
'

J . ..

LBL-37690
UC-405
Preprint

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Physics Division

Mathematics Department

~o be submitted for publication

Stable and Efficient Algorithms for
Structured Systems of Linear Equations

M.Gu

September 1995

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098

::0
1"'1

00..,
.... 1"'1
60;:o 111m
CCI)Z
_, 0
111Zrr1
t+O
11)1+0

0
"'tl
<

0
0
"0
IC

....

r-
tD
r-
I
w
())
~
&

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

LBL-37690

Stable and Efficient Algorithms for
Structured Systems of Linear Equations 1

Ming Gu
Department of Mathematics and Lawrence Berkeley Laboratory

University of California
Berkeley, CA 94 720

September 1995

1Supported by the Applied Mathematical Sciences Subprogram of the Office of Energy
Research, U.S. Department of Energy under Contract DE-AC03-76SF00098.

Stable and Efficient Algorithms for
Structured Systems of Linear Equations

Ming Gu*

Abstract

Recently Heinig shows that structured matrices such as the Toeplitz and
Hankel matrices can be transformed into a new class of structured matrices
called Cauchy-like matrices using the FFT or other trigonometric transforms,
and partial pivoting can be performed on the Cauchy-like matrices. Gohberg,
Kailath and Olshevsky show that a fast variation of Gaussian elimination with
partial pivoting (GEPP) can be performed on the Cauchy-like matrices, and
demonstrate numerically that this variation is numerically stable. Sweet and
Brent show that the error growth in this variation could be much larger than
would be encountered with straightforward GEPP in certain cases. In this pa­
per, we present a modified algorithm that avoids sU:ch extra error growth and
can perform a fast variation of Gaussian Elimination with Complete Pivoting
(GECP). Our analysis shows that it is both efficient and numerically stable,
provided that the element growth in the computed factorization is not large.
We also present a more efficient variation of this algorithm and discuss imple­
mentation techniques that further reduce the execution time. Our numerical
experiments show that this variation is highly efficient and numerically stable.

Keywords: displacement rank, error analysis,. fast algorithms, generators,
Hankel matrices, iterative refinement, pivoting, structured matrices, Toeplitz
matrices.

1 Introduction

Let matrices f2 and A E Rnxn be given. The Sylvester type displacement equation
for a matrix ME Rnxn is

f!·M-M·A=G (1.1)

*Department of Mathematics and Lawrence Berkeley Laboratory, University of California, Berke­
ley, CA 94720. The author was supported in part by the Applied Mathematical Sciences Subprogram
of the Office of Energy Research, U.S. Department of Energy under Contract DE-AC03-76SF00098.

1

2

where G =A· B, with A E Rnxa and B E Raxn. The matrix pair (A, B) (or the
matrix G) is the generator of M with respect to n and A; a~ n is the displacement
rank with respect to n and A if G has rank a; and M is considered to possess
a displacement structure with respect to n and A if a ~ n. Such displacement
equations first appeared in [17]; and the concept of displacement structure was first
introduced in [19]. The most general form of displacement structure, which includes
equation (1.1) as a special case, was introduced in [20].

1.1 Fast Algorithms for Structured Matrices

The coefficient matrices in many linear systems of equations ansmg from signal
processing, control theory and interpolation applications often have such displace­
ment structures. For example, the Cauchy-like matrix is a matrix of the following
form(see [10, 15]):

here we assume that w; # Aj for 1 ~ i, j ~ n. Equivalently, we can define a Cauchy­
like matrix to be the unique solution to the displacement equation

f!·C-C·A=A·B

with

!l = diag(w,, · · · ,w.) , A= diag(.l.r, · · ·, >..) and A= (:~) , B =(hr.···, b.) .

In particular, C is a Cauchy matrix if a[· bi = 1 for all i and j. We note that while
the rank of C can be as large as n, its displacement rank is at most a.

Other classes of structured matrices include the Toeplitz matrices and the Hankel
matr1ces. A Toeplitz matrix T is a matrix whose entries are constant along every diag­
onal (T = (ti-ih~i,j~n); and a Hankel matrix His a matrix whose entries are constant
along every anti-diagonal (H = (hi+i- 2 h<i,i<n)· These two classes of matrices are
included in the larger class of Toeplitz-plu;-H~nkel matrices. A Toeplitz-plus-Hankel
matrix is the sum of a Toeplitz and a Hankel matrix.

There are many fast algorithms that solve the Toeplitz (or Hankel, or Toeplitz­
plus-Hankel) system of linear equations in O(n2

) floating point operations, as opposed
to O(n3) floating point operations normally required for a general dense matrix; there
are also super-fast algorithms that require only 0(n log~ n) floating point operations.
However, all these fast and super-fast algorithms are in general numerically unstable
for indefinite systems. For discussions of some of these methods, see [3, 8, 22] and
the references therein. Attempts to overcome this numerical instability result in

3

algorithms that could require (n3
) floating point operations in the worst case [4, 14,

22].
Recently, Heinig [15] shows that certain displacement equations the Toeplitz ma­

trix satisfies allow transforming it via fast Fourier or trigonometric transforms into
Cauchy-like matrices, which can in turn be inverted in 0(n 2) floating point operations;
Heinig further shows that partial pivoting can be incorporated in the process of inver­
sion. However, experiments show that the resulting algorithm can still be numerically
unstable for ill-conditioned Toeplitz matrices. Gohberg, Kailath, and Olshevsky [10]
further show that a Cauchy-like matrix can be rapidly triangular-factorized using
Gaussian Elimination with Partial Pivoting (GEPP) in O(n2

) floating point opera­
tions; and demonstrate numerically that the resulting algorithm for solving Toeplitz
systems is numerically stable. They also show that Hankel matrix, and the Toeplitz­
plus-Hankel matrix can also be transformed via fast trigonometric transforms into
Cauchy-like matrices.

Sweet and Brent (23] have done an error analysis for the algorithms of [10]. They
show that the error propagation of Algorithm GKO, the algorithm of choice in [10] for
factorizing the Toeplitz matrix, depends not only on the magnitudes of the triangular ..
factors Land U in the LU factorization of the corresponding Cauchy-like matrix, but
also on the generator for this Cauchy-like matrix. They show that in some cases the
generator can suffer large internal element growth and cause a corresponding growth
in the backward and forward error; their results imply that Algorithm GKO is less
numerically stable than the straightforward GEPP on the Cauchy-like matrix.

1.2 Main Results

In this paper, we show how to avoid such internal element growth in the generator
when factorizing the Cauchy-like matrix; we demonstrate how to triangular-factorize
this Cauchy-like matrix using a variation of Gaussian Elimination with Complete
Pivoting (GECP) in O(n 2

) floating point operations (see §2). We compare a different
choice of displacement equation for the Toeplitz and Toeplitz-plus-Hankel matrices
with those in [10, 15] in terms of efficiency and numerical accuracy in factorizing
the resulting Cauchy-like matrix; and based on our analysis and with this choice,
we provide a new algorithm for factorizing a Toeplitz or Toeplitz-plus-Hankel ma­
trix (see §3) that performs about 50% less floating point operations than Algorithm
GKO of [10]. We perform an error analysis for fast Cauchy-like matrix factorization
algorithms and show that this new algorithm is numerically stable, provided that the
magnitude of the triangular factor U in the LU factorization is not large (see §4). We
report numerical experiments to support these results (see §5).

We also discuss some implementation techniques that significantly reduce the
amount of memory traffic during the execution of this new algorithm. Our numerical
experiments indicate that they make the new algorithm up to a factor of 2 faster (see
§5).

4

1.3 Overview

In §2 we review the fast algorithm of [10] for Cauchy-like matrices; we present a fast
algorithm, Algorithm 2, that performs a variation of GECP on such matrices and
avoids internal element growth in the generator; and we provide a variation of Al­
gorithm 2 that is more efficient. In §3 we compare different choices of displacement
equation for the Toeplitz and Toeplitz-plus-Hankel matrices in terms of efficiency and
numerical accuracy in factorizing the resulting Cauchy-like matrix; based on Algo­
rithm 2 and a new choice of displacement equation, we provide a new algorithm,
Algorithm 4, for solving the Toeplitz and Toeplitz-plus-Hankel system of linear equa­
tions. In §4 we perform an error analysis for Algorithms 2 and 4. In §5 we present
numerical experiments with Algorithm 4 and compare this algorithm with some other
available algorithms. And in §6 we discuss some extensions, draw conclusions, and
ask some open problems.

1.4 Notation and Conventions

For a matrix A, IAI is the matrix of moduli of the {ai,j}; Ap:q,s:k is a submatrix of A
that selects rows p to q of columns s to k; A:,s:k and As:k,: select sth through kth rows
and columns, respectively; and when s = k, we replace s : k by s. Without loss of
generality we assume A to be real unless it is specified to be complex. Our discussion
for real matrices generally carries over to the complex case.

