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VIBRATIONAL INELASTICITY IN H
2 

COLLISIONS WITH He AND Li+ . 

Andrew Wesley Raczkowski 

Inorganic Materials Research Division, Lawrence Berkeley Laboratory 
and Department of Chemistry; University of California, 

Berkeley, California 94720 

Abstract 

The partially averaged version of classical S-matrix theory 

was applied to three-dimensional collisions of H
2 

with He and Li+. 

1
.+ 

ForH2- 1, cross-sections for the de-excitation of H2 from 

(n1 ,j 1 ) = (1,0) to the ground vibrational manifold were computed at 

a total energy of 1.2 eV and compared to previously done coupled 

channel calculations of Schaefer and Lester. The agreement is 

very good. For H2-He, the Kutzelnigg-Tsapline interaction potential 

was extended to small atom-diatom separations, the ab initio points 

were then fit to an analytic form, and cross-sections for the 

de-excitation of H2 from the states (nl'j 1), n1 = 1, jl = 0,2,4 to 

the ground vibrational manifold were computed at total energies of 

.9, 1.1, 1.3 and 1.5 eV. For comparison, coupled channel calculations 

were also performed on the system at the same energies. The agreement 

+ was poorer than in the H2-Li case, for identifiable reasons. The 

cross-sections were used to compute rate constants and relaxation times 

for the H
2
-He system. Comparison of these results with the results 

of experiment and of other calculations shows good agreement, 

certainly within the expected errors. 
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I. INTRODUCTION 

In essence,the present work describes several calculations performed 

by the author under the tutelage of Professor l.Jilliam H. Miller. These 

computational studies were a c~ntinuation of efforts to develop a 

reliable method of performing non-reactive scattering calculations, 

based on the Miller formulation of multi-dimensional classical-limit 

quantum mechanics. The theory was first applied to vibrationally 

inelastic col.Jinear colll~ollonH ;llld the ri~ld-rotor p1·nldvm (Millc·r~ 

1970, 1971) to calculate specific S-matrix elements. The development 
. ' 

of complex-valued trajectories (Miller and George, 1972) allowed the 

extension of the theory to classically forbidden transitions, resulting 

in calculation of S-matrix elements for vibrationally inelastic 

three-dimensional atom-diatom collisions (Doll and Miller, 1972). 

The scope of the present work is the description of the next 

step in this sequence, namely, the ~ncorporation of the partial-

averaging procedure, a labor-saving device which allows direct 

calculation of cross-sections without recourse to S-matrix elements 

as intermediates (Miller and Raczkowski, 1972). The two sets of 

calculations described were done on H
2
-Li+ and H

2
-He, respectively. 

The choice of H
2 

plus a monatomic collision partner was not made 

because of intrinsic interest ~n H
2

• Rather, the choice was 

determined by the following arguments. First, because of the light 

masses of the atoms involved, these systems should manifest the most 

pronounced quantum effects and thus serve as an acid test of any classical-

limit ~ethod. Secondly, because of the small number of electrons in the 

system, reliable ab initio interaction-potential surfaces exist for both 
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systems, thus obviating any difficulties about choice of potential 

surface. One might add parenthetically that the internal potential 

of H
2 

is firmly established by the work of Kolos and Wolniewicz. 

Thirdly, because of the wide spacing of the H2 energy levels, reliable 

coupled-channelcalculations were feasible for both systems, 

providing a standard of comparison for the classical-limit results. 

And lastly, the work of Audibert, Joffrin and Ducuing has raised the 

possibility of comparison, albert indirect, of computations with 

experiment. 

Before beginning the discussion of computational techniques 

and results it seems appropriate to give a description of the theory 

behind the computation. Chapter II provides this description, 

which is meant to serve three purposes. First, it should give the 

reader some appreciation for the similarities and differences between 

the two scattering methods being considered, i.e. , coupled-channel 

and classical-limit. Secondl:y, it should serve to define notation. 

Lastly, it should give an idea of the amount of averaging over cross­

sections required to obtain the quantity comparable to experiment, i.e, 

how indirect is the comparison alluded to above. 

Chapter III gives a detailed account of the calculations performed. 

It begins with a specific statement of the problems involved in 

applying the classical-limit approach and then goes on to present 

the computational techniques used to overcome the difficulties. 

The relative success or failure of each technique is indicated, 

and where possible., the reasons for failure are stated. The emphasis 

of the chapter is on techniques rather than results, because the results 
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+ . 
fo~ H

2
-Li have already been discussed in the literature (Raczkowski 

and Miller, 1974), and the H2-He system will be the subject of 

forthcoming journal articles, The literature contains only a hazy 

outline of the methods used to .apply the classical-limit formalism, 

thus it seems more appropriate to present a thorough discussion of 

techniques. However, the study of techniques is applied mathematics; 

science is the study of nature. When one has done careful' calcula-

tiona on a real system it is difficult to r·epn·ss om•'s desire to 

discuss the results, and thus a short discussion was included for 

both systems, 
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II. THEORY 

The theoretical basis of the calculations described in this work, 

i.e., theN-coupled channel problem, classical-limit quantum mechanics, 

and the relationship of cross sections to rate constants and relaxation 

times, are all well discussed in the literature. The present discussion, 

therefore, will be restricted to a summary of those aspects most germane 

to the calculations described in the next chapter. Its inclusion is 

meant to serve three purposes: (1) completeness, (2) providing a 

conceptual background for the uninitiated reader, arid (3) establishing 

the notation to be used in subsequent chapters. In particular, the 

present discussion will avoid all proofs. Results will be stated, and 

at appropriate points in the discussion, the interested reader will 

be referred to the sources in the literature which most closely 

parallel the discussion here. 

A. The N-Coupled Channel Problem 

This section gives a discussion of quantum scattering theory, as 

it applies to the problem of interest. The kinematics are discussed 

first, the scattering problem is then formulated in terms of the 

S-matrix. The S-matrix contains all possible scattering information. 

Its knowledge is equivalent to knowledge of the solution to the full 

Schroedinger Equation for the problem. The section concludes with a 

description of the coupled channel approach to the solution of the 

SchroedingerEquation and assembling of the S-matrix, and an outline of 

the numerical method of Gordon (Gordon, 1969, 1971), chosen to obtain 

the solution. 

The specific problem under discussion is a non-reactive atom-diatom 
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lli i (Th d ' h h H + L1'+, co s on. e two cases presente 1n t e next c apter are 2 

and H2 + He. In the first of these, the "atom" is actua~ly an ion. 

However, its charge enters the problem only in terms of the specific 

form of the potential. The general description of the collision 

process is unaffected.) Let A designate the atom and B-C the diatomic. 

Eliminating center-of-mass motion, one can describe the system (Fig. 1) 

+ + 
by defining r as the distance from B to C, and R as the distance from 

the B-C center-of-mass to A. Let m be the reduced mass of B-C, 11 

+ + 
be the reduced mass of A and the diatomic, p and P be the momentum 

+ + 
operators corresponding tor and R, resp., and for future use, define 

y as: 
A 

y =Arccos (R · r). (2.1) 

(as usual, R = IRI , and R = R/R, and similarly for;). y, then, is 

+ + 
the angle between the vectors r, and R. With these definitions, the 

Hamiltonian for the system may be written: 
p2 2 + + 

H = 2)1 + fr; + VT (r, R), (2.2) 

where VT is the total potential energy of the system. One notes that 

if the atom is assumed structureless, and if the diatomic is in a 

. + + r electronic state, VT depends only on the magnitudes of r and R, and 

on the angle between them. (Lester, 1973) 

+ + 
VT (r, R) = VT (r, R, y) (2. 3) 

Further, let v(r) represent the potential of the free B-C diatomic, 

in the absence of A. One can then define an interaction potential, 

VI' by 

VI (r, R, y) = VT (r, R, y) - v(r). (2.4) 
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Fig. 1. Coordinates for H2-He system. 
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This is poss.ible because the energy range of the calculations was 

chosen so as to exclude any bound states of A-C or A-B, or dissociation 

of B-C, thus the diatomic maintains its identity throughout the collision, 

and Eq. (2·.4) defines a unique interaction potential. The Hamiltonian 

then becomes 
p2 2 

H = 2]..1 + 1; + v ( r) + VI ( r, R, y ) (2.Sa) 

(2.Sb) 

where the definition of H is obvious. Now, in both systems of interest, 
0 

the interaction potential falls off sufficiently fast with increasing 

R that one can define an asymptotic region (R~), where H~H. The 
0 

allowed scattering states asymptotically satisfy 

~ ~ ~ ~ 

H <)(r, R) = E ·¢(r, R) (2.6) 
0 

where E is the energy of an asymptotic state ¢ • For definiteness, 

one may consider the scattering of some wave-packet W(t) in the 

Schroedinger picture. Set 1/,· =~ (O), then ~(t) is given by the action 

of the propagator on ~0); (Taylor, 1972) 

iHt 
~(t) = exp(tl) • ~(0) (2.7a) 

then the incoming and outgoing asymptotic states are given by the 

relations: 

,lim -iHt lim -iH t 
~ 

0 ¢in (2.7b) t - oo exp (tl) = t~ -00 exp(-h-) . 
lim (iHt) lim -iH t 

0 (2.7c) t~+oo exp tl . ~ = t~+oo exp(-h-) . ¢out 

Not surprisingly, the eigenstates of H will play an important role 
0 

in the development of this section, since the asymptotes are most 

naturally expressed in terms of these functions. Fortunately, these 
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functions are easily found. (Lester, 1975). One first notes that 

H is separable in the sense that there are no terms simultaneously 
0 

-+ -+ 
involving r and R. One then proceeds in the time-honored tradition, 

letting 

-+ -+ -+ -+ 
¢(r, R) = X(r) · U(R) (2.8) 

and substituting into Eq. (2.6), one obtains the system of equations: 

(2.9a) 

0 (2.9b) 

E + E. = E tr 1nt 
(2.9c) 

For the moment, Etr and Eint should be viewed as some partitioning of 

the total energy E such that Eqs. (2.9) are satisfied. Later, of course, 

they will be shown to be the translational and internal energies, 

respectively. One next transforms to polar co-ordinates, and letting 

PR, (pr) and ~(j) be the radial and angular momentum operators for the 

relative (internal) motion, one obtains: 

p 2 ~2 -+ 
(ER- + --- Etr) U(R) = 0 (2.10a) 

2ll ZJ1R2 
p 2 .2 -+ (_£_ + _j_- Eint) X(r) = 0 (2.10b) 2m 2 2mR 

Finally, substitution of: 

-+ 1 y~ " U(R) =- u (R) (R) (2.lla) R k~ m.Q, 
-+ 1 yj (~) X(r) = -X . (r) (2 .llb) 

r nJ m. 
J 

into Eqs. (2.10) yields the familiar free particle solutions for uk.Q, (R): 

uk~(R) =a • (kR) jQ,(kR) + b · (kR) n~ (kR) (2.12a) 

(.. 

,. 



6 

-9-

where a and bare expansion coefficients, ji(ni) is the regular 

(irregular) spherical Bessel function of order i, and k is the usual 

wave vector; defined in terms of the translational energy as: 

k = .!(2 E ) 1/ 2 
h 11 tr 

Equation (2.10b) reduces to a one-dimensional eigenvalue problem; 

p2 h2. ("+1) 
(- + 1 1 + v(r) - t: • ) Y. • (r) = 0 

2m 2 2 nJ 'nJ mr 

(2 .12b) 

(2.12c) 

where p is just a one-dimensional momentum operator. Equation (2.12c) 

is just the defining equation for the bound vibration-rotation states 

~j of the B-C diatomic which correspond to internal excitation energy 

£ •• Because the energy range studied is below the dissociation energy 
nJ 

of the diatomic, it is legitimate to restrict the solutions of Eq. 

(2.12c) and its antecedents to bound states. One might add, as a 

procedural point, that £ will be defined as being zero, thus fixing 
00 

the energy scale. With this definition, states of total energy E will 

be scattering states with at least one particle asymptotically free 

if E>O, and three-particle bound states if E>O. 

At this point, the kinematics and notation have been established, 

and the next topic to be discussed is the S-matrix. With Eqs. (2.7b, c) 

as motivation, it is convenient to define the two Moller operators 

(Taylor, 1972). Let U (U0 ) represent the propagator corresponding to 

H (H ), then: 
0 -iH t 

= tl~ U(t) t U (t) 
0 

lim -iHt o 
= t-+....oo e-h- e h 

lim 
n = t-++ 00 

t iim -jHt 
U(t) U (t) = t+ 00 e-h- e 

0 

-iH t 
0 

h 

In analogy with Eqs. (2.7b, c) one has the relations: 

(2.13a) 

(2 .13b) 
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w = n . 
+ 

,,, = n . "' 
"' "'out' 

which relate the actual scattering state to its two asymptotes. 

One then has: 

where one has substitutal Eq. (2.14b) for ~·. If one then defines 

the product of Moller operators in Eq. (2 .15) as bei.ng the s- or 

scattering operator, one can write: 

"' - s "' '*'out '*'in 

It is clear that by acting on the incoming states, the S-operator 

directly yields the outgoing state. Its action is exactly 

(2.14a) 

(2.14b) 

(2.15) 

(2.16) 

equivalent to solution of the full Schroedinger Equation (SE) with the 

same incoming boundary condition and passage to the asymptotic limit 

for the outgoing component of the solution. At first one might think 

that solution of the full S.E. yields more information, since one also 

gets the solution for small interparticle separations. However, this 

information is of no particular interest. Operationally, one may 

define the asymptotic region as one where the interaction potential 

is small with respect to the relative translational energy. In the 

calculations described in the next chapter, the translational energies 

were on the order of 0.5 eV; the interaction potentials were less 

than 0.5°K, (one part in 104 of the translational energy) for 

-7 
ato~diatom separations of ten or so Angstroms, (about 10 em) .. 

Thus if one considers a scattering experiment taking place in an 

apparatus of human dimensions, i.e., detector separated from scattering 

.. 
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established in Eqs. (2.1~. Further, if one seriously believes the 

statement about the equivalence of the S-operator to the solution of 

the full S.E. and passage to the asymptotic limit, one must conclude 

that the S-operator's conservation properties reflect those of the full 

Hamiltonian. In particular, (Taylor, 1972) one can establish that 

they both conserve total energy and angular momentum. By contrast, 

the asymptotic Hamiltonian separately conserves energy and angular 

momentum for both the translational and internal motions. The effect 

of the interaction potential, then, is to conserve total energy and 

angular momentum, but possibly reapportion that total between the 

translational and internal modes. In employing the coupled channel 

formalism, one wishes to make maximum use of these conservation 

properties. As was seen earlier, the wavefunctions are described 

asymptotically as a superposition of terms like: 

~ uk£<i> ~j <;> ~~ (R) 

x yj ci?> 
mj 

(2.19) 

Because of total angular-momentum conservation, it is convenient to 

transform from the uncoupled basis (£, m£' j, mj) to the coupled basis 

(J, M, j,t), where as usuallY J is the total angular momentum and 

M is its projection along some space-fixed axis. (Since the total 

system is rotationally invariant, the choice of the M defining axis is 

not critical. More will be said about this later.) The transformation 

is effected by the usual coupling relations involving Clebsch-Gordon 

Coefficients: (Rose, 1957) 
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event by distances on the scale of centimeters, there is no doubt that 

only the asymptotic form of the wavefunction is being probed. Not 

suprisingly then, the usual quantities of interest in a scattering 

experiment, such as cross sections, phase shifts, etc. all depend 

on the asymptotic form of the wavefunction. Thus all such scattering 

information is obtainable from the S-operator. 

Returning then, to the main thread of the discussion, if one 

knowsthe incoming state of the system, say ¢ 1 , it is reasonable to ask 

what is the likelihood of emerging in various possible final states 

of the system, say ~· Now, from Eq. (2.16): 

¢out = S · ¢1 

and the probability of emerging in state ¢2 is 

(2 .17) 

Equation (2.18) leads immediately to the concept of an S-matrix. 

If one chooses a suitable basis set for the asymptotic region, one 

could evaluate the integrals of the S-operator between each pair of 

basis functions (thus defining the S-matrix; ~' the integral 

appearing in Eq. (2.18) would be the element s12 ) and store the results. 

In the usual matrix-mechanics way, one would then express any integral 

of the S-operator by expanding the in and out states in terms of the 

chosen basis set. 

The choice of an appropriate basis set representation is, not 

suprisingly, related to the choice of boundary conditions for the 

solutions of the full S.E. These, in turn correspond to solutions of 

the asymtotic Hamiltonian, H • The solutions of H have already been 
0 0 
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(2.20) 

For later purposes, it is convenient to define (Lester, 1975) 

+ A . 1 A A 

¢Ct(r,R;J,M,n,j ,.R.) = r \tj (r) Y(r,R,J,M,j ,.R.) (2.21) 

and to .write the analogue of Eq. (2.19) as: 

++ 1 
~(r,R; E,J,M,n,j,.R.) = R uk.R.(R) . 

+A 
¢a (r ,R) (2.22) 

Here the channel index a, defined by a= (n,j ,~) has been introduced, 

and it would be appropriate to define the concept of channel as well. 

In the present context, one defines the system as being in channel a 

if it has the values of E,J,M,n,j,~ necessary to be described by 

Eq. (2.22). (In that sense, E,J,M should also be included in the 

channel label; however, the conservation properties of the Hamiltonian 

make this unnecessary. The reason for that will emergy shortly.) 

It is particularly important to note the difference between "state" 

and "channel". In the usual parlance, "state" corresponds to specifying 

(E,n,j) .. Thus one would expect the wavefunction for a state to 
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correspond to a superposition of channel functions like the one in 

Eq •. (2. 22) with differing values of J ,M and L 

To apply the coupled channel approach, one first notes that the 

eigenfunctions of H span not only the space of asymptotic solutions, 
0 

but the space of scattering solutions of the full Hamiltonian as well. 

