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VIBRATIONAL INELASTICITY IN H2 COLLISIONS WITH He AND Li+

Andrew Wesley Raczkowski

Inorganic Materials Research Division, Lawrence Befkeley Laboratory
and Department of Chemistry; University of California,
Berkeley, California 94720

Abstract
The partially averaged version of classical S-matrix theory

was applied to three-dimensional collisions of H2 with He and Li+.

+ . \
For'Hz-Ll, cross-sections for the de-excitation of H2 from

(nl,j1)>= (1,0) to the ground vibrational manifold were computed at
a-total.energy of 1.2 eV and compared to previously done coupled
channel calculations of Schaefer and Lester. The agreement is

very good. For Hz—He, the Kutzelnigg-Tsapline interaction potential
was extended to small atom~diatom separations, the gh_initio points
were then fit to an"énalytié form, and cross-sections for the

de-excitation of H2 from the states (nl,j1L =1, j1 = 0,2,4 to

™M
the ground vibratiopal manifold were computed at total energies of

.9, 1.1, 1.3 and 1.5 eV. For comparison, coupled channel calculations
were also performed on the system at the same energies. The agreement
was poorer than in the HZ—Li+ case, for identifiable reasoqs. The -
cross-sections were used to compute rate constants and relaxation times
for the H2—He system. Comparison of these results with the results

of experiment and of other calculations shows good agreement,

certainly within the expected errors.
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1. INTRODUCTION

In eésence,the preéent>WOrk describes several calculations performed
by the aqthor under the tutelage of Profeésor William H. Miller. These
comﬁutational stﬁdies were a continuation of efforts to develop a
reliable method of performing non-reactive scattering calculationms,
based on the Miller formulation of‘multi—dimensional classical-limit
quantum mechanics. The theory was first applied to vibrationally‘
'inelastic collinear collistons and the riglid-rotor problem (Millvr;
1970, 1971) to calculate specific S-matrix elements. The development
of complex;valued trajectories (Miller and George, 1972) allowed the
extension of the theory to classica}ly forbidden transitions, resulting
in calculation of S-matrix elements for vibrationally inelastic
three-dimensional atom-diatom collisions (Doll and Miller, 1972).

The scope of the present work is the description of the next
step in this sequence, namely, the incorporation of the partial-
averaging procedure, a labor-saving device which ailows direct
calculation of cross-sections without recourse to S-matrix elements
- as intermediates (Miller and Raczkowski, 1972). The two sets of
calculatiqns described were done on H2—Li+ and H_-He, respectively.

2

The choice of H2 plus a monatomic collision partner was not made

because of intrinsic interest in Hz. Rather, the choice was

. determined by the following afguments. First, because of the light

masses of the atoms involved, these systems shduld manifest the most
pronounced quantum effects and thus serve as an acid test of any classicél—

" limit method. Secondly, because of the small number of electrons in the

system, reliable ab initio interaction-potential surfaces exist for both
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systems, thus obviating any difficulties about choice of potential
surface. One might add parenthetically that the internal potential
of H2 is firply established by the work of Kolos and Wolniewicz.
Thirdly, because of the wide spacing of the H2 energy levels, reliable
coupled—channelcalculations were feaéible for both systemé,
providing a standard of comparison for the classical-limit results.
And lastly, the work oflAudibert, Joffrin and Ducﬁing has raised the
possibilify of comparison, albert indirect, of computations with
experiment.

Before beginning the discussion of comﬁutationalvtechniques
and resﬁlts it seems appropriate to give a description of the theory
behind the computation. Chapter II provides this description,
which is meant to serve three purposes. First, it should give the
reader some appreciation for the similarities and differences between
the two scattering methods being considered, i.e., éoupled—channel
and classical-limit. Secondly, it should serve to define notation.
Lastly, it should give an idea of the amountiof averaging over cross-
sections required to obtain the quantity comparable to experiment, i.e,
how indirect is the comparisoﬁ alluded to above.

Chapter III gives a détailed account of the calculations performed.
It begins with a specific statement of the problems involved in
applying thé classical-limit approach and then goes on to present
the computational techniques used to overcome the difficulties.
The relative success or failure of each technique ié i;dicated,
aﬂd where possible, the reasons for failure arelstated. The emphasis

of the chapter is on techmniques rather than results, because the results
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for H —Li+ have already been discussed in the 1iteraturé (Raczkowski

2

and Miller, 1974), and the H, -He system will be the subject of

2
forthcoming journal articles, The literature contains only a hazy
_outline of the methods used to.app1y th¢ classical~limit formalism,
thus it seems more appropriafé.to preséﬁt a thorough discussion of
techniques; However, the study of techniques is applied mathematics;
science is the study of nature. Whéﬁfbﬁe has done careful calcula-
tions on a real system it is difficult to repress one's desire to

discuss the results, and thus a short'discussion was included for

both systems,



II. THEORY
The theoretical basis of the calculations described in this work,
i.e., the N-coupled channel problem, classical-limit quantum mechanics,

and the relationship of cross sections to rate constants and relaxation -

iy

times, are all well discussed in the literature. The present discussion,
therefore, will be restricted to a summary of those aspects most germane
to the calculations described in the next chabfer; Its inclusion is |
meant to serve three purposes: (1) completeness, (2) providing a
conceptual background for the uninitiated reader, éﬂd (3) establishing
the notation to be used in subsequent chapters. In particular, the
present diséussion will avoid all proofs. Results will be stated, and
at appropriate points in the discussion, the interested reader will

bé referred to the sources in the literature which most closely
parallelithe discussion here.

. A. The N-Coupled Channel Problem

This section gives a discussion of quantum scattering theory, as
it applies tq the problem of interest. The kinematics are discussed
first, the scattering problem is then formulated in terms of the
S-matrix. The S-matrix contains all possible scattering information.
Its knowledge is eqﬁivalent to knowledge of the solution to the full .
Schroedinger Equation for the problem. The section concludes with a
descfiption of the coupled channel approach to the solution of the
Schroedinger Equation and assembling of the S-matrix, and an outline of
the numerical method of Gordon (Gordon, 1969, 1971), chosen to obtain
the solution.

The specific problem under discussion is a non-reactive atom-diatom
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collision. (The two cases presented in the next chapter are H2 + Li+,
and H2 + He. 1In the first of these, the "atom" is actually an ion.

However, its charge enters the problem only in terms of the specific
form of the potential. The general description of the collision
process is unaffected.) Lét A designate the atom and ﬁ;C the diatomic.
Eliminating center-of-mass motion, one can describe the system (Fig. 1)
by defining ; as the distance from B to C, and E as the distance from
the B-C éepter—of—mass to A. Let m be the reduced mass of B-C, 1
be the reduced mass of A and the diatomic, ; and ; be the momentum
operators corresponding to ; and E, resp., and for future use, define
Y as:

Y = Arccos (i . ;). B (2.1)
(as usual, R = Iﬁl , and R = ﬁ/R, and similarly for ;); Y, then, is
the anglevbetween the véctors ;, and ﬁ. With these definitions, the

Hamiltonian for the system may be written:

2 2 ;
. S U T, R
H=gp+om+ Vg (1, R), | (2.2)

where VT is the total potential energy of the system. One notes that
if the atom is assumed structureless, and if the diatomic is in a
L electronic state, VT depends only on the magnitudes of r and R, and

on the angle between them. (Lester, 1973)
-
VT (;a.R) = VT (I‘, R, Y) (2.3)

Further, let v(r) represent the potential of the free B-C diatomic,

in the absence of A. One can then define an interaction potential,

A

1> by

V. (£, Ry ¥) =V (r, R, v) - v(r). (2.4)



He

Fig. 1. Coordinates for H,-He system.

XBL 759-722)



-7-

This is péssible because the energy range of the calculations was

choéen so as to exclude any bound states of A-C or A-B, or dissociation
. of B-C, thus the diatéﬁié maintains its identity throughout the collision,
“ - and Eq. (2.4) defines a unique interaction poténtial. The Hamiltonian

then becomes
: 2 2

S |
H=gr+ 5o+ v@ + v (r, Ry) (2.5a)
=H_ +V (r, R,Y) _- (2.5b)

where the definition of HO is obvious. Now, in both systems of interest,
the interaction potential falls off sufficiently fast with increasing -
R that one can define an asymptotic region (R>®), where H*Ho. The

allowed scattering states asymptotically satisfy
> > > > : :
H §r, R) = E “¢(r, R) (2.6)

‘whe;e E is the energy of an asymptotic state ¢ . For definiteness,
one may cénsider the scattering of some wave-packet Y(t) in the
Schroédinger picture. Set ¢ =y (0), then Y(t) is given by the action
of the propagator on Y(0)3; (faylor, 1972)

We) = exp(HE) + WO)  @.7a)
then the incoming and outgoing asymptotic states are given by the

relations:

. . » , -iH t
% exp ) .y = 5T exp(>) - ¢in | (2.7b)
11 -1 15 -iH t
t*;g” exp(lgg) - P o= t*iE“’exp( ff ) - ¢out (2.7¢)

Not surprisingly, the eigenstates of Ho-will play an important role
in the development of this section, since the asymptotes are most

naturally expressed in terms of these functions. Fortunately, these



functions are easily found. (Lester, 1975). One first notes that
Ho is geparable in the sense that there are no terms simultaneously
involving ; and i. One then proceeds in the time-honored tradition,
letting

¢(r, B) = X@) - UR) (2.8)

and substituting into Eq. (2.6), one obtains the system of equations:

P2 >
(2—u - Etr) UR) =0 (2.9a)
2
(%; + v(r) - Eint) X(r) =0 (2.9b)
Etr + Eint = E (2.9¢c)

For the moment, Etr and Eint shouldbbe viewed as some partitioping of
the total energy E such that Eqs. (2.9) are satisfied. Later, of course,
they will be shown to be the translational and internal energies,
respectively. One next transforms to polar co-ordinates, and letting