We will use the max norm, the oo-norm, the 2-norm, and the Frobenius norm:

For a matrix A E Rnxm, the following inequalities hold:

~ :::; IIAIImax :::; IIAII2 and · IIYn-2 :::; IIAIIoo :::; .;:m · IIAII2 . (1.2)

P is a permutation matrix; and P(J, k) denotes the permutation that interchanges
the ph and kth rows of a matrix.

E is the machine precision, and n is the order of the matrix to be factorized.
A flop is a floating-point operation xoy, where x andy are floating-point numbers

and o is one of+, -, x, and+. Taking the absolute value or comparing two floating­
point numbers is also counted as a flop.

In our error analysis, we take the usual model of arithmetic: 1

fl(xoy) = (xoy)(l +77), (1.3)

1This model exCludes some CRAY machines that do not have a guard digit. Our error analysis
still holds for such machines with a few easy modifications.

5

where fl(xoy) is the floating point result of the operation o; and I1J I :::; c. For simplicity,
we ignore the possibility of overflow and underflow.

Let A= A- a· bT, where A is a matrix and a and bare vectors, fl(A) is the result
of computing A in finite precision.

2 Gaussian Elimination with Pivoting for Cauchy­
like Matrices

Given a matrix C E Rnxn, the first step of Gaussian elimination is to zero-out the
first column of C below the diagonal entry:

c = (~I ~) = (~ ~) . (~I ;~)) ' (2.4)

where /I is the pivot; l = r/")'I; and C(2) = C2 - l · uT is the Schur complement of
/I· Gaussian elimination then recursively applies this step to C(2). At the end of this
procedure, C is factored into C = L · U, where L is a lower triangular matrix and U
is an upper triangular matrix.

The following theorem shows that if Cis a Cauchy-like matrix with displacement
rank a, so is C(2

). The algorithms of Gohberg, Kailath, and Olshevsky [10] are based
on this theorem. More general forms of it appear in [10, 11, 12, 20], and a variation
of it appears in [15].

Theorem 1 Let matrix C in {2.4) satisfy the displacement equation

D·C-C·A=A·B (2.5)

and B = (bi B2) E Raxn. Assume that /I =/:- 0. Then C(2) satisfies the displacement
equation ·

D2 · C(2) - c<2l · A2 ~ A (2) · B(2) (2.6)

with A(2) = A2- l ·a[E R(n-I)xa and B(2) = B2 - bi · UT /II E Rax(n-I).

Hence one step of Gaussian elimination on the matrix C in Theorem 1 involves com­
puting the first row and column /b r, and u of C from equation (2.5) and computing
the vector l. To recursively apply this procedure to C(2l, its generator (A<2l, B(2)) is
then computed from equation (2.6).

6

2.1 Partial Pivoting

Partial pivoting is a strategy to reduce the element growth in the LU factorization.
To perform partial pivoting on the first column of C, one finds its largest magnitude
entry (krnax, 1), permute it to the (1, 1) entry to get P(1, kmax) · C, and then applies
one elimination step to P(1, krnax) · C. Let C be a Cauchy-like matrix satisfying
equation (2.5). Then for every k,

(P(1, k) · n · P(1, k)) · (P(1, k) ·C)- (P(1, k) ·C)· A= (P(1, k) ·A)· B,

where (P(1, k) · n · P(1, k)) is again a diagonal matrix. In particular, this implies
that P(1, krnax) · C is a Cauchy-like matrix. Algorithm 1 below performs fast GEPP
for a Cauchy-like matrix C. It is suggested by Gohberg, Kailath, and Olshevsky [10].
The recursions for computing A and B (without explicitly computing L and U) and
the partial pivoting idea are from [15].

Algorithm 1 Fast GEPP for a Cauchy-like matrix.

L := 0; U := 0; P :=I;

for k = 1 to n do

Lk:n,k := (Ok:n,k:n-)..kf)-
1

· Ak:n,: · B,,k;

kmax := argmaxk::Si::Sn ILj,kli

if krnax > k then

P := P · P(k, kmax); n := P(k, kmax) · n · P(k, kmax);
A= P(k, ~nax) ·A; L:,l:k = P(k, kmax) · L:,l:ki

Uk,k = Lk,k; Uk,k+I:n := Ak,: · B:,k+l:n · (wkl- Ak+I:n,k+I:nf
1

;

Lk,k = 1; Lk+I:n,k := Lk+I:n,k/Uk,ki

Ak+I:n,: = Ak+I:n,:- Lk+I:n,k · Ak,:; B:,k+I:n = B:,k+I:n- B:,k+I · Uk,k+I:n/Uk,k·

endfor

Remark 1: If the input data A, B, n and A are real, Algorithm 1 costs about
(4a+2.5)n2 flops; there is also potentially about n 2 /2 swaps of memory locations. For
a matrix transformed into a Cauchy-like matrix from a Toeplitz-plus-Hankel matrix
(see §1 and §3), the displacement rank a is at most 4. In this case, Algorithm 1 costs
about 18.5n2 flops.

Remark 2: If the input data are complex, Algorithm 1 costs about (16a +
12)n2 flops 2 ; there is also potentially about n 2 swaps of memory locations. For a
matrix transformed into a Cauchy-like matrix from a Toeplitz matrix (see §3), the
displacement rank a is at most 2. In this case, Algorithm 1 costs about 44n2 flops.

2We count a complex addition or subtraction as 2 flops; a complex multiplication as 6 flops; a
complex division as 10 flops; and the total cost of taking absolute value and performing comparison
as 4 flops.

7

We observe that Algorithm 1 produces the same LU factorization as that of
straightforward GEPP on C. Hence, one potential problem with Algorithm 1 is
the element growth in the LU factorization. Let U be the upper triangular matrix in
the LU factorization, and let gpp = JJUJimax/JJCJJmax be the element growth factor.
It is well-known that gpp :::; 2n-I for GEPP, and although very rare, this bound is
attainable for certain dense matrices [13, pages 115-116]. It is not clear whether this
bound is attainable for Cauchy-like matrices with low displacement rank. When large
element growth does occur, the computed LU factorizations can be very inaccurate.

2.2 Complete Piv~ting

Complete pivoting may in general further reduce the element growth in the L U
factorization. To perform complete pivoting on C, one finds its largest magni­
tude entry (kmax,Jmax) in the entire matrix, permute it to the (1, 1) entry to get
P(1, kmax)~"· C · P(1,)max), and then applies the elimination step to this permuted
matrix. Let C be a Cauchy-like matrix satisfying equation (2.5). Then for every
1:::; k,j:::; n,

(P(1, k) · n. P(1, k)). (P(1, k). C. P(1,j))
(P(1, k) ·C. P(1,j)). (P(1,j). A. P(1,j)) = (P(1, k) ·A). (B. P(1,j))

In particular, this equation implies that P1 ,krna.x · M ·P1 ,irna.x is still a Cauchy-like matrix.
However, finding the largest magnitude entry (kmax, Jmax) of C costs 0(n 2

) flops
in general. If this is done on every step of Gaussian elimination, then the total cost
will be· O(n3

), which is too expensive.
On the other hand, it is not absolutely necessary to use the largest magnitude

entry as pivot in order to reduce element growth. Any entry sufficiently large in
magnitude should do.

Define

The following lemma tells us where to look for such an entry.

Lemma 2.1 Let C be a Cauchy-like matrix satisfying equation (2.5)) and let the k;t:ax
column be the largest 2-norm column of A · B. Then

Proof. Let JG;G,krna.xl = JJG:,km .. .Jioo, where G =A· B. Then for any 1:::; s,k :S n,

JGs,kJ < IIG:,kJJz < JJG:,krnax liz
Jws- >.kJ Jws- >.kJ - Jws- >.kJ

< y'n · IGia,kmax I = y'n · lwiG - Akmax I . IC· I
I

_ \ I I _ \ I ~G,krnax
Ws /\k Ws /\k

v'n. ~max IIC II
t . · :,kma.x 00 •

~nun ·
<

Hence the first assertion of the lemma follows immediately.
For the second assertion, we have

<

<

n. I:s IGs,kmax 12 < n . I:s ICs;kmaxl2 . e?nax
t2 - t2
~min ~min

n2 · IIC:,kmax II~ · ~?nax
~~n '

To finish the proof, we take square roots on both sides. I

8

To find the column kmax in Lemma 2.1, we QR-factorize A to get A = A· R,
where A E Rnxa is column orthogonal, and R is upper-triangular. We then compute
B = R · B. It follows that

A·B=A·B. (2.8)

Since A is column orthogonal, the /h columns of A· B and B have the same 2-norm,
for 1 :=; j :=; n. Hence we obtain kmax by looking for the largest 2-norm column of B.
This allows us to perform a variation of GECP in Algorithm 2 below, which assumes
that the matrix A is column orthogonal on input.

