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Abstract 

Recently, Higham and Walden, Karlson, and Sun have provided formulas for comput­
ing the smallest backward perturbation bounds for the linear least squares problems. In 
this paper we provide several backward perturbation bounds that are easier t.o compute 
and optimal up to a factor of about 1.6. We also show that. any least. squares algorithm 
that is stable in the sense of Stewart. is necessarily a backward stable algorithm. 
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1 Introduction 

Given a non-singular matrix M E Rmxn with m ~ n and a vector b E R m, the linear least 

squares problem is 

min liM · x - hll2 , 
X 

(1.1) 

which has a unique solution 

Let A be an algorithm for solving (1.1) and let XM E Rn be the numerical solution 

computed by A. We say that A is numerically stable if for any such M and b, there exist 

small perturbation matrices and vectors oM E Rmxn, lib E Rm and {ji.;M E Rn such 

that (see Stewart [6, pages 75-76]) 

II(M +oM). (i:M + /ji.;M)- (h + oh)ll2 =min II(M + cM). X- (h + ch)ll2 . (1.2) 
X 

It is well-known that if M is ill-conditioned, then XM can be very different from the exact 

solution XM (see Higham [4, Chapter 19]). We will call XM a stable solution to (1.1) if it 

satisfies (1.2) for small perturbations oM, cb and ci:M. 

The standard method for solving (1.1) via the QR-factorization of M produces a nu­

merical solution XM which satisfies (1.2) with cb =: 0 and bi:M = 0 (see, for example, [4, 

Chapter 19]). However, if M is a structured matrix such as the Toeplitz matrix, then there 

are fast algorithms that produce a numerica.l solution XM which satisfies (1.2) with non-zero 

bb and OXM (see, for example, Gu [2]). 

In this paper, we consider the following problem: Given a vector XM E Rn, find out 

whether it is a stable solution to (1.1). We will solve this problem by finding out whether 

there exist small perturbations oM, ob and 65.:M, for which XM + /ji.;M satisfies (1.2). For 

simplicity, we assume throughout this paper that M =I 0 and h =I 0. 

1.1 Backward Perturbation Bounds 

As a special case, we first consider the problem of whether there exists a small perturbation 

ifM E Rmxn for which 

(1.3) 

We will calli.:M a backward stable solution to (1.1) if it satisfies (1.3) for a small perturbation 

ifM. A backward stable solution is a. stable solution. As mentioned above, the standard 

method for solving (1.1) via the QR-fa.ctorization of M produces a XM that satisfies (1.3). 

In general, the matrix lfM in (1.3) is not uniquely defined. Recently, Walden, Karlson, 

and Sun [7] and Higham [4, Chapter 19] [.7] have provided a. formula for computing the 

smallest llbMIIF among all the possible matrices lfM that satisfy (1.3). 
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Theorem 1.1 Let r· = h- M · XM and assume that XM -:J 0 and.,. -:J 0. Then the optimal 

norm-wise backward en·or· in F-nor-m is 

where 

£ (i:M) .- min{iiJMiiF, wher·e JM is a solution to (1.3}.} 

= min { 1], CTmin ( [ M 1] · C])} , 

and 

and CTmin ([M 1J • C]) is the smallest singular· value of [M 'fJ· C]. 

It is obvious that £ ( i: M) = 0 if r- = 0. Walden, Karlson, and Sun [7] also show that 

£ (0) = IIMT . hll2. 
llhll2 

According to Theorem 1.1, XM is a. backward stable solution (and hence a stable solu-

tion) if£ (i:M) is small. However, Theorem 1.1 does not say whether XM is a stable solution 

if£ ( i: M) is not small. Although Walden, Karlson, and Sun [7] ha.ve also considered pertur­

bations in b, their results do not completely solve the problem of determining whether XM 

is a stable solution. 

Another problem with Theorem 1.1 is that while£ (:i:M) is optimal, it is not very straight­

forward to compute for large m. Since TJ can be very large for XM ~ 0, there could be some 

numerical difficulty in computing £ ( i: M) accurately as well. 

1.2 Main Results 

We provide an alternative F-norm bound on JM that is easier to compute and that differs 

from £ (i:M) by at most a factor of about 1.6. Using this bound, we further show that a 

stable solution in the sense of (1.2) is necessarily a backward stable solution in the sense 

of ( 1.3). Hence any stable least squares algorithm is necessarily backward stable. And a 

numerical solution XM is a stable solution in the sense of (1.2) if and only if£ (i:M) is small. 

In this paper we only discuss real least squares problems. Our results can be easily 

extended to the complex case. 

2 Alternative Backward Perturbation Bounds 

In this section, we express our results in terms of the singular value decomposition (SVD) 

of M. While it is possible to rewrite these results directly in terms of M, the resulting 

expressions tend to be more complicated. 