P (pr) and 2(j) be the radial and angular momentum operators for the

R’
relative (internal) motion, one obtains:

2 .2

(%R—+ —— - E_) UR) = 0 (2.10a)
H 2uR

Pr2 j2 >

=+ -E, )X()=0 (2.10b)
2m 2mR2 int

Finally, substitution of:

-> 1 2, ~

URR) = R qu,(R) le (R) (2.11a)
-> _ _]; j A

X(r) = = an (r) ij (r) (2.11b)

into Eqs. (2.10) yields the familiar free particle solutions for ukz(R):

ukZ(R) = a - (kR) jl(kR) + b - (kR) n, (kR) (2.12a)
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where a and b are expansion coefficients, jl(nl) is the regular
(irregular) spherical Bessel function of order %, and k is the usual

wave vector; defined in terms of the translational energy as:

_1 1/2 o
k —_h(ZuEtr) .(2.12b)
Equation (2.10b) reduces to a one-dimensional eigenvalue problem;
- 2 .2
P h™§ (j+1)
_+ - = .
(2m zmrz + v(r) Enj) xnj(r) 0 _ (2.12¢)

where p is just a one-dimensional momentuﬁ operator. Equation (2.12¢)
is just the defining equation for the bound vibration-rotation states
an of the B-C diatomic which correspond to internal excitation energy
enj' Because the energy range studied is below the dissociation energy
of the diatomic, it is legitimate to restrict the solutions of Eq.
(2.12¢) andAits antecedents to bound states. One might add, as a
procedurai point, that Eoo will be defined as being zero, thus fixing
the energy scale. With this definition, states of total energy E will
be scattering states with at least one particle asymptotically free
if E>0, and three-particle bound states if E>0.

At this point, the kinematics and notation have been established,
and the next topic to be discussed is the S-matrix. With Eqs. (2.7b, c)
as motivation, it is convenient to define the two Moller operators
(Taylor, 1972). Let U (U,) represent the propagator corresponding to

H (Ho), then:

. HEt —iHot
1- et
. g, =By v = B, (2.13a)
-iHt —lﬁot

lim - 1 .
Q= t*+EL U(t)+ Uo(t) =tio® ¢ h o h (2.13b)

In analogy with Eqs. (2.7b, c) one has the relations:
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b=, - 4, (2.14a)
V=R ¢ s (2.14b)
which relate the actual scattering state to its two asymptotes.
One then has:
S R,
¢out =0 Y= Q_Q+¢in (2.15)

where one has substitutal Eq. (2.14b) for {. If one then defines
the product of Moller operators in Eq. (2.15) as being the S- or
scattering operator, one can write:

¢ =S ¢, (2.16)

out in
It is clear that by acting on the incoming states, the S-operator
directly yields the outgoing state. Its action is exactly
equivalent to solution of the full Schroedinger Equation (SE) with the
~ same incoming boundary condition and passage to the asymptotic limit
for the outgoing component of the solution. At first one might think
that solution of the full S.E. yields more information, since one also
gets the solution for small interparticle separations. However, this
information is of no particular interest., Operationally, one may
define the asymptotic region as one where the interaction potential
is small with respect to the relative translational energy. In the
calculations described in the next chapter, the translational energies
were on the order of 0.5 eV; the interaction potentials were less
than 0.5°K, (one part in 104 of the translational energy) for
atom-diatom separations of ten or so Angstroms, (about 10_7 cm).
Thus if one considers a scattering experiment taking place in an

apparatus of human dimensions, i.e., detector separated from scattering
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established in Eqs. (2.12). Further, if one seriously believes the
statement about the equivalence of the S-operator to the solution of
the full S.E. and passage to the asymptotic limit, one must conclude
that the S-operator's comnservation properties reflect those of the full
Hamiltonian. In particular, (Taylor, 1972) one can establish that
they both conserve total energy and angular momentum. By contrast,
the asymptotic Hamiltonian separately conserves energy and angular
momentum for both the translational and internal motions. The effect
of the interaction potential, then, is to conserve total energy and
angular momentum, but possibly reapportion that total between the
translational and internal modes. In employing the coupled channel
formalism, one wishes to make maximum use of these conservation
properties. As was seen earlier, the wavefunctions are described
asymptotically as a superposition of terms like:

6G, B Evn, g, m, 20 m) = 2w, B x o @ Yin ®

X Yij %) (2.19)

Because of total angular-momentum conservation, it is convenient to
transform from the uncoupled basis (%, m, i mj) to the coupled basis -
(J, M, j,%), where as usually J is the total angular momentum and

M is its projection along some space-fixed axis. (Since the total
system is rotationally invariant, the choice of the M defining axis is
not critical. More will be said about this later.) The transformation
is effected by the usual coupling relations involving Clebsch-Gordon

Coefficients: (Rose, 1957)
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event by distances on the scale of centimeters, there is no doubt that
only the asymptotic form of the wavefunction is being probed. Not
suprisingly then, the usual quantities of interest in a scattering
experiment, such as cross sections, phase shifts, etc. all depend
on the asymptotic form of the wavefunctiﬁn. Thus all such scattering
information is obtainable from the S-operator.

Returning then, to the main thread of the discussion, if one
knows the incoming state of the system, say ¢l’ it is reasonable to ask
what is the likelihood of emerging in various possible final states

of the system, say (&. Now, from Eq. (2.16):

¢ =S . ¢l (2.17)

and the probability of emerging in state ¢2 is

= 2 _ 2
Piag = 1(yle, II7 = 1Co,lslen]® (2.18)

Equation (2.18) leads immediately to the concept of an S-matrix.
If one chooses a suitable basis set for the asymptotic region, one
could evaluate the integrals of the S-operator between each pair of
basis functibns (thus defining the S-matrix; eg, the integral

appearing in Eq. (2.18) would be the element S,,) and store the results.

12
In the usual matrix-mechanics way, one would then express any integral
of the S-operator by expanding the in and out states in terms of the
chosen basis set.

The choice of an appropriate basis set representation is, not
suprisingly, related to the choice of boundary conditions for the

solutions of the full S.E. These, in turn correspond to solutions of

the asymtotic Hamiltonian, Ho. The solutions of Ho have already been
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3

For later purposes, it is convenient to define (Lester, 1975)

> O . 1 As .
¢a(reR;J’M:n,J »2) = T XnJ (r) Y(r,R,J,M,J L) (2.21)

and to write the analogue of Eq. (2.19) as:

—> -‘)'-, . _ —]; b S
(D(r,R, E,J,M,n,j ’2') = R UkQ,(R) . ¢CX (r,R) . (2.22)

Here the chennel index o, defined by o= (n,j,%) has been introduced,
and i; would be appropriate to define the concept of channel as well.

. In the present context, one defines the system as being in channel a

if it has the values ef E,J,M,n,j,L necessary to be described by

Eq.. (2.22). (In that sense, E,J,M should also be included in the
channel'labei;»however, the conservation properties of the Hamiltonian
make this unnecessary. The reason for that will emergy shortly.)

It is particularly important to note the'diffefence between "state"

and "channelf. In the usual parlance, "etate" corresponds to specifying

(E,n,j). Thus one would expect the wavefunction for a state to
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correspond to a superposition of channel functions 1like the one in
Eq. (2.22) with differing values of J,M and %.

To apply the coupled channel approacﬁ, one first notes that the
eigenfunctions of Ho span not only the space of asymptotic solutioms,
but the space of scattering solutions of the fuli Hamiltonian as well.
(Taylor, 1972). The spectrum of H consists, in general, of bound
states (in which all three particles are bound), and scattering states
in which at least one particle is asymptotically free. (For energies
above the dissociation energy of the diatomic, one also has states
with all tﬁree particles free.) The eigenfuncfions of Ho span these
scattering states. Therefore, one can expand any exact -wavefunction
for given values of E,J and M as:

‘P (rsR;EsJaM) = 2 & * ¢ (r,R) (2.23)
po .

R o

Because of the conservation properties of H, only the specified
values of E,J, and M need be considered. The summation of Eq. (2.23)
runs over the channel index o = (n,j,R). Now perhaps it is clear
why the labels E,J,M were not included in the channel label. One should
note that the justification for writing Eq. (2.23) is that the d&'s con-
stitute a complete set. 1In particular the expansion is formally correct
only. if it includes all the internal states, even those lying in the B-C
continuum. Of course, in the asymptotic region, one finds:

a,°"u R), E'nj< E

o ke
Ca(R)= (2.24)
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Thus the énergetically inaccessible, or "closed"; channels carry no
flux in the asymptotic region. However, they may be important in -
describing the wavefunction in the interaction region.

In practice, one disregards formal caveats and truncates the:
expansion at some convenient point. (Typically, one begins with a
small basis set, say only the open ghannels, and then adds. basis
functions until the addition of one more set of channels causes a negligible
difference in the calculated reéults.) Assuming the basis set has
been‘trungated afﬁer the first N functions, one can write: - (Lester, 1975).

Cq (R
R

| . )
¥ (£,R; B, 3,M) = ) % (,R; 3, (2.25)
8 | |

One then substitutes Eq. (2.25) into the full S.E.:

CQRY. o ‘
- ¢ (GRIL,M =0 (2.26)

(H-E) ¥(r,R ; E,J,M) = (H-E)J
- 8

One then takes matrix elements with each basis function in turn to

obtain:
Ca(®) .
g(¢kx|H“E| = ¢ =0, all (2.27)

If one substitutes Eq. (2.5b) for H, and inserts the explicit dependence
of the (Q;s on E,J, and M, one obtains the system of equations:
42 la($a+1) 9

— - + k) - C(R) ==57FV ,(R;J) - C,h(R)
w2 o o 25 a8 8 (2.28)

where 2a, ka.are the values appropriate for channel o, and

Vg ®0) = <o G, &5 5,0V (5, R 6, GoRs 3,100 (2.29)

Note that the M dependence of the ¢(1's integrates out in Eq. (2.29).
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Since ka,depends on E, and V(I,B depends on J, the radial expansion
coefficients Ca(R) depehd on E and J. (They do not depend on M. At
this point, the only effect of different M states will be to introduce
degeneracy factors of (2J+1) in certain expressions, notably the one
defining the integral cross section.) It»isvc§nvenient to nofe that
each choice of values for E and J gives rise to a distinct set of
coupled Eqs. (2.28), and thus to consider the solution Eqs. (2.28) for
fixed values of E and J, and to suppress the somewhat cumbersome
dependence on E and J.

