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Abstract 

The renormalized mass of the bottom quark is calculated at the two loop level 
to order O(asGFMl) in the MS renormalization scheme. Different strategies 
for the computation are outlined. The result is applied to the partial decay 
rate r(H--+ bb) of the Higgs boson into bottom quarks. Expressing the width 
in terms of the running mass instead of the bottom pole mass allows to treat 
the O(asGFMl) radiative corrections on the same footing as is commonly 
used in pure QCD calculations. The numerical values for the corrections are 
given and the sizes of different contributions are compared. 

*The complete postscript file of this preprint, including figures, is available vta anony-, 
mous ftp at ttpux2.physik.uni-karlsruhe.de (129.13.102.139) as jttp95:..35/ttp95-35.ps or via 

''"' www at http:/ jttpux2.physik.uni-karlsruhe.de/cgi-bin/preprintsf Report-no: TTP95-35 and at 
http:/ /theor 1.lbl.gov fwww /theorgroup fpapers/37881.ps. 

tThis work was in part supported by US DoE under Contract DE-AC03-76SF00098. 
tSupported by Deutsche Forschungsgemeinschaft, grant no. Kw 8/1-1. 



1 Introduction 

Studying the properties of the Higgs boson, once it is discovered in future particle ac
celerators, will be the prime tool to experimentally probe the details of the electroweak 
symmetry breaking mechanism in the Standard Model. Of particular interest will be the 
Higgs boson decay into bottom quarks, since the decay channel H--+ bb dominates in the 
intermediate Higgs mass range MH < 2Mw. This process will be even more important, 
if possible hints for new physics effects in the reported descrepancy [1] between the mea
sured partial Z boson width Rb into bottom quarks and its theoretical prediction should 
happen to substantiate. Similar effects might then also be visible in Higgs decays H --+ bb 
and emphasize the need for precise Standard Model predictions to r(H--+ bb). 

As a consequence much work-has been spent on the calculation of radiative correc
tions to Higgs processes in the past and excellent reviews on Higgs phenomenology can ' 
be found in the literature [2, 3]. Previous works concerning the partial rate r(H --+ bb) 
include electroweak one loop corrections [4, 5, 6], the calculations of universal and nonuni
versal corrections of the order O(asGFMl) [7, 8, 9, 10], and recently even a three loop 
O(a~GFMl) calculation was presented [11, 12]. Nonuniversal corrections to the vertex 
Hbb involve the virtual top quark through Higgs ghost exchange. Their top mass en
hancement oc m; due to Yukawa couplings distinguishes them from similar vertices of the 
Higgs boson to other quark flavours. 

In our earlier work [9] the diagrams of Figure 1 were considered in the heavy top limit 
Mt2 ~ M'fT. The two loop O(asGFMl) relation between the bare mass m0 and the on
shell (OS) mass Mb of the bottom quark was presented and the corrections to the partial 
Higgs width were expressed in terms of Mb. 

The MS renormalization scheme on the other hand is the commonly used renormaliza
tion prescription in higher order QCD calculations. Apart from calculational convenience 
its concept of the running bottom mass mb allows the absorption of large logarithms 
ln(M? /M'h) (see e.g. [13, 14, 15, 16]) and causes the perturbation series to converge more 
rapidly than in the OS scheme. It is therefore of obvious interest to adopt the notion 
of the running MS mass mb in the Higgs decay rate also for the case when electroweak 
corrections are included. 

For this reason we have calculated the two loop relation of order O(asGFM[) between 
the on-shell mass and the MS renormalized mass of the bottom quark (for a discussion at 
the one loop level see [17]). This transformation from one renormalization scheme to the 
other allows to express r(H--+ bb) to the order O(asGFMl) throughout in terms of the 
running mass mb. 

The problem is approached in four different ways. All methods are leading to the same 
answer and thus provide powerful crosschecks beyond the standard consistency checks such 
as gauge mvanance. 

In order to introduce our notation let us start from the bare Lagrangian and consider 
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the bare fermion propagator for the bottom quark 

(1) 

We have not written the term Pls:E~ for notational simplicity, since for all quark mass 
relations below :EA becomes relevant only in higher order electroweak corrections O(G}), 
which we do not consider in this work. We quote our previous result·.for the O(a8 GpM;) 
bottom pole mass 

(2) 

in Eq.(26) of the appendix, where for later convenience :E~ and :E~ are expressed in terms 
of the MS masses mb and ffit. 

