1,j) .gt.0.45d03) then
r17=0.98249d0
r18=1.3527d0
r19=0.71498d0
- r20=0.1671540
r21=0.01451140
thermf=r17-r18*xx(1,3)/1000.+r19*xx(1,5) *xx(1,3)/1000000.-
- 1r20*xx(1,3) *xx(1,3) *xx(1,3) /1000000000 . +r21*xx (1,3) *xx(1,3)
1*xx(1,3) *xx(1,3)/1000000000000.
a dthermf=-r18/1000.+2.*r19*xx(1,3)/1000000.-
| 13.*r20*xx(1,3) *xx(1,3)/1000000000.+4. *r21*xx(1,75) *xx(1,5)
1*xx(1,3)/2000000000000.
"] end if

if(xx(1,3).1e.0.45d03) then

. r23=0.991614d0

u r24=0.1780440

r25=55.653d0

r26=303.57d0

r27=590.97d0

r28=400.21d0

thermf=r23-r24*xx(1,3) /1000.-r25*xx(1,3) *xx(1,5) /1000000.+
1r26*xx(1,3) *xx(1,3) *xx(1,5)/1000000000.-r27*xx(1,5) *xx(1,3)
1*xx(1,3) *xx(1,3)/1000000000000.+r28*xx(1,3) *xx(1,3) *xx(1,7)
1*xx(1,5) *xx(1,3)/1000000000000000.
dthermf=-r24/1000.-2.*r25*xx(1,3)/1000000.+
13.*r26*xx(1,3) *xx(1,3)/1000000000.-4.*r27*xx(1,3)
\ 1*xx(1,3)*xx(1,3)/1000000000000.+5.*r28*xx(1,5) *xx(1,7)

' 1*xx(1,3) *xx(1,3)/1000000000000000.

end if

St
(PR

"

dfu(j)=(-1.+2.*thermf) /xx(1,3)
d2fu(j)=1./xx(1,3)/xx(1,])-2.*thermf/xx(1,5) /xx(1,5)+ :
12.*dthermf/xx(1,3) . :

T:\ GURY

i 1f(xx(1,5).ge.3.00d03) then
dfu(j)=-0.9520/xx(1,3)

iy
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d2fu(j)=0.9520/xx(1,3) /%xx(1,3)
end if
go to 99
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LiPF6 in PC (Sony cell simulation)

this is actually the diff coeff for perchlorate
diffusion coefficient of the salt (m2/s)

104 df(j)=(ee**1.5d0)*2.584-10

daf (3)=0.040

conductivity of the salt (S/m)

pmax=0.5409

pmax=0.035d0

pu=0.85740

aa=1.093

bb=0.04d0

rho=1.2041403

fun=pmax* ( {1.0d0/rho/pu) **aa) *expf (bb* ( (xx(1,J) /rho-pu) **2.0)
1-(aa/pu) *{xx(1,3) /rho-pu))

fun2=2.0d0* (bb/rho) * (xx(1,j) /rho-pu)-aa/pu/rho
cd(j)=0.0001+(ee**1.5d0)*((xx(1,3))**aa)*fun
dcd(j)=(ee**1.5d0) *fun* (aa* (xx(1,3j)**(aa-1.0d0) ) +(xx(1,3) **aa)
1*fun2)

transference number of lithium

tm(j)=0.2040

dtm(j}=0.0d0

activity factor for the salt (dlnf/dc and d21nf/dc2)
dfu(j)=0.0d0

d2fu(j)=0.0d0

go to 99
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Perchlorate in PC (West’s simulation)

diffusion coefficient of the salt (m2/s)
df(j)=(ee**1.5d40)*2.58d-10

ddf (3)=0.04a0

conductivity of the salt (S/m)

pmax=0.542d0

pu=0.661640

aa=0.85540

bb=-0.08d0

rho=1.2041403

fun=pmax* ( (1.0d40/rho/pu) **aa) *expf {(bb* { (xx{1, ) /rho-pu) **2.0)

l-{aa/pu) * (xx(1,3)/rho-pu))}

fun2=2.0d0* (bb/rho) * (xx(1, j)/rho~-pu) -aa/pu/rho

pend
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cd(j)=0.0001+(ee**1.5d0)*((xx(1,])) **aa)*fun
dcd(j)=(ee**1.5d40) *fun* (aa* (xx(1,3j)**(aa-1.040) )+
1(xx(1l,3)**aa)*fun2)

transference number of lithium

tm(j)=0.20d0

dtm(3j)=0.0d0

activity factor for the salt

dfu(j)=0.040

d2fu(j)=0.0d40

go to 99 '
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Triflate in PEO

106 r0=-5.08918638444-05

r1=8.386451993944-07

r2=-5.197479018554-10

r3=8.08327094074-14

diffusion coefficient of the salt (m2/s)

df (j)=(ee**1.540)*7.5d4-12

ddf(j)=0.0d0

conductivity of the salt (S/m)
cd(j)=(ee**(1.540))*100.040* (xr0 + rl*xx(1l,3)
T4r2*xx(1,J) *xx (1, ) +r3*xx(1,j) *xx(1,]) *xx(1,3))
ded(j)=(ee**1.5d40)*100.040* (x1 + 2.040*r2*xx(1,j) +
13.040*xr3*xx(1,3)**2.040)

transference number of lithium

rough conc. dependence of t+ - highly suspect
tm(j)=0.0107907d0 + 1.48837d-04*xx(1,3)
dtm(3j)=1.48837d-04

activity factor for the salt

dfu(3j)=0.0d40

d2fu(j)=0.040

go to 99
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LiPF6 in EC/DMC and p(VdF-HFP) (Bellcore)
D and t+ given below were fit from discharge curves

diffusion coefficient of the salt (m2/s)
df(j)=(ee**1.5d40)*9.004-11
ddf (j)=0.0d40

conductivity of the salt (S/m)

This is the conductivity of the liquid + salt only (no polymer)

kappa (c) for EC/DMC 2:1 with LiPF6 at 25 deg C

cd(j)=(ee**1.540)*(0.0911+1.9101*xx(1,3)/1000-1.052*xx(1,])*

123
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1xx(1,3)/1000/1000+0.1554* (xx(1,3)/1000)**3.040)

derivative of kappa (¢) for EC/DMC 2:1 at 25 deg C
dcd(j)=(ee**1.540)*(1.9101/1000-2.0*1.052*xx(1,3)/1000/1000
1+3.0%0.1554/1000* (xx(1,5)/1000)**2.040)

kappa (¢) for EC/DMC 1:2 w/ LiPF6 at 25 deg C

Note Bruggeman exponent should be adjusted to account for
polymer phase - this also affects "fac" parameter in Ohm’s law
r1l=0.000107934d0

r2=0.0067461d0

r3=0.005224540

r4=0.0013605d0

r5=0.0001172440

cd(j)=(ee**4.2d0) * (rl+xr2*xx(1,3j) /1000
1-r3*xx(1,3j)*xx(1,3j)/1000000
l1+rd* (xx(1,3)/1000)**3.0d0-x5*(xx(1,3)/1000)**4.040)*100
ded(j)=(ee**4.2d40)*(xr2/10-r3*2.0d0*xx(1,3) /10000
1+3.080*rd4*xx(1,j) *xx(1,3) /10000000
1-0.440*r5* (xx(1,3)/1000)**3.040)

- transference number of lithium

tm(j)=0.36340
dtm(j)=0.0d0

activity factor for the salt (dlnf/dc and d21lnf/dc2)
dfu(j)=0.0d40

d2fu(j)=0.0d0

go to 99
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99 continue

return
end

c*********************************************************************

c

That’s All Folks!

c*********************************************************************
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FOIL program

B R ]

hhkkhkdhhhkdkhkhhhbdbhrhkhhhhhdddhdhhdhkkhhhdhdhbdbhrhkhohhhhoddbrhokdbhhhdbhdrdhhhdhnr

foil.f (foil wversion 2.0) January 15, 1995
Model for li/polymer/insertion cell £

Significant revisions:
The input file is new and should be easier to read.
Film resistance is added in both electrodes. -
Driving profiles are added (see input file). ’
Power pulses are added but are not generally activated. -
Concentration profiles in the solid versus time can be
obtained, but are not generally activated.
6. Temperature rise and the use of a heat-transfer
coefficient have been added (see input file).
7. Material balances in the electrolyte have been modified
to give an absolute overall balance.
8. Ekin and prop (the user subroutines) have been modified
to make them easier to change from case to case and to see
what is valid and what is obsolete. (See npos and nprop.)
9. Some robustness has been incorporated to make it easier
to avoid underflows and concentrations (solid or
electrolyte) less than zero or greater than saturation.
Change variables (Electrochemical Systems, pp. 549-550)

have been incorporated.
PR R R R EE RS E R RS RE R E RS S EA S L LSS E RS R RS SRR E SR ERE RS R E R TR TR R LR XX

OO0 0000000

Vb W N R

Power pulses should be activated as follows:
Call subroutine peak should be uncommented - l5-second current
pulses of increasing size are applied until the power goes
through a maximum. This is performed at the end of any
previously requested discharge or charge steps.
Note that the use of power pulses can be tricky because
the solution may be impossible to obtain at a current
which gives a power less than the previous current.

st

o

Solid-phase concentration profile is activated as follows: -
~Call subroutine sol with a given time step # and node #. Must
be careful that the requested node # is inside the positive
electrode. The lithium concentration in the solid is printed B
versus radius into the particle at the requested time and z

SYIRL]

000 00000000000000000000000000aQ0 a0

- position.
% c*******'k************************************************************* -
- implicit real*8(a-h,o-z) :

parameter (maxt=900)
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common /n/ nx,nt,nl,n2,nj
common /calc/ ai(maxt),u(222,900),ts(maxt),h,hl, h2, hcp,
lhen, rr
common/const/ fc,r,t,frt,cur,ep,epf, eps, epp,epps,pPi,nneg,
1nprop, npos
common/power/ ed,Vold,ranode,rcathde . -
common/ssblock/ xp0(5),xx0(5,221),term(221) : -
common/var/ xp{10)},xx(5,221),xi(5,221),xt (5,221, maxt)
common/cprop/ sig,area,ct,dfs,Rad,cmax, rka, rkf, tmmax,g01
common/temp/thk,htc,dudt,Cp,dens,tam,ncell,tin,lht.
common/tprop/df(221),cd(221),tm(221),
1ddf (221),dcd(221) ,dtm(221),dfu{221),d2fu(221)
dimension tt(16),cu(l6) T
44 format(/’ mass = ‘,£f7.4,' kg/m2')
45 format(‘'specific energy = ’,f8.2,’ W-h/kg’) -
46 format(’'specific power ', £8.2," W/kg')

n=5
c n is number of equations
data fc/96487.040/, r/8.31440/, pi/3.14159265358940/
rr=1.0 ! initial time step is 1 s.
c
c********'*****************************************************‘k
print*, ’ FOIL VERSION 2.0’
c Read in and Print out Parameters

read *, lim !limit on number of iterations

read *, hl I!thickness of separator (m)

read *, h2 Ithickness of positive electrode (m)

read *, hcen !thickness of neg. electrode current collector (m)
read *, hcp !thickness of pos. electrode current collector (m)
read *, nl !number of nodes in separator

read *, n2 !number of nodes in positive electrode

read *, t {temperature (K)

1101 format (i7,’ 1lim, limit on number of iterations’

&/1x,f6.2,' hl, thickness of separator (microns)’
&/1x,£f6.2,’ h2, thickness of positive electrode (microns)
&/1x,£f6.2,’ hen, 7,
&’thickness of neg. electrode current collector (microns)’ 1
&/1x,£6.2,' hcp, thickness of pos. electrode current’ ?1
&, ' collector (microns)’ "
&/i7,’ nl, number of nodes in separator’ . :
&/i7,’ n2, number of nodes in positive electrode’ - .
&/1x,f6.2, ' T, temperature (K)’) -
print 1101, lim,1.d46*h1,1.d6*h2,1.d6%*hcn,1.d6*%hcp,nl,n2,t e =
nl=nl+l F O
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nj = nl + n2 )
read *, xi(1,1)'initial concentration {(mol/m3)

read *,csy

!initial stochiometric parameter for electrode

read *, tmmax!maximum time step size (s)

read *, vecut !cutoff potential
read *, dfs !diffusion coefficient in solid (m2/s)
read *, Rad !radius of particles (m)

1102 format (/1x,f6.1,‘ xi(1,1), initial concentration (mol/m3)’
&/1x,£6.2,' csy, initial stoichiometric parameter for electrode’
&/1x,£6.1,’ tmmax, maximum time step size (s)’

&/1x,£6.2,’ wvcut, cutoff potential’

&/1x,e6.1,’ dfs, diffusion coefficient in solid (m2/s)’
&/1x,£6.2,’ Rad, radius of particles (microns) ')

print 1102, xi(1,1),csy,tmmax,vcut,dfs,l.dé6*Rad

read *, ep !vol. frac. of electrolyte in composite electrode
read *, epf !vol. frac. of inert filler in composite electrode
read *, epp !vol. frac. of polymer phase in composite electrode
read *, eps !volume fraction of electrolyte in separator

read *, epps !volume fraction of polyvmer phase in separator
read *, sig !conductivity of solid matrix (S/m)

read *, capt !coulombic capacity of insertion material (mAh/g)
read *, cmax!maximum concentration in electrolyte (mol/m3)

read *, rka
read *, rkf
read *, il4
1103 format (/1x

treaction rate constant for insertion reaction

lexchange current density for lithium foil

11 for polymer, 0 for liquid electrolyte
,£6.2,7 ep,’

&, ! volume fraction of electrolyte in composite electrode’
&/1x,£6.2,' epf,’

&,’ wvolume fraction of inert filler in composite electrode’
&/1x,£6.2,’ epp,’

&,’ volume fraction of polymer phase in composite electrode’
&/1x%x,£6.2,' eps, vol. frac. of electrolyte in separator’
&/1x,£6.2,' epps, vol. frac. of polymer phase in separator’
&/1x,f6.2,' sig, conductivity of solid matrix (S/m)’
&/1x,f6.2,' capt, coulombic capacity of insertion material’
&, ' (mAh/g)’

&/1x,£f6.0,’ cmax, maximum conc. in electrolyte {(mol/m3)°
&/1x,e6.1,’ rka, reaction rate constant for insertion reaction’
&/1x,f6.4,' rkf, exchange current density for lithium foil’
&/17,' 1il4, 1 for polymer, 0 for liquid electrolyte’)

print 1103, ep,epf,epp,eps,epps,sig,capt,cmax,rka,rkf,ild

read *, re
read *, rs
read *, rf
read *, rp
read *, rc

!density of electrolyte (kg/m3)
ldensity of insertion material (kg/m3)
ldensity of inert filler (kg/m3)
'density of polymer phase (kg/m3)
ldensity of separator material (kg/m3)

Fa
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read *, ef lexcess capacity of lithium foil ; E

read *, rcn !density of negative current collector (kg/m3) = pl

read *, rcp !density of positive current collector (kg/m3) — é

1104 format (/1x,£f6.1,' re, density of electrolyte (kg/m3)°’ % E
&/1x,f6.1,' «rs, density of insertion material (kg/m3)° : é

&/1x,£6.1,’ «rf, density of inert filler (kg/m3)‘ -
&/1x,£6.1,' «rp, density of polymer phase (kg/m3)’

&/1x,f6.1,' rc, density of separator material (kg/m3)’
&/1x,£6.3,' ef, excess capacity of lithium foil’ .
&/1x,f6.1,’ rcn, density of neg. current collector (kg/m3)° ‘

&/1x,£6.1,' rcp, density of pos. current collector (kg/m3) ‘)
print 1104, re,rs,rf,rp,rc,ef,rcn,rcp

read *, ranode !anode film resistance
read *, rcathde !cathode film resistance -
read *, htc !heat transfer coeff. with external medium (W/m2K)
read *, dudt !temperature coefficient of EMF (V/K)
read *, Cp theat capacity of cell (J/kgkK)
read *, tam !ambient temperature (K)
read *, ncell!number of cells in a cell stack
read *, lht !0 temp varies, 1 uses htc, 2 isothermal
1105 format (/1x,£6.1,’ ranode, anode film resistance {(ohm-m2)
&/1x,f6.1,’ rcathde, cathode film resistance (ohm-m2)‘
&/1x,£6.2, " h;c, heat transfer coefficient with’
&, ' external medium (W/m2K)
&/1x,f6.2,’ d4duUdT, temperature coefficient of EMF (V/K)’ !
&/1x,£6.1,' Cp, heat capacity of cell (J/kg-K)’ ;
&/1x,f6.2,' Tam, ambient temperature (K)’
&/i7,' ncell, number of cells in a cell stack’ !
&/i7,' 1lht, 0 adiabatic, 1 uses htc, 2 isothermal’) ;

print 1105, ranode,rcathde, htc,dudt,Cp,tam,ncell, lht
read *, ill !1 for long print-out 0 for short print-out

7

read *, il12 !'1/i12 = fraction of nodes in long print-out

read *, 113 !1/i13 = fraction of time steps in long print-out
read *, nprop ! designates electrolyte system
read *, npos ! designates positive electrode system

read *, lcurs! number of current changes
1106 format (/i7,’ ill, 1 for long print-out 0 for short print-out’ - -

&/1i7, 1il2, prints every il2 th node in long print-out’ ‘
"&/17,' 113, prints every il3 th time step in long print-out’
&/1i7,' 1lecurs, number of current changes’)

print 1106, i11,il12,il3,lcurs B
go to (101,102,103,104,105,106),nprop - .
101 print *, ‘AsF6 in methyl acetate’ L
go to 200 :
102 print *, ‘Perchlorate in PEQ’ H
go to 200 ) H
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104

105

106

200
201

202

203

204

205

206

207

208

print
go to
print
go to
print
go to
print
go to
go to
print
go to
print
go to
print
go to
print
go to
print
go to
print
go to
print
go to
print
go to

*, ‘Sodium Triflate in PEO’

200

*, 'LiPF6 in PC (Sony cell simulation)’
200

*, ’'Perchlorate in PC (West simulation) ’
200

*, 'Triflate in PEO’

200
(201,202,203,204,205,206,207,208) ,npos
*, /Tig2’

300

*, ‘Spinel Mn204 (lower plateau)’

300

*, 'NaCo02: Sodium cobalt oxide’

300

*, ’Spinel Mn204 (upper plateau)’

300

*, ’Tungsten oxide (LixWO3 with 0<x<0.67)°
300

*, 'Co02 (Cobalt dioxide)’

300

*, V205 (Vanadium oxide)’

300

*, 'Ni0O2 (Nickel dioxide)’

300

300 read *, (cu(i),tt(i), i=1,lcurs)

cu(i)
tt (1)

operating current density (A/m2)
time (min)

xi(1l,nj)=xi(1,1)
ct=3.6d03*capt*rs/fc
call ekin(1l,1,csy,il4)
xi(2,nj)=g01
xi(2,1)=g01+0.0540

Calculate thickness of lithium foil and full cell:

hli=ef*(1.0d0-ep-epf~epp) *(ct)*(1l.~-csy)*h2*6.941
1/1.0403/542.0d40

thk=hl+h2+hli+hcn+hcp

print*, ‘thicknesses are ‘,hcn,hli,hl,h2,hecp,thk

xi(3,nl)=csy*ct
xi(3,nj)=xi(3,nl)

xi(4,1)=cu(l)
xi(5,nj)=-1.0d-07
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c
tt(1)=6.0401*tt (1)
do 51 i=2,lcurs
51 tt(i)=tt(i-1)+6.0d401*tt (1)
c
c rr is the size of a time step and should equal dt times
c the radius squared over dfs, nt the number of steps
dt=rr*dfs/Rad/Rad
ts(1)=0.040
c
area=3.0d0* (1.0d40-ep-epf) /Rad
sig=sig* ((1.0d0-ep-epf-epp)**(1.540))
hi=hl/dble(nl-1)
h2=h2/dble(n2)
frt=fc/(r*t)
c
print*,’
if (lht.eq.2) then
print*,’ util ‘,° cell pot ‘,’ material’,’ time ’,
1’ time step’
print*,’ 2 L (V) ‘,’ balance’,” (min) -
else
if (lht.eqg.0) then
print*,’ util ',°’ cell pot ’,’ temp ‘,’ heat gen’,
1’ time step’
print*,’ Y ! (V) . (K)o, (T) -
else
if (lht.eqg.l) then
print*,’ util ‘,° cell pot ’,’ htcoeff ’,’ time ’,
1/ time step’
print*, b £, (V) ‘. (W/m2K) ‘, (min) ’
else
continue
end if
end if
end if
c

c**************************************************************

c
call guess(n)
call mass(tw,xre,rs,rf,rp,xc,ef,rcn, rcp)
dens=tw/thk

c

CEE T3 R LA TLIIRLEITVTILLLIEH%%%

c

cur=cu(l)
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call zts(n,lim,2,dt,1,il4)
ol guess/zts set the initial guesses/zero-time-step values.

call cellpot(k,ild,vv,1)

- c
£ iflag=0
£ do 53 1=1,lcurs :
123 k=k+1
nt=k-1
c
c adjust time step to match time of change in current
- if (time .gt. tt(l)) then B
dt=tt (1) *dfs/Rad/Rad-ts(k-1)
; rr=dt*Rad*Rad/dfs
L iflag=1
endif
. .
o ts(k)=ts(k-1)+dt
call calca (k)
| dtnow=rr
‘ call comp(n,lim,k,dt,1,tw,il4, jcount)
i1f (rr.it.dtnow) iflag=0
c sets values for time step k
c
do 10 i=1l,n
o do 10 j=1,nj :
e © 10 xt(i, 3, k) =xx(i,5) )
c
) call cellpot(k,ild,vv,1)
if (vv.lt.wvcut) go to 100 ! cutoff potential exceeded:
c
c Increasing time steps:
if(jcount.lt.6 .and. k.gt.5 .and. 2.0d40*rr.lt.tmmax .and.
1 iflag.eqg.0) then
) dt=4t*2.040
: rr=rr*2.0d0
print*, ‘next time step increased to ', rr,’(s)’
. end if
= if(k.eqg.maxt) then
print*, 'kmax=‘,k,* a larger matrix needed for xt’
g go to 100
. endif 5




C

anticipate time at next time step
time=(ts (k) +dt) *Rad*Rad/dfs

if (iflag .eq. 0) go to 123
cur=cu(l+1)

iflag=0

calculate zero time solution for change in current
if (1 .1t. lcurs) then
k=k+1

ts(k)=ts(k-1)

call zts(n,lim, k,dt,k,114)
call cellpot(k,ild,vv,1)
endif

rr=2.0d40

53 dt=rr*dfs/Rad/Rad

CEEITLLIILLTLETVLELVT ULV TLLLVLLBILIL99%%

C

0O 0 a0

e}

100 if(il11l .eq. 1) call nucamb(n,il2,il3)

call s0l1(10,81)

call so0l(30,81)

call sol(60,81)

call sol(90,81)
ed=ed/tw/3.6d03
pow=3.6403*dfs*ed/ts (k) /Rad/Rad
printd4, tw '
printd5,ed

print4é,pow

call peak(n,lim,il4,cu(l))
end
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c*********************************************************************

subroutine comp(n,lim,kk,tau,li,tw,il4d, jcount)

implicit real*8(a-h,o-2z)

parameter (maxt=900)

common /n/ nx,nt,nl,n2,nj

common /calc/ ai(maxt),u(222,900),ts(maxt),h,hl,h2,hecp,
lhen, rr

common/const/ fec,r,t,frt,cur, ep, epf, eps, epp, epps, pi,nneg,
lnprop, npos

common/power/ ed,Vold, ranode, xrcathde

common/ssblock/ xp0(5),xx0(5,221),term(221)

common/var/ xp(l10),xx(5,221),x1(5,221),xt (5,221, maxt)
common/cprop/ sig,area,ct,dfs,Rad, cmax, rka, rkf, tmmax, g01
common/temp/thk,htc,dudt,Cp,dens, tam,ncell, tin, 1ht
common/tprop/df (221) ,cd(221),tm(221),

] ‘W!va ko sl :‘; A e
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14d£(221),dcd(221) ,d4tm(221) ,dfu(221),d2fu(221)
common/mat/ b,d

common/bnd/ a,c,g,x,y

dimension b{10,10),d(10,21),termn(221)

dimension a(10,10),c(10,221),g(10),x(10,10),y(10,10)

nx=n

continue

if (1i .eqg. 1) then

do 1 j=1,nj

do 1 i=1,n
c(i,j)=xt(i,5,kk-1)

xx(i,j)=xt(i,j, kk-1).
sets first guess to last time step values
else
do 81 j=1,nj
do 81 i=1,n

c{i,j)=xt(i,j,kk)
xx(i,7)=xt(i,j,.kk)
endif
jecount=0
do 4 i=1,n
xp(i)=0.0d0
initialize variables to begin each iteration
(jecount is iteration #)
j=0
jcount=jcount+l
call prop(nj,nl)
obtains physical properties at this specific point
do 9 i=1,n
do 9 k=1,n
x(i,k)=0.0d0
y(i,k)=0.0d0

store previous iteration of (xp in xp0) & (xx in xx0)
do 6 i=1l,n

xp0 (i) =xp(i)

xx0(1i,n1+10)=xx(i,n1+10)

for a given iteration, set up governing equations and bc’s
start at the left interface and move across polymer

j=3+1

do 11 i=l,n
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g(i)=0.0d0 -

do 11 k=1,n
a(i,k)=0.0d40
b(i,k)=0.040
11 d(i,k)=0.0d40 3
clears all arrays before use :1

Equation 1, mass balance

Red alert. if kk.ne.2 but we just changed the current,

we are in trouble.

Also, properties should be evaluated at old time step

(composition and temperature).

if(kk.eg.2 .and. jcount.eqg.l) then

term(j)=0.

epn=eps

=hl

if(j.gt.nl) epn=ep

if(j.gt.nl) hn=h2

fac=l.

if(j.eq.nl+l) fac=(ep/eps)**1.5

if(j.ne.l1l) term(j)=
&-(df(j)+fac*df(j-1))*(c(1,])-c(l,j~1))/hn/2.
&-(1.-0.5*(tm(j)+tm(j-1)))*(c(4,j)+c(4,3-1))/2./fc
if(j.eq.nl) epn=ep

if(j.eq.nl) hn=h2

fac=1.

if(j.eqg.nl) fac=(ep/eps)**1.5

if(j.ne.nj) term(j)=term(j)+
&-(fac*df (j)+df(j+1))*(c(1,j)-c(1,j+1))/hn/2.
&+(1.-0.5*(tm(j)+tm(j+1)) ) *(c(4,3)+c(4,j+1))/2./fc
endif

termn(j)=0.

fac=1.

if(j.eq.nl+l) fac=(ep/eps)**1.5
epn=eps

hn=hl

if(j.gt.nl) epn=ep

if(j.gt.nl) hn=h2 .
if(j.ne.l) then ! deal with box to left of point. :
termn (j)=-(Af(j)+fac*df(j-1))*(c(1,j)-c(1,j-1))/hn/2. .
&-(1.-0.5*(tm(j)+tm(j-1)))*(c(4,j)+c(4,3-1))/2./fc )
a(l,1l)=epn*hn*0.125/rr é;
&-(Af(j)+fac*df(j-1)) /hn/4.+fac*ddf(j-1) *(c(1l,3j)-c(1,3-1)) /hn/4. H
&-dtm(j-1)*(c(4,3)+c(4,3-1))/8./fc
b(1l,1)=epn*hn*0.375/xxr
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&+(df(j)+fac*df(j-1)) /hn/4.+ddf(F)*(c(1,j)-c(1,j-1))/hn/4.
&~dtm(j)*(c(4,j)+c(4,3-1))/8./fc
a(l,4)=(1.-0.5*(tm(j)+tm(j-1)))/4./fc
b(1,4)=(1.-0.5*(tm(j)+tm(j-1)))/4./fc
g(l)=-epn*hn* (0.375*(c(1,j)-xt(1,7,kk-1))
&+0.125* (c(1,3-1)-xt(1,3-1,kk-1)}))/rx

endif

fac=1.

if(j.eqg.nl) fac=(ep/eps)**1.5

if(j.eq.nl) epn=ep

if(j.eq.nl) hn=h2

if(j.ne.nj) then ! deal with box to right of point.

termn(j)=termn(j)-{fac*df (j)+df (j+1))*(c(1l,j)-c(1,j+1))/hn/2.

&+(1.-0.5*(tm(j)+tm(j+1)))*{c(4,3)+c(4,j+1))/2./fc
d(l,1)=epn*hn*0.125/rr

&- (fac*df (j)+df(j+1))/hn/4.+adf(j+1)*(c(1,3)~-c(1,j+1))/hn/4.
&+dtm(3+1) *(c(4,]3)+c(4,3+1))/8./fc
b(1,1)=b(1,1)+epn*hn*0.375/xrxr

&+ (fac*df (j)+df(j+1))/hn/4.+fac*ddf (j)*(c(1l,j)-c(1,3+1)) /hn/4.

&+dtm(j)*(c(4,j)+c(4,j+1))/8./fc
d(1l,4)=-(1.-0.5*(tm(3j)+tm(j+1)))/4./fc
b(1,4)=b(1,4)-(1.-0.5*(tm(j)+tm(j+1)))/4./fc
g(l)=g(l)-epn*hn*{(0.375*(c(1,3)-xt(1,3,kk~-1))

&+0.125%(c(1,j+1)-xt(1,j+1,kk-1)))/rr
endif
g(l)=g(l)+(termn(j)+term(j))/2.

if(j.ne.l) go to 13

specify boundary conditions at left interface (j=1)
boundary conditions at negative electrode
h=hl '

def=(xx(1,j+1)-xx(1,3))/h
rl=(xx(1l,j+1)+xx(1,3))/2.040
pl=(tm(j)+tm(j+1))/2.040
p2=(cd(j)+cd(j+1))/2.0d40
p3=(dtm(j)+dtm(j+1))/2.040
pd=(dfu(j)+dfu(j+1)}/2.040
pb=(d2fu(j)+d2fu(j+1))/2.040
d(2,1)=(1.040-pl)*(1.040/xr1l+pd)/h
b(2,1)=-d(2,1)+((1.040-pl1) *(p6-1.040/rl/rl) *dcf
1 -{1.040/xr1+p4) *dcf*p3)/2.0d40
d(2,1)=d(2,1)+((1.0d0-pl) *(p6-1.040/rl/rl) *dcf
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1 -(1.0d0/r1+pd) *dcf*p3) /2. 0d0 B
d(2,2)=frt/h =
b(2,2)=-frt/h ihoE

g(2)=frt*cur/p2+(1.040-pl1) *(p6-1.040/rl/xrl) *dcf*rl -
1 (1.040/rl+pd) *dcf*p3*rl
&-((1.040-p1)*(1.0d40/r1+p4d)/h)*(c(1,j+1)~c(1,3))
&-(((1.040-pl) *(p6-1.040/rl/rl)*dctE
1-(1.040/xr1+pd)*dcf*p3)/2.040)*{(c(1,])+c(1,j+1))
s+frt/h*(c(2,3)-c(2,3+1))

-

b(3,5)=1.040
g(3)=-c(5,3)
b(4,3)=1.0d0 - T
g(4)=-c(3,3) |
b(5,4)=1.040

g(5)=cur-c(4,3)

call band(3j) a
go to 10

specify governing equations in polymer separator
if (j .ge. nl) go to 110

def=(xx(1,j+1)-xx(1,3))/h
ri=(xx(1l,j+1)+xx(1,3))/2.0d0
pl=(tm(j)+tm(j+1))/2.0d0 !
p2=(cd(j)+cd(j+1))/2.0d0 '
p3=(dtm(j)+dtm(j+1))/2.040
pé4=(dfu(j)+dfu(j+1))/2.040
p5=(decd(j)+dcd(j+1))/2.040
p6=(d2fu(j)+d2fu(j+1))/2.0d40
da(2,1)=(1.040-p1)*(1.040/xr1l+p4)/h
b(2,1)=-d(2,1)+((1.0d40-pl) *(p6-~1.040/rl/xrl) *dcf

1 -(1.040/rl+p4) *dcf*p3)/2.0d40
d(2,1)=d(2,1)+((1.040-pl) *(p6-1.0d40/rl/rl) *dct -
1 -(1.0d40/rl+p4) *dcf*p3)/2.040

d(2,2)=frt/h o
b(2,2)=-frt/h

g(2)=frt*cur/p2+(1.040-pl) *(p6-1.04d0/rl/xrl) *dcf*rl -
1 (1.040/rl+p4)*dcf*p3*rl
&-((1.0d40-p1)*(1.0d0/x1+pd)/h)*(c(1l,j+1)-c(1,3))
&-(((1.040-pl)*(p6-1.040/rl/xrl)*dct :
1-(1.040/xr1+p4) *dct*p3)/2.040)*(c(1l,j)+c(1,3+1)) =
&+frt/h*(c(2,3)-c(2,3+1))
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b(3,5)=1.040
g(3)=-c(5,3)
b(4,3)=1.0d0
g(4)=~-c(3,3)
b(5,4)=1.040
g{(5)=cur-c(4,3)
call band(j)

go to 10

il

I3

Al
o
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7

! c Now for the boundary between cathode and separator{(j=nil):
; 110 if (3 .ne. nl) go to 120

sum=0.0d0

h=h2

def=(xx(1,j+1)-xx(1,3))/h
! ri=(xx(1,3+1)+xx(1,3))/2.040
N rd=(xx(4,j+1)+xx(4,3))/2.040
pl=(tm(j)+tm(j+1))/2.040
" p2=((ep**1.5040) *cd(j) /(eps**1.5d0)+cé(j+1))/2.040
p3=(dtm(j)+dtm(j+1))/2.040
p4=(dfu(j)+dfu(j+1))/2.040
" p5=((ep**1.5040)*dcd(j)/ (eps**1.5d0)+écd(j+1))/2.040
pb6=(d2fu(j)+d2fu(j+1))/2.040
d(2,1)=(1.040-pl)*(1.040/rl+pd)/h
=y b(2,1)=—-4(2,1)+((1.040-pl) *(p6-1.040/xr1/rl) *dcE
) 1 -(1.040/rl+p4d) *dcf*p3+frt*rd*pS5/p2/p2)/2.040
d(2,1)=A4(2,1)+((1.040-pl) * (p6-1.040/r1/rl) *dct
, 1 -(1.040/rl+pd)*dcf*p3+frt*rd*ps/p2/p2)/2.040
TJ d(z2,2)=frt/h
N b(2,2)=-frt/h
b(2,4)=-frt*(1.040/p2+1.040/sig)/2.04C
d(2,4)=b(2,4)
g(2)=-frt*cur/sig + (1.040-pl)*(p6-1.040/xrl/xl)*dcf*rl
1 -(1.040/rl+pd) *dcf*p3*ri+frt*rd*pS*rl/p2/p2
1-((1.040-p1)*(1.040/rl+p4) /h)*(c(1,j+1)-c(1,3))
1-(((1.040-pl)*(p6-1.040/rl/xrl)*dcf
1-(1.040/r1+p4d) *dcf*p3+frt*rd*p5/p2/p2)/2.040) *(c(1,3)+c(1l,3+1))
‘ ’1+frt/h*(c(2,j)—c(2,j+l)) -
= 1+frt*(1.040/p2+1.040/sig)/2.040* (c (4,3)+c(4,3+1))

- call ekin(3,0,0,114) :

if (kk .gt. 2) then

- sum=0.0d0

do 54 i=1, kk-2
if(ts(i+l)-ts(i).gt.0.0)




0000

lsum=sum + (xt(3,j,i+l)-xt(3,37,i))*ai(kk-i)/(ts(i+l)-ts(i))

