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Abstract 

Supersymmetric theories involving a spontaneously broken flavor sym

metry can lead to fermion masses which vanish at tree level but are 

generated by radiative corrections. In the context of supersymmetric 

theories with minimal low energy field content we discuss which fermion 

masses and mixings may be obtained radiatively, and find that constraints 

from flavor changing phenomenology imply that only the first generation 

fermion masses and some (but not all) CKM mixings can naturally come 
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from radiative corrections. We also consider general conditions on theo

ries of flavor which guarantee the existence of tree level massless fermions 

while having non-trivial CKM matrix elements at tree level. Two com

plete models of flavor are presented. In the first model, all first generation 

fermion masses are radiatively generated. In the second model, the elec

tron and up quark mass are due to radiative corrections whereas the down 

mass appears at tree level, as does a successful prediction for the Cabibbo 

angle sin Be= ..jmd/ms. 



1 Introduction 

A complete supersymmetric theory of flavor must address both the fermion 

mass problem and the flavor changing problem [1]. An early proposal to address 

the flavor changing problem by invoking a U ( N) flavor symmetry of the Kahler 

potential in supergravity [2] was very incomplete; it did not address how the 

symmetry could be broken to get the fermion mass interactions of the super

potential. By studying broken flavor symmetries, one can study both issues. 

simultaneously [3], opening the door to a new field of flavor model building. 

Although there is considerable freedom in the choice of the flavor symmetry 

group and the pattern of symmetry breaking, the enterprise is nevertheless con

strained by the direct link between the flavor changing and fermion mass prob~ 

lems. Many candidate theories of fermion masses are excluded by flavor changing 

phenomenology. In this paper we study the possibility that some fermion masses 

arise radiatively, which requires large flavor changing interactions of the squarks 

or sleptons. Hence theories of flavor, based on spontaneously broken flavor sym

metries, which involve radiative fermion masses, are very highly constrained by 

flavor changing phenomenology. 

Flavor symmetries should forbid Yukawa couplings of the light fermions. 

After the flavor symmetries are broken, the light generation fermions should ac

quire small Yukawa couplings. Many models of fermion masses use the Froggatt

Nielsen mechanism [4] to generate small Yukawa couplings: assuming a fla

vor symmetry is broken by the VEV of some fields ( </>), and after integrating 

out heavy states of mass M, one can get light generation Yukawa couplings 

suppressed by 5£t. This mechanism can naturally generate second generation 

Yukawa couplings, but in order to ensure small enough first generation Yukawa 

couplings one usually has to assume contrived representations of the flavor group 

and/or contrived patterns of flavor breaking. There is, however, another possi

bility for generating small Yukawa couplings: if generated radiatively, they are 

suppressed by the loop factor 1i7r2 • This intriguing possibility has been exten- · 

sively studied in the literature[5]. A universal feature of all models must be that 

an "accidental" chiral symmetry is present in the Yukawa sector to force a zero 

Yukawa coupling at tree level, while this symmetry must be broken in another 

sector of the theory in order for the Yukawa coupling to be radiatively generated. 
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As we pointed out in [6], supersymmetric theories can provide a natural way for 

this to happen: the constraints of .holomorphy can force the superpotential to 

have accidental symmetries not shared by the D-terms. Given that the super

symmetric extension of the standard model is of interest for other reasons, we 

are naturally led to explore the idea of radiative fermion masses in supersymmet

ric models. To be specific, we consider supersymmetric SU(3) x SU(2) x U(l) 

theories with minimal low energy field content, i.e. we do not consider extra 

Higgses or extra families etc. We will find that, with this assumption, the set of 

possibilities for radiative fermion masses is highly constrained, and yields robust 

experimental predictions. 

The outline of this paper is as follows. In section 2 we consider general pos

sibilities for radiative fermion masses in supersymmetric theories with minimal 

low-energy field content, and conclude that, quite generally, only the lightest 

generation can be obtained radiatively. In section 3 we discuss phenomeno

logical constraints and consequences which follow from generating the lightest 

generation radiatively. In the subsequent sections, we consider issues related to 

building models which naturally implement radiative fermion Yukawa couplings 

for the first generation: In section 4, we discuss some general properties such 

models should have; and in section 5 we extend the lepton model presented in 

[6] to the quark sector. Our conclusions are drawn in section 6. 

2 General possibilities for radiative fermion masses 

We now consider general possibilities for radiatively generated Yukawa 

couplings in supersymmetric theories with minimal low energy field content. We 

know that, in the limit of exact supersymmetry, a Yukawa coupling which is zero 

at tree level will never be generated radiatively. Thus, in order to have radiative 

Yukawa couplings, we need soft supersymetry breaking operators which, further, 

must explicitly break the chiral symmetries associated with the zero Yukawa 

couplings of the superpotential. Also, the particles in the radiative loop must 

be at the weak scale: since the generated Yukawa coupling A is dimensionless 

and vanishes in the limit m 5 (the supersymmetry breaking scale) goes to zero, 

we must have A rv 16~2 ~' where M is a typical mass for the particles in the 

loop. Thus, M must be near the weak scale (rather than the GUT or Planck 
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scale) in order to generate large enough Yukawa couplings. 

Thus, we see that the breaking of the flavor symmetries associa~ed with the 

zero Yukawa couplings must lie in the weak scale soft supersymmetry breaking 

operators: the trilinear scalar A terms and the soft scalar masses. In this paper 

we make the plausible assumptions that the flavor symmetry is not an R sym

metry and that supersymmetry breaking fields are flavor singlets. Then, the A 

terms must respect the same flavor symmetries as the the Yukawa couplings, 

since any flavor symmetry forbidding I d2
() f( </>) (where f( </>) is some function of 

the superfields ¢> in the theory) will also forbid I ~()()2 f( </> ). Hence, all the flavor 

symmetry breaking responsible for generating radiative fermion masses resides 

in the scalar mass matrices. (However, in appendix A, we repeat the analysis 

without this assumption. Requiting our vacuum to be the global minimum of the 

potential and using constraints from flavor-changing neutral currents (FCNC), 

the A terms are such that the conclusions of this section are not greatly altered.) 

For simplicity, let us work in the lepton sector, and consider the possibility 

of radiatively generating I< lepton masses for I< = 3,2, 1 in turn. 

K =3. In this case, we have a vanishing tree level Yukawa matrix which has 

a large U(3)~ x U(3)e symmetry. By our assumption that the flavor symmetry is 

not an R symmetry and that supersymmetry breaking fields do not carry flavor, 

the A terms must also vanish. But then, all the soft scalar mass matrices can be 

simultaneously diagonalized, leaving an independent, unbroken U(l) symmetry 

acting on every superfield, preventing the radiative generation of any Yukawa 

couplings. 

K =2. Here, we only have the third generation Yukawa coupling at tree 

level. This case is more interesting. We shall find that, although it is possible 

to generate two Yt~:kawa eigenvalues radiatively, strong constraints from FCNC 

force the ratio of .the ( radiatively generated) first to second generation Yukawa 

couplings to a value too small to be compatible with experiment. 

Let us work in a basis where the Yukawa matrix >..E is diagonal, 

(2.1) 

Since >..E is invariant under independent rotations of the first two generation left 
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and right handed lepton superfields, we can make these rotations on the left and 

right handed scalar masses mi(R)' 

2 u 2 ut 
mL(R) -+ L(R)ffiL(R) L(R)' (2.2) 

where the UL(R) are unitary rotations in the upper 2 x 2 block, 

U _ ( U£(R) 0) 
L(R)- · 

0 1 
(2.3) 

If we write 

(2.4) 

then under U L we have 

). (2.5) 

and we can choose UL so that 

U£m~xl = ( 0 2 ) • 
m23 

(2.6) 

Thus, we can choose a basis where the 1-3 and 3-1 entries of mi are 0, and 

similarly for mh; the scalar masses have the form 

2 -
mL(R)- (2.7) 

The 1-2 entries, bmi2 , are constrained to be very small compared to mi and m~ 

from FCNC considerations. Suppose we put just one of the bmi2, say bmi2L, 

equal to zero. Then, we have a U(1) symmetry acting on the left-handed lep

ton superfield of the first generation, which will prevent the generation of any 

Yukawa coupling for the first generation. Hence, the radiatively generated first 

generation Yukawa coupling will be suppressed relative to the second generation 

one by roughly 

(2.8) 
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where the mz R are typical scalar masses for the first two generations. , 

Let us make a more careful estimate for the size of this suppression. For 

simplicity, we work in the mass insertion approximation where m~, m~, m5 are 

taken to be degenerate and equal to m2 . We find the radiatively generated 

Yukawa matrix for the upper 2 x 2 block is 

_ ( 67}JL O:!iR f(7)X 
6";!iL f(6)X ) 

A2x2 - < 2 , 
u::;a f(6)x f(5)x 

(2.9) 

where 

and M is the gaugino mass. Since f(n) is only logarithmically sensitive to the 

ratio ~:, we put M 2 = m2
. Then, f(n) = (n-2)(n-1) and we have 

( 

.1.. 6mf2 L 6mf2 a X .l.. 6mf2 LX ) 
,\ - 30 m2 m2 20 m2 

2x2 - 1 6mf2a 1 • 
20 m 2 X 12x 

(2.10) 

Diagonalizing the above matrix, we find the ratio of the first to second generation 

eigenvalues to be· 

(2.11) 

We see that it is impossible to generate large enough first generation Yukawa 

couplings consistent with FCNC constraints (unless the scalars are taken to be 

unacceptably heavy), which require (for 300 GeV sleptons and 500 GeV squarks) 

1 8m2 8m2 

_ ____ill~< 2 x 10-4 (p--+ e1) 
25 m 2 m 2 

1 8m~2q 8m~2d 6 . . 

25 
--:;;:;z~ < 1 x 10- (K1 - K2 m1xmg) 

1 8m~2q 8m~2d 5 . . 
-
2 
--

2
---

2
- < 6 x 10- (D1 - D 2 m1xmg). 