Algorithm 2 Fast GECP for a .Cauchy-like matrix.

L ·= O· U ·= 0· P ·-1· Q ·-I· . ' . ' .- ' .- '
for k = 1 to n do

imax := argmaxkjn IIB:,jll2;

if imax > k then
Q := P(k,jmax) · Q; A:= P(k,jmax) ·A· P(k,jmax);

B := B · P(k,jmax); Ul:k,: = U1:k,: · P(k,jmax)i

Lk:n,k := (fh:n,k:n - AkJ)-1
· Ak:n,: · B:,ki

kmax := argmaxkjn ILj,kl;

if kmax > k then
P := P · P(k, kmax); !1 := P(k, kmax) · !1 · P(k, kmax);

A := P(k, kmax) ·A; L:,1:k := Pk,kmax · L:,l:ki

Uk,k := Lk,ki Uk,k+l:n := Ak,: · B:,kH:n · (wkl- Ak+l:n,k+l:n)-
1

;

Lk,k := 1; Lk+I:n,k := Lk+I:n,k/Uk,ki

Ak+l:n,: := Ak+I:n,:- Lk+I:n,k · Ak,:i B:,k+I:n := B:,k+I:n- B:,k+1 · Uk,k+I:n/Uk,ki

Ak+l:n,: := A· R (QR factorization of Ak+I:n,:); 8 := R · B:,k+l:ni

Ak+t:n,: := A, B:,k+t:n :=B.
endfor

9

For the rest of §2.2, we derive an upper bound on the element growth factor for
Algorithm 2, using techniques similar to those used by Wilkinson [25] to bound the . .
growth factor for the straightforward GECP. In §2.3 we will discuss Algorithm 2 in
more detail; and in §4.5 we will show that Algorithm 2 is numerically stable provided
that the U matrix is not large in norm.

Let

W(k) = (k iv'"·-l)r,, = 0 (d+~"·').
which is Wilkinson's upper bound on the growth factor for GECP on a k x k matrix.
Although W(k) is not a polynomial ink, it does not grow very fast either [25].

We will need the following well-known result.

Lemma 2.2 (Householder [18, page 15]) For any C E Rnxn 1 we have

I det c I ~ (II jl:) n .

Theorem 2 Let C be a Cauchy-like matrix satisfying {2.5) 1 and let C = P·L·U·Q be
the L U factorization generated by Algorithm 2 in exact arithmetic. Then the element
growth factor gcp = IIUIImax/IICIImax satisfies

2+Ln-ll/k
gcp ~ Vn · p k=I • W(n) . (2.9)

Proof. Without loss of generality we assume that pivoting has been done before
hand, so that Algorithm 2 does not perform any pivoting.

For 1 ~ k ~ n, let C(k) E R(n-k+l)x(n-k+l) be the Cauchy-like matrix to be
factored at the kth step in Algorithm 2, with /k being the pivot (the (1, 1) entry of
C(k)). We note that C(l) = C in this notation.

Since Algorithm 2 performs partial pivoting, we have ilk I = IIC,~~)IIooi since the first
column of the generator for C(k) has the largest column 2-norm, we have IIC(k)IIF ~
(n- k + 1) · p · l!kl according to Lemma 2.1. It follows from Lemma 2.2 that

On the other hand,

10

Comparing these two relations, we have

1 ~ k ~ n. (2.10)

Since
s 1 1 1

{; (n- k)(n- k + 1) +;:; = n- s'

taking the product of the (n- k)(n- k + l)st root of (2.10) with k = 1, 2, ... , n- 1
and the nth root of (2.10) with k = 1, we have

n-1 (n-1 1/(n-k))
}] ll'sl

1
/(n-s) "In~ g (pJn- k + 1 "/k) · (Pvn ·11)

1+ 2::;~: 1/(n-k) (n-1) 1/2 (n-1)
= p - . n. IT (n- k + 1)1/(n-k) . ITI!kl1/(n-k) . 11'11'

k=1 k=1

which simplifies to

Repeating the same argument allows us to conclude that

It now follows from Lemma 2.1 that

To complete the proof, we observe that the sth row of the upper triangular matrix U
is the first row of c<s). Hence .

2+'En-I1/k

IIUIIrnax ~ l11l· Vn · P k=I • W(n) ·

The assertion of the theorem follows immediately from the fact that b1l ~ IICIIrnax·
I

Remark 3: The determinant argument in the proof of Theorem 2 ignores the fact
that C is a Cauchy-like matrix; hence the upper bound provided by (2.9) could be
much larger than necessary, especially for Cauchy-like matrices with low displacement
rank.

Remark 4: Since Ek:: 1/k = ln n + 0(1), the bound (2.9) simplifies to

< nlnp+t lnn+0(1)
9CP- ·

11

Assume that p = O(n.B) for a constant (3, then

9
< n 4 /34+

1 lnn+O(l)
CP _ ·

If Cis transformed into a Cauchy-like matrix from a Toeplitz matrix (or a Toeplitz­
plus-Hankel matrix) via any of the transforms discussed in §3, then 1 :5 (3 :5 3.
Although this upper bound is much larger than W(n), it is still much smaller than
2n-1.

2.3 Further Considerations on Algorithm 2

In addition to the potential element growth in the LU factorization, Sweet and
Brent [23] show that the generator (A, B) updated as in Algorithm 1 could also
grow so that·

for some k. And if this happens, the backward and forward error could become large.
However, such element growth in the generator can easily be avoided. Since Ak:n,:

is kept column orthogonal for all k in Algorithm 2, it follows that

IIIAk:n,:I·IB:,k:nllb < 111Ak:n,:lll2 ·IIIB:,k:nlll2 :5 IIAk:n,:IIF ·IIB:,k:niiF

< va ·IIB:,k:niiF::::; a ·IIB:,k:nll2 =a. IIAk:n,:. B:,k:nll2.

Hence keeping Ak:n,: column orthogonal for all k also has the additional advantage of
avoiding potential element growth within the generator (A, B). In fact such growth
can be avoided as long as Ak:n,: is well-conditioned.

From a practical point of view, it does not seem necessary to column orthogonalize
Ak:n,: at every step just to keep it well-conditioned; nor does it seem necessary to per­
form pivoting on the columns at every step to reduce element growth. As a practical
modification to Algorithm 2, the following algorithm performs these operations only
once in every I< steps, where I< is a user provided positive integer. It assumes that
the matrix A is initially column orthogonal.

Algorithm 3 Practical Modification to Algorithm 2.

L := 0; U := 0; P := I; Q := I;
for k = 1 to n do

if (mod(k, I<)= 1) then

imax := argmaxkin IIB:,j ll2;

if imax > k then
Q := P(k,jmax) · Q; A:= P(k,jmax) ·A· P(k,jmax);

B := B · P(k,jmax); Ul:k,: = Ul:k,: · P(k,jmax);
. -1

Lk:n,k := (Dk:n,k:n - >..ki) · Ak:n,: · B:,k;

kmax := argmaxk~j~n ILj,k I;
if kmax > k then

P := P · P(k, kmax); n := P(k, kmax) · n · P(k, kmax);

A:= P(k, kmax) ·A; L:,1:k := Pk,krna.x · L:,1:k;

Uk,k := Lk,ki Uk,k+1:n := Ak,: · B:,k+1:n · (wk]- Ak+1:n,k+1:n)-
1

;.

Lk,k := 1; Lk+I:n,k := Lk+1:n,k/Uk,ki

Ak+1:n,: := Ak+1:n,:- Lk+1:n,k · Ak,:; B:,k+1:n := B:,k+1:n- B:,k+1 · Uk,k+1:n/Uk,k;

if (mod(k, K) = 0) then

endfor

Ak+1:n,: :=A· R (QR factorization of Ak+I:nJ; B := R · B:,k+1:n;

Ak+1:n,: :=A, B:,k+1:n :=B.

Remark 5: The cost for recomputing Ak+I:n,: and B:,k+I:n through QR factoriza­
tions is about 5/2a2 n 2 flops in real arithmetic and 10a2 n 2 flops in complex arithmetic.
However, if a is large and if QR factorization is performed at every step, these costs
can be brought down to O(an2) by using QR updating techniques (see [13, §12]). Our
main interest in this paper is to use Algorithm 3 to factorize the Cauchy-like matrix
that is transformed from a Toeplitz-plus-Hankel matrix (cf. §1 and §3). For such
matrices a is at most 4. In our implementation, we recompute the QR factorization
every]{ = 10 steps.