54 continue
else sum=0.0d40
end if
b(4,3)=ai(l)/rr
b{4,5)=1.0d40/Rad

g(4)=ai(l)*(xt(3,j,kk-1)-c(3,3))/rr-sum*dfs/Rad/Rad-c(5,j) /Rad

b(5,4)=1.040
g{5)=cur-c(4,3)

call band(3)
go to 10

120 if (j .eqg. nj) go to 16

specify governing equations [ nl+l < j < nj ]
composite cathode

sum=0.0d0
h=h2

def=(xx(1,3+1)-xx(1,3))/h
ri={xx(1,j+1)+xx(1,3))/2.040
rd={(xx(4,j+1)+xx(4,3)})/2.040
pl=(tm(j)+tm(j+1))/2.040
p2=(cd(j)+cd(j+1))/2.0480
p3=(dtm(j)+dtm(j+1))/2.040
p4=(dfu{j)+dfu(j+1))/2.040
p5=(dcd(j)+dcd(j+1))/2.040
p6=(d2fu(j)+d2fu{j+1))/2.040
d(2,1)=(1.0d0—p1)f(l.OdO/rl+p4)/h
b(2,1)=-4(2,1)+((1.040-pl)* (p6-1.040/rl/x1l)*dct

1 -(1.0d0/xr1+p4)*dcf*p3+frt*rd*p5/p2/p2)/2.0d40

d(2,1)=d(2,1)+((1.0d0-pl)*{(p6-1.0d40/xr1/xrl) *dcf

1 -(1.0d40/r1+p4) *dcf*p3+frt*rd*p5/p2/p2)/2.040

d(2,2)=£frt/h
b(2,2)=-frt/h
b(2,4)=-frt*(1.040/p2+1.0d40/sig)} /2.0d0
d(2,4)=-frt*(1.0d0/p2+1.0d40/sig}/2.0d0

g(2)=-frt*cur/sig + (1.0d40-pl)*(p6-1.040/rl/rl)*dcf*rl -

1 (1.040/rl+p4) *dcf*p3*rl+frt*rd*pS*rl/p2/p2
1-((1.0d0-p1l}*(1.0d40/x1+p4)/h)*(c(l,j+1)-c(1,3})
1-(((1.040-pl) *(p6-1.040/rl/rl) *dct

1-(1.040/r1+p4 ) *dcf*p3+frt*rd*pS5/p2/p2)/2.040) *(c(1,3)

1+c(1l,3+1))+fre/h*{c(2,3)-c(2,3+1))
1+frt*(1.0480/p2+1.0d0/sig) /2.040* (c(4,3)+c(4,3+1))
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call ekin(3j,0,0,i14)

c
g% if (kk .gt. 2) then
sum=0.0d40
do 56 i=1, kk-2 =
if(ts(i+l)-ts(i).gt.0.0)
lsum=sum + (xt(3,3j,i+1)-xt(3,3j,1))*ai(kk-1i)/(ts(i+1)-ts(i))
56 continue ,
else sum=0.0d0
end if
b(4,3)=ai(l)/xxr
b(4,5)=1.040/Rad
=3 g{4)=ai(1l)*(xt(3,3,kk-1)~c(3,3))/rr-sum*dfs/Rad/Rad
1-¢(5,3)/Rad

w b(5,4)=-1.040/h
a(5,4)=1.040/h

B b(5,5)=area*fc/2.0d0

g a(5,5)=area*fc/2.0d0
g(5)=-area*fc/2.40*(c(5,j)+c(5,7-1))}+(c(4,3)-c(4,3-1))/h

call band(j)
go to 10

16 continue _
c specify boundary conditions at right interface(j=nj)

" sum=0.0d4d0
i c the "irrefutable" boundary conditions:

i g(2)=_C(4/j)
! b(2,4)=1.0

- call ekin(j,0,0,1i14)

if (kk .gt. 2) then
sum=0.0d0
g do 57 i=1, kk-2 ’ z
. if(ts(i+l)-ts(i).gt.0.0) .
Isum=sum + (xt(3,j,i+1)-xt(3,37,1i))*ai(kk-1i)/(ts(i+l)-ts(i)) :
3 57 continue -
b else sum=0.0d0
end if
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b(4,3)=ai(l)/rr
b(4,5)=1.040/Rad

g(4)=ai(l)*(xt(3,j,kk-1)-c(3,7))/rr-sun*dfs/Rad/Rad
1-c(5,3)/Rad

b(5,4)=-1.040/h

a({5,4)=1.040/h

b(5,5)=area*fc/2.0d40

a(5,5)=area*fc/2.0d40

g(5)=-area*fc/2.d40* (c(5,j)+c(5,3-1))+(c(4,j)-c(4,3-1))/h

call band(j)
do 605 jj=1,nj
do 605 i=1,n

605 c(i,jj)=xx(i,jjl+c(i,37)

58

begin check for convergence

nerr=0

do 58 i=1,n
xp(i)=(4.040*c(1,2)-3.0d0*c(1,1)-c(i,3))/2.040/h
do 25 j=1,nj

shoe horns:

if(e(l,3).1t.xx(1,3)/100.) c(1,7)=xx(1,3)/100.
if (cmax-c(1,j).le. {(cmax-xx(1,3j))/100.)
lc (1, j)=cmax- (cmax-xx(1,3))/100.

if(c(l,j).ge.cmax) c(1,3)=0.999999*cmax
if(c(2,3).1t.%xx(2,3)-0.2) c(2,j)=xx(2,3)~-0.2
if(c(2,7).gt.xx(2,3)+0.2) c(2,5)=xx(2,3)+0.2
if(e(3,7).1t.xx(3,3)/1.42) c(3,3)=%xx(3,3)/1.d2 ! use cs min
if(ct-c(3,3).le. (ct-xx(3,3))/1.42) then
nerr = nerr+l
c{3,j)=ct-(ct-xx(3,3))/1.42

endif

if(c(3,j).-ge.ct) c(3,3)=0.999999*ct

to avoid underflow or overflow:
if(c(1,3).1t.1.04-12) c(1,j)=1.048-12
if(c(l,3).1t.1.04-04) <(5,3)=0.0d40

do 25 i=1,n

xx(i,3)=c(i,])

if (jcount .gt. lim ) then

if (rr .lt. 1.d4-2) then

print*,kk, ‘ this time step did not converge’
jcl=0

i i 1‘jr
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B _
£] jc3=0 z
& do 59 j=nl,nj E-
if(c(1,5).1e.1.0d-10) jel=jel+l :
) if(c(3,5).ge.0.9999%ct) je3=jc3+l :
= 59 continue £
- if(jcl.gt.0) print*, 'Depletion of Li occurs'’ :
- if(jc3.gt.0) print*,’'Saturation of Li occurs’ :

nt=nt-1
ed=ed/tw/3.6d4d03

o pow=3.6d03*dfs*ed/ts (nt+1) /Rad/Rad
print*, ‘energy is ‘,ed.
print*, ‘power is ‘,pow :
call nucamb (n,2,30)
=3 stop
else
; tau=tau/2.0d0
g rr=rr/2.0d40
ts(kk)=ts(kk-1)+tau
;W print*,’ time step reduced to ', rr -
i call calca(kk)
go to 666
'] end if
i, c
else
”} if {(nerr.ne.0) go to 8

do 55 ii=l,n
errlim=1.d4-10
1 if(ii.eq.5) errlim=1.d-16
J dxp=dabs( xp(ii)-xp0(ii) )
dxx=dabs( xx{(ii,nl+10)-xx0(ii,n1+10) )
: if (dxx.gt.l.d-9*dabs(xx(ii,nl1+10)).and.dxx.gt.exrrlim)

: 1go to 8

‘ if (dxp.gt.l.d-7*dabs(xp(ii)).and.dxp.gt.errlim) go to 8

. 55 continue

c
print*,jcount,’ iterations required’

- ! C

; C= =~ = = = = = = = = - = = = = = - - - - - - - - - - - - .- - -
R do 60 j=1,nj

60 term(j)=termn(j)

end if

;J c
§ return

end

R T
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c*********************************************************************

61

62

63

64

subroutine calca(kk)
implicit real*8(a-h,o-z)
parameter (maxt=900)
common /n/ nx,nt,nl,n2,nj

common /calc/ ai(maxt),u(222,900),ts(maxt),h,hl,h2,hcp,

lhen, xrr

common/const/ fc,r,t,frt,cur,ep,epf, eps, epp, epps, pi,nneg,

lnprop,npos
dimension ar(2,maxt)

5=1.64493406684840

do 64 i=1,kk-1
ar(l,i)=ts(kk)-ts(i)
ar(2,i)=ts(kk)-ts(i+l)
do 63 m=1,2

tl=ar(m,i)

al=0.0d40

if(tl .gt. 0.06d4d0) then

do 61 j=1,5

da=(expf (-dble(j*j) *pi*pi*tl))/j/j
al=al+da

al=2.040*(s~al)/pi/pi

else

if(tl .eg. 0.0d40) then

al=0.0d40 ’

elge

do 62 j=1,3

z=dble(3j) /dsgrt(tl)

call erfc(z,e)
da=expf{~-dble(j*j)/tl)~-dble(j)*dsgrt(pi/tl) *e
al=al+da

al=-tl + 2.0480*dsqgrt(tl/pi)*(1.040+2.040*al)
end if

end if
ar(m,i)=al

ai(kk-i)=ar(l,i)-ar(2,1i)

A
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return
= end
3 C********'k************************************************************
§J subroutine erfc(z,e)
EY implicit real*8(a-h,o-z)
common/const/ fc,r,t,frt,cur,ep,epf, eps, epp, epps, pi,nneqg,
lnprop,npos

PR

al=0.254829592d0

a2=-0.2844967364d0

a3=1.4214137414d0

ad=-1.453152027d0

a5=1.061405429d0

if(z .lt. 2.747192d0) then

— £2=1.0d0/(1.0d0+0.3275911d0*z)
e=(al*t2+a2*t2*t2+a3*t2**3.0d0+ad*t2**4 . 0d0

t 1+a5*t2**5_0d0) *expf (-z*z)

u,ﬁ else

ek

f{ if (z .gt. 25.0d40) then
- e=0.0d0
else

] c
| sum=0.040
max=z*z + 0.5
S fac=-0.5d40/z/z
o sum=fac
tl=fac
e n=1
i 10 n=n+l
- if(n .gt. max) go to 15
tn=tl*(2.0d4d0*n-1.0d40) *fac
sum=sum + tn
if(tn .1lt. 1.04-06) go to 15
tl=tn
go to 10
15 e=(expf(-z*z))*(1.040+sum)/dsqgrt(pi)/z
, end if
end if

return

end
c****************'k****************************************************

subroutine band(j)

implicit real*8(a~h,o-z)

common /n/ nx,nt,nl,n2,nj

common/mat/ b,d
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common/bnd/ a,c,g,x.,y
dimension b(10,10),d(10,21)
dimension a(10,10),c(10,221),g9(10),x(10,10),y(10,10)
dimension e(10,11,221)
101 format (15h determ=0 at j=,id)
n=nx
if (j-2) 1,6,8
1 npl=n+ 1
do 2 i=1,n
d(i,2*n+1l)= g{i)
do 2 1=1,n
lpn= 1 + n
2 d(i,lpn)= x(i,1)
call matinv(n,2*n+l,determ)
if (determ) 4,3,4
3 print 101, 3
4 do 5 k=1,n
e(k,npl,1)= d(k,2*n+1)
do 5 1=1,n
e{k,1,1)= -~ d(k,1)
ipn= 1 + n
5 x(k,1)= - d(k,1pn)
return
6 do 7 i=1,n
do 7 k=1,n
do 7 1=1,n
7 d(i, k)= Ad(i,k) + a(i,1)*x(1,k)
8 if (j-nj) 11,9,9
9 do 10 i=1,n
do 10 1=1,n
g{i)= g(i) - y(i,1l)*e(l,npl,;j-2)
do 10 m=1,n
10 a(i,1l)= a(i,l) + y(i,m)*e(m,1,3-2)
11 do 12 i=1,n
d(i,npl)= - g(i)
do 12 1=1,n
d{i,npl)= d(i,npl) + a(i,l)*e(l,npl,j-1)
do 12 k=1,n
12 b(i,k)= b(i,k) + a(i,l)*e(l,k,J-1)
call matinv(n,npl,determ)
if (determ) 14,13,14
13 print 101, 3
14 do 15 k=1,n
do 15 m=1,npl
15 e{k,m,j)= - d(k,m)
if (j-nj) 20,16,16

[
E| =
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16 do 17 k=1,n
17 c(k,j)= e(k,npl,3)
do 18 jj=2,nj
m=nj - jj + 1
do 18 k=1,n
c(k,m)= e(k,npl,m)
do 18 1=1,n
if(e(k,l,m).ne.0.0 .and. c(1,m+l) .ne.0.0) then
if(dlog(dabs(e(k,1l,m)))+dlog(dabs(c(l,m+1))).gt.-200.0)
&clk,m)= c(k,m) + e(k,1l,m)*c(l,m+1l)
endif
18 continue
do 19 1=1,n
do 19 k=1,n
19 c(k,1)= c(k,1) + x{k,1)*c(1,3)
20 return
end
c*********************************************************************
subroutine matinv(n,m, determ)
implicit real*8(a-h,o-z)
common/mat/ b,d
dimension b(10,10),d(10,21)
dimension id(10)
determ=1.0
do 1 i=1,n
1 id(i)=0
do 18 nn=1,n
bmax=1.1
do 6 i=l,n
if(id(i) .ne.0) go to 6
bnext=0.0
btry=0.0
do 5 j=1,n
if(id(j).ne.0) go to 5
if (dabs(b(i,j)).le.bnext) go to 5
bnext=dabs (b(i,j))
if (bnext.le.btry) go to 5

bnext=btry
btry=dabs(b(i,j))
je=j

5 continue
if (bnext.ge.bmax*btry) go to 6
bmax=bnext /btry
irow=i
jcol=jc
6 continue
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C*********************************************************************
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if(id(jc).eq.0) go to 8
determ=0.0

return

id(jcol) =1
if(jcol.eqg.irow) go to 12
do 10 j=1,n
save=b(irow, j)
b(irow,j)=b(jcol,Jj)
b(jcol,j)=save

do 11 k=1,m
save=d(irow, k)
d(irow,k)=d(jcol. k)
d(jcol, k) =save
f=1.0/b(jcol,jcol)

do 13 j=1,n
b(jcol,j)=b(jcol,j)*£f

do 14 k=1,m
d(jcol,k)=d(jcol,k)*f

do 18 i=1,n

if(i.eq.jcol) go to 18
f=b (i, jcol)

do 16 j=1,n
b(i,3)=b(i,j)-£f*b(jcol,]) .
do 17 k=1,m i
d(i,k)=d4(i,k)-f*d(jcol, k)

continue
return
end

Y
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subroutine nucamb(n,il12,il3)

implicit real*8(a-h,o-z)

parameter (maxt=900)

common /n/ nx,nt,nl,n2,nj

common /calc/ ai(maxt),u(222,900),ts(maxt),h,hl,h2,hcp,
lhcn, rr

common/const/ fc,r,t,frt,cur,ep,epf,eps,epp,epps,pi,nneg,
inprop, npos

common/power/ ed,Vold, ranode, rcathde

common/var/ xp(l0),xx(5,221),xi(5,221),xt (5,221, maxt)
common/cprop/ sig,area,ct,dfs,Rad, cmax,rka,rkf, tmmax,g0l
common/temp/thk, htc,dudt,Cp,dens, tam, ncell, tin, 1ht
common/tprop/df (221),cd(221),tm(221),
1ddf(221),dcd(221) ,dtm(221),dfu(221),d2fu(221)

dimension zz(221)

format(£7.1,, *,£7.1,’, ',£7.4,¢, '£f12.8,', ’,gl2.4

R
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5 1,7, ',gl2.4) c
= 309 format(£8.5,’, ,6£8.5) E
B 44 format(’'t = ’,£7.2,’ min’) :
E do 5 i=1,nl :
w=i-1 ?
f]{ 5 2z (i) = w*hl*1.0d06
o do 7 i=nl+1,nj :
w=i-nl .
p 7 =zz(i) = zz(nl)+w*h2*1.0406
c
do 11 1=1,nt+l
if (1.lt.nt-5.and.mod(1~-1,il3).ne.0.and.l.ne.nt+l) go to 11
— print*, ' ) -
print*, ‘distance concen potential v solid-’,
| 1 current j’
[ print*, ‘microns (mol/m3) (V) ,
1 (A/m2) (mol/m2-s) ’ '
fy ~ printd4,ts(1l)*Rad*Rad/dfs/60.0d0
B! do 10 j=1,nj,il2 »
10 printl09,zz(j),xt(1,3,1),xt(2,3,1),xt(3,3,1)/ct,xt(4,3,1),
< 1xt(5,3,1)
‘ 11 continue
i c
' return
o end
;; c*********************************************************************
- subroutine guess(n)
f% implicit real*8(a-h,o0-2z)
) parameter (maxt=900)
- common /n/ nx,nt,nl,n2,nj
! common /calc/ ai(maxt),u(222,900),ts(maxt),h,hl,h2, hcp,
L lhen, rx
Y common/const/ fc,r,t,frt,cur,ep,epf, eps, epp, epps, pi,nneqg,
1lnprop,npos
LY common/var/ xp(1l0),xx(5,221),x1i(5,221),xt(5,221,maxt)
- common/cprop/ sig,area,ct,dfs,Rad, cmax, rka,rkf, tmmax, g01
y common/temp/thk, htc,dudt,Cp,dens, tam,ncell, tin, 1ht
A common/tprop/df (221),cd(221),tm(221),
1ddf(221),dcd (221),dtm(221) ,dfu(221),d2fu(221)
%} dimension del(5)
R c

del(2)=cur*h2/2.0d4-02

del (4) =cur/dble(n2)
del(5)=(xi(5,nj))/dble(nj-1)
xi(4,1)=cur _ ” :
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do 71 i=1,ni1-1
xi(3,1)=0.040
xi(4,1)=cur

71 xi(5,i)=0.0d0
do 72 i=nl,nj i? :
xi(3,1i)=xi(3,nl) : -
xi(4,1i)=xi(4,1)-del(4)*(i-nl) '

72 xi(5,1i)=xi(5,nj)

do 15 i=1,nj

xt(5,1,1)=xi(5,1)
xt(4,1,1)=xi(4,1i)
xt(3,1i,1)=x1(3,1)

c xi(2,1)=xi(2,1)+del (2)*(i-1)
xt(2,i,1)=xi(2,1)
xi(l,1i)=xi(1,1)

15 xt(1,i,1)=xi(1,1)

return
end
c*********************************************************************

subroutine util

implicit real*8(a-h,o-2z)

parameter (maxt=900)

common /n/ nx,nt,nl,n2,nj

common /calc/ ai(maxt),u(222,900),ts(maxt),h,hl,h2,hcp,
lhen, rr (
common/const/ fc¢,r,t,frt,cur,ep, epf, eps, epp, epps,pi,nnegqg,
lnprop, npos

common/var/ xp(10),xx(5,221),xi(5,221),xt (5,221, maxt)
common/cprop/ sig,area,ct,dfs,Rad, cmax,rka,rkf, tmmax, g0l

do 10 j=nl,nj
u(j,1)=0.040 C
do 76 k=2,nt+l
76 u(j,.k)=u(j, k-1)-1.540*(xt(5,3,k)+xt(5,3,k-1))*rr/Rad
do 77 k=2,nt+l
77 ulj.k)=(u{j, k)+xt(3,3,1))/ct
u{j,l)=xt(3,3j,1)/ct
10 continue
do 79 k=1,nt+1
u(nj+1,k)=0.040
do 78 j=nl+l,nj-1 :
78 u(nj+l,k)=u(nj+1,k)+u(j, k) :
u(nj+1,k)=u(nj+1,k)+0.5d30* (u(nl,k)+u(nj, k))
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79 u(nj+l,k)=u(nj+l,k)/(nj-nl)

return
end

c**************************************************************

0

311

127

subroutine peak(n,lim,il4,curr)

implicit real*8(a-h,o-z)

parameter (maxt=900)

common /n/ nx,nt,nl,n2,nj

common /calc/ ai(maxt),u(222,900),ts(maxt),h,hl,h2, hecp,
lhen, rr

common/const/ fc,r,t, frt,cur,ep,epf,eps, epp, epps,pi,nney,
inprop, npos

common/power/ ed,Vold, ranode, rcathde

common/var/ xp(1l0),xx(5,221),x1(5,221),xt (5,221, maxt)
common/cprop/ sig,area,ct,dfs,Rad, cmax, rka,rkf, tmmax, g01
common/temp/thk, htc, dudt, Cp, dens, tam,ncell, tin, 1ht
format (£f8.5,, ’,£7.3,’, ',£7.2)

Peak power current ramp section:

print*,’

print*,’ PEAK POWER '

print*,

print*, ‘cell pot ',’ current’,’ power’

print*,’ (V) /.’ (A/m2)’,’ (W/m2) ’
Duration of current pulse is 30 seconds.

1i=0

fact=5.0d40

k=nt+2

rr=0.240

rrmax=30.0d0
dt=dfs*rr/Rad/Rad
ts(k)=ts(k-1)+rr*dfs/Rad/Rad
call calca(k)

opow=0.0

. ppow=0.0

call cellpot(k-1,il4,vv,60)
vliast=vv

ii=0

1flag=1

curinit=curr.

cur=curr

Ramp current:
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129

40

if (ppow.ge.opow.and.ii.lt.200) then

OpPOW=pPPOw
ocur=cur

energ=0.0

ii=ii+l

cur=cur+fact

kkflag=0

iflag=0

1i=0

k=nt+2

timpk=0.040

rr=0.240

call zts(n,lim,k,dt,k,il14)
call cel;pot(k,il4,vv,0)
vliast=vv

kkflag=kkflag+l
dt=dfs*rr/Rad/Rad
ts(k)=ts(k-1)+rr*dfs/Rad/Rad
call calca(k)

call comp(n,lim,k,dt,1,tw,il4,jcount)
do 40 i=1l,n
do 40 j=1,nj

xt(1,],k)=xx(i,3)

call cellpot(k,il4,vv,0)

energ=energ+ (vliast+vv) * (ts(k)~ts(k~1)) *cur*Rad*Rad/dfs/2.0480

timpk=timpk+rr
if (dabs(timpk-30.040).gt.0.1) then

if (timpk.lt.30.0) then
k=k+1

vlast=vv

Increasing time steps:

if(jcount.lt.6 .and. kkflag.gt.5 .and.
1+timpk) .1t.30.040 .and. iflag.eqg.C) then

dt=dt*2.0d0
rr=rr*2.0d40

print*, ‘next time step increased to ’,

end if
if(timpk+rr.gt.30.0) iflag=1
if (timpk+rr.gt.30.0) rr=30.040-timpk

(2.040*rr
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: go to 129 é
; end if ol
. c 1
§1 end if :
By ppow=energ/30.0d0 .
print 311, ppow/cur,cur,ppow E
51 go to 128
o c ]
; else B
f? if (ii.gt.2.and.lflag.eq.0) print 311, opow/ocur,ocur, opow
if (1flag.eqg.l) then
OpOoW=ppow :
cur=cur-2.0*fact
- fact=1.0d0 -
1flag=0
‘[} go to 128
! end if
c
-t end if
| if (ii.le.2) then
curr=curinit/2.0
’} go to 127
: end if
c
';35 return
f? end
" c*********************************************************************
| subroutine cellpot(kk,il4,v,1i)
?J implicit real*8(a-h,o0-2z)
N parameter (maxt=900)
, common /n/ nx,nt,nl,n2,nj
| common /calc/ ai(maxt),u(222,900), ts(maxt),h,hl,h2,hecp,
v ilhen, rx
common/const/ fc,r,t,frt,cur,ep,epf, eps, epp, epps,pi,nneqg,
ilnprop,npos
Y common/power/ ed,Vold, ranode, rcathde
;; common/var/ xp(1l0),xx(5,221),x1(5,221),xt (5,221, maxt)
: common/cprop/ sig,area,ct,dfs,Rad, cmax, rka,rkf, tmmax, g0l
N common/temp/thk, htc,dudt, Cp, dens, tam,ncell, tin, lht
N 309 format(f8.5,’, ',f8.5,', ’',£7.3,‘, ',£8.3,", ‘,13) :
ol 319 format(£8.5,’, ‘,£7.3,', *,£7.2,', ',£7.2,", *,£7.2) 5
(. 1im=20 ' .
. c ' :
= if (il4 .eqg. 1 ) then
& c For polymer PEO elyte:

x0=rkf* (dsgrt((cmax-xt (1,1,kk))*xt(1,1,kk)})

U )
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else

For liquid PC elyte:
x0=rkf* (dsqrt(xt(1,1,kk)))
end if

p20=-0.01d0
p2=p20
jecount=0

jecount = jcount +1
p20=p2
al=0.33d0*frtc
cl=0.67d0*£frt

p2=-cur/x0+(1.040+p20*al) *expf (-p20*al)
1-(1.040-p20*cl) *expf (p20*cl)
p2=p2/(al*expf (-al*p20)+cl*expf(cl*p20))

if{jcount .gt. lim) then

print*, ‘jcount ‘,jcount

stop

else

dx=dabs (p2-p20)

if(dx .gt. dabs(1.04-09*p2)) go to 8
end if

sum=0.0d0

print*, ‘overpotential is ’,p2

do 85 j=nl+l,nj-1

sum=sum+xt (4, j,kk) *h2
sum=sum-cur*h2*dble(nj-nl)+0.5*h2* (xt(4,nl,kk)+xt (4,nj,kk))
v=xt(2,1,kk) +p2-cur*ranode +sum/sig

Material balance criteria:
sum=0.0480

do 86 j=2,nl-1

sum=sum+xt (1, 3,kk)*hl*eps

sum=sum+ (xt(1,1,kk})+xt(1,nl,kk))*hl*eps/2.0d40
do 87 j=nl+l,nj-1

sum=sum+xt (1, j, kk) *ep*h2

sum=sum+ (xt (1,nl, kk)+xt(1l,nj,kk))*h2*ep/2.0d40
w=xt(1,1,1)*((nl-1)*hl*eps+n2*ep*h2)

ca=sum/w )
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th=ts (kk) *Rad*Rad/dfs/60.0
Volume fraction filler is epf:
if(kk .le. 2) ut=xt(3,nl,1l)/ct
rd4=0.0
if(kk.gt.1)
&réd=(ts(kk)-ts(kk-1))*Rad*Rad/dfs
ut=ut + cur*r4/fc/(1.040-ep-epf)/dble(nj-nl)/h2/ct
if (lht.ne.2) call temperature(kk,v,q,ut;Uoc,il4d)
tprint is the uniform cell T in deg celsius
tprint=t-273.15 '
print 308, 1l.+ut,v,ca,th,kk ! lower plateau for Mn204 only
if(li.eg.1l) then
if (lht.eqg.2) print 309, ut,v,ca,th,kk
if (lht.eq.0) print 309, ut,v,tprint,q,kk
if (lht.eq.l) print 309, ut,v,htc,q,kk
endif
if (kk.ge.maxt-2) print *, ‘warning: k is approaching kmax!’
if(kk .le. 2) ed=0.040
if(kk.gt.1)
&ed=ed+ (Vold+v) * (ts(kk) ~ts (kk-1) ) *cur*Rad*Rad/dfs/2.0d40
Vold=v
return
end
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c*********************************************************************

88

subroutine sol(nmax,3jj)

implicit real*8(a-h,o0-2z)

parameter (maxt=900)

common /calc/ ai{maxt),u(222,900),ts(maxt),h,hl, h2, hep,
lhen, rr

common/var/ xp(10),xx(5,221),xi(5,221),xt(5,221,maxt)
common/const/ fc,r,t,frt,cur,ep,epf,éps,epp,epps,pi,nneg,
lnprop,npos

common/cprop/ sig,area,ct,dfs,Rad,cmax,xrka,rkf, tmmax, g0l
common/temp/thk, htc,dudt,Cp,dens, tam,ncell, tin, 1ht
dimension cs(50)

set initial value of solid concentration
do 88 i=1, 50

cs(1)=0.0d0

cs(i)=xt(3,33,1)

complete calculations for 50 points along radius of particle
do 10 i=1,50
yv2=2.04~-02*i
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suml=0.0d0
do 20 kk=1,nmax
k=nmax+1-kk

tl=(ts(nmax+l)-ts(k))
print*, tl
sum2=suml

calculate ¢ bar (r,tl)

suml=0.0d40
r1l=1.0d40

do 89 3j=1,15

ri=-rl

yl=j*j*pi*pi*tl
y3=j*pi*y2

if (y1 .gt. 1.50d402) then
da=0.0d40

else

da=expf (-y1)

end if
suml=suml-2.0d0*rl*da*dsin(y3)/Jj/pi/y2
suml=1.0d0-suml

perform superposition

cs(i)=cs(i)+(xt (3,737, k+1)+xt(3,77,k)-2.040*xt (3,335,1)
1) *(suml-sum2)/2.040
continue

continue

print*,’

print*, ts(nmax)
print*, ' ¢

do 90 i=1, 50, 1
print*, .02%i,’ ’,cs(i)
return

end

\C*********************************************************************

subroutine mass(tw,re,rs,rf,rp, rc,ef,rcn, rep)

implicit real*8(a-h,o-z)

parameter (maxt=900)

common /n/ nx,nt,nl,n2,nj

common /calc/ ai(maxt),u(222,900),ts(maxt),h,hl,h2,hcp,



lhen, rx

common/const/ fc,r,t,frt,cur,ep,epf, eps,epp, epps,pi,nneg,
1nprop, npos

common/var/ xp(10),xx(5,221),xi(5,221), xt(S 221 ,maxt)
common/cprop/ sig,area,ct,dfs,Rad, cmax,rka,rkf, tmmax, g0l
common/temp/thk, htc, dudt,Cp,dens, tam,ncell, tin, 1ht

309 format(£f8.5,’, ’,f8.5,’, ’,f8.5,’, ',f8.5)
c
c mass of positive electrode
cl=h2*n2* (re*ep+rp*epp+rs*(1.040~-ep-epf-epp)+rf*epf)
c
c mass of separator
s={(re*eps+rp*epps+rc*(1l.0d0-eps-epps) ) *hl*(nl-1)
c
c mass of negative electrode
al=ef*(1.0d0-ep-epf-epp)*(ct)*h2* (n2)*6.941/1.0403
c mass of current collectors
ccl=hcn*xrcn+hep*rep
tw=cl+s+al+ccl
c print309,al,s,cl,tw
c
return
end

155

c*********************************************************************

subroutine zts(n,lim,kk, tau,li,ils)

implicit real*8(a-h,o-z)

parameter (maxt=900)

common /n/ nx,nt,nl,n2,nj

common /calc/ ai{maxt),u(222,900),ts(maxt), h,hl, h2, hep,
lhen, rr

common/const/ fc,r,t, frt,cur,ep,epf, eps, epp, epps, pi, nneqg,
lnprop, npos

common/ssblock/ xp0(5),xx0(5,221),term(221)

common/var/ xp(l0),xx(5,221),xi(5,221),xt(5,221, maxt)
common/cprop/ sig,area,ct,dfs,Rad,cmax,rka,rkf, tmmax, g0l
common/temp/thk, htc,dudt, Cp, dens, tam,ncell, tin, 1ht
common/tprop/df (221),cd(221),tm(221),
14ddf(221),dcd(221),8tm(221) ,dfu(221),42fu(221)
common/mat/ b,d

common/bnd/ a,c,g,x,y

dimension b(10,10),d4(10,21)

dimension a(10,10),¢(10,221),g(10),x(10,10),y(10,10)

99 format (1h ,//5x,’this run just did not converge’//)
nx=n
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do 1 j=1,nj
do 1 i=1,n
c(i,jr=xt(i,j,kk-1)
xx(i,j)=xt(i,j,kk-1)
sets first guess to last time step values
jcount=0
do 4 i=1,n
xp(i)=0.0d40
initialize variables to begin each iteration
(jecount is iteration #)
3=0
jcount=jcount+1l
call prop(nj,nl)
obtains physical properties at this specific point
do 9 i=l,n
do 9 k=1,n
x(i,k)=0.0d0
v(i,k)=0.0d0

store previous iteration of (xp in xp0) & (xx in xx0)
do 6 i=1,n

xp0(i)=xp(i)

xx0(i,nl1+10)=xx(i,nl1+10)

for a given iteration, set up governing equations and bc’s
start at the left interface and move across polymer

j=3j+1

do 11 i=1,n
g(i)=0.0d0
do 11 k=1,n
a(i,k)=0.040
b(i,k)=0.0d40
d(i,k)=0.0d40
clears all arrays before use
if(j.ne.l) go to 13

specify boundary conditions at left interface (j=1)
boundary conditions at negative electrode
h=hl

b(1,1)=1.040
g(l)=xt(1,j,kk~-1)-c(1,3)
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def=(xx(1,j+1)-xx(1,3)})}/h
rl=(xx(1,j+1)+xx(1,3))/2.040
pl=(tm(j)+tm(j+1))/2.040
p2=(cd(j)+cd(j+1))/2.040
p3=(dtm(j)+dtm(j+1))/2.0d0
pd=(dfu(j)+dfu(j+1))/2.040
pé=(d2fu(5)+d2fu(j+1))/2.040
d(2,1)=(1.0d0-pl1)*(1.040/x1+p4d) /h
b(2,1)=-d(2,1)+((1.0d40-p1) *(p6-1.040/rl/rl) *dcf

TS QAR SRR A ]

G

[

1 -(1.040/rl+p4) *dcf*p3)/2.0d0
d(2,1)=d(2,1)+((1.0d0-pl) * (p6-1.0d0/rl/rl) *dcf
1 ~(1.040/rl+pd) *dcf*p3)/2.0d0

d(2,2)=frt/h _
b(2,2)=-fxrt/h
g(2)=frt*cur/p2+(1.040-pl)*(p6-1.040/xrl/rl)*dcf*rl -
1 (1.040/xr1+p4) *dcf*p3*rl
1-((1.040-p1)*(1.0d40/rl+p4)/h)*(c(1,j+1)~-c(1,3))
1-(((1.040-pl1)*(p6-1.040/rl1/rl)*dcf
1-(1.040/x1+p4d)*dcf*p3)/2.040)*(c(1,j)+c(1,3+1))
l+frt/h*(c(2,3)-c(2,3+1))

b(3,5)=1.0d0
g(3)=-c(5,3)
b(4,3)=1.040
gl(4)=-c(3,3)
b(5,4)=1.0d40
g(5)=cur-c(4,3)

call band(j)
go to 10

specify governing equations in polymer separator
if (j .ge. nl) go to 110

b(1,1)=1.040
g(1l)=xt(1,j,kk-1)-c(1,3])

def=(xx(1,j+1)-xx(1,3))/h

rl=(xx(1,j+1)+xx(1,7))/2.040 :
pl=(tm(j)+tm(j+1))/2.0d40 -
p2=(cd(j)+cd(j+1))/2.040 :
p3=(dtm(j)+dtm(j+1))/2.040 }
péd=(dfu(j)+dfu(j+1))/2.040 -
p5=(dcd(j)+dcd(j+1))/2.0d40



pb=(d2fu(j)+d2fu(j+1))/2.0d0
d(2,1)=(1.0d40-pl)*(1.040/rl+p4)/h
b(2,1)=-d(2,1)+((1.040-pl)*(p6-1.080/rl/rl) *dcf

