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Abstract 

A C-Language program which tabulates the isoscalar factors and Clebsch­

Gordan coefficients for products of representations in SU(3) is presented. 

These are efficiently computed using recursion relations, and the results 

are presented in exact precision as square roots of rational numbers. Out­

put is in I~TEX format. 
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PROGRAM SUMMARY 

Title of program: SU3 

Catalogue number: 

Program obtainable from: CPC Program Library, Queen's University of Belfast, 

N. Ireland (see application form in this issue) 

Licensing provisions: Persons requesting the program must sign the standard 

CPC non-profit use license (see license agreement in every issue). 

Computers for which the program is designed and tested: DEC VAX 4000/90, 

DEC Alpha 3000/700, Dell 486, Dell Pentium, HP715/33 

Operating systems under which the program has been tested: VMS v6.2, MS­

DOS6.x, HP UNIX 9.0 

Programming language used: C Language 

Memory required to execute: Variable; on the VAX it requires 934 k words for 

3@ 3, 998 k words for 27@ 27 

Disk space used for output: Variable; 2 k words for 3 0 3, 182 k words for 27 

@ 27 

No. of bits in a word: 32 

No. of processors used: 1 

Has the code been vectorized? No 

No. of lines in distributed program: 2601 

Keywords: SU(3), Clebsch-Gordan coefficients, Wigner coefficients, vector cou­

pling coefficients, isoscalar factors 

Classification: 4.2 Computational methods of algebras and groups 
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Nature of physical problem: Calculations using models based on SU(3) symme­

try often require the Clebsch-Gordan coefficients which give the amplitudes for 

the expansion of direct products of irreducible representations. 

Method of solution: Recursion relations [1] are used to construct tables of the 

isoscalar factors for the product of two irreducible representations. The SU(2) 

Clebsch-Gordan coefficients [2] [3] are then used with the isoscalar factors to 

produce the SU(3) Clebsch-Gordan coefficients. 

Restrictions on the complexity of the problem: The program is limited by com­

puter memory and. maximum size of the integer variables. On the DEC VAX 

with 32-bit integers, the largest product that has been successfully computed is 

27 0 27. 

Typical running time: Running time varies according to the sizes of p1 , q1 , p2 , 

and q2 in the product (p1 , qt) 0 (p2 , q2). On the VAX for 3 0 3 the CPU time 

is 1.2 sec; for 27 0 27 the CPU time is 13 min 11 sec. On the Alpha, the latter 

time is only 1 min 13 sec. 

Unusual features of the program: The program has these unique features: it 

determines the representations in the Clebsch-Gordan series; it uses recursion 

relations to efficiently compute the isoscalar factors; it presents exact results; it 

provides results as I~TEX [4] formatted tables.· 

References 

[1] H. T. Williams, Symmetry Properties of SU3 Vector Coupling Coefficients, 

WLUPY-9-93. 

[2] E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cam­
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[3] E. P. Wigner, Group Theory and its Application to the Quantum Mechan­

ics of Atomic Spectra, trans. by J. J. Griffin (Academic Press, New York, 

1959). 

[4] L. Lamport, ~TEX: A Document Preparation System (Addison-Wesley, 

Menlo Park CA, 1986). 
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LONG WRITE-UP 

1 Introduction 

In calculations in nuclear and particle physics which assume SU(3) symmetry, 

it is often useful to have values for relevant Clebsch-Gordan coefficients ( CGC) 

*. Some tables of limited extent have been published in the past [1] [5] [6] [7] [8] 

[9]. Also, programs have been written which generate these coefficients [10] [11] 

[12] [13]. This new program is meant to replace them. It has some advantages 

that make it faster and easier to use. Comparative speed is achieved by use of 

recursion relations to generate the isoscalar factors (ISF), from which the CGC 

are constructed. This method requires less memory and allows larger tables to 

be generated. All calculations are done exactly, using integer variables. Output 

is in the form of 1:\\.TEX [14] formatted tables. The code i$ written in ANSI 

standard C, so it should run on most conventional platforms. 

2 Preliminaries 

The Clebsch-Gordan coefficients are the amplitudes for the projection of the 

product of two irreducible representations (rt, r 2 ) of SU(3) onto the separate 

irreducible representations (Rn) found in the Clebsch-Gordan series: 

(1) 

They can be defined by 

(2) 

where Ai, o:1 , and o:2 denote the quantum numbers specifying the particular 

states within the representations. Particle physicists are accustomed to the 

quantum numbers hypercharge y, isospin i, and third component of isospin iz; 

herein are also used the "projection" quantum numbers k, l, m, which are related 

*The Clebsch-Gordan coefficients are also called vector coupling coefficients or Wigner 

coefficients. Readers interested in a good theoretical background are directed to [1] [2] [3] [4]. 
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to y, i, and i z in a representation (denoted by the representation variables (p, q)) 
by 

k 

l 

m 

HP + 2q) + ~y + i, 
i{p + 2q) + ~y- i, 

i{p + 2q) +'~Y + iz,, 
(3) 

