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Abstract 

A first-principles quasiparticle approach to electron excitation 
energies in solids is reviewed. The theory has been applied to 
explain and predict the spectroscopic properties of a variety of 
systems including bulk crystals. surfaces, interfaces, clusters, 
defects, and materials under pressure. Several illustrative 
applications are presented and some recent theoretical developments 
discussed. 

1. INTRODUCTION 

In the 1960's, the Empirical Pseudopotential Method developed by Marvin L. 
Cohen and his collaborators [1] provided a theoretical means based on a few 
experimentally determined parameters to unravel the electronic structure and optical 
properties 'of semiconductors. Subsequent development of the ab initio 
pseudopotential total energy methods [2,3] in the 1980's allowed a first-principles 
determination of the structural, vibrational, and related ground-state properties of 
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solids. The introduction of the ab initio molecular dynamics approach [4] further made 
possible the evaluation of dynamical and thermodynamical quantities. A parallel and 
complementary development has been the advent of a frrst-principles method for the 
electron (quasiparticle) excitation energies [5]. Similar to the ab initio total energy 
methods for ground-state properties, the quasiparticle approach permits the 
computation and prediction of the excited-state properties of real materials from first 
principles. 

Because of many-electron effects [6], the electron excitation spectra of solids can 
be significantly different from those of an independent-electron picture. The frrst­
principles quasiparticle method [5], developed in the mid 1980's, incorporates these 
effects into the self energy of the electrons and has shown to yield very accurate 
excitation energies for real materials. It thus provides an important theoretical link 
between structural studies and spectroscopic probes. The method is based on an 
expansion of the electron self-energy operator to first order in the dressed electron 
Green's function and the dynamically screened Coulomb interaction, in Hedin's GW 
apQroximation [7]. A key ingredient for real materials is the inclusion of local field 
effects in the dielectric response. Ab initio calculations using this approach have been 
applied to understand and predict results from optical, direct and inverse 
photoemission, scanning tunneling, and other spectroscopic measurements for a 
variety of systems. In this article, we give a short discussion of the method and 
present some selected applications to semiconductors, materials under pressure, 
chemisorption, and point defects to illustrate the approach. 

The remainder of the article is organized as follows. The theoretical formulation 
is briefly reviewed :il Section 2. Results for several prototype systems including bulk 
crystals, solid xenon and molecular hydrogen under pressure, the H/Si(lll) surface, 
and a color center in LiCl are presented in Section 3. Section 4 discusses some recent 
refinements of the method. Finally, Section 5 gives a summary and conclusions. 

2. FIRST-PRINCIPLES CALCULATION OF QUASI­
PARTICLE EXCITATIONS' 

Although ab initio electronic structure methods based on the local density 
approximation (LDA) generally yield very accurate results for structural energy and 
related properties of solids, these methods, being based on a ground-state theory, do 
not directly give electron excitation energies. For example, the use of LDA Kahn­
Sham eigenvalues for interpreting spectroscopic data had often led to rather severe 
discrepancies. The LDA calculations incorrectly predicted Ge to be a metal and gave 
Si a band gap of 0.5 e V instead of the experimental value of 1.17 e V. In general, the 
band gaps of semiconductors and insulators are underestimated in the LDA by 50-
100%, and Hartree-Fock (HF) results are usually several times too large compared to 
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experiment. Similar problems exist for any excitation spectra of solids which involve 
promoting an electron away from the ground state. In some cases, LDA calculations 
even give incorrect band orderings and band dispersions. 

A quantitative description of spectroscopic data of solids requires knowing the 
properties of quasiparticles, i.e., the particle-like excitations in an interacting many­
electron system [6]. It is the quasiparticle excitations which essentially determine the 
spectral features measured in experiments such as photoemission, optical, and 
scanning tunneling measurements. However, because of the complexity of the strong 
electron-electron interactions in solids, it remair:ed a major challenge to calculate the 
quasiparticle energies of real materials from first principles. Considerable theoretical 
efforts had been devoted to this problem since the 1_950's. 