5 m m · 
(2.12) 

We are left with the case K =1, where Yukawa couplings for two generations 

occur at tree level, while the remaining Yukawa couplings, which necessarily 

correspond to the lightest generation, are radiatively generated. In the next 

section, we study the phenomenological constraints on this scenario in detail. 
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3 Phenomenological constraints 

In this section, we discuss the phenomenology of obtaining the first gener

ation Yukawa coupling radiatively. Recall that we are relying on the scalar mass 

matrices to break the chiral symmetries associated with the Yukawa matrices; 

in particular, then, the scalar mass matrices cannot be diagonalized in the same 

basis as the Yukawa matrices. Thus, if we work in the mass eigenstate basis for 

all fields, we will have non-trivial :mixing matrices at the gaugino vertices. Let 

us set the relevant notation here, following [7]. The superpotential contains 

(3.1) 

where .\u, .\n, .\E are the Yukawa matrices, and are diagonalized by 

(3.2) 

The soft supersymmetry breaking masses matrices are contained in 

and are diagonalized by 

(3.4) 

In the mass eigenstate basis, the rotation matrices V, U appear in the gaugino 

couplings, 

.C9 = ../2g' t [- ~eLW_t hNn(HnB + cot0wHnu;3 ) + e£W1ReRNnHnB 
11"=1 

+ ~cot Ow1hihNnHnw3 

- t- 1 1 - t- 1 1 
+ uLWuLuLNn(6HnB + 2cotOwHn;_;;3 ) + dLWnLdLNn(6HnB- 2cotOwHn;_;;3 ) 

- ~U£WtRuRNnHnB + ~d£W};RdRNnHnB + h.c.] 
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2 

+ g 2:[eLW~Lh(xcKcw-) + ihh(x!K:W) 
c=l 

+ dL WbL ih(xJ<cw) + ihWrt dL(x!K:W) + h.c.] 

+ y'2g3[iiLWJL ihg + dLWbLdLg + ii£WJRuRg + ~WbRdRg + h.c.J, (3.5) 

here1 the neutralino and chargino mass eigenstates are related to the gauge 

eigenstates by e.g. B = L:;=l HnBNn, W3 = L:;=l Hnw3 Nn, u;+ = L:~=l KcwXc, 
and 

WEL = u1vEL' WER = U~VER' WuL = UbVuL, WnL = UbVnL, 
\ 

(3.6) 

Having defined our notation, we now consider the dominant radiative con

tributions to the lepton, up and down mass matrices given in Fig. 1. In the 

follow:ing, we assume that the first two generation scalars are degenerate, since 

we know from the previous section that the contribution to the mass matrix from 

the non-degeneracy between the first two generations is negligible. Evaluating 

the diagrams, we find (keeping only the contribution from the third generation 

tree-level mass) [8] : 

~me a.B = t ~B ( HnB + cot Bw Hnw3 ) 

n=l n 

X 
4 

am;B (A+ J.Ltan(3) X {WEL3aW.EL33 WER3.8WER33 
~~ w . 

[h(x3Ln, X3Rn)- h(x3Ln, XtRn)- h(XtLn, X3Rn) + h(XtLn, XtRn)J 

. + WEL3aWEL33 83,e[h(X3Ln, XtRn)- h(XtLn' XtRn)J 

+ 8a3 WER3.8WER33[h(XtLn' X3Rn)- h(XtLn, XtRn)J 

(3.7) 

1 Neutrino masses are not discussed here. 
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+ W EL3a W_EL33D3,e[ h( X3L, XtR) - h( XIL, XtR)] 

+ Da3 WER3.8WER33[h(xiL, X3R)- h(XtL, Xtn)] 

+ Da3 D3,e h( XtL, Xtn)}, 

m~ R m~ R 
where X3L(R)n = ~~ ) , XtL(R)n = ;J; ) in the lepton sector, X3L(R) 

n n 
2 

(3.8) 

2 
mtL~R) 

M- ' g 

m. (R) 
XtL(R) = ~ and ~md a.B is the same as ~mu a.B with the replacements 

g 

cot f3-+ tan /3, mt-+ mb and t, u-+ b, J, and where 

h(x,y) = f(x)- f(y), 
x-y 

f(x) = xlnx. 
1-x 

(3.9) 

Let us begin our phenomenological discussion with the lepton sector. The 

above expression for the radiative contribution to the lepton mass matrix is 

rather unwieldy; while we can use it for numerical work, in order to get an 

approximate feeling for the size of the radiative electron mass, we simply look 

at the 11 entry of the radiative correction matrix me ~ ~men· For simplicity, 

we assume that one of the neutralinos is pure bino, that the scalar tau's are 

degenerate with mass m and much lighter than the selectrons. Then we find as 

in [6] 
am7 (A+ JL tan /3) 

me= 4 2 (} M X WEL31WER3th(x3,X3), (3.10) 
7r cos w 1 

where M 1 is .the bino mass, h(1, 1) = 1/2, and we have assumed WE33 ~ 1. As 

explained in [6], we must work in the large tan f3 regime, and so we can neglect 

the A term contribution above. If we set tan f3 = 60 and JL = M 1 = m, equation 

(3.10) reproduces the electron mass if the product WER31 WEL 31 ~ 0.01. This 

is roughly speaking a lower bound for this product. In this calculation we have 

taken the selectron to be much heavier than the stau so that the super-GIM can

cellation in the loop can be ignored. In fact, however, for selectrons moderately 

heavier than the staus, there will be a super-GIM cancellation and WER31 WEL 31 
will be correspondingly larger. In Fig. 2, we give a plot for the relevant super

GIM suppression factor. Assuming left and right handed scalars degenerate, 

scalars of the first two generations degenerate, and the third generation scal~r 

degenerate with the gaugino, we plot the super-GIM factor against the ratio 
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of first two generation to the third generation scalar masses. This implies that 

each of WE R31 , WE L 31 should be at least 0 .1. In the following we will explore the 

consequences of having such large mixing angles. 

-tt ---+ e1: One immediate observation is that, if in the diagram of Fig. 

1 (a) we replace one of the external electrons with a muon and attach a photon 

to the graph, we get a potentially dangerous contribution to the rare process 

tt ---+ e1. How dangerous is this effect? In appendix B, we present the FCNC 

constraints on the elements of the mixing matrices W. Requiring the tt ---+ e1 

rate to be smaller than current experimental bound constrains WEL(R)
32 

WER(L)
31 

to be smaller than rv w-4 . Since we know that we need WEL(R)31 rv 0.1 in order 

to generate the electron mass radiatively, we must have that WEL(R)
32 

;S 10-3 in 

order to avoid a dangerous f.l ---+ e1 rate. It may seem strange that WEL(R) 31 and 

WEL(R)32 have such disparate sizes; any theory of lepton flavor with radiatively 

generated electron mass must naturally explain why WEL(R) 32 is so much smaller 

than WEL(R) 31 . Speaking more loosely, if the electron mass is radiative, muon 

number must be very nearly conserved. 

-T ---+ e1: What about the decay r ---+ e1? Since it is a 3-1 transition, it is 

directly related to WEL(R)
31

. Under the same set of assumptions that went into 

the simplified equation (3.10), the amplitude for T£(R) decay is 

F 
a:m-r (A+ tt tan {3) 

L(R) = 3 X WEL(R)31g(x3, x3), 
47r cos2 Ow M1 

(3.11) 

where 

g(x,y) 
f'(x)- f'(y) 

-
x-y 

f'(x) 
x 2 - 2x lnx- 1 

(3.12) -
2(x- 1)3 

and g(1,1) = 1
1
2 • The branching ratio for r---+ q is proportional to IWEL 31 I2 + 

IWER31 I2 2: 2IWEL 31 WER 31 I, which is the product constrained by the requirement 

of obtaining radiative electron mass. Putting tt = M1 = m = 300 Ge V gives 

B( r ---+ e1) ~ 10-6 , a factor of 100 beneath the current bound. We make a more 

careful analysis as follows. Assuming that the left and right scalars, as well 

as the scalars of the first two generations are degenerate, both the radiatively 

generated me and the r ---+ e1 rate depend on the following parameters (other 
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than the mixing angles) in the large tan/3 regime: (J.L,M1 ,M2,m~,m~, tanf3) 

Putting tan f3 = 60 and assuming the grand unification relation M 2 "' 2M1 , 

the dependence is reduced to only (J.L, M11 m~, mD. Specifying these parameters 

determines what the product I W EL31 W ER31 I should be to obtain the correct 

electron mass, and this in turn provides us with a lower bound on B( r ---+ e{ ). In 

Fig. 3, we give a representative contour plot for this lower bound on B( r---+ e,). 
Over a significant portion of the parameter space, the rate is only 10-100 times 

smaller than the current bound B( r---+ e{) .:S 1.2 x 10-4 [9]. 

-de: If there are C P violating phases in the theory, we have further con

siderations. First, we note that if there is no mixing with the second generation 

(as seems to be required for avoiding dangerous J.l ---+ e{), then we can choose a 

basis where the mixing matrices WEL(R) are real: the only potentially complex 

coupling is ( e£mi3L h + h.c. + L ---+ R). Since the tree level electron Yukawa cou

pling is zero, we can independently rephase the superfields eL(R) to make mi3L(R) 

real. Thus, the only sources of C P violation are the phases in the A and J.l pa

rameters. Ordinarily, (when no fermion masss are generated radiatively), the 

phases of A and J.l are constrained to be small, since arbitrary phases lead to 

large electric dipole moments via diagrams proportional to the tree level first 

generation Yukawa couplings. Does the situation change when we generate the 

lightest generation Yukawa coupling radiatively? To answer this question, let us 

look at the lepton mass matrix and dipole moment matrix in the 2 dimensional 

space of the first and third generation (the second generation has no mixing 

and is thus irrelevant). For simplicity, we again consider taking the first two 

generation scalars much heavier than those of the third generation so that they 

are decoupled, and we set J.l ~ M 1 = m. Then, we have 

me 

de "' 1 5 10_21 (300GeV)
2 

e _ . x em x M
1 

( 

WEL31 WER31 WEL31 ) iB x e , 
WER31 1 

(3.13) 

where ()is the phase of A+ J.l tan f3. We can approximately diagonalize the lepton 
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mass matrix as follows ,, 

IDe ~ V,* ( .02 WEL31 WER31 
EL 0 m-r 

rv ( e-i8/2 .02 WEL(R)3I e-i8 ) 
VEL(R) - . i8f2 . 