(Taylor, 1972). The spectrum of H consists, in general, of bound 

states (in which all three particles are bound), and scattering states 

in which at least one particle is asymptotically free. (For energies 

above the dissociation energy of the diatomic, one also has states 

with all three particles free.) The eigenfunctions of H span these 
0 

scattering states. Therefore, one can expand any exact wavefunction 

for given values of E,J and M as: 

-+ -+ ~ l/J ( r, R; E, J, M) = f. 
C a(R) 

R 
(2.23) 

Because of the conservation properties of H, only the specified 

values of E,J, and M need be considered. The summation of Eq. (2.23) 

runs over the channel index a= (n,j,t). Now perhaps it is clear 

why the labels E,J,M were not included in the channel label. One should 

note that the justification for writing Eq. (2.23) is that the ¢. 's con­
a 

stitute a complete set. In particular the expansion is formally correct 

only. if it includes all the internal states, even those lying in the B-C 

continuum. Of course, in the asymptotic region, one finds: 

a o. • ukQ, (R) , 

0 

£ .~ E 
n] 

e .. > E 
nJ 

(2.24) 
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Thus the energetically inaccessible, or "closed", channels carry no 

flux in the asymptotic region. However, they may be important in 

describing the wavefunction in the interaction region. 

In practice; one disregards _formal caveats and truncates the· 

expansion at some convenient point. (Typically, one begins with a 

small basis set, say only the open channels, and then adds.basis 

functions until the addition of one more set of channels causes a negligible 
' 

difference in the calculated results.) Assuming the basis set has 

been1 truncated after the first N functions, one can write: (Lester, 1975). 

+ 
lt-• (r,R; E,J,M) 

<I' +A 
B (r ,R; J ,M) (2.25) 

One then substitutes Eq. (2.25) into the full S.E.: 

CB(R). +A 
= (H-E)L R ¢ (r,R;J,W = 0 

B B 
++ 

(H-E) 1j)(r,R ; E,J ,M) (2.26) 

One then takes matrix elements with each basis function in turn to 

obtain: 

(2. 27) 

If one substitutes Eq. (2.5b) for H, and inserts the explicit dependence 

of the ¢ 's on E,J, and M, one obtains the system of equations: 
0. 

d2 i (io.+l) 2 2 . 
(dR2- o.R2 + ko.) • Co.(R) = h~ ~VaS (R;J) . CB(R) 

where i , k. are the values appropriate for channel 0., and 
0. 0. 

(2.28) 

(2.29) 

Note that theM dependence of the¢ 's integrates out in Eq. (2.29). a 
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Since k depends onE, and V 8 depends on J, the radial expansion a a, . 

coefficients C (R) depend onE and J. (They do not depend on M. At a 

this point, the only effect of different M states will be to introduce 

degeneracy factors of (2J+l) in certain expressions, notably the one 

defining the integral cross section.) It is convenient to note that 

each choice of values for E and J gives rise to a distinct set of 

coupled Eqs. (2.28), and thus to consider the solution Eqs. (2.28) for 

fi~dvalues of E and J, and to suppress the somewhat cumbersome 

dependence onE and J. 

Equations (2.28) represent a system of N coupled second-order 

linear differential equations (with first derivatives missing) of N 

unknowns. The system has 2N linearly independent solutions. The 

N irregular solutions are eliminated by the requirement that the 

wavefunction vanish at the origin. Thus, one expects N linearly 

independent regular solutions to Eqs. (2.28). One denotes these 

solutions by ¢i, i running from one to N. Each of these solutions 

is defined in terms of an expansion like Eq. (2.23). It is convenient 

to reformulate the problem in matrix notation. One defines the 

solution vector $ wit.h ith component lji. by: 
1 

$ (R) = l "¢ • f (R) 

the matrix C can be shown to satisfy: 

I <o • d2 + o k 2 ) 
f3 a f3 dR2 aS a 

(2.30) 

(2.31) 
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Equation (2.31) is just another version of Eq. (2.28). By making the 

obvious definitions, one may rewrite Eq. (2.31) in a more compact form: 

(2.32) 

.. 
where 1 is the unit matrix and the label I indicates the interaction 

potential was used in Eq. (2.29). This, then completes the usual 

formulation of the N-coupled channel problem. In order to solve it, 

one may apply the method of Gordon (1969, 1971). A brief sketch of 

the method will be given here, the interested reader is referred 

to the literature for a more detailed treatment. The essence of the 

method can be stated as follows. If one is attempting to solve 

the Sch~oedinger Equation in a given region, one can consider 

subdividing the region into intervals sufficiently small so that the 

potential in each interval can be expanded in a rapidly convergent 

Taylor series about the mid-point. If one then considers the 

constant and linear terms as an approximating reference-potential, and 

the terms of order two and higher as a perturbation, one can write 

the solution to the reference problem explicitly in terms of Airy 

functions. The solution of the exact problem is then the reference 

solution plus a perturbation correction. If one assumes that the 

dominant corrections arise from the effect of the quadratic term, 

one can evaluate them analytically. One then chooses the intervals 

sufficiently small so that the corrections are less than the desired 

accuracy. By matching solutions and their derivatives at the 

boundaries of the intervals, one can construct a wavefunction which 

satisfies the S.E. to the desired degree of accuracy in the region 
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of interest. 

To apply the method to the problem of interest here, one must 

first reformulate Eq. (2.32). One adds the term 

to both sides of Eq. (2.31). (The appropriate values of nand j are 

found from the channel label a.) One then obtains 

2 
1 c-.L. + E > 

dR2 o 
f(R) = Q(R) . f(R) (2.33a) 

where 

2 
U "' 0 = ( ¢ I 2

]..1 H + Lj ¢0 ) 
'""~-' a ;:z . dR2 ..., 

(2.33b) 

and 

E = 2]JE/h 2 
0 

(2. 33c) 

The addition of the second term to the Hamiltonian in Eq. (2.33b) 

has the effect of concelling out the radial kinetic energy term for 

the relative translational motion. Thus, U aS includes the total 

potential, both angular momentum terms, and the radial kinetic energy 

for internal motion. 

One begins the solution of Eq. (2.33a) at a small enough value of R 

to guarantee that between the origin and that value of R the solution 

is smaller than the allowed error. · (It will be recalled that the 

solution vanishes identically at the origin.) One then divides 

the remainder of the positive R-axis into intervals. At the left 

boundary of first interval the matrix C is set to zero and its 

derivative is taken to be a set of N linearly independent vectors. 
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One then propagates the solution in the following way. First one 

notes that the boundary conditions are specified in terms of initial 

conditions, i.e., one knows the value of the solution and its 

derivative at the left boundary of each interval. Assuming that one 

. h . th . 1 h bl . h 1 . 1s on t e 1 1nterva , t e pro em 1s to propagate t e so ut1on 

' through that interval. (The value of the solution and its derivative 

at the right boundary of the ith interval automatically specifies 

the "initial condition" for the (i+l)th interval.) Let R. represent 
1 

h id i f h i th . 1 t e m -po nt o t e 1nterva . One then constructs a unitary 

matrix~ such that: 

'\.r- t 
U(Ri) = M. U(R.) · M. 
- --"]_ - 1 --"]_ 

(2.33a) 

is diagonal. The effect of this transformation on Eq. (2.33a) is to 

replace Q by ~. The solution matrix is also transformed: 

'\.r t 
C. = M. C M. 
--"]_ --"]_ - --"]_ 

'\.r 
Carrying out a Taylor series expansion on~' one obtains: 

Q(R) = /. J:,- (R-R. )n tJ , 
rin. 1 -n 

where 

"' dn "' u =- U(R)I -
-n n- R=R dR i 

'\.r 
One then chooses the reference potential U as the diagonal matrix -r 

defined by: 

(2.34b) 

(2.35a) 

(2.35b) 

(2.36a) 
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the first term in Eq. (2.36a) is the potential at the mid-point. It 

is diagonal by construction. The second term is explicitly diagonal 

by virtue of the Kronecker delta. The "perturbing" potential is 

everything not included in Eq. (2.36a). In keeping with the idea 

that the expansion in Eq. (2.35a) is rapidly convergent, one retains 

only the lowest order terms: 

"' <t..!D aS 

(2.36b) 

Since Eq. (2.36a) contains the diagonal first-order terms, the 

leading diagonal terms of the perturbation will be second order, 

whereas the leading off~diagonal terms will be first order. 

The reference problem can be written: 

all aS 

d2 "' 
(- + E ) C (R) = 
dR2 o a,n 

(2. 37) 

This is a system of N uncoupled equations whose solution may be 

written as some linear combination of Airy functions: 

"' C = Ai (R) . a + Bi (R) • b • 
an a an .a an 

(2.38) 

Here Aia(R) and Bia(R) are the regular and irregular Airy functions 

appropriate to channel a, and a and b are constant coefficients an an 

"' whose specific values depend on the initial conditions for C an 
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One is interested, however, in the solution to the exact problem. 

Gordon (1964) shows that the exact solution may also be written in. 

the form of Eq. (2.38), with the except.ion that now the expansion 

coefficients are no longer constant, but depend on R. One can 
.. 

estimate the change of a and b on the interval (R.Q,, Rr) by: 

1 f Rr dR[Bi (R) . I "' "' ~a an ~ -w- (1'1 U) . c ] 
a8 8n 

a R.Q, <Y 8 
(2.39a) 

1 f 
R "' "' ~b ~ 

r dR [A. (R) ·I (1'1 U) a8 • c8n1 ' w an a l.a 8 
R£ 

(2.39b) 

where the Wronskian w a is defined by 

' w = Aia(R) . Bi (R) - Ai' (R) · Bi (R) 
a a a a 

(2.39c) 

It should be noted that Eqs. (2.39) contain a two-fold approximation. 

For exact equality to hold, one must use the complete perturbing 

potential, including all the higher-order terms neglected in Eq. 

(2.36b). Secondly, "' the C must be exact. The point then, is to make the 
f3n . 

interval size small enough so that the corrections given by Eqs. (2.39) are 

less than o, the desired relative accuracy. One can determine the size 

of the first interval iteratively, and the size of subsequent intervals by: 

(2.40) 

since the error varies roughly as the cube of the step size in this 

method. 

In this way, by use of Eq. (2.38), the solution can be propagated 

h . h b d f h . th . 1 to t e r1.g t oun ary o t e 1. 1.nterva . All that remains is 

establishing the initial condition on the (i+l)th interval. On 



-22-

the (i+l)th interval one defines a new transformation Mi+l" One 

then has the analogues of Eqs. (2.34). Rewriting Eq. (2.34a) and 

its analogue, one has: 

clearly, 

where 

-r 'V 

= Mi+l~i+l~i+l 

t 
T. =M.+1M .• 
-1 -1 -1 

'V 
To obtain the desired initial conditions, one evaluates C • and its 

-1 

(2.41) 

(2.42a) 

(2.42b) 

derivative at the right boundary of the. ith interval and transforms 

them according to Eq. (2.42a). This then specifies the value of 

fi +l and its derivative at the left boundary of the (i+l) th interval. 

One then propagates the solution on the (i+l)th interval as before. 

The last difficulty is determining the S-matrix from the wavefunc-

tion. To do this, one assumes that the solution has been propagated 

into the asymptotic region. There, each element of the solution 

matrix looks like some linear combination of spherical Bessel functions 

(Gordon 1969): 

(2.43) 

where 
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n a(R) = kR • nQ, (kR) 

(2.44a) 

(2.44b) 

Here k and i are the wavenumber and orbital angular momentum for channel 

~ ji and ni are the regular and irregular spherical Bessel functions 

' of order i. One can write Eq. (2.43) in matrix notation. 

c = j x + n Y 

where 

<i>as = o Bj (R) a a 

and 

(n) B = o Bn (R) - a a a 

Ideally, one would like the asymptotic solution in the form: 

C = · - n k-l/2R k112 
- ~ -- --

where k is the wavenumber matrix appearing in Eq. (2.32) and ~ 

(also sometimes denoted as !) is variously named the reactance, 

(2.45a) 

(2.45b) 

(2.45c) 

(2.46) 

reaction, tangent, and Heitler matrix. It is the Cayley transform of 

the S-matrix (Taylor, 1972) and obeys the relation: 

R = i(l-S)(l+S)-l , (2.47a) 

which can be inverted to give: 

S = (l+iR)(l-iR)-l (2.47b) 
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Using Eqs. (2.45a) and a.46), one can show (Gordon, 1969) that R can 

be found by solution of: 

(2.48) 

.•. 
where T denotes transpose of a matrix. This completes solution of 

the coupled channel problem for given E and J. One may define a 

partial cross-section for a given transition by (Lester, 1973) 

cr3 (E) 

nlJl + n2j2 

(2.49) 

Finally, one defines an integral cross-section as: 

(2.50) 
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B. Classical S-Ma.trix Theory and Partial Averaging 

This section gives a brief discussion of one formulation of clas-

sical-limit quantum mechanics, in effect a generalization of WKB theory 

to multi-dimensional problems. Also included is a description of the 

"partial averaging" method. This procedure allows one to treat clas-

sical-like internal modes (i.e., those strongly coupled to translation) 

in the spirit of quasi-classical Monte-Carlo while retaining semi-

classical quantization (via the usual double-ended boundary conditions) 

for quantum-like modes, weakly coupled to translation. 

Equations (2.49) and (2.50) of the previous section can be taken 

as the motivation of the present discussion. They express the quantity 

of interest, the cross-section, in terms of the S-matrix. Since the 

expressions are independent of the method used to calculate the S-matrix, 

any theory allowing the evaluation of S-matrix elements automatically 

allows one to compute the cross-section. 

One such theory is the classical S-matrix formulation derived by 

Miller and co-workers. Using as a point of departure the Dirac view 

of quantum mechanics, i.e. a formulation stressing the importance of 

transformations, they have shown that one can derive an internally 

consistent formulation of classical-limit quantum mechanics given only 

two assumptions: (1) that the transformation element between a 

coordinate and its conjugate momentum be given by (in the Dirac notion): 

<qlp> = (2rrih)-l/2 eiq·p/h' (2.51) 

and (2), that integrals arising from transformations of coordinates or 

momenta be evaluated by the method of stationary phase, or the method 
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of steepest descents if there are no real points of stationary phase. 

It should be noted that assumption (1) is exactly equivalent to the 

uncertainty principle, and assumption (2) is the definition of 

"classical-limit". 

The derivation of the theory will not be given here. It is the 

subject of two review articles by Miller, and the interested reader 

is referred to these for the details (Miller, 1974a, 1974b). The 

result pertinent to this discussion is how an S-matrix element for an 

inelastic transition may be approximated by use of classical trajectories. 

However, before the substance of the theory can be stated, it is first 

necessary to re-examine the system of interest and to re-cast the 

description of the scattering process into the language of classical 

mechanics. 

To recap briefly, asymptotically at the beginning of the scattering 

event, the diatomic is in internal state (n
1

,j
1

) with energy E(n
1
,j 1). 

The atom is "infinitely" far away (i.e., R sufficiently large that the 

interaction potential v
1

(r,R,y) is negligible), approaching with 

translational energy Etr = E - E (n1j 1 ) and orbital angular momentum 

~l' such that 111 + ! 1 1 = J. The collision takes place, conserving 

total energy and angular momentum. The diatomic is now in state 

(n2 ,j 2), and the atom recedes with translational energy Etr = E-E(n2 ,j 2) 

and orbital angular momentum ~2 • Of course, 112 + 121 = J. 

The above description of the collision process is given entirely 

in terms of quantum-mechanically observable quantities, as it must be, 

since one is dealing with a basically quantal process. The classical 

analogy is most easily made by use of action-angle variables. The 
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system is then described classically by four pairs of conjugate 

coordinates and momenta: (R,PR), (q ,n), (q.,j), (q.R,,R-). The 
. n J . . 

advantage of these variables is that the last three momenta, n,j,.R-, 

are the classical analogues of the quantum numbers with the same 

labels. (Of course, as classical quantities, they are not restricted 

to integral values. 

change in notation. 

This in fact is the motivation for the minor 

The.internal energy£ . of the last section now 
n] 

becomes £(n,j), since it seems natural to indicate integer anguments 

by subscripts and continuous arguments by the usual functional 

notation.) The transformation from this system of coordinates and 

momenta to the usual cartesian system is well-known (Miller, 1970, 

1971, 1974a), and will not be given here. Thus the classical descrip-

tion of the asymptotic states consists of R "infinitely" large 

(i.e., large enough for the interaction potential to be negligible), 

PR fixed by energy conservation, and the action variables set equal 

to their respective quanta! (integer) values. It should be noted that 

the states are defined by exact values for the momenta, both intially 

and finally, but that the coordinates (i.e., position) variables are 

completely unspecified, except for a vague condition of R, whose 

purpose is to assure that the system is indeed in the asymptotic region. 

In fact, even this condition is based on an energetic consideration. 

The emphasis on energy and momentum is understandable, since the 

quanta! description is in terms of energy and angular momentum 

eigenstates. The uncertainty principle requires that complete 

specification of momenta be accompanied by complete ignorance of the 

values of conjugate coordinates. Thus it is not surprising that the 
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classical analogy focuses on momenta and energy as well. Yet the 

coordinates, particularly the angles conjugate to the action variables, 

will be seen to play a crucial role in the theory. 