3 Factorizing Toeplitz-plus-Hankel-like Matrices

3.1 Factorizing Toeplitz-plus-Hankel-like Matrices

Define
01 1 0 0

1 0 1

16],62 = 0 1 0 (3.11)

0 1
0 0 1 82

and n = Yi,1 and A = Yi,-1. It is easy to verify that every Toeplitz-plus-Hankel
matrix satisfies the displacement equation (1.1) with G having non-zero entries only
in its first and last rows and columns, thus a matrix of rank at most 4. Hence the
displacement rank of a Toeplitz-plus-Hankel matrix is at most 4 (cf. [10, 16]). In
particular, these results are true for every Toeplitz or Hankel matrix.

Lemma 3.1 Let ME Rnxn be a matrix satisfying the displacement equation

Yi,1 · M- M · Yi,-1 =A· B, (3.12)

13

where A E Rnxa and BE Raxn. Then Q'[1 · M · Q1,_1 is a Cauchy-like matrix:

where

Q1,1 = fi. (qj cos (2k - 1)(j - 1)7r)
V-:;; 2n 1<k ·<n - ,]_

and

Ql,-1 = (~. (cos {2k- ~~~j- l)n)) ·~·.;~"
are orthogonal matrices with q1 = ~ and qj = 1 for 2 :::; j :::; n; and

2 · diag (1 cos ~ · · · cos -'-(n---
1-'-)_7r)

' ' ' ' n n

2 · diag (cos _1r_ cos -37r- · · · cos (2n - 1)1r)
2n' n' ' 2n

Proof. It can be checked that

Yl,-1 = Q1,-1 . 1\,-1 . Q[-1 . - '

The lemma follows immediately by substituting the above equation into equation (3.12),
and multiplying by Q[1 from the left and by Q1,_1 from the right. I

We call a matrix M Toeplitz-plus-Hankel-like if it satisfies the displacement equa­
tion (3.12) with a ~ n (cf. [10]). To solve a Toeplitz-plus-Hankel-like linear system
of equations

M·x=z,

one can transform Minto a Cauchy-like matrix using Lemma 3.1; factorize this matrix
by using any of the methods discussed in §2 to obtain a factorization of the form

M = QT . p . L . u . Q . QT . 1,1 1,-1 ' (3.14)

and compute the solution to the linear system using this factorization. The idea
of transforming a Toeplitz matrix into a Cauchy-like matrix was first proposed by
Heinig [15]; and the idea of transforming a Toeplitz-plus-Hankel matrix into a Cauchy­
like matrix was first proposed by Gohberg, Kailath, and Olshevsky [10].

We summarize the above into Algorithm 4 that follows, assuming that M satisfies
equation (3.12) with A column orthogonal.

Algorithm 4 Solving M ·.x = z.

1. Set 0 := V1 1; A:= V1 - 1; and compute A:= QT11 ·A; B := B · Q1 -1·
' ' ' '

14

2. Compute the factorization (3.14) by applying one of Algorithms 1, 2, and 3 with
n, A, A and B.

3. Compute X= Q1,-1. QT. u-l . L-1 . pT. Ql,l. z.

Both Q 1,1. and Q 1,_1 are fast trigonometric transform matrices, hence the cost
of Step 1 is about 0(a n log2 n) flops via 2a such transforms; similarly the cost of
Step 3 is about 2n2 flops via 2 fast trigonometric transforms, two permutations, and
forward and backward-substitution. The bulk of the cost is in Step 2, factorizing the
Cauchy-like matrix in (3.13).

For a real Toeplitz-plus-Hankel matrix, the displacement rank a is at most 4
in equation (3.13). When Algorithm 3 is used in Step 2, the cost for Step 2 is
about 18.5n2 + O(n2 I I<) flops for a user specified integer I< (see Remark 5). Hence
Algorithm 4 takes about 20.5n2 + O(n2 I I<) flops to solve a Toeplitz-plus-Hankel
system of equations. This is also true for a Toeplitz or a Hankel system of equations.

3.2 Comparison with Previous Methods

The Toeplitz-plus-Hankel matrix satisfies other displacement equations, too. It is
known that [16, 10] for n = Yo,o and A =. Yl,1 every Toeplitz-plus-Hankel matrix
satisfies the displacement equation (1.1) with G having non-zero entries only in its
first and last rows and columns. It is known that matrix Yo,o can be diagonalized
using fast trigonometric transform matrices (see for example [2]):

Yo,o = Qo,o · 'Do,o · Q~o ,

where Qo,o = n!1 · (sin:~)I<k.<n' and 'Do,o = 2·diag(cosn~1 ,···,cosn~1). Go-
- ,J_

hberg, Kailath, and Olshevsky [10] suggest that to solve a Toeplitz-plus-Hankel system
of linear equations, one transforms the coefficient matrix to a Cauchy-like matrix C
that satisfies

'Do,o · C - C · 'D1,-1 = A · B , (3.15)'
I

with rank(A),rank(B) :S 4; and one then applies Algorithm 1 to C. The resulting
algorithm is named Algorithm TpH.

However, Algorithm TpH has some. disadvantages over Algorithm 4. It can be
shown that the parameter p defined in (2.7) is O(n3

) for equation (3.15) and O(n2
)

for (3.13). Our upper bound on gcp in §2.2 and error analysis in §4 suggest that the
smaller p is, the smaller the potential element growth and backward error. Hence
Algorithm TpH could be potentially less accurate than Algorithm 4. Another dis­
advantage for Algorithm TpH is that in order for the fast trigonometric transforms
with Q 0 ,0 and Q 1 ,1 to be very efficient, both n and n + 1 must be products of small
prime numbers; whereas for Algorithm 4, it is sufficient that n be a product of small
prime numbers.

15

If one wants to solve a Toeplitz system of linear equations, then other displacement
structures may be used. Define

0 0 0 8
1 0 0

Zs = 0 1

0 0 1 0

and let n = Z1 and A = Z_1. Kailath, Kung, Morf [19] show that every Toeplitz
matrix satisfies the displacement equation (1.1) with G having non-zero entries only
in its first row and last column, a matrix of rank at most 2. Hence the displacement
rank of a Toeplitz matrix is at most 2 with respect to Z1 and Z_1. The following
result can be found in [15].

Proposition 1 Let M E Rnxn be a matrix satisfying the displacement equation

Z1 · M - M · Z-1 = A · B , (3.16)

where A E Rnxa and B E Raxn. Then F · M · D0
1

· F* is a Cauchy-like matrix:

1J1 · (F · M · Do1 · F*)- (F · M · Do1 · F*) ·'D-1 = (F ·A)· (B · D~ · F*) , (3.17)

where F = 1!. · (e 2~; (k-l)(j-l)) y; l<kJ<n
Transform matrix, - -

is the normalized Inverse Discrete Fourier

• (2,.; 21ri (n l)) 1J1 = d1ag 1, e 7, ... , e 7 -

Heinig [15] suggests that for a Toeplitz matrix T, one can convert it into the
Cauchy-like matrix in equation (3.17); and Gohberg, Kailath, and Olshevsky [10]
suggest that one can rapidly factorize this Cauchy-like matrix using Algorithm 1.
The resulting algorithm is called Algorithm GKO in [10]. Since the cost of a fast
algorithm for factorizing a Cauchy-like matrix depends linearly on the displacement
rank (see Remarks 1 and 2), this method is more efficient than Algorithm 4 if T is
given to be a complex matrix.

However, the situation is different if T is real (as often happens in practice). The
total cost of complex forward and backward-substitution is about 8n2 flops; and the
total cost of factorizing the Cauchy-like matrix in (3.17) is about 44n2 flops for Algo­
rithm 1 (see Remark 2). Using the above procedure, a Toeplitz system is thus solved
in about 52n2 flops. This is about 2.5 times the cost of Algorithm 4. Furthermore,
operating in complex arithmetic requires twice as much storage, a potentially big
price to pay for large matrices.

On the other hand, Algorithm GKO does have an advantage over Algorithm 4: it
can be shown that the parameter p defined in (2.7) is O(n) for equation (3.17), thus
Algorithm GKO could be more accurate. We will address this issue in §5.

16

4 Error Analysis

In this section, we do a backward error analysis for Algorithms 1 through 3 by estab­
lishing an oo-norm upper bound on the matrix H in the equation

(4.18)

where C is the Cauchy-like matrix to be factored; L· U is the computed LU factor­
ization; and we assume that no pivoting is done. In the following, we first establish
some notation and then analyze error propagation by using induction. At the end of
this section we will briefly discuss error propagation for Algorithm 4.

4.1 Notation

At the kth step of elimination in finite arithmetic, let C(k) = (r1~)
Cauchy-like matrix satisfying the displacement equation

(4.19)

Fork= 1, we drop the superscripts so that C(l) = C, A(l) =A, iJ(l) = B, etc., and
equation (4.19) reduces to (2.5).