1 -(1.0d40/rl1+p4)*dcf*p3)/2.0d40
d(2,1)=d(2,1)+((1.040-pl1) *(p6-1.0d0/xr1/xrl)*dcf
1 ~{(1.0d0/rl+p4)*dcf*p3)/2.040

d(2,2)=frt/h

b(2,2)=-frt/h

g(2)=frt*cur/p2+(1.040-pl) *(p6-1.040/rl/rl)*dcf*rl -
1 (1.040/rl+p4d) *dcf*p3*rl
1-((1.040-p1)*(1.040/xrl+pd)/h)*(c(l,i+1)-c(1,3})
1-(((1.040-pl) *(p6-1.040/r1/xrl) *dcf
1-(1.040/xr1+p4)*dcf*p3)/2.040) *(c(1,j)+c(l,j+1))
1+frt/h*(c(2,3)-c(2,5+1))

b(3,5)=1.0d40
g(3)=-c(5,3)
b(4,3)=1.0d0
g(4)=-c(3,3)
b(5,4)=1.040
g(5)=cur-c(4,3)
call band(j)

go to 10

Now for the boundary between cathode and separator(j=nl):
110 if (j .ne. nl) go to 120

h=h2

b(1,1)=1.040
g(1l)=xt(1,j,kk-1)-c(1,3)

def=(xx(1,3+1)-xx(1,3))/h
rl=(xx(1,j+1)+xx(1,3))/2.0d40
rd=(xx{4,3+1)+xx(4,3))/2.040
pl=(tm(j)+tm(j+1))/2.040
p2=((ep**1.50d0) *cd(j) / (eps**1.5d0) +cd(j+1)) /2.040
p3=(dtm(j)+dtm(j+1))/2.0d40
p4=(dfu(j)+dfu(j+1))/2.040
p5=({ep**1.50d0) *dcd(]j)/ (eps**1.5d40)+dcd(j+1))/2.0d40
pé=(d2fu(j)+d2fu(j+1))/2.0d40
A(2,1)=(1.0d0~pl)*(1.0d0/rl+p4d)/h
b(2,1)=-d(2,1)+((1.040-p1) *(p6-1.040/xr1/xrl)*dcE

1 -(1.0480/xr1+p4) *dcE*p3+frt*rd*p5/p2/p2) /2.040
d(2,1)=d4(2,1)+((1.0d40~p1) *(p6-1.040/r1/xrl)*dct
1 -(1.0d0/r1+p4) *dcf*p3+frt*rd*p5/p2/p2)/2.0d40

a(2,2)=frt/h

1
l
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b(2,2)=-frt/h

b(2,4)=-frt*(1.040/p2+1.0d40/sig)/2.0d40

d(2,4)=b(2,4)

g(2)=-frt*cur/sig + (1.0d40-pl)*(p6-1.040/rl/xrl)*dcf*rl
1 ~(1.0d0/rl+p4) *dcf*p3*rl+frt*r4*p5*rl/p2/p2
1-((1.080-p1)*(1.040/rl+p4)/h) *(c(l,j+1)-c(1,3))
1-(((1.040-pl)*(p6-1.040/x1l/xrl)*dcfE
1-(1.040/rl+p4) *dcE*p3+£frt*rd*p5/p2/p2)/2.040) *(c(1,5)
1+c(1,j+1))+frt/h*(c(2,3)-c(2,j+1))
1+frt*(1.040/p2+1.040/sig)/2.0d0*(c(4,]j)+c(4,j+1))

call ekin(j,0,0,i14)

b(4,3)=1.040
g(4)=xt(3,3,kk-1)-c(3,3)

b(5,4)=1.0d40
g(5)=cur~c(4,3)

call band(j)
go to 10

if (7 .eq. nj) go to 16

specify governing equations [ nl+l < j < nj }
composite cathode

sum=0.0d0

h=h2

b(1,1)=1.040
g(l)=xt(1,3,kk-1)~-c(1,3)

def=(xx(1,j+1)-xx(1,3))/h
rl=(xx(1,j+1)+xx(1,3))/2.0d0
rd=(xx(4,j+1)+xx(4,3))/2.040
pl=(tm(j)+tm(j+1))/2.0d0
p2=(cd(j)+cd(j+1))/2.040
p3=(dtm(j)+dtm(j+1))/2.040
pd=(dfu(j)+dfu(j+1))/2.040
p5=(dcd(j)+dcd(j+1))/2.040
p6=(d2fu(j)+d2fu(j+1))/2.0d40
d(2,1)=(1.040-p1l)*(1.0d40/x1l+p4)/h
b(2,1)=-d(2,1)+((1.0d0-pl) *(p6-1.040/rl/rl) *dcE

1 -(1.0d40/rl+pd) *dcf*p3+frt*rd*p5/p2/p2)/2.040
d(2,1)=d(2,1)+((1.0d40-pl) *(p6-1.0d40/xr1/xrl) *dcE
1 ~(1.040/r1l+p4d) *dcf*p3+frt*rd*pS5/p2/p2)/2.040

159
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a(2,2)=frt/h

b(2,2)=—frt/h

b(2,4)=-frt*(1.040/p2+1.040/sig) /2.0d40

d(2,4)=-frt*(1.0d4d0/p2+1.040/sig)/2.0d0

g(2)=-frt*cur/sig + (1.040-pl)*(p6-1.040/rl/rl)*dcf*rl -
1 (1.0d40/rl1+p4) *dct*p3*xrl+frt*r4*pS*rl/p2/p2
1-((1.040-pl)*(1.040/xrl+pd)/h)*(c(1l,j+1)-c(1,3))
1-(((1.040-pl) *(p6-1.040/r1/xrl) *dcf
1-(1.0d40/xrl+p4) *dcf*p3+frt*rd*p5/p2/p2)/2.040) * (c(1,3)+c(1,j+1))
l+frt/h*(c(2,3)-c(2,3+1))
1+frt*(1.0d40/p2+1.0d0/sig)/2.0d0* (c(4,]j)+c(4,3+1))

call ekin(j,0,0,il4)

b(4,3)=1.0d0
g(4)=xt(3,5,kk-1)~c(3,3)

b(5,4)=-1.0d40/h

a(5,4)=1.040/h

b(5,5)=area*fc/2.040

a(5,5)=area*fc/2.040
g(5)=~area*fc/2.d0*(c(5,])+c(5,3-1))+(c(4,j)-c(4,3-1))/h

call band(j)
go to 10

continue ‘
specify boundary conditions at right interface(j=nj)

sum=0.0d0

the "irrefutable" boundary conditions:
b(1l,1)=1.040

g(l)=xt(1,j,kk-1)-c(1,3)

g(2)=-c(4,3)
b(2,4)=1.0

call ekin(j,0,0,114)

b(4,3)=1.040
g(4)=xt(3,3,kk=-1)-c(3,3)

b(5,4)=-1.040/h
a(5,4)=1.040/h
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b(5,5)=area*fc/2.0d40
a(5,5)=area*fec/2.0d40
g(5)=-area*fc/2.40* (c(5,3)+c(5,3-1))+(c{4,3)~-c{4,3-1))/h

call band(3j)
do 610 jj=1,nj
do 610 i=1,n
610 c(i,d3)=xx(i,jj)+c(i,3i3)

c
c
c begin check for convergence
c
do 91 i=1l,n
91 xp(i)=(4.040*c(i,2)-3.040*c(i,1)-c(i,3))/2.040/h
do 25 j=1,nj
if(c(2,3).1t.xx(2,3)-0.340) c(2,j)=xx(2,3)-0.3400
if({c(2,5).gt.%xx(2,3)+0.340) ¢c(2,j)=%xx(2,3)+0.3d00
do 25 i=1,n
25 xx(i,3)=c{i,])
c
if (jecount .gt. 3*lim ) then
print99
stop
c
else
do 55 ii=1,n
errlim=1.4-10
if(ii.eq.5) errlim=1.d-16
dxp=dabs( xp(ii)-xp0(ii) )
dxx=dabs( xx{(ii,nl+10)-xx0(ii,nl+10) )
if (dxx.gt.l.d-9*dabs(xx(ii,nl+10)).and.dxx.gt.errlim)
igo to 8
if (dxp.gt.l.d-7*dabs(xp(ii)).and.dxp.gt.errlim) go to 8
55 continue
c
c print*,jcount,’ iterations required’
c
do 92 1l1l=1, nj, 1
do 92 1lk=1,n
92 xt(lk,11,1i)=xx(1lk,11)
end if
c
return
end
c

c********'k************************************************************

]
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subroutine temperature(kk,v,q,ut,Uoc,il4)

implicit real*8(a-h,o0-2z)

parameter (maxt=900)

common /calc/ ai(maxt),u(222,900),ts(maxt),h,hl, h2,hecp,
lhcn, rr

common/const/ fc,r,t,frt,cur,ep, epf,eps,epp,epps,pi,nneq,
lnprop,npos

common/cprop/ sig,area,ct,dfs,Rad,cmax,rka,rkf, tmmax, g0l
common/temp/thk, htc,dudt, Cp,dens, tam,ncell, tin, 1ht

calculate open-circuit potential at present state of charge
call ekin(l,1,ut,ild)
Uoc=g01

if (kk.eq.2) print*, htc,dudt,ncell,cur,tam-273.15
per cell heat generation
g=cur* (g0l-v-t*dudt)
The heat transfer coefficient is for heat transferred out of
one side of the cell; it is defined based on cell area.
htce is a per-cell heat transfer coefficient.
if (lht.eqg.0) then
tll Ncell*dens*Cp*thk/rxr
t1l2 tll*t + (Uoc-v)*cur*Ncell + htc*tam
t13 = tll + dudt*cur*Ncell + htc
if (kk.ne.2) then
t = t£12/t13
end if
htcc=htc/Ncell
else

**********Calculate htc instead of Temp hkhkkhkhkdhhkkkdhkkhkhdhhkkkhkkkkd

a0 0000

For this case the temperature is assumed constant, and the
heat transfer coefficient regquired to keep it constant is
calculated as a function of time. The heat transfer coef.
is calculated for heat transferred out of one side of the
cell stack. Htcec is defined as a per-cell heat transfer
coefficient.

if (t.ne.tam) then

htc = cur*Ncell*(Uoc-v-t*dudt)/{(t-tam)
else

htc = 0
endif

htce=htc/Ncell
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endif

return
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end

c*********************************************************************

double precision function expf (x)
implicit real*8 (a-h,o-z)
expf=0.d0

if(x.gt.-700.40) expf=dexp(x)
return

end

C foil subroutines

c**************'k******************************************************

subroutine ekin(j,lag,utz,il4)

implicit real*8(a-h,o0-2z)

parameter (maxt=900)

common /n/ nx,nt,nl,n2,nj

common/const/ fc,r,t, frt,cur,ep, epf, eps, epp, epps, pPi,nneg,

Ilnprop,npos

common/power/ ed,Vold, ranode, rcathde

common/var/ xp(10),xx(5,221),xi(5,221),xt (5,221, maxt)

common/cprop/ sig,area,ct,dfs,Rad, cmax, rka,rkf, tmmax, g0l

common/temp/thk, htc,dudt, Cp, dens, tam,ncell, tin, 1ht

common/mat/ b,d

common/bnd/ a,c,g,x,Y

dimension b(10,10),d4(10,21)

dimension a(10,10),c(10,221),g(10),x(10,10),y{(10,10)
c
R A R R R R R e R At L R e R R T T LT T

OPEN-CIRCUIT POTENTIAL FUNCTIONS:

g0 is the open-circuit potential in terms of the solid
concentration, xx(3,3),

gl is the derivative of the open-circuit potential wrt

the solid concentration

G bbb bbb bbb bbb bbb b bebe b S bebe & & be & &b &

O 00 000000n

if (lag.eqg.l) xx(3,j)=utz*ct
go to (1,2,3,4,5,6,7,8),npos

1 go to 101 ! TisS2

2 go to 102 ! Spinel Mn204 (lower plateau)

3 go to 103 ! NaCo02: Sodium cobalt oxide

4 go to 104 ' Spinel Mn204 (upper plateau)

5 go to 105 ! Tungsten oxide (LixWO3 with 0<x<0.67)
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6 go to 106 ! Co02 (Cobalt dioxide)
7 go to 107 ! V205 (Vanadium oxide)
8 go to 108 ! NiO2 (Nickel dioxide)

8 Bc Be 8c 8e 8 6 e e e e G S e S S 8 B e e S K B Ko & 6 e & e e e & &

TiS2:

101 delt=-5.58d-04

zeta=8.1d0
cT=2.9d04
g0=2.17+(dlog((ct-xx(3,7) ) /xx(3,7j) )+delt*xx(3,]) +zeta) /frt

gl=(delt-ct/xx(3,])/(ct-xx(3,3))) /frt
go to 98

Ee 8ol e bbb e B e bbb B S S8 S &b e b b K b b &b & & &

Spinel Mn204 (lower plateau)

102 c1=2.0630740

¢2=-0.86970540

¢c3=8.65375d0

c4=0.981258d0

al=c3*(xx(3,3)/ct-c4)

all=0.140

al2=100.0d40

al3=1.04-02

g0=cl+c2*(dtanh(al))
g0=g0+all*expf(-al2* (xx(3,3)/ct-al3))
gl=c2*c3/ct/(dcosh(al))/(dcosh(al))
gl=gl-all*al2/ct* (expf(-al2* (xx(3,j)/ct-al3)))
go to 98

S bbb b B bbb S Se e bbb bo e e bebe S bebebebe & e & be & &

NaCo02: Sodium cobalt oxide (P2 phase, 0.3<y<0.92)

103 c1=4.4108d0

c2=-2.08640
c3=0.10465d0
c4=133.4240
¢5=89.825d0
c6=0.16284d0
c7=145.01d40
c8=71.9240
c9=0.01d0
c10=200.0d0
cl11=0.3d0
cl12=0.885d0
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al=xx(3,3j)/ct
gO0=cl+c2*al+c3*dtanh(-cd4*al+c5)+c6*dtanh(~-c7*al+c8) +c9*
lexpf(-cl0*(al-cll))-c9*expf(cl0*(al-cl12))
gl=c2/ct-c3*cd4/dcosh(~cd*al+c5) /dcosh(-cd*al+c5) /ct-c6*c7
1/dcosh{-c7*al+c8) /dcosh(-c7*al+c8)/ct-c9*cll0*expf(-cl0*(al-
1cll)) /et-¢c9*cl0*expf (cl0* (al-cl2)) /ct

go to 98

FRYR T TSI IG LTI LIS IV VI I IS

Spinel Mn204 (upper plateau)

104 al=4.06279d0

a2=0.06775044d0

a3=21.8502d0

a4=12.82684d0

a5=0.10573440

a6=1.00167d40

a7=-0.379571d0

a8=1.575994d0

a9=0.04540

al0=71.694d0

all=0.0140

al2=200.0d40

al3=0.19d0
gO=al+a2*dtanh(-a3*xx(3,Jj) /cT+ad)-a5* ({(a6-xx(3,3j)/cT) **a7-
la8)-a%*expf(-all0* ((xx(3,3j)/cT)**8.040))+all
l*expf(-al2*(xx(3,3)/cT-al3))
gl=(1.0d0/cT)*(-a2*a3/dcosh(-a3*xx(3,3j)/cT+a4d) /dcosh(-a3
1*xx(3,3) /cT+ad)+a5*a7* (a6-xx(3,3) /cT) **(-1.040+a7)+
1a9*al0*8.0d0* ((xx(3,j) /cT)**7.0d0) *expf (-al0*
1(xx(3,3)/cT)**8.0d40))-all*al2/cT*expf(-al2* (xx(3,3)/cT-all))
if (g0.1t.1.0d0) g0=1.0d0

if (g0.gt.5.0d0) then

print*, ‘solid conc overload ‘,xx(3,3),]

g0=5.0d0

end if

go to 98

S Belebe bbbl bbb bbbl bbb bbb &b &b bbbl

Tungsten oxide (LixW0O3 with 0<x<0.67)
literature data from Whittingham et al

105 ¢1=2.876740

c2=-0.904640
¢3=0.7667940
c4=-0.1597540
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a0 a0

QO 000

c5=0.671d40

g0=cl+c2*xx(3,J) /ct+e3*xx(3,3) *xx(3,3) /et /ct+
lcd*expf (100.040* (xx(3,J) /ct-0.671))
gl=c2/ct+2.0d0*c3*xx(3,3j)/ct/ct+
1c4%100.0d0*expf (100.040* (xx(3,3) /ct-0.671)) /et
go to 98

8 88 8 8 8 8 S 8c B e 8o e S e e Bc e B 8 8 8 S e S Be & & e b e e &

Co02 (Cobalt dioxide)
literature data from Goodenough et al.

106 r1=4.825510

r2=0.950237

r3=0.913511

rd=0.600492
gO0=rl-r2*expf(-{((xx(3,3j)/ct-r3)/rd)**2.040)
gl=2.0d0*r2* (xx(3,3)/ct-r3) *expf (- ((xx(3,3j) /ct
1-r3)/r4)**2.0d40)/rd/rd/ct

go to 98

Sclebebebobebebebebebebebebe e be bbb bbb bede e bebe b & & &b &

V205 (Vanadium oxide) 0<y<0.95

107 r1=3.305940

r2=0.092769d0

r3=14.362d40

rd=6.687440

r5=0.03425240

r6=100.040

r7=0.96d40

r8=0.0072440

r9=80.040

rl10=0.01d40

a2=xx(3,Jj)/ct
gO=rl+r2*dtanh(-r3*a2+rd)-rS*expf (r6* (a2-r7))+r8*expf (x9*
1(rl0-a2))

gl=-r2*r3/dcosh(-r3*a2+r4) /dcosh(-r3*a2-rd) /ct-rS5*r6*
lexpf(ré6*(a2~xr7)) /ct-r8*r9*expf (r9* (rl10-a2)) /ct

go to 98

S& b bbb bbb &b &b &b &b & bbb & & &EEEEEEEE

NiO2 (Nickel dioxide) 0.45<y<l1.0

108 rl=6.515d40

r2=2.3192d0
r3=5.334240
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r4=0.4108240
r5=200.0d0
r6=0.4440
r7=0.2424740
r8=60.0d0
r9=0.99d0
al=xx(3,j)/ct
g0=rl+r2*a3-r3*a3**0.5d0+xrd*expf (x5* (r6-al3))
1-r7*expf(r8*(a3-r9))
gl=r2/ct-0.5d0*r3* (xx(3,5)**-0.5d40) /ct**0.5d40
l-rd*rS*expf (r5*(r6~-a3))/ct-r7*r8*expf (r8* (a3-r9)) /ct
go to 98
c
R R R R e e R e e T R A T T T T T
c
98 if(j.eg.nl .or. lag.eq.l) g0l=g0
if (lag.eqg.l) go to 99
c
TR R R R R T P R TR T T T L T T T T T 3

c
c ¥ KINETIC EXPRESSIONS
c
c h0 is i0/nF, the exchange current density divided by nF.
c hl is the derivative of h0 wrt solid concentration, xx(3,3j)
c h2 is the derivative of h0 wrt electrolyte concen., xx(1,3j)
c .
C S &b e B e e e B S e S e bbb b b bbb & & & & &
c
c
c NONAQUEOUS LIQUIDS
c

if(il4.eq.0) then

alpha=0.5d0

alphc=0.5d0

hO=rka*dsqgrt (xx(1,j)) *dsqrt(ct-xx(3,3j)) *dsqgrt(xx(3,73))

hl=-rka*dsqgrt(xx(1l,3j)) *dsgrt(ct-xx(3,7)) *dsqgrt(xx(3,3))

1*(1.080/ (ct-xx(3,3))-1.040/xx(3,3))/2.040

h2=rka*dsqgrt (ct-xx(3,3)) *dsqgrt (xx(3,3)) /dsgrt (xx(1,3))/2.0d0
¢
C  &E&E &S S S bbb S &b S be &b & e be S8 & & be e .
c
c POLYMER
c

else

alpha=0.5d0

alphc=0.5d40
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hO=rka*dsqrt(xx(1l,3j)* (cmax-xx(1,]) ) *(ct-xx(3,3)) *xx(3,3))
hl=h0* (0.5*ct-xx(3,3))/xx(3,3)/ (ct-xx(3,3))

h2=h0* (0.5*cmax-xx(1,j}) /xx(1,3)/ (cmax~-xx(1,3))

endif

Se8e8eBele 8o be e bbb be e e be b b 8 bbb B & b e b & K& &b &

939

rl=alpha*frt
r2=rl*(xx(2,j)-fc*xx(5,3j) *rcathde-g0)

de=~2.40*r2-r2**3/3.d0
if(dabs(r2).gt.1.0d4-7) de=expf(-r2)-expf(r2)
pe=expf (-r2)+expf (r2)

b(3,1)=h2*de

b(3,2)=-h0*rl*pe

b(3,3)=hl*de+h0*rl*gl*pe
b(3,5)=1.040-b(3,2) *fc*rcathde
g(3)=-h0*de-xx(5,3)

return
end
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c********************************'k************************************

0o a0 o0 aan

subroutine prop(nj,nl)

implicit real*8(a-h,o-z)

parameter (maxt=900)

common/const/ fc,r,t,frt,cur,ep,epf,eps,epp,epps,pi,nneq,

lnprop,npos

common/var/ xp(l10),xx(5,221),x1(5,221),xt (5,221, maxt)
common/tprop/df(221),cd(221),tm(221),

1dd£(221),dcd(221),dtm(221) ,dfu(221) ,d42fu(221)

(AT V2 B - VTN N B S

do 94 j=1,nj

if(j .gt. nl) ee=ep

if(j .le. nl) ee=eps

go to (1,2,3,4,5,6) ,nprop

go to 101 ! AsF6 in methyl acetate

go to 102 | Perchlorate in PEO

go to 103 ! Sodium Triflate in PEO

go to 104 ! LiPF6 in PC (Sony cell simulation)
go to 105 ! Perchlorate in PC (West simulation)

go to 106 ! Triflate in PEO

GG 8B bobebebebe b S bebebe eSS Sebebebe e Sebe & e & & & & & &

AsFé6 in methyl acetate

diffusion coefficient of the salt (m2/s)

—
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a0 000

a a0

101 df(j)=(ee**1.540)*1.544-09
ddf (j)=0.04d0
conductivity of the salt (S/m)
cd(j)=2.540* (ee**(1.540))
ded (j)=0.0d0
transference number of lithium
tm(3)=0.2040
dtm(j)=0.0d0
activity factor for the salt
dfu(j)=0.0d0
d2fu(j)=0.0d0
go to 99

S & e b G e S S S e S e b e S S & e S & & e & & S & & & & & & & &
Perchlorate in PEO

diffusion coefficient of the salt (m2/s)
102 df(j)=(ee**1.5d40)*1.784-12

adf(j)=0.040

conductivity of the salt (S/m)

cd(j)=1.6d4-02*ee**(1.5d0)

ded(j)=0.0d40

transference number of lithium

tm(j)=0.10d0

dtm(j)=0.040

activity factor for the salt

dfu(3j)=0.0d40

d2fu(j)=0.0d0

go to 99

S8 8c B e e be 88 8 8 8 B B 8e G Ec 8 B 8 8o & 6c & S Se & 8 8 & & Se &
Sodium Triflate in PEO

103 r0=1.30414-07
r1=4.49784-07
r2=-3.1248d4-07
r3=-2.23834-07
r4=8.92644-09

diffusion coefficient of the salt (m2/s)
df(j)=0.0001d0* (ee**1.5d0) * (rO0+xrl*xx(1,3)/1000+

1r2* ((xx(1,3)/1000)**0.5d0) + r3*((xx(1,5)/1000)**1.5d0)
1+ r4*((xx(1,3)/1000)**3.0d40))

ddf(j)=0.000140* (ee**1.540) *(r1/1000d40 +

10.540*r2* (xx(1,3)**(-0.5d0))/(1000.040**0.54d0)

1+ 1.5d0*r3* (xx(1,3)**0.540)/100040**1.5d40 +
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13.040*r4* (xx(1,5)**2.040)/100040**3.040)
if (xx(1,j).ge.3.0403) then
df(j)=(ee**1.540)*1.64774-12

ddf (3)=0.040

end if

conductivity of the salt (S/m)
r7=4.324-05

r8=0.0001740

r9=0.00015340

rl10=3.734-05

Al sy

A

/
e —
Em—©

o

cd(j)=100*(ee**(1.540) ) * (x7+r8*xx(1,3)/1000+xr9*xx(1,3)
1*xx(1,3) /71000000+r10*xx(1,3j) *xx(1,7) *xx(1,3)/1000000000)
ded(j)=100* (ee**(1.540) ) *(xr8/1000+2.0*r9*xx(1,3) /1000000
143.0*r10*xx(1,3) *xx(1,3)/1000000000)

transference number of lithium

if(xx(1,3j).1t.0.3403) then
r5=0.3214140
r6=2.576840
r11=71.36940
r12=643.634d0
r13=1983.740
r14=2008.40 !
r15=287.4640
tm(J)=r5-r6*xx(1,3j)/1000.+r1l1*xx(1,J) *xx(1,3) /1000000.
1-r12*((xx(1,3J)/1000.)**(3.040))+xr13*((xx(1,5)/1000.)**4.0d40)
1-r14*((xx(1,3)/1000.)**(5.0d0))+rl5* ((xx(1,3)/1000.)**6.040)
dtm(j)=-r6/1000.+2.0d0*r11*xx(1,5)/1000000.-
13.0d40*r12* (xx(1,3j)**2.0d40)/(1000.**3.0d40) +
14.040*r13* (xx(1,j)**3.040)/(1000.**4.040) -
15.040*r14* (xx(1,3j)**4.040)/(1000.**5.040) +
16.040*r15* (xx(1,3)**5.0d40)/(1000.**6.0d0)

else
tm(j)=0.0d0
dtm(j)=0.040
end if

if(xx(1,3).ge.0.70403) then

r5=4.5679d0 i
r6=4.50640 =
r1l1=0.6017340

rl12=1.069840 .
tm(j)=-rS+r6*dexp(-((xx(1,3)/1000.-r11)/rl2)**2_)
dtm(j)=-r6* (xx(1,]3)/1000.-r1l)*2.
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1*dexp (- ((xx(1,3)/1000.-xr1l) /rl2)**2.)/r12/r12/1000.
end if

if(xx(1,j).ge.2.58403) then
tm(j)=-4.420440
dtm(j)=0.0d40

end if

activity factor for the salt: (dlnf/dc) and (d21nf/dc2)

if(xx(1,j).gt.0.45d03) then

rl7=0.9824940

r18=1.3527d40

r19=0.7149840

r20=0.1671540

r21=0.01451140

thermf=rl17-r18+*xx(1,3)/1000.+xr19*xx(1,j) *xx(1,3)/1000000.-
1r20*xx(1,J) *xx(1,3) *xx(1,3) /1000000000 . +xr21*xx (1, J) *xx(1,3)
1*xx(1,J) *»xx(1,3)/1000000000000.
dthermf=-r18/1000.+2.*r19*xx(1,3)/1000000. -
13.*%r20*xx(1,7j) *xx(1,3)/1000000000.+4.*r21*xx(1,3j) *xx(1,3)
1*xx(1,3)/1000000000000.

end if

if(xx(1,j).le.0.45d03) then

r23=0.99161d0

r24=0.178044d0

r25=55.653d0

r26=303.57430

r27=590.97d0

r28=400.2140

thermf=r23-r24*xx(1,5) /1000.-r25*xx(1,5) *xx(1,5)/1000000. +
1r26*xx(1,3) *xx(1,3) *xx(1,3)/1000000000.-r27*xx (1,7 ) *xx(1,3)
1*xx(1,3) *xx(1,3)/1000000000000.+r28*xx(1,3) *xx(1,3) *xx(1,3)
1*xx(1,5) *xx(1,5)/1000000000000000.
dthermf=-r24/1000.-2.*r25%xx(1,5) /1000000. +
13.%*r26%xx(1,3) *xx(1,5)/1000000000.-4.*r27*xx (1, )
1*xx(1,3) *xx(1,5)/1000000000000.+5.*r28*xx(1,3) *xx(1,3)
1*xx(1,7)*xx(1,5)/1000000000000000.

end if

dfu(j)=(-1.+2.*thermf) /xx(1,7)
d2fu(j)=1./xx(1,3) /xx(1,3)-2.*thermf/xx(1,3) /xx(1,3)+
12.*dthermf/xx(1,3)

if(xx(1,3j).ge.3.00d403) then
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dfu(j)=~0.9520/xx(1,3)
d2fu(j)=0.9520/xx(1,3)/xx(1,3)
end if

go to 99

G bbb BB bbb BB b bbb bbb bbb bbb bebe bbbl

LiPF6 in PC (Sony cell simulation)

this is actually the diff coeff for perchlorate
diffusion coefficient of the salt (m2/s)

104 df(j)=(ee**1.5d40)*2.504-10

ddf(j)=0.0d0

conductivity of the salt (S/m)

pmax=0.5409

pmax=0.03540

pu=0.85740

aa=1.093

bb=0.04d0

rho=1.2041d03
fun=pmax*((1.0d0/rho/pu) **aa) *expf (bb* ( (xx(1,j) /rho-pu) **2.0)
1-(aa/pu)*(xx(1,3j)/rho-pu))

fun2=2.0d0* (bb/rho) * (xx(1, j) /rho~pu) ~aa/pu/rho
cd(5)=0.0001+(ee**1.5d40)*((xx(1,3))**aa)*fun
decd(j)=(ee**1.5d0) *fun*(aa* (xx(1,]j) **(aa-1.0d40) )+
1(xx(1,3)**aa) *fun2)

transference number of lithium

tm(3)=0.2040

dtm(j)=0.040

activity factor for the salt

dfu(j)=0.040

d2fu(j)=0.0d0

go to 99

Sl bbb bbb bbb bebobe S be &S bebe &b &b & &b &

105

Perchlorate in PC (West’'s simulation)

diffusion coefficient of the salt (m2/s)
df(j)=(ee**1.5d0)*2.584-10

dat (j)=0.040

conductivity of the salt (S/m)

pmax=5.424d0

pu=0.661640

aa=0.8554d0

bb=-0.08d0

rho=1.2041403
fun=pmax*((1.0d0/rho/pu) **aa) *expf (bb*( (xx(1,J)/rho-

lpu)**2.0)-(aa/pu)*(xx(1,3j) /rho-pu))
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fun2=2.040* (bb/rho) * (xx(1,j) /rho-pu) ~aa/pu/rho
cd(j)=0.0001+(ee**1.5d40) * ((xx(1,3)) **aa)*fun
dcd(j)=(ee**1.5d40) *fun* (aa* (xx(1,j)** (aa-1.040))
1+(xx(1,3j)**aa)*fun2)

c transference number of lithium
~ tm(3)=0.20d0
;3 dtm(3)=0.080 )
‘ c activity factor for the salt )

dfu(j)=0.0d0
d2fu(j)=0.040
go to 99

Sl G G & Ce e e S e S B S b B S S & S S S S 6 S & & B & & & & & &
Triflate in PEO

00 0.0

106 r0=3.184664-05
r1l=1.99156334-06
r2=-1.95044324-09
o r3=6.307483d4-13
i r4=-6.752235d-17
c diffusion coefficient of the salt (m2/s)
df (j)=(ee**1.540)*7.54-12
ddf (3)=0.04d0
c conductivity of the salt (S/m)

T cd(j)=(ee**(1.5d40))*100.040*(r0 + rl*xx(l,j)+xr2*xx(l,j)*
Ixx(1,J)+r3*xx(1,]) *xx(1,7) *xx(1,j) +rd*xx(1,3)**4.040)
dcd(j)=(ee**1.5d0)*100.0d40* (rl + 2.040*r2*xx(1,j) +

- 13.040*r3*xx{1,3j)**2.040+4.0d40*rd4*xx(1,3)**3.0d0)

= c khkkhkkkhkhkhkhkdhhhhhdrhkrdhdhkrtdhkihx
b{ c ************.*****-***********

c*rr rxxxxkinayw conductivity function (S/m) *x*kkkkkkxkkkkkkkk

c rr0= 32.137440

c rrl= -6.60932d40

c rr2= -0.0251516d0

c rr3= 0.025954540

‘ c rrd4= -0.001900140

c rr5= 3.417114-5

c rr6= 32.1262d40
" c rr7=-44.5889d0
s c rr8= 2.5975640 )
;; c rr9= -0.0631626d0 :
b c rrl0= 0.00064089740 ,
. c rrll=-2.35565d~-6 .
— c cx=xx(1,7) :
B
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c ££f1=((1.0d0+dtanh(rr0-cx**.5))/2.040)*
c +(rrl + rr2*cx**.5 + rr3*cx + rré*cx**1.5 + rr5*cx**2)
c ££2=((1.040+dtanh(-rré+cx**.5))/2.040)*
c +(rr7 + rr8*cx**.5 + rr9*cx + rrlO*cx**1.5 + rrll*cx**2)
c bbl1=-1052.654d0
c bb2=-182.053d40
c bb3=3.7493640
o bb4=0.024249340
c gg=(bbl+bb2*cx** . 5+bb3*cx+bbd*cx**1.5)*(1.0/t-1.0/358.0d40)
c cd(j)=(ee**(1.5d40))*100.0d0*cx*expf (dlog(10.) *(££1+£f2+gqg) )
c
c dffl=((1.0d40+dtanh(rr0-cx**.5))/2.040)*
c +(.5*rr2/cx**.5 + rr3 + 1.5*rrd*cx**.5 + 2.0*rr5*cx)
c Aff2=(((1.0/(dcosh(rr0-cx**.5))**2))/(-4.040*cx**0.5))*
o] +(rrl + rr2*cx**.5 + rr3*cx + rrd*cx**1.5 + rrS5*cx**2)
c Aff3=((1.040+dtanh(-rré6+cx**.5))/2.080)*
c +(.5*rr8/cx**.5 + rr9 + 1.5*rrl0*cx**.5 + 2.0*rrll*cx)
c Aff4=(((1.0/(dcosh(-xrr6+cx**.5))**2))/(4.080*cx**0.5))*
c +(xrr7 + rr8*cx**.5 + rr9*cx + rrlO*cx**1.5 + rrll*cx**2)
c dgg={(0.5*bb2/cx**0.5 + bb3 + 1.5*bbd*cx**0.5) *
c +(1.080/t - 1.040/358.0d40)
c b=dlog(10.)*(f£1+££2+gg)
c dbdc=dlog(10.) * (Af£f1+dff2+df£3+dff4+dgg)
c dcd(j)=(ee**(1.5d0))*100.0d40*exp (b) *(1.0d0+cx*dbdc)
c [ZXEZXXEET RS ESEEEE S SRS E & X 8 X KX 23
fe] IS X EEEEE S EESEEEE SRR E R E R A B
c transference number of lithium
c tm(j)=0.0107907d0 + 1.48837d3-04*xx(1,3)
c dtm(j)=1.488374-04
tm(j)=0.240
dtm(j)=0.0d40
c activity factor for the salt
dfu(j)=0.040
d2fu(j)=0.0d40
go to 99
c
C GG &S e &b S b b &b &b S b e S B e 8 S e e & & & be &
c
99 continue
94 continue
c
return
end
. c*********************************************************************
c That‘s All Folks!

c*********************************************************************
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List of Symbols

a specific interfacial area, m2/m3
| a(t) integrals defined by equation 2-41
al property expressing secondary reference state, dm3/mol
A; integrals defined by equation 2-40
c concentration of electrolyte, mol/dm3
(o concentration of species i, mol/dm3
Cs concentration of lithium in solid phase, mol/dm3
a‘p heat capacity per unit mass of cell, J/kg-K
D,D; diffusion coefficient of electrolyte and of

lithium in the solid matrix, cm™/s
Dj; pairwise interaction parameter between species i and Js cm2/s
E . specific energy of celi, W-hr/kg
fa activity coefficient of salt
fe mean molar activity coefficient of the salt
F Faraday’s constant, 96,487 Cleq
h mesh spacing, m
ho heat transfer coefficient of cell, J/m2-K-s
i current density, mA/cm2
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exchange current density, mA/cm?

superficial current density, mA/cm?

pore-wall flux across interface, mol/ms
reaction rate constant

frictional coefficient, J -s/m5

thickness of cell, m

mass per unit area of cell, kg/m2
molecular weight of component i, g/mol

number of electrons transferred in electrode reaction
molar flux of species i, mol/mz-s

average specific power of cell, W/kg |

radial distance in a particle of active material, m
universal gas constant, 8.3143 J/mol-K

radius of solid particles, m

stoichiometric coefficient of species / in electrode
reaction

t'ime, s

time step size, s

transference number of species i with respect to the solvent
temperature, K

open-circuit potential, V
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Vi, Vo

o

W

velocity of species i, m/s
cell potential, V

distance from the negative electrode current collector or from the Li
foil electrode, m

value of variable x at previous time step

stoichiometric coefficient of lithium in insertion material,
defined by Li yMOZ

charge number of species i

transfer coefﬁcients

thickness of separator, m

thickness of composite positive electrode, m
thickness of composite negative electrode, m
porosity

overpotential, V

conductivity of electrolyte, S/cm

mean molal activity coefficient of the salt .