Given the coordinate system defined above, one can write the 

classical Hamiltonian for the system (Miller, 1970) as: 

The variables randy are understood to be defined in terms of·n,j,~, 

and their conjugate angles. The exact expressions will not be given 

here (Miller, 1970), it should suffice to indicate the specific 

dependence: 

r = r (n,j,q) 
n 

(2.52b) 

(2.52c) 

The dynamical evolution of the system is given by Hamilton's equations 

of motion (Goldstein, 1950), 

()H 

ap. 
1 

()H 

aq. 
1 

where i denotes a particular pair of coordinate and conjugate momentum. 

It is instructive to consider the case in which the interaction 

potential is indentically zero. (Just as in the quanta! description, 

the interaction potential goes to zero for large values of R. Thus 

one is looking at the classical analogue to the asymptotic states.) 
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If one defines the initial relative translational velocity v1 and 

the impact parameter b by: 

and 

v = (2(E-€(n, j,))/~) 112 
1 

(2. 54a) 

(2.54b) 

then the trajectory functions are given by the following equations, 

assuming one chooses t = 0 to correspond to the distance of closest 

approach. (Doll and Miller). 

n(t) = n1 

j (t) = j . 
1 

R.(t) = R. 
1 

R(t) = (b2 + v
1

2t2)1/2 

PR(t) = - ~v (l-b2/R(t)2)1/2 
1 

q (t) + 
(k (rtl ,j 1) 

• t = qn n 1 an1 

qj (t) + 
d€ (~1 ,j 1) 

• t q. 
dj1 J1 

qt(t) = qt + arctan (v1t/b) 
1 

(2.55a) 

(2.55b) 

(2.55d) 

(2.55e) 

(2.55f) 

(2. 55 g) 

(2.55h) 
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Inspection of Eqs. (2.55) will reveal two points. First, in order 

to describe an asymptotic state classically, one must specify the 

values of 

The variable J does not appear in Eqs. (2.55), but its value is required 

in the computation of y, and thus if the interaction potential is non-

zero, J must be specified. Second, in the asymptotic region, the values 

of n,j and i are constant, as expected, since their conjugate coordinates 

are cyclic (i.e., do not appear ) in the asymptotic Hamiltonian. The 

effect of the interaction potential is to introduce the angle variables 

into the Hamiltonian, thus destroying the time invariance of the action 

variables. Further, one should recall that the interaction potential 

is explicitly a function of R,r, andy; however, the last two 

variables depend in turn on all the action-angle variables. Thus, 

the presence of the interaction potential couples all the modes. 
av

1 For example, the term() , which appears in Hamilton's equation for 
qn 

n, is a function of R,n,j,i, qi and qi. The presence of this term, 

then, couples the vibrational motion to rotation and translation. 

This, of course, is completely analogous to the situation in the 

coupled channel problem, where the coupling was also seen to arise 

from the effect of the interaction potential. (See Eqs. (2.28) and 

(2.29).) 

At this point, one is finally able to state the so-called classical 

S-matrix formula. First one recognizes that the classical analogue 

of a quantum scattering event going from channel (n1 ,j 1 ,i1) to 
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channel (n2 ,j 2 ,~2 ) at fixed J and E is a trajectory starting in the 

asymptotic region at time t
1 

and ending again the asymptotic region 

at time t 2, such that: 

' n(t
1

) = nl (2.56a) 

j (tl) = jl (2.56b) 

~(tl) ~1 (2.56c) 

and 

(2. 56d) 

(2 .56e) 

(2.56f) 

Equations (2.56) are examples of the so-called double-ended 

boundary conditions, in which the boundary values are specified 

partially at the beginning of the trajectqry and partially at the end. 

In practice, to evaluate a trajectory numerically, one must specify 

initial conditions for all the variables. This situation leads to the 

root search problem. One must find values of qn , q, , and q~ such 
1 ]1 1 

that, together with the initial conditions in Eqs. (2.56a, b, c), they 

define a trajectory satisfying Eqs. (2.56d, e, f). If the action variables 

are initially fixed to the values defined by Eqs. (2.56a, b, c), one 

can consider their final values to be functions of the initial values 

of the angle variables: 
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n2 = n2(q~ ,qj ,qt ) 
1 1 1 

(2.57a) 

j2 = j2(qn ,qj ,qR. ) 
1 1 1 

(2.57b) 

t2 = 1 2 (qn ,qj ,qt ) 
1 1 1 

(2.57c) 

The desired angle1variables are the roots (i.e. solution) of the 

equations resulting from equating the expressions in Eqs. (2.57a, b, c) 

to the desired final boundary values defined by Eqs. (2.56d. e, f). 

(One should note that q , for example, is not the value of q at time n1 n 

t
1

• Rather, since the system is in the asymptotic region, qn(t
1

) is 

calculated 

~ rather 
1 

from~ by 
1 

than qn(t1 ) 

use of Eq. (2.55f). The reason one chooses 

in Eq. (2.57a) is that q is time independent, 
nl 

where as ~(t1) does have an admittedly simple dependence on t
1

. 

Similar remarks apply to qj and q1 . Thus as long as t
1 

and t 2 are 

chosen so the system is in the asymptotic region at both these points 

in time (so that Eqs. (2.55) and (2.56) hold), the root search problem 

defined by Eqs. (2.57), and its solution, do not depend on the values 

of t
1 

or t 2 • These remarks have been included to clarify a possible 

source of confusion in the notation, since for the action variables 

the subscript 1 can be taken to denote their values at time t
1

, and 

the subscript 2 to denote their value at time t 2). 

Once one finds the desired trajectory one can compute the S-matrix 

element by the formula: 
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S (J,E) 
n2 J 5I, 

2 2 

= _e ________________________________________ ___ 

(2.58) 

Of course, Eqs. (2.57) may have multiple solutions, i.e., there may be 

more than one trajectory satisfying the double-ended boundary conditions 

imposed by Eqs. (2.56). In this case, the S-matrix element is the sum 

over all such trajectories of expression (2.58). This of course gives 

rise to interference effects; (just as in the semiclassical theory of 

elastic scattering, if b(6), i.e., the inverse of the deflection 

function, is multivalued.) It is also possible that Eqs. (2.57) have 

no real solutions. Then it is necessary to look at complex solutions 

(Miller and George, 1972). If the integral in Eq. · (2.58) is real, 

as it will be if the trajectory function are real, then the exponential 

has a purely imaginary argument and thus acts as a phase factor. If 

on the other hand, the integral is complex, then its imaginary part 

becomes the real part of the exponential's argument, leading to 

exponential damping. Thus one would expect the contribution to 

an S-matrix element arising from complex solutions to Eq. (2.57) to be 

much smaller than any corresponding contribution from real solutions. 

This means that complex trajectories are important only in so-called 

'classically forbidden" problems, i.e., those for which Eqs. (2. 57) 

have no real solutions. (The easiest example to point out is the 

case of barrier penetration or tunnelling. In the present case, the 
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"forbiddenness" can be viewed as follows. For a transition to be 

classically allowed, it must be allowed by energy conservation, and 

there must be trajectories which explore regions where the translation-

vibration coupling, let's say, is sufficiently strong to allow the 

transition to take place. It is possible that these regions of strong 

coupling are energetically inaccessible in the energy range chosen. 

Thus in order for the transition to take place, the system must tunnel 

into a classically forbidden region of strong coupling, where the 

transition is dynamically allowed.) Of course, there may be multiple 

complex solutions. By the same token, one need only consider the 

solution which leads to the smallest imaginary part for the integral 

in Eq. (2.58). All other solutions will be more strongly damped and 

hence make negligible contributions by comparison. 

In order to compute the cross section, one merely substitutes 

Eq. (2.58) into Eqs. (2.49) and (2.5 of the previous section. The 

final expression can be written: (for an inelastic transition) 

I (2J+l) I I 
J \ Q_2 

where the sum over r indicates a sum over all solutions of the root 

search problem defined by Eqs. (2.57), and ¢and D are defined for the 

th r trajectory by: 

. . . 
(R•P + q •n + q.•j + qn Q_), 

R n J JV 
(2. 59b) 
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D = (2.59c) 

If one considers calculating all possible cross sections from n
1 

= 1, 

jl = 0 thru 6 to n2 = 0, j 2 = 0 thru 8 for, say H2 + He, where one can 

expect all partial waves out to J = 60 to contribute, it is easy to 

show that the calculation would require about 24,000 root searches if 

Eq. (2.59a) were used as is. It is with the hope of reducing this 

prohibitively laborious chore that one introduces the idea of partial 

averaging. (Miller and Raczkowski, 1973) 

· The problem with Eq. (2.59a) is that it faithfully keeps track 

of interference effects in individual S-matrix elements and then sums 

the result over a large number of terms to compute the cross section. 

(The number of terms varies with the transition; in the example of 

H2 + He quoted above, there are 60 terms in crOO+-lO and 1200 terms 

It has been pointed out (Miller, 1971) that if 

a sum contains more than ten or twenty terms, one may be quite 

certain that interference effects in the summand will be quenched. 

Secondly, because of the large number of terms in the sums, it would 

be in keeping with the semiclassical spirit to replace the sums by 

integrals. 

Perhaps the conceptually simplest way of arriving at the partially 

averaged formula for the cross sections is to consider a cross section 

of the form cr • • This merely introduces a sum over j
2 

into 
n2+n1J1 

Eq. (2.59a). If one now neglects interference and replaces the sums 

over j 
2

, R-
2

, R-1 , and J by integrals, the expression becomes: 
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7f 

-2 

f
oo hIm(¢.) 

di2 o dj2 e 3 
(27Th) D 

(2.60) 

where¢ and Dare defined by Eqs. 2.59b, c). One then changes variables 

of integration from j 2 and i 2 to q. and qi . The Jacobian of the 
Jl 1 

transformation partially cancels D (see Eq. 2.S9c), and one obtains 

finally: 

e 

(2.61) 

In order to apply this formula, one evaluates the integrals by 

Monte Carlo: for each integration variable one randomly chooses a 

value from its range of integration, one then evaluates the integrand 

at this "point" (i.e., for those values of the integration variables), 

one repeats this process N times. The value of the integral is then 

taken to be the arithmetic average of the integrand evaluated at the N 

points. It should be noted that evaluation of the integrand in Eq. 



0 0 > 
< 0 (i 3 0 ~-.If .ti ~ 5 0 ' 

-37-

(2.61) still involves satisfying a double-ended boundary conditions. 

With n
1

, jl and the total energy specified, the Monte Carlo procedure 

supplies initial conditions for all but one variable. The prescription 

for finding q is that its value must lead to the vibrational action 
- nl 

variable having the desired final value n2 . If one is computing 

cr~1 . , say, this condition can be written: 
,J 1 

n
2

(q ) = 0. 
nl 

Thus the partial averaging formula does indeed simplify the 

(2. 62) 

calculational task in two ways. First it reduces the dimensionality 

of root search problem. (The importance of this will emerge from the 

discussion in the chapter on calculations.) Second, it reduces the 

number of root searches which must be performed. The evaluation of 

the integral in Eq. (2. 61) by Monte Carlo basically consists of _finding 

N trajectories which start in state (n
1

, j 1) and end in some state 

(n2 , j 2); one places no restriction on j 2 . Associated with each 

trajectory is some transition probability, found by evaluating the 

integrand in Eq. (2.61). In order to find the total cross section 

to n2 , one sums this probability over all N trajectories.· But since 

one knows all the trajectory functions for each trajectory, one could 

approximate the cross section to (n
2

, j 2) for each j 2 by just summing over 

those trajectories which have final j values between (j 2-l/2) and (j 2+1/2). 

(In the original formulation of the problem as expressed by Eq. 2.59a), 

j
2 

and i 2 were guaranteed to be integers by the boundary conditions in 

Eqs. (2.56e, f). Use of the partial averaging formula only guarantees 
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that the boundary condition on n
2 

is satisfied; j 2 and ~ 2 can have 

any non-negative real value.) Similarly, the differential cross 

section can be approximated by dividing the interval (0, TI) into 

increments of ~e. and computing the differential cross section in each 

increment by summing over only those trajectories which have scattering 

angles in the desired range. 

This of course means that N, the number of Monte Carlo points used, 

will depend on how detailed is the information being sought. In the 

case of H2 + Li+, where differential cross sections were obtained, 

1000 points were used. In the H2 + He study, where only the integral 

cross sections were of interest, and these were required at several 

energies, one hundred points were used for each initial state and energy. 

Thus, the calculation which would require 24,000 three-dimensional 

root searches if Eq. (2.59a) were used was reduced to one requiring 

only 400 one-dimensional root searches by use of the partial averaging 

formula. This amounts to a saving of effort of several orders of 

magnitude, where one considers the relative facility of 1-D over 3-D 

searches. 
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C. Rate Constants and Relaxation Times 

This section gives a discussion of how one would use the cross 

section data, derived in the previous two sections, to calculate the 

rate constants for the specific quantum state transitions, and eventually 

utilize this information to characterize the relaxation, i.e., approach 

to equilibrium, of a perturbed system. The topics of this section are 

straightforward and well-documented in the literature. Thus again, 

the discussion will be brief, all proofs will be omitted, and the. 

reader interested in further details will be referred to the literature. 

If one considers a bimolecular process of the form 

(2.62) 

(The meaning of Eq. (2.62) is that H2 in the internal state (n1 ,j 1) 

collides with He approaching asymptotically with relative velocity v1 , 

energy transfer takes place, and H2 emerges in state (n2 ,j 2), and He 

recedes with relative velocity v2.), one can write the rate constant for 

the process as (Weston and Schwarz, 1972): 

k2 +- 1 = v 1 · 0 2 +- 1 (2. 63a) 

where the subscripts 1 and 2 are now used as generic labels for the 

initial and final states, respectively, and cr is the relevant cross 

section, i.e., 

(2.63b) 
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in the notation of the previous two sections, where the.total energy 

E is given by: 

E (2. 63c) 

thus, a 2 +l can be considered a function of the initial relative velocity 

or translational energy. 

Of course, if the system is characterized by a distribution of 

relative velocities, p(v), then the rate constant is the average of 

Eq. (2.63a) over the distribution: 

(2.64) 

The most common case is where p(v) is the Maxwell-Boltzmann velocity 

distribution characteristic of some translational temperature T. The 

function pT(v) is then given by: 

PT (v) = 4n ~BJJ) 3/2v2 e-
27T 

2 
BJJV 

2 (2.65) 

In order to avoid confusion between the rate constant and Boltzmann's 

constant, both of which are traditionally designated by k, it is 

convenient to define the quantity by: 

(2.66) 

where kB is Boltzmann's constant. It is trivial to show that if one 

performs the change of variable: 

s = B • E tr 

2 
= BJJV 

2 
(2. 6 7) 
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Eq, (2.64) with p{v
1

) defined by Eq. (2.65) becomes: 

where 

and 

k (T) = 
2+1 

8 1/2 
<V> T = (rrB •lJ) · 

· (2.68a) 

(2.68b) 

(2.68c) 

The function cr2 +
1

(£) is defined in analogy with Eqs. (2.63b, c) by: 

a (£) 
2 +1 (2.68d) 

Having defined the rate constant, one can show that the rate of 

transition from state one to state two is given by: 

(2.69) 

where [He], for example, stands for the concentration of He. One wishes 

at this point to discard the generic notation for initial and final 

states and to consider some specific ordering of the internal states 

of H2, now labelled one through N. (the exact ordering is immaterial,) 

so that the subscript ! refers to some definite state. One can then 

+ .th define a population vector n(t), whose 1 component, n.(t), is the 
1 

i 1 · f h .th . 1 . f H . nstantaneous popu at1on o t e. 1 1nterna state o 2 at t1me t. 

It is convenient to impose the normalization condition: 
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In. = L 
. 1 

1 

(2. 70) 

The variable n.(t) is then the population fraction in state i at time 
1 

t. Of course, the system tends toward equilibrium and in the limit of 

infinite time, the population fractions tend to their equilibrium values. 

These can be denoted as pi, for later reference, and they are given by 

the usual relation: 

lim 
t -++ 00 

-Be:. 
J 

(2. 71) 

h d th d d f h . th . 1 w ere gi an e:i are e egeneracy an energy o t e 1 1nterna state. 

The purpose, however, is to describe the time evolution of a 

perturbed system for all times t, not merely in the infinite limit. 

Thus n(t) must be considered an arbitrary vector with non-negative 

components, satisfying Eq. (2.70). At any point in time, the populations 

must satify the relation: for all i, 

n1• = I R
1
• +- J. - I 

j:#i j * i 
R. •. 
J+-1 

(2. 72) 

Equation (2.72) is merely the consequence of Eq. (2.70), which in turn 

follows from the conservation of matter. Equation (2.70) requires 

that no particles be gained or lost by the system as a whole. Thus 

the gains in the population of level i are caused only by transitions 

from other states, and losses only by transition to other states. 

Eq. (2.72) expresses the net change in level i as gains minus losses. 
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(Oppenheim, Shuler, and Weis, 1967). Using Eq. (2.69) for the rate 

and letting p = [He], one can rewrite Eq. (2.72) in the more convenient 

matrix notation as the so-called Master Equation: 

-* • . + -
n (t) = p·K·n(t), (2.73) 

where the matrix K is defined by: 

k 
i+j 

K.. (2.74) 
l.J 

- I k i= j 
R-*i t+i 

the differential Eq. (2.73) has the formal solution: 

-* n (t) 
!_pt -* 

= e . n {0). (2.75a) 

It is customary to incorporate the scalar factor p into t and write 

-* n(t) 
K t 

= e 
-+ 

· n (O). (2.75b) 

One now seeks to diagonalize !_, since this will lead to a more 

readily interpretable expression for the time behavior. The diagonaliza-

tion is usually carried through in two steps (Rabitz and Zarur, 1975). 