Equ;tions (2.28) represent a system of N coupled second-order
linear differential equations (with first derivatives missing) of N
unknowns. The system has 2N linearly independent solutions. The
N irregular solutions are eliminated by the requirement that the
wavefunction vanish at the origin. Thus, one expects N linearly
bindependent regular solutions to Eqs. (2.28). One denotes these

solutions by ¢ i running from one to N. Each of these solutions

Ai’

is defined in terms of an expansion like Eq. (2.23). It is convenient
to reformulate the problem in matrix notation. One defines the

>
solution vector Yy with ith component wi by:

¥ (®) =% - c® (2.30)

the matrix C can be shown to satisfy:

16 -—d—2+6 k2y . ¢ (R)=22—uVl (R) + 6 ——2"’(%‘*1) (R), all
g B T g2 aB o’ T UBi S\n2 o8 @ RSB "o

(2.31)
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Equatioh (2.31) is just another version of Eq. (2.285; By making the
obvious definitions, one may rewrite Eq. (2.31) in a more compact form:
a2 -
Q-4+ .c=0-¢c (2.32)

ik
where 1 is the unit matrix and the label I indicates the interaction
potential was used in Eq. (2.29). This, then completes the usual
formulation of the N-coupled channel problem. In order to solvg it,
one may apply the method of Gordon (1969, 1971). A brief sketch of
the method will be given'here, the interested reader is referred
to the literature for a more detailed treatment. The essence of the
method can bé stated as follows. If one is attempting to solve
the Sch;oedinger Equation in a given region, one can consider
subdividing the region int; intervals sufficiently small so that the
potential in each interval can be expanded in a rapidly convergent
Taylor series about the mid-point. If one then considers the
constaﬁt éﬁd linear terms as an approximating reference—poteﬁtial, and
the terms of ordef two and higher as a perturba£ion, one can write
the solution to the reference ﬁroblém explicitly in.terms of Aify
functions. The solution of the exaét problem is then the refefence
solution plus a peréurbation correction. If one assumes that thé
dominant corrections arise from the effect of the quadrétic térm,
oﬁe can evaluate them anélytically. One theh chooses the intervals:
sufficiently‘small so that the correctioﬂs are less than the desired
accuracy. By'ﬁatching solutions and théir derivatives at the
boundaries of the intervals, one é;nbcohstruct a wavefunctioﬂ which

satisfies the S.E. to the desired degree of accuracy in the region
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of interest.
To apply the method to the problem of interest here, one must

first reformulate Eq. (2.32). One adds the term

2
GaB (2u€nj /a) CBi (R)

to both sides of Eq. (2.31). (The appropriate values of n and j are

found from the channel label «a.) One then obtains

2
1 (‘d-2-+ E) - C(R) = UR) * C(R) (2.33a)
dr o ,
where
U =(¢>l—2£-H+iid>) : (2.33b)
aB o 2 dR2 B .
and
E = uEMZ | (2.33¢)

The addition of the second term to the Hamiltonian in Ed. (2.33b)

has the effect of concelling out the radial kinetic energy term for
the relative translational motion. Thué, UaB includes the total
potential, both angular momentum terms, and the radial kinetic energy
for internal motion.

One begins the solution of Eq. (2.33a) at a small enough value of R
to guarantee that between the origin and that value of R the solution
is smaller than the allowed error. ' (It will be recalled that the
solution vapishes identically at the origin.) One then divides
the remainder of the positive R-axis into intervals. At the left
'boundary bf first interval fhe matrix C is set to zero and its

derivative is taken to be a set of N linearly independent vectors.

i
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One theniﬁropagates the solution in the fbilowing way . }First one
notes that the boundary conditions are specified in terms of initial
conditions, i.e., one knows'the value of the solution and its
derivative>at the left boundary of each interval. Assuming that one
is on the ith interval, the problem is to propégate the solution
through that interval. (The value of the solution and its derivative
at the right boundary of the ith interval automatically specifies

the "initial condition" for the (i+1)th interval.) Let ﬁi represent
the mid-point of the ith interval. One then constructs a unitary

matrix gi such that:

.i..

UR) = M, UR) - M, (2.33a)

i

is diagonal. The effect of this transformétion on Eq. (2.33a) is to

replace U by ﬁ. The solution matrix is also transformed:

+

¢ =M cw, (2.34b)
- 1

-1 1

n
Carrying out a Taylor series expansion on U, one obtains:

ny _v 1l .= n N
U®) =) oy ROV U, (2.35a)
where
U =——Uu®]|, =
n an R—Ri

: ' 0
One then chooses the reference potential U _as the diagonal matrix

defined by:

U - q 5 ) @ 2
(g_r)as =@, )aB + o8 (R-R;) (91)a8 (2.36a)

(2.35b)
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the first term in Eq. (2.36a) is the potential at the mid-point. It
is diagonal by construction. The second tefm is explicitly diagonal
by virtue of the Kronecker delta. The “perturbing" potential is
everyﬁhing not included in Eq. (2.36a). In keeping with the idea
that the expansion in Eq. (2.35a) is rapidly convergent, one retains

only the lowest order terms:
AN A N 5 - 0
QD) g = G-V g~ A0 o) - R-R)-- M)y
1, = .2 &
+ 6 o E(R—Ri) (HZ)GB (2.36b)

Since Eq. (2.36a) contains the diagonal first-order terms, the
leading diagonal terms of the perturbation will be second order,
whereas the leading off-diagonal terms will be first order.

The reference problem can be written:

allaB

2 .
d v _ )Y - N, _ v
;R—Z +E) Corn® = (@), + ®RRD-W) ] Con®- (2.37)

This is a system of N uncoupled equations whose solution may be

written as some linear combination of Airy functions:

n
Con = Ala(R) cag + B}(}R)'ban' (2.38)

Here Aia(R) and Bia(R) are the regular and irregular Airy functions
appropriate to channel ¢, and A and ban are constant coefficients

‘ N
whose specific values depend on the initial conditions for Can'
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One is interested, however, in the solution to the exact problem.
Gordon (1964) shows that_the‘exact solution may also be written in~.
the form of.Ed. (2.38), with the exception that now the expansion
coefficients ére no longer constént, but depend on R; One can

estimate the change of a and b on the interval (R, Rr) by:

~ - L v ¢ (2.39a)
ha, =~ - ET' dR[B R . % B0 o - Col .39
1 n, Ny
Ab C T drR [A (R) -) (AU - C, 1s (2.39b)
WOL ] ig é S aB Bn” - .
where the Wronskian Wd is defined by |
- AL (R) - Bi (R) - A" (R) - Bi (R) (2.390)

It should be noted that Eqs. (2.39) contain a two-fold approximation.
For exact equality to hold, one must use the complete perturbing

potential, including all the higher-order terms neglected in Eq.

(2.36b). Secéndly, the %% must be exact. The point then, is to make the
‘ n A

interval size small enough so that the corrections given by Egs. (2.39) are

less than §, the desired relative accuracy. One can determine the size

of the first interval iteratively, and the size of subsequent intervals by:

‘aan|'+|bom| 1/3
wax (|Aa nl, lAbom[)) (2.40)

AR, = BR, - mi (6
since the error varies roughly as the cube of the step size in this
method.

In this way, by use of Eq. (2.38), the solution can be propagated
to the right boundary of the ith interval. All that remains is

establishing the initial condition on the (i+1)th interval. On
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the (i+1)th interval one defines a new transformation M One

_ ‘ i+1°’
then has the analogues of Eqs. (2.34). Rewriting Eq. (2.34a) and
its analogue, one has:

% N

cmnf oMy =Ml C L, (2.41)
clearly;
/_%,H,l = _T_i_%_i_T_: , (2.42a)
where
T, =M, M, . (2.42b)
-1 ~i+1-1i

. v
To obtain the desired initial conditions, one evaluates gj_and its

derivative at the right boundary of the‘ith interval and transforms
them according to Eq. (2.42a). This then specifies the value of

"
C. and its derivative at the left boundary of the (i+l)th interval.

i+l
One then propagates the solution on the (i+1)th interval as before.
" The last difficulty is determining the S-matrix from the wavefunc-
tion. To do this, one assumes that the solution has been propagated
into the asymptotic region; There, each elemeﬁt of the solution

matrix looks like some linear combination of spherical Bessel functiomns

(Gordon 1969):

Con = o [R) - Xt na(R) * Yan ? (2.43)

where
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i R = kR - jz(kR) ' : © (2.44a)
nééR) = kR . nz(kR) (2.44Db)

Here k and % are the wavenumber and orbital angular momentum for channel

O and n, are the regular and irregular spherical Bessel functionmns

3y %

" of order 2. One can write Eq. (2.43) in matrix notation.

