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California. The views and opinions of authors expressed herein do not necessarily state or 
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THE WHISPERING GALLERY AS AN OPTICAL COMPONENT 

IN THE X-RAY REGION 

By Malcohn R. Howells 

THIS PAPER WAS MOSTLY WRITTEN IN THE 1980'S AND LEFf. IT IS PUBLISHED 

NOW (1995) AS AN LBLREPORT WITH MINORADDffiONS SINCE THERE SEEMS TO 

BE SOME CURRENT INTEREST IN THE MATERIAL 

ABS1RACT 

The whispering gallery phenomenon in acoustics has been known and studied .for more than a 
century, and the same effect has been observed to take place with waves other than sound waves. In 
this paper we review the theoretical basis and attractive features of the whispering gallery as a soft 
x-ray optical component and indicate some of its potential applications. We then describe what may 
be its most unique capability which, in favorable cases, is to provide a way. to manipulate the phase 
difference between the s. andp polarization components and thus to generate circularly or elliptically 
polarized soft x-rays. 

INTRODUCTION 

The first scientific explanation of the whispering gallery was provided by Lord Rayleigh in 
The Theory of Sound [Rayleigh, 1945] and in two papers in the early part of this century. His 
description was in terms of a wave field that was essentially guided by the curved interface between 
two different acoustical media. The media needed to be such that total reflection could take place. 
The problem attracted the attention of a number of famous investigators including two Nobel 
Laureates, Rayleigh and C.V. Raman [Raman, 1921, 1922a, 1922b], and the ''father of ~odem 
acoustics," W. C. Sabine [Sabine, 1922] .. · 

Apart from acoustica.I phenomena in air, somewhat similar behavior is observed for waves 
inside solid materials, and surface acoustic waves[ see for example Das et al., 1982] (also known as 
Rayleigh Waves [see for example Ash, 1985]) are important in ultrasonic devices. Analogous 
seismic waves are also found at the surface of the earth. 

From the beginning Rayleigh recognized the possibility of observing the phenomenon in· 
electromagnetic radiation, and the literature provides various examples in the radiowave [Budden 
and Martin, 1962], infra-red [Krammer, 1978] and visible [7] spectral regions. The operation of 
waveguides, light-pipes and optical fibers are evidently closely related processes. Similar optics, 
although· quite different physics, is employed in the guide tubes used for the transport of low
energy neutrons. The wave theory of the whispering gallery is also closely related to a fundamental 
problem in optics: the variation of light intensity near the point of tangency of a ray to a caustic 
[Landau and Lifschitz, 1951]. 

The possibility of applying the whispering gallery in the soft x-ray region was first proposed 
by A.V. Vinogradov and collaborators in a series of papers beginning in 1982. These authors 



recognized that total reflection is possible in this region and that in a few cases there were materials 
with optical constants which would give high efficiency for a whispering gallery. Since 1982 the 
theoretical analysis of whispering gallery waves guided by well-modelled realistic surfaces has been 
pursued by the Vinogradov group in a series of publications. More recently a particularly thorough 
and elegant treatment has been provided by Braud and Hagelstein. The latter authors added 
polarization properties to the list of issues discussed by the Vinogradov group. Sixteen papers by 
these two groups are cited at various points in this work. 

Experimentation involving wavelengths shorter than that of visible light has been rather slight 
A few experimenters have attempted to operate hollow tubes as x-ray light pipes [see for example 
Pantell and Chung, 1978]; and some success has been reported, particularly if the standard of 
comparison was the absence of the light pipe and thus an inverse square loss of x-rays with 
distance. The most important experimental results are recent ones by. the Vinogradov group in 
which whispering-gallery reflectors performed at or near theoretical in the soft x-ray region 
[Aleksandrov, 1992; Vinogradov, 1987a, 1987b, 1990]. 

THEORETICAL MODELS 

The basic ideas of both a geometrical-optics and a wave-optics picture of the whispering 
gallery were worked out by Rayleigh. The geometrical-optics model [Rayleigh, 1945] starts from 
the notion of an initial ray incident on a circular whispering gallery of radius R (Figure 1). The ray 
is a chord of the circle and the distance of closest approach of that chord to the center of the circle is 
R~ Suppose we define another circle concentric with the first and of radius R~ The initial ray then 
progresses around the circle by multiple reflection and is confined to the region between the two 
circles. Any other rays from the same source point or from other source points. will be similarly 
confined provided that they initially form a chord of the whispering gallery lying between the two 
circles. The situation is reminiscent of a waveguide except that one of the surfaces is, at most, 
touched by the rays and therefore does not need to be a real guiding surface. According to this 
picture, the efficiency of a whispering gallery is the product of the efficiencies of whatever number 
of individual reflections are needed to get round. The description also allows a quantitative estimate 
of the accumulated phase difference between s and p polarized radiation ~d of the phase space 
acceptance of the system. We return to the matter of making such estimates later. 