By rescaling its parameters the bare Lagrangian can be written as the sum of the 
renormalized Lagrangian and the counterterm Lagrangian. Our interest focuses on the 
renormalization constants Z2 and Zm relating the bare wavefunction and mass of the 
bottom quark to their renormalized equivalents 

(3) 

Here we adopt the MS renormalization scheme as is indicated through bars. The renor
malized bottom quark propagator accordingly reads 

(4) 

For the determination of the MS bottom mass we perform our calculations according to 
the following different strategies. 

In Section 2.1 the overall counterterms E~T, E~T to the bottom selfenergy are com
puted in the MS scheme. With 

-1 ~CT - - L.Jy 

(5) 

one obtains the relation between the MS and bare masses 

- 1- E~T 
mb = mo .... aT· 

1 + L.Js 
(6) 

In combination with Eq.(2) this leads to the transformation rule between OS- and MS 
masses of the bottom quark. 

(7) 
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In Section 2.2 a different approach is used to verify the findings of Section 2.1. The 
renormalized bottom quark propagator Eq.(4) is rewritten in the form 

(8) 

with :Es = Z2Zm:E~, Ev = Z2:E~. We check by explicit calculation of the finite -parts of 
the bo~tom quarks self energies :E~in, :E(jn that the relation 

(9) 

is indeed equivalent to the prescription Eq.(7). ) 
In Section 2.3 our problem is considered from a third point of view, which becomes 

transparent by expressing the renormalized quark propagator in the following form 

(10) 

This expression is finite if the bare parameters in :E~,v are substituted in favour of the 
renormalized ones. One therefore can solve for Z2 and Zm recursively, i.e. loop by loop. 
The renormalization constant Zm leads then to the same result for- mb as in the previous 
sections. 

Finally we demons~rate in Section 2.4 that another simple derivation of the result is 
possible, based on the earlier determination of the bottom pole mass and leading to the 
same mb again. 

The results are then applied in Section 3 to the partial decay rate f(H ---+ bb). The 
numerical size of the corrections are given and the renormalization scheme dependence is 
discussed. 

2 Calculation of the MS Renormalized Bottom 

Mass 

2.1 Approach 1: Counterterms 

We calculate the MS counterterms on a graph by graph basis in this section. Per definition 
of the MS scheme counterterm vertices consist of pole terms only and are therefore easier 
to compute than full diagrams. The integrals represented' by the graphs in Figure ~ involve 
several mass scales. Via electroweak interactions the top quark and the Higgs ghost come 
into play with their respective scales Mt and Mw. In the heavy top limit Ml ~ oo one 
"has M~ ~ Mf. Since we consider only the leading term <X Mt2 in the power series of the 
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inverse top mass, one can neglect Mw right from the beginning. As a consequence the 
electroweak gauge parameter drops out trivially. The heavy mass expansion [18, 19, 20, 21] 
has developed into a well established technique and was sucessfully used in a number of 
applications. For a more detailed description the reader is referred for example to [22]. 
The main virtue of this method is the factorization of a multiloop integral containing the 
heavy top quark into an integral with less number of loops and massive tadpole integrals. 

This decomposition is operative in our problem as well. Two loop integrals eventually 
factorize into a one loop tadpole and a one loop propagator integral, where the latter 
involves two scales, namely the bottom mass and the external momentum. However, being 
interested in the pole parts only, the matter simplifies even more. Since the pole terms 
are independent of masses and momenta, one can conveniently nullify either of them. 
Care must be taken that no spurious infrared divergencies are introduced in this way. In 
our case we have obtained the pole parts to :Es by setting the external momentum to 
zero, thus reducing the massive propagator integral to a tadpole integral. Similarly, for 
the computation of :Ev the bottom mass is nullified. The resulting massless propagator 
integral is conveniently computed with the help of MINCER [23] which is based on the 
symbolic manipulation program FORM [24]. 

The counterterms of the one loop diagrams "QCD" and "EW" of Figure 1 are simply 
given by their pole terms obtained in the above described manner. On the two loop level 
the situation is somewhat more involved, since the diagrams "IN", "OUT" and "LEFT" 
contain ultraviolet divergent subgraphs. As is indicated in Figure 2, these subdivergences 
have to be subtracted in order to arrive at the overall divergence of the corresponding 
diagrams. The removal of the subdivergences results in local counterterm vertices, which 
we list in the appendix. It can be seen that indeed all logarithms have dropped out. 