177

number of cations and anions into which a mole of electrolyte dissociates

density of component i, g/cm3
conductivity of solid matrix, S/cm
dimensionless time

electrochemical potential of species i, J/mol
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electrical potential, V

Subscripts

negative electrode

positive electrode

ambient value

electrolyte

effective value of transport property in porous medium
filler

reference state

solid phase or separator

maximum concentration in insertion material
solid matrix

solution phase

Superscripts

with respect to the solvent or initial condition

standard cell potential
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Chapter 3

Simulation of the Lithium Ion Consumer Battery

3.1 Introduction

In this work we will focus on the simulation of a lithium-ion battery developed at

Bellcore in Red Bank, NJ .1'6

The experimental prototype cell has the configuration:

Li Cel LinnzO 4
which is becoming an increasingly popular alternative to Lixc6 | LinoO2 due to the low cost
and stability of the materials. The system employs a plasticized polymer electrolyte, consisting
of a nonaqueous carbonate solvent mixture and single lithium salt dispersed in an inert polymer

matrix which provides mechanical support.7 Cells are assembled in the discharged state, where

they are air stable and free standing.

We will use this battery as our model system to explore many of the features of the com-

puter program DUAL. This will allow us to evaluate the validity of the previously developed

mathematical model by comparison with experimental data in the form of discharge curves.
Also, we can explore the phenomena that occur during the charge and discharge of this system

in order to understand what may limit these processes at higher rates.

The experimental prototype cell is first described, and relevant physical parameters are
given. This requires us to obtain a significant amount of experimental data oh the system, some
of which are not presently available. Thus, in cases where data are not known, we will be
forced to estimate values for particular parameters. Simulation results, including discharge
curves and comparisons with experimental data, will be given next. Last, we will illustrate the

use of the simulations in the design process. The experimental prototype cell was designed
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more for fundamental studies without consideration to maximizing the volumetric and gra-

vimetric energy density; this will be one of the goals of the present work.
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3.2 Description of the system

A diagram of the cell under consideration is given in figure 3-1. The cell has the usual
lithium-ic;n configuration, with each porous electrode consisting of a pseudo-homogeneous
mixture of the active insertion material, polymer matrix, nonaqueous liquid electrolyte, and
conductive filler additive. The conductive additive used is Super P Battery Black (MMM Car-
bon, Belgium). The cumrent collectors are either aluminum (for the positive electrode) or
copper (for the negative electrode). Details of the cell fabrication procedures have been pul')-
lished prcviously.6’7 It is important to note that these procedures have been developed to the
point that very reproducible cell behavior is obtained from the cells. The parameters required

for the mathematical model can be classified as either transport, thermodynamic, or design-

adjustable; we shall discuss them in that order.

The plasticized electrolyte is a multicomponent system; the five species being the poly-
mer, two liquids, cation, and anion. The salt used is LiPF6 in a nonaqueous liquid mixture of
ethylene carbonate (EC) and dimethyl carbonate (DMC). The polymer matrix is a random
copolymer of vinylidene fluoride and hexafluoropropylene, p(VdF-ﬁFP). Two different liquid
solvent ratios (EC:DMC) are used, depending on whether good low-temperature performance is
required.8 The ratio of polymer phase to liquid phase is generally held constant, with the liquid
volume fraction equal to 0.724. Under concentrated solution theory, a five-species system
requires ten independent transport properties to describe fully the transport processes in the
electrolyte. These data include one conductivity, six diffusion coefficients, and three transport

numbers. Unfortunately, very little of this information is available; in fact, the experimental

.
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Figure 3-1. Diagram of Li—ion cell sandwich,
consisting of composite negative and positive
electrodes and separator. Smaller spheres in
the positive electrode represent conducting

filier.

187




188

methodology required to measure these properties has not yet even been developed. Thus, a
full description of the electrolyte phase is not available. The data that are available include the
conductivity of the plasticized electrolyte as a function of salt concentration, temperature, and

solvent ratio EC/DMC.

The conductivity of the liquid/salt/polymer system consisting of a 2:1 v/v mixture of

EC/DMC at 25°C was measured and fit to the following function of the salt concentration:

K. = 4.1253x107% + 5.007x1073¢ ~ 4.7212x1073¢2

3-1
+ 1.5094%x1073¢3 - 1.6018x1073¢4. 3-1)

Alternatively, several of the experimental cells use LiPF6 in a 1:2 v/v mixture of EC/DMC; this

conductivity is given by

K. = 1.0793x107* + 6.7461x1073¢ - 5.2245%x1073¢2

3-2
+ 1.3605%1073¢3 = 1.1724x1073¢% . 3-2)

The concentration, c, in these expressions is in mol/dm3, the conductivity is in S/cm, and these
functional fits are valid over the range of 0.10 to 4.0 M. The salt concentration is calculated
based on the total volume of the plasticized electrolyte, i.e., liquid and polymer phases. Both of

these sets of data are given in figure 3-2, along with the fitting expressions.

We should remark that the conductivity of this system is not that expected under the
assumption that the polymer matrix is an inert, insulating material. Data on the concentration
dependence of the conductivity of the liquid electrolyte alone have also been measured. These

9,10

data can be used in the Bruggeman relation, along with the known volume fraction of the

liquid in the plasticized electrolyte (g, ;=0.724), to estimate its conductivity:
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4.0x10° ! I | ,

T=259C LiPFs in EC/DMC and
3.5 p (VAF-HFP) matrix

1:2 EC/DMC

/

2.5~

1.5

2:1 EC/DMC

1.0

Conductivity (S/cm)

0.5

0.0 J ! | I
0.0 0.5 1.0 1.5 2.0 2.5

Concentration (mol/1l)

Figure 3-2. Conductivity data for the gelled
electrolyte system LiPF, in EC/DMC and p(VAF-HFP)
as a function of salt concentration. The solid

lines are analytic fits given in the text.

189



190

X, =€l7%, (3-3)

where x; is the conductivity of the liquid phase alone. Upon comparison, one finds that the
plasticized electrolyte has a lower conductivity than that predicted by the Bruggeman formula;
a better fit is obtained by using an exponent of 4.5 in equation 3-3. These findings are demon-
strated in figure 3-3, which compares both sets of conductivity data at 25°C with that predicted
by the Bruggeman formula with exponents of 1.5 and 4.5. Considering the complexity of the
polymer/liquid plasticized electrolyte mixture, especially solvation of the polymer by the sol-
vent molecules, we should not necessarily expect the Bruggeman expression to hold.‘ This type
of effect is motivation for treating these systems as true quaternary mixtures under the frame-

work of concentrated solution theory.

In the composite electrodes, effective values of the conductivity and salt diffusion
coefficient apply. These are usually calculated from the true transport properties using expres-
sions of the form:

€K, eD., -

k=——2and D= , (3-4)
T T

where 1T is a tortuosity correction often related to € by T =73 .10 Accounting for the effective
transport properties in the porous electrodes can be a difficult task, and past modeling work has

11

often found it necessary to use T as an adjustable parameter.”~ We will follow this procedure in

the present simulations, assuming that both the conductivity and diffusion coefficient depend on

porosity by the empirical relationship:

K=K, , (3-5)

where the exponent p will be determined by fitting of the discharge-curve data.
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Figure 3-3. Comparison between conductivity data
for the pure liquid electrolyte and the liquid
plus polymer matrix (gelled) eléctrolyte. The
dashed lines are the predictions of the Bruggeman
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Additional transport properties include the electronic conductivity and solid-phase
lithium diffusion coefficient for each of the electrodes. The conductivity of the carbon elec-
trode is assumed to be large. The manganese oxide electrode, on the other hand, has a poor
electronic conductivity and good performance depends on the carbon additive. The electronic
conductivity of the positive electrode is found by measuring the resistance to the passage of
current through the porous-electrode matrix. This gives a value of 3.8x10'2 S/cm for the con-
ductivity of the positive-electrode matrix in the discharged state at T=25°C. The diffusion
coefficient of lithium in the lithium manganese oxide spinel electrode has been reported4 in the

9 cmz/s. Diffusion coefficients in the carbon electrodes

literature to be approximately 1x10
used in the experimental cells (Osaka Gas Mesophase Microbead MCMB 25-10 petroleum

coke) are not presently known.

Thermodynamic and kinetic data for the overall cell reaction include an exchange current
density and transfer coefficients for each half reaction, as well as open-circuit potential data.
Kinetic data on the insertion reactions are not available and have been measured only rarely for

12-15

any of these materials. Insertion reactions are believed to be characterized by large

exchange cumrent densities. The fast charge-transfer process, along with the often slow

Table 3.1. Parameters for the electrodes.

parameter Li,Cg LinnzO 4
D, (cm?/s) 3.9x10710 1.0x107°
o (S/cm) 1.0 0.038

i, (mA/cm?) 0.11 0.08

¢, (mol/dm?3) 24.03 22.86

p_.p. (g/cm3) 1.90 4.14
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Table 3.2. Design adjustable parameters.
parameter LixC 6 Linn20 4
5.,8, (um) 100 174
R; (um) 125 8.5
c? (mol/dm?) 14.66 4.10
g 0.357 0.444
& 0.146 0.186
&f 0.026 0.073
parameter value
T (°C) 25
c? (mol/dm?) 2.00
& (um) 52
p; (g/cm?) 1.324
p, (g/cm?) 1.780
diffusion process in the solid, makes the measurement of kinetic data difﬁcult.13 The open-

circuit potential of each electrode is measured in separate cells by performing a very-low-rate
discharge (60-hr discharge) versus a lithium electrode. The curve fit of each material’s open-
circuit potential as a function of its state of charge is given in Appendix 3-A. Since the mean
molar activity coefficient of the salt is not known, we assume that the solution is ideal. The
capacities of each of the electrode materials and densities of each component of the cell are

given in Tables 3.1 and 3.2.

The design-adjustable parameters include electrode thicknesses and volume fractions,
particle sizes, separator thickness, and initial cell temperature and salt concentration. Electrode
thicknesses were measured before and after cell assembly to account for changes in thickness

during the lamination steps. The volume fractions of each component were estimated using
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mass fractions and component densities. We will compare modeling predictions with experi-
mental data from three cells having various values of the electrode thicknesses and initial salt
composition. The system parameters for cell #1 are illustrated in Table 3.2. The specific sur-

face area per unit volume of each electrode is estimated by assuming that the electrode particles

are spherical:

3(1-¢g~¢g,—¢
g 1 =& &) (3-6)
R

We should also include here the initial states of charge of either electrode; however, due to side
reactions on the first few cycles, these values are not precisely known and must instead be
estimated from the lowest-rate discharge curve. Identical values for all simulation parameters,
except for component thicknesses and initial states of charge, will be used for the different sets

of simulations.

3.3 Simulation results

Comparison of experimental and simulated discharge curves. - First we examine the cell
potential during galvanostatic discharge at 25°C at various current densities for cell #1. In
figure 3-4 the cell potential is given as a function of attainable capacity for discharges at vari-
ous multiples of the 1 C rate. The solid lines are simulation results, and the markers are experi-
mental data. The 1 C rate is defined as the current density for which the discharge time is one
hour; experimental data set this at 1.75 mA/cmz. The capacity at the 0.1 C rate is then defined
as full capacity, which is found to be 44.7 mAh for this cell (the cell area is 24 cmz). The
discharge curves given in figure 3-4 are at the 0.1 C,0.5C,1C,2 C, 3 C, and 4 C rates. The

experimental data were taken from a cell that was about 5 cycles into its life, where the
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behavior of the cell (i.e., capacity) essentially had stabilized. The charging rate between exper-

imental discharge curves was at the 0.2 C rate.

The initial states of charge of either electrode, x° and y°, are difficult to determine in
practice due to an irreversible side reaction occurring on the carbon electrode on the first cycle.
These values can be determined by requiring the simulations to agree with the lowest-rate
discharge curve, which nearly traces out the cell’s open-circuit potential. This procedure leads
to the values: y°=0.18 and x°=0.61. The initial positive electrode stoichiometry is approxi-
mately the lowest possible value attainable with ﬁe given open-circuit-potential (Appendix 3-
A), as would be expected after a low-rate charge up to a cutoff of 4.5 V. As the cell is
negative-electrode limited on discharge, the cell capacity is determined by the initial state of

charge of the negative electrode.

The diffusion coefficient of lithium in the carbon electrode is used as an adjustable param-

10 cm2/s gives the

eter to obtain the agreement seen in figure 3-4. We found that D, _=3.9x10"
desired gradual loss of capacity at rates above 0.1 C, which can be explained by solid-state
diffusion limitations. This value of D; _ can be determined with a high degree of accuracy
from the discharge curves. The solid-state diffusion limitations are rather modest and are
quickly dominated by the ohmic drop in the solution at higher discharge rates, above the 1 C
16

rate. In fact, considering the practical desire to minimize the carbon electrode’s surface area,

minor solid-phase diffusion limitations in this electrode signify an optimized particle size.

For completeness, we must consider that the experimental results could also be explained

by using larger carbon particle sizes and literature data on the lithium diffusion coefficient in

9

another petroleum coke material (D _=5x10" cm2/s, Conoco coke4). However, the average

particle size used in the cells is readily available (12.5 um), and the significantly larger particle
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size needed to match figure 3-4 with this value of the diffusion coefficient is very unlikely (= 44
pm). The time constant for diffusion in the carbon particles, defined as R2/D, is 1.1 hours. It is
not possible to explain the loss of capacity at increasing rates with solution-phase diffusion lim-

itations, as these would bring about a more severe decrease in capacity (see Appendix 3-B).17

A second adjustable parameter used in the simulations is a film resistance on either elec-

trode surface. The resistance is treated by modifying the Butler-Volmer kinetic expression for

’

the insertion reactions:

(x'aFT]S
RT

_ acFn,
RT

—exp

] ; (3-7

Fj, =ig [exp
where the local surface overpotential is now defined as (compare equation 2-54)

Ns =P =Dy - Ulcy, T) _anRf s (3-8)

and Ry is the value of the film resistance in Q-cm 2, The simulations given in figure 3-4 employ

a negative electrode film resistance of Ry, = 800 Q-cm 2. This accounts for upwards of 25%
of the overpotential in the cell at the 1 C rate. Some physical justification for this model is pro-
vided by the passivation of the carbon electrode known to occur on the first few cycles. How-
ever, as will be discussed later, it is not possible to determine the origin of this resistance with

certainty using these simulations.

The agreement seen on figure 3-4 is excellent for the lower rates (below 3 C) but is not as
good for the very high discharge rates (3 C and 4 C). The agreement at low rates is surprisingly
good considering the lack of transport property data, particularly activity coefficient and
transference number data, necessary for calculating the concentration overpotential. These fac-

tors apparently make only a minor contribution to the cell’s overpotential. The main
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contribution to the overpotential comes from ohmic drop in the electrolyte phase, where the
Bruggeman exponent being used here is p=3.3. This equates to a positive electrode tortuosity
of 2.9 (see equation 3-4), which is a reasonable value. 18 At higher rates, the experimental data
exhibit a larger overpotential than the simulations. This increase in cell resistance at the higher
discharge rates could not be explained by using unknown physical properties such as kinetic
and solution-phase transport data as adjustable parameters in the simulations. The high-rate
overpotential also cannot be modeled by decreasing the electronic conductivity of either elec-

trode or by including contact resistances between particles in the porous electrodes.

We also attempted to model this increase in cell resistance using a mass-transfer resis-
tance in the porous electrodes. Under certain operating conditions, it is possible for mass-

19

transfer limitations to arise in the direction normal to the particles.”” This can be described in

an approximate manner by an expression of the form:

Jn = ~kn [c - Cw] , (3-9)

where c,, is the value of the wall concentration. The value c,,, solved for using equation 3-9, 1s
used in the Butler-Volmer equation to describe the concentration-dependence of the exchange-
current density and local open-circuit potential. Using the values of k,, as adjustable paramet-
ers, we were still not able to obtain better agreement with the data in figure 3-4, and this

approach was abandoned.

As the film resistance is one of the main contributions to the overpotential in the cell, it
warrants further discussion. The agreement between experimental and simulated discharge
curves on figure 3-4 is much poorer if an extra source of internal resistance is not included in

the simulations. It is possible to increase the value used for R, _ further and obtain better
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agreement at the high discharge rates. This is demonstrated in figure 3-5, where discharge
curves are given for values of Ry _ equal to 900 and 1100 Q-cm 2. The agreement at high

dicharge rates becomes much better while that at the lower rates becomes progressively worse.

It is not possible to distinguish between the two electrodes when attempting to assign the
film resistance. For example, figure 3-6 gives a comparison between simulations and the exper-
imental cell data for cell #1 using no film on the negative electrode and a film resistance of
1500 Q-cm ? on the positive electrode. The agreement is very similar to that seen in figure 3-4.
A larger value of the resistance must be used in the positive electrode because the average
value of j, is smaller for a thicker electrode. In fact, the values of the resistances scale very

well with the values of the average transfer-current density, which relate to the quantity:

IR, ;
36,75, goes as

5,1

& O;

<jp> = with i = +or —. (3-10)

We should note ;hat another possible explanation for the internal resistance could be residual
resistances located between the current collectors and the electrodes. Our conclusion from this
is that additional resistance exists in the porous electrodes that is not properly explained by the
present mathematical model, but the origin of this resistance is not known with certainty.
Future work using discharge-curve data with individual half-cell potentials from a three-
electrode cell, along with the computer simulations, may be used to determine the distribution

of resistance between the two porous electrodes.

The values of the exchange current densities used for the insertion processes in this cell
are: ig_=0.11 mA/cm2 and ig =0.08 mA/cmz, evaluated at the initial conditions. We can
compare these to values quoted in the literature for various insertion reactions: i O(TiS2)=O.06

mA/cm2 and io(V205)=O.13 mA/cmz.l?"15 Thus, the values used for the present system

TR

FRE O RERE



1 i |
Li,Cg|Li Mn,0,

1C=1.75 mA/cm’

T=25°C

4.0

(V)

0.1 ¢

Cell potential

0.0 0.2 0.4 0.6 0.8 1.0

Normalized capacity

Figure 3-5. Effect of varying the negative
electrode resistance on the discharge curves

for cell #1. The solid lines are simulation
results with a resistance of 1100 Q cm?, and

the dashed 1ines use a value of 900  cm?.
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appear to be reasonable. Using larger values of i in the electrodes makes little difference to
the discharge curves, indicating that a reversible charge-transfer process exists. Even in the
negative electrode, where the film resistance is assumed to exist, the value of i; is unimportant,
and an equilibrium situation essentially is established with respect to the charge-transfer reac-

tion.

The same simulated discharge curves from figure 3-4 are plotted in figure 3-7 as a func-
tion of the manganese electrode stoichiometric parameter, y in LinnZO 4- Figure 3-7 demon-
strates that this cell achieves a maximum stoichiometry in the positive electrode of y=0.77; this
indicates that the cell is negative-electrode limited, as the carbon runs out of lithium before the
manganese oxide is fully utilized. The cell cycles over a range of y of 0.59, which is 71% of
the maximum value of Ay=0.83. A common way to expr;ess the utilization is in terms of the
attainable capacity of the manganese oxide electrode; for cell #1 one finds that 87.3 mAh/g of
manganese oxide (LiMn,O 4 is being utilized (out of a theoretical value of 148 mAh/g if

Ay=1).

Next we consider discharge curves for cell #2, which is identical in design to cell #1
except for the component thicknesses and initial salt composition. Components of cell #2 have
the following thicknesses: &_=128 pum, §,=76 um, and §,=190 um. The electrolytic solution
usedincell#2is 1 M LiPF6 in a 2:1 ratio of EC/DMC. Unless otherwise noted, all of the simu-
lation paraﬁeters identified earlier for cell #1 will be used in the following simulations.
Theor:ctical and experimental discharge curves for cell #2 are given in figure 3-8 for various
discharge rates. The 1 C rate is equal to 2.08 mA/cm2; simulated discharge curves are given
forthe 0.2C,1C,2C,3C,4C,5C, and 7 C rates. Experimental data are available at the 0.2

C,1C,3C,4C,and 5 Crates. As before, the n C rate is defined as a multiple of the 1 C rate.
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The simulated discharge curves for cell #2 show good agreement with the experimental
data over the whole range of discharge rates. The initial states of charge for cell #2 were found
to be x°=0.52 and y°=0.17. The lower value of x° for this cell compared to cell #1 is a result of
the fact that these experimental discharge curves were taken for a cell that had already been
cycled over 50 times, causing some capacity fading. This capacity loss is reflected in the
amount of cyclable lithium in the carbon electrode in the charged state, as well as in the final
stoichiometry of the manganese oxide electrode. Similarly to the behavior of cell #1, we find
that cell #2 is dominated by solution-phase ohmic drop and film resistances, and also has mod-

est solid-phase diffusion limitations at the moderate discharge rates (1 C and 2 C).

Unlike cell #'1, this cell begins to exhibit solution-phase diffusion limitations at rates
above the 2 C rate. This is the cause of the rapid loss of capacity at these higher discharge
rates. The simulations do only a moderate job of capturing this region of the discharge curves;
the transport properties used for the electrolyte are D=9><10'7 cm2/s and 19=0.36. In the simu-
lations of cell #1, the values of these transport properties had little effect on the discharge
curves. Here, on the other hand, they dominate the behavior of the curves in this one region.

Cell #2 has diffusion limitations in the solution phase where cell #1 did not because of the

difference in initial salt concentrations.

The transference number and diffusion coefficient used in the simulations are chosen to
give the best agreement with the discharge curves for cell #2 and cell #3 (data for cell #3 to fol-
low). We can compare these values with those for 1 M lithium perchlorate in propylene car-

bonate: D=2.58x10"0 cm/s and 10=0.20.20-21

The plasticized electrolyte used in these cells
appears to have a lower diffusion coefficient than a pure liquid electrolyte, but a somewhat

larger transference number. A more relevant comparison would be between the values of the
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ratio:

D
D,= [ (3-11)

which is equal to the lithium ion diffusion coefficient for a dilute solution. This ratio still
retains significance in a concentrated solution as it directly relates to the size of the concentra-
tion gradient formed in the cell at steady state:

1(1-29

Ve = _—ED_— (3-12)

The value of D, for I M LiPF6 in EC/DMC with p(VdF-HFP) is calculated to be 1.4x10'6

6 cmz/s. As has been found before,

cm2/s; for comparison D, for 1 M LiCIO 4 in PCis 3.2x10°
although the plasticized electrolyte is essentially a solid material, its transport properties are

comparable to those of a liquid solution.

It was not possible to obtain perfect agreement between the simulations and the experi-
mental data using any combination of £ and D. This is to be expected when one considers that
the transport properties will likely vary with salt concentration whereas we have assumed con-
stant values. Also, our treatment of the complex plasticized-electrolyte blend as a binary elec-
trolyte is probably not valid. We consider the present treatment of the transport processes in the
plasticized electrolyte to be an initial approximation which should be followed by a more
rigorous experimental characterization of the systemn under the framework of concentrated solu-

tion theory.

In addition to the discharge performance of the system, it is also necessary to examine the

behavior of the cell on charge. This is not studied as thoroughly as the discharge process
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because charging tends to be carried out at lower rates. However, in some applications, e.g.,
electric vehicles, the ability of a system to charge at high rates can be just as important as
high-rate discharges. In general, for a lithium-ion cell, one would expect the charge behavior to
be similar to the discharge behavior. This symmetry is destroyed by the solid-phase diffusion
limitations in the carbon electrode as well as different values for design parameters, such as the

active material loading, used in either electrode.

In figure 3-9, we compare simulated charging curves to experimental data. The cell used
here is nearly identical to cell #2, with only slightly different electrode thicknesses (8,=213 um
and &_=134 um). The 1 C rate for this cell is defined as 2.29 mA/cmz; charging curves are
given for the 0.18 C, 0.33 C, 0.5 C, and 1 C rates. Each charging curve was preceded by a
discharge at the 1 C rate, except for the 0.18 C curve which was preceded by a 0.18 C-rate
discharge. There is some uncertainty in these comparisons because of the effect of the previous
moderate-rate discharge on the charging curves. The system is able to recharge to completion
for rates up to nearly the 1 C rate (which is still defined with respect to the one-hour discharge).
At higher rates, there is a rapid loss of capacity due to the imposition of the cutoff potential.
This is more pronounced than in the dischérge curves because the upper cutoff potential (4.5 V)

is closer to the open-circuit potential than the lower cutoff potential (2.0 V).

The simulations appear to agree reasonably well with the data, particularly with the
expected times to reach the 4.5 V cutoff potential. However, the simulations do seem to
underestimate systematically the overpotential in the cell on charge. Diffusion limitations are
absent from the cell during charging, both in the solution and the solid phases. For the solid
state, we conclude that the manganese oxide diffusion coefficient measured previously is accu-

rate,4 and the particle size used in these cells is satisfactory. Solid-phase diffusion limitations
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in the negative electrode have little impact on the charging process because the carbon
electrode’s final stoichiometry is only x=0.6 on average. We should note that significant solid-
phase diffusion limitations at high rates will increase the possibility of having lithium metal
plate on the negative electrode. It is possible to simulate charging conditions for which the
negative electrode overpotential goes below 0 V versus Li at the end of a charge, a point that
will be explored later. Diffusion limitations in the solution phase seen in the discharge curves

are not seen here because the charging process is confined to low to moderate rates.

The last comparison between the simulations and experimental data that we make is with
a very thick cell referred to as cell #3. This cell was fabricated by laminating together two
electrodgs of the type used in cell #2 to form each electrode for cell #3. The thicknesses of the
electrodes in cell #3 are 8,=366 um and 6.=244 um. The experimental discharge curves are
given in figure 3-10, along with the simulated curves at the 0.1 C,0.2C,05C,1C,2C, and 2.5
C rates. The 1 C rate is defined as 4.17 mA/cmz, the cell area is 24 cm2, and the capacity of
cell #3 1s 96 mAh. The simulations agree well with the experimental data over the full range of
discharge rates. The lowest-rate discharge curve in figure 3-10 attains less capacity than the 0.2
C-rate discharge simply due to capacity fading of this fresh cell (the 0.1 C-rate discharge was

taken last).

For cell #3 we found it necessary to use a substantially larger value of the film resistance,
Rf _=2400 Q-cm 2, to fit the experimental discharge curves. This is three times the value used
for the earlier cells. Among the possibilities to account for this observation, the lamination pro-
cess used to fabricate electrodes could be the source of the extra resistance in the cell. The pro-
cess consists of thermally laminating individual electrode layers, consisting of active electrode

particles and the electrolyte, together with current collecting grids, followed by passing the
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electrodes and separator through the laminator together to form the full-cell sandwich.6 The
interface temperature during the lamination will depend on the thickness of the electrode
layers, as the same lamination temperature was used for both thick and thin electrodes. Thus,
higher ‘resistances in the thicker electrodes might be explained by incomplete melting of the
separator/composite electrode interfaces. Again, comparisons between experimental and
theoretical half-cell potentials could be used to support this theory, as we would expect to see

the resistance distributed rather equally between the two porous electrodes if this were the case.

Solution-phase diffusion limitations have become more prominent for cell #3 due to the
increase in electrode thicknesses. A closer examination of the comparisons between experi-
ment and theory shows that the simulated discharge curves fall off earlier than the experimental
data at the highest rates. Even with this minor deficiency in the simulations, we are fairly
confident in the accuracy of the values used for D and 13 for this system. One finds that chang-
ing either of these numbers by about 20% in either direction rapidly leads to very poor agree-

ment with the experimental high-rate dischage curves.

Dfscussion of impact of irreversible side reaction on Li-ion simulations. - It was men-
tioned previously that there is some difficulty in the determination of the initial states-of-charge
of either electrode in a lithium-ion battery. This is a direct consequence of an irreversible side
reaction that proceeds between lithium ions and/or the solvent and the fresh carbon electrode
surface. This side reaction appears to form a stable, protective film on the carbon which allows
the electrode to continue to operate without further reaction; an identical process is thought to

22

occur on the bare lithium surface in nonaqueous liquid electrolytes.”” Unfortunately, the initial

loss of lithium ions in forming this film causes electrodes that are initially balanced in capacity

to be thrown out of balance. This necessarily results in a diminished utilization and hence a
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decreased specific energy for the battery.

It is helpful to examine the initial few cycles of a fresh lithium-ion cell in order to under-
stand this loss of capacity. Figure 3-11 is a schematic of the capacity of each electrode during
the first full cycle of the cell. The capacity is measured by the stoichiometric parameters for
either electrode, x and y. We assume that the capacities of the electrodes are initially perfectly
balanced; this requirement can be quantified by the following relationship between the elec-

trode characteristics:

AxC_8_e_p_ = AyC ,8,£,p, , (3-13)

where we define C as the theoretical capacity of the insertion material in mAh/g:

__F
3.6M,;°

o (3-14)

M; being the molecular weight of the starting material LianO 4 OF C6' Often the criterion for
balanced capacities is expressed as a requirement for a specific mass ratio between the two

components:

_ 0.€.Ps _MxC
T= Sep.  AyC,

(3-15)

The values of Ax and Ay are the inherent cycling ranges for the two materials, assumed to be

Ax=0.61 and Ay=0.83. For the present system, one finds that y=1.8.

The fresh lithium-ion cell is prepared in the discharged state; thus the initial states of
charge of the electrodes are assumed to be x°=0.0 and y°=1.0. These values could be obtained,

for example, by x-ray diffraction of the powder samples prior to cell assembly. The carbon sur-
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face is assumed to be in its unreacted state initially, although it is likely that side reactions with
the surface would proceed as soon as the materials were in contact. We will visualize the film
formed on the carbon surface’ as a sink for lithium having a known capacity that is a function of
the surface area of the electrode only; this is represented by the lower box below the carbon
electrode on figure 3-11a. It is known that this film forms over the first few cycles of the cell;
however, for the schematic purposes of figure 3-11, we shall assume that it is completely

formed after the first cycle.

Examining the first charge of the fresh cell of figure 3-11b, one sees that the lithium ions
taken from the manganese oxide electrode can either insert into the carbon electrode or react on
the surface to form the film. Thus, at the end of this charging period, the final stoichiometry of
the carbon electrode depends on the amount of lithium thaf reacted in forming the film as well
as the capacity of the positive electrode. If the capacities are initially balanced, because of the
lithium lost to the film, the carbon electrode will not reach its maximum utilization. On the first
discharge of the cell, the lithium that had managed to intercalate into the carbon is now avail-
able to insert info the positive electrode. Because of the initial loss of 'lithium, there is no
longer sufficient lithium to bring the positive electrode up to its full capacity, as pictured in
figure 3-11c. Depending on the lithium capacity of the film, tﬁis may limit practical positive

electrode utilizations to 50 to 75% of the theoretical capacity (for Ay=0.83).

- How can this situation be improved? First, one could consider using a thicker positive
electrode so that the capacities of the two electrodes are not balanced in the fresh cell. The
added positive electrode material should provide extra lithium ions to form the film on the car-
bon surface, while still bringing the carbon electrode up to its maximum capacity on charge. It

is important to note that one will still not be able to attain full utilization of the manganese
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oxide electrode; the lithium lost to form the film cannot be regained by increasing the positive
electrode thickness. The optimum positive electrode thickness will correspond to the amount
required by stoichiometry plus an amount that is equal in capacity to the film capacity. As the
capacity of the film is unlikely to be known, this can be determined in practice by using a pub-

lished method.""5

This involves monitoring the potential of either electrode versus a reference
electrode in solution during the first few cycles of a fresh cell. When the thickness of the posi-
tive electrode (or the mass of positive electrode materiél) has been optimized, the potential of

the carbon electrode should just reach zero at the end of the first charge, indicating that there is

enough extra capacity to form the film and still attain 100% utilization of the carbon electrode.

This procedure was followed successfully for the experimental cells discussed above. For
example, with cell #1 we found that the initial state of charge of the negative electrode was
x9=0.61. Examination of the open-circuit potential of carbon (Appendix B) indicates that the
lithinm potential at this state of charge is about 50 mV vs. lithium. This is the lowest value at
which one could safely operate, indicating that the initial mass ratio was indeed optimized. The
optimum mass ratio found using the reference-electrode measurements was approximately

2.1;4

this can be compared to the mass ratio required for a balanced cell of about 1.8 (with
Ax=0.61 and Ay=0.83). Thus, we have 16.7% excess capacity in the positive electrode, which

is a measure of the amount of lithium needed to form a stable film on the carbon surface; better

carbon electrodes are being sought in order to reduce these losses.22

An attractive solution to this capacity loss problem would involve having the initial state
of charge of the' manganese oxide electrode be LinnZO 4 With 1<y<2.4 The extra lithium in
the manganese oxide electrode initially could be balanced with the film capacity. This should

be possible in theory, as the reaction:
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LiMn, O, +xLi* +¢ 2Li;, Mn,0,
is known to proceed at a lower plateau at = 3V vs. lithium. However, the spinel structure of
manganese oxide commonly used in the lithium-ion cells does not cycle reversibly between
these two plateau regions. That is, once the additional lithium atoms are inserted into the crys-
tal structure, the spinel structure is no longer the most stable, and an irreversible transformation
occurs spontaneously.23 Also, costs associated with chemical agents such as Lil presently
used to carry out this reaction would prohibit large-scale production of Linn204 with y>1.
Other possible solutions to this capacity-loss problem involve preforming the film; this could
involve either an extra lithium source in the cell or cycling of the carbon electrode prior to bat-

tery assembly. It is probable that all of these options will be explored in the future.

The problem that this situation creates for numerical simulations is that the initial state of
charge of the electrode is not known after the first cycle. Without reference electrodes, it is not
possible to tell whether coulombs being passed are inserting into the electrode rather than form-
ing the carbon film. One cannot simply equate the charge passed through an external circuit to
the stoichiometry of the insertion electrode, e.g., Ax. To determine the initial state of charge,
we can examine the capacity obtained at some low-rate discharge such as 0.1 C; assuming the

cell is negative-electrode limited, we find

It,

0_"d
Cloep.’

x (3-16)

where [ is the current density and z, the discharge time for some low-rate discharge. This
expression assumes that we have discharged to a low potential so that the final value of x is
zero. It is also difficult to maximize x° in practice because the carbon film capacity seems to

depend on the type of carbon used, the components of the electrolytic solution, and additives to
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the electrode or solution. One is thus 'required to go through the experimental effort to measure

the film capacity with each new material development in the system.

