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Abstract 

While there has been much interest in developing tomographic reconstruction 

algorithms that are more statistically efficient than filtered backprojection (FB), 

the degree of improvement possible has not been well understood. We present an 

algorithm-independent theory of statistical accuracy attainable in emission tomog­

raphy that provides a geometrical interpretation of the statistical efficiency of FB. 

Our analysis shows that, in general, one can build unbiased estimators with smaller 

variance than FB. The improvement in performance is obtained by exploiting the 

range properties of the Radon transform. 

Keywords: Radon transform, nonparametric estimation, inverse problems, ill-posed 

problems, regions of interest 
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1 Introduction 

.Filtered backprojection (FB) is widely used as a reconstruction algorithm for com­

puted tomography. It can be implemented in a computationally efficient manner and 

has been found to be reasonably robust in practical applications. While these prop­

erties of FB make it an attractive algorithm, its derivation does not explicitly take 

into account the statistical nature of the observations. This has lead to considerable 

interest in developing reconstruction algorithms based on explicit statistical models. 

While these algorithms can be expected to be more or less statistically optimal, they 

are computationally intensive. This leads to the question: Is the improvement in 

statistical efficiency worth the increased computational burden? To answer this ques­

tion, it is necessary to understand the statistical efficiency of FB. In this paper, we 

propose a framework for understanding the statistical efficiency of FB in the context 

of emission tomography (ET). 

Our analysis shows that FB is just one of many possible unbiased estimators for 

the image. This multiplicity of unbiased estimators is related to the fact that not all 

functions on the observation space are Radon transforms of functions on the image 

space. In general, one can use this fact to build unbiased estimators that are more 

statistically efficient than FB. 

1.1 Outline of Paper 

In section 2, we propose a simple statistical model of ET. In section 3, we review 

concepts related to FB. In section 4, we show that the FB estimator has the form 

of a linear estimator and derive its statistical properties. In section 5, we derive 

statistically efficient estimators for the ET problem. In section 6, we discuss con­

crete representations of the estimators constructed in section 5 with examples. Some 

concluding remarks are given in section 7. 
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Remark 1.1 Many of the results discussed in this paper are taken from a previous 

paper by the author [Kur95]. This paper is largely an attempt to explain these results 

and their significance in a more accessible way. We refer the reader to [Kur95] for 

mathematically precise versions of these results. 
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2 Statistical Model of ET 

We start by proposing a simple statistical model of ET. The model is highly idealized 

in that it ignores numerous secondary physical effects that occur in practice. However, 

it abstracts the basic problem of ET. " 

In essence, ET is the problem of estimating the density, f, of a radioactive tracer in 

a subject as a function of position by external detection of emitted photons. We will 

consider the simple case where f describes the tracer density on the unit (radius) disk 

De JR2 , where JR2 denotes 2-dimensional Euclidean space. A radioactive disintegra­

tion occurring at xE D results in the emission of one or two photons that travel along 

a random line through x with uniformly distributed orientation. (Positron emitters 

give off two photons that travel in antipodal directions, hence along the same line.) 

In. most imaging systems, only the lines lylng in the plane of D are detected. We will 

therefore consider the observations in ET to consist of these lines. In other words, 

we will ignore the 3-dimensional aspect of the problem and treat it as a problem in 2 

dimensions. 

We assume that f is normalized to integrate to 1. The locations of the radioactive 

disintegrations are modeled as independent, identically distributed (i.i.d.) random 

variables with probability density function (p.d.f.) f. The observations are modeled 

as random lines in JR2 through the locations of the radioactive disintegrations with 

uniformly distributed orientation. It is then easy to show that the observations are 

i.i.d. random variables with p.d.f. at a given line proportional to the integral of f 

along that line. 

Let lL denote the set of lines in JR2 . If f is a real-valued function on 1R2 (we denote 

this by f : JR2 ---> JR), we define the Radon transform of f to be the function Rf: lL ---> lR 

whose value at IE lL is the integral of f over 1. (We use boldface type for 1 since 

two coordinates are needed to describe the points in JL. It is therefore, in a sense, a 

vector-valued quantity.) We see that the observations in our model of ET are i.i.d. 

IL-valued random variables with p.d.f. proportional to Rf. In fact, the observations 
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are distributed according to 1r-1 Rf [JS90, sec. 2.1]. 

Remark 2.1 To avoid notation confusion, we emphasize that R is a linear function 

that takes functions on JR2 to functions on IL. Such a function is sometimes called a 

linear operator. Using the standard notation for functions, one could write the result 

of applying the function R to f as R(f). However, we have chosen to write it as Rf 

to emphasize the analogy of the linear operator R acting on f to a matrix A acting 

on a vector x. Rf(l) is therefore obtained by applying the linear operator R to f and 

evaluating the resulting function at I E IL. 

Remark 2.2 Note that f is defined to be a p.d.f. on the locations of radioactive 

disintegrations; it contains no information about the absolute rate of disintegrations. 

(This is a result of our assumption that f is normalized to unit integral.) Similarly, 

the data are taken to be a sequence of elements of IL; there is no time information. 