Whereas the counterterms are still gauge dependent, the QCD gauge parameter es 
cancels in the following expression for the bottom mass: 

. 1- :E~T 
ihb = mo 1 + :E~T 

(11) 

( 
as 1 31 as 2) 

- mo 1 + -- + Xt-- + -xt-
7r€ 2€ 7r € 

with Xt = GFm;;sV'21r2
• This leads to the transformation between the pole and the MS 

mass of the bottom quark 

(1 + :E~T)(l - :E~) 
(1 - b~T)(l - b~) 

1 + _!... - + ln -::-- + Xt - + - ln -=-{ 
a (4 11

2 
) (5 3 11

2 
) 

7r 3 m~ 4 2 m¥ 

as . (9 5 112 5 112 3 2 112 3 112 112)} +-xt -- 4((2) + -ln-::-- + -ln-::-- + -ln -::-- + -ln -::--ln-::-- . 
1r 2 2 m¥ 4 m~ 2 mr 2 mr m~ 

(12) 
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2.2 Approach 2: Finite parts 

As a cross check of the result Eq.(12) we now want to recalculate it in a different way, 
namely by employing only the finite parts of the corresponding bottom self energy graph 
as given in Eq.(9). The finite part of a diagram 

Efin _ Efull _ Esub _ ECT 
s,v- s,v . s,v s,v (13) 

is obtained by subtracting the overall counterterm E~~ and the counterterm with the 
subdivergence Es~i from the full diagram E~"J!. Pictori~lly this procedure is visualized in 
Figure 3. Notice that Esut contains both pole and finite terms. One therefore cannot use 

' 
the nullification procedure of the previous section to simplify the calculation. · 

Instead it is possible to simplify integrals by evaluating them on the mass shell p2 = M~ 
[25] using the expansion 

E1
u

11 (1) + (m~ -1) E' (1) s,v p2 s,v 
(14) 

- E~"J}(1) + 2 (Es + Ev) E~,v(1). 

The derivatives Es,v = 8Es,v/8(mtfp2) may be converliently obtained through deriva
tions with respect to mb, thus raising the power in the denominator of the integrand. This 
procedure may also be applied for the calculation of subdivergence counterterms,, where 
the corresponding expansion reads 

f:;sub (m~) = f:;sub (1) + 2 (f::CT + f:;CT) f::' (1). 
~v p2 ~v s v ~v (15)~ 

The expressions for the finite parts of the various contributions are listed in the ap
pendix. They lead to the relation between pole and MS bottom 'mass 

(1 _ f:;~in) 

(1 + I:{fn) 

1 + - 8 

- + In -=- + Xt - + - In -=-{ 
a (4 J-L

2
) (5 3 J-l2 ) 

7r 3 m~ 4 2 m¥ 
a (9 5 J-L

2 
5 J-L

2 
3 J-L

2 
3 J-L

2 
J-L

2 
) } +_!.it .:. - 4((2) +-ln-.. -+ -ln-. + -ln2

- + -ln-ln-
1r 2 2 if?:¥ 4 m~ 2 m¥ 2 m¥ m~ , 

. (16) 
We find agreement with Eq.(12). 

2.3 Approach 3: Renormalization Constants 

In our third method we proceed along a path which deals directly with the renormalization 
constants Z 2 and Zm. To explain how both Z 2 , Zm are computed iteratively loop by loop, 
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it is convenient to consider the the renormalized fermion propagator in the following form: 

(17) 

Here the bare bottom selfenergies E~,v = E~~(mb,o, mt,o) + E~~(mb,o, mt,o) receive con
tributions from the one and two loop diagrams of Figure 1. The explixcit arguments shall 
emphasize that all parameters are understood as bare quantities. In general the parame
terlist would also include coupling constants, gauge parameters etc. If we now substitute 
the bare masses in favour of their renormalized counterparts at a given loop level, the 
functional form of the selfenergies does not change in that given order, but additional 
contributions of higher order are induced: 

't"(l)O( ) 't"(l)O(- - ) 't"(2) .us,v mb,o, mt,o = .us,v mb, ffit + .us,V,ind (18) 

Let us first consider the one loop case. Having expressed Eq.(17) entirely in terms of 
renormalized quantities, the renormalization constants Z2 , Zm must be such that the in
verse quark propagator is finite and, stated more precisely for the MS scheme, that the 
poles cancel. According to the Lorentz structure this results in two equations 

mbZ2Zm ( 1 - E~)o( mb, iht)) 

pZ2 ( 1 + E~)o( mb, iht)) 

finite 

finite, 

(19) 

which can be solved for Z2 and Zm. The solution for Zm leads to the one loop result for 
the MS mass mb. 