The highest-weight state (shw) in a given representation is defined to be that 

which has the largest iz; thus the state with 

· kshw = ffishw = P + q, 

lshw = 0. 
(4) 

The (outer) degeneracy of an irreducible representation in the Clebsch­

Gordan series (Equation 1) can be determined algebraically from the represen­

tation variables [15]. A representation appears in the series if the degeneracy 

is greater or equal to one, and only in such cases does the program attempt to 

calculate its coupling coefficients. If we represent the irreducible representations 

as 

and define 
a 

b 

then if both 

ri - (p~, qi), 

r2 (p2, q2), 

R - (p,q); 

~[(PI - qi) + (P2- q2)- (p- q)], 

~[(PI + 2qi) + (P2 + 2q2)- (p + 2q)]; 

1. a E l.. (integers) (thus bEl..), and 

(5) 

(6) 

2. 0 :::; b :::; min(qi + q2,PI + q~,p2 + q2), -min(q~,q2) < a :::; min(p1,p2), 

0:::; a+ b:::; min(pi + qi,P2 + q2,PI + P2), 

the representation appears in the series and has degeneracy 

d(p,q:pi,qi;P2,q2) 1 

+ min(q2,PI + q1,b,pi...:... a) 
max(O, b- qb b- p2, -a, b- a- qb a+ b- P2)· 

(7) 
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The isoscalar factors F are defined by 

(R Y I Izlr1 Y1 i1 i1z r2 Y2 i2 i2z) - F(R, Y, I: r1, Y1, i1; r2, Y2, i2) 

X (I IzJil i1z i2 i2z), 
(8) 

where the last bracket is an SU(2) CGC, which in the Condon-Shortley phase 

convention is [16] [17] 

X 
(/ + i1- i2)!(I- i1 + i2)!(i1 + i2- /)!(/ + fz)!(2I + 1) 

(I+ i1 + i2 + 1)!(il- i1z)!(i1 + i1z)!(i2- i2z)!(i2 + i2z)! 

X 2:: ( -1t+i2+i2z(/ + i2 + i1z- n)!(il- i1z + n)! 
n (I- i1 + i2- n)!(J + Iz- n)!n!(il- i2- Iz + n)!' 

where n runs from 

to 

Note that 

2.1 Conventions 

(9) 

(10) 

(11) 

(12) 

The internal phase convention, fixing totally the relative phases between states 

within a representation, is chosen to be that of de Swart [1]. The irreducible 

representations of SU(3) can be thought of as consisting of SU(2) multiplets 

( isomultiplets), each at a specific hypercharge. This internal phase convention 

corresponds to adopting the Condon-Shortley [17] phase convention for the T­
and V-spin operators. (In the flavor-SU(3) notation, T± interchanges u and d 

quarks, while v± interchanges u and s.) 

The overall phase of the representations in the product is also chosen fol­

lowing de Swart [1]. Consider the state of highest weight in the product repre­

sentation, IR shw); the state of highest weight in the first factor, Jr1 shw1); and 
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the state in the second factor r 2 = (p2 , q2 ) with the highest isospin that couples 

to shw and shw1, lr2 k2max(shw, shw1) l2min(shw, shw1)). The outer phase con­

ventions requires that the Clebsch-Gordan coefficient for coupling these states 

be real and positive: 

The Condon-Shortley convention for the SU2 CGC assures that the correspond­

ing isoscalar factor is also real and positive. The internal and external phase 

conventions guarantee that all isoscalar factors and Clebsch-Gordan coefficients 

are real. 

In couplings where the degeneracy d > 1 there are d distinct sets of CGC, 

and one must chose by convention a technique for resolving the outer degeneracy. 

Several distinct techniques for this resolution are described in the literature 

[18] [19]. The technique chosen here considerably simplifies the determination 

of isoscalar factors through use of recursion relations, and produces ISF and 

CGC which share the symmetries under interchange of representations (Racah 

symmetries), which are familiar from the SU2 case. The technique relies on the 

fact that there are nonvanishing ISFs of the form 

(14) 

for at least as many distinct values of k2 as the degeneracy d. If one chooses ISFs 

for the d-1 highest values of k2 to be zero, the recursion relations, normalization, 

and the above-mentioned sign conventions uniquely determine a full set of ISFs. 

A second set can be determined by choosing the ISFs for the d- 2 highest values 

of k2 to be zero, and insisting that this second set be orthogonal to the first. 

Subsequent sets of ISFs are formed likewise by successively forcing fewer of these 

ISFs to zero, and enforcing the condition of orthogonality to those previously 

determined. 