Let M = Q · ( ~ ) · wT he the SVD of M, where Q E R'"'xm and W E Rnxn are 

orthogonal; and D E Rnxn is non-negative diagonal Rewrite 

and .,. = h - M · x M = Q · ( r·1 
) , 

1"2 
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where h1 and r 1 = h1 - D · (VVT · XM) E R 11
; and h2 = r 2 . It is well-known that '"'f := 

llr2ll2 = lih- M · xMII2, h1 = D · (WT · xM), and that ·r1 = 0 if XM = XM. 

Theorem 2.1 Define 

a= 

and1 t (xM) = min ( 7], a). Then 

Proof. Theorem 2.1 obviously holds for i:M = 0. Hence in the following 'we assume that 

XM -::f:. 0. By definition, O"min ([M ry • C]) is the smallest non-negative a such that 

f(a) := det (([M ·ry · C]) · ([M ry • C]f- a 2 I) = 0. 

Replacing M by its singular value decomposition and simplifying, 

f(a) = 

= 

Hence O"min ([M ry ·C)) is the smallest non-negative O" < 'fJ such that 

2 2 2 77 • '"Y 'TJ T ( 2 2 2 ) -l 
1 - llr·ll~ . ('ry2 - a2) - 11.,.11~ . r·I . D + ( 1J - O" ) • I . rl = 0 . (2.4) 

This equation can be rewritten as 

1 We also define 
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Since 111·11~ = llr1ll~ + 1 2
, the above equation can be simplified, after some algebra, into 

2 r[ · D 2 · (D2 + ry2J)-1 
·r·1 

<7 = 1 2j(ry2 _ u2) + ry2. 1-[. (D2 + (ry2 _ u2)J)-1. (D2 + ry2J)-1. r 1 (
2

-
5

) 

We note that the expression on the right hand side is a2 if u = 0. Since 1 2 I ry2 5 1 2 j ( ry2- u2) 

and 

r[. (n2 + Tj2J) -2. T1 5 Tr. (n2 + (TJ2- <72)Jrl. (n2 + TJ2J)-1 •1"1 

for u 5 TJ, equation (2.5) implies that crmin([M ry·C]) 5 a. It follows that £(i:M) < 
t (xM)· 

We now assume that. a> TJ. In this case we have f. (XM) = TJ. We claim that. 

' vfs-1 C1min ([M 1] · C]) 2: (:J ·''I where (:J = 
2 

. (2.6) 

We show this by contradiction. Assume tha.t this was false, so that C1min ([M 'fJ· C]) < fJ·'fJ· 

We note that 1 2 ITJ2 > (1- (:J2) ·12 l(ry2 - u2) and that 

r[. (n2 + TJ21)-2 •7"1 > (1- (:J2). r[. (n2 + ('fl- <72)1)-1. (n2 + TJ21) -1. 'r1 

for u < f3 · ry. Equation (2.5) now implies that 

a < umiu ( [ M ''I · C']) < l!....:..!!._ = . 
1 - (:J2 1 - (32 " ' 

which is a. contradiction. Hence relation (2.6) is incleed valid and we have 

So Theorem 2.1 holds in this case. 

We further consider the case where a 5 ·q. In this case we have t (i:M) 

f3 := umin ([ M TJ · C]) I a 5 1. Similar to above we have 

(r < C1min ([M TJ · C]) < Cr • {3 
- 1 - (:J2 - 1 - (:J2 ' 

which simplifies to 
vis- 1 

or (:J 2: 
2 

. 

It follows that 

vfs-1 -<"(" )<-2 . C1 - L· XM - <7 . 

So Theorem 2.1 holds in this case as well. I 

a and 

Hence f. (i:M) differs from the smallest. possible backward perturbation £ (i:M) by a 

factor of at most .j5 + 1 ~ 1.6. To compute f. (i:M ), we only need to compute D (the 
2 

singular values of M) and QT · r; neither Q nor VV neecl be explicitly computed. This 

computation can be done, for example, by using the subroutines xGESVD in LAPACK [1]. 
I 
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Equation (2.4) provides an efficient way to compute O"min ([M 'fl· C]) (and hence [ (xM )) 
as well. In fact, equa.tion ( 2.4) is similar to the secular equations solved in Gu and Eisen­

stat [3) and Li [5); and their methods can be easily modified to compute CTmin ([M TJ · C]). 
In the rest of this section we analyze £ ( i M) for several special cases. 

Corollary 2.1 Assume that llr1ll2 ~a: ·1· Define 

- Jr-[. D2 . (D2 + ry2 J)-1 . r·1 
C11 = -'----....,.--,.,..-----

llxMII2 

Then 
1 < a1 < vis + 1 . 