The procedure can then be repeated for the two loop case. Besides the two loop result 
E~~ also the induced second order terms E~~,ind from the transition to the renormalized 
parameters at the one loop iteration have to be taken into account. Solving the corre
sponding system of equations gives the renormalization constants at the two loop level. 
Inversion of Eq.(3) with 

_ 3 as 1 as_ ( 3 2) Zm = 1- Xt-- -- + -Xt -- - · 
2€ 7r € 7r €2 € 

(20) 

indeed confirms the result Eq.(ll). 

2.4 Approach 4: Derivation from OS Mass 

Having approached the problem from three different sides, let us demonstrate, how the 
MS bottom mass can be derived in another elegant manner. We start with the following 
ansatz for the relation between the bare mass and the MS mass of the bottom quark (a 
similar method was used in [26]) and insert it into Eq.(2): 

Mb = mb 1 + -- + Xto- + -Xto - +-_ { as a b as ( c d) } 1 - E~ 
1r c ' c 1r ' c2 c 1 + E~ (21) 
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.. , 

The bare top mass in Xt,o is substituted through the renormalized MS mass and the terms 
following the curly bracket are taken from the pole mass calculation in Eq.(26). 

The crucial step is to require that the pole mass Mb on the LHS as a physical quantity 
must be finite. This translates into the requirement that all coefficients of 1/ t poles on the 
RHS must vanish. Thus one obtains four equations which can be solved for the unknown 
coefficients a, b, c, d. Two additional equalities follow from the fact that the logarithms of 
the pole terms cancel separately and serve as a consistency check for the solutions 

3 
a= -1, b = - 2, c = 0, d = -2. (22) 

Insertion into Eq.(21) produces again the result Eq.(12) and Eq,(16). 

3 Application to the Higgs Decay H ~ bb 
In this section we apply our result to the partial Higgs boson decay rate [9, 10] 

- 2 as MH . { ( 2)} r(H--+ bb) = r 0 Mb 1 + Xt + -;-Xt -1- 4((2)- 2ln Mt (23) 

where f 0 = 3GFMH/4v2:rr, Xt = GFM'fj8...;27r2 and the renormalization scale is chosen 
as J.L2 = Mk For our following numerical discussion we use as input values a bottom 
pole mass of Mb = 4.7 GeV and a top mass of Mt = 176 GeV. Based on Agbv = 233 
MeV the running strong coupling <::onstant ranges between as(MH = 70 GeV) = 0.125 
and ds(MH = 130 GeV) = 0.114 where as(J.L) is defined for five active flavours. We now 
express the above formula for the width in terms of MS masses and obtain 

r(H--+ bb) =rom~ {1 +it(~+ 3ln ~f) 
as_ (175 · M'fi 2 M'fi)} +-xt -

6 
- 12((2) + 26ln ---=-2 + 3ln ---=-2 . · 

7r ~ ~ 

(24) 

Notice that the transformation of Eq.(23) implies that the first order QCD corrections 
foMl(as/7r)[3- 21n(M'fi/Ml)] give rise to a contribution of order O(asGFm;) as well. 
Based on the given values for the pole masses the corresponding running masses amount 
tomb= 2.84/2.69 GeV and ffit = 179.44/170.04 GeV for MH = 70/130 GeV. In Figure 4 
we plot the corrections of orders GFm; and GFm; + asGFm; according to Eqs.(23) and 
(24). The curves are strongly characterized by the linear rise in MH due to the overall 
factor. For the on-shell result the QCD screening of the leading electroweak corrections is 
clearly visible. The MS curves indicate that the two loop contribution is less important 
than for the OS scheme and suggest a better convergence behaviour of the perturbation 
senes. 
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An inspection of Eq.(24) reveals that all large logarithms ln(M'k/Mn have dropped 
out. Their absorption into the running bottom mass favours the use of the MS mass 
over the OS-mass. There is no such strong preferance with respect to the top mass, 
considering that the scales of the Higgs and the top are not as far apart as the Higgs and 
the bottom scales. Corresponding logarithms ln(M'k/Ml) therefore cannot be considered 
as particularly dangerous. Instead one might tend to use the top pole mass as a quantity 
which is by definition more feasible in experiments. In this case the Higgs decay rate can 
be rewritten into the following form 

f(H --7 bb) = f0m~ 1+--+Xt -+3ln-{ 
17 as (7 Mii) 
3 1r 2 Ml 

as (167 M'k 2 Mii) +-Xt - -12~"(2) + 17ln-- 3ln -
1r 6 "' Ml Ml 

(as) 2 
( 2 M'k 1 2 Mii) + - 30.717--ln-+-ln-

1r 3 Ml 9 mt 
(25) 

mb 2 H -2 M2 } 

+O(M'fi) + O(as Ml) . 