C=j3-x+nY v ' (2.45a)

where

(i)ae = § aBj(l(R) (2.45b)
and

(n) aB = S w8%a (R) : (2.45¢)

Ideally, one would like the asymptotic solution in the form:

/2. .1/2

c=i-nk MRk (2.46)

where k is the wavenumber matrix appearing in Eq. (2.32) and R
(also sometimes denoted as K) is variously named the reactance,
reaction, tangent, and Heitler matrix. It is the Cayley transform of

the S-matrix (Taylor, 1972) and obeys the relation:

R=1i(1-s)a+s) 1, (2.47a)

which can be inverted to give:

(1+iR) (1-iR) 1} (2.47b)

wn
L]
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Using Eqs. (2.45a) and Q.46), one can show (Gordon, 1969) that R can

be found by solution of:

1/2X T T (2.48)

a'’?x’ r = a2y

where T denotes transpose of a matrix. This completes solution of
the coupled channel problem for given E and J. One may define a

partial cross-section for a given transition by (Lester, 1973)

o’ () T (2J+1) s s s I,E 2
239703 1 225 zz g, ™My 333y %44 —Snljlzf nyd,%,
- 1 Y 1°72  * :

(2.49)

Finally, one defines an integral cross-~section as:

(E) J
o . . =1 0 (F) . (2.50)
037 0edy 3 mpI3T My,
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B. Classical S-Matrix Theory and Partial Averaging

This section gives a brief discussion of one formulation of clas-
sical-1limit quantum mechanics; in effect a generalization of WKB theory
to multi-dimensional problems. Also included is a description of the
"partial averaging" method. This procedure allows one to treat clas-
sical-liké internal modes (i.e., those strongly coupled to translation)
in the spirit of quasi-classical Monte-Carlo while retaining semi-
classical quantization (via the usual double-ended boundary conditions)
for quantum-like modes, weakly coupled to translation.

Equations (2.49) and (2.50) of the previous section can be taken
as the motivation of the present discussion.. They express the quantity
of intereét, the cross-section, in terms of the S-matrix. Since the
expressions are independent of the method used to calculate the S-matrix,
any theory allowing the evaluation of S-matrix elements automatically
allows one to compute the cross-sectionmn.

One such theofy is the classical S—mafrix formulation derived by
Miiler aﬁd co—workérs. Using as a point of departure the Dirac view
of quantum mechanics, i.e. a formulation stressing the importance of
transformations, they have shown that one can derive an internaily
consistent formulation of classical-limit quantum mechanics given only
two assumpfions: (1) that the transformation element between a

coOrdinate'and its conjugate momentum be given by (in the Dirac notion):
- iqa'p/h ‘
<q|p> = (2mih) 1/2 iq-p/ s (2.51)

-and (2), that integrals arising from transformations of coordinates or

momenta be evaluated by the method of stationary phase, or the method
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of steepest descents if there are no real points of stationary phase.
1t should.Ee noted that assumption (1)‘is exactly equivalent to the
unéertainty principle, and assumption (2) is the definition of
"eclassical-1limit".

_ Tﬁe derivation of the theory_will not be given here. It is the
subject of two review articles by Miller, and the interested reader
is referred to these for the details (Miller, 1974a; 1974b). The
result pertinent to this discussion is how an S—-matrix element for an
inelastic transition may be approximated by use of classical trajectories.
However,vbefore the substance of the theory can bé stated, it is first
necessary'to re—examine the system of interest and to re-cast the
description of the scattering process into the language of classical
mechanics. .

To recap briefly, asymptotically at the beginning of the scattering

).

event, the diatomic is in internal state (nl’jl) with energy E(nl,j1
The atom is "infinitely" far away (i.e., R sufficiently large that the
interaction potential VI(r,R,Y) is negiigible), approaching with
translational energy Etr = E —-€(n1j1) and qrbital angular momentum

21, such that lll + 3 = J. The collision takes place, conserving

N
total energy and angular momentum. The diatomic is now in state
(n2,j2), and the atom recedes with translational energy Etrv= E-e(nz,jz)
and orbital angula; momentum 22. Of course, IIZ + 32] = J.

Thevabove description of the collision process is given entirely
in terms of quantum-mechanically observable quantities, as it must be,

since one is dealing with a basically quantal process. The classical

analogy is most easily made by use of action-angle variables. The
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system is then described classically by four pairs of conjugate
coordinates and;mqmenta:-_(R,PR), (qn,n?, (qj,j?, (?Q?Q)' The
advantage of thése variables is ;hat tﬁe iéét three ﬁomenta, n,j,%,
are the classical analogues of the quantum numbers with the same
1abels. (0f course, as classical quantities, they are not restricted
to integral values. This in fact is the motivation for the minor
change in_nbtatioﬁ. The"iﬁternal energy enj of the last section now
becomes €(n,j), sihce it seems natural to indicate integer anguments
by subscripts and continuous.arguments by fhe usual functional
notation.) The transformation from this system of coordinates and
momenta to the usual cartesian system.is weli—known (Miller, 1970,
1971, 1974a), and will not be given here._.Thus the classical descrip-
tion of the asymptotic states consists of R "infinitely" large

(i.e., 1arge enough for the interaction potential to be negligible),
PR fixed by energy conservation, and the action variables set equal

to their respective quantél (integer) values. I; should be noted that
the states.are defined by exact values for the momenta, both intially
and finally, but that the coordinates (i.e., position) variables are
completely unspecified, except fof a vague condition of R, whose
purpose is to assure that the systém is indeed in the asymptotic region.
In fact, even this condition is based on én energetic consideration.
The emﬁhasis on energy and momentum is understandable, since the
quantal description is in terms of energy and angular momentum
eigenstates. The uncertainty principle requires that complete
specification of momenta be accompanied by complete ignorance of tﬁe

values of conjugate coordinates. Thus it is not surprising that the
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classical analogy focuses on momenta and energy as well. Yét the
coordinates, particularly the éngles conjugate t§ the action va;iables,
will be seen to play a crucial role in the theory.

Given the coordinate system defined above, one can write the

classical Hamiltonian for the system (Miller, 1970) as:

H = (pi + 22/R%) /20 + e(n, i) + V_(£,R,Y) - | (2.5a)

The variables r and y are understood to be defined in terms of n,j,%,
and their conjugate angles. The exact expressions will not be given
here (Miller; 1970), it should suffice to indicate the specific

dependence:

2]
1]

r (n’j ,qn) (2.52b)

Y Y (n9j’2’qn,qj’q2) . (2.52¢)

The_dynamical evolution of the system is given by Hamilton's equations

of motion (Goldstein, 1950),

i = doH

i Bpi
. _OoH
i qu

where i_denotes a particular pair of coordinate and conjugate momentum.
It is instructive to consider the case in which the interaction
potential is indentically zero. (Just as in the quantal description,
the interaction potential goes to zeio for large values of R. Thus

one is looking at the classical analogue to the asymptotic states.)
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If one defines the initial relative translational velocity V1 and

the impact parameter b by:

v, = @@, 3,0/ (2.542)
and

b= 2,/Gv), . » © (2.54b)

then the trajectory functions are given by the following equations,
assuming one chooses t = 0 to correspond to the distance of closest

approach. (Doll and Miller),

n(t) = n; (2.55a)
je) = iy (2.55b)
2(t) = 21
R(e) = (b2 + V12t2)1/2 (2.554)
P (t) = - uv, (b2 /R() D)2 (2.55¢)
doe(ny,3,)
qn(t) = q“j-_ + ——3'5'1——— -t _ (2.55f)
q.(t) =q, +—5—— - t 2.55g
j iy 33,
qz(t) =q + arctan (vlt/b) | (2.55h)

1
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Inspection of Egs. (2.55) will reveal two points. First, in order
to describe an asymptotic state classically, one must specify the
values of |

»qd, » E,J,n_,3.,%.).
1 21 1’7171

1
The variable J does not appear in Eqs. (2.55), but its value is required
in the computation of Y, and thus if the interaction potential is non-
zero, J must be specified. Second, in the asymptotic region, the values
of n,j and % are constant, as expected, since their conjugate coordinates
are cyclic (i.e., do not appear ) in the aéymptotic Hamiltonian. The
effect of the interaction potential is to introduce the angle variables
into the Hamiltonian, thus destroying the time invariance of the action
variables. Further, one should recall that the interaction potential
is explicitly a function of R,r, and Yy; however, the last two
ﬁariables depend in turn on all the action-angle variables. Thus,
the preSeﬁce of the interaction poténtial couples all the modes.
For eXampié, the term ;;;—— , which appears in Hamilton's equation for
i, is a function of R,n,j,%, qy and 9qp- The presence of this term,
then, couples the vibrational motion to rotation and translation.
This, of course, is completely analogous to the situation in the
coupled channel problem, where the coupling was also seen to arise
from the effect of the interaction potential. (See Eqs. (2.28) and
(2.29).)

At this point, one is finally able to state the so-called classical
S-matrix formula. First one recognizes that the classical analogue

of a quantum scattering event going from channel (n 21) to

l’jl’
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channel (nz,jz,ﬁz) at fixed J and E is a trajectory starting in the

asymptotic region at time t, and ending again the asymptotic region

1
at time t2, such that:

n(t{) =0 _(2.56a)
j(tl) = j1‘ (2.56b)
i(tl) = & (2.56¢)

and
) n(tz) = n, | (2.56d)
j(tz) =, (2.56e)
2.(t2) =2, | (2.56f)

Equations (2.56) are examples of the so-called double-ended
boundary conditions, in which the boundary values are specified
partially at the beginning of the trajectory and partially at the end.
In practice, to evaluate a trajectory numgrically, one must specify
initial conditions for all the variables. This situation leads to the
root search problem. One must find values of qnl, qjl, and qQI1 such
that, together with the initial conditions in Eqs. (2.56a, b, c), they
define a trajectory satisfying Eqs. (2.56d, e, f). If the action variables
are initiélly fixed to the values defined by Eqs. (2;563, b, ¢), one |
can consider their final values to be functions of the initial values

of the angle variables:
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n, = n,(q v.q »Qq ) (2.57a)
2 2 n, jl 21

3, = 3i,(q. ,q, »q, ) - (2.57b)
2 2 n, *'3, 21

L. =1 .
2 (q jl,cx,LI) (2.57¢)

The desired angleivariables are the roots (i.e. solution) of the
equationa resulting from equating the expressions in Eqs. (2.57a, b, c)
to the desired final boundary values defined by Eqs:‘(2.56d, e, f).
(One should note that qn » for example, is not the value of q, at time