-.02 WEL(R) 31 e 1 
(3.14) 

In the basis where the lepton mass matrix is diagonal with real eigenvalues, 

the electric dipole moment matrix is d~ = VjL de VER, and the electric dipole 

moment of the electron is de = Jm(d~11 ). We find with M1 = 300 GeV and 

WEL 31 WER 31 rv .01-(as required to generate the electron inass), 

de = 6 X 10-24cm X sin 0. 
e 

(3.15) 

Thus, sin 0 must be smaller than rv 7 x 10...:4 for ~ not to exceed the experimental 

limit of 4 x 10-27 em. So, we have not made any progress on the supersymmetric 

C P problem. However, as we have already mentioned, if we assume that sin 0 

is sufficiently suppressed, there are no other C P violating contributions when 

muon number is conserved. 

What if the electron mass is not all radiative in origin and has some small 

tree level contribution? If there is an 0(1) phase mismatch between the tree and 

radiative parts of the electron mass, there will be a phase in the electron electric 
. . mtree .· ..._ . 

dipole· moment of order ~ even If A and p are taken to be real. This would me . 

again give too large a dipole moment unless m£eee ;S 10-3 . (Of course, in deriving 

this result, we assume that most of the electron mass is radiative, otherwise there 

is no reason for the WEL(R)
31 

to be big enough to cause trouble with the dipole 

moment). We conclude that if there are large C P violating phase differences in 

the theory, the electron mass must either be nearly all radiative or nearly all 

tree level. 

In the quark sector, in addition to the first generation quark masses, we 

are also interested in the possibility of generating CKM mixing angles by finite 

radiative corrections. Table 1 shows the relevant ratios of quark masses and 

mixing angles. 

The co~straints on SUSY FCNC have been' studied in [10, 11], and the 

results are given in terms of bij = s;~i , where bin7i is the off diagonal squark mass 
q 
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!!!..t 1 !!!b. 1.6 x w-2 !!!:.£ 1 m mt m& 
~ 3.6 x w-3 !!?:...!. 4.5 x w-4 !!?:...!. 2.7 X 10-2 
m, mt mh 
!!:!:.!&. 1 X 10-s !!!d. 2 X 10-s !!!d. 1.3 X 10-3 
mt m, m 

sinil, m, 8 X 10-4 sinil, m~ 1 x w-4 sinil, m~ 6 X 10-3 
mt mt m& 

v,&mt 4 X 10-2 ~ 6.4 x w-4 ~ 4 x w-2 
m m m 

V..&mt 4 x w-3 ~ 6.4 X 10-5 ~ 4 X 10-3 
m m m 

v,dmt 1 x w-2 ~ 1.6 x w-4 ~ 1 X 10-2 
mt mt mh 

Table 1: The relevant ratios of quark masses and mixing angles with all quan

tities taken at the scale of top quark mass. The values of quark masses, mixing 

angles, and the RG mass enhancement factors TJi are taken as follows: mt(mt) = 
168GeV, mb(mb) = 4.15GeV, me(me) = 1.27GeV, m 5 (1 GeV) = 180MeV, 

md(1 GeV) = 8 MeV, mu(1 GeV) = 4 MeV, Tjb = 1.5, TJe = 2.1, TJu,d,s = 2.4, 

sin Be = 0.22, Vcb = 4 X 10-2
' Vub = 4 X w-3' 'Vtd = 1 X w-2. 

in the super-KM basis and Mq is the "universal squark mass". However, in order 

to generate the light generation quark masses entirely by radiative corrections, 

the splitting between scalar masses of the first two and the third generations 

must be quite large so that the super-GIM cancellation is not effective. As we 

can see from Fig. 2, this typically requires $1. ;G 3. Then it is not clear which 
m3 

scalar mass should be used for Mii. In appendix B, we translate thes results 

obtained in [10, 11] into constraints directly on the mixing matrix elements, 

which are more suitable for our dicussions. 

When tan j3 is large, some of the one-loop diagrams for the down type 

quark Yukawa couplings are enhanced by tan f3 (Figs. 1( c), 4(a)(b )). They can 

give significant corrections to the down type quark masses and CKM matrix 

elements[12]. Here we are interested in the possibility that some of the light 

generation quark masses and mixing angles are entirely generated by these loop 

corrections. Because of the large tan f3 enhancement, it is easier to generate 

CKM mixing angles in the down sector than in the up sector .. In fact, we can 

see from Table 1 that it is impossible to generate Vcb in the up sector, while 

generating Vub and Be requires WuL 31 to be greater than about 0.4 and 0.2 

respectively. WuL is linked to WnL by the CKM matrix: VcKM ~ WuL twDL· 

To get the correct Vub, WuL 31 has to be canceled by the mixing angles of the 
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same size in WvL, which will violate the FCNC constraints listed in Table Bl. 

Therefore, we will only consider generating CKM mixing angles in the down 

sector. 

The flavor diagonal gluino diagram could give large corrections to the down 

quark masses if the corresponding Yukawa couplings already exist at tree level. 

It does not generate fermion masses if they are absent at tree level, but gives 

large uncertainties in the tree level bottom Yukawa coupling A~, which appears in 

these gluino diagrams. The flavor-changing gluino diagram (through m~ptan /3) 
can give sizable down quark mass matrix elements involving light generations 

and therefore generate md and CKM mixing angles. The first chargino diagram 

(Fig. 4( a)) only gives significant contributions when one of the external leg is 

bR, i.e., it contributes to Av13 , Av 23 , Av33 • With some unification assumptions 

at hi'gh scales, one usually finds the chargino contribution to the bottom quark 

mass is smaller than and opposite to the gluino contribution [13, 14]. Here we 

do not make assumptions about physics at high scales so both contributions 

lead to uncertainties in the tree level A~. The contributions to Av13 and Av23 

are proportional to vtd and vts respectively, so they can only give corrections 

to the already existing mixing angles but not generate them entirely. The sec

ond chargino diagram (Fig. 4(b)) is supressed by the weak coupling constant 

compared with other diagrams and will be ignored. In the following we will 

concentrate on the possibilities that the light fermion masses and mixing angles 

are generated by the flavor-changing gluino diagram. 

-mu: The possibility that mu. comes from radiative corrections by mixing 

with the third generation has been pointed out in [7]. We can see from Fig. 2 

and ~ in Table 1 that if WuL 31 WuR31 ,...., 10-3, mu can be generated entirely 

from radiative corrections. There is no direct constraint on the 1-3 mixing. The 

induced splitting between the first two generation left-handed squark masses 

could contribute to I< - [{ mixing. However, this constraint is easily satisfied, 

so it is possible that mu is entirely radiative. 

-md: From Fig. 2 and Table 1. we can see that to generate md requires 

WvL 31 WvR31 ,...., 2 x 10-3
. Compared with the constraints derived from B -B 

mixing in Table B1(a), this requires the sfermion masses to be in the TeV range, 

which is somewhat uncomfortably large. In addition, if md does get its mass 

from radiative corrections, we also generate the 1-3 entry for the down Yukawa 
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matrix. Their ratio is: 

(3.16) 

form;; I"V 1 TeV, assuming WvR33 ~ 1, where H = h(x3L, X3R)- h(x3L, XIR)

h(xiL, X3R) + h(xiL, XIR), H = h(x3L, X3R) - h(xiL, X3R), and h, XI(3)L(R) are 

defined in (3.8), (3.9). On the other hand, v.:!b ~ 0.3. We see that the 

generated ~>.v13 gives a too big contribution to Vub which has to be canceled 

by a tree level >.v13 • 

We now discuss the possibilities for radiative generation of CKM elements. 

We take the independent parameters of the CKM matrix to be Vus, Vub, "Vcb and 

the C P violating phase. 

-Be: To generate Be we need WvL 31 WvR32 I"V 10-2
, assuming WvL(R)

33 
~ 1. 

From B - B mixing and b -+ S'"'f decay, or K - f< mixing alone, the sfermion 

masses are also required to be ~ 1 Te V in order to satisfy these constraints. 

Furthermore the phase of WvL 31 WvR32 has to be small ( < 10-1
) from the e 

parameter of CP violation. Similar to the case of md, generating Be radiatively 

may also give a too big contribution to Vub· If we try to generate md, BQ and 
- -Vub all by radiative corrections, ignoring the difference between H and H, we 

obtain the following ratio for the mixing matrix elements from Table 1: 

By unitarity we obtain 

WvR33 ~ 0.55, WvR32 ~ 0.82, WvR31 ~ 0.18. (3.18) 

(Taking into account that H > H gives larger WvR32 , WvR31 .) From Table B1, 

we can see that m;; has to be pushed above 2 Te V (even higher for the first two 

generations) to satisfy the constraints from both llMK and b-+ S'"'f. If there are 

0(1) phases in these W's, the e constraints raise the lower limit of the squark 

masses to""'"' 20 TeV, which is unacceptably large. Furthermore, it is unnatural 

for models to have such a large WvR32 mixing. Therefore, it is unlikely that all 

CKM matrix elements can be generated by radiative corrections. 

-Vub: To generate Vub we need WvL 31 ""'"'5 x 10-3 , which easily satisfies the 

B - B mixing constraints. Hence Vub can be generated radiatively, but as we 
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learned from above, Vub and Oc cannot both come from radiative corrections, 

and neither can Vub and md. 

-Vcb: Attaching a photon to the diagram which generates .6.mn23 gives a 

diagram contributing to the decay b ~ S/ . Hence one can write down the 

following simple relation between gluino ciiagraril contributions to Vcb and to the 

Wilson coefficient c7(Mw) [15] for b ~ S/, 

(3.19) 

=? 7]
16

1
23

!lc7(Mw) ~ (Bmw )2 ( 5G) ( flmn23). 
c7(mb)SM m9 H Vcbmb 

(3.20) 

where G = g(x3L, x3R) - g(x1L, x 3R), and g is defined in (3.12). The gluino 

diagram contribution to b ~ S/ interferes constructively with the Standard 

Model contribution if Vcb is generated by the similar gluino diagram. Therefore, 

generating Vcb radiatively requires heavy gluino and squark masses ( ~ 1 Te V) 

or cancellation between the chargino diagram contributions to b ~ S/ and other 

contributions. 