One first symmetrizes the matrix K. Since at equilibrium Ri + j 

equals Rj + i' it follows inunediately by use of Eqs. (2.69) and (2. 74) 

that 

• K ..• (2.76) 
Jl. 
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This is the so-called detailed balance relationship. Defining the 

matrix r 1 by: 

1/2 
= o .. P

1
• 

l.J 

one can show that the transformation: 

yields a transformed matrix !l which is symmetric. The symmetric 

matrix K1 can now be diagonalized by the transformation T 2 , i.e.: 

where 

1 = T -l K T 
~ -2 . -1· -2 

(:\)i. = o.. · :\. 
- J 1J 1 

Th i bl 1 d h .th . 1 f h . e var a e A. enotes t e 1 e1genva ue o t e rate matr1x. 
1 

It 

(2. 77) 

(2.79a) 

(2.79b) 

follows from Eqs. (2.70) and (2.76) that the eigenvalues are all real 

and can be ordered as follows (see Oppenheim,~ al., 1967): 

(2.80) 

Finally, defining the matrix M by: 

(2.81) 

one can write 

(2. 82) 
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and Eq. (2.79b) can be rewritten as: 

or equivalently, 

for all i, 

At + - -1 + 
n(t) = M e M ·n(O) 

w. (t) = e 
l. 

!..t 
l. 

+ 
where the transformed population vector w is given by: 

+ . n 

(2. 83a) 

(2.83b) 

(2.83c) 

Equation (2.83b) is obtained from its predecessor by left-multiplying 

-1 both sides by M ; this mathematically simple operation, however, 

corresponds to a conceptually profound shift in perspective. Whereas 

Eq. (2.83a) retains the same basis set as its ultimate antecedent, 

Eq. (2.75b), Eq. (2.83b) in essence describes the results of a change 

of basis. This change of basis corresponds to a very marked change in 

how the system is being described. In order to amplify these remarks, 

one must look closely at the fundamental underpinnings of Eqs. (2.75) 

and (2.83). 

+ 
In order to define the vector n , one takes the elements of the 

standard basis set {£.} to correspond in turn to the presence of one 
,l. 

particle in the ith level. (The ith standard basis vector is just the 

t i h 1 . h .th 1 d 1 h f 1 vee or w t 1n t e 1 p ace an zeroes e sew ere, or examp e, 
A A A 

{i, j, k} is the standard basis set for Euclidean three-space.) One 

+ 
then defines the components of n by 
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n. e:., 
l. l. 

(2.84) 

Thus n defines the system in terms of the populations of individual 

levels, and the rate matrix K describes the relaxation of the system in 

terms of transitions between individual levels. This, of course, is 

the most intuitive formulation. 

To obtain Eq. (2.83b), on the other hand, one uses the transformed 

-+ 
basis set {u.}, whose elements are given by: 

l. 

M· 
-+ 
£. 

l. 

where M is defined by Eq.(2.81). The system is described by the 

population vector 
-+ 
w, whose components obey: 

~ = l: 
i 

w. 
l. 

(2.85) 

(2.86) 

-+ 
and they are related to the components of n by Eq. (2.83c). Of course, 

since M diagonalizes K, the u. 's are just the eigenvectors of K. One 
l. 

ca~ show easily that ul is just the equilibrium population distribution. 

Since the corresponding eigenvalue Al is zero, Eq. (2.83b) shows that 

w
1 

is time independent. The other eigenvectors correspond to deviations 

from equilibrium which die away with characteristic rates A .• One is 
l. 

now describing the relaxation of the system in terms of concerted 

processes (i.e., linear combinations of individual transition,) which 

lead to uncoupled equations for the time dependence. Perhaps the 

most useful analogy is the case of the internal motions of polyatomic 

molecules, where one transforms from the usual cartesian coordinates of 

each atom to the normal coordinates of the molecule as a whole (i.e. 

-· 
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concerted motions of the atoms.) In the process, one greatly simplifies 

the equations of DlOtion by transforming away the lowest-order coupling 

terms. In the present case as well, one goes from a myopic description 

in terms of transitions between individual levels to an overall view 

of the relaxation of the system at large. 

Equation (2.83b) leads naturally to the idea of relaxation modes 

and times. th If one defines the relaxation time of the i mode (i.e., 

-+ 
the one corresponding to the population imbalance described by ui) as: 

-1 
Ti = -A. i 

its component clearly goes to zero as: 

-t/T 
w.(t) = e i · w.(O). 

1 1 

(2. 87) 

If the population imbalance at time zero is described by only one 

mode, the approach to equilibrium will be a simple exponential function 

of time. This is called "pure mode relaxation." However, if several 

modes are initially present, the time dependence will be a sum of 

exponentials. Of course, if the eigenvalues of the rate matrix are well 

separated, one would expect that for long enough times, only the 

contribution from the mode with the longest relaxation time (i.e., 

slowest rate) would be significant. Because of the ordering in Eq. 

(2.80), the longest relaxation time is T2. This quantity should then 

be observable, even if it is impossible to prepare the system initially 

-+ 
in the pure mode u2 •. 
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III. CALCULATIONS AND RESULTS 

This chapter concerns itself with the actual application of the 

theory discussed previously to two real systems, H
2

-He and H
2
-Li+. 

The material will be presented in chronological order, after a few 

preliminary remarks to set the stage. The calculations to be described 

include use of the classical-limit method on both systems, and a 

coupled-channel calculation on H2-He. The H
2

-He studies are technically 

less interesting, since the coupled-channel calculation was routine, 

employing well-known procedures, and the classical-limit calculation 

merely involved applicati.on of the methods developed during the H
2
-Li+ 

study. The H
2
-Li+ work, then, is more interesting from the technical 

point of view, since it entailed the development of the current 

methods of applying classical-limit theory to non-reactive, three-

dimensional systems. Consequently its description occupies a 

prominent place in this chapter. On the other hand, the parallel 

calculations of Rabitz and Zarur (1975), McGuire and Toennies (1975), 

and Alexander (1975), as well·as the experimental work of Audibert, 

Joffrin and Ducuing, lend special pertinence to the results of H2-He 

relaxation study. 

Before proceeding to a discussion of techniques used to circumvent 

difficulties in applying the classical-limit method, it seems 

worthwhile to restate the nature of the method and give a more 

detailed account of the difficulties. As will be recalled from 

Section II.B, the partially-averaged classical limit method calls for 

finding N trajectories whose initial conditions are given as follows: 
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E, n
1 

and jl are specified in the cross-section to be calculated, 

J, R,l, q. 
Jl 

and ~ is 
1 

and q.t are initialized by the Monte Carlo procedure, 
1 

chosen to satisfy the requirement: 

Associated with each trajectory is a probability (or weighting) 

factor, given by the formula of Eq. (2.61). In order to compute 

(3.1) 

the cross-section, one averages this probability over all N trajectories. 

Now, to consider explicitly the case of complex trajectories, one 

must begin with Eq. (2.59a), with the explicit summing of the S-matrix 

elements. The corresponding complex boundary conditions for the 

trajectories leading to S-matrix elements are the following: the 

real parts are fixed as before (see Eqs. (2.56) and (2.56)), except 

that the arguments are now complex, and imaginary parts are set 

equal to zero. The partial-averaging method again allows one to 

remove the restrictions on the real parts of j 2 and .t2 by averaging 

over q. and q.t , and the boundary conditions for the Monte Carlo 
Jl 1 

trajectories become 

Re n2 (Re q , Im qn , Im q. , Im q.t ) = n2 nl 1 Jl 1 
(3.2a) 

Im n
2

(Re qn , Im qn , Im q. , Im q.t ) 0 
1 1 Jl 1 

(3.2b) 

Im J2 (Re q , Im qn , Im q. , Im q.t ) = 0 
nl 1 Jl 1 

(3. 2c) 

Im .t
2

(Re q , Im qn , Im q. , Im q.t ) = 0 
nl 1 Jl 1 

(3.2d) 
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(It will be recalled that Re qj and Re qi are specified for each 
1 1 

trajectory by the Monte Carlo procedure.) Thus, while for real 

trajectories the partial-averaging method reduces the dimensionality 

of the root search from 3-D to 1-D, for complex trajectories the 

reduction is less profound, from 6-D to 4-D. Thus the first difficulty 

is that one must still perform a multi-dimensional root search at 

each Monte Carlo point. 

The second complication is the running of the complex trajectories, 

i.e., the numerical integration of the equations of motion along a 

complex time path, beginning with complex initial conditions. This 

procedure presents a two-fold difficulty. First, because of the 

trajectories' ability to tunnel, they ~re sensitive to the global 

features of the potential. The potential for real systems is usually 

known in terms of ab initio values at a given·set of points. One 

then performs an analytic (in the complex analysis sense) fit to 

the points to define the potential on the positive real axis and 

then continues this fit to define the potential in the complex 

plane. Thus, different fits to the same set of ab initio values 

will have different continuations in the complex plane. (Of course, 

if the potential were analytically known for real values of its 

arguments, the continuation into the complex plane would be unique.) 

The consequence is that for real trajectories, if one can show 

that the,system is confined classically to some region of space, 

one need only concern oneself with fitting the potential locally. 

The behavior of the fitting function in the classically inaccessible 
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region is immaterial. (Fits are usually constructed to extrapolate 

properly in the translational coordinates; however, in describing 

the vibrational dependence the fit is often only good within a 

bohr radius or so from the equilibrium position, and the extra-

polation properties in the vibrational coordinate are seldom considered.) 

For complex trajectories, this is no longer true. The trajectories 

can_tunnel into all regions of space. Thus the fitting function 

must have the correct global character as well as representing the 

potential correctly in the region of the ab initio points. Unfor-

tunately, while the occurrence of unreasonable values for regions 

of the real axis can be used to screen out unacceptable fitting 

functions, the converse is not·' necesserily true. Correct behaviour 

on the real axis does not necessarily lead to desirable character-

istics in the analytic continuation. The question of ~ priori 

determining the suitability of some fitting form is at present an 

open one. The suitability can only be. determined a posteriori by 

looking at the results of trajectories run on that potential surface. 

The second difficulty has to dQ with the vibrational motion. 

For real trajectories, the motion is oscillatory, i.e. moving back 

and forth along the real axis between the turning points. For 

present purposes, the case of oscillations sinusoidal in time 

can be considered. For complex trajectories, the motion will now 

trace an ellipse in the complex plane with the turning points 

(now complex) as its foci. The motion is still sinusoidal, but 

the argument of the sine, i.e., the time, is now complex. The 

imaginary part of the time imparts exponential growth to the oscillation. 



-52-

Thus, even with an entirely reasonable interaction potential, 

trajectories may not complete satisfactorily, because of unbounded 

vibrational motion in the oscillator. Restricting the time to real 

values is not possible, since that would be equivalent to allowing 

only real trajectories, thus vitiating the classical-limit method's 

ability to deal with classical forbidden processes. One is in the 

paradoxical situation where the feature allowing the method to 

broaden its scope to classical forbidden cases is also the ultimate 

source of difficulties in the application of the method. 

Fortunately, the problem of the vibrational motion is amenable 

to solution. Classical S-matrix theory requires only that the real 

part of the difference between a trajectory's starting time and end 

time tend to infinity. There is no restriction on the actual time 

path followed. In principle, given the trajectory's initial 

conditions, ,all time paths with the same end points must lead to the 

same final values for the trajectory functions. Iri practice, some 

paths will lead to numerically more stable trajectories than others. 

Thus one must choose a path through the complex time plane such 

that the vibrational motion builds up enough complex character to 

overcome the "forbiddenness" of the desired transition, but not 

sufficient to cause unbounded motion. Clearly, the choice of such 

a path may require some finesse. 

In summary then, the success of the classical-limit method is 

contingent upon two interrelated criteria: (1) being able to run 

trajectories (that is, given the initial values for all variables, 
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being able to perform a stable, convergent numerical integration 

of the equations of motion), and (2) being able to find roots (that 

is, given a set double-ended boundary conditions, being able to find 

values for the initially unspecified variables such that the final 

conditions of the problem are satisfied). The two requirements are 

interrelated because the typical root-search algorithm uses the 

results of its previous four or so guesses to give a new, and it is 

hoped, more accurate guess for the root. To tell how well the root 

searcher is doing one must run the trajectory with the current guess 

as the initial condition. The error (i.e., the computed final values 

minus the desired final values,) is used in determining the next guess. 

If at some point the root searcher predicts initial conditions which 

lead to an uncompleted trajectory, the entire approach bogs down, 

since the error can no longer be evaluated and the next guess cannot 

be predicted. Thus, the integrator is required to complete trajectories 

even for somewhat unreasonable choices of the initial conditions, 

since the root searcher will usually make a few guesses afield before 

beginning to converge to the root. On the other hand, the root 

searcher .cannot go too far afield and still maintain good prospects 

for converging, because trajectories with sufficiently pathological 

initial conditions will indeed not complete. 

There is one other requirement for the root searcher. Since the 

method must be applied in the real world where computing budgets 

are finite, the root searcher must be efficient, requiring relatively 

few trajectories to find the root. For example, if a root searcher 

converges on the fifth trajecotry, doing an average over N Monte. 
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Carlo points entails running SN trajectories, 80% of which will be 

discarded, that is, their results will not be included in the averaging 

process. Since running trajectories is by far the most time-consuming 

task in the computation, this amounts to a waste of 80% of the 

computing time. Similarly, if the root searcher is successful on 

the tenth guess, only ten percent of the computed trajectories 

are retained, i.e., used to calculate the desired cross-section. 

For this reason, the standard multidimensional minimization routines, 

which typically require fifty or so evaluations of the function to 

converge to the root, cannot be used in the partially-averaged 

classical-limit method. The root searches tested were required to 

converge to the root within ten or at most fifteen trajectories, 

thus giving retention ratios of seven to ten percent. It was 

deemed that schemes retaining less than five percent of the computed 

trajectories were too inefficient to be considered viable production 

methods. 

A. 

Chronologically, the first attempt to apply the partially-

averaged classical-limit method was made on the H2-He system. 

(Miller and Raczkowski, 1972). This preliminary calculation yielded 

somewhat unpromising results, for reasons ultimately tracable to 

the potential surface, and computation on H2-He was suspended in 

favor of H
2
-Li+. (A fuller account of this early work will be 

presented in the section on H2-He.) In the context of the 

introduction to this chapter, to describe the calculations on H2-Li+ 
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one must define the potential surface, the complex time path chosen 

in running the trajectories, and the root search used to satisfy 

the double-ended boundary conditions. 

The total potential for the problem can be viewed as consisting 

of an internal potential for H2 and an interaction potential for the 

system at large. The internal potential was taken to be a Morse 

function, 

-a.(r-r0) 
v(r) = D(e-2cx(r-r0)-2e ), (3.3a) 

with the parameter values 

D = 0.17443263 hartree (3.3b) 

ex = 1.04435 (3.3c) 

ro = 1.40083 (3.3d) 

Test calculations were also done with a polynomial fit to the Kolos-

Wolniewicz potential (Waech and Bernstein, 1967). The difference 

in results between the two potentials were negligible. The interaction 

potential was chosen to be the analytic fit given by Lester (1971) to 

his ab inito calculated values. This is the same interaction 

potential used in the coupled-channel calculation on H2-Li+ (Schaefer and 

Lester, 1973). In essence the fit consists of three Legendre 

terms (corresponding to P
0

, P2 and P
4

, since the diatomic is 

homonuclear); in eAch term the dependence on the translational 

coordinate is exponential repulsion with R-3 and R-4 attraction 

(leading to an angle-dependent well-depth of a few tenths of an eV), 
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and the dependence on oscillator separation is linear plus quad­

ratic for the (translational) attraction terms and linear times 

exponential for the repulsion terms. 

Having chosen the potential surface, one then encountered the 

two-fold problem of running trajectories and performing root 

searches. The question of choosing the complex time path will be 

treated first. As was pointed out in the introduction, the only 

requirement is that the real part of the time difference between 

the start and end of the trajectory tend to infinity. It is 

reasonable then, to require that at each step the real part of the 

time increment be non-negative. There is no restriction, however, 

on the imaginary part~ The integration of the trajectory is carried 

out in cartesian coordinates using a fifth-order variable-step 

Adams predictor and Moulton corrector (Miller and George, 1972). 

At each step the routine evaluates the error (i.e., the difference 

between' the predicted and corrected values) and compares it to some 

specified tolerance value. If the error is too large the step is 

repeated with a smaller time increment; if the error is within the 

tolerance value, the step is accepted and the error is used to 

determine the magnitude of the next time increment. Thus, one need 

only specify the phase of each time step to fully determine the time 

path. 

The phase of the time step then, can be varied to assure that 

the oscillatory motion does not become unbounded. The first attempt 

to carry this through was based on the premise that, since the 
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vibrational motion traces an ellipse in the complex plane (with the 

turning points as foci), the oscillator should be made to pass 

through, or at least very close to, the turning points on each 

"oscillation" (Doll and Miller, ~972). The major axis of the ellipse 

is then only slightly larger than the distance between turning 

points, and the resulting motion is bounded. The scheme was 

implemented numerically in the following way. Since the trajectory 

is being run in Cartesian coordinates, one has at each step the 

+ + -+ -+ 
vectors R, r, P, p (all with complex components) and their derivates: 

4- -+ .... ..;. 
R, r, P, p. One can then compute p , the oscillator's radial 

r 

momentum at each step by the relation 

-+ -+(-+ -+)-1/2 = p·r r·r 

The time steps are taken to be real with the magnitude determined 

by the integrator until the oscillator is near a turning point, 

(3.4) 

defined as a value of r for which the radial momentum is zero. The 

oscillator is considered to be in the vicinity of a turning point 

when the real part of the radial momentum goes through a sign change. 