This technique of resolution of the outer degeneracies insures that the cou­

pling coefficients in all cases change by at most a sign under the interchange of 

r 1 and r 2, in contrast to the "canonical" resolution scheme [19]. 
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2.2 Symmetry Phases 

With the conventions of the previous section, all the ISFs and CGCs for SU(3) 
are fully determined. The resulting symmetries are useful in reducing the num­

ber of values which must necessarily be tabulated. Three phases are involved in 

the symmetries and are defined in [1]. 

In the case of interchange of the two factor representations, 

F(R;Y,J:r2,Y2,i2;rt,ylli1) = (-1)1-i1 -i2 6(R:rl;r2) 
(15) 

where the factor (-1)1-i1 -i2 comes from Equation 12. The phase ~1 (R: r 1;r2 ) 

depends only on the identity of the representations and on our phase conven­

tions. Consider the reversed product r 2 0 r 1. Suppose that the highest-isospin 

multiplet in r 1 that couples to the state of highest weight in r 2 and the shw of 

R with nonzero ISF has quantum numbers y~ and i~. Then 

6(R: r1; r 2 ) = ( -1) 1h-i~ -i2h x sign [F(R, shw: r1, y~, i~; r 2 , shw2)], (16) 

where sign(x) = xfixl. 
Should the second factor and the product representations be interchanged, 

a multiplicative phase and a term related to the ratio of the representations' 

dimensions is generated: 

X 
(p2 + 1)(q2 + 1)(P2 + q2 + 2)(21 + 1) 

(p + 1)(q + 1)(p + q + 2)(2i2 + 1) 

If all the representations are conjugated, then a phase 6 enters: 

F(R Y I - · -r · ) (-1)1-i1 -i2 t3(R ·. r1·, r2) , , : rt,yt,zl; 2,y2,z2 = ., 

(17) 

(18) 

Consider the isomultiplets described in Section 2.1. Then from Equation 12 we 

find that 

(19) 
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3 Calculational Method 

3.1 Recursion Relations for Isoscalar Factors 

Recursion relations among the CGC for SU(3) can be generated by applying one 

of the SU(3) ladder operators to a pair of SU(3) single particle states coupled 

(via CGCs) to a state of good SU(3) quantum numbers. Using the linearity of 

the ladder operators [1] (e.g. I<+= I<1++I<2+, where/(+ is the ladder operator 

for the coupled state, and /(1+ and /(2+ are the corresponding operators for 

the 1 and 2 states), and orthogonality of states with different SU(3) quantum 

numbers, one can find four-term recursion relations for the CGCs. Making use 

of explicit analytic forms for the SU2 Clebsch-Gordan coefficients these can be 

turned into four-term recursion relations for the SU(3) isoscalar factors. Two 

of the ladder operators (I+ and f_) generate recursions only within the SU2 

variables and produce only identities for the ISF. From the remaining four ladder 

operators expressions fully sufficient to generate all the SU(3) ISFs have been 

derived. 

The simplest language for presenting the recursion relations is to use (p, q) 
to indicate an irreducible representation, and ( k, 1, m) to specify a state within 

the representation. The scheme involves, as a first step, using one of the following 

relations to establish values for all the isoscalar factors representing coupling to 

the state of highest weight (i.e. k = m = p + q, 1 = 0). A simplified notation 

which omits the p's and q's, and which uses the symbol shw to represent- k = p+q, 

1 = 0 will be adopted. Thus, for example, 

The two recursion relations involving the states of highest weight are 

0 = atF(shw: kt - 1, 1t; k2, 12) + a2F(shw: kt, 1t; k2- 1, 12) 

+a3F(shw: kt,1t-1;k2,12) +a4F(shw: kt,1t;k2,12 -1). 

where 

(21) 

a1 = V(kt + 1)(kt- qt)(Pt + q1- kt + 1)(p + q + kt- 1t + k2 -l2 + 3) 

2(p + q + kt -it- k2 + 12 + 1) 
(kt-1t)(kt-1t+l) ,. 

X 
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a2 - a1(1 +-+ 2), 

a3 - -Vh(q1- h + 1)(P1 + q1 - 11 + 2) (22) 

X J ( -p - q + k1 - 11 + k2 - 12 + 1) 

X 
2(p + q - k1 + 11 + k2 - 12 + 1) 

(k1 -11 + l)(k1 -11 + 2) ' 

a4 -a3(1 +-+ 2); 

and 

0 b1F(shw: k1 + 1, 11; k2, 12) + b2F(shw: kll h; k2 + 1, 12) 
(23) 

+b3F(shw: kll h + 1; k2, 12) + b4F(shw: kll 11; k2, 12 + 1). 

where 

b1 = V(k1 + 2)(k1- q1 + 1)(P1 + q1- k1)( -p- q + k1- 11 + k2- 12 + 1) 

2(p + q - k1 + 11 + k2 - 12 + 1) 
X (k1-11+1)(k1-h+2) ' 

b2 -b1(1 H 2), 

b3 Ju1 + 1)(q1- h)(P1 + q1 -11 + 1)(p + q + k1 -11 + k2 -12 + 3) (24) 

2(p + q + k2 - 12 - k2 + 12 + 1) 
X (k1-11)(k1-11+1) ' 

b4 = b3(1 H 2). 