-CP-violating phases: From the above discussion we found that it is very 

difficult to generate all CKM mixing matrix elements by radiative corrections. 

This means that a non-trivial CKM matrix should occur at tree level. There is 

one physical CP-violating phase in VcKM, and several more in the quark-squark

gaugino mixing matrices. The number of CP-violating phases in the quark sector 

· (not including the possible phases of the parameters A and 1-L) is counted as in 

the following. There are four unitary mixing matrices WuL, Wun, WnL, Wnn, 

(VcKM = WuL twDL is not independent,) connecting 7 species of quark and 

squark fields U£, dL, uR, dR, Q, tJ, D. Among the phases of these fields, 6 are 

fixed by the 6 eigenvalues of the Yukawa matrices .Xu and ..Xn (if there are no 

zero eigenvalues), one overall phase is irrelevant, so we can remove 14 of the 24 

phases in the W's by phase redefinition of the quark and squark fields. Each 

massless quark removes one more phase by allowing independent phase rotations 

on the left and right quark fields. Each pair of degenerate quarks or squarks 

of the same species removes one phase as well. Assuming mu and md massless 

at the tree level, and degeneracies between the first two generation squarks,. we 

can remove 5 more phases and there are still 5 independent phases left. One of 
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them cannot be moved to the Wu's and it can give significant contributions to 

the CP violation effects in the K and B systems. 

4 Guidelines for model building 

In the introduction and in [6] we indicated some general features effective 

theories of flavor should have in order to generate radiative fermion masses. In 

particular, we pointed out that, in supersymmetric theories, an accidental su

perpotential symmetry is needed to ensure that the first generation is massless 

at tree-level, while this symmetry must be broken by D terms in order to ob

tain radiative masses. For instance, in the effective lepton models considered 

in [6], all holomorphic and flavor symmetric operators possess an accidental 

U(1)£1 x U(1)e1 which is violated by the D-terms. From the point of view of 

an effective theory, then, it is representation content and holomorphy which are 

responsible for accidental symmetries for every possible superpotential opera

tor, thereby forbidding some Yukawa couplings. However, this is by no means 

a necessary condition for the existence of tree level massless fermions: We do 

not always generate every operator consistent with symmetries when we inte

grate out heavy states. Thus, the condition that every effective operator in the 

superpotential possess an accidental symmetry is clearly too strong; we only 

need an accidental symmetry to exist for those operators induced by integrating 

out heavy states. For this reason, it seems that a deeper understanding of the 

accidental symmetries lies in examining the full theory, including superheavy 

states. This is our purpose in this section. We will find simple, sufficient condi

tions for guaranteeing the existence of tree level massless states after integrating 

out heavy states. We will also describe (in view of later application to the quark 

sector) the structure of the tree-level CKM matrix. These conditions will serve 

as convenient guides for the explicit models we construct in the next section. 

We begin by considering sufficient conditions for the existence of tree level 

massless states. Consider the lepton sector for simplicity. In Froggatt-Nielsen 

schemes, we have fields f 01 , e01 (a = 1, 2, 3) which would be the 3 low energy left 

and right handed lepton fields in the flavor symmetric limit. However, there are 

also superheavy states with which .e and e mix after flavor symmetry breaking. 

In general, we have vector-like superheavy states (Li EB Li) and (Ea EB Ea), (i = 
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4, ... , n + 3, a = 4, ... , m + 3), with L, E having the same gauge quantum 

numbers as f, e respectively, and with the barred fields having conjugate gauge 

quantum numbers. We also have a set of gauge singlet fields </> with VEV's 

(¢) breaking the flavor group G1. In the superpotential, we have bare mass 

terms for the (L, L) and the (E, E) fields, as well as trilinear couplings mixing 

</>'s with ll.ght and superheavy states. We also have a large Yukawa matrix 

AlA (I= 1, ... , n + 3, A= 1, ... , m + 3), connecting the down-type Higgs ha to 

the (fa, Li) and (ea, Ea), 

(4.1) 

. Once the fields </> develop VEV's, we will have mass terms like, f (¢) L mixing 

light and he~vy states. In order to diagonalize the bare mass matrix and go 

from the flavor basis to the mass basis (where "light" and "heavy:' are correctly 

identified), we must make appropriate ( </>) dependent unitary rotati<:>ns on the 

fields: 

( .€') (.e)- -L' = UL((¢)) L , L' = Ut((</>))L, 

( ;: ) = UE((,P)) (;), E' = UE((¢))E. (4.2) 

In this basis, the mass terms are :Lf;i MiLiLi + :L;!;l MaE~E~, and the Yukawa 

matrix becomes 

( 4.3) 

where summation over J and B is understood. In order to integrate out the (now 

correctly identified) heavy states at tree level, we simply throw out any coupling 

involving them. The Yukawa matrix .\ for the three low energy generation 

leptons is then 

( 4.4) 

We would now like to understand circumstances under which we can guar

antee a certain number of zero eigenvalues for .\. For .\ to have k ::; 3 zero 

eigenvalues, its rank must be 3- k. To see when this is possible, we make the 

simple observation that each row (or alternatively each column) of A contributes 
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one rank to A. Consider for instance the contribution to A from the J0 'th row 

of A. Defining . 

we have 
A from row Jo _ X Y 

a{3 - a (3, (4.5) 

which is manifestly rank 1. Define a non-zero row (column) of A to be a row 

(column) with at least one non-zero entry. Then, it is clear that a sufficient 

condition for A to have rank 3 - k is that the number of non-zero tows (or the 

number of non-zero columns) of A, up to rotations, equal 3- k, i. e., A also has 

rank 3 - k; since in this case A is of the form 

(4.6) 

which is manifestly rank 3- k (the case of interest to us is k = 1 ). We will make 

use of this criterion in the following section. 

We next turn to examining the tree-level CKM matrix in the quark sector. 

In analogy to the lepton sector, we have Yukawa matrices Av and Au, 

where all new fields are in obvious analogy with the lepton sector. Let us assume 

that the general condition stated above, ensuring the existence of a massless 

eigenvalue for Av and Au, is realized by Av and Au. Then, we can write 

(4.8) 

Suppose in particular that Av and Au have nontrivial entries in the same two 

rows, in which case we can choose x~ = x~, i = 1, 2. Then, the resulting CKM 

matrix has non-zero entries only in the 2-3 sector. The reason is that, since 

the first generation is massless, we can always choose a basis where the first 

generation quark doublet has no component of superheavy quark doublets with 

Yukawa couplings, and so both AD and Au are only non-zero in the lower 2 x 2 

block. We can see this more explicitly as follows. First note that we can make 

a rotation on the left handed quarks to make x~ point in the 3 direction, and 
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make independent rotations on the right-handed up and down quarks to make 

Yf3 and y~ also point in the 3 direction. In this basis, we have 

u 0 

~t (~ 
0 

~' t )..Da(3 = 0 + x;zf3, >..u01(3 = 0 + 2 I (4.9) X 01 Zf3 

0 0 

However, we can always make rotations on the upper 2 x 2 block so that x 2
, z, z' 

have 0 entries in the first' component. Using equation (4.9), we easily see that 

both >..v and >..u are only non-zero in the lower 2 x 2 block, and CKM mixing 

only occurs in the 23 sector, as claimed. Thus, in order to have, for example, a 
l 

tree level Be or Vub (as is necessary from our discussion in section 3), we must 

ensure that Av and Au do not have entries in the same two rows. Other than 

this case, we expect generically that all elements of the CKM matrix exist at 

tree level. 

In this section we have shown that if the Higgs couples in only 2 rows or 2 

columns of the full Yukawa matrix to matter, then there will be a light generation 

which is massless at tree level. The required sparseness of Higgs couplings is 

due to G f and holomorphy. 

5 Realistic models for radiative fermion masses 

In [6], we gave explicit lepton models of flavor with radiative electron mass, 

which naturally fulfilled the phenomenological requirements of Sec. 3; namely, 

the electron is massless at tree level, the muon picks up a tree level mass upon 

integrating out heavy states, muon number is conserved, and D terms yiels e- T 

mixing which generates a radiative electron mass. In this section, our purpose 

is to give an extension to the quark sector. We begin by reviewing the lepton 

model most readily extended to the quark sector, the full model with flavor 

group Gf = SU(2)t x SU(2)e x U(l)A· The fields are categorized as light/heavy 

and matter /Higgs in Table 2. 

We require the theory to be invariant under matter parity (Matter -t 

-Matter) and heavy parity (Heavy -t -He~vy). Here, matter parity is crucial to 

avoid dangerous R-parity violatin:'g couplings, but the heavy parity is imposed 
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Light 
Matter £3 (0), £1( +1) 

e3(0), ei( -1) 

Higgs h(O) 

Heavy 

L( +2), LI( +1), L( -2), L1 
( -1) 

E( -2), Ei( -1), E( +2), Ei( +1) 

¢>a(+ 1 ), ¢>ei( -1 ), S(O) 

Table 2: Field content and G 1 transformation properties for the lepton model. 

I, i are SU(2).e and SU(2)e indices respectively, the numbers in brackets are the 

U(1 )A charges. 

only for simplicity.2 Requiring these discrete symmetries and G1 invariance 

gives us the following renormalizable superpotential (where all dimensionless 

couplings are 0(1)) 

+ J;e3Ei¢>ei + f~eiEiS + f~eiEij¢>ejE 
- -I - -· + MLLL + MLIL L] + MEEE + ME;E'Ei. (5.1) 

Note that this superpotential has only two Yukawa couplings >.3 (for the 7) and 

>.4 (for the superheavy L, E). Therefore, using the results of the last section, 

we are guaranteed to have a tree-level massless state after we integrate out the 

heavy fields;3 we identify this state with the electron. 

The fields ¢>.e, ¢>e and S take VEV's which break the flavor symmetries. 

We can assume without loss of generality that(¢>~.) = (v~.,O),(¢>e) = (ve,O). 