1

t Rather, since the system is in the asymptotic region, qn(tl) is

1
calculated from qn by use of Eq. (2.55f). The reason one chooses

qn rather than g (tl) in Eq. (2. 57a) is that q n, is time indepe§dent,
where as qn(tl) does have an admittedly simple dependence on t)-
Similar remarks appl& to qj and qq - Thus as long as £y and t, are
chosen so the system is in the asymptotic region at both these points
in time'(so that Eqs. (2.55) and (2.56) hold), the root search problem
defined by Eqs. (2.57), and its solution, do not depend on the values

of tl or tz.

 gource of confusion in the notation, since for the action variables

These remarks have been included to clarify a possible

the subscript 1 can be taken to denote their values at time t_, and

1
the subscript 2 to denote their value aé time tz).
Once one finds the desired trajectory one can compute the S-matrix

element by the formula:
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l t2 ) . . . ‘_ ‘ . . -
| fl-'-,/‘tl‘ dt (R-PR + q ‘n + anJ + qZ.Q)
S (J,E) = " ‘
n, 3> . .
2724 mhyhy A | 3G, ,3,.0.) 1/2 (2.58)
N Qnih>- 2°32°%)
(g, »q; "y )
i M

1

Of course, Egs. (2.57)vmay have multiple solutions, i.e., there may be
more than one trajectory satisfying the double-ended boundary conditions
imposed by Eqs. (2.56). In this case, the S-matrix element is the sum
over all such trajectories of expression (2.58). This of course gives
rise to interference effects; (just as in the semiclassical theory of
elastic scattering, if b(6) , i.e., the inverse of the deflection .
function, is multivalued.’ It is also péssible that Eqs. (2.57) have
no real solutions. Then it ié necessary to look at complexvédlutions'
(Millerfand George, 1972). TIf the integral in Eq. (2.58) is real,
as it will be if the trajectory function are real,‘then the exponential
has a purely imaginary argument and thus acts as a.phase factor. 1f
on the other hand, the integral is complex, then its imaginary part
becomes the real part of the exponential's arguﬁent, leading to
‘ exponentialldamping. Thus one would expect the contribution to
an S-matrix element arising from complex solﬁtions to Eq. (2.57) to be
much smaller than any corresponding contribution frém real‘solutions.
This means thét complex trajectories are important onlyvin so-called
'ctlassically forbidden" problems, i.e., those for which Egqs. (2.57)
have no real solutions. (The easiest example to pdint out is the

case of barrier penetration or tunnelling. 1In the present case, the
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"forbiddenness" can be viewed as follows. For a transition to be
classically allowed, it must be allowed by energy conservation, and
there must be trajectories which ekplore regions where the translation-
vibration cdupling, let's say, is sufficiently strong to allow the
transition to take place. It is possible that these regions of strong
coupling are energetically inaccessible in the energy range chosen.
Thus in order for the transition to take place, the system must tunnel
into a classically forbidden region of strong éoupling, where the
transition ié dynamically allowed.) Of course, fhere may be multiple
complex solﬁtions. By the same token, one need only consider the
solution which leads to the smallest imaginary part for the integral
in Eq. (2.58). All other solutions will bé more strongly damped and
hence make negligible contributions bf comparison.

In order to compute the cross section, one merely substitutes
Eq. (2.58) into Eqs. (2.49) and (2;5 of the previous section. The
final expressiqn can be written: (for an inelastic-transition)

-1
' P
o (E) =T ¥ (2041) 22 Zr eh ¥ 73

. =T Ly —3
n,j, « nyiy kl(ZJl +1) J 91 9 ((Zﬂlh? Dr)

(2.59a)

where the sum over r indicates a sum over all solutions of the root

search problem defined by Eqs; (2.57), and ¢ and D are defined for the

rth trajectory by:

t
2 . . . .
¢=ft dt (R~PR + q,°'n + qj-J + qq L), (2.59b)
1
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9(ny,3,:29) T (2.59¢)
9(q_ , q. »,q, )
n’ i

”

If one considers éalculating all possible cross sections from n, = 1,

, , 1
= 0 thru 6 ton, = 0, j, = 0.-thru 8 for, say H, + He, where one can
2 -2

j1 2
expect all partial waves out to J = 60 to contribute, it is easy to
éhow that the calculation would require aﬁout 24,000 root searches if
Eq. (2.595) were used as is.. It is with the hope of reducing this
prohibitively laborious chore that one introduces the idea of partial
avéraging.' (Miller and Raczkowski, 1973)

The problem with Eq. (2.59a) is that it faithfﬁlly keepé track '
of interference effects in individual S-matrix elements and then sums
the result over a large number of terms to compute the cross section.

(The number of terms varies with the transition; in the example of

H, + He quoted above, there are 60 terms in o

9 and 1200 terms

00«10
ig 008+16') It has been p01nt§d out (Miller, 1971) that if

a sum contains more than ten or twenty terms, one may be quite

certain that interference effects in the summand will be quenched.
Secondly, because of the large number of terms in the sums, it would
be in keeping with the semiclassical spirit to replace the sums-by
integrals.

Perhaps the conceptually simplest way of arriving at the partially
averaged'fdrmula for the cross sections is to consider a cross section
of the form o . - This merely introduces a sum over j, into

n2+n131 v 2
Eq.'(2.59a). If one now neglects interference and replaces the sums

over’jz;kz,zl, and J by integrals, the expression becomes:
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g (E) =
N0y,
® (J+i.) (J+3.) % 2 Im(¢)
. 2 J1 3 e B
5 dJ") dzl dg, dj, 3
(2.60)

where ¢ and D are defined by Eqs. 2.59b, c). One then changes variables -

of integration from j2 and 22 to qj and qy - The Jacobian of the
1 1
transformation partially cancels D (see Eq. 2.59c), and one obtains

finally:
o (E) =
n2<-n131
| E |
T © L, LU I £ T
- dJ") dﬂll d(?""‘) d(2 )e 3
K (25,+1) . m m 3]9™
14991 0 |3-3, | o "o 2l |
qn
1
(2.61)

In order to apply this formula, one evaluates the integrals by
Monte Carlo: for each integration variable one réndomly chooses a
value from its range of integration, one then evaluates the integrand
at this "point" (i.e., for those values of the integration variables),
one repeats this process N times. The value of the integral is then
taken to be the arithmetic average of the integrand evaluated at the N

points. It should be noted that evaluation of the integrand in Eq.
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(2.61) still involves satisfying a double-ended boundary conditions.

With n and the total energy specified, the Monte Carlo procedure

1’ j1
supplies initial conditions for all but one variable. The prescription

for finﬁiﬁg q, is that its value must lead to the vibrational action

variable having the desired final value n If one is computing -

9
00+1,j1’ say, this condition can be written:
nz(qnl) = 0. (2.62)

Thus the partial averaging formula does indeed simplify the
calculational task in two ways. Firstvit reduces the dimensionality
of root search problem. (The importance of this will emerge from the
discussion.in the chapter on calculations.) Second, it reduces the
number of root searches which must be performed. The evaluation of
the integral in Eq. (2.61) by Monte Carlo basically consists of finding
N trajectories which start in state (ni, jl) and end in some state
»(nz, j2); one places no restriction on j2' Associated with each
trajectory is some transition probability, found by evaluating the
integrand_invK. (2.61). 1In order to find the total cross section
to n,, one sums this probability over all N trajectories. But since
one knows all the trajectory functions for each trajectory, one could
approximate the cross section to (nz, j2) for each j2 by just summing over
those trajectories which have final j values betweén (j2—1/2) and (j2+1/2).
(In the original formulation of the problem as expressed by Eq. 2.59a), |
j2 and 22 were guaranteed to be integers by the boundary conditions in

Egs. (2.56e, f). Use of the pértial averaging formula only guarantees
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that the boundary condition on n, is satisfied; j2 and Qz can have

2
any non-negative real value.) Similarly, the differential cross
section can be appréximated'by dividing the interval (0, ) into
increments of A6, and computing the differential cross section in eacﬁ
increment by summing over only those trajectories which have scattering
angles in the desired range.

This of course means that N, the number of Monte Carlo points used,
will depend on how detailed is the information being sought. 1In the
case of’H2 + Li+, where differential cross sections were‘obtained,

1000 pointé were used. In the H, + He study, where only the integral

2
cross sections were of interest, and these were required at several
energies, one hundred points were used for each initial state and energy.
Thus, the calculation which would require 24,000 three-dimensional
root searches if Eq. (2.59a) were used was‘reduced to one requiring
only 400 one-dimensional root searches.by use of the partial averaging
formula. This amounts to a saving of effort of several orders of

magnitude, where one considers the relative facility of 1-D over 3-D

searches.
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C. Rate Constants and Relaxatioﬂ Times

This section gives a discussion of how one would use the cross
section data, derived in the previous two sections, to calculate the
rate constants for the specific quantum state transitions, and eventually
utilize this information to characterize the relaxation, i.e., approach
to equilibrium, of a perturbed system. The topicé of this section are
straightforward and well-documented in the literature. Thus again,
the discuésion will be brief, all proofs will be omitted, and the
reader interested in further details will be referred to the literature.