Once the states of highest weight have been determined, two other relations 

are sufficient to step from these to any non-shw state. They are 

where 

F(k, 1: k1, h; k2, 12) = c1F(k + 1,1- 1 : k1, 11; k2, 12) 

+c2F(k, 1- 1: kll h- 1; k2, 12) 
+c3F(k,1-1: k1,11;k2 -1,12) 

+c4F(k, 1- 1 : kll 11; k2, 12- 1), 

(k + 2)(k- q + 1)(p + q- k)(k1 -11 + k2 -12- k + 1) 
a 

(k- 1 + 2)2(k- 1 + k1 - 11 + k2- 12 + 4) 

9 
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c2 2a: 
l1(q1- 11 + 1)(PI + q1 -11 + 2) 

-
(kl - 11 + 2)(k- 1 + kl - 11 + k2- 12 + 4)' 

X 
(kl - 11 + 1) 

( k - 1 - kl + 11 + k2 - 12 + 2) 

ca -a: 
(k2 + 1)(k2- q2)(k1 -11 + k2 -12- k + 1) 

(26) -
(k2 -12)(k2- 12 + 1) 

X 
(P2 + q2 - k2 + 1) 

(k- 1- kl + 11 + k2- 12 + 2)' 

C4 a: 
12(q2- 12 + 1)(k- 1 + kl -11- k2 + 12 + 2) 

-
(k2- 12 + 1)(k2 -[2 + 2) 

X 
(P2 + q2 - l2 + 2) 

(k- l + kl- [1 + k2- 12 + 4)' 

(27) 

and' 

a:= 
(k -l + 2)2(k- l- kl + 11 + k2 -12 + 2) 

(28) 
l(q- l + 1)(p + q -l + 2)(k -l + k1- [1- k2 + 12 + 2)' 

and 
F(k, 0: k1, it; k2, 12) = d1F(k + 1, 0: k1 + 1, l1; k2, 12) 

+d2F(k + 1, 0: k1, 11; k2 + 1, 12) (29) 

+d3 F(k + 1, 0: kt, it; k2, 12 + 1), 

where 

dl 2/3 
(kl + 2)(k1- q1 + 1) 

-
(k1- it+ 2)(k- 1 + k1 -11 + k2 -12 + 4)' 

X 
(PI + q1 - kt) ( k1 - it + 1) 

( k - 1 + k1 - 11 - k2 + 12 + 2) 

d2 f3 
(k2 + 2)(k2- q2 + 1)(P2 + q2- k2) 

(30) -
(k2- [2 + 1)(k2 -12 + 2) 
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X 

(3 

X 

and 

( k- 1- kl + 11 + k2 - 12 + 2) 
( k - 1 + kl - 11 + k2 - 12 + 4) ' 

(l2 + 1)(q2- 12)(P2 + q2- 12 + 1) 
(k2- 12)(k2- 12 + 1) 

( kl - h + k2 - 12 - k + 1) 
( k- l + kl - ll - k2 + 12 + 2) 

(3= 
(k + 2) 

( k - q + 1) (p + q - k) . 
(31) 

The SU(3) CGC are found by using Equation 8. The corresponding SU(2) 
coefficients are determined through Equation 10. 

3.2 Algorithm for Isoscalar Factors 

The use of the above recursion relations to generate isoscalar factors is far from 

trivial, and a detailed description of the algorithm is given in (20]. A summary 

of that procedure is given here. 

The ISFs for coupling to a state of highest weight can be thought of as 

occupying lattice sites in an irregularly-shaped volume in a three-dimensional 

space. With the restriction provided by hypercharge conservation, these ISFs 

can be thought of as functions of s = /1 + 12 , k1 , and k2 • The two recursion 

relations above for the shw states each have two terms with the same s value, and 

two others with s values smaller by one s-1. All ISFs with the maximum allowed 

s value for a particular coupling are related, therefore, by a two-term recursion 

relation. Setting one of these equal to one (to be fixed via normalization later), 

all others are simply constructed. Because of the shaped of the lattice, one 

can in most cases find a particular single ISF with s = Smax - 1 which can 

be determined by those with s = Smax: once it is determined, all others with 

the same s value can be evaluated through the complete four-term recursion 

relations based on values already known. Repeating this logic, one moves to a 

single ISF at the next lowest s value from which all others with the same s can 

be determined, continuing until all ISFs are known. Normalization requires the 
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sum of the squares of all the ISFs so determined must be 1, so each is multiplied 

by the appropriate normalization factor. 