As described generally in the previous section, these VEV's mix the light and 

heavy states and we must rotate to the mass basis where "light" and "heavy" are 

properly identified. An approximation to the resulting rotation on the Yukawa 

2 However, both of these parities are automatic in the SU(3)t x SU(3)e models considered 

in [6). The U(l)A factor in G1 also finds a natural explanation in these theories. We do not 

use the SU(3) theories here as a starting point here because the requisite modifications to go 

to the quark sector are more difficult to see than in the SU(2)t x SU(2)e x U(l)A model we 

are considering. 
3 Actually, in this theory the existence of a massless state can already be seen in the effective 

theory as described in [6). 
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matrix is shown in Fig. 5, and we generate the following superpotential term for 

the light fields: 

t> W = ( hM~L( <h,) )>.<h( fie;~~ 4>,,)) 

=A (fsVf.)(f~ve)f h 
4 ML ME 2e2 ' 

so, we can identify (£2 , e2) with the muon and (£1 , ei) with the electron. 

(5.2) 

Let us look at the above rotation more directly [16]. Setting <Pt., </Je, S to 

their VEV's gives the follwing mass terms in the superpotential: 

Plus similar terms for the E's where E• = _h3!.!.. E~ = h!!L E'1 = h(S). 
' ~ ML ' ~ ML 1 ' ~ ML 1 

Thus, the mass basis is related to the flavor basis via £' = Ut.f, where f(')T = 
(f1 ,f2 ,f3 ,L,LI,L2 )(1)_ To a first approximation, we have 

1 0 0 0 E"* -f. 0 

0 1 0 -€£ 0 €''* -f. 

0 0 1 0 E'* 0 
Ut.= 

-f. 
(5.4) 

0 €f. 0 1 0 0 
E" f. 0 E' f. 0 1 0 

0 E" f. 0 0 0 1 

Completely similar statements hold for thee's. Now, in the original flavor basis, 

the Yukawa matrix A is 

0 0 0 0 0 0 

0 0 0 0 0 0 

A= 
0 0 ,\3 0 0 0 

(5.5) 
0 0 0 ,\4 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 
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After rotating to the mass basis, we have 

0 0 0 0 0 0 

0 €£€eA4 0 -e:£.A4 0 0 

A'= u;Au! = 0 0 .A3 0 e:~.A3 0 
(5.6) 

0 -€eA4 0 .A4 0 0 

0 0 e:£.A3 0 I I A €£€e 3 0 

0 0 0 0 0 0 

Dropping all couplings to the heavy states, we obtain the low energy Yukawa 

matrix~' 

0 
(5.7) 

just as we found earlier. 

Note that the VEV's (<h) and (<Pe) do not completely break Gf; the gener-

a tor 

TIL = Tu(I)A - 2(Tl- T;) (5.8) 

annihilates both (<P£) and (<Pe), and corresponds to the muon number:4 

We now have most of what we want; we need only show that the required mixing 

between the r and e is generated in the scalar mass matrix. We can generate D 

term mixings upon integrating out heavy states [16]. The one in Fig. 6 gives 

(5.10) 

Note that this term explicitly breaks the U(1 )£1 chiral symmetry associated with 

the zero tree-level Yukawa coupling of the electron, so we expect the required 

mixing between T and e to occur. Let us check it more explicitly. The D-term 

4The U(l)A factor in G1 can be replaced with its Z4 subgroup and still avoid danger

ous muon number violating processes; after the VEV's are taken there is a symmetry under 

(l!2, e2) -: ( -£2, -e2) which still forbids mixing between the scalar f.t and r, e, therefore avoid

ing the dangerous f.t -+ e1 decay. 
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part of the lagrangian is f d4(}( <Pt <P+0202</Jtm2</J), where <Pis a collection of all the 

fields and m 2 is the soft supersymmetry breaking scalar mass matrix. When we 

rotate to the mass basis, we send <P---+ U </J. Under this rotation, <Pt <Pis invariant, 

but m 2 ---+ Um2Ut. 5
• In our example, the scalar mass term for the left-handed 

1 fi ld · nt 2n 'th 2 d' ( 2 2 2 2 2 2 ) Th 1 epton e s 1s .c. ml.c., Wl ml = 1ag m£
1

, m£
1

, m£
3

, mL, mL
1

, mL
1 

• e sea ar 

mass matrix for the three low ·energy generations is then 

0 

m~1 + lctl2mi + k11 2mL 
0 

(5.11) 
The zero entries in the above matrix are a consequence of the unbroken U(l)JL 

symmetry of the theory. We can explicitly see the 1-3 entry generated in the 

scalar mass matrix, which, together with the corrseponding 1-3 entry in the 

the right-handed scalar mass matrix, is responsible for generating the radiative 

electron mass. 

There are two difficulties when we try to extend the lepton model for ra

diative electron mass to the quark sector. First, the radiative down quark mass 

is severely constrained by B- B ·mixing as we showed in Sec. 3. This can be 

resolved if the SUSY-breaking masses are heavy enough ( ~ 1 TeV). The other 

problem is that in addition to the quark masses, we also have to get the correct 

CKM mixing matrix. As we have shown in Sec. 3, it is very difficult to gener

ate all CKM mixing matrix elements: squark masses have to be pushed up to 

unacceptably high scales and unnatural flavor mixing gaugino interactions are 

needed. Excluding that possibility, one has to put in some mixing angles at tree 

level. In subsection 5.1 we present a model in which all first generation fermion 

masses come from radiative corrections. In subsection 5.2 we construct a model 
5This is not strictly speaking correct, since supersymmetry breaking can affect the rotation 

to the mass basis. For instance, in Fig. 6, we could attach spurions ()2 and 02 to the superpo

tential vertices, obtaining a direct contribution to the scalar mass matrix of order IAI2 , where 

A is the trilinear soft term associated with the superpotential vertex. Put another way, we 
can have spurions (]2 in the rotation matrix U, and get contributions to the scalar masses from 

rotating <P t ¢. These contributions are of the same order as the ones we are discussing, but do 

not affect any of our results. 
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in which me and mu come from radiative corrections while md and ()c appear at 

tree level with the prediction sin Oc = Jmd/m 5 • We show that this model can 

be naturally embedded in the flipped SU(5) grand unified theory. · 

5.1 A complete model for radiative first generation fermion 

masses 

The complete model for quarks and leptons is based on the same flavor 

group a, = SU(2)z X SU(2)r X U(1 )A as in the lepton model. However, a minimal 

direct extension of the lepton model to the quark sector does not give tree level 

CKM mixing angles. Following the guidelines to generate tree level ()c and Vub 

in Sec. 4, we need to introduce two heavy left-handed SU(2)1 singlet quarks Q, 
Q' (and their conjugates Q, Q').6 Their U(1)A charges are assigned such that Q 

only couples to the up-type Higgs but not the down-type Biggs and vice versa 

for Q'. In addition, there cannot be an unbroken U ( 1) left in the quark sector, 

so we introduce a second SU(2)z doublet ¢>/, and a second SU(2)r doublet ¢>~, 

whose VEV's are in different directions from the directions of ¢>z and ¢>r VEV's, 

breaking G f completely. The field content and G f transformation properties of 

the quark sector are shown in Table 3. We also impose matter-parity and heavy 

parity. The VEV's of ¢>, ¢>' and S are assume9- to take the most general form: 7 

Light Heavy 

u3(0), ui( -1) U( -2), U( +2), Ui( -1), [Ji( +1) 
Matter q3(0), qi( +1) Q( +2), Q( -2), Q'(O), Q'(O), QI(+1), Q1(-1) 

d3(0), di(+1) D(O), D(O), D i ( + 1), J)i ( -1) 

Higgs hu(O), hd(O) rPII( +1), rPri( -1), rf>/1( -1), rP~i( +1), S(O) 

Table 3: Field content and G1 transformation properties of the quark sector. 

I and i are SU(2)z and SU(2)r doublet indices and the numbers in brackets are 

U(1)A charges. 

6 Second pairs of heavy U', U' and D', D' are not included in our discussion. They can be 

added as long as their U(l)A charge assignments forbid their Yukawa interactions with the 

Q 's and Higgses. 
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(5.12) 

Because we are dealing with a full theory, we restrict ourselves to renormalizable 

interactions only and all possible renormalizable interactions consis~ent with 

the symmetries are included. Nonrenormalizable interactions are assumed to be 

absent or suppressed enough so that they can be ignored. The G f transformation 

properties of the up sector are identical to those of the lepton model so the 

analysis is exactly the same as in the lepton model. The superpotential for the 

up sector is 

(5.13) 

Note that although we introduce another pair of G f breaking fields </>~1 and </>~i' 

they do not have renormalizable interactions with the up sector and the lepton 

sector. The only such G f invariant interactions 

(5.14) 

are forbidden by heavy parity. Therefore, we do not generate muon number 

violating operators even though G f is completely broken. 

The superpotential of the down sector is given by 

Wd = >..d3q3hdd3 + >..d4Q' hdD 

+ .pi IJ Q- I )..1 + f' Q-'S J q3t qr <.r!J J q4q3 

+ Jd1d3iY¢>~i + !d2difJi S + !d3tiidiD</>ri + !d4d3DS 

+ MvDD + Mv;DiDi + MQ'Q'Q'. (5.15) 

74m, <Pri can be put in this form by SU(2)1 and SU(2)r rotations, then ¢;1 , <P~i VEV's will 

take the general directions if there are no alignments between <Ph, <P~i and ¢u, <Pri. In this 

paper we do not specify the origin of these VEV's. 

25 



The h 1 and h2 couplings are responsible for the D-term mixing between d3 

and di, i = 1, 2 (with intermediate J5i). !d3 , h 4 mix d2, d 3 with D, f~3 , f~4 
mix q1 , q2 , q3 with Q1 and they are responsible for generating tree level Yukawa 

couplings among d2, d 3 , and q1 , q2, q3 with hd. After integrating out the heavy 

states, we obtain the following tree level Yukawa matrices for the up quarks and 

down quarks: 

0 

where, 

~ ) '..\n = ( ~ 
.xu3 0 

e:~ 1 e:d2Ad4 

€~2€d2.xd4 

€~3€d2.xd4 

1 ~~3Vl2 1 ~~3Vll 1 ~~4Vs 
e:ql = - MQ' ' e:q2 = MQ' ' e:q3 = MQ' ' 

fd3Vro fd4Vs 
€d2 = --, €d3 = --. 