If one considers a bimolecular process of the form

Hz(nl’jl) + He(vl) > Hz(nz,jz) + He(vz) (2.62)

(The meaning of Eq. (2.62) is that H, in the internal state (nl’jl)

2
collides with He approaching asymptotically with relative velocity vys
energy transfer takes place, and H2 emerges in state (nz,jz), and He

recedes with relative velocity VZ')’ one can write the rate constant for

the procéss as (Weston and Schwarz, 1972):

k (2.63a)

21~ V17%+«1

where the subscripts 1 and 2 are now used as generic labels for the
initial and final states, respectively, and 0 is the relevant cross

section, i.e.,

o =g .,  (E) . 2.63b
T2+«1 n232+n131 ( )
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in the notation of the previous two sections, where the. total energy

E is given by:

UVlz
E = > + €, 5 = Et +e .. (2.63c)
1h oM
thus, 02*_1 can be considered a function of the initial relative velocity

or translational energy.
Of course, if the system is characterized by a distribution of
relative velocities, p(v), then the rate constant is the average of

Eq. (2.63a) over the distribution:

k2<_1=/ v 0, q Py dv,. (2.64)

The most common case is where p(v) is the Maxwell-Boltzmann velocity
distribution characteristic of some translational temperature T. The

function pT(v) is then given by:

Buv’

3/22‘ 2

pT(v) lm( ) (2.65)

In order to avoid confusion between the rate constant and Boltzmann's
constant, both of which are traditionally designated by k, it is

convenient to define the quantity by:

B = (kBT)“1 (2.66)

where kB is Boltzmann's constant. It is trivial to show that if one

performs the change of variable:

e =g =8U (2.67)
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Eq. (2.64).with p(vl) defined by Eq. (2.65) becomes:

T = 'Y " -
k2(<- V> <0, 270 (2.68a)
where
8 1/2
<V>T = (HB'U) 5 (2.68b)
and
. _ (XJ. —'E
<02+1>T -/;e 024—1(6) - e ‘de. (2.68c)
The function 024_1(6) is defined in analogy with Eqs. (2.63b, c) by:
. (&) =0  We/B)y p e (2.68d)
2ol omplpemdy - gy

Having defined the rate constant, one can show that the rate of

transition from state one to state two is given by:
Ry 1 = Kyoq ° [Hel - [Hy(n;539)10, (2.69)

where [He], for example, stands for the concentration of He. One wishes
at this point to discard the generic notation for initial and final
states and to consider some specific ordering of the internal states
of HZ’ now labelled one through N. (the exact ordering is immaterial,)
so that the subscript i refers to some definite state. One can then

- . > .th .
define a population vector n(t), whose i~ component, ni(t), is the

' o .th | . .

instantaneous population of the. i internal state of H, at time t.

2

It is convenient to impose the normalization condition:
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in, = 1. (2.70)

The variable ni(t) is then the population fraction in state i at time
t. Of course, the system tends toward equilibrium and in the limit of
infinite time, the population fractions tend to their equilibrium values.
These can be denoted as ﬁi, for later reference, and they are given by

the usual relation:

-Be,
1im 8i e
t >+ ni(t) =Py T T g (2.71)
lg e
i3

where gi and ei are the degeneracy and energy of the ith internél state.
The purpose, however, is to describe the time evolution of a

perturbed system for all times t, not merely in the infinite limit.

Thus n(t) must be considered an arbitrary vgctor with non-negative

components, satisfying Eq. (2.70). At any point in time, the populations

must satify the relation: for all i,

1 R,_.. (2.72)
j#1i

M1 =j=#2i fiey T
Equation (2.72) is merely the consequence of Eq. (2.70), whicﬁ in turn
follows from the conservation of matter. Equation (2.70) requires
that no particles be gained or lost by the system as a whole. Thus
the gains in the population of level i are caused only by transitions
from other states, and losses only by transition to other states.

Eq. (2.72) expresses the net change in level i as gains minus losses.
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(Oppenheim, Shuler, and Weis, 1967). Using Eq. (2.69) for the rate
and letting p = [He], one can rewrite Eq. (2.72) in the more convenient

matrix notation as the so-called Master Equation:

-

N (€)= p-K-n(e), @73

where the matrix K is defined by:

k i#j
i<j
Kij = (2.74)
Sl ok, i=
LFEL L+i
the differential Eq. (2.73) has the formal solution:

> Kpt > -
n() =e - n (0). _ (2.75a)

It is customary to incorporate the scalar factor p into t and write

at) = e =5 7 (0). (2.75b)
One néﬁ seeks to diagonalize K, since this will lead to a more
'readily interpretable expression for the time behavior. The diagonaliza-
tion is usually carried through in t&o steps (Rabitz and Zarur, 1975).
One first symmetfizes the matrix K. Since at equilibrium Ri*‘j

equals Rj*-i’ it follows immediately by use of Eqs. (2.69) and (2.74)

that

o

K,, = - K, .. (2.76)
ij 5 ji
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This is the so-called detailed balance relationship. Defining the

matrix T. by:

1
() 4, = 8t 2.77)
one can show that ;he transformation:
K, =T % -K-T | (2.78)
-1 -1 - =

yields a transformed matrix K, which is symmetric. The symmetric

1
matrix 51 can now be diagonalized by the transformation T2’ i.e.:
A=1, 7t KT | (2.79a)
- =2 -1 -2
where
AD,. =96 L\ (2.79b)

—1j ij i
The variablev}\i denotes the ith eigenvalue of the rate matrix. It

follows from Eqs. (2.70) and (2.76) that the eigenvalues are all. real

and can be ordered as follows (see Oppenheim,_gg.al., 1967):
O=2A, 22, 2... 2 A (2.80)
Finally, defining the matrix M by:
M=T .T (2.81)
one can write

K=M2IM", (2.82)
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and Eq. (2,79b) can be rewritten as:
At , ‘
R =Me MLT0) | (2.83a)

or equivalently,

for all i,
mi(t) = e wi(O), , (2.83b)

 where the transformed population vector w is given by:
o=M" .7 ' (2.83c)

Equation (2.83b) is obtained from its predecessor by left-multiplying
béth sides by M_l; this mathematically simple operation, however,
corresponds to a conceptually profound shift in perspective. Whereas
Eq. (2.83a) retains the same basis set as its ultimate antecedent,

Eq. (2.75b), Eq. (2.83b) ih essence describes the results of a change
of basis. This change of basis corresponds to a‘very marked change in
how the system is'being described. 1In order to amplify these remarks,
one muét look closely at tﬁe fundamental underpinnings of Eqs. (2.75)
and (2.83).

In order to define the vector 3', one takes the elements of the
standard basis set {gi} to correspond in turn to the presence of one
particle in the ith level. (The ith standard basis vector is just the
vector with i in the ith‘place and zeroes elsewhere, for example,

'{?, 3, ﬁ} is the standard basis set for Euclidean three-space.) One

then defines the components of ; by
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-
n = g n, € (2.84)

Thus K defines the system in terms of the populations of individual
levels, and the rate matrix K describes the relaxation of the system in
terms of transitions between individual levels. This, of course, is
the most iﬁtuitive formulation.

To obtain Eq. (2.83b), on the other hand, one uses the transformed

. .
basis set {ui}, whose elements are given by:

> >
u; = M- €4 (2.85)
where M is defined by Eq.(2.81). The system is described by the
population vector 5, whose components obey:
> >
w = :ZL Wyt ug, (2.86)

and they are related to the components of ﬁ by Eq. (2.83c). Of course,
since M diagoﬁalizes K, the ﬁi's are just the eigenvectors of K. One
caq‘show easily that"ﬁ1 is just the equilibrium popuiation distribution.
Since the corresponding eigenvalue Al is zero, Eq. (2.83b) shows that
wl is time independent. The other eigenvectors correspond to deviations
from equilibrium which die away with characteristic rates Ai.' One is
now describing the relaxation of the system in terms of éoncerted
processes (i.e., linear combinations of individual transition,) which
lead to uncoupled equations for the time dependence. Perhaps the

most useful analogy is the case of the internal motions of polyatomic

molecules, where one transforms from the usual cartesian coordinates of

each atom to the normal coordinates of the molecule as a whole (i.e.
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concerted motions of the atoms.) 7In the process, one greatly simplifies
the equations of motion by transforming away the iowest—order coupling
terms. In the present case as well, one goes from a myqpic description
in terms of transitions between individual levels to an overall view
of the relaxation of thé system at large.

Equation (2.83b) 1leads naturally to the idea qf relaxation modes
and times. If one defines the relagation time of the ith mode (i;e.,

the one corfesponding to the population imbalance described by Gi) as:
T, = -A, . (2.87)

its componeﬁt clearly goes to zero as:

-t/t

W) =e 1

© W (0).

If tﬁe populatibn imbalance At time zero is described by only one
mode,bthe approach to equilibrium will be a simple exponential function
of time. This is called "pure mode relaxation."”" However, if several
modes are initially present, the time dependence will be a sum of
exponentials. Of course, if the eigeﬁvalues of the raté matrix are well
separated, one would expect that for long enough timgs, only the
contribution from the mode with the longest relaxation fime (i.e.,
slowest rate) would be significantf Because of the ordering in Eq.

(2.80), the longest relaxation time is T This quantity should then

9
be observable, even if it is impossible to prepare the system initially

’ ->
in the pure mode Uy
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ITII. CALCULATIONS AND RESULTS
This'chapter concerns itself with the actual application of the

+
theory discussed previously to two real systems, H,-He and H ~Li .

2 2
The material will be presented in chronological order, after a few
pfeliminary remarks to set the stage. The caléulations to be described
include use of the classical-limit method on both systems, and a
coupled~channel calculation on HZ—He. The Hz—He studies are technically
less interesting, since the coupled-channel calculation was routine,
employing Qell—known procedures, and the classical-limit calculation
merely involved application of the methods developed during the H2-Li+

study. The Hz—Li+ work, then, is more interesting from the technical
point of view, since it entailed the development of thé current
methods of applying classical-limit theory to non-reactive, three-
dimensional systems. Consequently its description occupies a
prominent place in this chapter. On the other hand, the parallel
calculations of Rabitz and Zarur (1975), McGuire and Toennies (1975),
and Alexander (1975), as well-aé the experimental work of Audibert,
Joffrin and Ducuing, lend special pertinence to the results of H2—He
relaxation study.

Before proceeding to a discussion of techniques used to circumvent
difficulties in applying the classical-limit method, it seefs
worthwhile to restate thé'nature of the method and give a more
detailed account of the difficulties. As will be recalled from

Section II.B, the partially-averaged classical limit method calls for

finding N trajectories whose initial conditions are given as follows:
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E, n, and jl are specified in the cross-section to be calculated,.