The question of a wave theory of the whispering gallery occupied Rayleigh for some time 
until, as he wrote in 1910 [Rayleigh, 1910], he " ... recognised that most of what I sought lay, as it 
were, under my nose." The mathematical description of wave propagation around a whispering 
gallery was simply a limiting form of the well known solution to the wave equation with cylindrical. 
boundary conditions such as could be applied, for example, to the circular membrane problem. The 
solution for the electric field perpendicular to the plane of the whispering gallery is correspondingly 

E= ln(kor)cos(mt-nO) (1) 

where ko is 27d A.o. A.o is the free space wavelength at angular frequency m, r and 0 are the polar 
- coordinates, tis the time and n an integer. For the moment we are thinking of the case of a 

perfectly~nducting wall, so we take E = 0 at r = R in exact analogy to the membrane problem. We 
can see that when 8 advances by 2n-, the cosine term executes n oscillations, so that the condition 
nl\.o - 21CR., must be satisfied to construct a standing wave mode. For the cases of interest to us, we 
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clearly need very large values of n, and the Bessel function approaches one of its limiting cases: the 
Airy function. One can readily see from tables of Besse! functions that for large n, the function is 
zero at the origin and remains essentially zero for a considerable range of Jcor, just as the present 
problem requires. To achieve the simplest whispering-gallery waveform, we set the boundary at the 
first zero of the Bessel (Airy) function (Fig. 2). As we discuss more quantitatively later, the wave 
function is then non-zero only for a narrow region just inside the wall of width about n 113 Aof211:, 
which is much smaller than R. The phenomenon of concentration of the wave in the immediate 
neighborhood of the wall, is thus explicable in conventional wave theory and for the case of soft x
rays should become extremely pronounced. The most lucid exposition of this theory is that of 
Braud and Hagelstein [Bratid, 1991]. However, rather than reproduce their picture we attempt a 
more "hand-waving" type of treatment with the goal of providing a readable introduction to a 
review of experimental work, past and future. 

We therefore arrive at the scheme shown in Fig 2. This general picture of the operation of a 
whispering gallery will be analyzed in more detail later and will be seen to confirm the efficiency 
estimates that can be obtained by the geometrical optics analysis. However, since the latter 
estimates are much easier to deal with, both analytically and computationally, we consider them first 

GEOMETRICAL OPTICS CALCULATIONS 

We are interested in estimating the efficiency of a whispering gallery that turns an incoming 
beam through an angle a when the initial angle of grazing incidence is 8. The num~r of bounces is 
thus N = a128. We wish to find the efficiency for both s and p polarization and the accumulated . 
difference in phase, llt/Js-p• between the s and p components. The case of special interest in the 
problem at hand is the limit of these quantities as 8 tends to zero. We see that the·losses suffered 
by the beam are equal to the loss per bounce times the number of bounces, and as 8 becomes small 
the former tends toward zero and the latter toward infinity. We will now show that the product of 
the two approaches a finite limit that we can calculate. We start with the expressions for the 
amplitude reflectances r 5 and rP ins and p polarization, as given, for example, by Born and Wolf 
[1965]. 

sin 8 - .J e - cos2 8 
r = ---;===== 
s sin 8 + "'e - cos2 8 

(2a) 

"'e-cos2 8- esin8 
r =~==~=----

P .J e - cos2 8 + e sin 8 
(2b) 

where e is the (complex) dielectric constant of the reflecting medium. Now it is useful to consider 
the transmitted beam travelling at angle 8r to the bound inside the medium and to define 
S = s +it= iisin 8r. Using Snell's law this gives S = e-cos2 8, and as 8 -7 0, S -7 ~. 
We can now represent the wave inside the medium as exp (ikh'· r) where his a unit vector in the 
direction of propagation, k (= nk0) is the propagation constant inside the medium, and 
ii = 1-. 8- i/3 =·-fi 
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(3) 

Using Snell's law and the above definitions we obtain 

(4) 

which shows that the wave in .the medium is a non-homogeneous wave whose surfaces of constant 
phase make an angle tan-l(cos 8/s) to the interface while its surfaces of constant amplitude are 
parallel to the interface. Acc~ding to (4) the z-dependence is equivalent to a complex "skin 
depth" f). = ( -iko .J E - cos2 e) . This is a generalization of the normal skin depth valid for any 
incidence angle and for matenals where both the real and imaginary parts of the refractive index are 
non-negligible. It represents an oscillatory but decaying signal inside the medium. For whispering 
gallery applications we will be interested in the case 8-7 0, so we define 

(5) 

It is interesting to evaluate the attenuation depth given by.Eq. (5). For many elements in the x
ray region,/1 tends toward the atomic number, so we can often use the approximationf1/atomic 
weight= 1/2. (fi" is the real part of the atomic scattering factor.) Using this, (5) leads to a 1/e depth 
in A of 68/ .Jdensity (gm Icc). This is only weakly dependent on the wavelength and material 
.and leads to the general conclusion that the penetration of the wave field, in grazing incidence x-ray 
and soft x-ray reflections is about 30 A. 

Returning to (2a), we note that for (} = 0, rs (0) = 1, and we wish to explore the behavior near 
8= 0. We therefore expand rs as a Taylor series about 8= 0 as follows 

(6) 

Evaluating the derivative using (2) we obta:in 

28 
T = 1- +··· 
s ...JE-1 ' 

(7) 

from which we conclude that the overall amplitude reflecting efficiency, Rs, of the whispering 
gallery is given by 

. ( 28 )a/28. 
Rs=hm 1-c-; 

e~o -vE -1 
(8) 

Now, using one of the definitions of the exponential function [Footnote 1] we obtain the final result 
for the efficiency 
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(9) 

In a similar fashion we have for rP 

28£ 
r =1- +··· 

p -re=T (10) 

and 

(11) 

To obtain the limit of 8tPs-p (the stop phase difference) as 8 ~ 0, we start from the single 
reflection expression [Born and Wolf, 1965] · · · 

tan 8¢ /2 =sin 8..Jcos2 8- e 
s-p cos2 8 . (12) 

which gives &/Js-p = 0 at 8 = 0 and leads to a Taylor series: 

tan 811. 12 = '1=E. 8 + ... 'f's-p "V 1- ~ (13) 

Multiplying by the number of bounces a/28, we get an estimate for the accumulated phase 
difference ll</Js-p• 

limL1tPs-p =alm{.Je-1) 
e~o 

(14) 

These relations can be used as a basis to evaluate materials to see if they offer promising 
possibilities for efficient whispering galleries. All the equations relating to the efficiency have been 
fully covered by Vinogradov et al. [1985b], and those relating to ll¢s-p have been given by Braud 
[1990]. 