One now wishes to choose the phase of the time increment to bring 

the oscillator to, or near, the turning point. To do this, one 

computes the derivative of the radial momentum, given by 

+ -+ -+ + -+ + -1/2 -+ + -+ + -1 = (p.r + p•r)(r•r) - p r.r(r·r) • 
. r 

One then makes the usual linear approximation for the time step: 

l\p = p .l\t 
r r 

(3.5) 

(3.6) 
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If the radial momentum is to be set to zero, then ~p must be 
r 

proportional to minus pr; the time step can then be set by 

l~tl = min (h , I p I P I ) r r 
(3.7a) 

arg(At) = arg(-p /~ ) (3.7b) 
r r 

where h is the magnitude chosen by the integrating routine. One 

continues to choose the time step according to algorithm (3.7) until 

the oscillator is within some specified small distance of the turning 

point. .Then one reverts to real time steps fixed by the integrator 

until the real part of the momentum again changes sign. 

This scheme was quite successful in stabilizing complex 

trajectories, allowing successful completion of 90% of the trajectories 

attempted. However, because a root searcher will predict perhaps 

ten or so sets of initial conditions before converging to the root 

and it will require a successful trajectory for each set of initial 

conditions, a ten percent rate of failure among trajectories can 

cause failure of the root search in over half of the Monte Carlo 

points, caused only by uncompleted trajectories. 

Such a difficulty can be overcome in one of two ways. Either the 

root searcher's predicting algorithm can be modified so that, if its 

current guess results in an uncompleted trajectory, it chooses 

initial conditions at random until it completes a trajectory and then 

uses the results along with those of its previous, say, four guesses 

to continue the search, or one must improve the method of choosing 

the complex time path for the trajectories. To anticipate later 

discussion, the first method proved totally unworkable. The random 
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guess was usually far from the root; its inclusion in the input to 

the predicting algorithm further eroded the routine's predictive 

power, resulting in another pathological guess of initial conditions, 

which must again be supplanted by random ones, and so on. The effect 

on convergence to the root was disasterous: the method degenerated 

into a four-dimensional random walk, which is known the diverge. 

It became clear that further refinement in the choice of the 

complex time path was necessary. Examination of the failing trajec-

tories revealed that the cause of the majority of the failures was 

a subtle inconsistency in algorithm (3.7). As mentioned earlier, 

one expects the time increment to always have a positive real part, 

corresponding to the system's motion forward in time. Equation 

(3.7b) allows the time increment to have any phase, including those 

leading to negative real parts. In principle, allowing increments 

with negative real parts is equivalent to forcing the system to move 

backwards in time, retracing part of its trajectory in reverse. 

In practice, the problem can lead to the back-and-forth oscillation 

of all the trajectory functions which is usually associated with 

time-reversal, but this only happens if both real and imaginary 

parts are reversed. If only the real part is reversed, the condition 

will typically manifest itself by causing the oscillator to circle 

around a turning point or spiral into it. 

A variety of ad hoc elaborations of the basic algorithm were 

tired to remedy this reversal of the real part of the time. They 

each engendered more difficulties than they alleviated. The problem 

was finally solved by focusing on the oscillator separation rather 
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than the momentum. One can define the oscillator separation r by 

Its derivatives are given by 

-+ 

r = (-+ -+)1/2 r·r 

-+ -+ 
r = (r·r)/r 

-+-+ -+-+ 
r = (r· r + r · r) I r 

. 
2 

(r) /r. 

The acceleration vector r can be found by differentiating the 

defining relation for the momentum: 

. 
-+ -+ 
p = mr 
.. . -+ -+ 
r = p/m 

One then makes a parabolic approximation for the time step: 

One would now like to force the oscillator to move toward r 0 , its 

equilibrium position, i.e., 

This defines the time path by the relations 

lt.tl = h 

2 2 .. 1/2 
-(r) ± ((r) 2r(r-r

0
)) 

Arg (t.t) = Arg (-----------,-.-=- ) 
r 

(3.8a) 

(2.8b) 

(3.8c) 

(3. 9a) 

(3.9b) 

(3.10a) 

(3.10b) 

(3 .lla) 

(3.1lb) 

where the sign before the square root is chosen so that t.t will have 

a positive real part. Algorithm (3.11) is used to choose the phase 

of the time increment at every step of the trajectory, until the 
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asymptotic region is reached. There the oscillator is forced to 

a turning point in order to facilitate the transformation for 

Cartesian to action-angle variables. This scheme has proven highly 

successful in stabilizing the trajectories. The current success 

rate for complex trajectories is 99+%, the.root-search failure rate 

due to uncompleted trajectories is correspondingly low, less than 

five percent. 

The last aspect of the computational details to be discussed 

is the root search. In accord with the remarks made previously the 

root searches considered were required to converge within ten or so 

iterations. This restriction eliminated the usual multidimensional 

approach of minimizing the difference between the desired and 

calculated final conditions by use of a nonlinear least-squares 

minimizing routine. The root searches which were developed and 

tested can all be considered to follow the same procedure. One 

postulates some functional form for the dependence of the final 

action variables on the initial angles. On the basis of previously 

run trajectories one solves for the parameters defining the function. 

One equates the now known function of the initial angles to the desired 

final value of the action variables and solves for the values of the 

angles which satisfy this relation. These values are the new 

predicted root. One then runs a trajectory to test the accuracy of 

the prediction. If the root is found the process stops, if not, 

the results of the current trajectory are used along with several 

previous ones to re-determine the functional parameters. 
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The simplest example, and in some sense the prototype of the 

later root searches, occurs in the case of vibrationally inelastic 

one-dimensional collinear trajectories. The task is to find the 

value of qn such that n 2 is equal to some desired integer, say 
1 

zero, if one is interested in the de-exitation n
1 

= 1 + n
2 

= 0. 

For simplicity the subscript on q will be suppressed. The root 
nl 

search assumes that n
2 

can be expanded as a function of q in a 

Fourier series truncated after the first-order terms: 

n = f(q) = A+ B sin q + C cos q. 
2 

(3.12) 

If one has run three trajectories, say with q = 0, n/3,-TI/3, resp., 

and if fi, si, ci represent respectively n 2 , sin q, cos q for the 

ith trajectory, the parameters A, B, and C of Eq. (3.12) can be 

found by solution of the equation 

1 1 1 

(3.13a) 

The solution is easily obtained by right-multiplying both sides of 

the equation by the inverse of the 3 x 3 matrix. Once the values 

A, B and C are known, one solves the relation 

n 2 = A+B sin q + C cos q 0 (3.13b) 

to predict the value of q which will satisfy the desired final 

boundary condition. The usual trigonometric substitution 
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cos q (3.14) 

yields the following as a prediction for the root: 

(3.15) 

A trajectory is run with this value of q and if the value of n2 is 

less than some specified tolerance parameter, q is considered to be 

the desired root. If t:he value of n
2 

is too large, the root search 

continues by substituting the results of the current trajectory 

and the two previous ones into Eq. (3.12) to redefine the parameters 

A, B and C and then applying Eq. (3.15) to generate the next 

approximation to the root. 

It will be noted that Eq. (3.15) predicts two roots, depending 

on which sign is chosen for the second term of the numerator. This 

is indicative of the general case. Realroots, if they occur, will 

n number 2 , n being some positive integer, and there will always be 

complex roots. These can be grouped into pairs, one member of the 

pair being the complex conjugate of the other. (Miller and George, 

1972). As stated previously, complex roots need be considered only 

if there are no real roots, since the weighting function for 

complex roots is exponentially damped with respect to that of the 

real ones. For the same reason, in the absence of real roots 

only the pair of complex roots with the smallest imaginary parts 

(corresponding to the weakest damping) need be considered. The 

two roots are complex conjugates. The argument of the damping 
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function is the imaginary part of ~. ~ being the integral defined by 

Eq. (2.59b). One can show that ~ is an analytic function of the root; 

thus complex conjugation of the root will complex conjugate ~. that is, 

change the sign of its imaginary past. This means that of the two 

roots being considered, one leads to exponential damping and the other 

to exponential enhancement. Clearly, only the root leading to damping 

has physical significance. However, since the two contributions 

differ only in the sign of the argument of the exponential, only one of 

the roots need be found. One can be sure of computing the contribution 

properly by using minus the absolute value of Im(~) in the argument 

of exponent, as was done in Eq. (2.60). 

In the partially-averaged, three-dimensional case, one sees that 

the root search problem for real trajectories, as defined by Eq. (2.62), 

is the same as for the one-dimensional case discussed above. For 

complex trajectories the situation is more complicated. The root 

search problem is defined by Eqs. (3.2). The expressions are somewhat 

cumbersome, and for the purposes of the present discussion it is convenient 

to write them more compactly. One defines the vector f and q by 
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Re n2 qn 
1 

" 
Im n2 qn 

f = = 1 (3.16a,b) q 
Im j 2 

q, 
Jl' 

Im R, qR, 2 1 

For simplicity, the usual v~ctor notation has been suppressed. 

Equation (3.2) requires that the root qr satisfy 

f = f(q ) = 
r r 

(3.17) 

The simplest root searching scheme for this problem results from 

linearization off about some value q0 , i.e., the approximation 

(3.18) 

Where C is some matrix of constants depending only on the choice of 

q
0

• The scheme can be outlined in the following way. 

Step 0: Initialization. Run five trajectories; let fi and qi repre~ 

sent the values of the vectors f and q for the ith 

trajectory. 

Step 1: Define the function by linearizing about q
5

. Define the 

matrixes ! and Q by 
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(3.19a) 

(3.19b) 

(since f and q .are 4-D colunm vectors, !_ and .Q. ar.e 4 x 4 

matrices.) The coefficient matrix Cis easily shown to be 

(3.20) 

Step 2: Predict root. One wishes to find the value of q such that 
r 

Eq. (3.17) is satisfied. An approximate qr is given by 

One runs the trajectory with the approximate q . If If-f I 
r r 

is sufficiently small the search stops, if not, the results 

of the current trajectory and the four previous ones are 

used as imput to Step 1 to recompute the matrix ~- (Note 

that in each iteration one linearizes about a different point.) 

The root search as outlined was not very successful. The 

linearizing approximation (3.18) is a very poor one globally and can be 

expected to have some validity only in the immediate vicinity of 

q
0

• If the q's used to determine the coefficient matrix are too 

widely separated, the resulting linearization may have no validity. 

(As an example, consider linearizing a parabola. A carefully chosen 

line segment may be a reasonable interpolation over a small region 

and a poor extrapolation outside that region, but a linearization 

using points on opposite branches will be a poor approximation 
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everywhere.) The difficulty can be lessened if one started the 

linear search from a crude approximation to the root, rather then 

from the real axis. This was done by leaving the last two components 

of q as zero and varying the real.and imaginary parts of q to satisfy 
nl 

Re n2 = n 

Im n2 = 0 

Once that value of q was found, the linear search was initiated 
nl 

to find the full root. The search in qn was done using the 1-D 
1 

Fourier search procedure described above. The only modification 

were that f, q, and the expansion coefficients were considered 

iq -iq complex, and the functions e and e replaced sin q and cos q, 

(3.22a) 

(3.22b) 

since the latter pair tended toward linear dependence for sizeable 

imaginary parts of q. 

The combined procedure (i.e., 1-D Fourier followed by 4-D linear,) 

was able to find roots at about half the Monte Carlo points, which, 

it is sad to say, made it the most successful of the root searches 

discussed here. Initialization of the Fourier search required 

three real trajectories (equivalent in computational effort to one 

complex trajectory), covergence to a satisfactory preliminary value 

of q required three or four complex trajectories, then initialization 
nl 

and convergence of the linear search required eight to ten more 

complex trajectories. (The initialization of the linear search 

maximally utilized existing information: by using the last three 

trajectories run by the Fourier search, the process required only 
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two additional trajectories, with non-zero values for Im q. and 
Jl 

q.t resp., to initialize). Thus the root search requi.red twelve to 
1 

fifteen trajectories at each Monte Carlo point. The principal 

cause of failure was the one already discussed. If the predicted 

root lies far from the point about which f is linearized the guess is 

likely to be a poor one, because Eq. (3.18) has little validity 

there. The results of the poor guess are used to recompute f. 

The resulting linearization is likely to be poor everywhere, because -

the input points are widely spaced. The next prediction is likely 

to be even worse than the previous one. With two bad guesses the 

f matrix is further degraded and the method becomes a four-dimensional 

random wa~k. Thus the root search procedure either converged rapidly 

or diverged rapidly: fail~re to converge in ten trajectories was 

a definite indication of serious problems, not merely the result 

of premature termination. Several modifications of the basic 

procedure were attempted in the hope of increasing the chances for 

convergence. The only one which offered any promise was restricting 

the step size. The root predictor (3.21) may be rewritten as 

where ~q is the second term in the R.H.S. of Eq. (3.21). The idea 

is to let the predictor give the direction of ~q, but its magnitude 

is restricted to the region where Eq. (3.18) is valid. Since 

the region of validity is small, the modified process exhibited a 

much slower rate of convergence than its predecessor, requiring over 
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thirty trajectories to converge. Furthermore, it showed only about 

a ten percent improvement in the success rate. Thus, the modification 

was not considered useful. 

It became clear that significant improvement in the root search 

procedure would require a new approach. In view of the success of 

the 1-D Fourier search to locate the approximate root described 

above, it was felt that extension of the idea to four dimensions 

was worth investigating. To carry this through, one first expands 

the variables n, j and R, in a Fourier series in q , q. and q 0 , 
n J ;v 

retaining only the lowest-order terms. (The usualnumerical sub-

scripts have been suppressed in the present discussion. It is clear 

that one means the final action variables and the initial angles.) 

Because the diatomic is homortuclear, qj and qR, have period TI, 

and their lowest order terms in the expansion have argument 2q. 

Thus the expansion for n is 

(3.24) 

Similar expansions hold for j and R.. The coefficients are all real 

because real values of the angles lead to real values for the 

action variables. For complex values of the angles, one applies the 

standard identites 

sin(q) = sin(Req) cosh(Imq) +i cos (Req) sinh(Imq) (3.25a) 
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cos(q) = cos(Req)cosh(Im q) -i sin(Req)sinh(Imq) (3.2Sb) 

to separate real and imaginary parts of the expansions. With the 

definitions 

q = Re ~ 

x = sinh(2Im q.) 
J 

y = sinh(2Im q.R.) 

z = sinh(Im q ) , 
n 

the conditions for the final action variables become 

0 = Im .R. ~ (c
31

sin q + c
32

cos q) z + c
33

x + c
34

y 

n
2 

= Re n ~ (c
12

sin q - c
11 

cos q) ~ + c41 

(3.26a) 

(3.26b) 

(3.26c) 

(3. 26d) 

(3.27a) 

(3. 27b) 

(3. 2 7c) 

(3.27d) 

where the C's are real coefficients related to the a's of. Eq. (3.24) 

and its analogues for j and .R.. The search proceeds in the same way 

as the linear scheme. After running initializing trajectories to 

determine the coefficients .on the first iteration, one substitutes 

the now known coefficients into Eqs. (3.27), solves them to predict 

the root, and runs a trajectory to check for convergence. If the 

root has not yet been found, the new trajectory is used along with 
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several of ·the old ones to recompute the C's and predict a new root, 

and so on. The equations involved in this method are more tedious 

than those required in the linearization scheme. Therefore, the 

present method will be described less explicitly than the previous 

scheme. 

Initialization was accomplished with three real trajectories 

and two complex ones. The usual real trajectories with qn= 0, 

TI/3, -TI/3 were run. With these results as input, Eq. (3.15) was 

used to predict crude values of Re(q ) and Im(q ). At this complex 
n n 

value of ~' two complex trajectories were vun with non-zero values 

of Im(qj) and Im(q!) resp. Solution for the coefficients was 

straightforward and required the results of five trajectories. The 

initializing trajectories were used on the first iteration, and the 

last five trajectories to be run were used on subsequent iterations. 

Since the values of Re(n) were known for all five trajectories, 

evaluation of Eq. (3.27d) for each trajectory gave a system of 

five linear equations for the unknown coefficients ell' el2' e41' 

e42 and e43 • Solution requires inversion of a 5 x 5 matrix. With 

e11 and e12 known, the results of the last two trajectories determine 

e13 and e14 , requiring 2 x 2 matrix inversion. Solution for the 

other coefficients proceeded analogously; making use of the analogues 

of Eq. (3.27d) for Re(j) andRe(!). Solution for the coefficients 

in the j and ! expansions requires inversion of the same two matrixes 

inverted in the n solution. Since inversion of the 2 x 2 matrix is 

trivial, the main effort in solving for the coefficients is spent 
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on a 5 x 5 matrix inversion. 

The next step in the procedure, prediction of the root to give 

the values of the coefficients, requires solution of Eqs. (3.27) 

for q, x, y and z. The solution is straightforward but algebracially 

tedious; thus the process will be described rather than given 

explicitly. One first considers Eqs. (3.27a, b, c) as a set of 

homogeneous linear equations in x, y and z. If the system is to 

have a non-trivial solution, the determinant of the "coefficient" 

matrix must·vanish: 

0 (3. 28) 

~xpansion of the determinant yields a readily found algebraic expression 

for tan q, which is too tedious to be quoted here, With the value 

of q fixed, one can solve for x and y in terms of z. Substitution 

into Eq. (3.27d) yields 

r-2. ~ y-{22 f(z) = a.
0 

+ a.
1 

v'l+z- + a.2 (v'l+A-z~ -1) + a.3 ( +B z -1) (3.29) 

where A, B and the a.'s are algebraic functions of the C's, sin q, 

cos q, and n
2

, the desired final vibrational action. The value 

of q is already known, and x and y are known in terms of z, ·with 

proportionality constants A and B, resp. Thus solution of Eq. 