Mv Mn 

Both matrices are of rank 2, as guaranteed by the theorem of Sec. 4, (although 

this cannot be seen from the· effective theory point of view). Now we have 

a massless state in each of the up and down sectors and all mixing angles are 

generated at tree level. mu and md are then generated radiatively by the mixings 

between the first and the third generations induced by fq 11 Jq2, full !u2, and 

!db !d2 with intermediate Q1
, 0, and fJ states. h3, fd4 , f~3 , f~4 also induce the 

D term mixings among generations with intermediate fJ and Q1 states. For 

example, the mixing between q3 and q2 is ""' e:~3 e:~ 2 , which is about the same size 

as the corresponding CKM mixing angle. For large tan (3 they can give sizable 

corrections [0(50%)] to the CKM matrix elements. Since we.do not know the 

exact size and the sign of these corrections, if we just take ms, sin Be and 'Vcb to 

be approximately equal to the tree level results, then we have [within 0(50%) 

accuracy] 

'Vcb f"V 
I Ad4 

f"V 4 X 10-2 , €q2€d3~ 
d3 

ms I Ad4 
2.7x10~2 , f"V 

€q2€d2~ 
f"V 

ffib d3 
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f'.J 0.22 (5.17) 

Combining the above relations, we obtain the approximate tree level Vub 

Vtree ' Ad4 . -() t7 9 10-3 
ub ~ €qt€d3~ ~ Sill cVcb ~ X , 

"d3 
(5.18) . 

which is about a factor of 2 bigger than the accepted value. However, as we 

found in Sec. 3, when we generate md by radiative corrections, we also generate 

v:td bigger than the accepted value by about a factor of 3, which has to be 

cancelled by the tree level v;bee. If the sign is right, (5.18) is just in the range 

which can cancel against the radiative contribution to produce the correct Vub· 

Therefore, correct values for all quark masses and CKM mixing angles can be 

obtained. Naively, one might expect that it is difficult to have massless first 

generation quarks at tree level because of the Cabibbo angle. Here we showed, 

with the help of the theorem of Sec. 4 for the rank of the Yukawa matrices, that 

one can naturally get massless up and down quarks at tree level, while having 

nonzero sin Be. 

5.2 A model of radiative mu, me, and tree level md 

As we have mentioned, a radiative md is only barely consistent with B- f3 
mixing with very heavy SUSY-breaking masses. In this subsection, we present 

a model in which md is nonzero at tree level, while mu and me arise purely 

from radia~ive effects. The flavor group is Gj = SU(2)T X SU(2)p X z4. The 

reason for the subscripts of the SU(2) groups will be clear later. U(1)A is 

replace by its subgroup Z4 • Matter-parity and the heavy parity are imposed as 

well. The field content is shown in Table 4, where I, i are SU(2)p and SU(2)T 
indices respectively, and the numbers in brackets are the Z4 charges with n and 

(n mod 4) identified. </>Ti, </>FJ, Sand X have nonzero VEV's: 

(</>r;) = ( v:) , (<f>FI) = ( v;) , (S) = v, (X) = v., (5.19) 

which break G1 completely. In this model there is only one pair of SU(2)T,F 
breaking fields </>Ti, <f>FI· The tree level massless electron and up quark can be 

easily seen in an effective theory point of view[6], because the only SU(2)T,F 
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Light 
e3(0), ei( -1) 
£3(0), .ei( +1) 

Matter u3 (0), UJ(+1) 
q3(0), qi( -1) 
d3 ( 0) ' di ( -1) 

E( -2), E( +2) 
L( +2), L( -2) 
U( +2), U( -2), 
Q( -2), Q( +2), 
D( -2), D(+2), 

tPTi(-1), tPFI(+1), 

Heavy 
Ei ( -1), _Ei ( + 1) 
LJ(+1), L1(-1) 
UI(+1), U1(-1) 
Qi(-1), Qi(+1), 
Di( -1), [)i( +1), 

S(O), X(2) 

Q~(+1), Q'i(-1) 
Di(+1), D'i(-1) 

Table 4: Field content and G1 transformation properties of the model with 

radiative mu, me, and tree level md. 

invariant holomorphic combinations of the two light generations and fields with 

nonzero VEV's for the lepton and the up quark sectors are EiieitPTi, EIJfitPFJ, 

E1JUJtPFJ, and EiiqitPTj, which cannot give Yukawa couplings to both light gen

erations with hu and hd. In the down sector, q's and d's have the same Gf 

transformation properties. One can write down the effective operator 

(5.20) 

which generates the 12 and 21 entries of the down Yukawa matrix with equal 

size and opposite signs. Hence we can obtain both Be and md at tree level with 

the experimentally successful relation sin Be~ Jmd/m 8 • 

Compared with the lepton model discussed earlier in this section, the extra 

X field is required to break the left over "second generation parity" in order to 

generate Vcb and Vus but it may also induce a too big J-l -+ e1 rate, which will be 

discussed later. The Q~, Q'\ D~, D'i are responsible for generating the operator 

(5.20). They can be omitted if nonrenormalizable operators are. allowed and are 

sufficiently large. In fact, because this model can be analyzed in the effective 

theory point of view, including nonrenormalizable interactions will not affect 

our results. However, for simplicity and completeness, we will analyze the full 

theory and restrict ourselves to renormalizable interactions. 

The lepton sector and the up quark sector are similar to the previous models. 

We will not repeat the detailed analysis. The only difference is that with the 

additional X field, we can have the following extra interactions: 

(5.21) 
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They mix the third generation with the heavy SU(2)T(F) singlet generation. In 

combination with Eii¢>TiejE, E1J¢>FI£JL, E1J¢>FIUJU, and Eii¢>TiqjQ, they gener

ate the 23 and 32 entries of the Yukawa matrices and also the D term mixing 

between the second and the third generations. For the up quark sector, the 

D - D mixing constraints are very weak and hence easily satisfied. However, for 

the lepton sector the constraint from the J.L --+ e1 rate requires the 2-3 mixing 

to be no bigger than 0(10-3 ), while the naive expectation of 2-3 mixing in this 

model is of the order 'Vcb· Therefore, one has to assume that the couplings of the 

X field to the lepton sector are small, or prevented by some extra symmetries. 

We will see that this is possible to achieve later. 

In the down quark sector, in addition to the usual interactions, 

Wd = Ad3q3hdd3 + Ad4QhdD 

+ fqtq3Qi¢>Ti + fq2qiQi S + fq3€ij q/J¢>Tj 

+ fdtd3lJi¢>Ti + fd2dijji S + fd3EijdiD¢>Ti 

+ MnDD + Mn)YDi + MQQQ + MQ;QiQi, (5.22) 

which give the tree level band s quark masses and 1-3 D term mixing, we have 

the following interactions as well, 

. . 
+ fqsqiQ'' + fdsdi[y' X 

+ AdsEiiQ~hdDi + AdsEiiQihdDj. (5.23) 

As we have discussed before, the Jq5 , fds couplings induce the 23 and 32 entries 

of the Yukawa matrix and the 2-3 D term mixing, so that Vcb can be generated. 

Jqs, ids, Ads, Ads together with fq2, h2 couplings generate the operator (5.20), 

which gives Be and md, and the successful relation sin Be = Jmd/m5 • The tree 

level down quark mass matrix takes the following form, 

( 
0 c 0) 

-C E B ., 

0 B' A 
(5.24) 

while the tree level up quark and lepton mass matrices have nonzero entries 

in the lower 2 x 2 block. In addition to mu and me, Vub is also generated by 
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radiative corrections from the 3-1 mixing WvL 31 . The required size of WvL 31 
is much smaller than that required for generating md radiatively, so the phe

nomenological constraints are easier to satisfy as we have discussed in Sec. 3. 

Looking at the G f transformation properties of the fields, one can see that 

this model can be embedded into the flipped SU(5) grand unified theory[17]: q 

and d (and the not discussed right-handed neutrino n) belong to the 10 repre

sentation of flipped SU(5), u and I! belong to the 5 and e is a singlet 1 under 

flipped SU(5). SU(2)T is a flavor group for the 10's and SU(2)p is a flavor 

group for the 5's. In Table 4, the e's are assigned to transform under SU(2)r. 
Here one can either have them transform under a different SU(2)s, or simply 

identify SU(2)s with SU(2)r. 

One nice feature of embedding this model into flipped SU(5) is that the X 

field can be assigned to the 75 of SU(5). Because only the 10 x 10 contains 75 

and the 5 x 5, 1 x 1 do not, the X field can only couple to q and d but not the 

lepton sector. Then the p,-r mixing and hence the troublesome p, ~ e--y decay 

rate can be removed. 

After flipped SU(5) is broken, we do not expect the couplings and the 

mixings to be the same for fields belonging to the same representations of the 

flipped SU(5). 8 But if we assume that they are of the same order, the radiative 

me, mu and Vub are also consistent: radiative Vub does not need a big W Lh 31 
( f'V 10-2 ), then WuR31 has to be quite big ( .<.10-1

) for generating mu; but so is 

its flipped SU(5) partner WEL 31 for generating me. On the other hand, >.u, >.v, 

and ).E are independent in flipped SU(5) models. They can take suitable values 

so that all the tree level quantities come out correctly. 

It is possible to extend the SU(2) flavor groups to SU(3) for these quark 

models as we did for the lepton model in [6]. However, here we do not gain 

much by paying the price that the third generation Yukawa couplings arise at 

the nonrenormalizable level. More heavy fields have to be introduced and more 

complicated stages of flavor symmetry breakings are involved. Therefore, we 

will not pursue this direction further in this paper. 