Thus the way we have set up the problem defines away the problem of estimating 

the total count rate. This explains why the familiar Poisson distribution does not 

appear in our model. In practice, one would like to know the total count rate, but 

good estimates for this quantity are easy to construct. Curiously, this slight change in 

definition of the model seems to have a substantial effect on the form of the resulting 

analysis, cf. [VSK85]. 

.. 
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3 Filtered Backprojection 

In this section, we review the FB algorithm. We start by con~idering the filtering and 

backprojection operations for functions on lL. 

3.1 Filtering on JL 

The first step of the FB algorithm involves a filtering operation on the observations, 

which are considered _as a function on lL. In preparation for this, we review the 

standard convention for performing filtering operations on functions on lL. 

Definition 3.1 Define the unit vector 6= (cosO, sinO) E JR?.- Note the notational 

distinction between 0 E lR and the boldface (J E JR2 . We put coordinates on lL by 

assigning the coordinates ( 0, s) to the line in 1R.2 through sO that is perpendicular to 

the vector (J. We write the integral of a function g on lL as 

f g(l)dl:= f"joo g(O,s)dsdO. 
fL fo -oo 

The usual filtering operation for functions on JR.2 is described by the mathematical 

operation of convolution. For example, suppose f is a function on 1R.2 . A smoothed 

version off can be obtained by taking a smooth function a on JR.2 and computing the 

convolution off and a: 

a* f(x) = f a(y)f(x- y) dy. 
J~2 

If a is concentrated around the origin, then a*f(x) is a weighed average of the values 

of f around x. 

An alternative description of this operation may be given using the Fourier trans­

form. The Fourier transform of a function f on JR.d is defined by 

where x·e denotes the inner product of X and e. It is well-known that the Fourier 

transform of a * f is equal to the product of the Fourier transforms of f and a. Thus 
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the operation of convolution with a is equivalent to the operation of multiplying the 

Fourier transform of f by the Fourier transform of a and taking the inverse Fourier 

transform. It is customary to refer to this operation as applying the frequency-domain 

filter a, where a is the Fourier transform of a. 

To define convolutions of functions on JL, we use the convention that the convolu­

tion is taken with respect to the second variable only, i.e., 

b * g(O, s) = ;_: b(O, t)g(O, s- t) dt. 

Similarly, the Fourier transform of functions on lL is taken with respect to the second 

variable only: 

g(O, 77) = ;_: e-i21rs7Jg(O, s) ds. 

With these conventions, the usual result that the Fourier transform of the convolution 

of two functions is equal to the product of their Fourier transforms holds for functions 

on JL. 

Remark 3.2 For fixed 8, Rf(O, s) is a projection of f. Thus the convention of consid­

ering convolution and the Fourier transform with respect to the second variable only 

amounts to applying these operators to each projection. 

3.2 Backprojection 

The second step of the FB algorithm is backprojection. 

Definition 3.3 The backprojection operator, which we denote by RT, is a linear 

operator that takes functions on lL to functions on ~2 , i.e., it goes in the opposite 

direction of R. It maps the function g on lL to the function RT g on ~? defined by 

Rrg(x) = fo'lr g(O,x·8)d8. (3.1) 

The notation RT is used to indicate that the backprojection operator is the adjoint 

operator of R. This means that the equality 

r Rf(l) g(I) dl = r f(x) RT g(x) dx lJL }IT?,.2 
(3.2) 
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holds for all functions f on JR.2 and g on JL (satisfying certain technical conditions that 

ensure the existence of the integrals) [Her83, p. 169]. 

Remark 3.4 The matrix analog to the adjoint of a linear operator is the transpose. 
' 

The matrix analog of equation 3.2 is the matrix identity y ·Ax = AT y · x. In equation 

3.2, the integral on the left side of the equation serves as the inner product of the 

functions Rf and g. Similarly, the integral on the right side of the equation serves as 

the inner product of the functions f and RT g. 

3.3 The FB algorithm 

Definition 3.5 We define the ramp filter for functions on JL, which we denote by H, 

to be the frequency-domain filter 2?ri1'JI, i.e., Hg(O, 17) = 2?ri1'Jig(O, 17). 

The FB algorithm is based on the following inv~rsion formula for the Radon trans­

form: 

(3.3) 

cf. [Nat86, thm II.2.1]. In words, f can be recovered from its Radon transform by 

ramp filtering each projection and then backprojecting. 

In practice, Rf is not known exactly, but is measured with some statistical error. 

As a result, direct use of equation 3.3 is not feasible since the ramp filter H will result in 

unacceptable amplification of the high-frequency components of the statistical errors. 

To counteract this problem, the ramp filter His usually combined in series with a low 

pass filter. We express this low pass filter as convolution by the function won JL. The 

effect of adding the low-pass· filter on the resulting reconstruction may be understood 

from the formula 

(3.4) 

where 

(3.5) 
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cf. [Nat86, eq. V.l.2]. In other words, instead of estimating f(x), we estimate the 

weighted value a* f(x) off around x. The weighting function a is referred to as the 

aperture function. 