To perform elimination, we write

where f(k)

equation
r(k) /!k and C(k+l) = ck+l - f(k) . (u(k))T satisfies the displacement

{"\ C(k+I) c<HI) A - A(k+I) B(k+l) Hk+l . - . k+l - .

with A(k+I) = Ak+I -f(k) · (iikk))T and B(k+I) = Bk+I- bkk) · (u(k))T//k·

Let the computed /k, r(k), and u(k) be '7k, f(k), and £t(k); and let j(k) = fi(f(k) /'7k)·

Fork= 1, we writer= r(l>, u = u(l>, l = f{l); and r = ;.(1), u = u<1>, i = /<1>.
Let Q(k+I) = A_(k+I) · lJ(k+I) with A_(k+I) = Ak+I - j(k) : (akk)f and lJ(k+l) =

Bk+l - bkk) · (£t(k))T /'7k· The generator at the (k + l)st step is Q(k+l) = A (k+l) · iJ(k+l).

For Algorithm 1, A_(k+I) = fi (A.(k+l)) and iJ(k+I) = fi (lJ(k+I)); and for Algorithm 3,

A(k+l) is the computed Q factor in the QR factorization of fi(A_(k+l)) and B(k+l) is

17

the product of the R factor and fi.(B(k+l)). We further define C(k+I) to be the matrix
satisfying the displacement equation

Define

and

la~k)IT · lbkk)l
li'kl

(4.20)

(4.21)

(4.22)

Tis a measure of the accuracy in computing the generators; IL is a. measure of element
growth in the LU factorization, since it is easy to show that

/L ~ IIlLI · IUIIImax + 0(t:) ; (4.23)

'ljJ ? 1 is of order 1 in general, but it could happen that 'ljJ ~ 1 if both .A_(k) and fJ(k)

are ill-conditioned for some k. We will further discuss these 4 parameters in §4.4 and
§4.5.

Lemma 4.1 For any 1 ~ k ~ i,j ~ nJ

A(k) T A(k) lai I · lbj I ~ ~max· 't/J · IL ·

Proof. Let l(a~f))T · h~;UI = max1~h~n IIA(h) · fJ(h)llmax· Then

la~k)IT ·lb)k)l < 't/J ·l(a~f)f · b~,:UI ~ 't/J ·IIC(f)llmax ·lws- Ami

< ~max · 't/J · /L ·

I

4.2 Error Propagation for One Step of Elimination

Let D2) • U(2) = C(2) + H(2) be the computed L U factorization of C(2). Then the
computed L U factorization of C satisfies

A A ~ u
(

1 0
) (

A AT)
L = f _t(2) and U = 0 [/(2) .•

It follows that

L·U =

18

Since M = (~1 e.:) , equation (4.18) and the last equation imply

· (1'1 -11 (u- u)T)
H = i-y1 - r H(2) + (6(2)- C(2l) + (C(2)- 62 + i · uT) (4.24)

For the rest of §4.2, we bound 11'1 -11l, lu- ul, IZ1'1- r·l, 16(2)- C(2)1, and IC(2)-
62 + i ·uTI. We obtain an upper bound on H by induction in §4.3.

Displacement equation (4.19) for k = 1 implies that

For both Algorithm 1 and Algorithm 3, the errors in these quantities and l can be
bounded as follows, using our 'model of arithmetic (1.3) and Lemma 4.1:

I · . \ ~-1 I IT lb I < CX'f/1/Jjt~max CX'TJ WJ - Al · a1 . 1 _ ,
~Inill

If- rl < In \ Il-l I - I ll I CX'f/1/JJL~max CX'TJ H 1 - "I · A2 · J1 ~ • e ,
~min

(4.26)

< I I A 1
-1 IB-Tl I I CX'f/1/JJL~max

CX'TJ w1 - l · 2 • a 1 ~ t . · e,
':,trun

!u-ul

and II- r/1'1 1 ~"liZ!, where3 "'is a small multiple oft:, and e = (1, · · ·, 1l. These
relations imply that

Since

IZ1'1 - rl < IZ1'1 - rl + If- rl
< "111'11· IZI + CX'f/1/Jit~max • e.

~nUn

subtract these two equations we have

n2 . (6(2) - C'(2l) - (6(2) - C'(2l) . A2 = Q(2) - Q(2) .

By definition (4.21), this implies

116(2
)- C'(2>11= ~ ~.

~Inixt

(4.27)

(4.28)

Finally, we bound fi(2
) = C(2

) - 62 + i · uT. Write i = (Z2 , • • ·, Zn)T and u =
(u2 ,·· • • ,unf· According to equations (4.19) and (4.20), the (i- 1,j- 1) entries of

3Throughout §4 we use the same 1J in several similar error bounds; hence 1J is in fact the maximum
of all these different 1J's.

19

matrices C(2) 6 and i · u7 are (a'!- j. ·aT)· (b ·- bi · tL ·/~I)j(w·- A·) a'!· b ·/(w·- A·)
A ' ' t t I J J I t Jl t J t)l

and li · Uj for 2:::;: i,j:::;: n. Thus

Equation (4.25) implies that

a'[· bi = (wi - A1) ·/I , a'[· bj = (wi - Aj) · Uj , and a[· bi = (wi- At)· ri .

Plugging these relations into above and simplifying, we have

- (2) IHi-l,j-11 =

<

[A (wl-.\l)('"YI-1-d /A (A)(A) A (w;-.\I)(r;-i;-YI)
iUj · 1-I - i WI - j Uj - Uj - Uj · il

I.ZA I I A I lwl-.\ll·bi-1-II + IZA I I A I I ' I+ I A I lw;-.\II·Ir;-i;-Yll i . u j . 1-YI I i . u j - u j . WI - A j u j . . lil I .

~min

By relation (4.26) and definition (4.22), we have

lw1- Ad· bi -111 a7JiaiiT · lbii
i1Ii ~ ii'Ii :S: a1Jv;

further by using relation (4.26), we have

lwi- A1l· h -1IZil < I . _A l·li-l + a7JiaiiT ·lbii < c ·Ii-I+ 11II _1JWt I t 1111 _'T]c,max t Q'f]V.

Plugging these relations into the last bound on IHi<.:L_1 j, rewriting the result in
matrix form, and simplifying, we have

i.H<2>1
~tnin

where we have used relations (4.26). According to Lemma 4.1, the last relation can
be further simplified to

< (av + ~max)7J . IZI . iuiT + a1J'l/Jil~max . ill . eT + QV'T] . e. iuiT '
~min . ~min ~Inin

< 0:7J(v + 1/J. ~max) :(Iii+ e). (lui+ p· ef. (4.29)
~min

20

4.3 Error Analysis for Factorizing Cauchy-like Matrices

Let Xn E Rnxn and Yn E Rnxn be lower and upper triangular matrices such that

1 0 0 1 1 1

Xn = 1 1
and Yn =

0 1

0 1
1 1 1 0 0 1

We also define

~(k)= t (~
s=k+l

IC(s)~C(s)l).
The following theorem gives an upper bound on IIHIIoo in (4.18).

Theorem 3 The backward error H in the LU factorization of a Cauchy-like matrix
C in (4.18) satisfies

where v, '1/J, J.l, and T are defined in equations (4.21} and (4.22).

Proof. We shall first show that

IHI ~ ary(v ~~.~max) ·(ILl+ Xn) ·(lUI+ ll · Yr,) + ~(~) (4.31)
rmn ~rmn

by using induction on n. We shall then prove the theorem by taking oo-norm on both
sides of (4.31).

Relation (4.31) clearly holds for all Cauchy-like matrices of dimension n = 1, 2;
and we assume it holds for n- 1 as well. In light of equation (4.24), we have

Plugging relations (4.26) through (4.29) into above, we have

~)

21

(
0 0) <XTJ (V + '1/J · ~max) (0 0)

+ 0 IC(2)- {'(2)1 + ~min . 0 (IZI +e)· (lui+ fl · e)T

(
0 0) ary(v + '1/J ·~max) (2) (1 • I (I 1)T) < 0 IH(2) I + ~min . IZI + e . /1 + JL u + fl . e

+ (~ IC(2) ~ C(2)l) , (4.32)

where we have used the fact that ~max ~ ~min and 'lj; ~ 1. The induction hypothesis
implies that

Plugging this relation into (4.32), we have

.6. (1)

+-
~min

<XTJ (V + '1/J · ~max) . (~ + 1
~min Ill+ e

~(2)

+-
~min

- ary(v + '1/J. ~max) · (ILl+ Xn) ·(lUI+ fl · Yn) + ~(1) ·

enun exnin

Hence relation (4.31) holds for all n. Taking oo-norm on both of its sides,

I
It follows from equation (4.23) that 11 is an upper bound on the element growth

in the computed L U factorization. Thus Theorem 3 shows that the backward error
in the computed LU factorization is bounded by (ary(v + '1/J · ~max))/~min times the
element growth in ILl and lUI plus the error in computing the generators.

22

4.4 Error Analysis for Algorithm 1

In this subsection, we assume that partial pivoting has been done before hand, so
that Algorithm 1 does not perform any pivoting.