In the first-principles quasiparticle approach, the energies and wavefunctions of the 
quasiparticle excited states are obtained by solving a Dyson equation [5, 6]: 

where Tis the kinetic energy operator, Vext the external potential due to the ions, VH 
the average electrostatic Hartree potential, and r the electron self-energy operator 
respectively. The self-energy operator r contains the many-electron effects. In 
general, I is nonlocal, energy-dependent, and nonHermitian with the imaginary part 
giving the lifetime of the quasi particles. 

The GW approximation involves taking the self-energy operator r as the first­
order term in a series expansion of the screened Coulomb interaction W and the dressed 
Green function G of the electron: 

:E(r,r';E) = 2~ f dc.o e-ioc.o G(r,r';E-w)W(r,r';c.o) (2) 

where o is a positive infinitesimal. One makes use of the fact that the screened 
Coulomb interaction is much weaker and hence would lead to a rapid convergent 
series. In applications to real materials, the basic idea [5] is to make the best possible 
approximations for G and W, calculate r, and obtain the quasiparticle energies without 
any adjustable parameters. The screened coulomb interaction W-clv c (where t: is 
the dielectric response function and V c the bare Coulomb interaction) incorporates the 
dynamical many-body effects of the electrons. Hence the dielectric response function 
t:(r, r',w) is a key ingredient in determining the electron self energy. In a k-space 
formulation, the crystalline dielectric function is a matrix EGG'(q,w) in the 
reciprocal lattice vectors. The off-diagonal elements of this matrix describe the local 
field effects which distinguish the variations in the electronic screening properties in 
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differeiu part of the crystal. These local fields are physically very important '[8] and is 
a major component in the quantitative evaluation of the self-energy operator for a real 
material. A crucial factor that made possible the first ab initio calculation of 
quasiparticle energies in semiconductors had been the development of techniques for 
calculating the static dielectric matrices together with a scheme for extending them to 
finite frequencies. 

In principle, the quasiparticle energies Eqp and wavefunction ljf which enter the 
electron Green's function G need to be calculated self-consistently with 2: and G. In 
practice, G is constructed using the LDA Kohn-Sham eigenvalues and wavefunctions 
and iteratively updated with the quasiparticle spectrum from Eq. (1). The quasiparticle 
wavefunctions have been shown to be virtually identical to the LDA eigenfunctions in 
many cases. For most calculations, the dynamical dielectric matrix is typically 
obtained in a two-step process. The static dielectric matrix is first computed as a 
ground-state property within the LDA. Each element of the static dielectric matrix is 
then extended to finite frequencies using a generalized plasmon pole model employing 
exact dispersion and sum rule relations [5), There are no adjustable parameters in this 
procedure. (For some cases, a model static dielectric matrix can be used, resulting in a 
significant computation saving without losing accuracy.) Comparison with results 
from calculations using alternative methods [9] to compute the w dependence of £ 

showed that the generalized plasmon pole scheme is very accurate in general for 
systems with s and p electrons. 

The k-w space formulation of the quasiparticle method has been applied quite 
successfully to the study of semiconductors and metals as well as surfaces, interfaces, 
clusters, point defects, and pressure induced insulator-metal transitions. The 
parameter-free nature of the calculations is of particular importance to the latter group 
of applications since these systems are often less well-characterized experimentally. 
We present below some selected examples from these studies, and discuss some recent 
extensions of the approach which make use of mixed-space and imaginary time 
techniques with the potential of greatly simplifying the calculations. 

3. SOME ILLUSTRATIVE APPLICATIONS 

3.1 Band Gaps and Spectral Properties of Semiconductors 
and Insulators 

Table 1 gives the calculated quasiparticle band gaps [5, 10] of several prototypical 
semiconductors as compared to the LDA Kohn-Sham gaps and experimental values. 
As discuss above, the LDA gaps significantly underestimate the experimental values. 
Table 1 shows that, with the excitation energies properly interpreted as transitions 
between quasiparticle states, the calculated gaps are now in excellent agreement with 
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Table 1. Comparison of calculated band gaps (in eV) with experiment. Core 
polarization and relaxation effects are included for Ge, AlAs, and GaAs. 