In what follows, we will assume that the filter function w is a smooth function on 

1L that is symmetric ins and independent of 0. Then a is a radial function on lR2
, i.e., 

a(x) depends only on JxJ, where Jxl denotes the Euclidean norm of x. Under these 

conditions, we can invert the relationship between a and w. To do so, we first note 

that, under these conditions, w satisfies the well-known conditions for being in the 

range of the Radon transform [Nat86, thm. II.4.1]. We can therefore write w = Ra' 

for some function a' on JR2 • Substituting this equation into equation 3.5 and applying 

equation 3.3 gives 

and hence 

a' 
' 

w= Ra. 

Example 3.6 Suppose a is a Gaussian density function on JR2 centered at the origin 

with dispersion u 2 , i.e., 

The corresponding w = Ra is a Gaussian density function with respect to the second 

variable on IL, i.e., 

[Dea83, eq. 3.4.5]. This corresponds to the low-pass frequency-domain filter 

- (() ) - _TJ2 /2r2 w ,rJ-e , 

where T = 1/27ru, which also has a Gaussian functional form. 
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Remark 3. 7· In discrete versions of the FB algorithm, the low-pass filter often comes 

in implicitly by means of interpolation in the backprojection step. Detailed discussion 

of this point may be found in [Lew83, sec. III] and [Nat86, sec. V.l]. 

3.4 The FB algorithm in ET 

We apply equation 3.4 to ET in the following way. We estimate Rf by 1rn-1 2:::7=1 o(Ii), 

where n is the number of observedlines, li = (Bi, -si) E lL is the ith observ~tion, and 

o(li) denotes a unit point mass, i.e., a delta function, at li. An estimate of a * f is 

then obtained by substituting 1rn-1 2:::7=1 o(Ii) in for Rf in equation 3.4. Thus the FB 

estimate of a * f (X) amounts to 

n n 

(27r)-1RT[Hw * 7rn-1 L o(Ii)](x) 2-1n-1 L RT[Hw* o(li)](x) 
i=1 

n 

2-1n-1 L HRa(Bi, si - x · 8i), (3.6) 
i=1 

where in the last equality we use the assumed symmetry of w = Ra. 

Let x E ~2 
.. We will now show that the FB estimate of a* f(x) is linear in the 

sense that it can be written in the form n-1 2:::7=1 bx(li) for a function bx on lL. Define 

the translation of the aperture function a by x E IR2 by ax(x') = a(x' - x), Then, 

using the shifting property of the Radon transform, Rax(B, s) = Ra(B, s-x·8) [Dea83, 

eq. 3.5.1], equation 3.6 can be rewritten as 

n n 

(27r)-1RT[Hw * 7rn-1 L o(Ii)](x) = 2-1n-1 L HRax(li). 
i=1 i=l 

Define the function bx: lL -+ IR by 

(3.7) 

Then our estimate of a* f(x) can be written as n-1 2::~ 1 bx(li)· In other words, our 

estimate of a* f(x) is the ·average value of the function bx at the observation points. 

We shall call the function bx the observation-space representation of the FB estimator 

at x. 
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Example 3.8 Continuing example 3.6, suppose the aperture function a is a Gaussian 

density function centered at the origin with dispersion 0'
2. Then ax is a Gaussian 

density function centered at x E IR2 with dispersion 0'2 . A calculation, the details of 

which may be found in [Kur95, prop. 6.2], shows that 

where ~ denotes the special function known as Kummer's confluent hypergeometric 

function [Sla72]. Defining the function Xu : lR ~ lR by 

we can write 

bx(e, s) = Xu(s- x · 8). 

Thus for each fixed e, bx as a function of s is a translate of the function Xu. In figure 1, 

we illustrate the function Xu for 0' = 0.1. In figure 2, the graph on the upper left 

shows a Gaussian aperture function centered at the origin with 0' = 0.1. The graph 

on the upper right shows the corresponding bx. The lower half of figure 1 is similar 

to the upper half, except that the aperture function is now centered at x = (1, 0) 

instead of at the origin. Figure 3 is identical to figure 2 except that 0' = 0.5 instead 

of 0' = 0.1. 

Remark 3.9 It is useful to compare the ET problem with the simpler problem where 

the observations are distributed according to f itself, i.e., the problem where we 

observe the locations of the radioactive disintegrations. We term this problem the 

planar imaging problem. For this problem, the natural estimator for the quantity 

a* f(x) is the linear estimator n-1 2::~= 1 ax(xi), where the Xi are the observations. 
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4 Statistical Properties of FB 

As discussed in section 3, it is impractical to estimate arbitrary features off by filtered 

backprojection when Rf is measured with statistical errors. To obtain a statistically 

well-posed problem, we instead.estimate a* f, where a is an aperture function. For 

x E IR2
, the value of the FB estimate at x niay be thought of as an estimate of 

/ 

a* f(x) = f ax(x')f(x') dx'. 
. JH?_2 

(4.1) 

For notational convenience, we define ax· f = fJRz ax(x')f(x') dx', using the analogy of 

the integral fiRz ax(x')f(x') dx' to an inner product. 