MATERIAL PROPERTIES NEEDED FOR AN EFFICIENT WIDSPERING GALLERY 

Using the definition for the complex refractive index n, we find that Eq.(9) becomes 
[Vinogradov et al., 1983] 

R 2 =ex {-2asin[!tan-
1 ~]} 

I ;rl P ~( 132 )1'4 . 
-v28 1 +~ 

(1§) 
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Making use of the approximations /3, 8 « l and f3! 8 « I, we can approximate (I 5) as 

(16) 

which allows the conclusion that for a reasonably efficient whispering gallery C!Rsl2 > O.I with 
rotation angle tr) it is necessary to have /3flf312 < 1. If this condition is met, then the condition 
/318 << I will usually be met also. The condition /3, 8 « I is always true in the soft x-ray region. 

Some values of the efficiency calculated from (9) or (I5) are plotted in Fig. 3 for a few 
materials that have suitable optical constants. We see that the useful cases fall into three main 
regions: greater than 250 A, 50 - I 50 A, and less than about I 0 A. The cases in the middle region 
arise because the absorption crossections of many materials have a "Cooper" minimum [see for 
example Manson and Cooper, I968] in that region: Unfortunately, there are no good materials in 
the "water window" region in which x-ray microscopy of biological samples is often done. The 
values given are for a rotation angle of tr. The values for other angles can be found from the 
argument that the efficiency of cascaded whispering galleries is the product of the individual 
efficiencies. For example, at 25 A, the calculated efficiency o(LiF is 0.04 for angle 1r or 0.20 for 
angle Td2. 

Figure 4 shows some efficiency values for carbon which is a material of special interest on 
account of its high resistance to contamination and its promise of performance at 1-2 A. It is 
noteworthy that the calculated efficiency values are sensitive to quite small errors in the optical 
constants, although an exception to the uncertainty is the light elements in the I-2 A region where 
the behavior is quite free-electron-like and predictable. 

WAVE TREATMENT 

The treatment provided by Rayleigh gives an excellent insight into the physics of whispering 
galleries in general, although it has certain differences from the x-ray case which we discuss later. 
We return now to the use ofEq. (1) to represent an s-polarized wave (that is, a transverse electric 
wave) progressing around a whispering gallery. To see how the Bessel function approaches the 
Airy function as a limiting case, consider the representation [Footnote 2] · 

. I ,. 
Jn(z)=-1 cos(zsinm-nm)dm 

7r 0 . 
(I7) . 

In the present case of very large n, Rayleigh [ I9I 0] argues that the value of the integral is mainly 
determined by the region near the stationary point of the argument of the cosine at m = 0, (what we 
would now call the Principle of Stationary Phase). Therefore, approximating the sine to third order 
we obtain 

(18) 
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Changing the variable to 

(19) 

gives the equivalence 

( )
113 1 f.oo ( 3 ) 10 (z) ~ =K 

0 

cospu+; du=Ai{p) (20) 

valid for n large and (n- z)ln << I, where Ai{p) is the Airy function as defined, for example, by 
Abramowitz and Stegun [1965], and pis defined by 

(
2)1/3 

p =(n-z) ; (21) 

Using this and recalling that z ( = kor ) = n » n l/3, we can write 

kor = n- 2-113 pnll3 (22) 

Some relevant values of the Airy function are given in Table 1. If we consider that the wave is 
mainly located in the region of width IY between the boundary and the radius at which it has fallen 
in amplitude to h~ of its peak value, then we have 

ll.r ( )-2/3 -=2·13n-2/3=2·13 koR · 
R 

(23) 

Since n - JcoR, we see that the localization in the region of the boundary will be extremely 
pronounced for short wavelengths. . 

The description so far defines a wave mode, and we needto ask how this can be coupled to a 
well-collimated incoming )Vave of the type one could get from a synchrotron radiation x-ray source. 
If we superimpose the two waves as in Fig. 5, we see that the maximum allowed angular mismatch 
is an angle 'I' given by 

(24) 

Combining (23) and (24) we obtain 

ll.r'lf = 0.48A. (25) 
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which has the form of a spatial coherence condition and defines the phase space of a beam that 
could couple to the whispering gallery. That is, the mode we have considered so far can only 
couple to a spatially-coherent incoming, beam. . 

This is not so much of a limitation as it seems because in fact the mode considered is really 
only the fundamental of a whole family of modes which are generated by setting zeros of the Airy 
function other than the first one at the boundary. It would appear that any incident beam could be 
matched and can propagate by exciting a suitable linear combination of these modes. This is in 
accord with our geometrical optics picture of the phenomenon. Of course some incoming rays will 
be highly attenuated and this will be determined by their initial angle of incidence and the optical 
properties of the reflecting material. 