Effect of positive electrode electronic conductivity on discharge curves. - There is interest
in examining the effect of decreasing values of the manganese oxide electrode’s electronic con-
ductivity. This material has a poor intrinsic conductivity, and it is necessary to add a certain
amount of conductive additive (usually carbon black) in order to operate the battery success-
fully. Generally, the optimum carbon content is found experimentally by discharging cells with
increasing amounts of carbon additive until increasing the carbon content further has no notice-
able effect on discharge curves. Alternatively, one may test the dc-resistance of porous man-
ganese oxide electrodes with various carbon contents. It is often found that the resistivity of
the electrode as a function of carbon content follows a percolation model; thus, above a certain
threshold carbon content the resistance drops dramatically (the so-called percolation limit).
The carbon content should be minimized as a practical matter not only because of penalties to
the specific energy but also to limit unwanted side reactions on the positive electrode that have
been associated with carbon black additive levels.24 Using the simulations, one can increase
the electrode resistance in order to investigate the consequences of a less-than-desired carbon

content on cell performance.

From our experimental measurements, the electronic conductivity of the manganese oxide

3 S/cm. This

electrode with carbon black additive in the discharged state is found to be 6x10"
value includes the full porous electrode, with solution phase also; if we correct this for the finite
volume of the electrode material by using the Bruggeman factor, an inherent conductivity for

the manganese oxide plus carbon is 3.8><10'2 S/em. Figure 3-12 gives discharge curves for

decreasing values of the electronic conductivity of the positive electrode. These galvanostatic
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Figure 3-12. Simulated cell potential versus

state of charge for cell #2 at the 1 C rate

for various values of the positive electrode

matrix electronic conductivity. The conduct-

ivity is reduced from its measured value of

0.038 S/cm.
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discharges are for cell #2 at I=1.88 mA/cm2 and 25°C. The electronic conductivity can be

reduced by one order of magnitude with little impact on the discharge curve. Then, however, as
the conductivity is decreased further, a large drop in utilization occurs. This effect is seen
when the electronic conductivity decreases below the ionic conductivity of the solution, caus-

ing the system to be ohmically-limited due to the positive electrode.

Assessment of capacity-rate data using the signature-curve method. - It is useful to test
periodically the rate behavior of a cell undergoing steady cycling. This information is useful to

assess the high-rate performance of a cell, which gives information of the power capabilities of

the system. Also, the very-low-rate discharge capacity is needed to determine whether capacity

fading seen on extended cycling is due to reversible or irreversible capacity loss. Unfor-
tunately, the process of cycling and testing cells is very time consuming, and it is thus
beneficial to be able to determine this information in as rapid a manner as possible. For this
reason, several battery manufacturers, including some in the lithium-ion battery area, have

developed a rapid method of obtaining capacity-rate data for cells.

The process consists of carrying out successive discharges starting with the highest rate
and each followed by a lower rate discharge and relaxation period but no charging step. The
capacity attained at a given rate is assumed to be the cumulative capacity up to that point. The
resulting discharge curve has been dubbed the "signature-curve" for a cell by Moli Energy.25
This method is much faster than carrying out each discharge and charge separately because
most of the cell’s capacity is consumed at the higher discharge rates. We derhonstrate this pro-
cess in figure 3-13, where a simulated signature-curve discharge for cell #2 is given (dashed

line). Also given on figure 3-13 are individual discharge curves atthe 4 C,3C,2C,and 1 C

rates (solid lines). The signature curve pictured here consists of a series of discharges at the 4
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the capacity/rate behavior of cell #2 compared

with several individual discharge curves.
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C3C12C,1C, 0.5C, 0.2 C, and 0.1 C rates, each followed by a five-minute relaxation period.

The capacity of the cell (to the 3 V cutoff potentie;l) is defined as the intercept of the
discharge curve on the abscissa. One can use the individual discharge curves to compare with
the predictions for the signature-curve method. It is apparent that the signature curve overesti-
mates the capacity of the cell at the higher rates (3 C and 2 C). Individual discharge curves at
rates below the 1 C rate (not pictured here) obtain the same capacity as the signature curve.
The reason for the discrepency between capacity predictions at high rates is due to relaxation
processes occurring during the five-minute rest period. This time allows lithium to redistribute
in the insertion electrodes, giving more favorable conditions for the next discharge. This effect
is compounded by using closely spaced high-rate discharges in the signature curve, such as the
4 C, 3 C, and 2 C rates used here. Lower rate discharges are not affected by these processes.
The optimal procedure for using the signature-curve method to obtain accurate capacity-rate

data has been discussed in the literature.25

Profiles of variables across the full cell. - One of the unique strengths of battery modeling
is its ability to predict the distributions of current, potential, and concentrations across the full
cell during its operation. This often will provide information that is either difficult or impossi-
ble to determine experimentally, as well as improve our understanding of the phenomena occur-
ring inside of the cells. We will focus on the transient profiles of all of the variables across cell
#1 during a 1 C-rate discharge at 25°C, providing profiles of variables in the other cells and at
higher rates for comparison only. All of the profiles will be plotted against normalized dis-

tances, either using the total cell thickness or the particle radius, as appropriate.

First, figure 3-14 gives salt concentration profiles across the full cell during the galvano-

static discharge. The solution used in cell #1 is 2 M LiPF in a 1:2 ratio mixture of EC/DMC.
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Figure 3-14. Salt concentration profiles across
cell #1 during‘galvanostatic discharge at the

1 C rate. The separator region is set off by
dashed lines. Time since the beginning of dis;

charge is given in minutes.
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7 cm2/s, whereas the

The salt diffusion coefficient is assumed to be constant and equal to 9x10”
lithium 1on transference number used is 0.36. Solution-phase diffusion is sufficiently fast that a
limiting current is not reached at the 1 C rate. Since the time constant for diffusion, L%/D, is
equal to 0.3 hr, the profiles have time to reéch their pseudo-steady-state form (given by equa-
tion 3-12) and as manifested by a nearly constant concentration gradient in the separator. The
maximum concentration reached in cell #1 at the 1 C rate is about 2.6 M, increasing to 3.4 M at
the 4 C rate; at these high concentrations, salt-solubility limitations could be a concern. How-

ever, the onset of salt precipitation is difficult to predict in practice due to the possibility of

supersaturation.

For comparison, figure 3-15 shows the concentration profiles in cell #2 during the 3 C-rate
discharge. The lower initial salt concentration, as well as the high-rate discharge, causes the
salt concentration to be driven to zero in the positive electrode after approximately eight
minutes. This is the cause of the abrupt loss of capacity in figure 3-8 at rates above the 3 C rate.
At even higher discharge rates, the salt concentration can be driven to zero near the front of the
positive electrode first. This is demonstrated in figure 3-16, which gives profiles for cell #2 at
the 5 C discharge rate. Only four minutes into this discharge, the salt concentration near the

front of the electrode reaches zero, and the cell cuts off shortly thereafter.

The solution-phase potential, ®,, is plotted in figure 3-17 across the full cell at various
times during a 1 C-rate galvanostatic discharge for cell #1. For convenience, the arbitrary zero
for the potential has been shifted in this figure to the center of the separator. The difference in
the potential across the cell gives an indication of the solution-phase potential drop, which
includes contributions from ohmic drop and concentration overpotential. This total potential

drop is initially about 60 mV, increasing to 140 mV by the end of discharge. This can be com-
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Figure 3-15. Salt concentration profiles across

cell #2 during galvanostatic discharge at the

3 C rate (I=6.25 mA/cm’). The separator region

is set off by dashed lines. Time since the

beginning of discharge is given in minutes.
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c, mol/cilm3

X

Figure 3-16. Salt concentration profiles across

cell #2 during galvanostatic discharge at the

5 C rate (I=10.5 mA/cm®). The separator region
is set off by dashed lines. Time since the

beginning of discharge is given in minutes.
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Figure 3-17. Solution-phase potential profiles
across cell #1 during galvanostatic discharge
at the 1 C rate. The separator region is set
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of discharge is given in minutes.
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pared to the total overpotential in the cell, defined as the difference between the cell potential
and the open-circuit potential, which increases from 200 mV to 400 mV over the course of the
discharge. As expected, the solution-phase potential drop is the dominant contribution to the
total overpotential. Most of the potential drop occurs in the two electrodes, not in the separator.
Thus, increasing the volume fraction of the liquid phase of the plasticized-electrolyte mixture
in the porous electrodes should bring about a substantial decrease in the ohmic drop, whereas
decreasing the separator thickness should cause only a minor improvement. This latter point

has been confirmed experimentally.

Next, in figure 3-18, we examine profiles of the cﬁrrent density in solution across the cell
under identical conditions to figure 3-17. The current density across the separator region is
equal to the applied current density, 1.75 mA/cm?. Inside 6f either porous electrode, the
solution-phase current density decreases as one approaches the current collectors because
lithium ions are transferring betweeen the solution and solid phases, leading to an increase in
the electronic component of the current density. At the current collectors, the current density in
solution reaches zero, and all of the current is carried by electrons. Although the shape of these
curves gives one an indication of where the insertion reactions are occurring, figure 3-18 is not
particularly interesting as this information is more easily obtained directly from the plots of
reaction-rate distribution.

The pore-wall flux, or reaction-rate distribution, for lithium through the interface of either

porous electrode is plotted in figure 3-19 during a 1 C-rate galvanostatic discharge. The

transfer current density is directly related to the pore-wall flux through the expression,
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Figure 3—18. Solution-phase current density
across cell #1‘during galvanostatic discharge
at the 1 C rate. The separator region is set
off by dashed lines. Time since the beginning

of discharge is given in minutes.
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Figure 3-19. Reaction-rate distribution across
cell #1 during galvanostatic discharge at the

1 C rate. The separator region is set off by
dashed lines. Time since the beginning of

discharge is given in minutes.
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a .
22 _aFj,. (3-17)
ox

The pore-wall flux is negative for the positive electrode because lithium ions are being
transferred out of ‘solution and into the solid phase. The reaction rate is distributed nonuni-
formly through the positive electrode but is fairly uniform in the negative electrode. For the
negative electrode, the current distribution is more uniform because the open-circuit potential
function is sloped, causing lithium to favor deinserting from regions with a higher lithium con-
centration, as well as because of the film resistance assumed to exist on the electrode surface.
Both of these .phenomena shift the current distribution from the ohmically-dominated case to
resemble a kinetically-dominated, uniform distribution. Near to the end of the discharge (60
min), the reaction begins to favor the back of the negative electrode; this occurs when the front

becomes exhausted because of the initially higher current densities in this region.

The situation in the positive electrode is more complicated. As the open-circuit potential
of the mangaﬂese electrode is flat in the region from y=0.2 to 0.6, the reaction distribution
resembles an ohmically-limited reaction-zone model (see Appendix 3-A). The insertion reac-
tion proceeds to its cpmpletion (y=0.6) at a given point before penetrating further into the
depths of the positive electrode. Then, the U curve has a slight dip at around y=0.6 followed by
a second plateau region, causing another reaction front to develop and move though the elec-
trode consuming the rest of the attainable capacity. We barely see this second reaction front in
figure 3-19 (60 min) because the average utilization of the manganese electrode is only about

y=0.73 at the end of a 1 C rate discharge.

Another way to examine the insertion-reaction distributions is to plot the lithium concen-

tration in the solid phase across the two electrodes. The surface value of the lithium concentra-
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tion, cg, is plotted in terms of the stoichiometric parameters x and y (i.e., ¢¢/c;) in figure 3-20 for
a 1 C-rate galvanostatic discharge of cell #1. The surface concentration is equal to the average
lithium concentration or active material utilization in the absence of solid-state diffusion limita-
tions. This figure allows one to determine which parts of the porous electrodes are being util-
ized effectively, information that is very difficult to obtain experimentally. Examining figure
3-20, one finds that the state of charge in the negative electrode varies from approximately 0.61
to O while that in the positive electrqde goes from 0.17 to about 0.73. This corresponds to a

positive electrode utilization of 67.5% or 83 mAh/g of LiMn, O, at the 1 C rate.

Figure 3-20 can be viewed as a quantitative version of figure 3-11, and can be compared
directly to figures 3-11b and 3-11c. The distribution of utilized capacity in either electrode dur-
ing the discharge follows from the discussion of the reaction-rate distributions shown in figure
3-19. Early in the discharge (5 min curves), the electrodes are utilized primarily in the regions
nearest the separator because of the dominance of solution-phase ohmic drop. Later (20 min),
the utilization of the negative electrode is more uniform while that of the positive electrode
develops a front-like behavior. The details ‘of the distributions of utilized material and their
relationship to material properties such as the open-circuit potential for the insertion process

have been discussed elsewhere.26'28

The mathematical model can also be used to explore the concentration gradients that
develop inside the solid insertion electrode particles. Diffusion limitations existing in the car-
bon electrode lead us to examine the size of the gradient in these particles during the discharge.
It is possible to examine profiles at any position into the electrode, but we shall focus on a point
near the separator because the final profiles are nearly independent of position. Although the

particles near the separator boundary become polarized first, this "limiting current" quickly pro-
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Local utilization of active material

across the full cell during galvanostatic discharge

of cell #1 at the 1 C rate.

is set off by dashed lines.

The separator region
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pagates into the depths of the electrode as the particles in the front no longer can provide the
necessary current. In figure 3-21 are various concentration profiles inside of a carbon particle
at the end of discharges at differént rates (0.5 C, 1 C, and 2 C) for cell #1. Since the concentra-
tion gradient scales with the current, at higher rates a larger fraction of the active material is not
accessible at the end of the discharge. This scaling is almost, but not quite exactly, linear

because the larger current will also influence the reaction-rate distribution.

To demonstrate the dependence of the solid-phase concentration profiles on distance
across the electrode, figure 3-22 gives profiles as a function of time at two positions into the
negative electrode during a 1 C-rate discharge of cell #2. The solid lines are taken from a parti-
cle near the electrode/separator boundary, whereas the dashed lines are for a particle at the
back of the electrode. The concentration profiles develop rather quickly into their pseudo-

steady-state form:17

~Ir?

cs(r=0)—cy(r) = SaFD. SR (3-18)

The solid-phase concentration at the back of the porous electrode is slightly greater than that at

the front over the full discharge, as would be expected.

During the charging process, it is important to avoid the formation of solid lithium metal
on the surface of the carbon electrode. As the cell is negative-electrode limited, it is not obvi-
ous that this can be avoided during high-rate charges. In figure 3-23 we examine profiles of the
local overpotential, ®; — ®,, across the negative electrode as a function of time during the 1
C-rate charging of cell #2. The potential @, is defined with respect to a lithium reference elec-
trode, and when @; — @, reaches zero, the lithium plating reaction becomes thermodynami-

cally favorable. Figure 3-23 demonstrateés that this may occur near the end of the 1 C-rate
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Figure 3-21. Concentration profiles of lithium
inside a solid carbon particle near the front
of the negative electrode for cell #1. The
discharge rates are given on the figure as a

fraction of the 1 C rate, and the time is near

the end of discharge.
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236

i sy
i

T 1
it

vy

i
by,

i iR
[r——

_

A

FUEFE

R T



e

237

charge at the negative electrode/separator boundary. A nonuniform current distribution in the
negative electrode causes the front of the electrode to be filled with lithium earlier than the
back, leading to the drop in the overpotential at the front. This problem becomes worse as the
charging rate is increased. Lithium plating may occur, but this will depend on the kinetics of
the reaction, as it must compete with the lithium insertion reaction. -Also, the initiai lithiurn
deposition may be hindered somewhat by the need to develop an overpotential for nucleation of

lithium metal.

In certain applications it can be important for a ba&ew to attain large peak specific
powers. An electric-vehicle battery, for example, needs to provide a peak specific power
(W/kg) for a thirty-second current pulse that is two to four times the specific energy of the bat-
tery (Wh/lcg).29 We can use the simulations to predict the peak specific power available from
the three experimental cells examined above. The peak power is that available over a thirty-
second period when the cell is discharged at increasing rates to a 2.0 V cutoff potential from a
given initial discharge condition. The mass used in these calculations includes all cell com-
ponents and current collectors (see equation 3-21) but not the container And peripherals. The

values used here have not been optimized.

Figure 3-24 gives the results for the peak specific power for each of the three cells as a
function of the depth of discharge. The peak power decreases steadily during the discharge,
due primarily to the increasing distance that ions must flow in solution to reach the reaction
zone a'nd the decreasing open-circuit potential of the cell. Cells #1 and #2 have similar power
capabilities, decreasing from about 300 W/kg near the beginning of discharge to 200 W/kg at
the end. Cell #2 performs slightly better than cell #1, even with somewhat thicker electrodes,

because the average ionic conductivity of cell #1 is lower (c%=2 M). Cell #3 achieves a sub-
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Figure 3-24.

% Depth of discharge

The peak specific power for a

30-s pulse of current after a galvanostatic

discharge to different %DOD.
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discharge is at the 1 C rate at 25°C for
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stantially lower peak power because of its thicker electrodes. These simulations demonstrate
that the specific power available from the lithium-ion cell should be over twice the specific

energy.

Effect of temperature on the discharge curves. - An advantage of lithium rechargeable
battery systems is often said to be their good performance over a wide range of tefnperatures.
For this reason, it is important to examine discharge curveé at temperatures other than 25°C. In
figure 3-25 we present several experimental discharge curves for cell #1 at 0°C at various
discharge rates. The 1 C rate is still defined as 1.75 mA/cmz, the one-hour discharge rate at
25°C; other rates are given as multiples of the 1 C rate. The low-temperature performance of
the cell is poorer than that at 25°C; even at the 0.1 C rate the cell is obtaining only about 87%
of the full capacity. E*perimental discharge curves for cell #1 at 55°C are given in figure 3-26.
The high-temperature performance of the cell is quite good. The loss of capacity at the 0.5 C

and 1 C rates seen in figure 3-4 and attributed to solid-phase diffusion limitations is somewhat

reduced at 55°C.

Simulated discharge curves at 0 and 55°C are not given in figures 3-25 and 3-26. We find
that the simulations do not agree well with the experimental data for temperatures other than
25°C. Data on the ionic conductivity at various temperatures is known. However, other pro-
perties that depend on temperature have not been measured. In particular, the temperature
dependence of the solid-phase diffusion coefficient in the carbon electrode and the open-circuit
potentials can not be ignored. Poor agreement between simulations and experimental data is
attributed to these effects. Future work may involve the measurement of these data, followed

by more detailed modeling work at other temperatures.
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Figure 3-25.

Normalized capacity

Experimental data on cell potential

versus the fraction of attainable capacity for

cell #1 at various discharge rates at 0°C.
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* Discharge curves for a graphite negative electrode. - For comparison purposes, an exper-
imental cell was fabricated that used graphite (Lonza KS-6) as the negative electrode material

instead of petroleum coke. This cell had the following design specifications:

6.=83 pm, §,=76 um, 8,=187 um

€.=0.42, g _=046, g, _=0.12, & _=0.00

In addition, the negative electrode particle size was reduced to R; _=4 pm. The volume frac-
tions for the composite positive electrode were identical to those given in Table 3.2. The den-
sity of the graphite was measured and found to be 2.25 g/cm3; this gives a mass ratio for the
cell of ¥=2.93. The larger value for Y compared to previous cells is just due to the larger capa-
city of the graphitic carbon for lithium insertion. Using equation 3-15, we find that the theoreti-
cal mass ratio for this cell is y=2.62. The open-circuit potential for the graphite being used was

measured and is given in Appendix 3-A.

In figure 3-27 we give the comparison between experimental and theoretical discharge
curves for this cell. The 1 C rate is defined at I=1.67 mA/cm2, and the total (normalizing) cell
capacity is 40.0 mAh. The initial states of charge for this cell are found to be x%=0.72 and
¥9=0.18. The value of x° is too low considering the range of capacity accessible with the gra-
phite (the open-circuit-potential curve suggests x® should be closer to 0.95). This indicates that
the mass ratio used was too low; not enough extra capacity existed in the positive electrode to
make full use of the negative capacity. A better value for the mass ratio would have been
v¥=3.5. The graphite cell can attain the full capacity at rates up to the 2 C rate. As the carbon

particle size is significantly smaller than that used earlier, we no longer see solid-phase

diffusion limitations. Similarly to earlier cells, solution-phase diffusion limitations dominate
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Figure 3-27. Comparison of simulated to
experimental discharge curves, i.e., cell
potential versus the fraction of attainable
capacity, for a Li-ion cell having a graphite
negative electrode. The solid lines are

the simulations, and the markers are the

experimental data.
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the discharge curves at rates above the 2 C rate. The same negative electrode resistance used

earlier, Ry, _.=800 Q-cm 2, is used here, but a larger value of the tortuosity factor was required,
p=17.2. The larger value of p for this cell is disturbing; we are at a loss to explain this at present.
One would not expect the use of a different electrode material to have such a drastic effect on
the solution-phase transport properties. As far as we know, the positive electrode in this cell

was nearly identical to positive electrodes used in earlier cells in its composition and structure.

3.4 Design and optimization considerations

The full potential of mathematical modeling is realized when one attempts to optimize a
new battery system. If done through experimental work only, this process may be very time
consuming as the number of parameters that can be varied is large. With a mathematical
model, on the other hand, the process of varying system parameters and determining the overall
performance is greatly expedited. But, to have confidence in the results, the model must have
been proved to represent accurately the system behavior. The optimization process will usually
involve extrapolation of the battery’s behavior into regions of parameter space where experi-
mental data do not exist. Models that are too simplified, or ones that involve excessive parame-
ter fitting using a specific configuration, will be unlikely to provide good results under these
conditions. In any case, an optimum battery configuration determined from mathematical
modeling should be viewed as an initial guess at the true optimum system, which can act as a

starting point for the experimental design effort.

In the present case, the modeling results shown above have demonstrated a good deal of
flexibility in describing the lithium-ion cell. Several different cell configurations were studied,
including different electrode thicknesses and initial salt concentrations, under conditions of

charge and discharge. Some parameter fitting was required, but these same values applied to all
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of the experimental cell designs. The only exception was the film resistance on cell #3, and this
effect was ascribed to the manufacturing technique. Thus, we do have some hope of providing
accurate results while carrying out the optimization of this battery. Next, we must ask what it is

that we wish to optimize and how this is to be accomplished.

We assume that one wants to attain the highest possible specific energy for a known
application. The Ragone plot, defined as the specific energy as a function of the average
specific power, is a useful tool for this purpose. Integration of the instantaneous power

delivered over the time of discharge gives the specific energy

1]
1
== jIvde, -1
E=- { (3-19)
and the average specific power is then:
E .
P==. -

1 (3-20)

Each of these quantities depends on the current density; theoretical Ragone plots are generated

by running simulations for many values of I and calculating E and P from each simulation.

Figure 3-28 shows simulated Ragone plots for the experimental cells #1, #2, and #3. The
major difference among these configurations is in the electrode thicknesses, with cell #3 being
significantly thicker than cells #1 and #2. The mass used in these calculations includes all of
the cell components and separator and current collectors, but not cell casing and other external
battery masses. The current collectors are each assumed to be 25 pm in thickness, and the den-
sities of aluminum and copper are taken to be 2.70 and 8.93 g/cm3, respectively. The mass per

unit area of the cell, M, in units of kg/m2 is
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M=38_ [p_(l —& — &, —€)_+ P + PpE, + pfaf] + 9 [p,e, + p,,ep]
(3-21)
+ 90, [p+(1 ~€ =€, — &), + D€ + Ppt, + pfaf] +0.29.

The constant addend to equation 3-21 accounts for the current-collector masses. Bécause this
value of M does not include other components of the final battery, the energies and powers
given in figure 3-28 will be higher than actual values. Examining figure 3-28, we find that these
cell configurations are predicted to achieve from 68 to 84 Wh/kg. Generally, one expects the
specific energy to increase and the specific power to decrease as the electrode thicknesses are
increased. In agreement with this, the speciﬁc power is found to decrease substantially for cell
#3, whereas the specific energy is larger than that of cells #1 and #2. Differences between cell
#1 and #2 are due to the slightly different thicknesses as well as the fact that cell #1 uses an ini-
tial salt concentration of 2 M. The higher salt concentration in cell #1 leads to a lower conduc-
tivity and thus to lower specific powers on the far right of figure 3-28. Including other battery
component masses in these calculations would only accentuate the differences between the

Ragone plots of these cells.

The specific energy found for cell #3, 84 Wh/kg, is lower than that obtained by some
LiCoO, systems such as the Sony phone cell (80 to 110 Wh/kg),30 especially when one con-
siders that the additional battery component masses will reduce this value further. This
motivates us to use the computer simulations to consider different configurations in an attempt
to increase E. We are confident that a larger specific energy can be achieved with this system
because of the location of the "knee" of the Ragone plots in figure 3-28. The "knee" is the
region of the plot at higher power values where the specific energy begins to fall off. The
discharge time corresponding to this region is generally where one wants to operate for a given

design.31 This allows nearly the maximum specific energy to be obtained at the highest
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possible specific power. From the curves on figure 3-28, for example, we find cell #3 is well-
suited for a two-hour discharge whereas cells #1 and #2 are appropriate for a thirty-minute
discharge. As we are usually interested in longer discharge times (3 hours for electric vehicles,
5 to 6 hours for laptop computers, ezc.), it should be possible to sacrifice some of the power
presently being obtained to achieve higher values of the specific energy. We are naturally led

to explore using thicker and/or more dense electrodes to increase the specific energy.

As explained by Newman,?’2 it is necessary to be clear about what is to be optimized and
what is to be held fixed when carrying out the optimization process. We assume that a given
discharge time is required for some particular application. Then we wish to optimize E by
varying the electrode thicknesses, volume fractions, and current density. The other parameters
given in Tables 3.1 and 3.2 are assumed to be fixed, including the temperature, initial salt con-
centration, and separator thickness. We will also fix the positive to negative electrode mass
ratio at 2.1. As the active material volume fractions are varied, it is assumed that the same ratio
of conductive filler to active material found in Table 3.2 must be used (giving 24% by volume
of the active material in the positive electrode and 5% in the negative). The separator thickness
will be fixed at §,=52 pum, and the initial salt concentration is taken to be c%=1 M. We can
return to the issue of optimizing the initial salt concentration later. Also, the ratio of polymer to
liquid in the plasticized electrolyte will be fixed, both in the separator region and in the compo-
site electrodes. We should note here that we assume a symmetric system 1s desired, where the
rate behavior of the cell on charge and discharge will be similar. If high discharge rates only

are needed, then the design of either electrode may be diﬁerént.

The optimization procedure then is to vary the design—adjustable parameters, generate

Ragone plots for each design, and use these plots to identify an optimum configuration. This is
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a time-consuming process, even with the computer program, which we can expedite for the
present system by using analytic models of the discharge of an ohmically-dominated lithium-
ion cell.32 These results provide correlations for the optimum values of the electrode thickness
and porosity as a function of a dimensionless discharge time, ratio of separator to electrode
density, and residual mass content. We can then use these values as a first guess when carrying
out more refined optimizations using the computer program. For illustrative purposes, we will
consider here the case of a battery designed for laptop-computer applications with a desired

discharge time of 6 hours. The resulting design parameters using the ohmically-dominated
model] are:
6_=452 um, 6,=512 um
€_=0.779, g,_=0.130, g, _=0.050, & _=0.041

£,=0.662, ¢, ,=0.125, €, ,=0.047, ¢/ ,=0.166

This shows that significantly thicker and more dense electrodes are required compared to those
used in the present designs. The larger volume fractions for the active materials predicted here
may not be attainable with the present manufacturing processes, a constraint that could be

brought into the above optimization process.32

These parameters can next be tested in the full mathematical model, and the performance
of this system evaluated. We immediately find that the ohmically-dominated "optimized" sys-
tem has severe solution-phase diffusion limitations. This is to be expected considering that the
above model is an idealized one in which concentration variations are not considered, and thus
the resulting design has very thick and dense porous electrodes where diffusion problems will
be magnified. The specific energy for this system, predicted with the full-cell-sandwich model,

is 195 Wh/kg. However, the cell will obtain only a small fraction of this at the C/6 rate.
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We can still use this first set of system parameters as a starting point in the optimization
process, and proceed by reducing electrode thicknesses and volume fractions until an optimum
is reached. Reducing either the thicknesses or volume fractions alone does not produce an
optimum configuration. Instead, the best system is one in which both thicknesses and volume
fractions are reduced simultaneously. This procedure generates the following system paramet-

ers:

8_=309 um, 8,=321 um
£.=0.520, g _=0.329, ¢, _=0.125, g, _=0.026

£,=0480, g ,=0.293, ¢, ,=0.112, & ,=0.115

The specific energy predicted for this design is 115 Wh/kg, which is a 35% improvement over
cell #3. This value of the specific energy could be competitive with LiCoO2 systems even

when additional battery masses are considered.

To compare these designs, the simulated Ragone plot (using the full-cell-sandwich model)
is given for the above system in figure 3-29, along with that of the experimental cell #3. The
optimum configuration given above appears similar to cell #3 on figure 3-29, but gives a higher
specific energy by sacrificing some of the power available in the two-hour to five-minute
discharge range. This system attains higher powers at very high discharge rates (times less than
five minutes) due to the thinner separator. In general, the optimum configuration appears to be
one in which all of the major limitations in the cell are balanced at the discharge rate of interest.
Thus, the configuration given above should begin to show solution-phase diffusion limitations

at rates just above the six-hour rate.

The fact that the optimum design is determined by the balance of solution-phase diffusion

limitations and ohmic drop indicates that optimizing the initial salt concentration is an
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important issue. Increasing the initial salt concentration above 1 M will shift the optimum
design to thicker and more dense electrodes as diffusion limitations are delayed, leading to
increased specific energies. This will continue up to salt concentrations of around 2 M, after
which the decreasing ionic conductivity and the possibility of salt precipitation become issues.
However, the optimum salt concentration must factor in the cost of the salt, which for LiPF 6 is
substantial. For this reason, one may wish to consider the use of a combination of two salts
having different anions (e.g., LiPF6 and LiBF 4), which may provide a cheaper alternative that

still fulfills the desired purpose.

3.5 Conclusions

We have used computer simulations to model and predict the performance of a lithium-

ion cell consisting of a carbon negative electrode, a plasticized electrolyte containing

LiPF6/EC/DMC in p(VdF-HFP), and a lithium manganese oxide positive e.lectrode. The simu-
lations are compared to experimental data for cells having various electrode thicknesses and
different electrolyte compositions. Excellent agreement between theory and experiment is
obtained when the lithium diffusion coefficient in the carbon electrode, an electrode film resis-
tance, and an effective ionic conductivity in the porous electrodes are used as adjustable para-
meters. This system is determined to be dominated by ohmic drop in the plasticized-electrolyte
phase. Minor solid-phase diffusion limitations exist in the carbon electrode. The simulations

10 2

suggest that the lithium diffusion coefficient in the carbon material is Dy _=3.9x10""" cm“/s.

Solution-phase diffusion limitations become a concern when the electrode thicknesses are .

increased and the initial salt concentration decreased to 1 M. Using the diffusion-limited
region of the discharge curves to fit the transport properties in the plasticized electrolyte gives

D=9><10"7 cm2/s and 19=0.36. The kinetics for the lithium ion insertion reaction are confirmed
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to be practically reversible.

The calculated specific energy of the‘ battery in its present designs is from 68 to 84
Wh/kg, with the mass based on the composite electrodes, separator, and current collectors.
These cells have good moderate-rate performance and are well-suited for applications with 30-
minute to one-hour discharge times. Larger specific energies are obtained with less porous,
thicker electrodes; simulations suggest that it is possible to obtain 115 Wh/kg with a system
optimized for a six-hour discharge time. The optimum system will exhibit a compromise of
solution-phase diffusion limitations and ohmic drop at the six-hour rate. The peak specific
power for the experimental cells is predicted to fall from about 300 W/kg near the beginning of

discharge to 200 W/kg at the end of discharge.
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Appendix 3-A Open-circuit potential data for the insertion materials

The open-circuit potential versus state of charge for manganese dioxide was measured at

Bellcore and fit to the function
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U = 4.19829 + 0.0565661 tanh [-14.5546y + 8.60942]

1
—-1.90111
(0.998432—y)0:492465 (A-1)

—-0.0275479

—0.157123 exp (-0.04738y?) + 0.810239 exp [-40(y—0.133875)],

where y is the amount of lithium inserted in LinnZO 4 This curve fit is given as figure 3-30.

Similarly, for the carbon electrode

U =-0.16 + 1.32 exp (-3.0x), (A-2)

where x is the value defined by the formula LixC6. This fit is presented as figure 3-31. The
open-circuit potential data above correspond to the potential of the insertion material versus

lithium during a very-low-rate discharge (C/60).

The open-circuit potential for graphitic carbon was fit to the following function:

U =0.7222 + 0.13868x + 0.028952x%5 - 0.017189x~! + 0.0019144x 15

A-3
+0.28082 exp [15(0.06 - x)] — 079844 exp [0.44649(x - 0.92)] , (A-3)

where x is again the value defined by the formula LixC6. This curve fit is given in figure 3-32.
The data for this fit were measured at Bellcore at the C/11 rate, and the open-circuit potential is

considered to be less accurate as a result.

Appendix 3-B Simplified model of cell dominated by solid-state
diffusion limitations
It may be possible to distinguish between solid and solution-phase diffusion limitations by

developing log-log plots of the capacity versus discharge rate for the battery. The slope of

these plots should reflect the main limitation in the system under high-rate discharge. The
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development of simplified models of the discharge process can be used to extract this slope
from theoretical predictions. This approach to modeling the discharge behavior has been taken
32,33

0

in previous work; a primary example is the work of Tiedemann and Newman n

ohmically-limited reaction-zone models of the discharge process.

We have developed useful analytic solutions in previous work,17 covering the following

cases:

1. Ohmically limited cell having an open-circuit potential that varies linearly with state

of charge.

2. Cell dominated by solution-phase diffusion limitations with a constant reaction rate

through the porous electrode.

3. Cell dominated by solution-phase diffusion limitations with a reaction occurring only

at the front face of the porous electrode.

These analytic solutions for the discharge process allow us to extract the characteristic slopes
on a log-log capacity-rate plot for each of the above phenomena. One typically finds that
solution-phase diffusion limitations .lead to slopes of -2 and smaller at low rates, which then
approaches -1 at very high rates. An ohmically-limited model, on the other hand, gives a slope

on a log-log energy/poWer (Ragone) plot of -1 in a certain region.

For the present situation, we are motivated to consider a battery discharge limited by
solid-state diffusion of lithium into the host oxide structure. It is assumed that solution-phase
concentration variations can be neglected and that the reaction-rate distribution in the porous
electrode is uniform. This last assumption is necessary in order to decouple the governing

equations; consideration of a nonuniform current distribution quickly leads to models that
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require numerical solution, which we attempt to avoid here. The reaction-rate distribution is

assumed to be equal to its average value. We also assume that the diffusion coefficient of

lithium inside the insertion material is a constant. If severe diffusion limitations exist, it is pos-

sible to estimate the battery capacity by relating the discharge time to the time to reach a limit-

ing current in the solid phase. The mathematical formulation of the problem is then

Boundary conditions include

de; D; 9 | ,9¢
Yl i ®)
oc;
@ r=0)=0, (B-2)
or
I
(tl r RS)- Fa

c(t=0,r)=c¢,.

A solution to this problem can be found,34 but it is expressed as an infinite series that is

cumbersome to evaluate.