To assess the statistical properties of FB, we consider the value of the FB estimate 

at x E IR2 as an estimate of ax .f! The representation of FB as a linear estimator given 

in section 3.4 makes it easy to compute the statistical properties of this estimate. We 

denote mathematical expectation when the true image density is f by Ef. Since the 

li are independent, the expected value of the estimator when the true image density 

is f is given by 

n 

Efn~ 1 2::: bx(li) 
i=l 

(21r)-1 l HRax(l) Rf(l) dl 

(21r)-1 { RTHRax(x')f(x') dx' 1JR2 . 

r ax(x') f(x') dx' 
1JR2 . 
ax 0 f, 

where we used equations 3.2 and 3.3. Thus FB has the desirable property that it is 

an unbiased estimator of ax · f. 

The variance at f 'is given by 

n n 

= n-2 L L Ef{[bx(li) -ax· f][bx(lj)- ax· f]} 
i=l j=l 
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n 

= n-2 L Ef{[bx(li) -ax· f] 2
} 

i=1 
n 

= n-2 L {Efb!(li)- (ax· f) 2
} 

i=1 

(4.2) 

Example 4.1 Let fu denote the uniform distribution on D, i.e., fu is the constant 

function 1r-
1 . Then Rfu(O,s) = 27r-1V1-s2 (cf. [Dea83, sec. 2.5, ex. 4]). We nu­

merically evaluated equation 4.2 when f0 = fu, a is the Gaussian aperture function 

considered in example 3.8, x is the origin, and n = 106 . The results are shown in 

the upper curve of figure 4 as function of the standard deviation of the aperture 

function, o-. For comparison, the variance of the estimator n- 1 L:~1 ax(xi) for the 

planar-imaging problem is shown in the lower curve. The asymptotic behavior of 

these curves as o- -+ 0 can be described very simply. For small o-, the variance of 

the FB estimate for ax · f is approximately i/81r3l2o-3n. In cm:n:parison, the variance 

·for the planar imaging problem is approximately 1/47r2o-2n. We refer the reader to 

[Kur95, prop. 6.10] for the details of the calculations. 

Remark 4.2 The problem of x-ray computed tomography with a Gaussian aperture 

function was considered in [Tre78]. While the structure of the observations and the 

noise for this problem differ from that of the ET problem, it is interesting to note 

that the result in [Tre78] reduces to 1/8?r312 o-3n by taking appropriate limits, where 

n now denotes the number of transmitted photons. 
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5 Efficient Estimators for ET 

Now that we have characterized the statistical performance of FB, it is natural to 

ask how it compares to other estimators. To make this concrete, we will compare 

the performance of various estimators for the task of estimating 'ax · f. We have just 

seen that FB is an unbiased estimator of ax· f. A natural figure of merit for unbiased 

estimators is variance. Since the variance of estimators will vary as a function of f, 

it is necessary to fix some f0 . We then ask: among all unbiased estimators of ax · f, 

which estimator has the smallest variance at f0 . This estimator is termed the efficient 

estimator at f0 . We can then define the statistical efficiency of FB at f0 as the ratio 

of the variance of the efficient estimator to the variance of FB at f0 . 

We saw in section 4 that the FB estimate for ax ·f has the form of a linear estimator, 

i.e., the estimator is of the form n-1 2::~ 1 b(Ii), where b is a function on lL. It .turns 

out the efficient estimator is linear as well. The proof of this fact given in [Kur95, ~ 

sec. 4] is rather long and technical. Instead of presenting this proof in its entirety, we 

shall restrict ourselves to proving that this estimator is an efficient linear estimator, 

i.e., an unbiased linear estimator whose variance at f0 is minimal with respect to all 

unbiased line~r estimators. Restricting the analysis to linear estimators minimizes 

mathematical technicalities and, in the author's opinion, gives the most insight into 

the problem. 

We start our construction of an efficient estimator by characterizing the unbiased 

linear estimators. Consider the linear estimator generated by the function b on JL. 

Its expected value at f is given by 
n ' . 

Efn-1 L b(Ii)= 1r-
1 J b(I)Rf(I) dl. 

i=1 L 

Thus the condition that the estimator generated by b is unbiased amounts to the 

condition 

1r-
1 l b(I) Rf(I) dl 

(5.1) 
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for all p.d.f.s f on D. A standard argument shows that the last equality holding for 

all p.d.f.s f on D is equivalent to the condition that 

(5.2) 

on D, i.e., b backprojects to ax on D. 

Since the function bx satisfies the equation 1r-1 RTb = ax on ~_2, it a fortiori 

satisfies it on D and hence generates an unbiased estimator. However, it is not the 

only unbiased estimator. It is clear from equation 5.2 that we can add any function 

that backprojects to 0 to b and the resulting sum will generate an unbiased linear 

estimator. For example, we could add the function 

b' ( (J' s) - { 
1 

-1 

if 0 :::; (J < 7r /2 

if 7r /2 :::; (J < 7r 

Thus there are many unbiased linear estimators for ax · f and we are thus lead to the 

problem of finding which one has the least variance . 

Suppose b generates an unbiased linear estimator. Essentially the same calculation 

as that made in equation 4.2 shows that the variance of this estimator at f0 is given 

by 

n-1 
( 1r-

1 l b2 (l)Rfo(I) dl- (ax· fo) 2
) . 

