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Abstract 

We show that the hypothesis of abelian dominance in· maximal abelian gauge, 

which is known to work for Wilson loops in the fundamental representation, fails 

for Wilson loops in higher group representations. Monte Carlo simulations are per

formed on lattice SU(2) gauge theory, in D = 3 dimensions, in the maximal abelian 

gauge, in the confined phase. It is well-known that Creutz ratios extracted from 

loops in various group representations are proportional to the. quadratic Casimir of 

each representation, in a distance interval from the confinement scale to the point 

where color screening sets in. In contrast we find numerically, in the same interval, 

that string tensions extracted from loops built from abelian projected configurations 

are the same for the fundamental and j = 3/2 representations, and vanish for the 

adjoint representation. In addition, we perform a lattice M_onte Carlo simulation of 

the Georgi-Glashow model in D = 3 dimensions. We find that the representation-
' dependence of string tensions is that of pure Yang-Mills in the symmetric phase, but 

changes abruptly to equal tensions for the j = 1/2, 3/2 representations, and zero 

tension for j = 1, at the transition to the Higgs phase. Our results indicate that an 

effective abelian theory at the confinement scale, invoking only degrees of freedom 

(monopoles and photons) associated with a particular Cartan subalgebra, is inade

quate to describe the actual interquark potential in an unbroken non-abelian gauge 

theory . 
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1 Introduction 

Many years ago, in a very influential paper [1], Polyakov demonstrated quark con

finement in the Higgs phase of the D = 3 Georgi-Glashow model, the mechanism 

being condensation of monopoles in the. unbroken U(1) subgroup. It is natural to 

suppose that such a mechanism might also explain quark confinement in the symmet

ric phase of non-abelian gauge theories, in D = 4 as well as D = 3 dimensions, and 

that the effective theory at the confinement scale and beyondis essentially abelian, 

i.e. compact QED. The most explicit version of this idea is the abelian projection 

theory due to 't Hooft [2], where a special gauge-fixing condition on the gauge fi~lds, 
rather than the Higgs field, is used to single out an abelian subgroup of the full gauge 

group. For an SU(N) theory, 't Hooft's abelian projection gauge-fixing leaves an un

broken U(1)N-I subgroup; condensation of the magnetic monopoles associated with 

this subgroup is the conjectured confinement mechanism. This picture is one possible 

realization of the idea of dual superconductivity in non-abelian gauge theories, as 

originally proposed by 't Hooft [3] and Mandelstam [4]. 

In the D = 3 Georgi-Glashow model ( GG3 ) in the Higgs phase, Polyakov com

puted the area law contribution to Wilson loops in terms of an effective abelian theory, 

invoking only the monopoles and "photons" associated with the unbroken U(1) gauge 

group. The abelian gauge field (A~, say) is singled out by a unitary gauge choice, 

and for the calculation of the string tension (in this 
1
theory) it is a reasonable approx

imation to ignore the contribution of the other color components, i.e. 

< W(C) > - < Trexp[i f dx!L A~ra] > 

"' < Trexp[i j dxiL A~r3] > (1) 

where Ta = !aa. The same approximation, in the context of 't Hooft's theory, has 

come to be known as "abelian dominance" [5]. 

In this article we address the question of whether abelian dominance, which implies 

the existence of an effective abelian theory of monopoles and photons at large scales, 

is adequate to describe the infrared dynamics of D = 3 Yang-Mills theory, in the 

maximal abelian gauge. Our tool for studying this question will be Wilson loops 

in higher group representations. It should be noted, at the outset, that we are not 

addressing the possible relevance or irrelevance of monopoles, or the validity of dual

superconductor pictures in general. Our investigation is limited to one issue only, 

namely: are vacuum fluctuations, at the confinement scale and beyond, dominated 
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by fluctuations in the gauge field associated with a Cartan subalgebra of the gauge 

group, as is the case for GG3 in the Higgs phase? In particular, the question here 

is not whether magnetic monopoles, defined with respect to an abelian projection 

gauge, are condensed (evidence for condensation of such monopoles is found in ref. [ 6]; 

condensation of these and perhaps other types of field configurations is not unexpected 

in a magnetic-disordered vacuum state). Rather, the issue we address is whether the 

fluctuations of the corresponding (Cartan subalgebra) gauge field dominate the large

scale vacuum fluctuations, justifying the use of eq. (1 ). 