We can gain a further understanding of the description. of the whispering gallery using Airy 
functions, by formally solving the cylindrically symmetric boundary value problem for the.electric 
field E:z(r,¢)- retaining for the moment the assumption of infinite conductivity and using the 

· boundary condition Ez = 0 at r = R. We assume a time dependence exp(imt) and an angular 
dependence exp(in¢) where n is the phase change per unit angle of deflection, m is the angular 
frequency. It is helpful, although not necessary for the present problem, to think of-n as an integer, 
which would imply an angular function that was periodic with n nodes. Either way n will tum out 
to be the same as then used earlier. With these assumptions the solution is Ez = E(r) exp(in¢) 
where E(r) must satisfy 

(26) 

This is Bessel's equation, of which the solution of interest to us would be Jn(kcJr). 
To develop the approximate form of JnCkor) needed for the whispering gallery (which we have 

already indicated will turn out to be an Airy function), we could use the method of series expansion 
as demonstrated by Vinogradov et al. [l983b]. However, an alternative approach proposed by 
H. Krammer [1978] provides an interesting insight into the problem. Consider the conformal 
transformation W = R ln(ZIR), where Z = x + iy and W = u + iv. This maps the inner region of the 
circle r = R into the left half of the u , v plane (Fig. 6). Equating real and imaginary parts yields 

v=R¢ and u=Rln(rl R) 

The two-dimensional scalar wave equation [ Vi.y + ~ ]E = 0. is now transformed into 

[v~v+kJexp(2ul R)]E=O 

(27) 

(28) 

while the boundary condition transforms to E = 0 at u = 0. We can now see that the condition 
E- 0, except in the narrow corridor close to the boundary, implies r/R - 1, so that u = R ln(r/R) - r 
- R and u!R << 1. This allows a linear approximation to the exponential function in (28) which now 
becomes: 

(29) 
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We have E(u,v) = E(u) exp(ikv) where v = R(jJ, k = n/r (k =1= f<o). Substituting this in (29), we find 
for E(u) 

d
2

; + [ ( k6 - k2) + ( 2k6 / R )u] E = 0 
du 

Remembering that u - r- R,. we introduce the new variables 

and 

Equation (30) now finally becomes 

(
2ko )1/3 

p= R (R-r)-Pi 

d2£ . 
--p£=0 
dp2 

(30) 

(31) 

(32) 

(33) 

which is the differential equation for the Airy function Ai(p) introduced earlier [Abramowitz and 
Stegen, 1965]. From Eqs. (31) ·and (32) we can see that p is a linear function of position in the 
radial direction with p =Pi at the boundary. It is also evident that when p = 0, kor = n, so that the 
free space .value of the wavelength is exactly matched and this occurs at a distance 0.3rr:-l/3 Ao inside 
the boundary, at r = rn (say). The wavelength at r = R is slightly-longer than the free space value. 

Using (31) and (32) and the approximations k5- k2 - 2k0(k0 - k) and k0r- n, we recover 
equation (21 ), the original definition of p. The strength of the transverse ·electric field is sketched in 
Fig.(7) where, as discussed earlier, we have chosen to put the boundary at the first zero· p1 of Ai{p). 
This choice sets Pi =p1 and Eq.(32) then represents an eigenvalue condition fork= (n!R), the 
propagation constant at the boundary. 

' 

EFFECT OF FINITE CONDUCITVITY 

·we know from our discussion of grazing incidence reflection that the field does not really fall 
to zero exactly at the boundary but does so exponentially inside the reflecting medium over a 
distance of about 30 A and with complex skin depth Ao [see~ for example Jackson, 1962]. We must 
now make the slight adjustment to the radial dependence of the field so that both it and its normal 
derivative are continuous at the boundary [Footnote 3]. We know that inside the material, the field 
can be represented by 

Ez=Aexp[-(r-R)/~0 ] (r>R) (34) 

Thus at r= R 
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(35) 

where q is the small shift of the boundary away from Pj that we are trying to calculate, and llp is the 
p increment corresponding to Ao· Since q is small we can see that Ai(pj + q) = q Ai'(pj + q) so 
combining this with Eqs.(34) and (35) we get q = Ap. The spatial shift required to allow for finite 
conductivity in the soft x-ray range is therefore of the order of 30 A. 

We are now in a position to determine the attenuation of the jth mode of the whispering gallery 
as a function of l/J. We know that in the infinite conducting case the condition p = Pj at r = R leads 
to the eigenvalue condition-fork. We therefore expect that a correction Ok ink will be created by 
the change from Pj to Pj + lip and that this will have an imaginary part that will account for the 
dissipation. From the definition of p we find that in fact 8k = k0AofR, which implies that the 
original angular function exp(inl/J) now acquires an extra factor exp(iROkl/J) = exp(il/J I~ e -1) 
which, upon taking the modulus squared, leads (as it should) to the same expression for the 
efficiency of the whispering gallery that we had before: 

lim (efficiency) = exp( -2l/JRe( 1/ .J e -1 )] , 
8-?0 

(36) 

where l/J is the same now as a. The sign of the square root is chosen so that the overall argument is 
negative. We note that, to the present order of approximation, the limit of the efficiency as 8--7 0 
depends only one and the angle turned and is independent of j; R and the path length of the beam 
along the mirror surface 