We see that finding the efficient linear estimator amounts to finding the b that mini­

mizes 1r-1 fn.. b2 (l)Rf0 (I) dl subject to the constraint 1r-1 RTb =ax on D. 

We now proceed to describe the solution to this constrained optimization problem. 

Let JL(D) denote the subset oflL consisting of lines that intersect D. For the remainder 

of the paper, we will view R as an operator that maps functions on D to functions on 

JL(D). It is easy to show that the adjoint of R viewed as an operator taking functions 

on D to functions on JL(D) is just RT viewed as an operator taking ~unctions on JL(D) 

to functions on D, i.e., RT satisfies 

f Rf(l) g(l) dl = . f f(x)RT g(x) dx 
ln..(D) ln 
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for all functions fonD and g on IL(D). With these definitions, the unbiased condition 

reduces to ?r-1 RTb = ax, where we now view RT as an operator taking functions on 

IL(D) to functions on D. We denote the set of functions on IL(D) whose elements 

satisfy the equation RTb = 0 by N(RT), i.e., N(RT) is the nullspace of the operator 

RT. (The reason we fuss about the domains of the functions is that the nullspace 

of RT depends on the assumed domain of the functions. For example, there exist 

nonzero functions on IL(D) that backproject to 0 onD, but not on ~2 .) 

Define L 2 (IL(D), Rf0 ) to be the space of square integrable functions on IL(D) with 

respect to the weighting function Rf0 , i.e., the set of functions b on IL(D) such that 

llblli2(JL(D),Rfo) = 1 b2
(l) Rfo(l) dl < oo. 

Using this notation, the variance of the estimator generated by bat f0 can be written 

as 

n-l (7T'-1IIblli2(JL(D),Rfo)- (ax· fo) 2) · 

Thus the efficient linear estimator is generated by the smallest b E L2 (IL(D), Rf0 ) 

that satisfies the unbiased condition ?r-1 RTb =ax. 

The key to the solution of this constrained optimization problem is the following 

orthogonal composition theorem for L 2 (IL(D), Rf0 ). If b, b' E L2 (IL(D), Rf0 ), then 

their inner product in L2 (IL(D), Rf0 ) is defined by 

(b, b')£2(JL(D) Rfo) = F b(l)b'(l)Rfo(l) dl. 
' jlL(D) 

(5.3) 

If (b, b')£2(JL(D),Rfo) = 0, then b and b' are said to be orthogonal in L 2 (IL(D), Rf 0 ). 

We define the orthogonal complement of N(RT) in L2 (IL(D), Rfo) to be the subspace 

of L 2(IL(D), Rf0 ) whose elements- are orthogonal to all b' E N(RT). We denote it 

by N(RT)J_. We emphasize that, unlike N(RT), N(RT)j_ depends o~ f0 through the 

weighting function Rf0 . If bE L2 (IL(D), Rf0 ), there is a unique decomposition 
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of b such that P.Af(RT)b E N(RT) and P.Af(RT).Lb E N(RT).l. The functions P.Af(RT)b 

and P.Af(RT).L b are termed the projections of b onto .Af(RT) and .Af(RT).l, respectively. 

The projection P.Af(RT)b (respectively P.Af(RT).Lb) has the geometric interpretation of 

uniquely minimizing lib'- blll2(L(D),Rfo) over b' E .Af(RT) (respectively b' E .Af(RT).l ), 

i.e., it is the closest point in .Af(RT) (respectively .Af(RT).l) to b ~ith respect to the 

metric ll·llucn:..(D),Rfo). An easy calculation gives a version of the Pythagorean theorem: 

We will now prove that the efficient linear estimator is generated by P.Af(RT).L bx. 

We first note that p .Af(RT).L bx generates an unbiased estimator since it differs from 

bx by an element in N(RT) and hence satisfies the unbiasedness condition given by 

equation 5.2. If b is any other solution of equation 5.2, then b- P.Af(RT).Lbx E .Af(RT). 

The uniqueness of the orthogonal decomposition and the Pythagorean theorem then 

gives 

This is clearly minimized when b = P.Af(RT).Lbx. 

We have just shown that the efficient estimator is generated by the projection 

of bx onto the subspace N(RT).l of L2 (1L, Rf 0). There is an important alternative 

characterization of N(RT).l as the range of the Radon transform. We define the 

normalized Radon transform Rfo as the operator that maps f to Rf /Rf0 . The statistical 

motivation for introducing this normalization is that Rf0 f(I) is the likelihood ratio of 

the observation I E JL(D) under the statistical hypotheses f and f0. Then .Af(RT).l is 

equal to the range of the normalized transform Rt0 in L2 (JL, Rf0 ), R(Rf0 ). (Strictly 

speaking, N(RT).l is actually the closure of R(Rf
0
), i.e., we need to include the limits 

of sequences of functions in R(Rfo) in addition to R(Rf0 ).) To prove this, we note that 

RT is the adjoint of the operator Rfo when Rfo is viewed as an operator with range in 

the weighted space L 2 (JL, Rf 0 ) since 

[ Rf(l) 
Jn:..(D) Rfo(l) g(l)Rf0 (l) dl 
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[ Rf(l)g(l) dl 
Jn.(D) -

k f(x)RT g(x) dx 

(cf. 3.2). The result then follows from a general theorem that says the orthogonal -

complement of the adjoint of a linear operator is equal to the range of the li:p_ear 

operator [Con90, sees. 1.2, 11.2]. This theorem is the analogue of the familiar fact from 

linear algebra that the range space of a real matrix is orthogonal to the nullspace of 

its transpose. 