When dealing with ISFs of degeneracy greater than one, it is necessary to 

make several choices of ISF values in order for the algorithm to succeed. Which 

are chosen, and what values they are given, determines the choice of degeneracy 

resolution. The criteria mentioned in an earlier section is equivalent to choosing 

ISFs for the d - 1 highest values of s to be zero, and following the algorithm of 

the previous paragraph beginning with the s = Smax- d + 1 values. A second set 

begins with the s = Smax-d+2values, and the further condition of orthogonality 

of these ISFs to the previous ones. Subsequent sets of ISFs are formed likewise 

by successively starting with higher values of s, and enforcing the condition of 

orthogonality to those previously determined. 

Regardless of degeneracy, there are particular combinations of representa­

tions whose ISFs cannot be determined as above due to a failure in the ability 

to step to lower values of s. In every such case, the algorithm succeeds for the 

conjugated ISFs, and the exchange symmetry relation of Equation 17 can be 

used to find the original values. 

4 Program Structure 

We define a variable type fraction as an array of two long integers, n and m, 

to represent a number of the form .;:;:;;;;,. All SU(3) CGCs and ISFs can be 

exactly represented this way. The routines that manipulate variables of the type 

fraction are 

reducefrac () 

setequalfrac () 

addfrac() 

subfrac() 

multfrac() 

imultfrac() 

divfrac() 

Reduces a fraction to its lowest form. 

Assigns one fraction to be equal to another. 

Adds two fractions. 

Subtracts two fractions. 

Multiplies two fractions. 

Multiplies a fraction by a long integer, 

Divides two fractions. 
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absfrac() 

factorialfrac() 

equalfrac() 

comparefrac() 

addirrat() 

Global variables are 

p1, q1, p2, q2 

numprod 

p [], q[] 

names[] 

texnames [] 

Changes a fraction to its absolute value and returns 

its sign. 

Finds the factorial of a fraction, if it is integral. 

Returns true if and only if two fractions are equal. 

Returns true if and only if the first fraction is greater 

than the second. 

Adds two numbers of the form v;;r;;;. Since the co­

efficients of SU(3) always take this form, no incom­

patibilities are expected. An error message is written 

to the log file if it is not possible to find 

-~1 ~2 - -+ -. 
ml m2 

(32) 

The identities of the factor representations (p1 , q1 ) 

and (p2, q2). 

The number of product representations m the 

Clebsch-Gordan series. 

The identities of the product representations (pi, qi)· 

The names of the representations in the product. 

The lb\TEX names of the representations in the 

product. 

ISFtable [] [] [] [] [] [] Array which holds the isoscalar factors. Its elements 

SHWtable [] [] [] [] 

step_down [] [] 

are of the type fraction. 

Array which holds the isoscalar factors for the states 

of highest weight. Its elements are of the type 

fraction. 

Array which holds certain ratios of ISFs for doshw(). 
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flag 

errcount 

An integer flag used by doslice() to control 

doshw(). 

Cumulative count of errors m the program's 

execution. 

nameconv, labelconv Integers denoting the user's choices for labelling con-

ventions (see below). 

maxr, mink1, maxk1, Limits used in dimensioning the various arrays. 

maxl1 , mink2 , 

maxk2, maxl2 

Other subordinate routines included are 

sizerep() 

ipower() 

factorial() 

gcd() 

isqrt() 

yii() 

digit string() 

numstring() 

namerep() 

shw() 

initlimsO 

Actually a macro which returns the dimension of a 

representation. 

Raises a long integer to a power. 

Returns the factorial of a long integer. 

Returns the greatest common devisor of two long in­

tegers. It is employed by reducefrac (). 

Approximates the square root of a long integer with 

another long integer. 

Gives the hypercharge and 1sospm of a state with 

given k, l, m. 

Gives a character representing a one-digit integer. 

Used by numstring. 

Returns a character string that represents an integer. 

Used by name rep () . 

Gives the text name and M\.TEX name of a represen­

tation. Naming conventions are explained below. 

Gives the hypercharge and isospin of the highest­

weight state of a representation. 

Sets the values of mink1, maxk1, maxl1, mink2, 

maxk2, maxl2, and maxr. 
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inittable() 

kilLtable() 

putentry() 

get entry() 

initshw() 

killshw() 

putentrySHW() 

getentrySHW () 

printfract ion() 

print line() 

numstatesi 0 

numstatesc 0 

getconvs() 

Allocates memory space for ISFtable and initializes 

its values to zero. 

Releases the memory used by ISFtable. 

Places an entry into ISFtable. Because of hy­

percharge conservation, one index is redundant 

for ISFtable; this is used by putentry() and 

get entry 0 to reduce the size of the array for 

ISFtable. 

Checks to see if indices defining an ISF are all in 

range, and if so, returns an entry from ISFtable. 

Allocates memory space for SHWtable and initializes 

its values to zero. 

Releases the memory used by SHWtable. 

Places an entry into SHWtable. 

Returns an entry from SHWtable. 

, Writes a fraction in 1\.TEX format to one of the out­

put files. 

Writes ~ line to both cle. tex and iso. tex. 