For Algorithm 1, the generators are computed as

A_(k+I) = fi()i(k+I)) and fJ(k+l) = fi(_8(k+I)) ,

where ji(k+I) = Ak+I- [(k) · (aik)f and _8(k+I) = Bk+I- 'bik) · (u(k))T Ftk· It follows
that

Hence

IA.<k+l)- ji(k+l)l < TJ (IAk+~l + li<k)l·laik)IT)

liJ(k+l)- _8(k+I)I < TJ (i.Bk+~i + lbik)l· lu<k)IT /1-hl)

IG(k+l)- a<k+~)l IA.<k+l). iJ<k+l)- ;t<k+~). _8(k+l)l

< IA(k+I)- ji(k+I)I·IB(k+I)I + lji(k+I)I·IB(k+I)- _8(k+I)I + O(c2)

< 2TJ (IAk+II + lf(k)l·lalk)IT) · (i.Bk+ll + lblk)l·lu<k)IT/1-hl) + O(c2
)

(

- - - A (k) (k) T)
- 2TJ IAk+II·IBk+II+(IAk+II·Ibk 1/li'kl)·lu I

+2TJI[(k)l· (laik)IT ·IBk+1l + (laik)IT ·lbik)l/11-kl) ·lu(k)IT) + O(c2
).

Using definitions (4.21) and (4.22), Lemma4.1 and the fact that IZ(k)l::::; e+O(c), we
have

IIG(k+l)- a<k+l)llrnax ::::; 2TJ (IIIAk+II·IBk+~lllmax +vile ·lu<k)ITIImax)

+2TJ (lie ·laik)IT ·IBk+IIIImax + v ·lie ·lu(k)ITIIrnax) + O(c2
)

< 2TJ (1/J 1-lernax + ll/1 + 1/J 11ernax + vp) + 0 (E2
)

4TJp(v + 1/Jernax) + O(c2
). (4.33)

According to definition (4.21), this implies that for Algorithm 1

T ::::; 4nTJ 11(v + 1/Jemax) + 0(E2
) •

Plugging this into (4.24), and using the fact that IIIli + Xnlloo::::; 2n + O(c), we have

Theorem 4 For Algorithm 1, the backward error H in the LU factorization of C
in {4.18} satisfies

..

23

One expects 'lj; to be of the order 1 in general. The fact that Algorithm 1 performs
partial pivoting means that

for 1 :::; k :::; i :::; n. Comparing this with the definition for v in (4.22), one expects
v to be of the order ~max in general. Hence Theorem 4 suggests that in general the
backward error for Algorithm 1 is of the order c · ~max/~min · I!UIIoo·

However, if both A(k) and iJ(k) are ill-conditioned for some k, it could happen that
'lj; ~ 1 and v ~ ~max· If this happens, then the backward error for Algorithm 1 could
be much larger.

On the other hand, if the straightforward GEPP is applied to C, then the backward
error is basically c · II U II 00 • Thus Algorithm 1 appears to be less numerically stable
than straightforward GEPP on C. These conclusions are consistent with those of
Sweet and Brent [23].

4.5 Error Analysis for Algorithm 2

In this subsection, we assume that partial pivoting has been done before hand, so
that Algorithm 2 does not perform any pivoting.

For. Algorithm 2, A (k+l) is the computed Q factor in the QR factorization of
fl(Ji(k+l)) and B(k+l) is the product of the R factor and fl(B(k+ll). In finite arithmetic,
let fl(A.(k+l)) = A(k+l) · R + E1 be the QR factorization of fl(Ji(k+ll), and iJ(k+l) =
R · fl(B(k+l)) + E 2 • It it known that [13] the error matrices satisfy

where 'f/l and 'f/2 are small multiples of c. We observe that, after some algebra,

(4.35)

In the following, we shall derive an upper bound for T. To this end, we need to
derive norm bounds for some of the related quantities. Since Algorithm 2 performs
row pivoting and keeps A (k) numerically column orthogonal at every step, we have

A(k) Ill llmax :::; 1 + 0(c),

(4.36)

and

Since A (k) is numerically column orthogonal, it follows that

The fact that Algorithm 2 performs row pivoting gives

With these relations, we get

llfl(.B(k+Il)lloo < IIBk+IIIoo + llbikl · (u(kl)TIIoo/li'kl + O(t:)

< .jQ ·IIB(k)ll2 + llbik)lb ·IIUIIoo/li'kl + O(c)

- .jQ ·IIA(k) · _8(k)ll2 + llbik)ll2 ·IIUIIoo/li'kl + O(c)
A(k) A (k) A < .jQ · niiA · B llmax + Vn ·(max ·IIUIIoo + O(c)

< .jQ · n · (maxiiC(k)llmax + Vn ·(max· IIUIIoo + O(c)

24

< .jQ · n ·(max· JL + Vn ·(max ·IIUIIoo + O(c) · (4.39)

To obtain an upper bound on T, we now take oo-norm on both sides of (4.35).
Using relations (4.34) through (4.37) and (4.39), the right hand side of (4.35) is
bounded above by

IIE1IIoo ·llfl(B(k+1))lloo + IIA(k+1)lloo ·IIE2IIoo
< IIE1IIoo . llfl(.8(k+1))lloo + fo. IIE2IIoo + 0(c2)
< 771anllfl(Ji(k+1l)lloo ·llfl(_B(k+1l)lloo + 112at'·IIRIIoo ·llfl(.B(k+Il)lloo + O(t:2)
- a· (111 · n ·llfl(Ji(k+l))lloo + 1]2 · fo ·IIRIIoo) ·llfl(.B(k+l))lloo + O(c2)

< a · (27]1 · n · fo + 1]2 · a · (Vn. + 1)) · (.jQ · n · fl · ~max + Vn · II U II oo · (max) + 0 (E2)
< 4fj ·(a· n)~ · (n · JL + IIUIIoo) ·(max+ O(c2),

where fj =max{ 1], 1]1, 77 2 }, and we have used the fact that a :::; n. Hence

In addition, a derivation similar to that for equation (4.33) gives

Combining these two relations, we get

IIG(k+l) - G(k+l) lloo IIA(k+l) · .f3(k+l)- A(k+l) · _B(k+l)lloo
< IIA(k+i) . .f3(k+l)- fi(A(k+l)) . fi(.B(k+l))lloo

+llfl(A(k+l)). fi(.f3(k+l))- A(k+1). _B(k+l)lloo

25

- il. A - 2 < 4ry ·(a· n) 2
• (n · JL + IIUIIoo) · emax + 4rynp,(v + 1/Jemax) + O(t:) .

According to definition (4.21), this implies that for Algorithm 2

Theorem 5 For Algorithm 2, the backward error H in the L U factorization of C
in (4.18) satisfies

IIHIIoo :S 8yafj(a + 2) · n 2
• P · (IIUII= + n · JL) + O(c2), (4.41)

where p is defined in (2. 7).

Proof. We first derive upper bounds for v and 1/;, and then finish the proof by
plugging relation (4.40) and these bounds into (4.30).

Since A (k) is numerically column orthogonal,

Combining this and equation (4.38) to get

By definition (4.22), this implies

(4.42)

On the other hand,

IIIA(k)I·IB(k)IILax < IIIA(k)l·lf(k)lll2 :S IIIA(k)lll2 ·IIIB(k)lll2
< IIA(k)IIF ·IIB(k)IIF = vall.f3(k)IIF + O(c) l

and

Consequently,

By definition (4.22), this impli~s

'1/; :::; y'a · n + 0(E) .

Plugging relations (4.40) through (4.43) into (4.30), we get

IIHII=

I

< aT)(V + '1/;. ~max) . 2n. (JJUIIoo + n. 11) + nr + 0(€2)
G~ G~

< 2ni](a + 2)(~ + '1/;. ~max) . (IIUJJoo + n. 11)
~nun

3

+
4

7]. ~::1 n)2 · (JJUJJoo + n ·11) + O(c2
)

< 2ni](a + 2)(vfn · ~m.ax + yfa · n ·~max). (IIUJJoo + n ·ft)
~lllill

3

+ 47]. ~::1 n)2 · (IIUIIoo + n ·11) + O(c2
)

< sva~ · (a+ 2) · n 2
· P · (II Ull= + n · 11) + o(c2

) •

26

(4.43)

Remark 6: More detailed error analysis shows that the 0(E2
) term in (4.41) is

bounded by p1(n)E times the first term, where p1(n) is a low degree polynomial inn.
Remark 7: Throughout this analysis, we never used the fact that Algorithm 2

performs pivoting on the columns as well. Hence, Theorem 5 still holds if Algorithm 2
is modified to only perform partial pivoting.