IJt summary, not all functions on IL( D) are Radon transforms of functions on 

D. While the FB algorithm makes no use of this fact, the efficient estimator takes 

advantage of it by subtracting off components that are orthogonal to this subspace. 

Remark 5.1 The efficient estimator at f0 depends on f0 since the projection opera­

tion depends on the weighting function Rf0 . Roughly speaking, this reflects the fact 

that Rf 0 is measured with a statistical uncertainty that varies over IL with variance 

proportional to Rf0 . (Consider the usual discrete models for ET where the observa­

tions have a Poisson distribution.) The efficient estimator constructed above is not a 

practical estimator since the weighting function Rf 0 is not known a priori. One could 

construct a practical estimator by replacing Rf0 with a suitable estimate. ·Of course, 

the estimator as a whole would then become nonlinear. 

Remark 5.2 While the FB algorithm makes no use of the dependence of the statis­

tical uncertainty of the observations on the underlying image, other algorithms, such 

as maximum likelihood and certain iterative approaches, do. The results here can be 

-viewed as a way of quantifying how much improvement might be expected through 

use of this additional information. 

Remark 5.3 We have just characterized how well the quantity ax·f may be estimated 

for a given aperture function a. In fact, the entire analysis remains valid if the function 

ax is replaced by any smooth function <P on JR2 • Defining 1/J = 2-1 HR</>, the linear 
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estimator generated by P.N(RT)l. 1/J is an efficient estimator of ax·¢ at f0 with variance 

Thus our analysis quantifies how well a broad range of features in an image may be 

estimated. 
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6 Construction of Projection Operators 

In section 5, we saw that the linear estimator generated by Pn(Rr
0
)bx = PN(RT).L bx is 

an efficient estimator for ax· f at f0 in the ET problem. In this section, we will express 

the projection operator Pn.(Rro) in a concrete way. 

Recall from linear algebra that it is easy to compute the projection of a vector onto 

a subspace if one has an orthonormal basis for the subspace. The coefficients of the 

projection of a vector with respect to the orthonormal basis are just the inner products 

of the vector with the basis vectors. The same ideas apply to the construction of 

projection operators for L2(1L(D), Rf0 ) with the inner product defined in equation 

5.3. 

Definition 6.1 A subset of L2(1L(D), Rf0 ) is said to be orthonormal if each of its 

elements have unit norm and distinct elements are orthogonal to each other. An 

orthonormal subset B C L2 (1L(D), Rf0 ) is said to be an orthonormal basis if any 

element in L2 (1L(D), Rf0 ) can be expressed as a linear combination of elements in B. If 

B = {gi} is an orthonormal basis for L2 (1L(D), Rf0 ), then each g E L2 (1L(D), Rf0 ) can 

be expressed as g = Li(gi, g)L2(L(D),Rfo)gi and JJglli2(L(D),Rfo) = Li(gi, g)i2(L(D),Rfo)· 

We start in section 6.1 with the special case where f0 is the uniform distribution fu 

considered in example 4.1. It turns out that the analysis of this special case provides 

useful building blocks for the analysis of the general case, which is carried out in 

section 6.2. 

6.1 The Uniform Distribution 

We will now give orthonormal bases for n(RfJ and N(RT) in L2 (1L(D), Rfu)· We 
) 

begin by establishing some notation. 
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Definition 6.2 Let N and N+ denote the sets of nonnegative integers and positive 

integers, respectively. FormE N, define the functions Um: [-1, 1] --->JR. by 

U ( ()) = sin[(m + 1)e] 
m COS - . () . 

sm 

The Um are called the Chebyshev polynomials of the second kind [Dea83, sec. 7.6]. 

As the name implies, the Um are indeed polynomials; Um is a polynomial of order m. 

The first few are 1, 2s, 4s2 -1, and 8s3 - 4s. For lEN+ and mEN with l + m even, 

define the functions Cz,m : lL(D) ---> lR and dz,m : lL(D) ---> lR by 

and 

dz,m(B, s) = ~Um(s) sin(ZB). 

It turns out that 

and 

B:- {cz,m, dz,m: lEN+, mE {l mod 2, l mod 2 + 2, ... , l- 2} }. 

-
are orthonormal bases for R(RfJ and N(RT) in L2 (1L(D), Rfu), respectively. A proof 

of this follows easily from some standard results on the Radon transform [Dea83, 

sec. 7.6]. The details may be found in [Kur95]. Thus PR(Rf
0
)bx has the expansion 

P'R(Rf
0
)bx = L (g, bx)£2(lL(D),Rf,.) 

gEE 

and the variance of the linear estimator generated by bx is given by 

where 

2 11r jl (g, bx)L2(JL(D),Rf,.) = 2 g(B, s)bx(B, s)V1- s2 ds dB. 
1f 0 -1 ' 

(6.1) 

(6.2) 

(6.3) 
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The variance of the FB algorithm at fu is given by 

so the difference in variance at fu between the FB and the efficient estimator is 

n-
1 L (g, bx)i2(JL(D),Rfu)· (6.4) 

gEBl- . 