There are a number of reasons to believe in abelian dominance for pure Yang

Mills theory in maximal abelian gauge. There are, for example, several kinematical 

similarities between that theory, and GG3 in the Higgs phase. First, in both cases, 

the underlying SU(2) symmetry is reduced to a U(1) symmetry by a gauge choice: 

the unitary gauge in GG3 , and the maximal-abelian gauge [7] for pure Yang-Mills. 

Second, magnetic monopoles can be identified in both theories, associated with the 

remaining U(1) symmetry. Third, on the lattice, one finds in both cases that most 

of the quantum fluctuations of the link variables are in the A! degrees of freedom. 

Apart from these kinematical similarities, it is reasonable to suppose that if abelian 

monopoles are the crucial confining configurations, then a truncation to the associated 

A! degrees of freedom (abelian dominance) would retain the essential features of 

magnetic disorder and flux-tube formation. In support of this supposition, Monte 

Carlo simulations have found that the abelian dominance approximation, i.e. eq. 

(1), accurately reproduces the string tension for Wilson loops in the fundamental 

representation of the gauge group [5]. 

However, the fundamental representation is not the only group representation, 

and Wilson loops in higher group representations may also have a tale to tell. In 

particular let us recall the suggestion, made many years ago, that the string tension 

of planar Wilson loops in D = 3 and D = 4 dimensions could be computed from 

an effective 2-dimensional gauge theory. This suggestion, known as "dimensional 

reduction", was put forward independently (and for quite different reasons) in ref. [8] 

and [9]. It was Ambj¢rn, Olesen, and Peterson, in ref. [10], who noticed that such a 

hypothesis implies that the ratio of string tensions between quarks in different group 

representations should equal the ratio of the corresponding quadratic Casimirs, since 

this can be shown to be true in two dimensions. In particular, for SU(2) lattice gauge 
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theory at weak couplings, the prediction is 
~ . 

Xi [ 1, J] _ ~ . ( . 1) 
xl[I,J]- 31 1 + 

2 

(2) 

where Xi[!, J] is the Creutz ratio for Wilson loops in the j = 0, !, 1, ~' ... represen

tations. These authors t~sted the above prediction num~rically, in both D - 3 and 

D = 4 dimensions, and found it to be accurate to within 10%. Their results have 

since been confirmed, for larger loops and with better statistics, by a number of other 

studies in both three and four dimensions [11]. Similar results have also been obtained 

in SU(3) gauge theory [12]. Of course, this "Casimir scaling" of string tensions can

not hold at arbitrarily large distances, since at some distance the screening of heavy 

quark charges by gluons will become energetically favorable, reducing the effective 

charge. Numerical simulations indicate, however, that there is a large distance in

terval, between the onset of confinement and the onset of charge screening, where 

Casimir scaling of string tensions holds quite accurately.1 It is reasonable to demand 

that any theory of quark confinement, which purports to explain the behavior of 
. \ 

gauge fields beyond the confinement scale, should account for the observed Casimir 

scaling of interquark forces in this interval. 

Does the hypothesis of abelian dominance allow for the existence of Casimir scal

ing? According to a simple heuristic argument, found in ref. [13], the answer is 

probably no. Instead, beginning at the onset of confinement, one expects 

Xi= Xl/2 
(3) 

Xi= 0 j=1,2,3, ... 

for an SU(2) gauge theory. We refer to the expectations of eq. (3) as the "abelian 

monopole prediction". We then test this prediction numerically in two cases where on,e · 

may be fairly sure that abelian monopole configurations give the crucial contributions: 

1a. the calculation of Creutz ratios in lattice D = 3 Yang-Mills theory, using 

"abelian-projected" lattice configurations obtained in maximal abelian gauge; 

and 

2a. the calculation of Creutz ratios in the lattice D = 3 Georgi-Glashow model in 

the Higgs phase. 

1 In fact, it is not even clear that color. screening has been seen yet, in lattice Monte Carlo 
simulations of D = 3 Yang-Mills theory, inside the scaling region ( c.f. Poulis and Trottier in [11]). 
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The results for these two cases are compared with 

lb. the actual Creutz ratios in lattice D = 3 Yang-Mills, obtained from the full, 

unprojected lattice configurations; and 

2b. Creutz ratios in the lattice D = 3 Georgi-Glashow model in the symmetric 

phase. 

It will be found that cases la and 2a agree quite well with the abelian monopole 

prediction, and utterly disagree with the corresponding cases lb and 2b, which instead 

follow the predictions of dimensional reduction. This has two consequences. First, it 

means that in the case of GG3 in the Higgs phase, where it is known that an effective 

U(l) theory describes the infrared dynamics, the monopole prediction is verified. 