Remark 8: An upper bound similar to (4.41) holds for Algorithm 3 as well,
provided that

for all k, as is the case in our numerical experiments.
Remark 9: If C is transformed from a Toeplitz-plus-Hankel matrix via equa­

tion (3.13), then p = O(n2). In this case, the upper bound (4.41) is a factor of
O(a~ n 2

) larger than the upper bound for the backward error in straightforward
GEPP and GECP, which is about 5E · n 2

· lllflloo (see [13, page 115]). Our numerical
experiments indicate that for such matrices, Algorithm 2 is sometimes less accurate
than straightforward GEPP, and the lost accuracy can be recovered by one step of
iterative refinement [13, §3.5]. See §5 for more details.

Finally, we perform a brief error analysis for Algorithm 4. Let M be a Toeplitz­
plus-Hankel-like matrix satisfying equation (3.12) with A column orthogonal. In finite
arithmetic, Algo;rithm 4 factorizes M by performing the following computations.

• Compute n = fi('D1,1) and A = fi('Dl,-1)·

• Compute A= fi(Q[1 ·A) and B = fi(B · Ql,-d·

27

• Compute the LU factorization for 6, where 6 is the Cauchy-like matrix that
satisfies the displacement equation

It is easy to show that

where 'f/3 is a small multiple of E and p2 (n) is a low degree polynomial in n. Thus
the reduction from a Toeplitz-plus-Hankel-like matrix satisfying equation (3.12) to a
Cauchy-like matrix satisfying (3.13) is numerically stable. In other words, Algorithm 4
is numerically stable if and only if the algorithm it uses in Step 2 (Algorithm 1, 2,
or 3) is stable.

5 Numerical Experiments

We have implemented Algorithm 4 in Fortran and have performed a large number of
numerical experiments with it to investigate its behavior in finite arithmetic and to
compare it with other available algorithms. In this section we discuss some implemen­
tation issues and report some of these numerical experiments. We chose Algorithm 3
with I< = 10 in Step 2 of Algorithm 4.

5.1 Implementation Issues

A natural way to implement Algorithm 3 is to keep permutations P and Q in vectors
and keep both L and U in a single matrix W by storing L in the strict lower trian­
gular part of W (excluding the diagonal) and U upper triangular part (including the
diagonal).

However, arrays are stored column-wise in Fortran. Note that U is generated
row by row in Algorithm 3. In order to store U, columns of W have to be moved
into and brought out of fast memory for most steps of elimination for large n. This
causes a significant amount of memory traffic between slow and fast memory levels
in the memory hierarchy. For more detailed discussions on memory traffic, see for
example [9, §2.6].

We reduce this memory traffic by storing rows of U column-wise in Algorithm 3.
Let S E Rnxn be the matrix that is 1 on the main anti-diagonal and 0 everywhere
else. For n = 2,

S=(~ ~).
It follows that (J = s. ur. s is an upper triangular matrix, whose kth column is the
(n- k + l)st row of U in the reverse order. The backward substitution procedure

28

for computing u-1
· y in Algorithm 3 can be rewritten as a forward substitution as

S · (([JT) -I · (S · y)). Our numerical experiments indicate that this technique speeds

up both Algorithm 3 and Algorithm 4 by up to a factor of 2 (see Table 1).
Our numerical experiments indicate that Algorithm 2 is slightly less accurate

than straightforward GEPP in many cases. Hence we perform one step of iterative
refinement for Algorithm 4 to get (see [13, §3.5]):

Algorithm 5 Solving M · x = z with iterative refinement.

1. Compute the factorization M = Q[1 · P · L · U · Q · Q[_1 and the solution
X (I) = Ql,-1 . QT . u-l . L -I . pT . Ql,l . z using Algorithm 4.

2. Compute the residual r(I) = z - M · x(l).

3. Compute the refined solution x(2) = x(I) + Ql,-1. QT. u-l. L-1 . pT. Ql,l. r(l).

4. Compute kmax = argmin1::;k9 iiz- M · x(k)ll·

5. Return x(kma.x) as the computed solution.

The norm in Step 4 can be any operator norm.
Our numerical experiments show that Algorithm 5 is in general more accurate than

Algorithm 4. Since the residual vectors z-M ·x(k) can be computed in 0(n log2 n) flops
using convolution (see [21]), the· extra cost for computing x(krnax) involves basically a
forward and a .backward substitution, about 2n2 flops, an increase of about 10% of
the cost of Algorithm 4 (see §3.1).

5.2 Numerical Results

The computations were done on an IBM RS6000 workstation in double precision
where the machine precision is c ::::::: 1.1 x 10-16 .

We compared the following algorithms:

• GEPP-1: LAPACK [1] subroutines DGETRF +DGETRS for solving a general
dense linear systems of equations using GEPP, with Fortran BLAS and without
iterative refinement; cost: O(n3

) flops.

• GEPP-II: LAPACK routines DGETRF+DGETRS for solving a general dense
linear systems of equations using GEPP, with optimized BLAS and one step Of
iterative refinement; cost: O(n3) flops.

• LEVIN: The algorithm available on Netlib; cost: O(n2
) flops.

• NEW-I: Implementation of Algorithm 4 by storing rows of U row-wise and
with no iterative refinement; cost: O(n2

) flops.

29

• NEW-II: Implementation of Algorithm 4 by storing rows of U column-wise
and with one step of iterative refinement; cost: O(n2

) flops.

We solve Toeplitz linear systems of equations T · x = z for random right hand side
vectors z and the following types of Toeplitz matrices T = (tk-ih~k,j~n:

• Type 1: {tk} randomly generated from uniform distribution on (0, 1). A Type
- 1 matrix is usually well-conditioned.

• Type 2: to= 2w and tk = sin(;~wk) fork"/:- 0. wE (0, 1/2] is a parameter. A Type
2 matrix is also called the Prolate matrix in (10, 24]; it is very ill-conditioned
for small w. In our experiments we took w = 0.25.

• Type 3: tk = ak
2

with 0 < a < 1. A Type 3 matrix is also called the Gauss
matrix in (10]; it is very ill-conditioned for a close to 1. In our experiments we
took a = 0.95.

• Type 4: t 0 is randomly generated from uniform distribution in (0.9, 1); tk =-to
for k > 0; tk = 0 for -n/2 < k < 0; and the rest are randomly generated
from uniform distribution in (0, 1). The straightforward GEPP produces huge
element growth on a Type 4 matrix.

Our numerical results are summarized in Table 1. NEW-II is faster than NEW-I
by a factor of up to 2 for large n and for all four types of matrices; and is more
accurate than NEW-I for Types 1 and 4 matrices. On the other hand, GEPP-II is as
accurate as GEPP-I, but is up to a factor of 2 faster. For n = 2560, NEW-II is up to
17 times faster than GEPP-I and up to 10 times faster than GEPP-II, respectively;
whereas LEVIN is only up to 3 times faster than GEPP-I and up to 2 times faster than
GEPP-II, respectively. Both NEW-I and NEW-II solve all linear systems successfully,
whereas GEPP-I, GEPP-II, and LEVIN fail on Type 4 matrices.

6 Extensions and Conclusions

We have presented a fast algorithm for solving Toeplitz or Toeplitz-plus-Hankel sys­
tems of linear equations and shown it to be numerically stable, provided that the
element growth in the computed factorization is not large. We have presented prac­
tical modifications to this algorithm and discussed implementation techniques that
further improve its efficiency. Our numerical experiments show that the resulting algo­
rithm is both stable and efficient; and the cost for performing pivoting for Cauchy-like
matrices can be kept a small fraction of the total cost.

The algorithms presented in this paper can be modified to solve Mosaic Toeplitz
or Block Toeplitz systems of linear equations (see (7, 10]).