LDA Present Theory Expt.• 

diamond 3.9 S.6 S.48 
Si o.s 1.16 1.17 
Ge -0.26 0.73 0.74 
GaAs 0.12 1.42 l.S2 
AlAs 1.28. 2.01 2.24 
LiCl 6.0 9 .I 9.4 

• See Refs. S and 10. 

Table). Comparison between theory and experiment for optical transitions 
(in eV) in Ge, Si, and diamond. (After Ref. S.) 

LOA Present work Ex pt. 

Ge 

r7v -7 r8v 0.30 0.30 0.297 

r8v -7 r7c -0.07 0.71 0.887 

r8v -7 r6c 2.34 3.04 3.006 

r8v -7 r8c 2.S6 3.26 3.206 

Xsv -7 Xsc 3.76 4.4S 4.501 

Si 

r2S'v -7 rise 2.S7 3.3S 3.4 

r2S'v -7 r2'c 3.26 4.08 4.2 

L3·v -7 L1c 2.72 3.S4 3.4S 

L3·v -7 L3c 4.S8 S.SI s.so 

Diamond 

r2S'v -7 rise s.s 7.S 7.3 

r2S'v -7 r2'c I3.I I4.8 1S.3±S 

X4v -7 XIc I0.8 I2.9 12.S 

5 



experiment. These results were obtained with only input being the atomic number of 
the constituent elements and the crystal lattice parameters. The use of a self-consistent 
crystal Green function and the inclusion of local fields (the full dielectric matrix) and 
dynamical screening effects are all shown to be important factors in describing 
ar.curately the self-energy effects. Ab initio pseudopotentials are also typically used to 
facilitate the calculations. Thus, core-valence interactions [10) can sometimes affect 
the values of certain gaps in materials with very shallow and highly polarizable core 
states. In Table 1, the values for the minimum band gap of Ge, GaAs and AlAS were 
calculated with the core-polarization effects included. The change in the direct gap of 
GaAs is -0.4 e V. The core-polarization effects on the gaps of the other materials 
listed in Table 1 are however typically about 0.1 eV or less. 

In general, the calculated transition energies (neglecting excitonic effects) are 
within about 0.1-0.2 e V of the observed spectral features in optical measurements. 
This level of accuracy is comparable to empirical fitting methods. Table 2 presents 
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Fig. I. Calculated quasiparticle energy of Ge compared to direct/inverse 
photoemission experiments [11, 12]. 
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some of the optical results for Si, Ge and diamond. A comparison of the calculated 
quasiparticle band structure of Ge with data from angle-resolved photoemission [11] 
and inverse photoemission [12] measurements is depicted in Figure 1. The agreement 
between theory and experiment is well within the experimental and theoretical error 
bars. The calculated unoccupied conduction band states forGe were.in fact predictions 
of the theory. The GW method has been applied, with equally impressive results, to 
numerous other semiconductors and s-p metals including solid C6Q [13] and the wide 
gap materials AlN and GaN [14]. Recently, GW calculations have also been extended 
to the transition metal systems, Ni [15] and NiO [16]. 

3.2 Materials under Pressure 

Another useful application of quasiparticle energy calculations is in studying the. 
electronic properties of solids under pressure, in particular insulator-metal transitions. 
We discuss three examples here: solid Xe, molecular solid hydrogen, and diamond. 

Solid Xe undergoes a pressure-induced isostructural insulator-metal transition, and 
the crystal structure is experimentally known to be hcp in the vicinity of the 
metallization pressure of 132(±5) GPa [17, 18]. Our quasiparticle calculations [19,20] 
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Fig. 2. LDA and GW minimum band gaps of hcp Xe as function of 
density. Experimental data from Ref. 17 are shown as solid circles. 