Secondly, in the case of pure Yang-Mills theory, where Casimir scaling is observed, 

the abelian dominance approximation has failed entirely. 

Before proceeding to discuss the simulations, let us first recall the heuristic ar

gument leading to the abelian monopole prediction (3). Suppose that, in an SU(2) 

gauge theory, the area law for Wilson loops is due to fluctuations of the gauge field 

A~, associated with a remaining U(l) symmetry. This U(l) symmetry is assumed to 

be singled out either by an abelian-projection gauge choice (as in 't Hooft's theory), 

or by a unitary gauge choice (D = 3 Georgi-Glashow model). In that case, we would 

have 

< Wi(C) > - < Trexp[i f dxJL A~T1] > 

"' < Tr exp[i j dxJL A!Ti] > 
j 

"' L . < exp[im j dxJL A!] > 
m=-J 

(4) 

where the Tj are the SU(2) group generators in the j-representation. If an area law 

is obtained from abelian configurations, this is presumably due to monopole effects. 

Following Polyakov's analysis [1], one then expects 

j 

< Wj(C) >rv L exp[-J.Lm Area(C)] (5) 
m=-i 

The J.Lm will increase with the magnitude of the U(l) charge, which is given by lml 

(form= 0, J.Lo = 0). The above sum would then be dominated by those terms which 
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are falling most slowly with increasing area, i.e. m = ±!, for j = half-integer, and 

m = 0, for j = integer. In this way, we arrive at the monopole prediction (3). 

Now the behavior (3) is, in fact, what one expects asymptotically, due to charge 

screening. The problem, however, is that according to the argument above this be

havior actually begins right at the confinement scale, and has nothing whatever to do 

with the physics of charge screening. 2 The fact that adjoint loops are unconfined, in 

the abelian projection theory, is simply due to the fact that the m = 0 component of 

an adjoint charge is neutral (and t~ereby unconfined) with respect to the remaining 

U(1) symmetry. Them= 0 contribution therefore dominates the sum in (5).3 A flux 

tube between adjoint quarks doesn't form and then break due to charge screening; 

in this picture the tube doesn't form at all. As already mentioned, this conclusion 

appears to be contradicted by the numerical evidence presented in refs. [10], [11], 

and [12], :which find a force between adjoint quarks which is about 8/3 that of the 

fundamental quarks, over a fairly large distance interval in the con~nement regime. 

The abelian monopole prediction, however, is based on a heuristic argument; it 

could be that there is some subtlety of monopole dynamics that we have missed. Let 

us turn, then, to the numerical simulations. 

2 Breakdown of Abelian Dominance 

We perform Monte Carlo simulations of )J = 3 lattice SU(2) gauge theory, at lattice 

coupling f3 = 5, which is just inside the scaling regime. Maximal abelian gauge-fixing, 

which maximizes the quantity 

(6) 

is implemented. Wilson loops in the fundamental (j = 1/2), adjoint (j 1), and 

j = 3/2 representations, normalized to a maximum value of one, are given by 

1 
Wt(C) - 2Tr[UUU .... U] 

W1(C) ~(4Wt(C) -I) 
W~(C) - l{8Wf(C)- 4Wt(C)) (7) 

2We have emphasized this lack of connection to charge screening in the abelian projection theory 
in a previous publication, which was mainly concerned with large-N behavior [14]. In the present 
article, we turn our attention to N = 2. 

3 0f course, if one would simply toss out the m = 0 contribution, then Wj (C) would decay 
exponentially with the area. But we can see no justification for such a procedure.' 
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We calculate the expectation values of these loops using both the full link configura

tions (for which the gauge-fixing is irrelevant), and also using the abelian-projected 

link configurations (or "abelian links"). For a full SU(2) link matrix, represented by 

3 

U = aoi + i L akak (8) 
k=l 

the corresponding abelian link U' is given by a truncation to the diagonal component, 

followed by a rescaling to restore unitarity,·i.e. 

(9) 

Wilson loops of the abelian-projected configurations are obtained by inserting the 

abelian links (9) into eq. (7), and the corresponding Creutz ratios are computed in 

the usual way. 

Our simulation involved 100, 000 sweeps of a 123 lattice at f3 = 5, comprising 

10,000 thermalization sweeps, with data taken every tenth of the remaining sweeps. 