RADIATIVE LOSSES 

We have already indicated that there are at least two mechanisms to account-for the losses of 
the whispering gallery. One is energy dissipation by the evanescen~ waves just inside the reflecting 
medium. The other is propagation of a non-evanescent wave into the medium. The theory of both 
these processes is described in detail by Vinogradov et al. [1983b, 1985c]. The treatment of 
dissipation given by these authors is based on expansion of the quantities involved in Bessel's 
equation in a power s_eries in the small quantity [2(/coR)2]-113. The lowest order differential 
equations with the prevailing boundary conditions then give the Airy function variation of the field 
for -r < R and rapid exponential decay for r > R as we have discussed. The possibility of a 
propagating wave in the medium only arises if the boundary is curved [Rayleigh, 1914]. If it is 
plane, the spatial period of the driving wave in free space is always too short to propagate in the 
medium k > (1 - OJko. However, when the boundary is sufficiently .curved, the wave nodes of the 
driving wave will fan outward making the wavelength in the medium longer, eventually allowing a 
wave to propagate. This .. radiative" loss of energy was investigated by Vinogradov et al. by 
solving Bessel's equation more exactly and deriving an efficiency comprising two terms: 

(37) 

where Ro is the dissipative efficiency, and the second term is the radiative one. It depends strongly 
on Rand tends toward unity for R > Rmin (given by (40)] and becomes small for R < Rmin . 
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From the viewpoint of x-ray optics, this analysis is mainly important for understanding the 
degree to which a mode in the whispering gallery can "ride" over irregularities in the interface [see 
Eqs. (37, 38)]. However, it is interesting to note that radiative loss is the dominant one in acoustical 
whispering galleries and was the one analyzed by Rayleigh in his paper in 1914 [Rayleigh, 1914]. 
The paper considered the case of a "total reflection" whispering gallery, as we have, and developed 
the theory for the case prevailing in acoustics, namely, 8 not constrained to be small but {3 << 8. An 
analytical formula for the efficiency (equations 39-41 in [Rayleigh, 1914]) was derived, which, in 
our notation and after "translation" to the electromagnetic case could be written as follows: 

~ffidency = exp { . 
2a · e-2n(/3-tanh/3)} 

smh2{J 
(38) 

where cosh {3 = E)l2. In making this translation we have removed a factor n from Rayleigh's (41) 
and (42) so that his formula applies to a period of the whispering gallery (n waves) rather than a 
period of the wave. We then scaled to angle a instead of 21! and used the fact that the ratio of the 
densities of two gases is equal to the square of the refractive index at their interface. Rayleigh was 
satisfied that his theory explained the extreme persistence of the whispering gallery wave over long 
distances, remarking: "Calculation thus confirms the expectation that the whispering gallery effect 
does not require a perfectly reflecting wall, but that the main features are reproduced in transparent 
media provided that the velocity of waves is moderately larger outside than inside the surface of 
transition. And further, the less the curvature of this surface, the smaller is the refractive index 
(greater than unity)which suffices." 

To reconcile the two formulae, ·we subject the Rayleigh formula to the restriction: 
le- II<< l, and note that n= JcoR. The exponents on the right of our (40) and (41) are then seen to 
be equal up to third order in /3 and the formulae are reconciled. 

BASIS FOR APPLICATIONS 

The fact that in the limit 8 --7 0, the efficiency is independent of R is highly significant for 
applications. It implies that once a beam has satisfied the conditions to begin propagating in the 
fundamental mode of the whispering gallery, we may change the radius if we wish without ·losing 
the beam. By Liouville's 'J}leorem and Eq. (25) for example, we can see that if we reduce R (tighten . 
the curvature) the effect will be to reduce the width of the beam and to increase its divergence. A 
detailed geometric-optics ~culation of these phase space properties of the whispering gallery has 
been given by Aleksandrov et al. [Aleksandrov, 1992]. The single-mode whispering gallery can 
thus function as both a relay optic and a concentrator. In what follows we explore some of the 
limitations governing the applications of whispering galleries. 

First, suppose that we depart from the limit 8 --7 0 and allow 8 to increase. This is difficult to 
study analytically but we have carried out a study based on repeated application of the Fresnel 
equations. The resulting calculated efficiencies do tend properly toward the limits calculated above 
for the case 8 --7 0. They also gradually diminish as 8 increases, reaching half the maximum 
efficiency at a fraction f of the critical angle ec. For 180° deflection whispering galleries, f is 
usually in the range .5-.9 and increases for deflection angles less than 180° (Fig. 8). 
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Now that we have information about 8112 = f8c, we can use an argument similar to that used in 
deriving Eq .(24) to determine the maximum phase space acceptance, A, of the system when all the 
modes that can propagate efficiently are being used. 

- I 3 A --R8111 2 

This is generally much greater than the single-mode acceptance defined by Eq.(20). 

(39) 

Another important limit to understand is the minimum value of R for which the efficiency 
remains R -independent. We have seen that r Jco = Rk = n exactly, so that the wavelength at the 
boundary is slightly greater than the free space value. If it should ever exceed the free-space value 

· by a fractional amount greater than 8 the unit decrement of real part of the refractive index of the 
reflecting material, then a wave would begin to propagate in the medium and would represent an 
additional, radiative, form of loss which we considered in the previous section. We note in 
considering this that R- rn » 1.6of. The radius must therefore be greater than a minimum value Rmin 
given by the above refractive index condition 

(
1.86)3/2 

koRnun = 8 . (40) 