(3.29) for z will completely determine the predicted root. Solution 

of Eq. (3.29) proceeded in two steps: first a crude guess for the 
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solution was generated, then the value was refined by either a 

quadratic or a Newton-secant method. The crude guess was generated 

by the following procedure. First, all the square roots were 

expanded for small values of z. 2 4 . 
The terms in z and z were retained. 

2 The resulting equation was solved by quadratic formula for z • If 

the solution were non-negative, it was used as the starting point for 

the refining search. If no acceptable solution was found for small 

z, an asymptotic expansion was done for large z. The resulting equations 

contained a constant term and terms in z and z-l Multiplication by z 

gave a quadratic equation whose solution, if it existed, was used as 

the crude guess. If again there was no acceptable solution, the value 

of the function was computed at the origin and at a value zt sufficiently 

large that the asymptotic expansion was valid. If the function exhibited 

a sign change, the refining search started with these two points. 

If there was no sign change, a marching procedure was instituted. The 

interval between zero and zt was divided into twenty sub-intervals and 

function values were checked for a sign change between the end points 

of each sub-interval. If no sign change was found, one assumed 

that Eq. (3.29) had no real solution and the entire root search 

procedure stopped. 

Before being applied to the problem of interest, the procedure 

described above was tested on model problems in which it had to 

find roots of functions defined by Fourier series with higher-order 

terms present. The method failed to converge if the higher-order 

coefficients were more than one-tenth of the lowest order coefficients. 
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Predictably, the method had little success with the problem of 

boundary conditions for complex trajectories. A priori, orie assumed 

that the procedure would work well because the expansion (3.24) 

and its analogues may be valid globally, if the coefficients are 

well-chosen and if indeed the higher-order Fourier terms are small. 

Of course, if the expansions are onlya moderately good approximation 

to the true functional dependence of the action vaiabl~s on the angles, 

part of the difficulty of the root search may lie with the method 

of determining the expansion coefficients, which uses data on the 

real part of the an action variable to compute coefficients in the 

expansion of its imaginary part. If Eq. (3.24) and its analogues·were 

exact, the procedure would be valid; however, if they hold only 

approximately, the optimum coefficient values in the expansions of 

the real and imaginary parts may differ. The first modification 

was to utilize all the information available to compute the co-

efficients. The problem was then overdetermined, and the coefficients 

\Vere found by a least squares procedure. 

The least-squares solution for the coefficients is somewhat tedious. 

As an illustration, the coefficients in the n expansion will be 

found; the solution for the coefficients in the j and ~ expansions 

proceeds analogously. Given the results of several trajectories 

one seeks the coefficients in the expansion equations 

Re n f - I 
i=l 

c. u. 
l. 1 

(3. 30a) 
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which will minimize the fitting error, defined by 

The variables fk, ~, uik' vik represent the values of f, g, ui, 

vi for the kth trajectory under consideration, and wk represents 

a weighting factor, if one wishes to do a weighted least-squares 

solution. The correspondence between Eqs. (3.30) and (3.27a, d), 

which defines the u's and v's, is readily apparent. To minimize 

E one sets the partial derivatives of E w.r.t. the coefficients 

equal to zero, and then solves the resulting equations for the 

coefficients. By .making the definitions 

uij =Ikwkuik.ujk 

viJ. = Iwkvik·v.k , 
k J 

(3.30b) 

(3.31) 

(3.32a) 

(3.32b) 

(3.32c) 

(3.32d) 

one can show that the defining equations for the optimal coefficients 

are for j=l,2 

2 

L (3.33a) 
i=l 
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.5 
Fj= L c.u 

i=l 1 ij 

2 4 
GJ. = I c.vi. +I n~vi. 

i=l 1 J i=3 .L J 

These may be rewritten more compactly as 

+ + 
H = C·X 

where 

+ 
H = (F l +G

1
, F 

2 
+G

2
, F 

3
, F 

4 
, F

5 
, c

3
, G 

4
) , 

and 

u12+V12 u13 u14 u15 

u21+v21 u22+v22 u23 u24 u25 

u31 u32 u33 u34 u35 

X= u41 u42 u43 u44 u45 

U51 u52 u53 us4 u55 

v31 v32 0 0 0 

v41 v42 0 0 0 

(3. 33b) 

(3. 33c) 

(3.34a) 

(3.34b) 

(3. 34c) 

v13 

v23 

0 0 

0 0 

0 0 

v33 v34 

v43 v44 

(3.34d) 
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Solution for the coefficients requires inversion of the 7 x 7 matrix 

X. The coefficients in the expansions for j and ~ were found 

analogously, requiring only modification in the definition of F and 

G. Since the basis functions in each expansion are the same, the 

matrix X does not change. Thus one inversion yields all three sets 

of coefficients. The weighting factors in Eqs. (3.31) and (3.32), 

if used, were taken to be 

w = ·k (3.35) 

. th 
where £k is the error associated with the k trajectory, that is, 

the difference between the desired and calculated final values for 

the action variables. The largest weighting factor can be taken 

as unity without loss of generality, since multiplying each factor 

by a constant, equivalent to rescaling the L.H.S. of Eqs. (3.32), 

leaves Eqs. (3.33) unchanged. Tests on model problems indicated 

that the procedure worked best with the weighting factors all set' 

to unity, amounting to a non-weighted scheme, and results of the 

last five function evaluations included in the sums of Eqs. (3.32). 

Convergence was slower, since the values of the coefficients did 

not change as rapidly with new data as in the original version, 

and the success rate in dealing with higher-order Fourier terms 

showed only a marginal increase over the original version. The 

improvement in handling the complex-trajectory final boundary-value 

problem was also slight. 

One more variant of multi-dimensional Fourier searches was 

attempted. In this one, the coefficients were allowed to become 
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complex, thereby doubling the number of fitting parameters and, 

it was hoped, increasing the flexibility of the expansions. The 

method can be outlined as follows. First one defines f1 , f
2

, f
3 

to ben, j, ~' resp. One may then write expansion (3.24) and its 

analogues as 

fi = }:a .. u. 
l.J J ' 

where the a's are the (now complex) expansion coefficients and 

u1 thru u6 are the various sines and cosines appearing in Eq. 

(3.24), and u7 is unity, the function multiplying the coefficient 

a 7 in Eq. (3.24). Seven real trajectories are used to initialize 

the scheme. As usual, one defines the matrices F and Q with 

elements fik and ujk representing the value of fi and uj for the 

k
th . traJectory. It is convenient in later iterations to separate 

real and imaginary parts in solving for the coefficients. (Of 

course, on the first iteration all the imaginary parts are zero.) 

One writes, using a super-matrix notation, 

( 

ReU 

• -ImU 

ImU) 

ReU 

Solution requires inverting a 14 x 14 matrix. This method of 

finding the coefficients has two advantages: first, it uses real 

(3.36) 

(3.37) 

arithmetic, and second, it manifestly keeps the coefficients real unless 

forced to do otherwise. That is, as long as the real part of the 

action variables depends only on the real part of the expansion 
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functions and analogously for the imaginary part, the coefficients 

will remain real. 

Predicting the root requires solution of the set of equations 

,. 

Ia1j Uj = 0 ' 

Im <Ia2. U.) = 0 ' J J 

Im <Ia3j u.) = 0 . 
J 

To solve the system, one first uses Eq. (3.38a) to find sin(q ) 
n 

and cos(q) in terms of q. and qn. Substituting the results into 
n . J N 

Eqs. (3.38b, c) gives the reduced system 

Im f 2 (Im qj' Im q$1,) = 0 

(3.38a) 

(3.38b) 

(3. 38c) 

(3.39a) 

(3.39b) 

The root of Eqs. (3.39) is found by a generalization to two dimensions 

of the Newton-Raphson scheme. On each iteration one assumes the 

functions can be approximated as 

(
Im f 2) ~ (rm f 2) + 

Im f3 new\rm f3 old 

()(Im f
2

, Im f
3
) 

() (Im qj , Im q$1,) 
(3.40a) 

where the derivative matrix is evaluated at the old value of q. and 
J 

The variables t:.q., l:.qn are the corrections to the imaginary . J N 

parts of qj and q.t. It will be recalled that the 

real parts of these angles are specified by the Honte Carlo 
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procedure; the root search can modify only the imaginary parts. 

At each step, the correction to the root of Eqs. (3.39) is predicted 

by 

(3.40b) 

The derivative matrix is easily found, since the Cauchy criteria 

for the differentiability of functions with complex arguments require, 

inter alia, that 

a(Im f 2 , Im f 3) 

() (Im qj , Im qjl_) 
(3.41) 

The derivatives of L.H.S. of Eq. (3.41) can be found by differentiating 

Eqs. (3.36) for f 2 and f 3 , keeping in mind that sin qn and cos qn 

are now defined as functions of qj and q£ by use of Eq. (3.38a). 

Once Eqs. (3.39) are solved, the usual process of running a 

trajectory, checking the results, and recomputing the coefficient 

matrix to make the next prediction of the root is followed. On 

subsequent iterations, if the imaginarypart of any of 

the angles (usually q ) becomes substantial, it may be necessary 
n 

iq -iq to use e and e in place of sin (q) and cos.(q) in the co-

efficient determination, since the second pair of functions tends 

toward linear dependence. This poses problems only in the solution 

for the coefficients; the solution of Eqs. (3.38) is unaffected. 

Application of the various four-dimensional Fourier searches to 

the problem of interest resulted in rather disappointing success rates. 
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The procedures were able to find roots in less than twenty percent 

of the Monte Carlo points sampled. This is appreciably worse than 

the more simple-minded approach using the linearizing approximation. 

The unexpected failure of the Fourier methods prompted an attempt 

to gauge the importance of higher-order terms in the Fourier 

expansions of n, j and ~. For a randomly chosen impact parameter 

and total angular momentum several hundred real trajectories were 

run: a coarse grid was set up in~ and qj, and at each grid point 

trajectories corresponding to fifty equally spaced q~ values between 

0 and 7T were run. The idea was to Fourier analyse the results 

at each grid point to obtain the coefficients of the q~ terms. 

(Naturally, the "coefficients" would be function of q and q .. ) 
. n J 

Two more sequential Fourier analyses, first for different values of 

q. at fixed q and then for different values of qn, would determine 
J n 

the coefficients in Eq. (3.24) and higher-order corrections. 

However, only the analysis for q~ was completed. It showed that 

for different (qn' qj) grid points there were from six to thirty 

q~- terms with comparable coefficients. Usually n had the most 

rapidly converging series, and ~ was somewhat slower to converge 

than j. The most apparent conclusion, however, was that Fourier 

expansions retaining only lowest-order terms could not possibly 

be expected to give a reasonable representation of the actual 

functional dependence involved. Thus a search based on such 

expansions was most probably doomed to failure, at least at the 

one Monte Carlo point discussed here. In practice, the usual 

manifestation of failure at a Monte Carlo point was a breakdown 
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in the solution of the equations predicting the root. Since these 

equations were to be solved by an iterative numerical procedure, 

it was not clear whether the expansion broke down, i.e., the 

equations had no solution because of pathological values for the 

coefficients, or whether the numerical procedure was merely unable 

to find a solution which did in fact exist. Thus besides the 

fundamental question of the validity of the expansion, there is 

the additional practical complication that the equations predicting 

the root are not amenable to easy analytic solution. 

A curious point to ponder is the observation that the linear 

search exhibited a higher success rate than the first-order Fourier 

searches. One would expect a Fourier expansion of n, j and t 

w.r.t. the angles to converge faster than a Taylor series, primarily 

because the Fourier basis functions have the correct periodicity 

built into them. Yet the search based on truncating the more 

slowly converging series does better than one based on the more 

rapidly convergent series. The resolution of this seeming paradox 

may lie in the differing natures of the two expansions. The salient 

properties will emerge from a consideration of the one-dimensional 

case. 

The one-dimensional analogue of the linearization scheme is 

the Newton-secant method. If the two points determining the secant 

line coalesce, one recovers the Newton-Raphson method, which amounts 

to truncation of the Taylor series after the linear term. If one has 

f (rl~x) = f(x) + (3.42) 
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one knows that for small enough ~x; the linear term will dominate 

the sum. Thus the linear method gives a good approximation locally 

and a poor one globally, reflecting the nature of the Taylor series 

as an approximation about a poin.t. On the other hand, the Fourier 

series is an approximation on an interval. Its primary concern is 

a global one--periodicity. One has then 

f<x> = a0 + Ia cos<nx> + Ib sin(nx> 
n n 

(3. 43a) 

f(x+~x) ~ f(x) + ~x(\n·b •cos(nx) - 'n·a ·sin(nx)) (3.43b) r n L n 

It is assumed that f(x) has period 2n, and only the lowest-order term 

in ~x was retained in Eq. (3.43b). Inspection of Eqs. (3.43) reveals 

two disconcerting observations. First, neglect of higher-order Fourier 

terms in Eq. (3.43a) implies neglect in Eq. (3.43b) of terms first-

order in ~x. Second, neglect of small terms in the first equation 

may lead to neglect of much larger terms in the second equation. 

Because the coefficients in the sums of Eq. (3.43b) contain an 

added factor of n, it is clear that a truncation which gives a 

reasonable value of f(x) may give very unreasonable values for its 

derivatives, and thus may give a good representation globally and 

a poor one locally. One concludes that if the coefficients of 

higher-order Taylor terms are appreciable, the linear procedure 

gives an approximation to the function which is guaranteed 

to be good on some small interval about x and poor beyond that 

interval. In the first-order Fourier procedure, if higher-order 
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coefficients are important, one has an approximation which is exact 

at the three points used to determine the first-order coefficients 

and poor everywhere else, although it will predict global properties 

better than local ones. Numerical root-searching procedures are 

dependent on local properties, since one is usually given f(x) and 

seeks a I::J.x such that f (x + I::J.x) will be zero.. This is fundamentally 

a local problem. Thus it is reasonable, in retrospect, to expect 

the linear search to do better, unless the function is represented 

extremely well by a first-order Fourier series. The latter seems 

to be the case for n2 (qn)' which would explain the success of the 

complex 1-D Fourier search in q . 
n 

Doubtlessly a contributing factor to the success of the combined 

1-D Fourier, 4-D linear search was the location of the root. In all 

cases where a root was found, the imaginary parts of qj and q~ 

were small, less than one-tenth. Thus once the approximate value 

of q was found by the complex 1-D Fourier procedure, the linear 
n 

search was initiated very close to the root, thereby rendering its 

chances of convergence good. It was hoped that this location of the 

root could be exploited by a different type of root-search. This 

final root-searching effort involved alternating application of 

two root-searches. First a complex 1-D Fourier search was done 

in qn to set n to its desired value. Then with qn fixed, a 

2-D linear search varied Im qj and Im q~ to set Im j and Im ~ to 

zero; cha~ging the value of n in the process. Now the values of 

Im qj and Im q~ were fixed and qn was again varied to return n 

to its desired value, and so on. This procedure was more time-consuming 
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than the 1-D Fourier, 4-D linear; and it showed a lower success rate. 

Since the SO% success rate of the best root-search was considered 

unacceptably low, the 4-D root-search problem was circumvented by 

neglecting the last two terms in~' i.e,, 

(see Eq. (2 .59b). It was felt that this approximation to ~' in 

effect a neglect of the rotational and orbital contributions to 

the forbiddenness of the transition, was justified by the small 

values of the imaginary parts of qj and qi. The resultant 

simplification of the root-search required only that the (complex) 

equation 

(3.44) 

be satisfied. The problem was easily handled by the complex 1-D 

Fourier search in q • The procedure showed a 95% success rate when 
n 

applied to this problem. 

The results of this study have been published previously 

(Raczkowski and Miller, 1974) and will only be briefly summarized 
I 

here. Figure 2 shows the cross sections for vibrational de-activation 

of H
2 

by Li+--i.e., a j . (E
1

) for (n
1
,j

1
) = (1,0) and n2 = 0-­

n2 2+-nlJl 

for total energy E = 1.2 eV. The values labeled SC are the present 

classical-limit results, and the error bars indicate the satistical 

error in the Monte Carlo average; 1000 Monte Carlo points were used. 

The points designated QMI in Fig. 2 are the results of Schaefer 

and Lester's quantum mechanical calculation with a coupled channel 
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STAT 

2 4 6 8 

XBL 748-6935A 

Fig. 2.- Final j -state distribution for scattering from the (0 ,1) state of 

HZ-Li+ at E = 1.2 eV (total) QMl, QM2 -- coupled-channel results 
SC -- Classical-limit calculation 

STAT -- Statistical distribution. 
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expansion including the states 

n = 0; j = 0, 2, 4, 6, 8, 10 

n = 1; j = 0, 2, 4 

n = 2' j = o, 2 

The values labeled QM II are their results obtained by adding one 

additional rotational state to each vibrational manifold: 

j = 12 for n = 0, j = 6 for n = 1, and j = 4 for n = 2. 

The large change iii the quantum results with this increase in 

basis set seems to indicate that the coupled channel expansion 

is still some ways from convergence, a rather disconcerting 

observation since the basis set already produces up to 75 coupled 

channels. (It should be noted that Schaefer and Lester were 

primarily interested in pure rotational transitions, n1 = n2 , 

and their results do indicate the expansion to be converged for 

these processes.) Another possibility is that the difference 

(3.45) 

between the QM I and QM II results is due to numerical error, since 

the algorithm used for solving the coupled equations does not seem 

well-suited for treating processes·with small transition probabilities. 