Figure 1 shows the ratios of Creutz ratios 

X1[I, I] 
x![I,I] 

2 

and 
x2.[I, I] 

2 (10) 
Xl[I,I] 

2 

for I = 2, 3, 4. The agreement with Casimir scaling (8/3 and 5, respectively) is 

fairly good, as found in previous studies [10, 11). Figure 2 shows the same ratio of 

Creutz ratios, for the same loop sizes, but this time computed with abelian-projected 

configurations. · It is clear that Figures 1 and 2 display completely different behav

ior. In the abelian projection, the adjoint Creutz ratio actually goes negative at 

I = 3; the adjoint tension is consistent with zero at I = 4, as predicted by (3). 

Likewise, X 2. [I, I] appears to converge to x 1 [I, I], again as expected from the abelian 
2 2 

monopole prediction. However, this behavior of the abelian-projected loops is clearly 

inconsistent with the corresponding behavior of the full Wilson loops. Evidently, for 

higher-representation Wilson loops, abelian dominance has failed entirely. 

3 D == 3 Lattice Georgi-Glashow Model 

Polyakov's seminal work [1) was concerned with the Higgs phase of the Georgi

Glashow model in D = 3 dimensions. Because of this work, we may be confident 

that the confinement mechanism in the Higgs phase is due to monopole condensation. 
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In that case one may ask: is the monopole prediction (3) for higher representations 

confirmed? And does this prediction also hold in the symmetric phase? 

There have been a number of lattice Monte Carlo simulations of this model, both 

in D = 3 [15, 16] and D = 4 [17] dimensions, and these have been mainly concerned 

with finding the phase diagram ()f the theory. To our knowledge, there has been no 

study of the behavior of Wilson loops, as one goes across the symmetry-breaking 

transition. We have therefore carried out such a calculation. However, as there is 

a three-dimensional· coupling constant space for the lattice Georgi-Glashow model, 

we have not attempted to compute the Wilson loop behavior throughout the phase 

diagram. Instead, we have only computed loops along a particular line of the coupling 

constant space, which crosses from the symmetric to the Higgs phase. We believe the 

behavior that we find for Creutz ratios is typical, as the system goes across the Higgs 

transition, but of course this will have to be verified by a more extensive study. 

The lattice action of the Georgi-Glashow model is 

1 
s = -f3a 2: Tr[uuutut] 

2 plaq 

1 + 2f3H l:Tr[Utt(n)<P(n)U~(n)<f}(n + J.l)] 
n,tt 

~ { ~Tr[<P<Pt] + f3R (~Tr[<P<Pt]- 1) 
2

} 

where the adjoint Higgs field <P( n) has three degrees of freedom per lattice site 

3 

<P(n) = i L <Pa(n)ua 
a=l 

(11) 

(12) 

In performing the Monte Carlo simulations it is useful to go to a unitary gauge where 

<P( n) = i p( n )u3 , reducing the degrees of freedom of the Higgs field from three to one 

per site. The details may be found in ref. [15]. 

To map out the phase structure of the theory in D = 3 dimensions, we compute 

the following observables: 

1. the rms value of the Higgs field 

(13) 

2. the value 

(14) 

in unitary gauge. 
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A jump in these two quantities is an indication of a transition from the symmetric 

phase to the Higgs phase. 

We begin by looking for a region of couplings where it is possible to see a (fun

damental) string tension in both the symmetric and Higgs phases. The strategy we 

have chosen is to keep fJG and fJR fixed, and vary f3H· One would like to use a value 

of fJG where the pure gauge theory is in the scaling regime, i.e. fJG ~ 5. In practice, 

however, we have not been able to detect a string tension in the Higgs phase at such 

large values of f3G· Since presumably there must be a string tension in the Higgs 

phase in D = 3 dimensions, we interpret this result as meaning that the monopole is 

quite heavy, in lattice units, at the larger values of fJG, and therefore the confinement 

scale (in the Higgs phase) probably lies beyond the size of our lattice.4 So we have 

been forced to go to a rather small value of fJG, using fJG = 2 throughout. A fixed 

(and rather arbitrary) value of fJR __: .01 was also chosen; this was mainly in order 

to compare our values for the location of the phase transition with those in ref. [15]. 

Simulations in the region of the transition were run on a 123 lattice with a total of 

35000 sweeps; of which 5000 were thermalizing sweeps, with data taken every tenth 

of the remaining sweeps. 