The importance of Rmin is that it tells something. about how well the wave can be guided over. 
surface irregularities. A critical spatial frequency above which guiding will not occur is given by 

f crit = 2rr/ .J Rmm u (41) 

where a is the root-mean-square roughness height 

POTENTIAL FOR STEERING HARD X-RAYS 

It is of particular importance to understand the potential of the whispering gallery for steering 
beams of hard x-rays (1-2 A) because the single bounce reflectors conventionally used .can only 
deflect the beam by about28c which· is less than one degree in this spectral region. This has major 
implications for such matters as the architectural layout of synchrotron radiation laboratories. At 
A.= 1.5 A, 8112 is about 3 milliradians and equation (37) gives a value of the phase space ·acceptance 
for a carbon whispering gallery of 1.5 x I0-7 meter.radians for a 10m radius. This is greater than 
th.e emittance of many of the x-ray beams used in synchrotron radiation beamlines and much 
greater than that of the near-coherent beams expected from x-ray undulators at the new x-ray 
facilities at Argonne and Grenoble. If these beams were to be focused to a narrow width, say 50 
microns, then the theory certainly predicts that they could be steered through angles of 5-6 degrees 
by the carbon whispering gallery. Such a focus could in fact be inade, and this method of steering 
may very well be useful. However, it is not convenient It would be much better to have a single 
reflector that could steer a natural undulator beam that had not been concentrated. Hard x-ray 
undulators actually give a near parallel beam of width say 1/2 mm and very small angular spread, 
and for such a beam one can collect the beam at an incidence angle less than 8112 only by using a 
large radius. For a mirror of manageable length, this implies a small steering angle and so the 
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possibility of deflections on the order of a right angle can be discounted for a circular reflector with 
a natural undulator beam. It appears, however, that there are opportunities for improved 
performance in this situation using shapes other than the circle, and this has been investigated by 
Braud and Hagelstein [Braud, 1992] and Vinogradov et al. [Artyukov, 1991). 

SCATfERING AND CONTAMINATION 

From the above discussions we can see that gross figure imperfections in the guiding surface 
will be tolerated very well b1;l~ that microroughness may be more of a problem. Even here, however, 
there is some relief due the extremely small grazing angles involved. We have seen that the 
amplitude loss on reflection goes down linearly with angle at small e. The fraction of the light 
intensity that is scattered, integrated over all angles, is given by 1 - exp -[47t sin Ocr/A-]2, so that for 
small angles (linear approximation to the exponential) the amount of scattered light goes down like 
fJ2. The scattered amplitude thus goes down at the same rate as the specular, so that the scattered
to-specular ratio is not expected to increase as the number of reflections increases. This suggests 
that the whispering gallery may not be so vulnerable to scatter as its surface-dependant nature 

. would lead one to expect. A further reason for optimism is the fact that the wave extends to a depth 
greater than 30 A in the reflector: a value far larger than the size of the irregularities in the 
superpolished surfaces that are produced today. In a later section we review the experimental 
evidence relating to the issue of scattering and conclude that while scattering is a significant issue in 
whispering gallery applications it can be sufficiently reduced by the use of modem supersmooth 
surfaces. Further evidence on this matter is provided by recent theoretical treatments by the 
Vinogradov group [Vinogradov, 1985a] and by Braud [Braud, 1992]. 

The most serious operational problem for whispering gallery mirrors is likely to be 
contamination, particularly by oxide layers. Since the wave only interacts with the top 30 A or so of 
material, even a thin contamination layer would greatly alter the system properties. This suggests 
that either in-situ vacuum deposition would be indicated or the use of inert materials and special 
storage away from normal atmospheric pollutants. It would be interesting to consider one of the 
layered materials (transition metal dichalcogenides such as molybdenum ·disulfide, gallium selenide, 
etc.) in which all of the surface bonds are saturated making the surfaces inert with respect to most 
contamination processes. 

The contamination question has recently been investigated experimentally by Scott et al. 
[1988]. These authors tested the reflection efficiency of aluminum surfaces in the spectral region 
3()0..:.1000 A. Their results are described more fully in a later section, but we point out here that, as 
expected from the above discussion, the high efficiencies predicted by the Fresnel equations near 
zero grazing-incidence angle are only achieved for material evaporated in situ at ultra-high vacuum 
and therefore free of oxide and other contaminant layers. 

EXPERIMENTAL INVESTIGATIONS 

The experimental investigation of acoustical whispering galleries was being reported even 
before the work of Rayleigh. At that time the prevailing view was that the effect was due to 
focusing, and this explanation is certainly true in some cases. However, the experimental work of 
Rayleigh [1904] in St. Pauls Cathedral in London using a bird call whistle as a source and a flame 
as a detector, established the extreme concentration of the wave in the neighborhood of the wall and 
led to Rayleigh's recognition of the role of wave guiding in this particular whispering gallery. Other 
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studies followed, notably those of Sabine (1922, 1964]. A particularly graphic one was conducted 
by Barton [1912], who photographed the patterns left in lycopodium powder by a high frequency 
sound wave guided by a circular wall in the laboratory. The imprint of a single-mode guided wave 
was clearly visible in the pictures. 

It is difficult to trace the first studies using electromagnetic radiation, but presumably they 
used visible light. The guiding effect gained in importance. with the advent of radio broadcasting 
and was found to be involved in the interaction of radio waves with the upper layers of the 
atmosphere (Das and Ayub, 1982]. In the infra-red spectral region, a spectacular demonstration of 
one-sided guiding was achieved by Krammer [ 1978] at a wavelength of 10.6 microns. This author 
used a reflector in the form· of a helical strip to deliver a guided beam with 70% efficiency after 
three-and-one-half full rotations!. The experimental studies using wavelengths shorter than those of 
visible light are our main interest, and they fall into three categories: first, "optical fiber" type 
experiments using hollow tubes as x-ray lightpipes; second, attempts to demonstrate a two-sided x
ray waveguide; and third, single-sided whispering-gallery experiments using sub-optical 
wavelengths. 