At this point it is convenient to develop solutions to equation B-1 that are valid for short

and long times; these illustrate the behavior of the system without being too complicated to be

useful. For short discharge times, or high rates, a planar diffusion model is valid, gfv'mg the fol-

lowing relationship between discharge time and rate

From this one would predict:

nc?F*D,ad_

412 ®-3)

g =
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| It nc?F2D,ad_
4 - (B-4)

C=u aml

where the mass M is given by equation 3-21, for example. Thus, the capacity is inversely pro-

portional to the rate at high rates.

For longer times, or lower rates, a pseudo-steady-state is established in the particles. That
this is relevant can be seen by examining solid-phase concentration profiles in the carbon parti-

cles given in figure 3-22. In our experience, this condition is usually satisfied by lithium-ion

27,28

cells in practice. Then the equation to be solved becomes:

D; 3 ac
0=—= [rz S] , (B-5)

with the required boundary conditions given in B-2. This leads to a steady concentration

profile of the form

~Ir?

r=0-e)= S iR

(B-6)

The discharge time is approximated by the time for the concentration of lithium at the surface

to reach zero. The capacity can then be calculated as

C=FZ§[q—a], (B-7)

with ¢, representing the average concentration of lithium in the solid at the end of discharge.

This leads to:
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Fe_d_ R,I
="M |9 3aFDs. |- (B-8)
For low rates, a log-log plot of capacity versus rate will then have the form
logC =1 Fe_d_c, 0.767R,I
8- =8 1Ty aF8_ Dy, (B-9)

The slope is extracted from two regimes of behavior; at low to moderate rates the steady-
state solution to the diffusion equation shows that log C should be linearly proportional to the
current, while at high rates, one finds that a slope of -1 on the log-log plot is approached. Thus,
solid-phase diffusion limitations appear to provide fundamentally different capacity-rate
behavior than solution-phase diffusion limitations at low to moderate rates. At very high rates,

on the other hand, each provides a slope of -1, and these cases should be difficult to separate.

List of Symbols
a specific interfacial area, m2/m3
Cs concentration of lithium in solid, mol/dm3
c concentration of salt, mol/dm3
C theoretical capacity of material, mAh/g
D salt diffusion coefficient, cm?ls
D, diffusion coefficient of lithium in the solid electrode particles, cmzls
E specific energy, Wh/kg

A

TR ]



i

iz

-

262

Faraday’s constant, 96,487 C/eq
electronic current density in the solid phase, mA/cm2

ionic current density in the solution phase, mA/cm2

superficial current density, mA/cm2
pore wall flux of lithium ions, mol/cmzs
mass transfer coefficient, m/s

total cell thickness, m

mass per unit area of cell, g/cm2
molecular weight of species i, g/mol

exponent related to effective transport properties defined in equation 3-5
average specific power, W/kg

film resistance, Q-cm 2

radius of positive electrode material, m

time, s

discharge time, s

transference number of lithium ion defined with respect to the solvent
temperature, K

open-circuit potential, V

cell potential, V

dimensionless distance from the negative electrode/current collector
boundary, cm
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stoichiometric coefficient in negative electrode defined by Li xC6
stoichiometric coefficient in positive electrode defined by Linn?_O 4
transfer coefficient for electrochemical reaction

mass ratio of positive to negative active material

thickness of cell component i, m

volume fraction of component i

surface overpotential, V

ionic conductivity of electrolyte, S/cm

density of material, g/cm3
electronic conductivity of solid matrix, S/cm

tortuosity factor

electrical potential, V

Subscripts

negative electrode

positive electrode

electrolyté

conducting filler additive

liquid component of plasticized electrolyte

polymer component of plasticized electrolyte
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s separator or solid phase
t maximum concentration in intercalation material
1 solid matrix phase
2 solution phase
oo transport property measured without the composite electrodes

Superscripts
0 with respect to the solvent or initial condition
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Chapter 4

Measurement of Transport Properties in Solid Polymer Electrolytes

4.1 Introduction

The field of polymer electrolytes ha§ seen enormous growth in the last twenty years
because of tile wide range of properties that can be synthesized into the polymer structure. This
includes ionically conducting polymers such as poly(ethylene oxide), cation exchange poly-
mers having a liquid-phase cosolvent such as Naﬁon,® and electronically conducting polymer
electrodes such as polypymole. For ionically-conducting polymers, research has focused on the
attainment of ever-increasing values of the conductivity. Many theoretical studies on the con-

1 A microscopic understand-

duction mechanism in polymer electrolytes have been performed.
ing of the conduction mechanism is very important in the design and synthesis of novel, more
conductive polymers. However, as far as battery performance is concerned, the ionic conduc-

tivity is only one of several transport properties that determine what makes a good polymer
electrolyte.

Polyrfxer electrolyte solutions are generally nonideal and concentrated, as demonstrated
from activity coefficient measurements,2 the concentration dependence of the conductivity,?’
and studies of ion-pairing and aggregation processes.l’4 Therefore, in order to describe com-
pletely and properly the transport processes in these materials, it is necessary to have n(n—1)/2
transport properties, where r is the number of independent species in solution. Thus, for exam-
ple, for a binary salt in a polymer solvent, three independent species exist (polymer, anion, and
cation), giving three independent transport properties. These properties can be chosen to be the
conductivity, salt diffusion coefficient, and the transference number of one species. The binary

eléctrolyte has been very popular in lithium-based battery systems; however, there have not
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been comprehensive measurements of all of the transport properties for any single polymer-salt
solution. This is due foremost to difficulties in the measurement of the transference number in

solid polymer systems.

The most popular polymer electrolyte for lithium batteries has been poly(ethylene oxide)

5 PEO has a reasonable ionic

(PEO), first suggested for this application in 1979 by Armand.
conductivity with a wide range of lithium salts above its melting point (= 65°C), where it has an
amorphous phase present. In general, complexes between PEO and salts may have complicated

equilibria involving several different crystalline and amorphous phases; however, the existence

of an amorphous phase is critical to attain a substantial ionic conductivity.

It is generally accepted that PEO solvates by direct interaction of the cation with ether
oxygens on the polymer chain, with chain flexibility being an important aspect of the interac-
tions in order for several oxygens to surround a given cation. This microscopic model is the
origin of the convention of referring to salt concentrations in PEO by the ratio of monomer
units to cation, » in PEOnLiX, as this gives one a picture of the microscopic solvation situation.

The importance of the cation-ether group interactions is also demonstrated by examining the

conductivities of solutions of polyoxymethylene (CHZ'O)n and polyoxetane (CH2-CH2-CH2—

0) i neither of these materials shows appreciable conductivity due to nonoptimal spacing of

5

_the ether sites.” On the other hand, the more recently developed and better-conducting polymer

electrolyte poly(bis-methoxyethoxyethoxy phosphazene) is purely amorphous and has a mono-

mer possessing side chains similar to PEO in molecular structure.6

In addition to lithium salts, there have also been studies and applications using several
other cations in PEO, including Na*, K*, Mg?*, Ca®*, cu®*, and Zn®* 1 The anions used

in these systems are usually large, soft anions with delocalized electronic charge; this allows
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the polymer to solubilize the salt without the need for specific interactions with the anionic
species. Some popular anions in the literature for battery applications have included
trifluoromethanesulfonate (CF3SO3'), tetraﬁuoroborate\ (BF4'), perchlorate  (ClO 4'),

11

hexafluoroarsenate (AsFé'), and hexafluorophosphate (PF6'). Since these anions tend to be

rather expensive, reduction of the salt concentration used in the battery is advantageous.

The experimental work in this chapter will focus on the measurement of a complete set of
transport properties for a single salt in PEO at a single temperature. The salt chosen is
NaCF3803 (0.1<c(M)<2.6 at 85°C). The experiments will be analyzed using concentrated

solution theory. Thus, the three transport properties are independent functions of salt concen-

tration and temperature, and the solution may be nonideal.

4.2 Theoretical development

The solution is described using a macroscopic model with the three independent species
chosen to be Na*, F3SO3', and PEO. One does not need to take into account the micréscopic
speciation, ie., the actual species that exist in the solution, as long as ion-exchange reactions
are fast enough to be considered in equilibrium. The concentration dependence of the transport
properties will naturally reflect the equilibria of the microscopic processes. The three transport
properties necessary to describe this system are the conductivity, salt diffusion coefﬁci(;,nt, and

sodium ion transference number. These properties can be related to three pairwise interaction

parameters D;; through the expressions:1

1_
= 4-1)
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°r iy, dlnYe | | Do+Do-(z:—2-) 5
B Co dinm Z+DO+—Z—D()_ ’ (4- )
and
2.D
0 =1-1= =0 (4-3)

It is possible that the D;; may be less concentration dependent than the measured set of trans-
port properties.

For many salts in PEO, complicated phase equilibria exist between an amorphous phase
and one or several salt/PEO crystalline phases of various stoichiometries.3 It is now agreed
upon that the amorphous salt/PEO phase is responsible for ionic conduction.5 This phase
equilibrium information is not yet available for PEO and NaCF,SO,. If a true phase equili-
brium existed between an amorphous phase of given composition and a single crystalline phase
of given composition, then addition of increasing amounts of salt would simply enrich the crys-
talline phase (i.e., lead to an increasing crysalline phase volume fraction). This would lead to a
steady decrease in conductivity with salt concentration, as the crystalline phase would be a bar-
rier to conduction. Examination of both phase diagram and conductivity data for PEO and
LiCF:,,SO3 shows that the expected behavior is not obeyed.?”13 The attainment of a true
equilibrium in these systems may be a slow process. For the present work, we ignore the possi-

bility of phase equilibrium processes and treat the solution as a single-phase mixture.

The conductivity is determined by employing the standard ac-impedance method. The

14 with the con-

salt diffusion coefficient is found by using the method of restricted diffusion,
centration difference related to the potential of the cell.15 The theoretical analysis of this

method for concentrated electrolyte solutions has been performed by Chapman et al.14 We
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apply a constant current to the cell:

Na | PEO_NaCF,SO, | Na
n 3¥¥3

for sufficient time to set up a concentration gradient. The current is then interrupted, and the
potential of the cell is monitored as the concentration profile relaxes. The salt diffusion

coefficient is calculated from the slope of a plot of In(A®) versus time,

2
slope = - RTZD' , (4-4)

where L is the cell thickness. This diffusion coefficient approaches the value D(c..) rapidly as

the concentration profile relaxes.

To measure the transference number it is useful to use concentration-cell data. The poten-

tial of a cell of the form:

Na | PEO nNaCF3SO3 | PEO mNaCF3SO3 | Na

can be expressed by using a sodium reference electrode in solution to assess the local potential

gradient:

2RT dinf [ 0]
= 1-1{|Vinc.
Ve =" 11+ e +) Vine (4-5)
The potential across the full cell is then:
L
2RT dlnfs [ 0] dlnc
== 1+ ——=| |1=-ty| —dx. -
v F XJ;O * dlnc ] ox * (4-6)

The potential of this cell depends only on the concentrations at the two electrode surfaces.
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However, it is evident that the measurement combines both the transference number and the
thermodynamic factor. This latter quantity is just a specific function of the salt activity

coefficient’s concentration dependence:

dlnfi
dinc

1+ 4-7)

The thermodynamic factor is unity for an ideal solution. Unfortunately, we cannot expect that

the concentrated polymer electrolyte solution will be ideal.

The measurement of the salt activity coefficient in these solutions without the knowledge
of the transference number has not been achieved yet. Many methods that are used in low-
molecular-weight solvents cannot be used in solid polymer systems, such as boiling-point
elevation, vapor pressure, etc. A possible electrochemical method would involve measuring

the concentration dependence of the potential of the following cell:
X | PEO, NaX | Na.

The X above denotes an electrode reversible to the anion. Unfortunately, it is difficult to
develop such an electrode with the unusual anionic species used in these solutions. Some
attempt has been made to use poly(ethylene imide) in a cell of the following form for this pur-

pose: 1617

Li | PEOnLiCF3$O3 I PEImCuCF3SO3 I Cu.

To date, none of these results have been published. For now, we must assume that the value of

the transference number is necessary to calculate the activity coefficient.
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4.3 Analysis of the galvanostatic polarization experiment

Although we cannot determine #9 directly from concentration-cell data, we can make use
of these data as a relationship between cell potential and concentration difference. Consider
the galvanostatic polarization of a cell of the form: NalPEOnNaCF3SO3INa for short enough
times so that semi-infinite diffusion conditions apply at either electrode. The current is passed
for a sufficient amount of time to establish a concentration gradient at the surfaces, but less than

2
the diffusion time of the cell (t,~<0.05-I‘D— ). An identical situation exists in the Hittorf cell; the

excess salt on one side of the cell (or the depleted salt on the other side) is directly proportional
to the transference number at the bulk concentration. Instead of attempting to measure the total
excess salt on either side, we instead monitor the potential of the cell after current interruption.
The potential can then be used to find the concentration difference across the cell as a function
of the current density I and the time passed #;, as we can show that Ac is a single-valued func-
tion of It

The experiment can be modeled with the two equations:

coV
—g—j +vOVe=V. [DVC] - LF@ [i -V:&] , (4-8)

v
V-vO=-— [i -vtg] , (4-9)

where v U denotes the volume-average velocity. 14 The quantity referred to as Q and defined in
Chapman et al4 is arbitrarily taken to equal zero. We have assumed that the partial molar

volume of the salt is constant. For the semi-infinite diffusion problem posed above, the bound-

ary conditions are
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c=c. both at r=0 and at x=co, (4-10)
i——M at x=0 (4-11)
ox  FD o
and
VI
vl = eF at x=0. 4-12)

Notice that a fluid motion exists due to the flow of current in the solution; this is usually negli-

gible, 1819

For a very-thin cell, it is valid to consider the one-dimensional forms of equations 4-8 and
4-9. As with any semi-infinite diffusion problem, it is useful to use the similarity-transformed

variable

X

We also define a dimensionless time according to

2% c.. .
T= —-.,—(—)-It/z : (4-14)
D*(co)Fc o

where D(c..) and 2(c..) refer to the properties evaluated at the bulk concentration. This
definition emphasizes the importance of the parameter Ir*. Substitution of these definitions

above gives the following differential equations in 7 and 1,

)

et (LRI
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97 9C dc . dc D Jd°c 1 _dD|oc
J1 on D(cw) on? D(c,o) dc | on
o _co dh e o 2 1)
—-C 13 ,
070 0(c.) de o It°(c°,)
and
ov? _ VI a3 “16)

am chan

To complete the nondimensionalization of the problem, we define a dimensionless con-

centration and a volume-average velocity as

0o Sl 4y Fvl
- TCo an - ;eltg(c”) ) (4'17)
This leads to
2
298 9® _ D de € dD |00
2 T T D) a2 - Diew) de an]
-1TC v Cor .ﬂﬁ@_m VYa—G i
00y dc T o’
and
Y Co df®
L g fe £r 30 (4-19)

am to(c ) dc om

For constant physical properties, 00/07 = 0, and the left side of equation 4-18 has the familiar

solution involving the integrated error function:zo
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OM) =ierfc 1. (4-20)

The perturbation in the parameter T is evident in the terms on the right sides of equations 4-18

and 4-19, all of which involve the variable physical properties.

The boundary conditions on these equations become

0
90 2 D(c.)
= at =0, -
an Scn D Yl 4-21)
Y=1 at n=0, (4-22)
and ©=0 at M=-co. (4-23)

Thus, the concentration scales with 2, although not necessarily linearly, even in the concen-
trated binary electrolyte with an arbitrary variation of physical properties. If we calculate the
values of T used in the present experiments, we find that 7<0.1 at all times. From equation 4-
18, it is apparent that as T approaches zero, the solution for constant transport properties, equa-

tion 4-20, is valid.

In the present experiment we are most interested in the concentration difference between
the two electrodes immediately after current iiltenuption. We can find this from equation 4-20
in its dimensional form; by evaluating © at x =0 and multiplying by 2 to account for the full cell

with two electrodes we find,

0

"~ F(rD)"*

Jtf. (4-24)

This relationship apparently will hold as It{* approaches zero. We can achieve this experimen-

tally by using short times and small current densities in our éxperimental method. The
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deviation of Ac from this dilute-solution theory form can be predicted by solution of the full
equation numerically. This will be explored in section 4.6 and is used to verify the validity of

the linear expression 4-24 under typical experimental conditions.

Having a relationship between the concentration difference in the cell and the value of the
transference number, the potential measured can be compared with concentration-cell data to
determine 2. This is achieved by preparing a plot of the potential difference across the cell U
versus the value of the experimental parameter Itf. The slope of these plots at the origin will

be referred to as m. By the combination of equations 4-5 and 4-24, we find that the transference

number is given by

dU
dlnc

o mcFmD)*
- 4

. : (4-25)

dU
dinc

The values of ® and D apply at the bulk concentration c.,. The quantity is the slope of

the concentration-cell data, plotted in logarithmic form, and also applies at the bulk concentra-

tion c... Note that this calculation requires three experimentally-derived quantities: D, m, and

-d—lL, all evaluated effectively at c...

dinc
With the transference number known, it is a simple matter to back out the thermodynamic

factor from the concentration-cell data. This is calculated from:

dU
dinc

__-F
2RT®

din
[1 Lol (4-26)

dinc

and must be evaluated as a function of the salt concentration. If desired, the thermodynamic

factor can be used to calculate the activity coefficient directly by integration with the applica-
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tion of the infinite dilution condition of ideality (i.e., f+ — 1as ¢ — 0). However, as the
activity coefficient only appears in the governing equations in the form above, there is little

motivation to perform this calculation.

4.4 Experimental details

The polymer films were prepared using the solvent-casting method. Mixtures of different
salt weight fractions were made by dissolving poly(ethylene oxide) (avg. M.W.=5x106 g/mol,
Aldrich) and sodium trifluoromethanesulfonate in the desired ratio in acetonitrile (Aldrich,
HPLC grade), and then casting onto a Teflon-coated glass plate. After éir-drying for a period of
hours, the films were dried in a vacuum oven for at least three days. The films were generally
about 100 um thick with very uniform thicknesses. Thicker films were formed by stacking and

heating together a sufficient number of films to the desired thickness.
The salt concentration was calculated using the weight fraction and solution density,

P,
M,

c= 4-27)

By assuming a constant partial molar volume for the salt, we were able to correlate our density

data with the expression:

Lo L g |e L (4-28)
P pdro | Me peo

3/mol. The density calculated from this equation is used above to calcu-

This gives ‘Z =36 cm
late the salt concentration. All experiments were carried out over the range of salt concentra-
tions: 0.14<c(mol/dm3)<2.58, corresponding to 160<n<8 in the formula PEOnNaCF3SO3.

The concentration-cell data were taken over a wider range of concentrations:
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L

0.05<c(mol/dm3)<4.7l, to improve the accuracy in the differentiation of the data.

Sodium (Alfa) was melted, filtered through coarse stainless steel wool, then heated at
400°C with small amounts of titanium sponge. The purified sodium was rolled between sheets
of polyethylene to form thin foil electrodes. Experimental cells of the form:
NaIPEOnNaCF3SO3INa were assembled in a helium-filled glove box with the oxygen level less
than 1 ppm. The cells were heated to 85°C at least five hours prior to testing. A convection
oven with a Eurotherm temperature contréllcr was used as the heating source. Temperature

variation was less than 1.0°C during cell operation.

Conductivities were measured using the Solatron Schlumberger SI 1286 Electrochemical
Interface and 1254 Four-channel Frequency Response Analyzer. The cells were assembled as
above and then transferred into an external convection oven. Strict temperature control was
maintained, including having the same thermal history for each sample to ensure that the
pseudo-equilibrium state of each polymer film was identical. The working area of the cells was
0.9 cm2 for all experiments. Impedance data were taken over a wide range of frequencies and
plotted in the Nyquist (complex plane) form. The ionic conductivity was obtained from the

high-frequency intercept of the impedance data with the real axis.

Restricted-diffusion experiments were carried out entirely in the helium-filled glove box.
Cells were polarized in the galvanostatic mode | using a computer-driven PAR 371
potentiostat/galvanostat and software developed in the De Jonghe laboratory. Generally about
ten to fifteen minutes of polarization time at current densities of 0.1 to 0.3 mA/cm2 were used
to establish the concentration gradient, although for the very dilute solutions smaller currents

and/or times are needed. One must avoid exceeding the limiting current, which can be

estimated prior to the experiments and used as a guide to the choice of a proper current density.

R
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The cells had a working area of 0.9 cm2 and thicknesses on the order of 300 to 400 um. An
identical procedure was used for assembling the cells for the transference number measure-
ments. Polarization times should be much shorter, on the order of one to two minutes, to assure
that semi-infinite diffusion conditions apply during the experiments. Similar current densities

and film thicknesses were used as in the restricted-diffusion experiments.

For the concentration-cell experiments, it is necessary to assemble the cell, heat it to the
temperature of interest, and then measure the poteniial, without allowing the concentration gra-
dient to relax to the electrode surfaces. This requires a very long diffusion time, on the order of
several hours, and thus a slightly different cell configuration was used. Instead of placing the
two films face to face, we overlap the films edgewise, and place electrodes on the two ends.
This gives a diffusion length of several centimeters, and a diffusion time on the order of days.
It is possible to have this large distance between the two electrodes because no current flows
during the experiment; otherwise the ohmic drop would be prohibitively large. The potential

difference is measured across the concentration cell with the Keithley 642 Electrometer.

4.5 Results and discussion

The ionic conductivity of PEOnNaCF3SO3 solutions at 85°C is similar in form but
slightly higher in magnitude than that of PEOnLiCF3SO3 solutions. In figure 4-1, the conduc-
tivity is given as a function of the salt concentration. The conductivity increases with concen-
tration steeply until going through a maximum of 3.3x10'4 S/cm at ¢=1.09 mol/dm3 (n=20). At
higher salt concentrations than this, the conductivity falls off, supporting the theory that chain
entanglement due to transient ionic cross-linking leads to lower mobilities for the ionic
species.1 The conductivity of the lithium analog also exhibits a maximum at a similar concen-

-4

tration (x=2.1x10"" S/cm at n=18), although it also shows a local maximum at very low
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Figure 4-1. Logarithmic plot of the ionic

conductivity of NaCF,S0; in PEO at 85°C.

Data obtained using ac-impedance methods.
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4 S/cm at n=100) not seen for sodium.?”21 It is possible that a

concentrations (x=2.0x10"
second maximum would be seen in this system also if more data points had been taken in the

dilute range. On the other hand, research has shown that this second maximum is sensitive to

the content of residual catalyst impurities used in the synthesis of poly(ethylene oxide).3

The method of restricted diffusion involves the measurement of the potential of a cell
undergoing relaxation of a concentration gradient. Any arbitrary initial profile will eventually
decay with a time constant related to D(c..); other processes such as thermal and momentum
transport occur on much shorter time scales than the diffusion process. An example of this plot
is given as figure 4-2 for the electrolyte PEQSSNaCF3SO3. The slope is taken after sufficient
time has elapsed for linear behavior to be observed. This happens very quickly for the present
polymer electrolyte solution, within about five minutes on figure 4-2. However, the most accu-
rate value of D(c..) is found from 20 to 60 minutes into the reiaxation, which corresponds to
potential differences of from 8 to 2 mV. At very low potentials, the potentiostat reading can
become erratic and settle to a nonzero value, as it reflects the slow side reaction between the
sodium electrode and the electrolyte. We were able to improve the data by subtracting this
steady-state value of the potential from the data before taking the natural logarithm; this leads
to straight-line behavior over the largest possible range of times. The time for the overall relax-
ation of the concentration profile can be estimated from the diffusion time, L2/D, to be approxi-
mately one hour. For liquid solvent systems, where D is expected to be much larger, the time
constant for diffusion is smaller, and a longer diffusion length L should be used in the experi-

ment.

Plots of the form of figure 4-2 are used to calculate D, given in figure 4-3 as a function of

bulk salt concentration. The diffusion coefficient varies with salt concentration, decreasing
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Figure 4-2. Diffusion-coefficient measurement of NaCF3SO3 in PEO at 85°C
using the restricted-diffusion method. A polarized cell, Na/PEO55NaCF3S03/Na,
relaxes back to its initial condition shown by (a) potential vs. time, and (b) natural
logarithm of potential vs. time.
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with concentration at all data points except for a local minimum at the concentration of 0.28
mol/dm3 (n=80). The values found for the diffusion coefficient of sodium triflate are similar to

8 cmzls at n=45).2

the values reported for the diffusion coefficient of lithium triflate (D=7.5x10"
The steady decrease in the salt diffusion coefficient at high salt concentrations suggests a

mechanism similar to that seen in the conductivity data, i.e., increasing salt concentration is

leading to increased chain entanglement and decreased ion mobility.

The error in these diffusion coefficient values can be estimated from the variance in the
measurements of film thickness and the relaxation time constant. The following formula is

used to calculate the error:

2 2 2

20'L

L

Op

D

Os
S

where © is the standard deviation for a given measurement. Following this procedure leads to
predicted errors of from 1.5 to 6.0% for the measured diffusion coefficients. As an example, we
will perform this calculation for the n =55 case whose data are illustrated in figure 4-2. The
film thickness was measured five times over the area of a given sample to assess the scatter in
this measurement. This gave a standard deviation of 2.44 um for a 400 um film. The error in
the measurement of the time constant for the relaxation process is related to the range over
which one chooses to fit the slope of figure 4-2. Taking various ranges of relaxation time and
deterrhining the slope, we can calculate a standard deviation for this set of data to be 8.64x10™
min™. Based on both the scatter in the thickm;.ss measurements and the slope of figure 4-2, we

estimate the precision of this diffusion coefficient value to be 2.6 % using the above equation.

Concentration cells of the form NaIPEOnNaCF SO IPEOmNaCF3SO3lNa, where m=8

3773

and n varies from 4 to 500, were preparéd as described in the Experimental section. In figure
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4-4 we present the potential difference of these cells as a function of the natural logarithm of
the concentration; the markers represent data points, and the solid line is a curve fit discussed in
the next paragraph. Data points on figure 4-4 represent the average value of 2 to 5 experiments
for each concentration difference. Note that these data are approximately linear over small
ranges of the salt concentration, a result that will be used later in determining the transference

number.

Although there is about 1 to 4 mV of scatter in the concentration-cell data, we chose to
use a highly accurate six-parameter fit to the data instead of a more smooth curve. We made
this choice because of the extreme sensitivity of the calculated transference numbers to the

differentiation of this data fit. The data were fit by the equation

U =v(0)+v(l)c +v(2) exp [—v (3)c] +v(4) exp [—v (5)c] , (4-29)

with the fitting parameters

v(0)=3.2807 , v (1)=—0.0020545 , v(2)=62.521

v(3)=0.0018733, v(4)=130.33, and v(5)=0.028355,

where U is in mV and c is in mol/dm?’. The slope of equation 4-29 is the important quantity for

evaluation of the transference number and thermodynamic factor.

It is interesting to compare the concentration-cell data for NaCF3SO3 in PEO with those
for LiCF3SO3. These data are taken from the literature;2 unfortunately, we have only four data
points available and these cover a limited range of salt concentrations. The two sets of data are
compared in figure 4-5; we have shifted the literature data’s zero point (n=20) up to the value of

our data (remember that only the slopes of these data have physical meaning). Note that the
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data for LiCF3SO3 have a smaller slope than that for the sodium data. This indicates that over
this concentration range lithium triflate either has a larger value of £ or a smaller thermo-
dynamic factor or both. The slopes appear to be getting more nearly equal as the salt concen-

tration decreases, which we might expect as both solutions will become ideal.

Galvanostatic polarization of cells of the form NaIPEOnNaCF3SO3lNa provides a second
experiment needed to extract the transference number and thermodynamic factor separately
from the concentration-cell data. | After passing current through this cell for a given time, the
current is interrupted, and the cell potential is recorded. The potential difference across the cell
as a function of the quantity (Irf’) is plotted. In figure 4-6 we present the experimental results in
the form of A® versus (It;-/‘) for several values of n in PEOnNaCF3SO3. These plots are linear
for small values of (Itf%), as predicted in the theoretical development (equation 4-12) and then
deviate upwards at larger values. The slope of this plot near the origin, i.e., as (/t/*) approaches
zero, which we refer to as m, is the important experimental quantity. We do find the predicted
linear dependence over the whole range of concentrations used hére, i.e., from n =38 to n =500,
when small enough values of (Itf) are used. Figure 4-7 gives the experimental data for the
slopes m as a function of the bulk salt concentration. Bear in mind that figure 4-6 can be extra-
polated rigorously into the third quadrant because the two electrodes are symmetric and the

curves are odd in (7t{*). The value of m is approximately constant at 3.45 Qcmzlsll2 for salt

concentrations above 0.5 mol/dm3.

The transference number of the sodium ion versus concentration, calculated using equa-
tion 4-25, is presented in figure 4-8. At the higher concentrations these transference numbers
are lower than any of the values reported for LiCF3SO3 in PEO, which tend to range from 0 to

0.5. The transference number decreases from its maximum value of 0.31 in the most dilute
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solution (0.05 mol/dm3 ) to a minimum of -4.4 in the most concentrated (2.58 monm3). The
transference number steadily decreases above the concentration of 0.56 mol/dm3 (n=40), where
it goes through a local maximum of 0.09, and is nggative over a large range of salt concentra-
tions. A negative transference number has been seen for other systems, and has been explained
in terms of complexation reactions.22 These results suggest the formation of mobile triplets
consisting of two anions and one cation; however, considering the complexity of the results in
figure 4-8, it is unlikely that any simple speciation model would accurately describe this sys-

tem. We will explore this point in section 4.8.

The practical significance of these results is that large concentration gradients must
develop in the polymer electrolyte in order to sustain current flow, a detrimental situation for

23 it is still possible for a polymer elec-

battery performance. As has been discussed previously,
trolyte battery with a cationic transference number of zero or even less than zero to operate suc-
cessfully. However, on discharge this cell will develop large salt concentration gradients; the

magnitude of the concentration difference can be estimated from the steady-state value:

11 -2)L
AC=_(—_;)".

— (4-30)

This may lead to severe diffusion limitations or to salt solubility problems, depending on
several factors such as the cell design and other physical properties.24 Interestingly, if we had

a symmetrical cell having electrodes reversible to the anion, the steady-state concentration

difference would be

I°L
Ac = — F+D , (4-31)
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which actually changes sign when ¢ goes through zero. A battery that operated using anion-
reversible electrodes would be best served by having 0 identicaily zero, rather than less than

zero, for then no concentration gradients at all would exist.

With the transference number known, we can use equation 4-14 to calculate the thermo-

dln fi
din ¢

dynamic factor, [1 + ] . This quantity is given in figure 4-9 as a function of the salt

concentration. The thermodynamic factor generally decreases with concentration from its
dilute value, 0.64 at 0.11 mol/dm3, until starting to level off at very high concentrations at the
value of 0.02. The data have a local maximum at n=40, similar to both the transference number
and diffusion coefficient data. For the most dilute concentrations, the thermodynamic factor
seems to be approaching unity, which is the ideal-solution result. These activity-coefficient
results are a verification of the strong nonideality of solid-polymer-electrolyte solutions.
Apparently one has to go to much lower concentrations than was done here (n>200) to reach an
ideal solution. It is easy to show that, with such small values for the thermodynamic factor,
making the erroneous assumption that this polymer electrolyte is an ideal solution would lead

to large errors in the calculated transference numbers.

We should stress here the sensitivity of these results to the differentiation of the

concentration-cell data. This is especially true for the most dilute data points because the slope

il is largest in this region. We recommend taking as many data points as possible from the
c

concentration-cell experiments, including points well outside of the range of concentrations

being studied, to assure the highest possible accuracy in the calculated transference numbers
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and thermodynamic factor.

4.6 Simulation of the galvanostatic polarization experiments

With all necessary properties known, it is 'possible to use numerical solutions of the
governing equations to simulate the experimental method. This can be used to support the val-
idity of the aforementioned assumptions as well as providing more detailed information about
the concentration profiles during the experiments. It is especially interesting to examine the
time required to reach a limiting current, as well as the effect of using too thin a membrane such
that semi-infinite diffusion conditions no longer apply. We would like to avoid either of these

situations in practice.

The simulations use the same parameters and cell specifications as in the experimental
work, as well as all of the variable physical properties. The following two equations are solved

simultaneously:

9c _v. ] _<dVo (. 0] 4-32
% -V [Dvc] (1w (4-32)
. KR dln f, |
i =-xVd+ ZFT 1+ a'ln: {l—tQ]Vln C. (4-33)

Equations 4-32 and 4-33 are solved by converting them into finite-difference equations which
are subsequently linearized and solved using BAND.!? We neglect the effect of the fluid
motion, generated by the flow of current, on the concentration profiles, as this can be shown to

18,19 Because all of the action is confined to the region near the

have only a very minor effect.
surface of the electrodes, a savings in computational effort is obtained by using either a variable

mesh spacing or scaling the equations (with x/ t%) to recognize this fact. The computer
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program for simulation of the galvanostatic polarization experiment, called CHECK, is given in
Appendix 4-A.

Starting with one of the more concentrated data points, figure 4-10 gives concentration
profiles for the galvanostatic polarization of a PEOIZsz.CI:*‘:%SO3 solution. These profiles are
generated by passing a current density of 0.4 mA/cm2 across the 350 um film for four minutes.
Note first that the concentration profiles have not propagated across the full cell; semi-infinite
diffusion conditions still apply. The impact of the variable physical properties is quite prom-
inent, leading to steeper profiles at the anode and a quicker propagation rate at the cathode.
Both the diffusion coefficient and transference number decrease with concentration steadily
over these concentrations. The profiles given in figure 4-10 are equally spaced in time at

thirty-second intervals.

We are most interested in comparisons of numerical simulations with the experimental
data in the form of AD versus (It;-/‘) for various bulk salt concentrations. These simulations
were carried out for all of the concentrations used in the transference-number experiments;
however, we shall discuss only a few of them here. The simulations generally agreed well with
the experimental data out to large values of (It%). The worst agreement was seen at the two
extreme data points, n=500 and »=8, which suggests errors in the extrapolation of
concentration-cell data.

Figure 4-11 demonstrates the comparison between theoretical simulations and experimen-
tal data for the n=500 case. Various lines are generated by using the variable physical proper-
ties measured previously and different, constant values of the thermodynamic factor. It was
difficult to measure the thermodynamic factor for the n=500 data point earlier because of its

extreme sensitivity to the extrapolation and differentiation of the concentration-cell data. With
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Figure 4-10. Concentration profiles across the
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intervals during a galvanostatic polarization
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figure 4-11, it is clear that the value of the thermodynamic factor is close to 0.7. Thus, we find
that even in the most dilute solution used (c=0.049 M), the solid polymer electrolyte is still

nonideal.

Agreement between simulation and experiment is excellent for the rest of the dilute data
points. For example, figure 4-12 presents the experimental data and simulation results for the
n=200, n=160, and n=100 cases. The simulation results generally exhibit the same deviation
upwards from linearity on these plots at larger values of It as seen in the experimental data.
As stated earlier, this effect is caused by the variable physical properties; we will explore this in
more detail in section 4.7. This agreement between the experimental data and the numerical
simulations, especially at larger values of Itf:, gives us confidence in our interpretation of the

experimental method.

By using the simulations to explore the use of different values of the experimental para-
meters, it is found that a deviation upwards from linearity on figure 4-12 is not the only possible
result. Instead, this will depend on the details of the experimental conditions, in particular the

“membrane thicknesses being used. For example, once semi-infinite diffusion conditions no
longer apply, the potential difference across the cell begins to level off with Jz/*. On the other
hand, if a limiting current is reached, then the curve does have a positive deviation from linear-
ity. In our experimental work, we were careful to obey the semi-infinite diffusion conditions,

which explains why we generally observed a positive deviation.