The cross section summed over final rotational states, cr . 
ni~-nlJl 

2 2 a , 1.15 a , and 
0 0 

2 
0.83 a , respectively, for the QM I, QM II, and classical-limit 

0 

calculations. Within the uncertainty of the quantum mechanical 

results, therefore, the classical-limit cross sections are in excellent 

agreement with the quantum values, both in magnitude and in the 
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distribution of rotational states (Fig. 2) populated in the 

vibrational de-activation. 

Finally, it is interesting to ask what the rotational state 

distribution in Fig. 2 signifies about the dynamics of the inelastic 

process. First, one sees that a substantial amount of the energy 

released by the vibrational de-activation goes into rotational 

excitation. The amount of rotational excitation is considerably 

less than that of a "resonant" process (no change in translational 

energy), however which would require a final rotational state 

j
2 

= 8. It is also interesting to compare to a statistical 

distribution of final rotational states; this corresponds to 

(3.46) 

where E is the total energy and E(O,j
2

) the vibrational-rotational 

energy of H
2 

for n= 0 and j = j
2

• This distribution, normalized 

to the classical-limit cross section, is the dashed line in Fig. 1. 

The amount of rotational excitation is thus also much less than 

that based simply on available phase space. 
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B •. H2-He 

As stated earlier, the H
2

He system was the subject of the first 

three-dimensional application of the partially-averaged classical-

'limit theory (Miller and Raczkowski, 1972). The results obtained were 

not very encouraging, since they showed that a large fraction of the 

trajectories did not complete. The problem was ultimately traced to 

the fitting form of the interaction potential. The potential surface 

used in this study was based on the ab initio calculations of Gordon 

and Secrest (1970). Of the several calculations presented in their 

paper, only the one labelled AASCF(5,2,2) provides values of the 

potential for non-equilibrium separations of the diatomic. The authors 

provide an analytic fit for this potential, given as 

(3.45) 

where the coordinates are as illustrated by Fig, 1 (~r is the deviation 

from the equilibrium oscillator separation), and all the parameters 

are intrinsically positive. If one considers R and y fixed and looks 

merely at the potential's dependence on r, the first factor is an 

exponential in ~r with positive coefficient, and the second factor is 

linear with negative slope. Clearly then, for large r the potential 

becomes infinitely attractive with increasing r, that is, the potential 

becomes negative and exponentially large. In all fairness to the 

authors one must point out that the breakdown of the fitting form occurs 

far from the region where the ab inito values are known, whereas 

the authors stipulate that their form is intended only for interpolation 

between the ab inito points and caution against its use for extrapolating 
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the potential. One should also note that the total potential consists 

of the interaction potential and the potential for isolated H
2

. 

In the case of real trajectories, for example, the latter term would 

confine the system to a small region about the equilibrium position. 

However, complex trajectories can tunnel into the H2 potential until 

they reach the region where the spurious values of the interaction 

potential dominate. 

Because of these difficulties with the potential surface the 

calculations on the H2-He system were su~pended in favor of H2-Li+. 

After the completion of the H
2
-Li+ study outlined earlier, attention 

turned once again to H2-He. Since successful continuation of the 

project would at least have required refitting the Gordon-Secrest data 

to a less problematic functional form, it was decided to start afresh 

with the ab inito values calculated by Tsapline and Kutzelnigg. 

These points were fitted to an analytic form; however, preliminary 

calculations indicated that the potential at atom-diatom separations 

smaller than those used by Tsapline and Kut~elnigg were also important. 

Thus the potential was extended to shorter R-distances (see Fig. 1) 

using the joint MOLECULE-ALCHEMY program package, which incorporates 

the MOLECULE integral program and the ALCHEMY SCF program. MOLECULE 

was written by Dr. J. Alml~f of the University of Uppsala, Sweden. 

The ALCHEMY SCF program was written by Drs. P. S. Bagus and B. Liu 

of.the IBM San Jose Research Laboratory. The interfacing of these 

programs was performed by Drs. U. Wahlgren (presently at the University 

of Uppsala) and P. S. Bagus at IBM. For a description of MOLECULE 
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see J. Almlof, "Proceedings of the Second Seminar on Computational 

Problems in Quantum Chemistry," p. 14, Strassburg, 1972 (Max-Planck 

Institute, Munich 1973). For a description of the ALCHEMY-SCF 

program, see: P. S. Bagus, "Documentation for ALCHEMY - Energy 

Expressions for Open Shell Systems" IBM Research Report RJ 1077 (1972). 

The ALCHEMY quantum chemistry programs were written primarily by 

P. S. Bagus, B. Liu, A. D. McLean and M. Yoshimine of the Theoretical 

Chemistry Group at IBM Research in San Jose, California. Preliminary 

descriptions of the program are given in: (a) A. D. McLean, 

"Potential Energy Surfaces from ab initio Computation: Current and 

Projected Capabilities of the ALCHEMY Computer Program," Proceedings 

of the Conference on Potential Energy Surfaces in Chemistry held at 

the University of California, San Cruz, August 1970; and (b) P. S. Bagus, 

"ALCHEMY Studies of Small Molecules," Selected Topics in Molecular 

Physics, Verlag Chemie (1972). 

The calculation consisted of a Roothaan approach to the SCF, followed 

by a CI with all single and double excitations. Each configuration 

is a pure spin eigenfunction with S = 0. The number of configurations 

used depends on the symmetry being considered (Roos, 1972). In all, 

three angles ( and related symmetries) were considered (see Fig. 1): 

y = .0, or collinear approach (Coov symmetry), y = TI /4 (Cs), and 

y = TI/2, or perpendicular approach (C2v). The basis set used by 

Tsapline and Kutzelnigg consisted of gaussian lobes. For He, the 

7s basis set of Huzinaga was contracted (3,1,1,1,1) following Dunning. 

It was augmented by three sets of p-groups with orbital exponents 
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n = 1.6, 0.6, 0.22, and a set of d-groups with n = 0.8. Each H 

was described by the 6s Huzinaga basis set in the (3,1,1,1) contraction 

of Dunning, augmented by three sets of p-groups with n = 1.57, .43, 

.15 and a d-set with n = .25. This large basis set was necessary 

for describing the long-range Van der Waals interaction of the system, 

aris~ng from the correlation term. At the shorter distances probed 

in the present potential-surface calculations, the interaction is 

dominated by the repulsive SCF term; correlation provides only a small 

correction. Thus in the interest of reducing the computational burden, 

the basis set used here consisted of the same s-functions as above 

augmented by two sets of p-groups on each center, with orbital exponents 

n = 1.1, 0.41 for He and n = 1.0, 0.29 for each H. 

Table 1 shows a comparison of results for c2v symmetry at R = 4.0 

au., r = 1.406 au. The SCF terms for the basis sets are essentially 

identical, and the smaller basis set gives almost 80% of the CI 

correction. The discrepancy is due almost exclusively to neglect of 

the d-functions: a 2pld augmentation on each center gave virtually the 

same results as the large basis set. Similarly, retaining the three 

sets of p-groups on each center gave essentially the same result as the 

2p augmentation. The last point to be made about the suitability of 

the basis set is that even at R = 4, a 20% error in the correlation term 

represents an error of three percent in the total interaction. As one 

goes to smaller values of R, two trends should further reduce the 

relative error. First, the SCF term should increasingly dominate 

over the CI correction, and secondly the relative error in the CI 

caused by neglect of the d-functions should decrease, because the 
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* Table I. Basis set comparison , c2v symmetry, r = 1. 406 au. 

H[6s3pld/4s3pld] H[6s2p/4s2p] 
Basis Set 

He[7s3pld/5s3pld] He[7s2p/5s2p] 

E(SCF), R = 4 au -3.9907871 (H) -3.9905592 (H) 

E (CI), R = 4 au - .0764175 - .0726905 

E(SCF), R = 20 au -3.9948078 -3.9945912 

E(CI) R = 20 au - .0755000 - .0719772 

l1E(SCF + .0040207 + .0040230 

l1E(CI) - .0009175 - .0007133 

l1E(TOT) + .0031032 + .0033187 

* See text for contractions and orbital exponents. 
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very diffuse d-orbitals should become less important in describing the 

system at close distances. · In the region probed, one would expect 

relative error to be a few parts per thousand, certainly less than one 

percent. 

For each of the three symmetries discussed above the interaction 

potential was calculated on a grid of points with R = 1.8, 2.2, 2.6 

au. and r = 0.9, 1.406, 2.2 au. (The asymptotes for each r-value 

were calculated in c2v symmetry with R = 20 au.) The results for the 

c2 and C symmetries at each value of R were interpolated quadratically 
v s 

to give the values at r = 1.0 and 1.8 au. The results for r = 2.2 

in Coov symmetry were suspect because the CI correction was positive, 

i.e., the correlation in the close-in system was less than in the 

asymptote. It was felt that this could signal a curve-crossing or 

some other complication. The collinear calculations were repeated 

at r = 1.8 with R = 1.8 2.2, 2.6, 3.0 and 3.5 au. The correlation 

correction was once again positive at R = 1.8. The results were 

plotted on semi-log paper to reveal a linear relationship for all 

the points except the first, with R = 1.8, which lay above the line. 

In other word, the potential was increasing exponentially with 

decreasing R, as one would expect for an SCF-dominated interaction, 

until R = 2.2,and then rose more sharply at distances smaller than 

this. To ease the task of fitting the points, the exponential was 

extrapolated to R = 1.8, and this value was used in place of the 

questionable ab initio one. The collinear values at r = 1.0 were 

obtained by quadratic interpolation of the values at r = 0.9, 

1.406, and 1.8 au. 
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A Legendre analysis was performed on the potential values as 

a function of angle. The symmetry of the homonuclear diatomic allows 

only even terms in the Legendre se.ries. At the R-distances used in 
' 

the present extension, as well as the select points at which Tsapline 

and Kutzelnigg give results for y = n/4, the coefficients of the 

first three Legendre terms, viz., P
0

, P
2

, P
4

, were calculated. At 

the other Tsapline-Kutzelnigg points, only the coefficients of 

P
0 

and P
2 

co.uld be found. The results showed that the P 
4 

coefficient 

was negligible for R > 4 au. The potential was then fit to the 

following analytical form. 

v
1

(r,R,y) = v
0

(r,R)·P
0

(cosy) + v
2

(r,R)·P2(cosy) + v
4

(r,R)·P
4

(cosy) 

(3. 46) 

where the coefficients are given by the following relations (all 

distances are in au., all energies in Hartrees.) 

A
0

(r) = 

B
0

(r) 

c
0

(r) = 

Ao(r) e-2.16789·R + Bo(r) Rlle-4.216·R + co(r)·R-6 

(3.47a) 

18.532 (1 + . 245l·~r .1646 2 . (~r) ) (3. 4 7b) 

8.146 (1 + 1.77ll·~r + .3886 2 . (~r) ) (3.47c) 

-5.032 (1 + .5813·~r - .2347 2 . (~r) ) (3.47d) 
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A2 (r) = 2.811 (1 + .7613·~r + .2197·(~r) 2 ) 

c2 (r) = -1.067 (1 + 1.5764~~r + 1.2274·(~r) 2 ) 

A4 (r) = 13.4238(1 2 2,4036•&- 2.0953· (~r) ) 

. 2 
B

4
(r) = -1.0024(1- 29.377l·ltr- 27.2996·(6r) ) 

(3.48a) 

(3.48b) 

(3.48c) 

(3.49a) 

(3 .49b) 

(3.49c) 

A comparison of ab initio and fitted values is given in Table II; 

the units are milli-Hartrees (lmH ~ 300~). The quality of the fit 

can be summarized by stating that large relative errors correspond 

to small absolute errors, and large absolute errors correspond to small 

relative ones. In view of the restrictions on the fitting form, 

this is the best that one can reasonably expect. The chief restriction, 

of course, is that the form must be analytic (in the complex variable 

sense), so that the potential can be continued into the complex 

plane. This eliminates the possibility of using different forms in 

different regions, and thus the single functional form chosen must 

adequately represent the ab initio values over five orders of magnitude. 

Judging the adequacy of the fit is problematic since numerical measures 

of the error, such as least-squares, are not as meaningful as one 

might expect. For example, in v
0 

and v2 the well-depth is four orders 

of magnitude smaller than the highest computed point on the repulsive 

wall~ A naive least-squares determination of the coefficients in an 

"exp-six" form will give a fit which is correct to 0.1% for the highest 



Table IIa. Comparison For v
0

. 

r = 1.0 au 

R (au) Potential (mH) Fit Abs. Error Rel. Error 0 

c 
1.8 221.11538 220.50339 -0.61199 -0.00277 

.1~'-\ 

~"""' 

2.2 105.33280 106.69225 1.35945 0.01291 
r~·"~· 
~~,~ll 

2.6 49.10775 47.67970 -1.42806 -0.02908 Jt; ... 

4.0 2.34623 2.44200 0.09577 0.04082 eN. 

6.0 -0.04740 -0.03138 0.01602 -0.33800 c 

8.0 -0.01473 -0.01339 0.00134 "-0.09096 (,.' ~ 

I 
b,_ 1.0 

10.0 -0.00380 -0.00364 0.00016 -0.04122 """ I 
-.....r 

r = 1.406 au C) 

R (au Potential (mH) Fit Abs. Error Rel. Error 

1.8 229.60883 229.00071 -0.60813 -0.00265 

2.2 115.17960 117.33850 2.15890 0.01874 

2.6 56.59436 54.97151 -1.62285 -0.02868 

3.0 25.75935 25.49497 -0.26439 -0.01026 

4.0 3.35439 3.56826 0.21387 0.06376 

5.0 0.26267 0.31978 0.05715 0.21761 



Table Ila. Comparison For v
0

• (Cont'd) 

r = 1.406 au 

R (au) Potential (mH) Fit Abs. Error Rel. Error 

6.0 -0.04707 -0.03574 0.01132 -0.24059 

6.5 -0.04787 -0.04371 0.00416 -0.08696 

7.0 -0.03940 -0.04556 0.00384 -0.09751 

8.0 -0.02020 -0.01849 0.00171 -0.08447 

9.0 -0.00993 -0.00940 0.00054 -0.05388 

10.0 -0.00523 -0.00502 0.00021 -0.03985 
I 

1.0 

r = 1.8 au 00 
I 

R (au) Potential (mH) Fit Abs. Error Rel. Error 

1.8 229.54969 229.0983 -0.45286 -0.00197 

2.2 121.35257 123.34083 1. 98826· 0.01638 

2.6 62.45119 60.46051 -1.99068 -0.03188 

4.0 4.55460 4.78582 0.23122 0.05077 

6.0 -0.03627 -0.03042 0.00585 -0.16126 

8.0 -0.02553 -0.02203 . 0.00350 -0.13709 

10.0 -0.00677 -'0.00599 0.00077 -0.11441 

•· 



Table Ilb. Comparison For v2• 

r = 1.0 au 0 

R (au) Potential (mH) Fit Abs. Error Rel. Error c 
1.8 31.50332 30.16833 -1.33498 -0.04238 .j1•-·: 

'!,,.,.~'· 

"' 2.2 12.58261 13.59269 1.01008 0.08028 <'"'' 
~'I"· 

2.6 5.83526 5. 77960 -0.05567 -0.00954 J::;... 

4.0 0.26087 0.19400 -0.06687 -0.25633 
~ 

c 
6.0 -0.00880 -0.00981 -0.00101 0.11498 

C..-t 

8.0 -0.00247 -0.00229 0.00018 -0.07133 
I .1::. 

\t) 

10.0 -0.00060 -0.00060 -0.00000 0.00180 
\t) 

I ~ 

r = 1.406 au "" 
R (au) Potential (mH) Fit Abs. Error Rel. Error 

1.8 59.49735 53.71098 -5.78637 -0.09725 

2.2 24.91813 26.45402 1.53589 0.06164 

2.6 12.26209 12.31603 0.05395 0.00440 

3.0 5.22535 5.56225 0.33690 -0.06447 

4.0 0.73315 0.68447 -0.04868 -0.06640 

5.0 0.05935 0.05943 0.00008 0.00131 



Table IIb. Comparison For V2. (Cont'd) 

r = 1.406 au 

R (au) Potential (rnH) Fit Abs. Error Rel. Error 

6.0 -0.01513 -0.00559 0.00954 -0.63048 

6.5 -0.01295 -0.00779 0.00516 -0.39838 

7.0 -0.01080 -0.00673 0.00407 -0.37672 

8.0 -0.00500. -0.00375 0.00125 -0.24922 

9.0 -0.00247 -0.00196 0.00050 -0.20351 

10.0 -0.00107 -0.00106 0.00001 -0.00543 I ..... 
0 

r = 1.8 au 0 
I 

R (au) Potential (mH) Fit Abs. Error Re1. Error 

1.8 86.01750 83.22312 -2.79438 -0.03249 

2.2 41.83965 43.85438 2.01473 0.04815 

2.6 21.00903 21.49706 0.48803 0.02323 

4.0 1.60580 1.40625 -0.19955 -0.12427 

6.0 -0.01573 -0.00144 0.01429 -0.90853 

8.0 -0.00887 -0.00654 0.00233 -0.26265 

10.0 -0.00193 -0.00192 0.00002 -0.00889 



Table IIc. Comparison For v4• 

r = 1.0 au 

R (au) Potential (mH) Fit Abs. Error Rel. Error 
0 

c 
1.8 5. 37260 10.24889 4.87629 0.90762 

_,,_., ....... , 
""'-'-•l"'' 

2.2 0.67170 1.20033 0.52863 0.78699 c 
2.6 0.21872 -0.00654 -0.22525 -0.02989 ~. 

r = 1.406 au CAr 

,.-.: 
R (au) Potential (mH) Fit Abs. Error Re1. Error '-' 

1.8 17.74197 17 .82·208 0.08012 0.00452 
(;.4 

I .... A . 0 

2.2 3. 59722 4.07684 0.47962 0.13333 .... 
I cc 

2.6 1.05296 0.93139 -0.12157 -0.11545 0 

3.0 0.29979 0.21249 -0.08730 -0.83578 

4.0 0.03195 0.00525 -0.02671 -0.83578 

5.0 -0.00229 0. 00013 0.00241 -1.05604 

R = 1.8 au 

R (au) Potential (mH) Fit Abs. Error Re1. Error 

1.8 30.76614 35.38704 4.62090 0.15019 

2.2 10.21711 10.54249 0.32538 0.03185 

2.6 2.80045 3.00918 0.20873 0.07453 
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two points on the wall and completely obliterates the well. Modi-

fication of the least-squares to minimize the relative error also gives 

poor results, since a 20% error is insignificant if the ab initio 

value is one degree Kelvin, but very significant if the value is one 

eV. Thus one must settle for the sort of trade-off described above: 

small relative error for for small values. Unfortunately, in this 

approach one loses any clear-cut quantitative criterion for deciding 

when the fitting parameters have been optimized. One must ultimately 

make a subjective judgement about when the fit is "good enough". 