Fig. 3 shows the variation of the Q-parameter with fJH, at fixed fJG = 2, f3R = 0.01. 

~ There is clear evidence of a 1st-order transition between the symmetric and Higgs 

phases at .45 < f3H < .46; which is supported by the behavior of the rms value of the 

Higgs field, shown in Fig. 4, showing a similar jump at the same value of fJH. 
Having located the transition to the Higgs phase, we then study the behavior of 

Creutz ratios. Fig. 5 shows the Xi[2, 2] Creutz ratios for fundamental and adjoint 

loops. Up to the Higgs transition, we are in the strong-coupling regime and the Creutz 

ratios do not appear to be strongly dependent on fJH (for comparison, to lowest-order 

in the strong-coupling expansion at fJH = 0, we have string tensions p,1; 2 = .84 and 

p,1 = 2.01).5 •6 At the Higgs transition the fundamental string tension drops, but 

remains finite, while the adjoint string tension appears to be consistent with zero. 

4 A related observation has been made by Laursen and Miiller-Preussker in ref. [16], who noted 
that monopoles in the Higgs phase, at f3G = 5, are very dilute. 

5 The lowest-order strong-coupling result in three-dimensions is the same as that in two dimen
sions, consistent with the idea of dimensional reduction, and the string tension is given by a ratio of 
Bessel functions. This ratio becomes, in the limit of weak couplings, a ratio of quadratic Casimirs, 
which is the origin of the Casimir scaling prediction of ref. [9]. 

6 Creutz ratios for the j = 3/2 representation are not shown, since the statistical errors are quite 
large for 2 x 2 loops in the symmetric phase. However, we have found that the smaller 1 x 1 and 
1 x 2 loops are quite close to their strong-coupling values in the symmetric phase, right up to the 
transition. 
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In Fig. 6 we display the Xi[ I, I] Creutz ratios in the Higgs phase, for the funda

mental (j = ~ ), adjoint (j = 1 ), and j = 3/2 representations, at I = 2, 3, 4. The 

coupling is f3H = .46, which is just past the transition (once again, .f3a = 2 and 

f3R = .01). Note that the adjoint ratio actually goes negative at I= 3, and is consis

tent with zero at I= 4. Since the signal for the j = 3/2 loops is quite small, we have 

not obtained good data for the j = 3/2 Creutz ratio beyond I = 3. Nevertheless, 

from the data at I= 2 and I= 3, it does appear that the j = 3/2 string tension is 

converging to the j = 1/2 value. 

In short, up to the Higgs transition, our Creutz ratios essentially follow the strong

coupling expansion, which (at lowest order) is in agreement with the notion of dimen

sional reduction. At the Higgs transition, both the absolute and relative values of the 

string te~sions change abruptly, and all indications are that the abelian monopole 

prediction (3) is fulfilled. · 

4 Conclusions 

At a minimum, our results cast considerable doubt on the hypothesis of abelian dom

inance in maximal abelian gauge. If the "photon" gauge field associated with the 

remaining U(1) symmetry is mainly responsible for forces between heavy fundamen

tal quarks beyond the confinement scale, that same gauge field should also explain 

the forces between heavy quarks in higher group representations. Given that the pro

jection to abelian lattice configurations is found to reproduce the fundamental string 

tension, then according to these ideas the string tensions for higher representations 

should also be reproduced, at any distance beyond the confinement scale. We have 

found, however, that this is not at all the case. 

There have been previous indications of trouble for the abelian projection theory. 

As thr~e of us have pointed out in a previous publication [14], for SU(N) theories there 
. ' 

is a significant difference in the coefficients of subleading (perimeter-law) contributions 

to adjoint Wilson loops, as predicted, respectively, by large-N counting arguments, 

and by the abelian-projection theory. The origin of this difference is that according 

to the large-N picture, the perimeter-law term is due to the binding of gluons to 

the adjoint quarks (a 1/N2 suppressed process), while perimeter law behavior in the 

abelian projection theory is just due to the fact that N - 1 of the N 2 - 1 adjoint 

quark charges are neutral with respect to the abelian subgroup, and this leads only 

to a 1/ N suppression factor. The different powers of N reflect the fact that there are 
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different mechanisms involved; only one of these can be the right explanation of the 

perimeter law. We refer the reader to ref. [14] for a more extensive discussion of this 

point. Some ·other types of numerical evidence against the abelian projection theory 

are found in ref. [18]. 