Example 6.3 Continuing example 4.1, we consider the case of a Gaussian aperture 

function with CY = 0.5, f0 = fu, and x = (1, 0) E JR2
• The FB estimate is generated 

by bx, which is shown at the bottom right of figure 3. The efficient estimator at fu 

is generated by Pn(Rf")bx, which is illustrated at the left of figure 5. The difference 

PN(RT)bx = bx - PR(Rf")bx is illustrated at the right of figure 5. In this particular 

case, the variance of the FB estimator is 0.087n- 1 while the variance of the efficient 

estimator is 0.066n-1 . Thus, in this case, the variance of the FB estimator is more 

than 30% higher than that of the efficient estimator. 

We conclude this section by showing there is an important special case where the 

FB algorithm is efficient at fu. This occurs when x = 0, so that ax = a. To see this, 
' 

recall from section 3 that we assume that the aperture function a is radial. It is then 

easy to verify that the observation space representation b0 of a is independent of () 

and can be written as an even function of s. It follows that, for l + m E 2N+, the 

inner product (cz,m, bo)L2(JL(D),Rfu) reduces to 

2 fn7r !1 2 cos(W) d() Um(s)b0 (s) vh- s2 ds = 0. 
7r 0 -1 

Similarly, (dz,m, bo)£2(JL(D),Rfu) = 0. It follows that 

bo L (Um, bo)L2(JL(D),Rfu)Um. 
mE2N 

PR(Rf,')bo. 

(6.5) 
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6.2 The General Case 

We now consider the general case where f0 =f fu. The first thing to note is that the 

subspace N(RT) is defined independently off0 . This means that B~ will still be a basis 

for N(RT). However, it will not generally be an orthonormal basis in L2(JL(D), Rf0 ). 

To convert this basis to an orthonormal basis, it is necessary to apply the Gram­

Schmidt procedure [Con90, 1.4.6], which is analogous to the usual Gram-Schmidt 

orthonormalization procedure of linear algebra. 

Similar considerations apply to finding an orthonormal basis for 'R.(Rf0 ). The 

functions in 'R.(Rf0 ) are of the form Rf /Rf0 . The functions in R(RfJ are of the form 

Rf /Rf u· Thus a basis for R(Rf0 ) is given by the functions of the form g~ with 

g E Bu. Again, this basis will not generally be orthonormal in L2 (JL(D), Rf0 ), but an 

orthonormal basis may be obtained by the Gram-Schmidt procedure. 

Example 6.4 We consider the case of a Gaussian aperture function with u = 0.5, 

f0 = fu, and . (This was illustrated at the top of figure 3.) In section 6.1, we saw that 

the FB estimator is efficient at x = 0 for fu. We now present an example that shows 

the FB estimator can be very suboptimal if f0 =f fu. Suppose f0 is highly concentrated 

about the point (0, 0.63) E D. Then Rf0 is highly concentrated about the curve 

B f--.+ ( B, 0.63 sin B) E JL an.d we can approximate the integral fJL(D) g( B, s) Rf 0 ( B, s) ds dB 

by 1r-1 f011" g(B, 0.63 sin B) dB for any function g on JL. Using this approximation, the 

variance of the FB estimator at f0 is~ 0.04683n-1 . By the above results, the function 

c2,o/l/c2,oii£2(JL(D),Rfo) is a unit vector of N(RT) in L2(JL(D), Rfo). The squared inner 

product of this function with b0 in L2 (JL(D), Rf0 ) is ~ 0.04594, which implies that 

the variance of the efficient estimator at f0 is at most 0.00089n-1 . Thus in this, 

admittedly extreme, example, the variance of the efficient estimator is less than the 

variance of the standard estimator by a factor of more than 50. 

,.. 
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7 Discussion 

To summarize, the fact· that not all functions on the observation space are Radon 

transforms of functions on the image space means that ET is, in a sense, an overde­

termined problem. To construct an efficient estimator, it is necessary to weight the 

information obtained from the observations according to its statistical un<;:ertainty. 

The resulting estimator is analogous to a weighted least squares procedure. More­

oever, since the statistical uncertainties depend on the unknown image, a practical 

estimator must estimate these uncertainties from the observations, making the overall 

estimation procedure nonlinear. 

The results in this paper give best-possible lower bounds on the variance of unbi­

ased estimators in ET. They can be used as a benchmark in assessing the performance 

of image reconstruction and quantification algorithms. Appropriately generalized, 

they can also be used as a design tool for assessing the performance that is achievable 

by new imaging devices. 

The numerical results given in section 6 show that, at least in some cases, the effi­

cient estimator has significantly less variance than the FB estimator. More extensive 

evaluation of the bound should help delineate the conditions under which significant 

improvement over FB is possible. 