The light pipe experiments have been carried out since at least as early as 1951· [Hirsch, 1951], 
and there are a considerable number [Marton, 1966; Mosher, 1976; Vetterling, 1976; Rinby, 1986] 
which essentially demonstrate by means of x-ray tube sources that various glass and metal tubes 
can be used as x-ray light pipes which gain intensity compared to an inverse-square fall-off. 
Watanabe et al. [ 1984 J showed a similar result using synchrotron radiation. There has been at least 
one experiment (by Pantell et·al. [1977, 1978]) giving more quantitative results and a meaningful 
theoretical interpretation as well.. The main conclusion of these authors was that one can operate 
both straight and curved glass capillary tubes as light pipes at 1.54 A with lie attenuation lengths in 
the .5-1 m range. This performance was shown to be understandable in terms of ray propagation 
and Fresnel reflection efficiencies without allowance for roughness. Pantell and Chung [1979] 
subsequently provided a theoretical analysis explaining why roughness ha,s relatively little·effect on 
the transmission efficiency even up to a root -mean-square slope error of 100 seconds. A variant of 
the light-pipe experiments is to use a tapered guide so a.S to achieve condensation of the beam in 
either one [Livins et al.; 1989] or both [Stem et al., 1988] directions. 

Attempts to make x-ray waveguides have been less popular, presumably because of the 
apparent.difficulties. Spiller and Segmuller [1974] showed a proof-of-principle that 1.54 Ax-rays 
could propagate in a wave-guide consisting of a sandwich of a light, transparent material between 
two reflective metal layers. The size of the waveguide was not sufficient for beam transport 
applications, and there was no apparent potential forupscaling. ·Fischer and Ulrich [1980] reported 
observation of what are called "self-images" formed by interference between ·modes of low but 
different order in a two-sided planar waveguide. Images of a 2-micron-wide, slit object were 
produced in a 10-micron-wide, 90-mm-long guide using 44.8 Ax-rays. The authors point out that 
the formation of images indicates that the phase relations between the waveguide modes are · 
preserved over the entire length of the guide: a distance of 2 X 107 waves, and this in spite of a 
quoted surface roughness of 20 A rrns. It appears that there is qualitative experimental evidence to 
match the also-qualitative theoretical arguments that roughness is less important than one might 
imagine for low-grazing-angle reflection. 

T~e most successful x-ray-waveguide experiments have been those of Ceglio et al. [Ceglio, 
1988]. These workers used microfabrication techniques to fabricate thick, transmission-diffraction 
gratings with open grooves consisting of slots, each of which could be considered as a waveguide. 
The structures are conceptually similar to amplitude, volume holograms, and waves propagate 

14 



through them by guiding even when there is no geometrical line of sight. The deepest slots 
reported were 0.1 micron wide by 0.7 micron deep and experiments were carried out at photon 
wavelengths of 50-300 A. The components performed properly as gratings even when there was no 
line of sight through them (indicating guiding) and efficiencies up to 2% or so were obtained. 
However, the results depend on the goodness of the guiding process in a complicated way and the 
quality of the guiding surfaces was not known. Thus although the success of this type of 
experiment is broadly encouraging for future attempts at x-ray guiding, it does not provide 
quantitative evidence germane to the operation of x-ray whispering galleries. 

Experiments in the VUV-soft-x-ray range involving multiple reflection are, of course, very 
numerous. However, there. are only a few that have been directed toward exploring the optical 
properties of multiple reflection systems. An important series of experiments, for our purpose, was 
that of Scott et al. [1988] at Los Alamos National Laboratory. This group investigated the 
possibilities of multiple reflection for constructing a retroreflector for a VUV, free-electron laser. 
They first measured the reflection efficiency of various materials including aluminum both with and 
without contaminating layers. They found that the high values of efficiency yielded at small grazing 
angles were severely compromised by contamination. The efficiency of multiple reflection is 
determined by the slope of the reflectance against angle curve [see Eqs. (7-9)], and the data of Scott 
et al., reproduced in Fig. 10, show clearly that it is just this quantity that is sensitive to 
contamination. It is also significant that the clean-surface reflectance shown in Fig. 10 requires a 
value of the imaginary part of the. refractive index of .010 ± .002, less than half the published one to 
achieve the fit shown. In a later paper, the same group reports operation of a nine-bounce 
retroreflector with an effiCiency of 89% ± 3% at 584 A. This is even higher than the value of 73% 
obtained (Fig. 3) using published optical-constants data. The number of reports of true (circular) 
whispering galleries in the VUV-soft-x-ray region seems to be only two. The first was that of 
Kaihola in 1981 [Kaihola, 1981] who, based on earlier calculations [Bremer and Kaihola, .1980], 
used a 14 mm-radius, cylindrical, polystyrene mirror to make an 80° deflection of radiation with.an 
average of 15 bounces over ~e spectral range.40-180 A. The achieved efficiency was over 10% 
from 80-180 A with a peak of about 20% for 120-140 A. The expected value at the peak based on . 
the optical constants obtained from reflectance data, was 33%. This is fairly impressive agreement 
when the 10-15% uncertainty in the optical constants is considered. The experiment must hav~ 
been a challenging one considering the tungsten ·bremsstrahlung source that was used. It 
represented the first indication that anything close to the performance predicted by simple theory 
(Eqs. (9) and (11)) could be achieved with a real mirror. . 