The most concentrated solutions are interesting to examine in more detail because large
concentration gradients develop in these cells, making the experiments most sensitive to the
variable physical properties. Also, as high salt concentrations will usually be used in polymer

electrolyte batteries, these cases are most relevant to practical devices. Figures 4-13 and 4-14
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give the comparison between experimental data and simulations for the n=20 and n=12 data
points. The solid lines are the simulation results using variable physical properties and the
markers are experimental data. The agreement in both figures is quite good, although the simu-
lations in figure 4-14 appear to have a different curvature from the experimental data. Consid-
ering the scatter in the data, we cannot say for sure whether this is the result of poor physical
pfoperty fits. We should point out that the solid line in figure 4-14 is very sensitive to the curve
fits used to describe the concentration dependences of the physical properties. It is difficult to

develop a single function that describes aécurately the concentration-dependence of 2 or

dlnfy :
1+ 3n over the whole range of salt concentrations.
Cc

The n=8 data, given as figure 4-15, is even more difficult to explain with the numerical

simulations. Here again we have problems with the curve fits for the transport properties; how-

ever, this problem becomes more serious now because the cell is accessing concentrations well -

outside the range of the experimental data. Even for relatively small values of (/#£) of around 4
to 5, concentrations of over five molar are reached on the anodic side. Because we do not know
how the physical properties vary above 2.58 M, we assume that they are constant and equal to
their initial values at c=2.58 M. The solid line on figure 4-15 is the simulation result using vari-
able physical properties over the range that they have been measured and constant properties
above ¢=2.58 M. This curve appears to be too low, which could indicate that a minor increase

in the thermodynamic factor at the higher salt concentrations is needed.

The simulations can also provide the values of the wall concentrations as a function of Iz#
during the experiments. For example, figure 4-16 gives the concentration adjacent to either

electrode for the n =160 solution as a function of the experimental parameter. The solid line is
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the variable physical property result, and the dashed line assumes constant physical properties.
The concentration change which the current induces on either side of the cell is not symmetric,
in constrast to the prediction from dilute-solution ;heory. Instead, on figure 4-16 we find that a
larger concentration change occurs at the anode than at the cathode. This effect will be
explained in the analysis of section 4.7. The use of too large a value of Jt/ can lead to a limit-

ing current at the cathode. This is the main consideration for the more dilute data points.

In figure 4-17 we give the concentrations at each electrode for the n=12 case. Figure 4-
17, for n=12, is similar to figure 4-10, which gave full-cell concentration profiles during a gal-
vanostatic polarization. Here we see much larger concentration cﬁanges occurring at either
electrode during the passage of current than with the n=160 case. For figure 4-17, even at the
relatively small values of It/ of one to two, we find that concentration differences approaching
one molar exist across the cell. At larger values of Ir, the concentration changes vary in a
complicated manner due to the variable physical properties. We should note that the anodic
curve for n=12 becomes linear above a concentration of about 2.8 M because the physical pro-
perties have been taken to be constant above this value. For the more concentrated solutions
such as these, it is more likely that one would exceed the salt solubility limit at the anode than
reach a limiting current at the cathode. Predicting this fact without a numerical solution of the
governing equations that includes the effect of variable transport propérties would be very
difficult. The choice of proper polarization times in the more concentrated solutions is thus not

a trivial matter as one must avoid both exceeding the salt solubility limit and reaching the limit-

ing current.

This last point may be particularly important for batteries using PEOnNaCF3SO3, as the

value of n is likely to be at least 8. For example, when the following cell:
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NaIPEOSNaCF3SO3 INaO-7CoO2

25 Based

is discharged at increasing rates, one finds the discharge curves given in figure 4-18a.
on the above findings, as well as simulation results for the full battery that will not be discussed
here, it is believed that the rate capability of this cell is limited by salt precipitation processes

on the sodium foil electrode during discharge. Some evidence for this is found by comparison

with discharge curves for the cell:
NaIPEOZONaCF3803lNa0.7C002

which are given in figure 4-18b. This cell has a lower initial salt concentration, yet still attains
a higher fraction of the available capacity at the higher discharge rates. This is simply due to
the delay of the onset of salt precipitation brought about by using a lower initial salt concentra-
tion with better initial transport properties. With known values of the transport properties, one
could use these data along will a battery modeling program to determine the optimum initial

salt concentration to use in the cell.

To study the salt precipitation process in more detail, we constructed cells of the form:
Na|PE08NaCF3SO3 INa. These were discharged at constant rate while monitoring the potential
difference across the cell. When the potential difference changes abruptly, we assume that
either salt precipitation or a limiting current has been reached; the time for this to happen is
referred to as the transition time. Given the experimental conditions, primarily thickness of
PEO film and current density, we can use the computer program CHECK to simulate these

transition-time experiments just as was done with the galvanostatic polarization experiment.

Data for several experiments are compared in figure 4-19. Each experiment is followed

by an extended rest period (=2 hr) during which the cell potential and concentration profiles are
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allowéd to relax back to their initial values. For repeated experiments using the same current
density (/=0.55 mA/cmz), the transition time varies as a function of relaxation time. This indi-
cates an effect of the previous history, probably the initial salt precipitation process. To
describe properly cell behavior, in particular the failure at high rates for the cells described ear-
lier, one would need to study the kinetics of the salt precipitation/dissolution process in more
detail. For now, we can use the results given in figure 4-15 to interpret the salt preciption
phenomenon. By comparing the transition times (in units of It¥) with the wall concentrations,
we can identify roughly the values of the supersaturation concentration of the salt. As earlier,
we must assume that the transport properties are constant and at their bulk values for salt con-
centrations above 2.58 M. Also, we need to check that the violation of the thick-cell assump-

tion does not invalidate the use of figure 4-15.

The first transition time in figure 4-19, using a fresh cell, occurs at /#/*=21.4 mA-sU 2/cm2.

According to the simulations, this equates to wall concentrations of about 0.10 M and 12.80 M
at the cathodéa and anode, respectively. This large anode concentration is staggering, as one
would initially expect the largest salt concentration the poly(ethylene oxide) could support
would be that of the polymer/salt crystalline complex PEOsNaCF3SO3, corresponding to
c=5.94 M (we should note that the exact stoichiometry of this complex for NaCF3SO3 has not
been identified, but a three to one ratio is seen with many other lithium and sodium salts in
PEO). However, we need to stress that the values of physical properties at the higher salt con-
centrations are not known, and much error may have resulted from our extrapolation of the
values at ¢=2.58 M. The cathode concentration is nearly zero at this large value of (It}/‘); con-
sidering experimental error, we cannot completely discount the possibility that the initial limit-

ing current results from driving the salt concentration to zero at the cathode. Later experiments
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of this type should incorporate a reference electrode which could be used to separate changes in
the potential at either electrode. Detailed computer simulations of this transition-time experi-

ment show that the concentration profiles have sufficient time to develop across the full separa-

tor.

" Later transitions in figure 4-19 occur at shorter times, the smallest being around Ir*=11.0.
That the transition time eventually converges on a steady value is easiest to see in figure 4-20.
Here we have carried out successive transition-time experiments allowing only sufficient time
for concentration profiles to relax before repeating the experiment (L%/D=1 hr). We assume
that this should most closely resemble a true transition time as the effect of salt dissolution
kinetics should be minimized. From the results given in figure 4-20, we find that the transition

time is approaching the value J#=10.5. Simulations show that this corresponds to wall concen-
trations of 0.70 and 7.83 M. This anode concentration is still larger than the value of 5.94 M
that we earlier rationalized as a possible maximum, but is now significantly less than the initial
“fresh" cell value. As the cathode concenfration in this experiment is no longer nearly zero, we
are more confident that it is indeed a salt precipitation process and not a true limiting current
that we are experiencing. Again, in order to model properly any battery that made use of a con-
centrated PEOnNaCF:,,SO3 electrolyte, one would need to expldre the kinetics of the salt

precipitation/dissolution process in more detail than was done here.

4.7 Effect of variable physical properties on the galvanostatic polarization experiments

An interesting limiting case of equation 4-8 that has the advantage of allowing an analytic
solution is that of a constant diffusion coefficient and a linear variation of transference number
with concentration. Considering the experimental data, for which the transference number was

found to decrease strongly with concentration, this is a reasonable approximation. We will
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consider equation 4-8 in one-dimension, for this simplified case we have

d _pPe_ I3 o
ot —Daxz " nF dc ox (4-34)

We have also assumed here that convective flows due to the passage of current can be
neglected. For a transference number that varies linearly with concentration, it is valid to
expand the transference number at the wall in terms of its bulk value, so that the boundary con-
dition at the wall is
0
I

d dr,
MG UE Sl L CR Rl CREN] (4-35)

For this example, it is best not to use the similarity variable transformation because we
would like to solve an equation with constant coefficients. We also use different definitions for

the dimensionless time and concentration. These variables become, respectively,

(2 (c.))?l% @36
"7 DR )
and
C—Ce

0= - (4-37)

Substitution into the governing equation gives

D3F%c% @ DFcL  ard

a0 a0 + 96 (4-38)

e " OCIPP 32 ()P de ox

The boundary condition is then
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With a dimensionless distance defined as

c.) 1 df
el LT
FDc., FD dc

1

the differential equation 4-38 becomes

FDc., x

W _Po_,a
ot 922 9z’

with the boundary conditions

O(t, Z=oo) =0 and O(t+=0,2) =0,

and

00
9z

(ts, Z=

0)=-1+A6.

Above, we have defined for convenience the quantity

with

The Laplace transform of this equation has the following solution,

6=

Coo

0
i

T Q) dc
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(4-39)

(4-40)

(4-41)
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pm— 25 o
A+ (A2 +ds)t (4-46)

Since we are interested in the behavior of 6 at the surface (Z=0), we evaluate equation 4-45 at
Z=0 and expand for short times (or large values of s)
1 A A? A’

B8(7 =0) = -972
0(Z=0) = 7R + 3,57 + 7 + O(s™7%). (4-47)

Inversion of this equation gives

oA AMY

- +
2 6n”

8(Z=0) =2 [fﬂ— +0(%). (4-48)

One can obtain the concentration difference across the cell once equation 4-48 is
expressed in terms of the original parameters. The concentration difference after a constant-

current polarization is

2N I R A <
Ac=— ItH)|—-=+——+0(Y], .
e =% WD | 7 g g 10O (4-49)
where the perturbation parameter C is
240 '
=—— (It}). 4-50
C FD /zc” ( { ) ( )

The parameter C is proportional to the slope of figure 4-8, as can be seen by examining the
definition of A given in equation 4-44. One can show that { < 0.1 over the range of concentra-

tions covered in this work. The asymmetry seen in Ac between either electrode and the bulk

- solution is evident in equation 4-49. ‘This same result was seen previously from the full numeri-
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cal solution discussed in connection with figure 4-16. Equation 4-49 shows that a larger salt
concentration difference will develop at the anode than at the cathode if the transference

number decreases with concentration,; this is just the result seen in figure 4-16.

Equation 4-49 leads to the following potential difference across the cell,

40
¢ FD*

dU
dinc

AD =

(Iti/*)[l Lo

n ¥ 121%

. 4-51)

Notice that the first correction term in equation 4-51 is of O({?) because the terms of O() from
either side of the cell in equation 4-51 cancel one another, a fortuitous situation. (We earlier
observed that figure 4-6 must be odd in /r*.) This also implies that a variable transference
number will lead to a positive deviation from linearity on plots of the form of figure 4-6 no
matter which way the transference number varies with salt concentration. Equation 4-51 allows
one to simulate the polarization experiment up to larger values of (It£) where the linear depen-
dence of A® on (It) no lénger holds. However, with the small values of { generally used in
the present experiments, we confirm that linear behavior should always be observed near the
origin. Of course, at larger values of (It%) it is possible to see the curvature effects evident in

equation 4-51.

4.8 Microscopic speciation models

It is useful to discuss the issue of speciation in more detail in order to elucidate some of
the effects of ion-ion interactions on the macroscopic transport parameters. Consider, for
example, a case where the three independent species in solution are assumed to be Na™,
Na(CFSSO:,,)Z', and the polymer. We wish to determine how the macroscopic transference

number which is measured in practice reflects this microscopic distribution of species. If we
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refer to the sodium cation as species 1 and the sodium ditrifiate anion as species 2, the fluxes of

each species in the absence of concentration gradients are

N{ =-uFe;Vd, (4-52)

N5 = uyFe, Vo, (4-53)

where the superscript * denotes the actual species in solution. We take V¢ = 0 because 9 is

defined in the absence of concentration gradients. It is assumed that the mobilities of the true
species in solution, given by u; and u,, would be less concentration dependent than the macro-

scopic transport parameters.

As any practical experiment or device will be able to determine only the net amount of

sodium transported across the cell, we can write the apparent fluxes as

Nyt =Ni + N3, (4-54)
Ncr,s0,~ = 2N, . (4-55)

The current flow in solution is
i=FWN{=N,). (4-56)

This allows us to calculate the experimentally accessible transference number as

FENyn, + uy—u
Mt _ L7722 (4-57)
{ Uy +uy

0 .
INa+ =

where we also made use here of the electroneutrality condition. From this we find that even

this simple model is able to justify a negative value for the measurable transference number
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when ujy > uy, i.e., when mobile negative triplet ions exist. Also, one should note that the
existence of ion pairs does not affect the value of the macroscopic transference number because
the transference number is defined in the absence of concentration gradients. Even if we had
allowed an equilibrium to exist among the above species and a neutral ion pair, we would have

found the same result for equation 4-57.

If we wish to explore more complicated models of the microscopic speciation, we must
include equilibrium constants for the various ion-exchange processes. For example, consider
the case when there are the following species in solution: Nat, CF3SO3', Na(CF3SO3)i(i'1) 5
and the polymer, where i runs from 1 to n. We will hereafter refer to these species with the sub-
scripts 1 through N (N=n+3), where 1 is the sodium ion, 2 the triflate ion, efc., and species N is
the polymer. As we have (n+3) species but only 3 of these are independent, we can write n

expressions of reaction equilibrium of the form

C.
K = ‘._2) , where i=3, ..., (N-1). (4-58)
ci C&'
From electroneutrality,
Cl=C2+C4+2L‘5+ e +(N—-4) C(N-1) - 4-59)

Combination of this with the n equilibrium expressions gives

c2
1-K4c5 —Ksc3 — - —Ku_ped ™

cy (4-60)

Following the same procedure outlined above, we write an expression for the apparent flux of

sodium in terms of the actual flux of each species
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Npa+ =N[ +Ng + N5 + -+ + Ny-yy - (4-61)
The total current flow is
i=F (N]=N;=Nj=2N; - -+ ~(N~)Ngy-y). (4-62)
For simplicity, we define the following quantities,
A=uy—usKach —2usKsci — -+ —(N-Duw-nKy-ned' >, (4-63)
B=u;+ u4K4c% + 4u5Ksc% + o+ (N—4)2u(N_1)K(N_|)c£N"3) ’ (4-64)
C=1 —K;;C% —Ksc% - —K(N_l)CaN-S) . (4—-65)
Thus, the transference number can be expressed as
Oo—4 :
*SBeuC (4-66)

An expression of this sort could theoretically be used to describe the concentration dependence
of the macroscopic transference number in terms of the presumed constant mobilities of the
individual species and their equilibrium relationships. However, as these mobilities and equili-
brium constants are unlikely to be available, we simply use this expression to explore the possi-
ble values of 0. One can show that equation 4-66 will provide negative values of ¢ under cer-

tain conditions, although it will never give a value smaller than negative one.

A model of speciation that could provide transference numbers with arbitrarily large

negative values would include species of the form: Na™, CF3SO3", Nai(CF3SO3)(l. +1)-, and

- the polymer, where i runs from 1 to n. The advantage of this model, as far as explaining values

of 19 < —1, is that the negative species éarry many more sodium ions than current because they
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are all univalent. However, considering the infinite number of combinations of species that
may exist in solution and the lack of quantitative data on these species, we should not suggest
that the above considerations are evidence of the existence of specific species. Again, we must
emphasize that the transport processes in solution are described completely by the three macro;
scopic, concentration-dependent transport properties, and any further studies surrounding speci-
ation are extraneous. If one’s only purpose is to model the performance of an electrochemical
device that utilizes a solid polymer electrolyte, the information contained in the three transport

properties is sufficient.

We shall conclude this section by saying a few more words about the issue of microscopic
speciation and its effect on the macroscopic transport properties. It is certainly true that the
presence of species other than the stoichiometric ones will have an effect on the measured
transport properties. This was demonstrated above using simple theoretical transport models.
However, it is not necessary to be aware of the exact microscopic species that exist in solution
in order to measure the macroscopic transport properties. This is a fundamental tenet of macro-
scopic physical theories that arises frequently in thermodynamics, and is also relevant in trans-
port phenomena. Mobilities of the microscopic species, while interesting from a theoretical
perspective and possibly accessible by spectroscopic means, are not measurable using macro-
scopic experiments involving current, voltage, and salt concentration. It is just those combina-
tions of microscopic information defined as the transference number, ionic conductivity, and

salt diffusion coefficient that are experimentally accessible by macroscopic methods.
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4.9 Simulation of the potentiostatic polarization experiment

A significant amount of effort has been put into the development of a method to measure

0 1.26'33

t; in solid polymer electrolytes using the potentiostatic polarization of a symmetric cel
This method has now been used by several researchers to evaluate and compare transport
processes in various polymer <=,lcctrolytes.34'39 Although it was understood from thé begin-
ning that this method is valid only for an ideal, dilute solution,28 the implications of this fact on

the measurements have been rarely mentioned.33

Instead, much discussion of the impact of
microscopic speciation on the measurements, especially the existence of ion pairs, has been
published.36’37 In fact, as mentioned earlier, issues surrounding speciation should not affect
the measurement of the macroscopic transference numberf while assumptions of solution ideal-
ity when analyzing experimental results may have drastic consequences. In this section, we
will analyze the potentiostatic polarization experiment under the framework of concentrated
solution theory in order to identify the transport property information that is accessible. In par-

ticular, we should like to elucidate the impact of solution nonideality on the experimental

method.

The potentio’staic polarization, or “steady-state 9uuent," method of measuring % uses the
standard cell of ‘the form: LilPEOnLiXILi. A small, constant potential difference is applied
between the two lithium electrodes, and the current that flows initially and at the steady state is
recorded. This experiment is demonstrated for the NalPEOsNaCF3SO3INa cell in figure 4-21.
Initially, the transference number was simply equated to the ratio of the steady state to the ini-

tial current ﬂow:26
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£2=—. (4-67)

Later, it was realized that a significant error may result from neglected kinetic resistances when

using this formula. Thus, in later publications it has become more popular to use the following

expression:

I [AV - IOROJ

8=

, (4-68)
To [AV IRy

where R is the interfacial (electrode kinetic) resistance and AV is the potential difference

applied across the cell.

To analyze this experiment, we imagine using a lithium reference electrode in solution to

define the potential. We assume that a reaction of the form

g -
YsiMi 2 ne
i

is equilibrated on the reference electrode. Then, the general expression for the reference elec-

trode potential, V, is given by Newman:12

0
I RT RT %
VV=- . — ’;E; 5;VIncifin - 'F?'Z‘;—Vln Cifjn - (4-69)

The molar activity coefficients used here, f; ,, are defined with respect to the reference species

.12 In the present case, we have a binary electrolyte with the species taken to be Li*, X", and

PEQ. The reference electrode reaction is then:

vap Tt
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Li 2Li*+e”.
The potential gradient then simplifies to:
I _2RT dinfy |
weo L By S (1) Vine. @-70)

To find the total potential drop across the electrolyte we integrate 4-70 in one dimension across

the cell of length L,

dinfy o) dlnc
dinc [1_’*] dy. @7

1
+ 3

L L

1 2RT
v -V =-1]—dy+ <]
o ¥ 0

To evaluate this expression we must know how each of the physical properties appearing here

varies with salt concentration. We can take V(L)=0 as an arbitrary condition on the potential.

At this point it becomes reasonable (for purposes of illustration) to make the approxima-
tion that the ionic conductivity, transference number, and thermodynamic factor can be treated
as constants. This becomes more accurate for small potential differences, of course, and could

be rigorously checked using the computer program CHECK. With this assumption, we have

IL _2RT |,  dinfs [ o] co=L)
= T - 1 l-t 1 . -
V=" "F |'"" dlc | ey =0) (4-72)

This expression can be evaluated at both initial and steady-state conditions in order to deter-
mine the current flow as a function of the potential difference. First, at the initial conditions,

we have V=0 and
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IoL

Vo= (4-73)

K

At steady state, the concentration gradients in the cell are established in such a way as to

have zero anion flux. The anion flux with respect to the polymer solvent can be written:

I1-£°
N_=-Dvc_—%+cvo, (4-74)

where v ( is the solvent velocity which will hereafter be assumed to equal zero. When N _ is

set equal to zero, one finds

— 0
oo =) w19

Integrating equation 4-75 and substituting into 4-72 gives

I,L oRrr| . dinf: [ o] co=8
= -—11 -1 , -
Vss K F * dinc +) co+90 (4-76)
where
)
5o -l @77)

2FD

Now we again make use of the assumption of small concentration gradients such that d<<cy,

giving

dln fy
dinc

I.L 2RTI,L
s = + 2
K F DCO

[1 -t‘l] ? (4-78)

Note that V is linearly related to I as long as d<<cg.
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Having expressions for Iy and I in terms of V, we must relate V to the potential

impressed across the full cell, AV:

AV =V + 154 —TNsc- 4-79)

The surface overpotentials can be estimated by assuming linear kinetics and a constant

exchange current density, then

Nsa —Ns,e = IRefr (4-80)
where
RT
=2 —_—] .
Reg R + 1oF (0, + ) (4-81)

Here Ry is an inherent film resistance and R.¢ is the effective interfacial resistance, presumably
measurable using ac-impedance techniques. The film resistance, Ry, can be a function of time
(on the time scale of theAexperiment) but is assumed independent of the salt concentration.

Combination of equations 4-73 and 4-78 with 4-79 and 4-80 gives the final expression:

I, [AV——IORO] |

din fi
dinc

Io [AV—ISSR,S] |, 2RTx
F2Dcg

[1 _to] 2 (4-82)

We have referred to the initial effective resistance as R, and the steady-state value as Rg;. This

can also be written to eliminate AV as:
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1+ XRo
L _ T L
fo KR  _2RT% dlnfs [1-:0]2 (4-83)
L  F2Dc, dinc *

Comparing the final cxpressions 4-68 and 4-82, we find widely different results. For
example, equation 4-68 predicts that the transference number must have a value between zero
and unity. Equation 4-82, on the other hand, places no such limit. It is perhaps one of the
wonders of dilute solution theory that the expression 4-82 does indeed reduce to 4-68 in the
limit of an ideal, infinitely dilute solution. To see this, we must first assume that the mean
molar activity coefficient is constant, giving a thermodynamic factor of unity. Next, we apply
the dilute solution theoretical expressions for the various transport propgrties in terms of indivi-

dual ionic mobilities,

x=F? [u.,. + u_] c, (4-84)
U
W, +u_
0 Uyt
1 =——.
S rn (4-86)

This‘ leads to the result given in equation 4-68 directly. Thus, as was initially stated, the for-
mula 4-68 applies only to the ideal, dilute solution. That these assumptions do not hold for typ-
ical solid polymer electrolytes is simple to prove. For example, if we examine the dilute solu-
tion theory expression 4-84 for the ionic conductivity, we find that it predicts a linear depen-
dence on salt concentration. Experimental data show that this does not hold even at very dilute

concentrations (¢<0.1 M).3
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The next question is what consequence does the expression 4-82 have for the steady-state

current method. First, we realize that the steady-state current, even with the assumptions previ-

ously made, depends not only on the value of the transference number, but also on the salt

diffusion coefficient, thermodynamic factor, and ionic conductivity. Thus, without prior

knowledge of all of these data, it is not possible to obtain the transference number from the

steady-state current. Also, very large errors in the measured transference number will result

from ignoring these differences in the two formulas. As an example, we can consider the case

of 258 M NaCI":SSO3 in poly(ethylene oxide) at 85°C. The transport properties for this system

are known as functions of the salt concentration from our previous work (section 4.5).40

Assuming the properties to be constant and equal to their bulk values stated earlier, we can plug

the following numbers into equation 4-82:

giving a value of:

D=1.47x10"8 cm?ss,

x=1.54x10"% S/cm,
9=-4.38,

oln £,
dlnc

and [l + =0.023,

I [AV—IORO}

=0.37. (4-87)
I [AV ~ Is,R_“]

Notice the error that would result from incorrectly interpreting this number as the value of the

sodium ion transference number.
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It has been suggested that the ratio of steady state to initial current might be a useful piece
of information to evaluate a given polymer electrolyte’s transport behavior, even if it does not
give one a direct measure of the lithium-ion transferencc number. This quantity has been called
the "limiting current fraction" by some. We see now that this ratio will approach unity as either
the salt diffusion coefficient or lithium-ion transference number is increased, or as the thermo-
dynamic factor or ionic conductivity is decreased. Since all but the last of these criterié would
be desirable properties for a polymer electrolyte, the above statement is to some extent true.
However, it is certainly preferable to use the values of the measurable, macroscopic transport
properties to evaluate various candidate polymer electrolytes instead of relying on quantities

like the limiting current fraction, which contain a convolution of information.

Also, it is not true that the limiting current fra'xction is directly relevant to the performance
of practical electrochemical devices. First, most devices will be run at a constant current, and
the main transport issue is then how large a current can be sustained before a "limiting" current
is reached in the polymer electrolyte, i.e., before one drives the salt concentration to zero or
above its supersaturation value. Thus, the main issue has to do with the size of the concentra-
tion gradients that develop in the cell during the passage of current. With a highly nonideal

electrolyte, a large value of the limiting current fraction can still lead to the development of

- large concentration gradients upon passage of current. With the above example, the actual con-

centration gradient would be 8.5 times greater according to equation 4-75 with the correct value
of the transference number rather than a value inferred incorrectly from a limiting current frac-

tion.

When comparing the various methods that have been devised to measure the transference

number that depend on the current/voltage behavior of a symmetric cell, it has not escaped our
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attention that the quantity

2RT
F?*Dc.,

dinf. 2
S (- 59

appears in each case. For example, we can compare the potentiostatic (or steady-state current)

method of equation 4-82, the galvanostatic method developed in section 4.3, and the ac-

41

impedance method; "~ in each case we find that the quantity measured is related to 4-88 through

various conversion factors. For example, from the above expression 4-82 one can show:

2RT dlnfy 21 |fo {AV" I“R”J
o [T e S PR
F2Dc., c 1, [AV— IORO]
For the ac-impedance experiment one ﬁnds:41
dln 2 Zy,(0A
fRT 1+ IE: [1 - tﬂ] = —m.(_—— . (4-90)

where Z,(0) is the width of the low-frequency impedance loop. For the galvanostatic polariza-

tion method,

oln fy 2 Y
2RI : .[l—t‘l] = IE- @-91)
F?Dc., dlnc 4D*

with m defined as the slope of a plot of A® versus (It{*). This similarity among the experimen-
tal techniques is a natural result of the experimental approach and the governing transport rela-
tions. It should not be possible to avoid the thermodynamic factor when using the potential

difference of the cell to ascertain the transference number.
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Another consequence of the above analogy between methods is that any one of the above
experiments could be combined with concentration-cell data to obtain the transference number.
Assuming that the concentration-cell data in the form of U versus In ¢ are linear over the range

of concentrations in the cell, one finds:

olnf,
dinc

dU
dilnc

_ 2RT

1+
F

[1 - t‘i] . (4-92)

‘Thus, the slope of concentration-cell data can be combined with any of the above equations 4-

89, 90, or 91 to isolate the transference number. Note that in each case we still require the
value of the salt diffusion cdefﬁcient. Along these same lines, we should point out that these
two sets of data can also be used to calculate the thermodynamic factor without knowledge of
£%. Combination of the concentration-cell data with the quantity given by equation 4-88 pro-

vides the following:

2 -1

dln fy
olnc

dU
dinc

1
2RTDc..

(4-93)

This idea was also mentioned by Pollard ¥}

As this method requires the square of the slope
from the concentration-cell data, one would expect errors introduced from the differentiation to

be magnified.

4.10 Comparison of methods to measure 0 in SPE’s

It should now be possible to reflect on the utility of the present method of measuring the

transference number in comparison to methods that have been used by others. Some of the

~ problems involved in measuring #% in a solid polymer electrolyte have been discussed already

in section 4.2. The results given above also support the fact that these solutions are both

]

iEadaas G TR

g

LT

1



336

concentrated and nonideal, so that assumptions of constant transport properties or of solution
ideality fail even at the most dilute concentrations used in the present work. The criteria that
we will use to compare the experimental methods are then their validity for a nonideal, concen-
trated electrolyte, experimental difficulty, and ability to ascertain a differential transport pro-
perty.

The two most popular methods to date to measure 2 have been the potentiostatic polari-
zation method and the ac-impedance-based methods. The former of these was discussed in
detail in section 4.9, where it was concluded that the method in its present form cannot be used
to measure the transference number. Instead, the ratio of steady state to initial currents is deter-
mined by a function of all three of the macroscopic transport parameters as well as the mean
molar activity coefficient of the salt. The ac-impedance methods presently in use can be

4244 For example, the following expression has

derived from equations given by Macdonald.
been used to calculate the transference number from particular characteristics of the low-

frequency impedance response of a symmetric cell:45’46

R, |

Z,(0)

I+ (4-94)

The theoretical origins of this expression are in dilute solution theory, so we have the same
problems with this expression as with those discussed earlier for the steady-state current

method (e.g., equation 4-68). This is the most probable explanation for discrepencies found

38,47

between the results of these and other methods. A detailed critique of the ac-impedance

methods from the standpoint of concentrated-solution theory has already appeared in the litera-

ture and supports these conclusions.41
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Another possible method is the measurement of limiting currents at a microelectrode sur-
face; this experiment allows one to obtain the transference number as long as the salt diffusion
coefficient is known. The limiting current to a disk electrode in a semiinfinite medium is given

by:

4nFDc .,

lim ="~ .
lim 7ta(l—t2)

(4-95)

As the cell is completely polarized during this measurement, the value that one obtains is an
average value over the range of concentrations in the cell, which must then be deconvoluted to
find a differential transport property.48 There are also practical difficulties with these experi-
ments thét must be overcome involving the contact between the polymer electrolyte and the

microelectrode surface. This has been achieved with low-molecular-weight polyethers, such as

. poly(ethylene glycol dimethyl ether) (PEGDM, MW=400), but the limiting current data were

not used to obtain transport properties.49

The most direct measurement of the transference number from a theoretical perspective

comes from the Hittorf method.so'52

Although not known for its accuracy, the Hittorf method
was the first and has historically been the most popular method to measure transference
numbers in both liquid and solid systems. Current is passed across the standard LilPEOILi cell
using thick PEO films so that concentration changes are confined to the region near the elec-

trode surfaces. The transference number is found by comparing the net concentration change
adjacent to either electrode with the total coulombs passed through the cell:
0 _ FLAc

1 "B (4-96)
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where L is the thickness of one section and Ac is the change in concentration due to the electro-
lysis. To assure that concentration gradients do not propagate into the center of the cell, it is
best to use a four-compartment cell; the concentration of salt in each of the two inner compart-

ments should not change from the initial value.

This measurement has been made successfully by one group in a high-molecular-weight
PEO-based system, but only one salt at a single concentration was studied.51 It is interesting
that this measurement gave one of the lowest values for 12 yet reported (0.06). The difficulty
with this method lies in the fact that the polymer must be sectioned and analyzed after the pas-
sage of current. This leads to problems of separating the polymer electrolyte from the electrode
surfaces, which has motivated researchers to use either lithium-alloy or lead electrodes where

33 Also, longer diffusion lengths (perhaps 1 to 2 cm) become necessary in

separation is easier.
order to section the polymer easily; however, these longer diffusion lengths make passing

current difficult for poorly conducting polymer electrolytes.

Considering the above techniques, we see that there exist either problems with the valid-
ity or experimental difficulties in each case. For this reason, one is motivated to consider more
subtle approaches that make use of more than one experimental quantity. The class of experi-
ments described earlier, that rely on the current/voltage behavior of a symmetric cell, represents

just such an approach. We found earlier that these experiments are able to access the quantity:

olnfy

2RT 1+
dlnc

F2?Dc.,

[1 - zﬁl] ? (4-97)

which, when combined with concentration-cell data in the form given in equation 4-92, lead to:
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S
FDc.,

dU
dlnc

[1 ~t2] : | (4-98)

In section 4.9 three approaches were described: one being the galvanostatic polarization used
in the present work in section 4.5, another being the popular potentiostatic polarization (or
steady-state current) method, and a third being an ac-impedance based technique. Comparing
these three methods, we would prefer to use the galvanostatic polarization technique. The
potentiostatic polarizatibn method has the disadvantage of setting up steady ;oncenuation gra-
dients that make measurement of differential transport properties impossible. Unlike with the

galvanostatic polarization technique, it is not clear that as the size of the potential step is made

small, the effect of the variable physical properties will disappear.

Ac-impedance-based techniques are appealing because the alternating-current signal
minimizes the formation of concentration gradients during measurements. This should allow

one to measure differential values of transport properties. However, it is often difficult to

41

‘resolve accurately the low-frequency loop on the Nyquist.plot.”  On the other hand, an ac-

impedance measurement does have the advantage of potentially giving the value of the salt
diffusion coefficient in the same experiment. Alternating-current impedance data as a function

of frequency can provide the salt diffusion coefficient at the bulk concentration from either the

frequency maximum on the low-frequency loop:d'1

L e

4-99
5.080 -9

or from the slope, /, of a plot of Re(Z) versus (&/ 211:)‘1’2:41
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D=""—. (4-100)

With very slow diffusion processes, such as those in solid polymer electrolytes at lower tem-

peratures, data in the low-frequency domain can be difficult to obtain.

Based on the above analyses, we conclude that no single method of measuring the
transference number in solid polymer electrolyte solutions is clearly the best method. At the
present time, there appears to be a tradeoff between the experimental difficulty and the theoreti-
cal simplicity of the various methods that are available. The Hittorf method, which still has not
overcome fully some experimental difficulties, is the most direct method from a theoretical per-
spective. Whereas the method presented in the present work has the advantage of experimental
simplicity, the result is sensitive to the values of several other experimental quantities such as
the salt diffusion coefficient and the concentration-cell data. Considering this state of affairs, it
seems likely that future research will lead to the development of even more novel methods of
measuring either the transferénce number or, more likely, the salt activity coefficient in solid-

polymer-electrolyte solutions.

4.11 Conclusions

We have measured a full set of transport properties for one solid-polymer-electrolyte sys-
tem: sodium trifluoromethanesulfonate (NaCF3SO3) in poly(ethylene oxide) (PEO) over the

3 at a temperature of 85°C. The conductivity was

concentration range of 0.1 to 2.6 mol/dm
measured with ac-impedance from the high-frequency intercept on the real axis of a complex-
plane plot. The conductivity was found to vary with concentration in a manner similar to that

of LiCF3SO3 in PEO. The salt diffusion coefficient was measured using restricted diffusion

with the concentration difference extracted from the potential of the cell. Diffusion coefficients
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were also found to vary with concentration in a manner similar to the conductivity.