Counts the isomultiplets of given hypercharg~ and 

isospin in the product. 

Counts the states of given hypercharge and third 

component of isospin in the product. 

Prompts for and inputs the naming and labelling 

conventions (see below) from the user. 

The central routines are 

su2clebsch0 

degeneracy 0 

Calculates an SU(2) Clebsch-Gordan coefficient with 

Equation 10. 

Returns the number of times a representation ap­

pears in the Clebsch-Gordan series. 
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series() 

texphases() 

normhor() 

normvert() 

checktable() 

checksym() 

textable() 

coefx() 

11step() 

klstep() 

doshw() 

doslice() 

Finds the representations in the Clebsch-Gordan se­

ries. Also sets the value of numprod. 

Tabulates the symmetry phases 6 and 6 into 

iso. tex. 

Checks that each row (for each isospin) of the ISF 

table has unit norm. 

Checks that each column of the ISF table has unit 

norm. 

Calls normhor () and normvert (). 

Checks that the shw ISFs are symmetric under the 

exchange of r 1 and r 2 , in the cases where p1 = p2, 

q1 = q2. It compares only the absolute values of the 

ISFs. It is called by do slice(). 

Loops over the quantum numbers of the factors 

and products and tabulates the isoscalar factors 

into iso. tex. Calls su2clebsch and tabulates the 

Clebsch-Gordan coefficients into cle. tex. 

Returns a coefficient of the recursion relations m 

Equations 21-31. Here x is one of a1, a2, a3, a4, 

b1, b2, b3, b4, c1, c2, c3, c4, d1, d2, d3, alpha, 

beta. 

Steps up or down in 11 for doshw(). 

Steps up or down in k1 for doshw(). 

Fills the parts of ISFtable for the highest-weight 

states of the product representations. 

Fills ISFtable for a given (pi, qi) in the product. 

Uses the algorithm given in the previous section. 

Calls doshw () to handle the states of highest weight. 

Calls checksym() for cases of p1 = p2, q1 = q2. 
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main() Prompts for PI, q1, P2, q2. Calls getconvs() 

to input labelling and naming conventions. Uses 

degeneracy to determine the identities of the prod­

uct representations and calls doslice() for each. 

Calls text able() to generate output. Also calls 

normhor () and normvert () . 

5 Using the Program 

5.1 User Input 

The user, upon initiating the code, is queried to supply the identities of the 

factor representations in the form (Ph q1 ), (p2, q2), where each is an integer. The 

naming and labelling conventions must also be chosen. The choices for naming 

convention are 

1. Representations are named as in [21], which is pop·ular among particle 

physicists. Representations are named by their dimension and bars are 

added based on triality 

t = (p - q) mod 3. (33) 

Representations with t = 1 are unbarred, and those with t = 2 are barred. 

One exception is that 6 = (2, 0). Representations with t = 0 have bars if 

and only if q > p. 

2. Representations are named by their dimension and bars are added if and 

only if q > p. 

3. Representations are named by (p, q). 

In choices 1 and 2 above, there is an ambiguity when two representations with 

different (p, q) have the same dimension. We distinguish them using primes. In 
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the naming scheme 1 the lowest-lying representations with same dimensions are 

15 (2, 1), 15' (4, 0), 
105 (6, 2), 105' (13, 0), 
120 (3, 5), 120' (1, 9), 120" (0, 14), 

(34) 
195 (9, 2), 195' (1, 12), 
210 (4, 6), 210' (19, 0), 
231 (2, 10), 231' (0, 20). 

The choices for labelling are 

1. States are labelled by hypercharge and isospin y, i, iz. Isomultiplets are 

labelled by y and i. 

2. States are labelled by projection quantum numbers k, l, m. Isomultiplets 

are labelled by k and l. 

5.2 Error Messages 

The program generates three files during its execution. The log file (logfile 

= su3 .log) contains messages and reports the progress of the program. See 

Sample 1 below. Any error messages are written to the logfile. The most 

important errors are also written to the console. They are: 

WARNING: insufficient memory 

indicates that the free memory in the computer is too small to allow dimension­

ing of the needed arrays. 

WARNING: integer overflow 

indicates that the integer mathematics has generated numbers larger than the 

"long" integers defined by the computer. 

WARNING: Table is not horizontally normal 

indicates that the table of ISFs has nonnormal rows. A row IS given by 

kl, 11, k2, 12, and the isospin of the states in the product. 

WARNING: Table is not vertically normal 

indicates that the table of ISFs has nonnormal columns. A column is given by 

R,k,l. 
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In addition, for cases in which pl = p2 and ql = q2, a quick check is made 

of the exchange symmetry. If a nonsymmetric entry is found, the message 

WARNING: n=4 SHW ISFs are not symmetric 

(for example) appears. 

These errors indicate that a senous problem has occurred. Other error 

messages are written only to logfile and are self-explanatory. 