Several groups have contributed to the calculation of QCD corrections which we have 
included in the formula in first [13, 14, 27, 28, 29] and massless second order [30, 31]. 
Quadratic bottom mass corrections in second order [16, 33] and top quark contributions 
[32, 33, 34] are also available. We have not written these pieces into Eq.(25), but included 
them in our numerical analysis. 

As was noticed in [33] the logarithms a~ ln2(M'k/mt) originate from flavour singlet type 
diagrams. They are not present in the rate for the decay into hadrons, but are introduced 
when the pure gluonic channel is subtracted. In Figure 5 the contributions coming from 
the orders as, a~, GpM?, asGFM? are compared, normalized to the Born term faom = 
r 0mt. The electroweak corrections may carry different sign depending on the Higgs mass. 
However, as compared to the QCD corrections, where the first order contributes about 
20% and the second order about 5% to the corrections, the electroweak contributions are 
small. With O(GpMl) = -6.6/5.4 per mille and O(asGFMl) = -4.3/- 3.9 per mille 
for M:H = 70/130 GeV these effects become relevant for high precision experiments at the 
percent level. 
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A Appendix 

The result from [9] for the relation between the pole mass and the bare mass of the bottom 
quark according to Eq.(2) is reproduced below. For convenient use in Section 2 the bare 
masses in :E~ and :E~ are already transformed into the MS renormalized ones. 

{ 
as ( 1 4 fl

2 
[8 1 4 {l

2 
1 2 {l

2
]) m 0 1 + - - + - + ln-=- + E - + -((2) + -ln-=- + -ln -=-

7r E 3 m~ 3 2 3 m~ 2 m~ 

+xt -- + - + -ln- + E - + -((2) + -ln- + -ln2 
-(

3 1 5 3 {l
2 

[9 3 5 {l
2 

3 {l
2
]) 

2 E 4 2 m¥ 8 4 4 m¥ 4 m¥ 

+-it - - + -ln- + -ln-as ( 1 [21 3 {l
2 

3 {l
2

] 

7r E 4 2 m¥ 2 m~ 
(26) 

77 5 15 fl 2 13 fl 2 

+-- -'"(2) + -ln- + -ln-
8 2"' 4 m¥ 4 m~ 

9 2 fl
2 

3 2 fl
2 

3 fl
2 

fl
2 

) } + -In - + -ln - + -ln-ln-
4 -2 4 -2 2 -2 -2 mt mb mt mb 

The overall counterterms are given for the different diagrams: 

E~T(QCD) = as ~~e 
7r E 3 s 

-2 
(27) 

E~T(EW) = 

(28) 

(29) 

(30) 

E~T(LEFT) = 

. 9 
'-



The finite parts of the one and two loop contributions read as follows: 

~~in(1 -loop)= :s { -~- ~es + ( -1- ~es) In~} 

+xt{-2-2ln~~} 

~fin(2 l ) as_ LJs - oop = -xt 
7r 

~fin(2 1 ) as-LJv - oop = -Xt 
7r 
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Figure Captions 

Figure 1: Order O(asGFMn self energy diagrams for the bottom quark. Thin line: bottom 
quark, thick line: top quark, curly line: gluon, dashed line: Higgs ghost. 

Figure 2: Counterterm diagrams up to order O(asGFMn, 

Figure 3: Finite terms for diagrams up to order O(asGFMn. 

Figure 4: Corrections to f(H ~ bb) in terms of pole masses (upper curves) and MS masses 
(lower curves). The solid lines are the 0( Gpm;) contributions and the dashed lines the 
sum of O(Gpm;) and O(asGFmn. 

Figure 5: Corrections f(H ~ bb) separately for the orders O(as) (solid curve), O(a~) 
(dashed-dotted curve), O(GpMn (dashed curve) and O(asGFMn (dotted curve). 
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