7 



yielded a band gap closure at the pressure of 128 GPa, in good agreement with 
experiment. Figure 2 compares the theoretical band gaps as function of density with 
the values from optical measurements [17]. The quasiparticle results reproduce very 
accurately the volume dependence of the band gap, whereas the LDA results 
significantly underestimated the transition volume. With spin-orbit interactions 
included, the calculated bands quantitatively explain all the salient features observed in 
the experimental optical spectra at metallization, in particular the appearance of a peak 
at -2 eV in the absorption spectra which has been interpreted as electronic transitions 
to hole states at the top of the valence bancl made available after the band gap closed. 
Another important finding from the calculation is that the self-energy correction to the 
LDA band gap is not constant as a function of density. So it is not possible to deduce 
the insulator-metal transition from knowing just the pressure coefficient of the gap at 
low pressure and the LDA results. 

A rapid change in the self-energy c<'rrection to the band gap as a function of 
density is also clearly seen in Fig. 3 for solid molecular hydrogen [20, 21]. The high 
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Fig. 3. Calculated GW. Hanree-Fock (HF) and LDA minimum gap of 
oriemationally ordered solid molecular hydrogen in hcp structure as a 
function of density. 
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pressure phases of solid H2 are .r· ~Ae complicated because of the complex orientations 
possible for the hydrogen molecu 3r axis and because of the large zero-point motions 
energy. Accurate structural dettrmi:~ation rema!ris a difficult task. We carried out 
calculations for H2 in the h~p su.ucture with L.ie molecular axes either aligned along 
the c-axis or having different degrees of Oiienta:ional disorder modeled within a crystal 
field approximation. In Fig. 3, the quasiparticle gaps are compared with those from 
Hartree-Fock (HF) and LDA czlculations. In addition to the already mentioned 
problem of HF overestimating and L:C'A underestimating the gap, we find that both 
HF and LDA predict a linear beh&vior in the b<~.nd gap versus density, whereas the 
quasiparticle results do not show su~h a F~:e'lrity. This difference arises from a 
significant increase in the dielectric screening with density, which results in a strong 
and nontrivial dependence of the self-e-.,~::gy C1rrection to the LDA band gap on 
density. Figure 4 depicts a comparison of them y with experimental measured gaps 
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Fig. 4. Variation of the calculated quasiparticle band gap with density for 
the orientationally ordered and disordered phases of hcp molecular 
hydrogen. Experimental results are from Refs. 22 and 23. 
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[22,23] which shows again excellent agreement. At higher density, molecular 
orientational order however plays an increasingly important role in determining the 
value of the gap, preventing a definitive prediction of the pressure for band closure. 
For a given density, theory predicts that the minimum band gap increases 
monotonically and nonlinearly with orientational disorder. 

Another system of particular interest and importance is diamond, owing to its role 
in pressure anvil cells. The changes in band gaps, dielectric screening, and electronic 
properties of diamond under stress have been calculated [24] using the quasiparticle 
approach. It is found that, contrary to the static pressure case, the minimum gap of 

I 

diamond is significantly reduced under megabars uniaxial stress. However, the details 
of the electronic structure and the critical pressw:e for insulator-metal transition are 
sensitive to the exact stress profile in the crystal. These changes in the optical 
response of diamond under large stress are extremely relevant to the analysis of high 
pressure experiments, since diamond is employed both as containing walls and 
windows through which optical probes traverse. 

3.3 H/Si(lll) Surface 

The quasiparticle approach has been employed quite widely to analyze excitation 
spectra of semiconductor surfaces and band offsets at heterojunctions. Examples of 
several applications can be found in the articles by M. Hybertsen and by J. Northrup 
in this Volume. Here we briefly discuss hydrogen on the Si(lll) surface as a 
prototypical chemisorption system. This system has recently received,considerable 
interest because of the development of a chemical method [25] for preparing hydrogen 
terminated Si(lll) surfaces which are highly stable, easily transportable, and 
structurally perfect over large areas. 