5.3 Output 

The ISFs are written in lb\TEX format to the file isofile = iso. tex. In it, 

representations are named according to the naming choice made at the beginning 

of execution, and states are labelled according to the labelling choice. Multiply 

degenerate representations are distinguished by subscripts. A square root is 

assumed to appear over the unsigned part of each entry. Thus, 

(35) 

means that the isoscalar factor 

(36) 

in the (y, i) labelling convention. In the (k, l) convention, this would appear as 

R 

k 

l 

The symmetry factors 6 and 6 are also given in this file. For example, 
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(38) 



means that 
6(R:r1;r2) = +1, 
6(R: r1; r2) = -1. 

(39) 

The Clebsch-Gordan coefficients are written in UT~ format to the file 

clefile = cle. tex. Again, a square root is assumed over the unsigned part of 

each entry. In the (y, i, iz) labelling convention, the format is 

R 
y 

r1 ® r2 I 
Iz 

YI ZI Z1z ·Y2 Z2 Z2z ±C 

for 

(R y I Iz lrl YI il ilz r2 Y2 i2 i2z) = ±v'C. 
In the ( k, l, m) notation this is 

R 

k 

l 

m 

(40) 

( 41) 

(42) 

Samples 2 and 3 below show examples of iso. tex and cle. tex after pro­

cessing by ~TEX. 

6 Sample Output 

Presented here are sample output files from a successful run. The product 

computed is 15 ® 8 = (2, 1) ® (1, 1), which has a doubly degenerate 15. 

In this run, we have chosen the naming convention of [21] and the labelling 

convention of hypercharge and isospin (y, i). Sample 1 is the log file su3 .log. 

It echoes our naming and labelling conventions, informs us of the program's 

progress, and tells us that the table of isoscalar factors is properly normalized. 

Sample 2 is the ~TEX file containing the isoscalar factors. The Clebsch-Gordan 

coefficients are in the ~TEX file of Sample 3. Notation for the tables is explained 

in the previous section. 
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Sample 1: 

Sample 2: 

Sample 3: 

SAMPLE CAPTIONS 

Log file ( su3 .log) from a sample run calculating 15 ® 8 = 
(2, 1) ® (1, 1) .. 

Output file (iso. tex)Jrom a run calculating 15 ® 8. These 

are the isoscalar factors. Notation is explained in Section 4. 

The output has already been processed by 1\TEX. Only the 

first page is shown, in order to save space. 

Output file ( cle. tex) from a run calculating 15 ® 8. These 

are the Clebsch-Gordan coefficients. Notation is explained 

in Section 4. The output has already been processed by 

U.TEX. Only the first page of the file is shown, in order to 

save space. 
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SU3: beginning 

getconvs: naming convention is of Slansky 

getconvs: labelling convention is (y, i, i3) 

SU3: calculating 15 x 8 

SU3: working on 3 with degeneracy = 1 

SU3: working on 6* with degeneracy = 1 

SU3: working on 15' with degeneracy= 1 

SU3: working on 15 with degeneracy = 2 

SU3: working on 24 with degeneracy = 1 

SU3: working on 42 with degeneracy = 1 

checktable: table is horizontally normal 

checktable: table is vertically normal 

SU3: writing output files 

SU3: ending 
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24 
7 
3 
! 
2 

4 1 1 l -1 4 1 3 2 3 

151 152 

4 1 
3 3 

1 1 
1 1 1 1 400 1 
3 2 2 -1647 -61 
1 ~ 1 ! 529 32 
3 2 2 3294 -61 

1 1 0 0 ~ 4 
3 183 -61 

1 1 0 1 361 24 
3 1098 61 

3 6 
1 1 
3 3 
l 1 
2 2 

2 0 1 1 1 3 
-3 2 40 20 

2 1 1 l 3 _!_ 
-3 2 -20 10 
l ! 0 0 9 3 
3 2 -80 -40 
1 ! 0 1 1 5 
3 2 -80 -24 
1 3 0 1 2 4 
3 2 5 -15 

1 1 -1 l 3 l 
3 2 10 5 

42 
l 
3 5 ! 
5 -3 2 
2 2 0 1 3 -3 

3 2 0 1 1 2 
-3 1 

1 1 
3 2 

Isoscalar Factors for 15 @ 8 

15@ 8 3 6 

6 + + 
6 + 

42 
7 
3 
~ 
2 ! l 

1 1 1 3 2 
2 i 1 3 

24 42 
1 4 
3 3 

1 1 
4 16 

-27 27 
8 _.!.. l ~ 

-27 54 3 2 
l l 1 1 3 3 3 
2 .!.. -9 18 

151 152 24 
1 1 1 
3 3 3 
1 l ! 
2 2 2 

50 9 4 
-183 -488 -15 

121 75 8 
549 -244 -45 
_i_ 121 2.. 
183 -976 15 

196 225 10 
1647 976 -27 

2 18 4 
1647" -61 -135 

200 ...L _!_ 
549 122 45 

3 151 

2 2 
-3 -3 
0 0 

1 ! 2 49 
2 -5 122 

0 0 3 3 
-20 -61 

3 1 0 1 10 366 

-1 l 2. 100 
2 20 183 

15' 151 

+ 

6 
1 
3 

0 

1 l ! 
2 5 

0 1 4 
-5 

15' 

1 
3 

2 

1 l l 
2 2 

0 1 1 
-2 

42 
1 
3 
! 
2 

4 
15 2 

_.1_ -3 
45 l 
~ 3 
15 ! 