The most important piece of evidence that we have regarding the feasibility of x-ray 
whispering galleries, is the experiment of Vinogradov et al. [l987a] first reported in .1986. In this 
experiment a spherical mirror coated with carbon was used to deflect a 67 A x-ray beam by 29° .. 
The ingoing beam was collimated within 2 mr and of width 90 micron in the deflection plane, and 
the reflection efficiency was measured as a function of incidence angle. The results are shown in 
Fig. 11, from which the value of 6m is seen to be 0.8 Be while the limiting efficiency at zero grazing 
angle was 65%. The first important feature of the data is that they are in good agreement with the 
efficiency calculated from the optical constants of Henke et al. and the measu.red value (2.0 gm/cc) 
of the density of the carbon coating. The second point of significance is that the data agree better 
with th~ simple uncorrected calculated efficiency than.with the scattering-corrected curve shown in 
Fig. 11. The latter is based on the measured value of 30 A rms for the roughness of nominalfy 
identical but flat surfaces evaluated by integrated scatter of 67 A radiation. This behaviour is 
attributed mainly to the fact that radiation scattered by small angles may still be guided by the 
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mirror and arrive at the detector, a fact not included in the calculation of the scattering-corrected 
curve. These results are strong evidence that soft x-ray whispering galleries can indeed deliver 
theoretical performance and add further weight to the view that the practical value of the whispering 
gallery effect may not be much compromised by the imperfectly smooth surfaces of real mirrors. 

POLARIZATION EFFECTS 

There are no difficulties in the soft x-ray region in producing plane-polarized radiation. 
Synchrotron radiation sour~ can deliver essentially 1 00%-polarized radiation under appropriate 

. conditions and Bragg reflectors; both crystalline and artificial (multilayer reflective coatings) are 
efficient polarizers and analyzers. There are, however, serious limitations on present abilities to 
produce circularly- or elliptically-polarized soft x-rays. There are special magnet structures that, in 
combination with a suitable electron storage ring, can produce this type of radiation. However, 
these devices are major engineering projects involving a large commitment of resources. An 
alternative; although less efficient approach, is to use the off-plane radiation from a synchrotron 
radiation bending magnet In light of the scarcity and high cost of all these types of-sourres, even a 
limited capability to produce circular or elliptically-polarized VUV or soft x-ray radiation by means 
of a simple device like the whispering gallery would be highly valuable. It would fmd application in 
the radiation scattering and absorption experiments (e.g. circ~lar dichroism and magnetic circular 
dichroism) on chiral structures such as those found in biopolymers, in the study of magnetic effects 
in solids and other spin-dependant processes. 

At the long wavelength end of the VUV region, circular- and elliptically-polarized radiation can 
be produced by a single reflection at a metal surface. The process begins with the use of a plane
polarized beam (making the sand p components initially in-phase) with its electric vector 
somewhere between the sand p position. The two components then suffer different phase changes 
on reflection and emerge with a phase difference &ps-p given by Eq. (12). If this is exactly rc/2 and 
the emerging amplitudes ate equal, then the light is circularly polarized, otherwise it is elliptically 
polarized. This procedure is useful as long as &ps-p is an appreciable fraction of 1rl2, which is true 
in· the near UV and vacuum UV down to wavelengths of a few hundred A At shorter wavelengths it 
becomes small and the fraction of elliptically-polarized. light resulting from· a single reflection 
becomes too small to be useful. In this case the next thing to try is multiple reflections, the idea 
being that the s-to-p phase difference will accumulate with each reflection. The properties of the two 
and three reflection polarizers often used for producing plane from unpolarized radiation are .of 
interest here and have been analysed by Schledermann and Skibowski [Schledermann, 1971] and 
Johnson and Smith [Johnson, 1983], respectively. The conclusion of the latter authors is that one 
can get circularly-polarized radiation with a zero-net-deviation device with throughput values in the 
range 4-19% for the spectral region 400-2500 A using gold or platinum reflecting surfaces. Since 
the whispering gallery ca:n be regarded as a limiting form of multiple reflection it should provide 
useful amounts of relative phase shift and good throughput for the cases identified earlier. The 
amount of phase shift is given by Eq. (14). ·We consider the example of silver at 95 A, which gives 
the s-to-p phase difference and throughput values shown in Fig.'9 for a 180°Whispering gallery. It 
will always be complicated to get exactly circularly polarized light by this method, but so long as the 
elliptically-polarized fraction is substantial, as it is in the example in Fig. 9, and the handedness c~ 
be chopped, one can usually still extract the required information. 

It seems clear that·if reflecting surfaces of sufficient quality are available, then whispering 
galleries have the potential to provide useful amounts of elliptically-polarized radiation down to at 
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least the carbon Kedge in wavelength. The question of how to reverse the handedness arises and 
one can imagine various approaches. Reversal requires changing the sign of the s to p phase 
difference. In a reflecting system this can only be achieved by interchanging the s and p beams. 
One way to do this would be to rotate the entire reflector about the incoming beam: not a 
convenient thing to do in some experiments. Another interesting way to try would be to make the 
reflector from a flexible metal strip and twist the input end back and forth through 90° while 
keeping the output end (and thus the sample) stationary. Such methods would probably limit the 
chopping frequency to a few Hertz. 

Table 1. ·some useful values of the Airy function Ai(p). 

p Ai(p) Remarks 

0 0.3550 r=r A=Ao n• 

-2.338 0 1st zero 

-1.019 0.5356 1st maximum 

0.345 0.2678 half maximum 

1.840 0.05356 0 . .1 maximum 

2.080 0.03100 

2.920 0.00756 
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