The calculations [26,27] were carried out using a surface geometry determined 
from total energy minimization in a 14-layer supercell geometry. Figure 5 depicts the 
calculated quasiparticle surface-state. bands as compared to those from a LDA 
calculation as well as the measured surface-state energies from photoemission [26]. 
Two striking features are seen from the figure. First, the shifts in the surface-state 
energies due to self-energy corrections are very large. The shifts are larger by a factor 
of 2 to 3 as compared to those on occupied surface states found in previously studied 
systems. The larger self-energy effects here are related to the very localized hydrogen 
Is orbital forming the surface states. Second, the self-energy corrections to the LDA 
surface bands give rise to an unexpectedly large change in the band dispersion. In 
particular, the LDA surface band (a') in Fig. 5 shows a 0.42 eV dispersion going from 
K to M which disagrees with the near dispersionless data from photoemission. The 
discrepancy is completely eliminated in the quasiparticle results. Analysis of the 
theoretical results showed that this large change in dispersion arises from the 
sensitivity of the nonlocal self-energy operator to the localization of the electron 
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Fig. 5. Calculated surface-state bands of H/Si(lll): LDA (full lines) and 
GW (open circles). The photoemission data (black dots) are from Ref. 26 

wavefunction [27]. The wavefunction of the surface state (a') at M is much more 
localized than that at K leading to a significantly larger self-energy correction for states 
nearM. 

Studies of the above kind have demonstrated that very accurate quasiparticle 
energies may be obtained for semiconductor surfaces and interfaces. With the 
calculated electronic structure, one can then go on to study other phenomena such as 
surface electron-hole interactions in optical transitions [28]. It is found that self­
energy effects can significantly change the position and band dispersion of both the 
occupied and empty surface states. As a result. the quasiparticle band gaps between 
occupied and empty surface states are typically much larger than the LDA Kohn-Sham 
values. Some of these changes are qualitatively similar to the self-energy corrections 
to the bulk-state energy gaps. However, the self-energy corrections to the surface 
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states are in general quite different from those to the bulk states [29]. The differences 
arise from changes in screening at the surface which lead to a change in the self-energy 
operator I and from changes in the characters of the surface-state wavefunction which 
can be substantially different from those of the bulk states. 

3.4 F-Center in LiCI 

As an example of GW quasiparticle calculations for point defects in solids, a 
study of the electronic excitation energies of a F-center defect in a LiCl crystal was 
carried out [30]. The halogen vacancy constituting the F-center is modeled in a 
supercell consisting up to 54 atoms. Experimentally, these halogen vacancies, known 
as color centers for the visible coloration they induce [31], can be created by x-ray 
irradiation or by heating in an alkali vapor. The neutral vacancy contains a single 
bound electron, and the fundamental transition between the defect states give rise to 
absorption of visible light in the otherwise colorless salt. 

The Cl vacancy induces only a small lattice relaxation. The theoretical electronic­
excitation results [30] are summarized in Table 3 together with those from experiment 
[32-34] and from LDA calculations. The GW quasiparticle energies of the bulk LiCl 

Table 3. Bulk band gap and F-center defect excitation energies in LiCl 
compared to experiment (in e V). (After Ref. 30) 

LDA GW Ex pt. 

Band gap 6.06 9.26 9.4• 
ls ~ 2p 2.4 3.4 3.1 - 3.3b 

ls ~ Lc 1.8 4.5 4.5c 

ls ~Ac 2.2 5.0 5.oc 

ls~ Xc 2.8 5.7 5.8c 

•Ref. [32] 
bRef. [33] 
cRef. [34] 

bands, e.g. the band gap in Table 3, are similar to those in previous crystalline 
calculations and are in good agreement with experiment [32]. The additional single­
particle excitations arising from transitions from the ground-state (ls level) of the F­
center to the LiCl band continuum are found to be similarly accurate. The Is defect 
state is calculated to be at 4.0 e V below the conduction band minimum. Excitation 
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energies corresponding to transitions to the conduction states at L, A and X are t,wice 
as large as those predicted by LDA and are in excellent agreement with experiment. 
For the bound Is~ 2p intrasite excitation, electron-hole interaction correction [30] 
needs to be included on top of the quasiparticle excitation transition energy. The 
resulting energy is 3.4 eV. This is in good agreement with the experimental values of 
3.1-3.3 eV, and is in marked contrast with the LDA prediction of 2.4 eV. 