....§_ 3 
135 1 

1 3 
-135 4 

..!. 3 
45 

152 42 
2 2 

-3 -3 

0 0 
6 1 

-61 -10 
49 ~ 

-244 5 
81 1 

-122 -30 

~ ..!. 
244 15 

26 

152 

+ 
+ 

24 
1 
3 

0 
4 

-5 
1 

-5 

42 

1 
! 
2 
~ 
2 
3 
2 

1 
3 

2 
l 
2 
l 
2 

1 

0 

0 

0 

1 -1 

24 42 

+ 
+ + 

15' 

1 
3 
~ 
2 

l ! 
2 4 

1 1 
-3 

0 2. 
16 

1 ~ 
48 

! 1 
2 -8 

151 152 24 42 
1 1 1 1 
3 3 3 3 
~ ~ ~ ~ 
2 2 2 2 

361 12 1 5 
-2196 -61 -g- 18 

1 ~ 4 10 
-1647 61 -27 27 
~ 16 l ~ 
2928 61 3 24 

305 0 5 _I_ 
432 -27 216 

529 -24 £ ~ 
4392 61 9 36 



Clebsch-Gordan Coefficients for 15 @ 8 

24 42 24 42 
42 7 7 l l 

7 3 3 3 3 
3 l ~ l ~ 
~ 2 2 2 2 
2 
3 

1 1 
-2 -2 ! ! 

2 2 
-2 

i 1 -1 1 l 1 1 3 2 -2 
i 1 -1 1 l l ~ l 
3 2 2 3 3 
4 1 0 1 1 1 1 2 
3 2 -2 -3 3 

4 1 0 1 l l l ~ 
3 2 2 3 3 
4 1 1 1 1 1 2 1 
3 2 -2 -3 3 

42 
7 
3 
~ 
2 
3 
2 

i 1 1 1 l l 1 3 2 2 

15' 151 152 24 42 42 
i 1 1 1 1 i 
3 3 3 3 3 3 

15' 42 2 1 1 1 1 2 
4 4 -1 -1 -1 -1 -1 -1 3 3 
2 2 1 1 1 1 1 1 0 400 1 4 16 0 3 2 -2 2 -2 -1647 -61 -27 27 

-2 -2 l ~ -~ 1 l l l 529 24 ~ l l 
3 2 2 2 2 8 -4392 61 9 72 8 

l ~ 3 1 l 1 l 1 1 ~ 1 1 l 1 ~ 529 8 2 1 ~ 
3 2 -2 2 -2 2 2 3 2 -2 2 -2 8 13176 -61 -27 -216 8 
1 1 -1 0 1 -1 1 l 1 1 -1 0 0 0 0 ~ 4 1 l 0 3 -2 2 3 183 -61 3 3 

1 1 -1 0 1 0 1 361 12 l 1 l 
3 -4 -2196 -61 9 -36 4 
4 1 0 0 1 -1 1 361 12 1 1 l 
3 -4 2196 61 -9 36 4 

6 15' 151 152 24 24 42 42 
1 4 i i 1 i 1 4 
3 3 3 3 3 3 3 3 
0 2 1 1 0 1 1 2 

0 0 0 0 0 0 0 0 
l l 1 1 l 1 1 0 200 1 ~ 2 ..§_ 0 3 2 -2 2 2 -10 -1647 -122 5 -27 27 
1 1 1 1 l 1 1 0 200 1 2 2 8 0 3 2 2 2 -2 10 -1647 -122 -:s -27 27 
l ~ 1 1 l l 0 l 529 16 0 4 _!.._ l 
3 2 -2 2 2 4 -6588 61 27 108 4 
l ~ l 1 l 1 0 l 529 16 0 4 1 l 
3 2 2 2 -2 4 6588 -61 -27 -108 4 
1 1 -1 0 1 1 _..i.. _l 361 12 1 l 1 _!_ 
3 15 12 -2196 -61 -15 9 -36 12 
1 1 0 0 0 0 0 0 49 4 0 l l 0 3 183 -61 3 3 
4 1 0 0 1 0 ..i.. 1 0 0 1 0 0 1 
3 15 -3 15 3' 
4 1 1 0 1 -1 _ _i_ 1 361 12 1 1 _!_ _!_ 
3 15 -12 2196 61 -15 -9 36 12 
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