J, Ql, qj' and q, are initialized by the Monte Carlo procedure,
1 1

and q, is chosen to satisfy the requirement:
1

n2(qn1) =n,. | (3.1)

Associatea ﬁith each trajectory is a probability (or weighting)

factor, given by the formula of Eq. (2.61). 1In order to éompuﬁe

thebcross—section, one averages this probability over all N trajectories.
Now, to consider explicitly the case of complex trajectories, one

must begin with-Eq. (2.59a), with the explicit summing of the S-matrix

elemenﬁs. The corresponding complex boundary conditions for the

trajectories leading to S-matrix eléments are the following: fhe

real parts are fixed as before (see Eqs. (2.56) and (2.56)), except

that the arguments.are now complex, and imaginary parts are set

equal to zero. The partial-averaging method again allows one to

. remove the restrictions on the real parts of j2 and 22 by averaging

over qj and qzl,vand the boundary conditions for the Monte Carlo

1
trajectories become

Re nz(Re qnl, Im qnl, Im.qjl, Im qzl) =1, (3.2a)
Im nz(Re qnl, Im qnl, Im qjl, Im qzl) =0 (3.2b)
Im jz(Re qnl, Im qnl, Im qjl, Im qgl) =0 (3.2¢)
Im 22(Re qnl, Im qnl, ?m qjl, Im qzl) =0 (3.24)
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kIt will be recalled that Re qjl and Re qR‘1 are specified for each
trajectory by the Monte Carlo procedure.) Thus, while for real
trajectories the partial-averaging method reduces the dimensionality
of the root search from 3-D to 1-D, for complex trajectories the
reduction is less profound, from 6-D to 4-D. Thus the first difficulty
is that one must still perform a multi-dimensional root search at

each Méﬁte‘Carlo point.

The second comﬁlication is the running of the complex trajectories,
i.e., the numerical integration of the equations of motion along a
complex time path, beginning with complex initial conditions. This
procedure presents a two-fold difficulty. First, because of the
trajectories' ability to tunmnel, they are sensitive to the global
features of the potential. The potential for real systems is usually
known in terms of ab initio values at a given set of points. One
then performs an analytic (in the complex analysis sense) fit to
the points to define the potential on the positive réal axis and
then continues this fit to define the potential iﬁ the complex
plane. Thus, different fits to the same set of ab initio values
will have different continuations in the complex plane. (Of course,
if the pptential were analytically known for real values of its
arguments, the continuation into the complex plane would be unique.)
The consequence is that for real trajectories, if one can show
that the,system is confined classically to some regiom of space,

one need only concern oneself with fitting the potential locally.

The behavior of the fitting function in the classically inaccessible
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region is immaterial. (Fits are usually constructed to extrapolate
properly in the translational coordinates; however, in describing
the vibrational dependence the fit is often only good within a
bohr radius or so from the equilibrium position, and the extra-
polation properties in the vibrational coordinate are seldom considered.)
For complex trajectories, this is no longer true; The trajectories
can tunnel into all regionsvdf space.. Thus the fitting fﬁnctionv
must have the correct global character as well as representing the
potential correctly in the region of the ab initio points. Unfor-
tunately, while the occu?rence of unréasonable values for regions
of the real axis can be used to scfeen out unacceptable fitting
functioné, the converse is not”necesserily true. Correct behaviour
on the real axis does not necessarily lead to desirable character-
istics in the analytic continuation. The question of E_Eriori
determining the suitability of some fitting form is at present an
open one. The suitability can only be. determined a posteriori by
looking at the results of tréjectories run on that potential surface.
The‘second difficulty has to do with the vibrational motion.
For real trajectories, the motion is oscillatory, i.e. moving back
and forth along the real axis between the turning points. For
present ﬁurposes, the case of oscillations sinusoidal in time
can be cénsidered. For complex trajectories, the motion will now
trace an'éllipée in the complex plane with the turning points
(now complex) as its foci. The motion is still.sinusoidal, But'
the argumegt_of the sine, i.e., the time, is now complex. The

imaginary part of the time imparts exponential growth to the oscillation.
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Thus, evenvﬁith an entirely reasonable interactiop potential,
trajectories may not complete satisfactorily, because of unbounded
vibrational motion in the oscillator. Restricting the time to real
values is not possible, since that would be equivalent to allowing
only real trajectories, thus vitiating the classical-limit method's
ability to deal with classical forbidden processes. One is in the
paradoxical situation where the feature allowing the method to |
broaden ité scope to classical forbidden cases is also the ultimate
source of.difficulties in the application of the method.
| Fortunately, the problem of the vibrational motion is amenable
to solution. Classical S-matrix theory requires only that the real
part of the difference between a trajectory's starting time and end
time tend to infinity. There is no restriction on the actual time
pa#h followed. In principle, given the trajectory's initial
conditions, ,all time pathé with the same end points must lead to the
same final values for the t;ajectory functions. 1In practice, some
paths will lead to numerically more stable trajectories than others.
Thus one must choose a path through the complex time plane such
that the vibrational motion builds up enough complex character to
overcome the '"forbiddenness" of the desired transition, but not
sufficientvto cause unbounded motion. Clearly, the choice of such
a path may require some finesse.

In summary then, the success of the classical-limit method is
contingent upon two interrelated criteria: (1) being able to run

trajectories (that is, given the initial values for all variables,
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being able to pegform a stable, convergent numerical integration
of the equ#tibns of motion), and (2) being able to find roots (that
is, given a set double-ended boundary conditions, being able to find
values for the initially unspecified variables such that the final
conditioné of the problem are satisfied). The two requirements are
interrelated because the typical root-search algorithm uses the
results of its previous four or so guesses to give a new, and it is
hoped, more accurate guess for the root. To tell how well the root
searcher is doing one must run the trajectory witﬁ the current guess
as the iﬁitial condition. The error (i.e., the computed final values
miﬁus the desired final values,) is used in determining the next guess.
1f at séme point the root searcher predicts initial conditions ﬁhich
lead to an uncompleted trajectory, the entire épproach bogs dowm,
since the'erfor can no longer be evaluated aﬁd thg next guess cannot
be prédicfed. Thus, the intégrator is required to»complefe trajectories
even for somewhat unreasonable choices of the initial éonditions,
sinéé the root searcher wili usually make a few guesses afield before
beginning to converge to the root. On the other hand, the root
searchervcannét go too far afield and still maintain good prospects
" for converging, because trajectories with sufficiently pathological
initial cdnditions will indeed not complete.

There is one other requirement for the root searcher. Since the
method must be applied in the real world where computing bﬁdgets
are finite, the root searcher must be efficient, requiring relatively
few trajectories to find the root. For example, if a root searcher

converges on the fifth trajecotry, doing an averége over N Monte.
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Carlo poihts entails running 5N trajectories, 807 of which will be
discarded, that is, theilr results will not be included in the averaging
process. Since running trajectories is by far the most time-consuming
task in the computation, this amounts to a waste of 807 of the
computing fime. Similarly, if the root searcher is sucgessful on

the tenth guess, only ten percent of the computed trajectories

are retained, i.e., used to calculate the desired cross-section.

Fo; this reason, the standard multidimensional minimization routines,
which typically require fifty or so evaluations of the function to
converge to the root, connot be used in the partially-averaged
classical-1limit method. The root searches tested were required to
converge to the root within ten or at most fifteen trajectories,

thus giving retention ratios of seven to ten’percent. It was

deemed that schemes retaining less than five percent of the computed
trajectories were too inefficient to be considered viable production

methods.

.+

Chronologically, the first attempt to apply the partially-
averaged classical-limit method was made on the H2—He system.
(Miller and Raczkowski, 1972). This preliminary calculation yielded
somewhat unpromising results, for reasons ultimately tracable to

the potential surface, and computation on H_-He was suspended in

2
favor of H2—Li+. (A fuller account of this early work will be

presented in the section on Hz—He.) In the context of the

introduction to this chapter, to describe the calculations on Hz-Li
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one must define the pétentialvsurfécé, the complex time path chosen
in running the trajectories, and the root search used to satisfy
the doubleQended boundary conditiong.

The total potential for the problem can be viewed as consisting

of an internal potential for H, and an interaction potential for the

2

'system atvlarge. The internal potential was taken to be a Morse

function, .
: -a(r—rb)
v(r) = D(e—20t(r-r0) -2e ), (3.3a)
with the parémeter values
D = 0.17443263 hartree (3.3b)
-1
o = 1.04435 a, (3.3c)
r, = 1.40083 aj . (3.34)

Test calculations were alsovdone with a polynomial fit to the Kolos-
Wolniewicz potential (Waéch and Bernstein, 196f). The difference

in results‘befween the two potentials were negligible. The interaction
potential was chosen to be the analytic fit givén Ey Lester (1971) to

his ab inito calculated values. This is the same interaction

‘potential used in the coupled-channel calculation on H2-Li+ (Schaefer and

Lester, 1973). In essence the fit consists of three Legendre

terms (corresponding to P P2 and P4, since the diatomic is

0’
homonuclear); in edch term the dependence on the translational
coordinate is exponential repulsion with R—3 and R-4 attraction

(leading to an angle-dependent well-depth of a few tenths of an eV),
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and the dependence on oscillator separation is linear plus quad-
ratic for the (translational) attraction terms and linear times
exponential‘for the repulsion terms.

Having chosen the potential surfdce, éne then encountered the
two-fold problem of running trajectories and performing root
searches. The question of choosing the complex time path will be
treated first. As was pointed out in the introduction, the onlyl
requiremeﬁt is that the real part of the time difference betweeﬁ
the start énd end of the trajectory tend to infinity. It is
reason&ble then, to require that at each step the real part of thé
time increment be non-negative. There is no restriction; however,
on the imaginary part. The integratioﬂvof the trajectory is carried
out in cartesian coordinates using a fifth-order variable—step
Adams ﬁredictor an& Moulton corrector (Miller an& George, 1972).