8If flipped SU(5) were not broken, the tree level 12 and 21 entries of the down quark mass . 

matrix would not be generated, because fiilO;lOjhdXS vanishes. However, since the flipped 

SU(5) is broken, q's and d's can have different mixings so that fij qidi hdX S can be nonzero. 
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6 Conclusions 

In this paper, we have considered the possibility of generating some of 

the light fermion masses through radiative corrections. Any theory of radia

tive fermion masses must have an accidental symmetry for the Yukawa sector 

guaranteeing the absence tree level masses, while this symmetry must be broken 

elsewhere in the theory for any mass to be generated radiatively. In our discus

sion, supersymmetry has been crucial in naturally implementing this scenario: 

supersymmetric theories automatically have two sectors (the superpotentia1 and 

D terms) which need not have the same symmetries; because of holomorphy the 

superpotential may have accidental symmetries not shared by the D terms. Fur

thermore, the particles in the radiative loop generating the fermion masses are 

just the superpartners of known particles, and must be near the weak scale if 

supersymmetry is to solve the hierarchy problem. Thus, supersymmetric theo

ries of radiative fermion masses can lead to testable predictions. Working with 

supersymmetric theories with minimal low energy field content, we found (with 

the plausible assumption that the accidental flavor symmetries of the tree level 

Yukawa matrix are only broken by soft scalar masses) that FCNC constraints 

allow only the first generation fermion masses to have a radiative origin. 

In the lepton sector, a rather large mixing between the select ron and stau is 

needed in order to generate the electron mass. This implies that mixing with the 

smuon must be highly suppressed in order to avoid too large a rate for J.l -+ e1. 

The large selectron-stau mixing also gives rise to a significant rate for r -+ e1 

which is only a factor 10-100 lower than the current experimental limit. 

In the quark sector, in addition to the quark masses, the CKM mixing. 

matrix must also be obtained. The FCNC constraints strongly limit the possi

bilities of generating light quark masses and mixing angles. We found that mu 

and Vu.b can be generated by radiative corrections, while radiatively generating 

any of md, Be, and Vcb requires heavy scalar mas~es (rv 1TeV). Further, it is 

very difficult to generate md, Be, and Vub together radiatively unless the scalar 

masses are between 2 and 20 Te V, whi~h we view as unacceptably high. These 

constraints cause the principle difliculti~s in constructing a model of quark flavor 

with radiative masses. 

We extended the lepton model with flavor group SU(2)e x SU(2)e x U(1)A 
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in [6) to the quark sector. The lepton model has a number of nice features: the 

SU(2) breaking <P VEV's are responsible for both D-term mixing between the 

first and the third generation and generation of the second generation mass, so 

the ratio between the radiatively generated first generation mass and the second 

generation mass is naturally of the order l/(l61r2
). Further, muon number is 

conserved so that the dangerous rate for p -t e1 is avoided. A direct extension 

of this model to the quark sector cannot generate the correct CKM mixings, 

which requires the addition of more fields and flavor symmetry breakings to the 

theory. 

We presented two complete models with radiative fermion masses. In the 

first model, all first generation fermion masses come from radiative corrections, 

and there are also tree level contributions to ()c and Vub as required by the 

FCNC constraints. First generation fermions are guaranteed to be massless at 

tree level by requiring the "big" Yukawa matrices of the full theory to be rank 

2. Requiring a tree level ()c and Vub forces us to add another heavy left-handed 

quark Q' and its conjugate Q', and another pair of SU(2)t,r flavor symmetry 

breaking fields <PI r· Muon number is still conserved as a consequence of the field . 
content and charge assignments of the theory. With these minimal extensions, 

we obtain a complete theory of radiative first generation fermion masses with 

successful values for CKM mixing angles. 

In view of the fact that a radiative md and B- f3 mixing are only compatible 

for very heavy scalar masses, we also constructed a second model in which mu 

and me come from radiative corrections but md and Oc arise at tree level with 

the successful relation sin ()c = Jmd/m 5 • The dangerous p -t e1 rate can be 

naturally suppressed if we embed this model into the flipped SU(5) grand unified 

theory. 
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Appendix A 

In this appendix, we consider the possibility that the soft supersymmetry 

breaking trilinear A terms do not respect the chiral symmetries of the Yukawa 

matrix [18, 19]. Before beginning the discussion of radiative fermion masses 

in this scenario, let us consider the constraints imposed on the form of the 

A matrix by requiring the desired vacuum to be the global minimum of the 

potential. (The extent to which this is a neccesity is discussed at the end of 

· this appendix). Consider the lepton sector for simplicity (identical arguments 

hold for the quark sector). Let us work in a basis where the lepton Yukawa 

matrix is diagonal and has I< zeros. There are D-flat directions in field space 

where the right and left handed lepton fields and the down type Higgs are 

nonzero. If we restrict ourselves to the I< massless generations, there are no 

quartic terms in the potential along the D-flat directions; all we have are the 

cubic A terms and the scalar masses. But, if the A terms are non-zero in the 

I< x I< block of the massless generations, there will be directions in field space 

where the cubic terms become indefinitely negative and cannot be stabilized by 

the quadratic mass terms. This can only be avoided if the A terms are zero 

in the I< x I< block of the I< massless generations. This co~straint is in itself 

quite powerful. For instance, if I< = 3, we must have that the A matrix is zero, 

and the argument that one cannot generate any radiative masses goes through 

exactly as in section 2. Next, let us consider the case I<= 2. In this case, the A 

matrix must be zero in the upper 2 x 2 block. Note that we can make a rotation 

on the first two generation scalars to make Ai3 , A3i zero for either i = 1 or 

i= 2. Now, the potential is no longer unbounded below, but there is still a local 

minimum along the D-flat directions for the first two generations where both 

left and right handed fields aquire VEV's, breaking electric charge. We require 

that the energy of this minimum is greater than that of the usual. minimum, 

which is -~M].v2 • For scalars much heavier than (Mzv)~ = 150 GeV, we can 

approximate this requirement by demanding that the electric charge breaking 

minimum has energy greater than zero. A straightforward calculation analogous 
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to that in [20] then gives us the following constraint, where we assume that all 

relevant scalars are degenerate with mass m: 

(A.1) 

There are corrections to this inequality due to the fact that the true vacuum 

energy is not zero but -~M~v2 ; still assuming m ;<:; 150 GeV the correction 

takes the form: 

(A.2) 

With these constraints in hand, we begin the phenomenological analysis. 

Suppose that the scalar. masses did not break the chiral symmetries of the 

Yukawa matrix. Then, since one of A31,13, A32,23 can be chosen to be zero by 

rotations, one generation would remain massless to all orders of perturbation 

theory. Thus, in order to generate both generations radiatively, we must have 

that both the A terms and the scalar masses break the chiral symmetries of the 

Yukawa sector. In the following, we consider the possibility that the A terms 

generate one mass radiatively while the scalar masses generate the other mass. 

It is easy to see that this is impossible in the lepton sector: the muon mass is 

too big to be generated radiatively, and even if we could, we would generate too 

large a rate for T -+ Ill· Moving on to the quark sector, we have four cases to 

consider: 

(1) md from 'scalar masses and nis from A terms: In the mass insertion 

approximation, assuming for simplicity that all scalars are degenerate with mass 

m, we have in the large tan,B limit 

ms = O:s (pM_g) (A~3vd) (Ag2vd). 

mt 1871" m2 m2 m2 
(A.3) 

• (Ad vd) 
From equatiOn (A.1), however, we must have that 2!;:1 ;S ~'so 

(A.4) 

which, even for m=100GeV, gives too small a value forms by a factor of""' 100. 

(2) md from A terms and ms from scalar masses: The same argument as in 

case (1) suggests that the generated mass for md will be too small by a factor of""' 
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10. Perhaps this factor can be overcome for some choice of parameters. However, 

the scalars are so light that the required mixing in the scalar mass matrix to 

generate m 5 , together with the A terms responsible for md, give unacceptable 

contributions to K 1 - K 2 mixing, and, if there are C P violating phases, even 

more unacceptable contributions to €. 

(3) mu from scalar masses and me from A terms: The general problem with 

the up sector is that me seems to be too he~vy to be radiative. In the case we 

are considering, we find analogously to equation (A.4) 

me ;S 2 X 10-3( M_g )( mt )2 
mt m m 

(A.5) 

and so to generate large enough me we must again have fairly light squarks. 

( 4) mu from A terms and me from scalar masses: In this case again it is 

difficult to get a large enough mass for the charm. In analogy to equation (3.10) 

we have, (in the limit where we decouple the first two generations, minimizing 

the super-GIM cancellation and so maximizing the generated charm mass) 

me 2as A~3 ur ur ur * ur * I( m~ ) - = -3 M X VVUL3I""UR3l""UL33""UR33 M2 . mt 7r g g 
(A.6) 

The maximium value of WuL 31 WuR 31 WuL;3 WuR;3 consistent with the unitarity 

of the W matrices is ~· Then? we have 

m Au m 2 
_e ;S5 X 10-3 _EJ( ~). 
mt M_g M9 

(A.7) 

Recalling that J(l) = ~' we see that, even with maximal mixing angles, the 

radiative charm mass is too small or perhaps right on the edge. However, having 

such large mixing in the left handed up 32 sector also implies large mixing in the 

left handed down 32 sector, which violates the bounds from b-+ S"f unless the 

third generation scalars are pushed above 1 TeV. This then makes it difficult to 

generate a large enough up mass, since the A term contribution is suppressed 

by (r;;:Y from (A.1). We find 
> 

mu ;S 2 X 10_5 ( M_g )(1 + JL cot ,8 )( 1. 7Te V )2 

mt m A~ m 
(A.8) 

which is also on the edge. Another difficulty with having such large 32 mixing 

is that it disturbs the degeneracy between the scalar masses of the first two 
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generations for both left handed up and down squarks, and this could again give 

problems with I<1 - I<2 mixing and €. 

The above arguments certainly do not rule out the possibility of generat

ing both light generations radiatively; there may be regions of parameter space 

where our rough bounds are evaded. Indeed, it may even be the case that requir

ing the desired vacuum to have lower energy than the charge breaking minima 

is not necessary, perhaps the lifetime of the false vacuum can be long enough 

for the universe to have stayed in it up to the present; this remains to be seen. 

However, these arguments, together with the fact that for the A terms not to 

share the same chiral symmetries as the Yukawa matrices we must entangle fla

vor symmetry breaking and supersymmetry breaking, provide us with sufficient 

motivation to restrict our detailed treatment to the scenario considered in this 

paper. 