With the potential defined by Eqs. (3.46) thru. (3.49) scattering 

calculations using both the coupled-channel and the classical-limit 

techniques were performed at four total energies: 0.9, i.l, 1.3 and 

1.5 eV. The classical-limit calculations were a straightforward 

+ applicati·on of the methods developed for H
2
-Li • The partial-averaging 

and the approximation of neglecting the rotational and orbital 

contributions to the damping function, both discussed extensively in 

the previous section, were used to reduce the problems incurred in the .. 
root-search. The searching procedure converged for over 90% of the 

Monte Carlo points with the higher energies showing higher convergence 

rates than the lower energies. The coupled channel calculations were 

done using the Lester version of the Gordon program. The nature of 

the method has been discussed in the previous chapter, and the reader 

is referred to the articles by Gordon (1970, 1971) and Lester (1973) 

for further details. All tolerance values in the program were set to 

10-4 , and the basis set used consisted of the following states: 
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n = 0, j = 0, 2, 4, 6, 8 

n = 1, j = 0, 2, 4, 6 (3.50) 

n = 2, j o, 2, 4 

The wavefunctions of these states, required to compute the coupling 

matrix (see Eq. (2.33b), were found by numerical solution of Eq. (2.12c) 

using the Numerov method with v(r) taken to be the Kolos-Wolniewicz 

potential. 

The calculations yielded a plethora of results. The cross-sections 

are the first level at which a meaningful comparison can be made 

between the coupled-channel and classical-limit results. Figure 3 shows 

the coupled-channel result for cr
1

;0+0 as a function of total energy. 

The cross-sections for the other initial j-states behave very 

similarly. They are all approximately equal at .9 eV; the cross-sections 

for jl = 4 and 6 rise somewhat more rapidly, becoming about twice and 

four times as large, resp., as crl,O+O at 1.5 e V. It would appear 

that values of the cross-sections at 1.5 eV are too large. This 

could be due to neglect of the state (1,8). Pure rotational transitions 

from the lower jl states to (1,8) would, of course, decrease the cross 

sections for the V-R transitions to the ground state. For reasons 

stated below, one would expect such large ~j transitions to (1,8) 

to become more important at higher energies. Figure ·4 shows the same 

quantity, crl,O+O' calculated by the classical-limit method. Qualitatively 

the behaviour is similar, however the classical-limit results are two 

to three orders of magnitude larger than the coupled channel results. 

This is a disasterous showing, especially in view of the quantitative 
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XBL 759-7222 

Fig. 3. Cross-section for scattering from state (1,0) to ground 

vibrational manifold of H2-He as function of total energy. 

Coupled-channel results. 
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XBL 759-7223 

Fig. 4. Cross-section for scattering from state (1,0) to ground 

vibrational manifold of H2-He as function of total energy. 
Classical-limit results. 
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It is also illuminating to examine the distribution of final 

j-states. Figure 5 shows this distribution for scattering arising 

from the (1,0) state,. calculated by the coupled-channel method. 

Again the other initial j-states follow a well-defined pattern. At 

.9 eV the scattering from each state peaks at j 2 = jl + 2; at higher 

energies the same relation hold for all states except jl = 0, which 

peaks at j 2 = jl + 4. Figure 2 shows that H2-Li+ follows a similar 

distribution. The qualitative features of the final rotational 

distribution can be rationalized by observing that the system has 

weak coupling and widely-spaced energy levels. In the limit of no 

coupling both the internal energy and rotational angular momentum 

would be conserved. With weak coupling, the system would like to 

undergo transitions which almost conserve these two quantities. Of 

course, that is impossible. Small 6j's require large energy changes, 

on the order of .5 eV if jl = 0. Similarly~ small E's require 

j's on the order of six or eight. At .9 eV, 6j = 2 is the most 

probable transition, with I6EI = .48, .42, .35, .30 eV for jl 0, 2, 

4, 6 resp. at higher energies, 6j = 4 is more probable for jl = 0, 

with I6EI = .38 eV. For the other initial j-states, the 6j = 4 

transition also rises more rapidly than 6j = 2 with increasing total 

energy, but 6j = 2 still remains the most probable transition. This 

trend can be understood by recalling that rotational excitation 

takes place by transfer of angular momentum from the orbital to the 

rotational mode. Loss of angular momentum is more likely if the initial 

orbital angular momentum is large, i.e., 6~ = -4 is more likely if 



I{) 
I 

'· 

6--------------~--~------~~---------------------------

0 

0 

~ 

0------------~~----------~------------------~-------. 0 2 4 6 8 

XBL759-72 24 

Fig. 5. Final j-state distribution for scattering from the (1,0) state of H2-He atE= .9 eV 

(total). Coupled-channel result. 
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t
1 

= 30 than if t 1 = 6. However, if the interaction potential has a 

finite range, say b , the largest orbital angular momentum of any 
max 

consequence is t = k b • For t-values larger than t · the 
max max max 

corresponding impact parameter is so large that the system never enters 

the interaction region and all asymptotic quantities are conserved. 

The wavenumber k depends on the energy,. of course, with the consequence 

that for fixed b , t increases in energy. Thus one would expect 
max max 

6j = 4 transitions to increase more rapidly with energy than 6j = 2 

transitions. In the case of j 1 = 0, the transitions are ·roughly 

comparable at .9 eV, so at higher energies 6j = 4 becomes dominant. 

For the other j-states, 6j = 4 is one or two orders of magnitude 

smaller than 6j = 2, so although it rises more rapidly, it does not 

dominate over 6j = 2. Of course, the importance of 6j = 4 transitions 

at higher energies may invalidate the results for (1,6) cross-sections 

at 1.5 eV, since the state (0,10) was not in the basis set. Figure 

6 shows the final rotational distribution from state (1,0), computed 

by the classical-limit method. The distribution clearly overestimates 

the relative probability of the j = 4 transition. This seems to 

be true for other j 1-states and energies as well. It would appear 

that the very poor showing of the classical-limit results for this 

system is due to the approximation neglecting the rotational 

contribution to the damping function. The H2-He systems exhibits far 

+ less angular anisotropy than H
2
-Li , and apparently the rotationa~ 

contribution to the "forbiddenness" cannot be neglected, as it was 

+ in the H2-Li calculations. Thus it follows that a successful 

application of the classical-limit method to H
2
-He can only be done 
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using the full boundary conditions of Eqs. (3.2) and necessitating 

the use of a four-dimensional root-search procedure. 
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The final step in the H
2
-He calculations was the use of the cross­

section data to find the rate constants and relaxation times. Rate 

constants connecting specific quantum levels were found by fitting the 

corresponding quantum cross-sections to a power law and carrying out 

the integration of Eqs. (2.68). More specifically, to find the rate 

of transition from state i to f the cross-section was fit to the form 

(3. SO) 

where E is the translational energy in state i and the values of A tr 

and p were found by taking the logarithm of both sides of the equation 

and passing a least~squares line through the known points. Substitution 

of Eq. (3.50) into Eqs. (2.68) and use of Eq. (2.67) gives the follow-

ing final expression for the rate constant; 

(3.51) 

Of course, only the downward rate constants (i.e., i>f) need be 

computed this way: the reverse rates are given by the detailed 

balance relationship (see Eq. (2.76)}. Once all the off-diagonal 

elements of the rate matrix were found the diagonal elements were 

computed by use of Eq. (2.74). 

With the rate matrix known the relaxation rate was computed in 

two ways. The first approach can be termed a pseudo two-state method, 

since it makes use of the well-known result that the relaxation rate 

is given by 
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(3.52) 

.. 
for a system with two levels, labelled zero and one in this case. 

The variable ~E is just the energy spacing of the two levels. In 

applying this approach to H
2
-He one approximates the system by two 

states, corresponding to n=O and n=l. The relaxation rate is then 

given by Eq. (3.52) with the parameters defined by 

(3. 53a) 

~E (3. 53b) 

The second method used was the diagonalization scheme outlined in 

Section (II.C). The states included in the rate matrix were 

n = 0, j = 0, 2, 4, 6, 8 

n 1, j 0, 2, 4, 6 

the results of the two methods agreed to better than one-half of a 

p~rcent for temperatures below 2,000°K. 

Relaxation rates were also computed on the basis of the classical-

limit scattering results. However, because of the uncertainties in 

the final j-state distribution of these results the procedure involving 
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specific quantum levels had to be modified. The cross-sections 

fit to the power law of Eq. (3,50) were first summed over the final 

rotational state, i.e., they w~re of the form: 

0 0+-lj 
1 

Evaluation of Eq. (3.51) then gave an approximate value for kO+-l" • 
Jl 

(3. 54) 

Substitution of this value into Eq. (3.53a) gave the classical-limit 

relaxation rate, since kO+-l" can equivalently be defined by 
Jl 

(3. 55) 

The diagonalization scheme could not be applied to the classical-limit 

results for two reasons. The first is the final j-state distribution 

mentioned earlier. The second is that the scheme requires the rates 

for purely rotational transitions within the n=O and n=l manifolds. 

The corresponding cross-sections had not been computed in the classical-

limit calculations (only vibrationally inelastic transitions were 

considered), and these rates were not available. However, because 

of the agreement between pseudo two~state and diagonalization results 

forthe coupled-channel data, it can be presumed that the pseudo two-

. ' 

state results are an accurate representation of the relaxation rate 

for the classical-limit data. 

Figure 7 shows a comparison of the classical-limit, coupled 

channel, and experimental results for the relaxation rate in the 
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Fig. 7. Relaxation rate for H2-He system as fUnction of temperature. 
CC -- Coupled-channel 
CL -- Classical-limit 
EXP -- Experiment 
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temperature range of 50 to 500°K. Clearly the classical-limit 

results are in very poor agreement with experiment. They predict 

the wrong curvature and are several orders of magnitude in error 

over most of the range. The coupled-channel results show much better 

agreement. The curvature is qualitatively correct but much weaker 

than that shown by the experimental points. Extension of the curves 

to higher temperatures (not shown) indicates essentially quantitative 

agreement in the range of 1500 - 3000°K between the coupled-channel 

results and the shock-tube data of Dove, Jones and Teitelbaum, as 

quoted by Audibert, et al. (see Ref. 2 of Audibert, Joffrin and 

Ducuing). The classical-limit results in this range fall about two 

orders of magnitude above the experiment. 

In order to draw any conclusions from these comparisons one 

must recall that the underlying cross-sections were computed in the 

range of .9-1.5 eV total energy, or .3-1.0 eV relative translational 

energy, since the internal energies of the states dominating the 

relaxation; namely (1,0), (1,2), (1,4), are about .5-.6 eV. The 

translational energies correspond to temperatures of 3,000 to 

10,000°K. Thus the shock-tube .experiments probe the relaxation rate 

at temperatures comparable or slightly below the energy range of the 

cross-section calculations. Not suprisingly then, the high-

temperature relaxation rates reflect the discrepancy between the 

coupled-channel and classical-limit cross-sections, ,;,.rith the coupled-

channel results being essentially exact. 
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The low temperature (T<500°K) relaxation results depend 

sensitively on the behavior of the cross-section immediately above 

threshold. This behaviour is poorly represented by a power-law 

extrapolation from higher energies. Below room temperature the 

relaxation rate is dominated by kO+lO (see Eq. (3.53a)), and test 

calculations indicate that the extrapolation used here would result 

in a serious underestimate of the underlying corss-section, 

crO+-l 0 , forE < .042 eV (:;,;:460°K). In this energy range vibrational 
1 . tr 

deactivation competes only with elastic scattering: pure rotational 

transitions to higher states of the n=l manifold are energetically 

forbidden. Of course, in the range where the cross-sections were 

computed purely rotational transitions are allowed; their effect is to 

reduce the probability of vibrational deactivation. (That is, if 

the states n=l, j=2, 4, 6 were dropped from the coupled-channel 

calculation, the effect would be to increase cr0~l,O') Extrapolation 

of the cross-section curve to low energie$ underestimates the 

cross-sections around threshold by improperly including the effects 

of purely rotational transitions, which in fact cannot take place 

at those energies. It is felt that this is the cause of the 

discrepancy in degree of curvature between the curvature between the 

coupled-channel results and the experimental work of Audibert, 

et. al. Unfortunately, removing this discrepancy would call for very 

difficult calculations just above threshold to determine the correct 

cross-section behaviour there. Test calculations show that the S-matrix 

-8 elements of interest are very small, less than 10 . Computing 
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them reliably would require exacting tolerances. Further, because of 

the low transitions probabilities involved, ~t may prove necessary 

to use the de Vogelaere algorithm in place of the Gordon method 
; 

used in the present study. 
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IV. CONCLUSIONS 

As stated in the introduction, the purpose of this project was 

to develop a method of using complex trajectories to extend the 

applicability of quasi-classical calculations to classically forbidden 

problems and to test the validity of the proposed method by comparison 

with essentially exact quantum calculations. Thus there are three 

basic questions which must be answered by this concluding summary: 

how well does the proposed method compare with exact calculations, 

how can the comparison be improved, and what difficulties can be 

expected in generalization to systems larger than atom-diatom. 

The first two questions have~ in essence, been answered in 

the body of this dissertation; however, a recapitulation is in order. 

Agreement for the H
2
-Li+ system was quantitative, both in the size of 

the cross-sections and in the distribution of final rotational states. 

In comparison, agreement for the H2-He case was very poor. The 

classical-limit cross-sections were one to two orders of magnitude 

too large, they rose too sharply, and the distribution of final 

rotational states peaked at the state immediately above the correct 

maximum. 

The cause of these difficulties is also clear. The angular 

anisotropy of the H
2
-He interaction potential is much smaller than 

that of H
2
-Li+. Consequently the neglect of the rotational and 

orbital contributions to the damping integral of Eq. (2.59b) 

introduced a much more serious error into the results for H
2

-He. As 

expected, an underestimate of the damping function yields an overestimate 
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of the cross-sections, in this case amounting to at least a factor of 

ten. Similarly, the final rotational distribution was analyzed as 

a trade-off between energy and angular-momentum conservation. Since 

the approximation described above overestimates the ease of rotational-

orbital coupling, one would expect the classical-limit distribution 

to show more internal-energy conservation and thus be shifted to 

higher final j-values. 

It will be recalled that the approximation of neglecting part 

/of the damping integral was introduced to reduce the root-search 

problem to manageable dimensionality, The original four-dimensional 

problem proved not t~ be amenable to easy solution at each point of 

the Monte Carlo average. The results of the H
2
-He study force one 

to conclude that if the proposed classical-limit method is to be 

made completely reliable in all cases, the full damping integral 

must be used and the 4-D root-search must be performed at each Monte 

Carlo point. This means that if this line of research is to be 

continued, the first order of business must be the development of 

a reliable and efficient multidimensional root-searching procedure. 

Of course, even in its present state the proposed method is of 

potential utility. The H
2
-Li+ results show that the method works 

well if the angular anisotropy of the potential is large, and it is in 

precisely such cases that coupled-channel calculations become tedious, 

since many partial waves must be included in the sum for the cross-

sections. The proposed classical-limit method can be used to 

complement exact quantum procedures. In systems with weak rotational 

coupling, coupled-channel calculations are easily done; the 
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classical-limit method proposed here can be applied conveniently 

and reliably to systems with strong rotational coupling. 

Lastly, there is the question of extension to larger systems. 

The first problem is obtaining reliable potential surfaces describing 

the interaction of such systems. However, since this problem 

applies to all exact methods, it is not germane to the discussion. 

As regards extension of the classical-limit formulation to larger 

systems, the complication of the rotational motion should be 

tractable without major difficulties. Problems arise, however, 

from the presence of several vibrational modes. Apart from increasing 

the dimensionality of the root-search (with "partial-averagii}g" over 

rotation, the rotational modes will each contribute one dimension to 

the root-search; the vibrational modes will each contribute two 

dimensions), the presence of more than one vibrational mode will 

necessitate a reexamination of the algorithm use to stabilize complex 

trajectories. 

It will be recalled that the current version of the algorithm 

varies one independent variable (the argument of the time path) to 

control the value of one dependent variable (the oscillator separation). 

In the case of larger systems several dependent variables (correspond­

ing to separations in the several vibrational modes) will have to 

be bounded. One could, of course, try bounding some suitably 

weighted sum of such separations; this would at least restore the 

parity of one independent variable and one dependent variable. 

Nonetheless, the matter would require careful scrutiny. Thus, 

extension to larger systems would require·a reliable multidimensional 

.. 
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root-search procedure and a modification of the stabilizing algorthm 

for complex trajectories . 

• 
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