V1 + a:2 - [ (iM)- 2 

Proof. Since Jlrll~ = llr1ll~ + 1 2 a.nd 'f/2 = II,.IIVIIxll~, the assumption implies that 

We also have 

Consequently, 

Iii Mil~ 
1 + (t2 

a1 J,2 /rP + ·ry2. r[. (D2 + ·ry2 1)-z. r·1 
a liiMII2 

1 -< O"J < 1. 
-vr:1=+=a:::;;:2 - a -

Corollary 2.1 follows by combining the above relations with Theorem 2.1 and the fact that 

<11 ::; TJ. I 
The least squares problem (1.1) has a. small residual if 1 = llh- M · xMII2::::::: 0 and large 

residual otherwise; and XM = XM if and only if T1 = 0. Since a good approximate solution 

XM always makes r 1 small, Corollary 2.1 implies that for large residual problems XM is a. 

backward stable solution if and only if a1 is small. 

Corollary 2.2 below gives a. ba.ckwanl perturbation bound for small residual problems. 

Corollary 2.2 Assume that 

Then 
vis- 1 {2;;2 

2 ·v~-ry~[(i:M)~TJ. 
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Proof. Let (3 = 2a2 j ( 4 + a 2 ) be a scalar. Then 

Since 1]::; O"min(M) = O"min(D), we have 

Combining these relations and simplifying, 

o-2 _ (3 .
17

2 2: lhiiV2- f3 · 1
2

- f3 ·ll·r1!~{4 2: a2 · ! 2/2- f3 · 1
2

- f3 • a2 "!"2/4 = 0 . 
12;172 + 7]2. ·r[. (D2 + ry2J) .. ,.1 1 2/'1]2 + .,p. 1'[. (D2 + ry21) -. 7.1 

It follows that a2 2: (3 . ry2 and that 

Corollary 2.2 follows by combining this relation with Theorem 2.1. I 

3 A Stable Solution is a Backward Stable Solution 

In this section we show that a stable sol n tion in the sense of ( 1. 2) is a backward stable 

solution in the sense of (1.3). 

Theorem 3.1 In {1.2) let liM, lib and lii:M be small pe1·tm·bations of M, b, and XM, 

respectively. Then there exists a mat1·ix fM E Rmxn satisfying {1.3) with2 

Proof. We prove this theorem by applying backward perturbation bounds in §2 toM +liM. 

Let the SVD of M +liM be Q · ( ~ ) ·l¥T. Define 

where f~ 1 and lift1 E R"; and ft2 and lif~2 E R(m-n). It follows that llliftll2 = ll8hll2, 

IIJ;Mib = ll8xMII2· Write 

h- (M +liM)· :i:M 

((h + lih)- (M +liM)· (i:M + 8i:M )) + ((M +liM)· 8i:M- bh) 

21 h . I h . 1 llbiMII2 !l·t·<· !l n t e event XM = 0, we at opt t e conventiOn t 1at. II" II = I CJXM = · 
XM 2 

(3.7) 
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Since XM + SxM is the exact solution to the perturbed least squares problem ( 1.2), we have 

We also have 

Plugging these relations into (3. 7) we have 

.,. = Q. . . . · ( b. b;:M- oh1 ) 
. h2 

In the following we derive an upper bound on[. (:i:M) with M + 8M as the coefficient matrix 

in the least squares problem. Define 

We first assume that i :S llr1ll2· By Theorem 2.1, 

Since x M + 8i M is the exact solution to ( 1. 2), it follows that 

and hence 

On the other hand, 

Taking 2-norms on both sides, 

llhll2 < 1ih1 + oh1ll
2 
+ lloh1ll2 + llitzll2 :S llit1 + oit~ll 2 + 11Mtll2 + llr1ll2 

= lli11 + 8it1ll
2 
+ IIM1.II 2 +lib· 8:r:M- o/),1112 . 

Plugging in the 2-norm upper bound on lllt1 + oh1ll 2 and simplifying, we get 

(3.8) 

(3.9) 
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In (3.8) we have 

Plugging in the upper bound on ~~~~~ 2 and simplifying, we obtain 

(3.10) 

where we have used the fact that 

Now we assume that i' ~ llhll2· By Corollary 2.1 we have£ (i:M) ::S J2 · C11, where 

Since f 1 = D · 8; M - h'it,1 , it follows that 

Since llrll2 = iJ ·llxMI!2, it follows from the above relation that 

Combining these with relation (3.9) we obtain 



Since llfllz ~ llf~zllz, it follows that 

max (llht + bhtllz, II·FIIz) > max (111~1 + <5f~IIIz, llf~zllz) ~ ~ · Vlli~l + hhtll~ + IIhz II~ 

= -
1 ·II ( ht-!'" bf1.

1 
) II ~ -1 

· (llhlb- llhhllz) . .J2 hz 2 .J2 
Consequently, 

From this relation we get 

which is identical to (3.10). 

In both cases, there exists a matrix fM1 E Rmxn with llb'M1 IIF = [ (i:M) such that 

Now we define fM = liM+ 8M 1 . It follows tha.t 

II(M + fiJ) · :i:M- hllz =min II(M +liM)· x- hllz , 
X 

and that 

The theorem follows immediately by plugging the upper bound (3.10) into this relation. I 
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