4. RECENT THEORETICAL DEVELOPMENTS 

While the method described in Section 2 is very robust, it is computationally 
intensive. In the k-w space formulation, the computation effort scales as N4 where N 
is the number of atoms in the unit cell, and previous applications have been limited to 
N<lOO. Also, although the generalized plasmon pole model is very accurate for 
quasiparticle energies in sp electron systems, treatment of life-time effects and 
materials with d electron would require a faster and more accurate calculation of the 
dynamical screening. Recent efforts [35-37] toward improving the range of validity 
and computational efficiency of the GW method have resulted in some significant 
progress. 

A major component of a self-energy calculation in the GW approximation is 
the evaluation of the independent electron polarizability Xo. In the new formulation, 
Xo and other quantities including the Green's function and self-energy operator are 
calculated by introducing "mixed-space" functions [35] and imaginary time [36,37] 
techniques. In contrast to their real space analogs, the mixed-space functions have the 
full translational periodicity of the crystal. In use of these functions, the entire space 
can be rigorously folded into a single Wigner Seitz cell. For example, Xo is expressed 
as 

X0 (r ,r',it) = L eiq(r-r') X0 (r,r',it) 
q q 

(3) 

with 

Xq0 (r,r',it) = i L Gk (r,r',it) Gk+q (r,r',-i't) 
k . 

(4) 

and the mixed-space Green's function in imagineray time now given by 
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L Unk(r) un*k (r') e-Enk't 't:5;0 

Gk(r ,r' ,i't) = n 
unocc (5) 

-i L 'Unk(r) un*k (r') e-Enk't 't>O 
n 

where U is the periodic part of the Bloch function. This mixed-space approach is a 
considerable advantage over standard real space methods since in general two-points 
functions of crystals are non periodic in real space and have decay lengths which are 
significantly larger than a single unit cell. Unlike direct calculation in energy or w 
space, the use of the imaginary time techniques decouples the summation over the 
valence and conduction bands and damps the contributions of the higher conduction 
bands for insulators. The appropriate quantities of physical interest are then obtained 
using various fast Fourier transform and analytic continuation schemes, leading to a 
N2 scaling for the most time consuming parts of a quasiparticle calculation. 

The mixed-space imaginary-time formalism is shown to be very efficient 
especially in cases of large supercells. It is particularly advantageous when the unit 
cell contains large vacuum regions such as in cases of surfaces, tubules, porous 
materials, molecules, and clusters, because part of grid can be skipped in the real-space 
integration. In fact, compared to the k-space scheme, the crossover system size is as 
small as two atoms per cell in the case of bulk silicon. 

5. SUMMARY AND CONCLUSIONS 

We have given a short review of a first-principles quasiparticle method based on 
the GW approximation for calculating electron excitation energies in solids and 
presented results from several selected applications. This quasiparticle approach has 
provided a general theoretical framework for computing accurate excitation energies 
from first principles for real materials, similar to that of the LDA for ab initio 
calculations of ground-state properties. Systems discussed here include bulk crystals, 
materials under pressure, hydrogen chemisorption, and a vacancy in LiCl. In all the 
cases, the theoretical results have given very accurate description of their spectroscopic 
properties as measured in photoemission, optical, and transport experiments. Besides 
the examples given here, the method has been successfully applied to a number of 
other systems including surfaces, interfaces, superlattices, and clusters. In general, 
accuracy at the level of 0.1 e V has been achieved for sp electron systems. Recent 
calculations on d-band materials have also yielded very encouraging results. The latest 
theoretical and algorithmic developments further show that a very favorable scaling of 
the method with the number of atoms in a cell can be achieved, allowing computation 
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of even more complex systems with perhaps hundreds or thousands of atoms in the 
future. 
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