We want to say a few words about how one might construct a practical ver­

sion of our efficient estimator. In practice, observations are usually collected as 

binned data, resulting in a discrete, finite-dimensional obser;ation space. This finite­

dimensional observation space decomposes into finite-dimensional analogs of N(TT) 

and R(Tf0 ). The analog ~f the efficient estimator would be obtained by projecting 

a finite-dimensional analog of gx0 onto the analog of R(Tf0 ). This projection oper­

ation amounts to a weighted least squares problem. Since the de~nition of Tfo and 

. the projection operation depend on Tf0 , we require an estimate of the analog of Tf0 . 

The obvious estimate is the observation vector itself. We are currently investigating 

estimators based on this scheme. 



ACKNOWLEDGEMENTS 

Acknowledgements 

26 

The author thanks Ronald Huesman, Bryan Reutter, and Sundar Amartur for their 

helpful comments on preliminary drafts of this paper. This work was supported in 

part by the Director, Office of Energy Research, Office of Health and Environmental 

Research, Medical Applications and Biophysical Research Division of the U.S. Depart­

ment of Energy under contract No. DE-AC03-76SF00098 and in part by NIH training 

grant HL07367 and National Heart, Lung, and Blood Institute grant P01-HL25840. 



REFERENCES 

References 

27 

[Con90J J. B. Conway. A Course in Functional Analysis. Springer-Verlag, New York, 

1990. 

[Dea83] Stanley R. Deans. The Radon Transform and Some of Its Applications. 

John Wiley & Sons·, New York, 1983. 

[Her83] Alexander Hertle. Continuity of the Radon transform and its inverse on 

Euclidean space. Math. Z., 184:165-192, 1983. 

[JS90] lain M. Johnstone and Bernard W. Silverman. Speed of estimation in 

positron emission tomography and related inverse problems. Ann. Statist., 

18:251-280, 1990. 

[Kur95] Alvin Kuruc. Esti_mation of smooth integral functionals in emission to­

mography. Technical Report LBL-37032, Lawrence Berkeley Laboratory, 

Berkeley, CA, 1995. 

[Lew83] Robert M. Lewitt. Reconstruction algorithms: Transform methods. Proc. 

IEEE, 71:390-408, 1983. 

[Nat86] F. Natterer. The Mathematics of Qomputed Tomography. John Wiley & 

Sons, New York, 1986. 

[Sla72] Lucy Joan Slater. Confluent hypergeometric functions. In Milton 

Abramowitz and Jrene A. Stegun, editors, Handbook of Mathematical Func­

tions, pages 503-535. Dover Publications, New York, 1972~ 

[Tre78] 0. J. Tretiak. Noise limitations in X-ray computed tomography. J. Comp. 

Asst. Tomo., 2:477-480, 1978. 

[VSK85] Y. Vardi, L. A. Shepp, and L. Kaufman. A statistical model for positron 

emission tomography. J. Amer. S{at. Assn., 80:8-20, 1985. 



Index 
A 

a, 9 

adjoint, 8 

aperture function, 10 

B 

bx, 11 

Bu, 22 

B~, 22 

c~ 

Xu, 12 

Cz,m, 22 

convolution, 7 

D 

D, 5 

·, 7 

b, 11 

dz,m, 22 

E 

TJ, 8 

Ef, 13 

efficient estimator, 15 

efficient linear estimator, 15 

ET, 3 

28 

F 

f, 5 

fu, 14 

f0 , 15 

FB, 3 

Fourier transform, 7 

G 

g, 7 

H 

H, 9 

I 

fn.., 7 

(·, ·), 17 

i.i.d., 5 

L 

IL, 5 

l, 5 

IL(D), 16 

L 2 17 
' 

N 

1·1, 10 

n, 11 

N, 17 

11·11, 17 



INDEX 29 

N, 22 T, 8 

N+, 22 
u 

0 Um, 22 

'1\ 
orthogonal, 17 

w 
orthogonal complement, 17 

orthonorma}, 21 
w, 9 

orthonormal basis, 21 X 

p x, 5 

4!, 12 

..L, 17 

p, 18 

'p.d.f., 5 

planar imaging, 12 

R 

1~.2 5 
' 

R, 5 

R, 18 

Rf0 , 18 

Radon transform, 5 

s 
s, 7 

<J, 10 

T 

9, 7 

(}, 7. 

-=-, 7 



0 

5 

·1 

Figure 1: The function Xu with a= 0.1 

Figure 2: Observation-space representations of the, FB estimator with ·a 
Gaussian aperture function. The aperture function translated by x 0 is shown 
on the left and its observation-space representation bx0 is shown on the right. 
The upper pair is for x 0 = (0, 0) while the lower pair is for x0 = (1, 0). For 
both pairs, a = 0.1. 
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Figure 3: Observation-space representations of the FB estimator with a 
Gaussian aperture function. Everything is as in figure 2, except that tJ = 0.5. 

VARIANCE 

Figure 4: Variance of FB with Gaussian aperture function at the origin for 
uniform distribution with 106 photon pairs (upper curve). Lower curve is 
variance for planar imaging. 
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Figure 5: The function which generates the efficient estimator is shown on 
the left. The difference between the generators of the FB and the efficient 
estimators is shown on the right. 
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