Not everyone finds large-N arguments persuasive, so in this article we have con

sidered the opposite limit, namely N = 2. For such a small value of N, it is hard to 

understand, in the context of the abelian projection theory, why the abelian neutral 

(m = 0) adjoint quark component should not completely dominate the value of the ad

joint loop, at and beyond the confinement scale. In fact we find, in abelian projected 

lattice configurations, that this is exactly what happens, and the corresponding ad

joint loop has no discernable string tension at any of the distances studied. However, 

such behavior is in complete contrast to adjoint Creutz ratios, measured at the same 

distances, constructed from the full lattice configuration. The latter follow Casimir 

scaling (2). The breakdown of abelian dominance in pure SU(2) lattice gauge theory, 

not only for the adjoint but also for the j = 3/2 representations, seems to be quite 

evident from comparing Figs. 1 and 2. Conversely, in the D = 3 Georgi-Glashow 

model in the Higgs phase, where the infrared dynamics is essentially that of compact 

QED, it is the monopole prediction, rather than Casimir scaling, which agrees with 

the data. 

A breakdown of abelian dominance implies that large scale vacuum fluctuations 

are not adequately represented by the fluctuations of only those degrees of freedom 

associated with a particular Cartan subalgebra (A!, in the Yang-Mills case considered 

here), not even in the maximal abelian gauge. Large-scale fluctuations in the "off

diagonal" degrees of freedom (A~ and A;) have been found to be important; were it 

not for these fluctuations, Wilson loops would follow the abelian monopole prediction 

found for abelian projected configurations. It may be, of course, that there exists 

a simple effective theory, perhaps even an abelian gauge theory involving some sort 

of composite fields, which does capture the essential dynamics of confinement in 

Yang-Mills theory. It may also be that the Yang-Mills vacuum does, in some way, 

exhibit the properties of a dual-superconductor. Concerning these possibilities, we 

have nothing to say here. What can be asserted, however, is that an effective theory 

of the long-wavelength dynamics cannot be based on the A! degrees of freedom alone. 

The validity of a theory of that sort would imply the validity of the abelian dominance 

approximation, and this simply conflicts with our data. 

Some caveats about the data, however, are in order. We have looked only at rather 
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small loops (up to 4 x 4 lattice spacings) at f3 = 5 in D = 3 pure Yang-Mills, and 

only along a single line (varying one coupling) in the 3-dimensional phase diagram of 

the D = 3 Georgi-Glashow model. Certainly much more numerical work is needed to 

~, extend and solidify our results. This work is in progress, and will be reported in due 

course. 

Finally, in view of the observed Casimir scaling of Creutz ratios, we believe that 

a certain scepticism regarding proposed monopole confinement mechanisms, at least 

in· their most naive forms, may be appropriate. Whatever may be the importance 

of monopoles, it appears doubtful that the effective infrared dynamics of Yang-Mills 

theory is essentially that of compact QED. It may also be that there is an element of 

truth in some of the old ideas regarding dimensional reduction. In any event, Casimir 

scaling of heavy interquark forces is a striking result of many numerical simulations, 

and any satisfactory theory of quark confinement must eventually take this scaling 

into account. 
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Figure Captions 

Fig. 1 The ratio of Creutz ratios Xi[!, 1]/x.![I, I], for j = 1 (solid circles) and j = 
2 

3/2 (open circles), in D = 3 lattice SU(2) gauge theory, at f3 = 5. Dashed 

lines show the corresponding ratio of quadratic Casimirs ( ~ for j = 1, and 5 for 

j = 3/2). 

Fig. 2 Same as Fig. 1, except that Creutz ratios have been computed using the 

abelian-projected lattice configuration~ in maximal abelian gauge. 

Fig. 3 Variation of the Q-parameter with f3H in the 3D Georgi-Glashow model, at 

f3a = 2 and f3R = .01, 

Fig. 4 Variation of the rms Higgs field R with f3H, same model and parameters as 

in Fig. 3. 

Fig. 5 Creutz ratios Xi[2, 2] vs. f3H, for j = ~(solid circles) and j = 1 (grey squares), 

same model and parameters as in Fig. 3. 

Fig. 6 Creutz ratios Xi[I,I] vs. I, in the Higgs phase of the 3D Georgi-Glashow 

model at f3 = .46, just past the transition. Again f3a = 2, f3R = .01; representa

tions j = ~ (solid circles), j = 1 (grey squares), and j = 3/2 (open circles) are 

shown. 
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