The sodium ion transference number was measured by combining concentration-cell data
with the results of dc-polarization experiments. This method is easy to perform experimentally
and does not require the assumption of an ideal polymer electrolyte solution. The resulting
transference numbers decreased strongly with concentration, going from around 0.31 in the
most dilute solution (0.05 mol/dm3) to -4.37 in the most concentrated solution (2.58 mol/dm3).
Some discussion of the impact of microscbpic speciation on the macroscopic transport proper-
ties is given to rationalize the large negative transference numbers obtained. The thermo-
dynamic factor is also calculated and found to decrease with increasing salt concentration. The
values found for this parameter indicate that this solid-polymer-electrolyte solution is highly

nonideal.
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Appendix 4-A Computer program and data file CHECK

CHECK data file
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n
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[N

|
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£
20 3.5d-04 200 358.15  -0.030d0 &1
1.0d00 1.0d0 1.50d0 8 0.50d0 .
8.00d03 3.750d-02 3.750d-02 5.0d0  0.000d0 (3
0 2 1 0
6
0.1881d03 ™y
0.28096d03 o
0.22515d03
1.091d03 f
1.7724d03
2.576d03
CHECK data file comments

line 1: lim,hs,nj,t,xi(2,1)
lim, limit on number of iterations
hs, thickness of separator (m)
nj, number of nodes in separator
t, temperature (K)
xi(2,1), initial potential (V)

line 2: rr,eps,cur,numb,fact
rr, size of time step (s)
eps, volume fraction of electrolyte in separator
cur, current density for discharge (A/m2)
pumb, number of successive discharges to carry out
fact, factor by which to increment time of successive discharges (min)

line 3: cmax,rka,rkc,resttime,restcur
cmax, maximum concentration in polymer electrolyte (mol/m3)
rka, exchange current density for anode
rkc, exchange current density for cathode
resttime, time of rest period between discharges (min)
restcur, current density during rest period (A/m2)

line 4: il1,i12,il3,il4
il1, 1 for long print-out O for short print-out
iI2, 1/i12 = fraction of nodes in long print-out
il3, 1/i13 = fraction of time steps in long print-out
il4, 1 for polymer, O for liquid electrolyte g

line 5: nmax -y
nmax, number of bulk concentrations to test o

line 6 onward: xc(i) : .
xc, bulk concentration (mol/m3) :

1oE
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CHECK program code

hhkkhkhhdkdkhbhkhhdh kA kA kb kkkhk bk hkdkkdhhhdhhhddhhkdhdbhkh kA hhddkhk kkhok

AUTOCHECK.FOR
Retooled on 1/16/95

Binary, concentrated electrolyte solution between cation
reversible electrodes.

Performs either galvanostatic or potentiostatic
polarization experiments automatically according
to specifications in input file.

Includes variable transport properties

Has current PEO+NaCF3S03 properties as of 8/1/94

OO0 0000000000 00a0

c******************************************************************

implicit real*8(a-h,o0-z)

common /n/ nx,nt,nj

common /calc/ u(822,1600),ts(1600),h

common/const/ fc,r,t,frt,cur,eps,pi

common/ssblock/ xp0(2),xx0(2,821),term(821)
common/var/ xp(10),xx(2,821),xi(2,821),xt(2,821,1600)
common/cprop/ cmax,rka,rkc,hs,rr

common/results/ fact,nmax,mmax,xc(20),wconc2(20,100),
1wconc (20,100) ,pot (20,100)
common/tprop/df(821),cd(821),tm(821),

14df (821) ,d8cd(821),dtm(821),dfu(821),d2fu(821)
dimension cu(2),rc(2)

n=2
c n is number of equations
data fc/96487.040/, r/8.31440/, pi/3.14159265358940/

c**************************************************************

c read in parameters and boundary conditions
o i
read *,lim,hs,nj,t,xi(2,1)
c lim is number of iterations, hs is thickness of separator,
c nj is number of nodes in separator, t is temperature

read *,rr,eps,cur,numb, factor

read *,cmax,rka,rkc,resttime,restcur
read *,il11,i12,1i13,1i14

read *,nmax

read *, (xc(i),i=1,nmax)
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c
c xc¢ is the bulk concentration D
c cu is the current, rc is the time to discharge
c
h=hs/(nj-1)
frt=fc/(r*t) ' A
c Fix discharge current ﬁi i
cu(l)=cur -
c Fixed relaxation time of one minute 7

cu(2)=restcur
rc(2)=resttime
c Specify number of time changes:
fact=factor ‘
mmax=numb
c**************************************************************
c Loop for bulk concentrations:
do 233 1lk=1, nmax
xi(1l,1)=xc(lk)
c print*, ‘bulk conc is ‘,xc(1lk)
xi(l,nj)=xi(1,1)
do 232 lm=1, mmax
rc(l)=fact*1lm

c print*, ‘time is ‘,rc(l)
rr=1.040 -
c Real time counter in seconds: ‘
ts(1)=0.0040
cur=cu(l) .
k=1 ; Ej
C
c procedure guess sets the initial values/guesses:

call guess(n)

c
print*, ’ CHECK VERSION 1.0’
print*,’
print*, ‘cell pot ', ’material’,’ time’
print*,’ (V) *, ‘balance’, ' (min)’
c

c**************************************************************

c
ncue2=0 f} .
time=60.0d0*rc (1) , A

123 k=k+1 .
nt=k-1 )

c [

122 if(time.gt.ts(k-1)) then
c print*, ‘time is ‘,ts(k-1).,k
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15

198

124

ts(k)=ts(k-1)+rr

call comp(n,lim,k,112,il3,ncue2, 1k)
do 11 i=1l,n

do 11 j=1,nj

xt(i,j, k)=xx(i,3)

call cellpot(k,il4d,vv)

print*, ‘stuff is ’,k,cur,vv,ts(k)
go to 123

else

stop discharge _

if (abs(time-ts(k-1)).le.0.1d0) then
cur=0.0d40

rr=1.048-03

ts(k)=ts(k-1)+xr

call comp(n,lim,k,112,il1l3,1,1k)

do 15 i=1,n

do 15 j=1,nj

xt(i,j,k)=xx(i,3)

print*, ‘potential at interrupt ’,xt(2,1,k)
print*, ‘wall conc. at interrupt ‘,xt(1l,1.,k)
print*, 'time of interrupt ‘,ts(k)
pot (1k,1lm)=xt(2,1,k)

weconc (lk, Im)=xt(1,1,k)

weconc2 (1k, Im) =xt (1,nj, k)

go to 198

else

overshot the time required:

k=k-1

ncue2=1

rr=rr/2.040

go to 122

endif

start post-pulse relaxation period:
cur=cu(2)

time=60.0d40* (rc(2)+xrc(l))

rr=1.0d40

k=k+1

nt=k-1

if(time.gt.ts(k-1)) then
ts(k)=ts(k-1)+xrr

ncue2=0

print*, ‘stuff’,k,cur,ncue2, ts(k)
call comp(n,lim,k,112,il3,ncue2, 1k)
do 12 i=1,n "
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do 12 j=1,nj
xt(i,d,k)=xx(i,])

call cellpot(k,ild,vv)
go to 124

end if

end if ;
call nucamb(lk,n,il2,1,il1) 3
end do

cur=cu(l)

i13=0

call nucamb(lk,n,112,113,111)

end do

¥

end

Ak hhkdhkhhkbhkhkhbhkhkddhhhhhhrhhhhrhhbhdrhddaddddbhdhddhbhdrhkhhhkhhhhkrritddi

subroutine comp(n,lim,kk,il2,i13,ncue2, 1k)

implicit real*8(a-h,o-z) C
common /n/ nx,nt,nj )

common /calc/ u(822,1600),ts(1600).h

common/const/ fc,r,t,frt,cur,eps,pi )
common/ssblock/ xp0(2),xx0(2,821),term(821) 1
common/var/ xp(10),xx(2,821),xi(2,821),xt(2,821,1600)

common/cprop/ cmax,rka,rkc,hs,rr -
common/results/ fact,nmax,mmax,xc(20),wconc2(20,100), '
lwconc (20,100) ,pot(20,100) :
common/tprop/df(821),cd(821),tm(821),
14df(821) ,dcd(821) ,dtm(821),dfu(821),d2fu(821)
common/mat/ b,d

common/bnd/ a,c,g,X,y

dimension b(10,10),d4(10,21)

dimension a(10,10),c(10,821),g(10),x(10,10),y(10,10)

{
[ —

format (1h ,//5x,‘this run did not converge’//)
nx=n
1li=1

if (li.eg.l) then
do 20 §=1,nj
do 20 i=1,n
c(i,j)=xt(i,3,kk-1)
xx{i,j)=xt(i,],kk-1)
sets first guess to last time step values

ol
!
LR———

L -

else
do 81 j=1,nj
do 81 i=1l,n
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00 00

81 c(i,j)=xx(1i,3)
endif
sets first guess to last iteration values
jcount=0
) do 4 i=1,n
4 xp(i)=0.0d40
initialize variables to begin each iteration
(jcount is iteration #)
8 j=0
jcount=jcount+l
call prop(nj,lk)
obtains physical properties at this specific point
do 9 i=1,n
do ¢ k=1,n
x(i,k)=0.040
9 y(i,k)=0.040

store previous iteration of (xp in xp0) & (xx in xx0)
do 6 i=1,n
xp0(i)=xp(i)
6 xx0(i,nj-5)=xx(i,nj-5)

if (kk.eqg.2.and.jcount.eqg.l) then
term(1l)=cur/fc-cur* (tm(l)+tm(2))/fc/2.
term(nj)=-cur/fc+cur* (tm(nj)+tm(nj-1))/£fc/2.
do jj=2,nj-1

term(jj)=cur* (tm(jj)+tm(3j-1))/£fc/2.-
lcur*(tm(jj)+tm(jj+l)) /£fc/2.

end do

end if

for a given iteration, set up governing equations and bc’s
start at the left interface and move across polymer

10 j=3+1

do 11 i=1,n
g{i)=0.0d40
xx(i,j)=c(i,3)

do 11 k=1,n
a(i,k)=0.0d40
b(i,k)=0.040

11 d(i,k)=0.0d40
clears all arrays before use
if(j.ne.l) go to 13
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specify boundary conditions at left interface (j=1)

boundary conditions at negative electrode
equation 1: flux specified by current

def=(xx(1,j+1)~xx(1,3j))/h

P

i

AT
m.

i
d

ﬂ}‘\'ﬁm

b(l,1)=3.*eps*h/8./rr+(df(j)+df(j+1))/4./h- ddf(J)*dcf/4.
l+cur*dtm(j)/4./fc
d(l,1l)=eps*h/8./rr-(Af(j)+df(j+1))/4./h-ddf (j+1)*dcf/4.
l+cur*dtm(j+1)/4./fc
g(l)=—-eps*h/rr*(0.375*%(xx(1,j)-xt (1,7, kk-1))+0.125*
1(xx(1,3+1)-xt(1,3+1,kk-1)))+(cuxr/fc+(dE(j)+Af(j+1)) *dcf/2.-

13

lcur* (tm(j)+tm(j+1))/2./fc)/2.+term(j) /2.

def=(xx(1,j+1)-xx(1,3))/h
ri=(xx(1,j+1)+xx(1,3))/2.040
pl=(tm(j)+tm(j+1))/2.080
p2=(cd(j)+cd(j+1))/2.040
p3=(dtm(3j)+dtm(j+1))/2.0d40
pd=(dfu(j)+dfu(j+1))/2.040
p5=(dcd(j)+dcd(j+1))/2.0480
pé6=(d2fu(j)+d2fu(j+1))/2.040
thermf=0.5*(1ﬁ+r1*p4)
d(2,1)=(1.040-pl1)*(1.040/x1+p4d)/h
b(2,1)=-d(2,1)+((1.040-p1)*(p6-1.040/rl/xrl) *dcf

1 -(1.040/xrl1+p4) *dcf*p3)/2.0d40
d(2,1)=d(2,1)+((1.040-p1) *(p6~1.0d40/rl/rl)*dct
1 -(1.040/rl+p4) *dcf*p3)/2.040

d(2,2)=-frt/h

b(2,2)=frt/h

g(2)=frt*cur/p2

1-(2.*%(1.0d40-pl) *thermf/h/xrl) *(c(1l,3+1)-c(1,5))
1+frt/h*(c(2,j+1)-c(2,3))

call band{(j)
go to 10

specify governing equations in polymer separator
if (j .ge. nj) go to 110

def=(xx(1,j+1)~xx(1,3))/h
dcb=(xx(1,3)-xx(1,3-1))/h

b(l,1)=3.*eps*h/4./rr+(df(j-1)+2.*Af(j)+df(j+1))/4./h
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1-Gdf (3) * (xx(1,3+1)-2.*xx(1,5) +xx(1,j-1)) /h/4.
l+cur*dtm(j) /2. /fc ‘
a(l,l)=eps*h/8./rr-(df(j)+df(j-1))/4./h+dd£(j-1)*dcb/4.
l-cur*dtm(j-1)/4./fc
d(l,1)=eps*h/8./rr-(Af(j)+df(j+1))/4./h-ddf(j+1) *dcf/4.
l+cur*dtm(j+1)/4./fc ’
g(l)=-eps*h/rr*(0.75% (xx(1,j)-xt (1,7, kk-1))+0.125% (xx(1,5+1) -~
Ixt(1l,j+1,kk-1))+0.125*(xx(1,3-1)-xt(1,3-1,kk-1)))
1+((df(3)+df(F+1) ) *dcf/2.-cur* (tm(j)+tm(jF+1))/2./fc~
1(Af(3-1)+df(3))*dcb/2.+cur*(tm(j-1)+tm(3j))/2./fc) /2.
l+term(j) /2.

def=(xx(1,3+1) -xx(1,3j))/h
ri=(xx(1l,j+1)+xx(1,3))/2.0480
pl=(tm(j)+tm(j+1))/2.0480
p2=(cd(j)+cd(j+1))/2.0d40
p3=(dtm(j)+dtm(j+1)) /2.040
p4=(dfu(j)+dfu(j+1))/2.040
p5=(dcd(j)+decd(F+1}) /2.040
p6=(d2fu(j)+d2fu(j+1))/2.040
thermf=0.5%(1.+xrl*p4)
d(2,1)=(1.040-p1)*(1.0480/r1l+p4d)/h
b(2,1)=-4(2,1)+((1.0d0-pl) *(p6-1.080/xr1l/rl)*dcf

1 -(1.040/xr1+p4)*dcf*p3)/2.040
d(2,1)=4(2,1)+((1.040-pl) *(p6-1.040/r1/xrl) *dcf
1 -(1.040/rl+p4)*dcf*p3)/2.0d0

d(2,2)=-frt/h

b{2,2)=frt/h

g(2)=frt*cur/p2

1-(2.*(1.080-pl) *thermf/h/rl) *(c(1,j+1)~-c(1,5}))
1+frt/h*(c(2,j+1)-c(2,3))

g(2)=-c(4,3)
b(2,4)=1.0

call band(j)
go to 10

continue
specify boundary conditions at right interface(j=nj)

dcb=(xx(1,3j)-xx(1,3j-1)}/h

b(1l,1)=3.*eps*h/8./rr+(df (3)+df(3-1))/4./h+ddf (j) *dcb/4.
l-cur*dtm(j)/4./fc
a(l,1)=eps*h/8./rr-(df(§)+df(3-1))/4./h+ddf(j-1) *dcb/4.
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£
l-cur*dtm(j-1)/4./fc =
g(l)=—eps*h/rr*(0.375*% (xx(1,3j)~-xt (1,3, kk-1))+0.125*
1(xx(1,3-1)-xt(1,3-1,kk-1)))+(-cur/fc-(Af(j)+d£f(j-1))*dcb/2.+ B
lcur* (tm(j)+tm(j-1))/2./£fc)/2.+term(3) /2. £
c
c i
g(2)=-c(2,3) =3
b(2,2)=1.0
c
call band(j) i
do 605 jj=1,nj
do 605 i=1,n
605 c(i,jj)=xx(i,jj)+c(i,3])
c
c
c begin check for ss convergence
c
do i=1l,n
xp(i)=(4.040*c(i,2)-3.0d40%c(i,1)-c(i,3))/2.040/h
end do
do 25 j=1,nj
if{c(l,3).1t.xx(1,3)/1.0402) c(1,3)=xx(1,3)/1.0d402
if(c(2,3).1t.xx(2,3)-0.3d40) c(2,7)=xx(2,37)-0.3400
if(c(2,3).gt.xx(2,3)+0.3d0) c(2,7)=xx(2,3)+0.3400 ,
if(d(l,j).lt.l.Od-lO) c(l,3)=1.04-10 -
c if(c(1,]) .ge.cmax) c{1,3)=0.999d0*cmax
do 25 i=1,n .
25 xx(i,j)=c(i,3) i
c —d
if (jcount .gt. lim ) then
rr=rr/2.0d40
lim=1im+1
ts(kk)=ts(kk-1)+rr
c print*,’ time step reduced to ‘', rr
if (rr .1lt. 1.04-06) then
print*,kk-1, ‘’ this time step did not converge’
print99
call nucamb (lk,n,il2,0,il1)
stop
else -
go to 666 .
end if
c
else 17

do 55 ii=1l,n
dxp=dabs( xp(ii)-xp0(ii) ) z
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dxx=dabs( xx(ii,nj-5)-xx0(ii,nj-5) )
if (dxx.gt.l1.0d-10*@abs(xx(ii,nj-5))) go to 8
if (dxp.gt.l1.0d-09*dabs(xp(ii))) go to 8

55 continue

print*,jcount,’ iterations required’
Increasing time steps:
if {(jcount .lt. 5 .and. kk.gt.10) then
if (ncue2.eq.0) then
if (rr.1t.2.0400) then
rr=rr*3.5d0
print*, ‘time step increased to ’,rr
else
go to 222
end if
else
if (rr.lt.1.0d401.and.ncue2.eq.0) then
rr=rr*2.0d40
print*, ‘time step increased to ‘,rr
else
continue
end if
end if
else
continue
end if
222 continue

The new termj section:

3=1

dcb=(xx(1,j)-xx(1,3-1))/h
def=(xx(1,j+1)-xx(1,3))/h
term(l)=cur/fc+(d£(1)+d£(2)) *dcf/2.-

lour* (tm(l)+tm(2))/£fc/2.

j=nj

dcb=(xx(1,j)-xx(1,3-1))/h
def=(xx(1,3j+1)-xx(1,3))/h
term(nj)=-cur/fc-(df(nj)+df(nj-1))*dcb/2.+

lcur* (tm(nj)+tm(nj-1))/fc/2.

do j=2,nj-1

dcb=(xx(1,j)-xx(1,3-1))/h
def=(xx(1,j+1)-xx(1,3))/h

term(j)=-(Af (F)+dA£(3-1) ) *dcb/2.+cur*(tm(j) +tm(j-1)) /fc/2.
1+(A£(J)+df£(j+1)) *dcf/2. ~cur* (tm(j)+tm(j+1)) /fc/2.
end do B
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c
end if

c
return
end

c

c*********************************************************************

subroutine band(j)
implicit real*8(a-h,o-z)
common /n/ nx,nt,nj
common/mat/ b,d
common/bnd/ a,c,g,x,y
dimension b(10,10),d(10,21)
dimension a(10,10),<(10,821),g(10),x(10,10),v(10,10)
dimension e(10,11,821)
101 format (15h determ=0 at j=,1i4)
n=nx
if (j-2) 1,6,8
1l npl=n + 1
do 2 i=1,n
da(i,2*n+l)= g(i)
do 2 1=1,n
lpn= 1 + n
2 d(i,lpn)= x(i,1)
call matinv(n,2*n+1,detexrm)
if (determ) 4,3.,4
3 print 101, jJ
4 do 5 k=1,n
e(k,npl,1l)= d(k,2*n+1)
do 5 1=1,n
e(k,1,1l)= - d(k,1)
lpn=1 + n
5 x(k,1)= - d(k,1lpn)
return
6 do 7 i=1,n
do 7 k=1,n
do 7 1=1,n
7 d(i,k)= d(i,k) + a(i,1l)*x(1,k)
if (j-nj) 11,9,9
9 do 10 i=1,n
do 10 1=1,n
g(i)= g(i) - y(i,1)*e(l,npl,j-2)
do 10 m=1,n
10 a(i,l)= a(i,1) + y(i,m)*e(m,1,j-2)
11 do 12 i=1l,n
d(i,npl)= - g(i)
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12

13

14

15

16
17

18

19
20

do 12 1l=1,n

d(i,npl)= d(i,npl) + a(i,l)*e(l,npl,j-1)

do 12 k=1,n

b(i,k)= b(i,k) + a(i,l)*e(l,k,3j-1)
call matinv(n,npl,determ)

if (determ) 14,13,14

print 101, 3

do 15 k=1,n

do 15 m=1,npl

e(k,m,j)= - d(k,m)

if (j-nj) 20,16,16

do 17 k=1,n

clk,j)= e(k,npl,]j)

do 18 jj=2,nj

m=nj - jj + 1

do 18 k=1,n

clk,m)= e(k,npl,m)

do 18 1=1,n

clk,m})= c(k,m} + e(k,1,m)*c(l,m+l)
do 19 1=1,n

do 19 k=1,n

c(k,1l)= clk,1) + x{(k,1)*c(1,3)
return

end
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c*********************************************************************

subroutine matinv(n,m,determ)
implicit real*8(a-~h,o-z)
common/mat/ b,d

dimension b(10,10),4(10,21)
dimension id(10)
determ=1.0

do 1 i=1l,n

id(i)=0

do 18 nn=1,n

bmax=1.1

do 6 i=1,n

if(id(i) .ne.0) go to 6
bnext=0.0

btry=0.0

do 5 j=1,n

if(id(j) .ne.0) go to S
if(dabs(b(i,j})) .le.bnext) go to S
bnext=dabs(b(i,j))
if(bnext.le.btxry) go to 5
bnext=btry
btry=dabs(b(i,3))
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je=3

continue

if (bnext.ge.bmax*btry) go to 6
bmax=bnext/btry

irow=1i

jecol=jc

continue

if(id(jc) .eq.0) go to 8
determ=0.0

return

id(jcol)=1
if(jcol.eqg.irow) go to 12
do 10 j=1,n
save=b(irow,Jj)
b(irow,j)=b(jcol, 3)
b(jcol,j)=save

do 11 k=1,m
save=d(irow, k)
d(irow,k)=d(jcol, k)
d(jcol, k) =save
£f=1.0/b{jcol,jcol)

do 13 j=1,n
b(jcol,j)=b(jcol,j)*£f
do 14 k=1,m
d(jcol,k)=d(jcol, k) *f
do 18 i=1,n
if(i.eg.jcol) go to 18
f=b(1i,jcol)

do 16 j=1,n
b(i,j)=b(i,j)-£f*b(jcol,j)
do 17 k=1,m
d(i,k)=d(i,k)-£*d(jcol, k)
continue

return

end

c*********************************************************************

subroutine nucamb(lk,n,il2,i13,111)

implicit real*8(a-h,o-z)

common /n/ nx,nt,nj

common /calc/ u(822,1600),ts(1600),h

common/const/ fc,r,t,frt,cur,eps,pi

common/var/ xp(1l0) ,xx(2,821),xi(2,821),xt(2,821,1600)
common/cprop/ cmax,rka,rkc,hs,rr

common/results/ fact,nmax,mmax,xc{20),wconc2(20,100),
lwconc (20,100) ,pot(20,100)

common/tprop/df (821),cd(821),tm(821),
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18df (821) ,dcd(821) ,dtm(821),dfu(821),d2fu(821)
dimension zz(821)

c
109 format(f£7.1,’, ‘',£7.2,' ,’,£10.7) g
209 format(f10.5,‘, ’,f8.2,, /,£8.2 ,*, *,£10.7) :
309 format(£8.5,’, ’,£8.5) ' )

44 format('t = ’,£7.2,’ min’) -
c _
if (il3.eq.l) go to 13 ,
print*,* ’
print*, ‘bulk conc is ‘,xc(lk)
print*,’ '
print*,’ It"1/2 - wall concs - potential’
do 11 j=1,mmax
11 print209,0.1d0*cur* (fact*j*60.0d0)**0.5d40,wconc2(1k,3).
lwconc(lk,3j),pot(1k,3)
if (il3.eq.0) go to 14
C
13 continue
if (ill.eqg.l) then
do 5 i=1,nj
5 zz(i) =(i-1)*hs*1.0d06/(nj-1)
c

do 10 1=1,nt+1,1i12
print*,’ _
print*, ‘distance concen potential’
print*, ‘microns (mol/m3) v) -
print*, ‘time is ‘,ts(1)
do 10 j=1,nj,il2
c 10 print309,zz(j),u(j,l)
10 printl09,zz(j),xt(1,3,1),xt(2,5,1)

end if
14 continue
return
end
c*********************************************************************
subroutine. guess(n)
implicit real*8(a-h,o-z)
common /n/ nx,nt,nj
common /calc/ u(822,1600),ts(1600),h
common/const/ fc,r,t,frt,cur,eps,pi
common/var/ xp(1l0),xx(2,821),xi(2,821),xt(2,821,1600)
common/cprop/ cmax,rka,rkc,hs,rr
common/results/ fact,nmax,mmax,xc(20),wconc2(20,100),
lwconc (20,100) ,pot (20,100)
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common/tprop/df(821),cd(821),tm(821),

1adf(821),d8cd(821) ,dtm(821),dfu(821}),d2fu(821)

dimension del(2)

del(1)=(xi(1,nj)-xi(1,1))/(nj-1)
del (1)=0.0d0
del (2) =cur*hs/4.0d400

do 15 i=1,nj
xi(2,1)=xi(2,1)+del (2)*(i-1)
xt(2,1,1)=xi(2,1)
xi(1l,i)=xi(1,1)+del(1)*(i-1)
xt(l,i,1)=xi(1,1i)

return
end

c*********************************************************************

309
c 309

subroutine cellpot(kk,il4,v)

implicit real*8(a-h,o-z)

common /n/ nx,nt,nj

common /calc/ u{822,1600),ts(1600),h

common/const/ fc,r,t,frt,cur,eps,pi

common/var/ xp(10),xx(2,821),xi(2,821),xt(2,821,1600)
common/cprop/ cmax,rka,rkc,hs,rxr

format(£8.5,‘, ‘,£f8.5,', ',£9.3)
format (£8.5,‘, ’,£8.5,’, *,£7.3,’, ',£7.2)
1im=20

if (il4 .eq. 1 ) then

For polymer PEO elyte:

vr:cmax-xt(l,l,kk)

if {(vr .lt. 1.0d401) vr=1.0d401

x0=rkc* (dsqgrt ((vr)*xt(1,1,kk)))
x0=7.375d-03* (dsgrt ( (cmax-xt(1,1,kk))*xt(1,1,kk)}))

else

For liguid PC elyte:

x0=rkc* (dsqrt(xt(1,1,kk)))
x0=3.04-01* (dsqgrt(xt(1,1,kk)})
end if

p20=-0.0140
etasa=p20
jcount=0
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c
8 jcount = jcount +1
p20=etasa
al=0.3340*frt
cl=0.67d0*frt
c

etasa=-cur/x0+(1.040+p20*al) *dexp (-p20*al)
1-(1.040-p20*cl) *dexp(p20*cl)
etasa=etasa/(al*dexp(-al*p20)+cl*dexp(cl*p20))
etasc=etasa
c print*, 'stuff’,xt(2,1,kk),kk,cur, etasa
v=etasa + etasc + xt(2,1,kk)

c
if{jcount .gt. lim) then
c print*, jcount
stop
else
dx=dabs (etasa-p20)
if(dx .gt. dabs(1.0d-09*etasa)) go to 8
end if
c
c Material balance criteria:
sum=0. 040
do j=2,nj-1
sum=sum+xt(1l, j,kk) *hs*eps
end do
sum=sum+ (xt (1,1,kk)+xt(1,nj,kk)) *hs*eps/2.0d40
w=xt (1,1,1) *((nj-1)*hs*eps)
ca=sum/w
C

print309,v,ca,ts(kk)/60.

return

end

c*********************************************************************

subroutine prop(nj, lk)

implicit real*8(a-h,o0-2)

common/const/ fc,xr,t,frt,cur,eps,pi

common/var/ xp(10),xx(2,821),xi(2,821),xt(2,821,1600)
common/results/ fact,nmax,mmax,xc{20),wconc2(20,100),
lwconec (20,100) ,pot{(20,100)

common/tprop/df (821),cd(821),tm(821),
144£(821) ,d8cd(821),dtm(821) ,dfu(821),d2fu(821)

do j=1,nj
ee=eps
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Sodium Triflate in PEO

r0=1.3041d-07
rl=4.4978d4-07
r2=-3.12484-07
r3=-2.2383d4-07
r4=8.92644-09

diffusion coefficient of the salt (m2/s)

df(j)=0.000140*(ee**1.5d40) * (xO+rl*xx(1l,3j)/1000+
1r2*((xx(1,3)/1000)**0.540) + r3*((xx(1,3)/1000)**1.540)
1+ r4*((xx(1,3)/1000)**3.040))

Adf (§)=0.000140* (ee**1.5d40) *(r1/100040 +
10.540*r2* (xx(1,3j)**(-0.540))/(1000.040**0.5d0)
1+ 1.540*%r3*(xx(1,3)**0.540)/100040**1.540 +
13.080*r4* (xx(1,3)**2.040)/100040**3.040)

if (xx(1,3).ge.3.0d403) then

df (j)=(ee**1.5d40)*1.64773-12

ddf (j)=0.0d40

end if

conductivity of the salt (S/m)

r7=4.324-05

r8=0.0001740

r9=0.00015380
r10=3.734-05

cd(j)=100* (ee** (1.5d0) ) *(xr7+r8*xx(1,j)/1000+xr9*xx(1,J)
1*xx(1,3)/1000000+r10*xx{(1,j)*xx(1,])*xx(1,3)/1000000000)

dcd(j)=100* (ee**(1.5d0))*(r8/1000+2.0*r9*xx(1,5) /1000000

143.0*r10*xx(1,3) *xx(1,3)/1000000000)
transference number of lithium

if(xx(1,3).1t.0.3403) then

r5=0.3214140

r6=2.576840

r11=71.36940

r12=643.6340

r13=1983.740

r14=2008.40

r15=287.4640

tm(j)=rS-r6*xx(1l,3)/1000.+r11*xx(1,3j) *xx(1,3)/1000000.
1-r12*({xx(1,3)/1000.)**(3.040))+rl3*((xx(1,5)/1000.)**4.
1-r14*((xx(1,3)/1000.)**(5,080))+rl5*((xx(1,3j)/1000.)**6.
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dtm(5)=-r6/1000.+2.0d0*r11*xx(1,3)/1000000.-
13.080*r12* (xx(1,3)**2.0d0)/(1000.**3.0d0) +
14.040*r13* (xx(1,75)**3.0d80)/(1000.**4.040) -
15.040*r14* (xx(1,j)**4.040)/(1000.**5.030) +

16.0d40*r15% (xx(1,3)**5.0d0)/(1000.*%*6.0d0)

else
tm(j)=0.040
dtm(j)=0.040
end if

if(xx(1,3j).ge.0.70403) then

r5=4.567940

r6=4.50640

r11=0.6017340

r12=1.069840
tm(j)=-r5+r6*dexp(~((xx(1,5)/1000.-xr1l) /xr12)**2.)
dtm(j)=-r6* (xx(1,3)/1000.-rl1l)*2.

1*dexp (- ((xx(1,5)/1000.-xr11l)/r12)**2.)/rl2/r12/1000.
end if

if (sex(1l,3).ge.2.58d403) then

tm(j)=-4.420440

dtm(j)=0.040

end if

activity factor for the salt: (dinf/dc) and (d21lnf/dc2)

if(xx(1,3).gt.0.45d403) then

rl7=0.9824940

r18=1.352740

r19=0.7149840

r20=0.1671540

r21=0.014511480

thermf=rl7-r18*xx(1,3)/1000.+r19*xx(1,3j) *xx(1,3)/1000000. -
1r20%*xx(1,3) *xx(1,3) *xx(1,7)/1000000000.+xr21*xx(1,7) *xx(1,3)
1*xx(1,7) *xx(1,3)/1000000000000.
dthermf=-r18/1000.+42.*r19*xx(1,3)/1000000.-
13.*r20*xx(1,3) *xx(1,5) /1000000000.+4.*r21*xx(1,5) *xx(1,3)
1*xx(1,5)/1000000000000.

end if

if(xx(1,3).1e.0.45403) then
r23=0.9916140
r24=0.1780440
r25=55.65340
r26=303.5740
r27=590.9740
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r28=400.21d0 :
thermf=r23-r24*xx(1,3)/1000.-r25*xx(1,3) *xx(1,3)/1000000.+
1r26%xx(1,3) *xx(1,3) *xx(1,35)/1000000000.-r27*xx(1,35) *xx(1,7)
1*xx(1,3) *xx(1,3)/1000000000000.+r28*xx(1,3) *xx(1,5) *xx(1,75)

1*xx(1,3)*xx(1,3)/1000000000000000.
dthermf=-r24/1000.-2.*r25*xx(1,3) /1000000. +

13.*r26%*xx(1,3) *xx(1,3)/1000000000.-4.*r27*xx (1, j)

1*xx(1,3) *xx(1,3)/1000000000000.+5.*r28*xx (1, j) *xx(1,3)

1*xx(1,3) *xx(1,3)/1000000000000000.

end if
c
dfu(j)=(-1.+2.*thermf) /xx(1,7j)
d2fu(j)=1./xx(1,3j)/xx(1,j)-2.*thermf/xx(1,3) /xx(1,j)+
12.*dthermf/xx(1,3)
c
if(xx(1,3).ge.3.00403) then
dfu(j)=-0.9520/xx(1,3)
d2fu(j)=0.9520/xx(1,3) /xx(1,3)
end if
C &S &S S S bbb b & e & S b S b S S b & & & & & & &
c
end do
c
return
end

c*********************************************************************
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List of Symbols
a microelectrode disk radius, cm
A parameter defined in equation' 4-44
¢ concentration of electrolyte, mol/dm3
Co concentration of solvent, mol/dm3
cr total concentration of solution, mol/dm3
D diffusion coefficient of electrolyte, cm2/s
Dy pairwise interaction parameter between species i and j, cm2/s
fe mean molar activity coefficient
Smax frequency maximum on Nyquist plot, 51
F Faraday’s constant, 96,487 Cleq
i current density, mA/cm2
I cell current density, mA/cm2
L separator thickness, cm
m slope of polarization plot, Q-cm2/s1/2
M, molar mass of the salt, g/mol
M; chemical formula for species i
no number of electrons involved in electrode reaction
R universal gas constant, 8.3143 J/mol-K
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bulk resistance, Q-cm2

effective resistance of interface, Q-cm2

film resistance at interface, Q-cm2

Laplace-space variable

time, s

transference number of species ¢

time passed before interruption of current, s
dimensionless time variable defined in equation 4-36
temperature, K

mobility of species i, cm2~mol/J ‘S

potential of concentration cell, V

volume-average velocity, cm/s

potential measured with reference electrode, V
partial molar volume of species i, dm>/mol

potential impressed across full cell, V

distance from the negative electrode, cm
dimensionless volume-average velocity defined in equation 4-17
charge number of species i

dimensionless distance defined in equation 4-40

width of Warburg loop on Nyquist plot, £2~cm2
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transfer coefficient for electrochemical reaction

quantity defined in equation 4-77

perturbation parameter defined in equation 4-50

similarity transform variable defined in equation 4-13

surface overpotential, V

dimensionless concentration variable defined in equation 4-37
dimensionless concentrétion variable defined in equation 4-17
conductivity of the electrolyte, S/cm

fitting parameters used in equation 4-29

density of solution, g/cm3

dimensionless time defined in equation 4-14

electrical potential, V

mass fraction of species i

Subscripts

solvent or initial condition
cation
anion
anode

cathode
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364 o
q -
e electrolyte S
ss steady-state value 5
oo infinity } E
Superscripts -
0 with respect to the solvent
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