Appendix B 

In [10, 11], the SUSY FCNC constraints are expressed in terms of the ratios 

of the off-diagonal scalar masses and the "universal squark or slepton masses". 

For example, the supersymmetric contribution to the B- B mixing is given by:9 

~M~usy = 21;~~ ~f~mB{(8f3}l,d-66]6(x)- 24xf6(x)] 
q 

d 2 ~ + (813 )RR[-66f6(x)- 24xf6(x)] 

d d ~ + (813)LL(813)RR(-12j6(x)- 456xj6(x)] 

+ (8f3}l,R[132xf6(x)] + (8f3)~d132xf6(x)] 

(B.1) 

where, 

f6(x) 
1 

-
6

(
1 

_ x )5 ( -6ln x- 18x ln x- x 3 + 9x2 + 9x- 17), 

1 
( ) 5 ( -6x2 ln x - 6x ln x + x3 + 9x2 

- 9x - 1) 
31-x 

(B.2) ]6(x) 

9We use the notation and the formula in [10], corrected by [11] 
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are the Feynman loop intrgrals defined in [10], and 

M'f d 8mJ b 
x = M~, (8ij)LL = M~ L, and so on. 

q q 

Demanding that each term is no bigger than the experimental value of !::l.MB 

gives the constraints on 8t. However, with large splitting in scalar masses of 

the first two and the third generations, it is better to have constraints directly 

on the mixing matrix elements because of the ambiguity of what Mii should be. 

In this appendix, we will convert the constraints on Dij into constraints on the 

mixing matrix elements Wij directly. 

We assume degeneracy between the left-handed and the right-handed scalar 

masses; and also the first two generation scalar masses (denoted by m1 ). Tore

duce the number of parameters, we also assume that the relevant gaugino mass is 

degenerate with the third generation scalar mass (denoted by m 3 ). We also take 

the chirality-changing scalar masses much smaller than the chirality-conserving 

ones, so that the eigenstates and eigenvalues are not disturbed significantly. Now 

we can express the SUSY FCNC contributions by the mixing matrix elements 
2 . 

and the two parameters m3 and y = ~. For example, the first term in (B.l) 
m3 . 

becomes / 

(B.3) 

Demanding it to be smaller the !::l.M~XP gives the constraint on W vL 31 , 

V 2 l8m3 ~!::l.MB 1 - 1 ReiWvL 31 I < -
1
- --(y -It [-66f6(Y) + 24fB(Y)t 2 • 

as B ffiB 
(BA) 

Similarly, we can obtain constraints on other mixing matrix elements from the 

other terms. The constraints from B- B mixing are shown in Table Bl(a). 

ForK -1?. mixing, !::l.ml,L(RR)2
1 

can have two contributions. One comes from 

the splitting between the first two generation scalar masses, WvL(R) 2/m~- m~). 

We can use the constraints in [10, 11] in this case because the first two generation 

scalar masses have to be degenerat~ to a high degree and there is no ambiguity 

in what Mii is. The other comes from the large splitting of the third generation 
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scalar mass, Wi)L(R)
32

WnL(R)
31

(mi- m~). This part can be treated in the same 

way as in the B- B mixing described above. The terms proportional to the 

left-right mass insertions are a little more complicated because they involve new 

integrals. These terms are proportional to [mb (A+ J.L tan ,8)] 2
• For our purpose, 

we always work in the large tan ,8 scenario. Hence the corresponding constraints 
3 

scale as P. ~!J, versus m 3 in the case of chirality-conserving terms. The results 

are listed in Table B1(b) for llmK and Table B1( c) for f. The f 1 parameter could 

put constraints on I lm WnL(R);
2 
WnL(R) 31 I and I Im WnL(R) 32 WnR(L) 31 I. The first 

one is weaker than the constraints from other places, the second one is enhanced 

by tan ,8 and is listed in Table B 1 (d). The numbers are obtained by requiring 

its contribution to f
1 smaller than 3 X l0-3f. 

The mixing matrix elements WnL(R)
32 

are constrained by the b ~ S/ decay. 

The b ~ Si branching ratio has been measured to be (2.32±0.57±0.35) X w-4 by 

CLEO [21], which is consistent with the Standard Model prediction (2.8±0.8) x 
10-4 [22]. In supersymmetric models there are many other contributions. The 

gluino diagram contributions depend on the mixing matrix elements WnL(R)
32 

so 

they can be used to constrain WnL(R)
32

: Unlike other contributions, the gluino 

diagrams give significant contributions to both S£0"~-'vbRFp.v and SRO"~-'vhFp.v op

erators. The former can interfere constructively or destructively with other 

contributions and the latter does not. In Table B1(e) we list the constraints on 

WnL 32 and WnR32 by requiring that each gluino diagram alone does not exceed 

the Standard Model contribution. 

The up mixing matrices Wu's are constrained by D -D mixing, and the 

results are shown in Table B1(f). 

In the ~epton sector, the most stringent constraints come from J.L ~ e1 

decay. In the large tan ,8 scenario in which we are interested, the amplitude of 

the dominant contribution is given in Ref. [7]. Requiring that the rate does not 

exceed the experimental limit, B(J.L ~ e,) < 4.9 X w-n [23] give constraints on 

WEL(R)
32

WER(L)
31

, which are shown in Table B1(g). Because we are interested 

in generating me by radiative corrections which requires sizable mixing between 

the first and the third generations, WEL(R)
31

, the T ~ J.LI decay does not give 

stronger constraints on WEL(R)
32 

than those from the J.L ~ e1 decay. 
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Table Bl 

viY v/1 fte(VVr>L(R)31)21 Jl Fte(VVL>L;l VVr>R31)1 

2 1.0 X 10-l 3.1 X 10-2 

3 6.5 X 10-2 2.4 X 10-2 

5 ' 2 4.9 x 10-. 2.0 X 10-2 

viY v/1 fte(VVr>L(R);2vvl)L(R)31)21 vi Fte(VVL>L;2vvl>L31 VVL>R32VVL>R;1)1 v/1 fte(VVL>L(R)32VVl)R(L)31)2( 

2 4.7 X 10-2 5.6 X 10-3 7.4 X 10-2 

3 3.0 X 10-2 4.2 X 10-3 4.7 X 10-2 

5 2.2 X 10-2 3.6 X 10-3 3.7 X 10-2 

(c) € 

viY vfllrn(VVL>L(R);2vvL>L(R) 31 )21 vi Irn(VVr>L;2 VVL>L31 VVL>R32 vvl)R;l)l . v/1 Irn(VVr>L<R>32VVL>R<L>31)2( 

2 3.7 X 10-3 4.6 X 10-4 6.0 X 10-3 

3 2.4 X 10-3 3.4 X 10-4 3.8 X 10-3 

5 1.8 X 10-3 2.9 X 10-4 3.0 X 10-3 

(d) €' 

viY I Irn(VVr>L(R) 32 VVr>R(L) 31 ) I# 

2 . 1.4 X 10-3 

3 7.7 X 10-4 

5 5.4 X 10-4 

(e) b-+ S! 

viY IVVr>L(R)321# 

2 6.9 X 10-2 

3 5.3 X 10-2 

5 4.7 X 10-2 
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(f) .::lmv 

VY Ji Re(WuL<RJ;2 WuL(RJ 31 Fi y/IRe(WuL;2WuL31WuR32WuR;l)i Ji Re(WuL(RJ 32 WuR(L) 31 Fi.,. 

2 9.5 X 10-2 3.0 X 10-2 3.9 X 10-1 

3 6.3 X 10-2 2.3 X 10-2 2.5 X 10-1 

5 4.7 X 10-2 1.9 X 10-2 2.0 X 10-1 

(g) J.L --l- e1 

VY IWEL(R);?.wEL(R)3li# IWEL(R)32 WER(L)311# 

2 2.4 X 10-3 2.2 X 10-4 

3 1.8 X 10-3 1.3 X 10-4 

5 1.6 X 10-3 1.0 X 10-4 

Table B 1: Constraints on the fermion-sfermion flavor mixing matrix elements. 

The reference values are taken as: m3 = M9 = 500 Ge V, J.L = 500 Ge V, tan ,8 = 

60, and r.iy = $... The ones with # scale as ( 500m0
3 v)3 (

500
GeV)( 60

13
), others Y 11 m3 e J.L tan 

1 m3 sea e as sooGeV. 
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Figure Captions 

Fig. 1: The dominant radiative contributions to the fermion masses: (a) charged 

leptons, (b) up-type quarks, (c) down-type quarks. 

Fig. 2: Plots of the super-GIM factor H = h(x3 , x 3 ) - h(x3 , x1 ) - h(x1, x 3 ) + 
h(x1, x1 ) and H . h(x3 , x 3 ) - h(x3 , x1 ) versus the ratio between the first two 

generation and the third generation scalar masses Jy, y _ rih 2
/rii3

2 = x 1 jx3 , 

with X3 = 1, (M9 = rii3). ~::a@ = 2.4 X l0-2(:r )C:/)( 0~)JX3WEL3a WER3/3' 

Ll.mua@ _ 1 2 10-2( A )(H) ;:;;:-ri{;; UT 
mt - · X mt _o.s yX3••UL3avvuR3/3' 

Ll.mda@ _ O 7(..1!:....)(tan/3)( H) ;:;:-w W 
mb · - • mb 60_ 0.5 yX3 DL3a DR3/3' 

for a, j3 = 1, 2, and H has to be replaced by H if one of the a:, f3 is 3. 

Fig. 3: Contour plot of B( T --+ e1 ), where the mixing angles are fixed by re

quiring a radiative electron mass. We have put tan/3 = 60., f.L = mr=200 GeV, 

and plot in the M 1 - Jy plane where M 1 is the bino mass and we have assumed 
2 

the GUT relation M2 rv 2M1 ; y = ~. We also assume that the left and right 
mr 

handed mixing angles are equal, giving us a lower bound on B ( T -t e')'). The 

branching ratio scales as· J.L t~/3. 
mr 

Fig. 4: Chargino diagrams which contribute to radiative down-type quark masses 

and are enhanced by large tan /3. 

Fig. 5: The diagram which generates the second generation masses. 

Fig. 6: D term mixing between the first and the third generations. 
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