Our techniques to avoid internal element growth in the generators can be easily
extended to the generalized Schur algorithm for factorizing more generally structured

30

MATRIX ORDER EXECUTION TIME (SECONDS)
TYPE n GEPP-1 GEPP-11 LEVIN NEW-I NEW-II

160 .3x10 1 .3x10 1 .1xl0° .3x1o- 1 .3x1o- 1

320 .2x 10° .2xl0° .4x 10° .9x 10- 1 .1 X 10°
Type 1 640 .2x 101 .2x 101 .2x 101 .5x 10° .4x 10°

1280 .2x 102 .1x102 .7x101 .2x101 .1x101

2560 .1x 103 .7x 102 .3x 102 .1 X 102 .6x101

160 .3x 10 1 .3x1o- 1 .1 X 10° .2x10 1 .3x10 1

320 .2x10° .1x10° .5 X 10° .9xlo- 1 .9x 10-1

Type 2 640 .2x 101 .1 X 101 .2x101 .5x 10° .4x10°
1280 .2x 102 .1 X 102 .7x101 .2x101 .1 X 101

2560 .1 X 103 .7x102 .3x102 .1x102 .6x101

160 .3x10 1 .3x10 1 .1x 10° .3x10 ·1 .3x10 1

320 .2x 10° .2x10° .5x 10° .9x1o- 1 .9x 10-1

Type 3 640 .1x101 .1x101 .2x 101 .5x 10° .3 X 10°
1280 .5x 101 .1 X 102 .7x101 .2x101 .1x101

2560 .3x 102 .7x 102 .3x 102 .1x102 .5x 101

160 .2x 10- 1 .2x10 1 .1x10° .3x10 1 .3x10 1

320 .1x10° .1x10° .4x 10° .9x 10- 1 .1x10°
Type 4 640 .1x101 . .1x101 .2x 101 .5x 10° .3x10°

1280 .1x102 .8x101 .7x101 .2x101 .1 X 101

2560 * * * .1x102 .6x101

MATRIX ORDER
IIT:r:- blh

..Jii · f · (IITII1 ·llxlh + llblld
TYPE n GEPP-1 GEPP-11 LEVIN NEW-I NEW-II

160 .8x 10 ·l .9x 10 ·l .4x101 .1x 10.! .9x 10-1

320 .9x 10-1 .8x 10- 1 .3x 102 .4x102 .1x10°
Type 1 640 .8x 10- 1 .1 X 10° .1 X 103 .4x 102 .5x 10-1

1280 .2x 10° .2x 10° .2x 102 .7x102 .2x10°
2560 .9x 10- 1 .9x1o- 1 .3 X 102 .2 X 103 .9x 10-1

160 .8x10 1 .1 X 10° .1x101 .5x10° .5x10°
320 .9x 10-1 .9x1o- 1 .1 X 101 .4x 10° .4x10°

Type 2 640 .8x 10- 1 .1 X 10° .7x 10° .2x10° .2x10°
1280 .7x 10- 1 .9x 10- 1 .2x101 .2x 10° .2x10°
2560 .7x 10- 1 .7x 10- 1 .7x 103 .7x 10° .7x10°

160 .2x 10 ·1 .3x 10- 1 .8x10 ·1 .1x101 .1x101

320 .2x 10- 1 .2x 10- 1 .7x10- 1 .9x 10° .9x 10°
Type 3 640 .1x 10- 1 .2x1o- 1 .6x1o- 1 .1x101 .1 X 101

1280 .9x 10-2 .1x1o- 1 .5x1o- 1 .5x10° .5x10°
2560 .7x1o- 2 .9x1o- 2 .3x10- 1 .5x10° .5x10°

160 .4x 101" .4x 101" .6x1013 .3x 101 .1 X 10°
320 .2x1015 .2x 1015 .4x1013 .5x 101 .2x 10-1

Type 4 640 .2x1015 .2x 1015 .2x1013 .1x102 .4x 10-1

1280 .1x 1015 .1 X 1015 .9x1013 .5 X 101 .1 X 10°
2560 * * * .4x101 .2x 10-1

Table 1: Execution Times and Relative Residuals

31

matrices (see [6, 20,. 21]), so is the technique to store the rows of the u matrix
column-wise.

Recently, Chandrasekaran and Sayed [5] propose a new fast algorithm for factor­
izing the Toeplitz matrix based on the QR factorization of a larger structured matrix
and show that it is numerically stable. This algorithm appears to perform more flops
than Algorithm 4, but does not have the potential problem of having large element
growth in the computed factorization.

We end this paper by asking two open questions.

1. The upper bounds for element growth on GEPP and the variation of GECP
. . . . 2+ I:~:: 1/ k
m Algonthm 2 on a Cauchy-hke matnx are 2n-l and p · W(n), re-
spectively (see§ 2). Do sharper bounds exist for Cauchy-like matrices with low
displacement rank?

2. There are supper-fast algorithms for solving Toeplitz or Toeplitz-plus-Hankel
systems of linear equations in 0(n log~ n) flops, but they are unstable in gen­
eral(see [3]). Are there numerically stable super-fast algorithms for such prob­
lems?

Acknowledgements. The author is grateful to Profs. S. Chandrasekaran, J.
Demmel, and Dr. V. Olshevsky for helpful discussions, and Profs. S. Chandrasekaran,
I. Gohberg, G. Heinig, T. Kailath, and A. H. Sayed, and Dr. V. Olshevsky for
preprints of their papers.

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A Green­
baum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK
Users' Guide. SIAM, Philadelphia, PA, second edition, 1994. ·

[2] E. Bozzo and C. Di Fiore. On the use of certain matrix algebras associated with
discrete trigonometric transformations in matrix displacement decomposition.
Preprint, 1993.

[3] J. R. Bunch. Stability of methods for solving Toeplitz systems of equations.
SIAM J. Sci. Stat. Comp., 6:349-364, 1985.

[4] T. F. Chan and P. C. Hansen. A lookahead Levinson algorithm for general
Toeplitz systems. IEEE Proc. Signal Processing, 40:1079-1090, 1992.

[5] S. Chandrasekaran and A. H. Sayed. A fast and stable solver for nonsymmetric
structured systems. Preprint, submitted for publication, 1995.

32

[6] S. Chandrasekaran and A. H. Sayed. Stabilizing the fast generalized Schur algo­
rithm. Preprint, submitted for publication, 1995.

[7] J. Chun and T. Kailath. Generalized displacement structure for block-Toeplitz,
Toeplitz-block, and Toeplitz-derived matrices. SIAM J. Matrix Anal. Appl.,
15:114-128, 1994.

[8] G. Cybenko. The numerical stability of Levinson-Durbin algorithm for Toeplitz
systems of equations. SIAM J. Sci. Stat. Comput., 1:303-319, 1980.

\

[9] J. Demmel. Berkeley Lecture Notes in Numerical Linear Algebra. Mathematics
Department, University of California, 1993.

[10] I. Gohberg, T. -Kailath, and V. Olshevsky. Fast Gaussian elimination with partial
pivoting for matrices with displacement structure. Mathematics of Computation,
1995. to appear.

[11] I. Gohberg and V. Olshevsky. Fast algorithm for matrix Nehari problem. In
U. Helmke, R. Mennicken, and J. Sauers, editors, Systems and Networks: Math­
ematical Theory and Applications, Proceedings of the International Symposium
MTNS-93, volume 2, pages 687-690, 1994.

[12] I. Gohberg and V. Olshevsky. Fast state space algorithms for matrix Nehari and
Nehari-Takagi interpolation problems. Integral Equations and Operator Theory,
20:44-83, 1994.

[13] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins University
Press, Baltimore, MD, 2nd edition, 1989.

[14] M. H. Gutknecht and Hochbruck M. Look-ahead Levinson and Schur algorithms
for non-Hermitian Toeplitz systems. IPS Research Rept. 93-11, IPS Supercom­
puting, ETH-Ziirich, August 1993.

[15] G. Heinig. Inversion of generalized Cauchy matrices and other classes of struc­
tured matrices. In Linear Algebra in Signal Processing, IMA volumes in Mathe­
matics and its Applications, volume 69, pages 95- 114, 1994.

[16] G. Heinig, P. Jankowski, and K. Rost. Fast inversion of Toeplitz-plus-Hankel
matrices. Numer. Math, 52:665-682, 1988.

[17] G. Heinig and K. Rost. Algebraic methods for Toeplitz-like matrices and oper­
ators. Operator Theory, 13:109-127, 1984.

(18] A. S. Householder. The Theory of Matrices in Numerical Analysis. Dover Pub­
lications, Inc., 1964.

33

[19] T. Kailath, S. Kung, and M. Morf. Displacement ranks of matrices and linear
equations. J. Math. Anal. and Appl., 68:395-407, 1979.

[20] T. Kailath and A. H. Sayed. Fast algorithms for generalized displacement struc­
tures. In H. Kimura and S. Kodama, editors, Recent Advances in Mathematical
Theory of Systems, Control, Networks and Signal Processing, volume II, pages
27-32. Mita Press, Japan, 1992.

[21] T. Kailath and A. H. Sayed. Displacement structure: Theory and applications.
SIAM Review, 1995. to appear.

[22] D. R. Sweet. The use of pivoting to improve the numerical performance of
Toeplitz matrix algorithms. SIAM J. Matrix Anal. Appl., 14:468-493, 1993.

[23] D. R. Sweet and R. P Brent. Error analysis of a fast partial pivoting method for
structured matrices. In T. Luk, editor, Advanced Signal Processing algorithms,
Proc. of SPIE, volume 2363, pages 266-280, 1995.

[24] J. M. Varah. The Prolate matrix. Lin. Alg. Appl, 187:269-278, 1993.

[25] J. H. Wilkinson. Error analysis of direct methods of matrix inversion. J. ACM,
10:281-330, 1961.

.... ~ .-:.·

LAWRENCE BERKELEY NATIONAL LABORATORY
UNIVERSITY OF CALIFORNIA
TECHNICAL & ELECTRONIC INFORMATION DEPARTMENT
BERKELEY, CALIFORNIA 94720

--f.--.. , .-~···