At each step the routine evaluates the error (i.e., the difference
between' the predicted and corrected values) and compares it to some
specified toierance value. 1If the error is too large the step is
repeated with a smaller time increment; if the error is within the
tolerance value, the step is accepted and the error is used to
determine the magnitude of the next time increment, Thus, one need
only specify the phase of each time step to fully determine the time
path.

The phase of the time step then, can be varied to assure that
"the oscillatory motion does not become unbounded, The first attempt

to carry this through was based on the premise that, since the
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vibtational motion traces an ellipse in the complex plane (with the
turning points as foci), the oscillator.should be made to pass
through; or at least very close to, the turning points on each
"oscillation" (Doll and Miller, 1972). The méjdr axis of the ellipse
is theﬁ_only slighfly larger than the distance between turning
pbints, and the resulting motion is bounded. The scheme was
implemented numerically in the followiﬁg way. _Siﬂce the trajectory
is being run in Cartesian coordinates, one has at each step the

> > > >
vectors R, r, P, p (all with complex components) and their derivates:

° o .

> F 5 < ' ] .
R, ry, P, p. One can then compute P> the oscillator's radial

momentum at each step by the relation
> > > > =1/2 .
p, = p-r(r-r) Y (3.4)

The time stéps are taken to be real with the magnitude determined

by the integrator until the oscillator is near a turning point,
defined as a value of r for which the radial momentum is zero.‘ The
oscillator is considered to be in the vicinity of a turning point
when the real part of the radial momentum goes through a sign change.
One now wishes to choose the phase of the time increment to bring
the oscillator to, or near, the turning point. To do this, one
computes the derivative of the radial momentum, given by

Tepd

.5 > 5 >3 _
P, = (p-r +p-r)(r-r) P,

) .o (3-5)
One then makes the usual linear approximation for the time step:

Ap_ = p_.At (3.6)
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If the radial momentum is to be set to zero, then Apr must be

‘proportional to minus pr; the time step can then be set by

|ae| = min(h,|p_/p_|) (3.7a)

arg(At) arg(—pr/ﬁr) (3.7b)

where h ié the magnitude chosen by the integrating routine. One
continués to choose the time step aécording to algorithm (3.7) until
the osciilator is within some specified small distance of the turning
point. :Ther one reverts to real time steps fixed by the integrator
until the real part of the momentum again changes sign.

This scheme was quite successful in stabilizing complex
trajectories, allowing successful completion of 907 of the trajectories
attempted. However, because a robt searcher will predict perhaps
ten 6r so sets of initial conditions before converging to the root
and it will require a successful trajectory for each set of initial
conditions, A ten percent rate of failure among trajectories can
cause failure of the root search in over half of the Monte Carlo
points, caused only by uncompleted trajectories.

Such a difficulty can be overcome in one of two ways. Either the
root searcher's predicting algorithm can be modified so that, if its
current guess results in an uncompleted trajectory, it chooses
initial conditions at random until it completes a trajectory and then
uses the results along with those of its previous, say, four gues;es
to continue the search, or one must improve the method of choosing
the complex time path for the trajectories. To anticipaté later

discussion,; the first method proved totally unworkable. The random
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guess was usually far from the root; its inclusion in the input to
the predicting algorithm further eroded the routine's predictive
power, resulting in another pathological guess of initial conditions,
which must again be supplanted by random ones, and so on. The effect
on convergence to the root was disasterous: the method degenerated
into a four-dimensional random walk, which is known the diverge.

It became clear that further refinement in the choice of the
complex time path was necessary. Examination of the failing trajec-
toriesvrevealed that the cause of the majority of the.failures was
a subtle inconsistency in algorithm (3.7). As mentioned earlier,
one expects the time Increment to always have a positive real part,
corresponding to the system's motion forward in time. Equation
(3.7b) alloﬁs the time increment to have any phase, including those
leading to negative real parts. In principle, allowing increments
with negative real parts is equivalent to forcing the system to move
backwards in time, retracing part of its trajectory in reverse.

In practice, the problem can lead to the back-and-forth oscillation
of all the trajectory functions which is usually associated with
time-reversal, but this only happens if both real and imaginary

parts are reversed. If only the real part is reversed, the condition
will typically manifest itself by causing the oscillator to circle
around a turning point or spiral into it.

A variety of ad hoc elaborations of the basic algorithm were
tired to remedy this reversal of the real part of the time. They
each engendered more difficulties than they alleviated. The problem

was finally solved by focusing on the oscillator separation rather
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than the momentum. One can define the oscillator separation r by

r= @GH/? (3.8a)
Its derivatives are given by

r= GH/r (2.8b)

r = (;;% + 2/ - (;)Z/r. (3.8¢)
The acceleration vector % can be found by differentiating the
defining relation for the momentum:

; = m% (3.9a)

= 3m (3.95)
One then makes a parabolic approximation for the time step:

Ar = 1At + 1/2 T (At)°. (3.10a)

One would now like to force the oscillator to move toward Tgo its

equilibrium position, i.e.,

r = -(r-ro). (3.10b)
This defines the time path by the relations
|At] = n (3.11a)
~@? £ (@F - 2@ )
Arg(At) = Arg( - ) (3.11b)

r

where the sign before the square root is chesen so that At will have
a positive real part. Algorithm (3.11) is used to choose the phase

of the time increment at every step of the trajectory, until the
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asymptotic region is reached. There the oscillator is forced to
a turning point in order to facilitate the transformation for
Cartesian to action-angle variables. This scheme has proven highly
successful in stabilizing the trajectories. The current success
rate for complex trajectories is 99+%, thé”rbot-search failure rate
due to uncompleted trajectories is correspondingly low, less than
five percent.

The last aspect of the computational details to be discussed
is the root search. In accord with the remarks made previously the
root searches considered were required to converge within ten or so
iterations. This restriction eliminated the usual multidimensional
approach of minimizing the difference between the desired and
calculated final conditions by use of a nonlinear least-squares
minimizing routine. The root searqhes which were developed and
tested can all be considered to follow the same procedure. One
postulates some functional form for the dependence of the final
action variables on the initial angles. On the basis of previously
run trajectories one solves for the parameters defining the function.
One equates the now known function of the initial angles to the desired
final value of the action variables and solves for the values of the
angles which satisfy this relation. These values are the new
predicted root. One then runs a trajectory to test the accuracy of
the prediction. If the root is found the process stops, if not,
the results of the current trajectory are used‘along with several

previous ones to re-determine the functional parameters.
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The simplest example, and in some sense the prototype of the
later root searches, occurs in the case of vibrationally inelastic
one-dimensional collinear trajectories. The task is to find the

value of qn such that n, is equal to some desired integer, say
1

zero, if one is interested in the de-exitation n, = 1~ n, = 0.

For simplicity the subscript on q, will be suppressed. The root
1

search assumes that n, can be expanded as a function of q in a

Fourier series truncated after the first-order terms:

n, = f(q) = A+ B sin q + C cos q. (3.12)

If one has run three trajectories, say with q = 0, 7/3,-T/3, resp.,

and if fi’ s c, represent respectively N, sin q, cos q for the

i’
ith trajectory, the parameters A, B, and C of Eq. (3.12) can be

found by solution of the equation

(fl’fZ’f3) =_(A,B,0C) s, 8, 8 (3.13a)

The solution is easily obtained by right-multiplying both sides of
the equation by the inverse of the 3 x 3 matrix. Once the values

A, B and C are known, one solves the relation

n, = A+B sin q + C cos q = 0 ' (3.13b)

to predict the value of q which will satisfy the desired final

boundary condition. The usual trigonometric substitution
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cos q = (1 - sinzq)ll2 (3.14)

yields the following as a prediction for the root:

2,.2

2,2 ,2.1/2

- + -

q = arcsin ABZC(B+C -A ) . (3.15)
B +C

A trajectory is run with this value of q and if the value of n, is
less than some specified tolerance parameter, q is considered to be
the desired root. 1If the value of n, is too large, the root search
continues by substituting the results of the current trajectory

and the two previous ones into Eq. (3.12) to redefine the parameters
A, B and C and then applying Eq. (3.15) to generate the next
approximation to the root.

It will be noted that Eq. (3.15) predicts two roots, depending
on which sign is chosen for the second term of the numerator. This
is indicative of the general case. Real roots, if they occur, will
number Zn, n being some positive integer, and there will always be
complex roots. These can be grouped into pairs, one member of the
pair being the complex conjugate of the other. (Miller and George,
1972). As stated previously, complex roots need be considered only
if there are no real roots, since the weighting function for
complex roots is exponentially damped with respect to that of the
real ones. For the same reason, in the absence of real roots
only thé pair of complex roots with the smallest imaginary parts

(corresponding to the weakest damping) need be considered. The

two roots are complex conjugates. The argument of the damping
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function is the imaginary part of ¢, ¢ being the integral defined by
Eq. (2.59b). One can show that ¢ is an analytic function of the root;
thus complex conjugation of the root will complex conjugate ¢, that is,
change the sign of its imaginary past. This means that of the two
roots being considered, one leads to exponential damping and the other
to exponential enhancement. Clearly, only the root leading to damping
has physical significance. However, since the two contributions
differ only in the sign of the argument of the exponential, only one of
the roots need be found. One can be sure of computing the contribution
properly by using minus the absolute value of Im(¢) in the argument
of exponent, as was done in Eq. (2.60).

In the partially-averaged, three-dimensional case, one sees that
the root search problem for real trajectories, as defined by Eq. (2.62),
is the same as for the one-dimensional case discussed above. For
complex trajectories the situation is more complicated. The root
search problem is defined by Eqs. (3.2). The expressions are somewhat
cumbersome, and for the purposes of the present discussion it is convenient

to write them more compactly. One defines the vector f and q by
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Re n, Re qn1
. Im n, Im qnl
f = : q = . (3.16a,b)
Im j Im q,
2 ig-
Im 22 - Im q21

For simplicity, the usual vector notation has been suppressed.

Equation (3.2) requires that the root q. satisfy

f = f(qr) = . (3.17)

The simplest root searching scheme for this probiem results from

linearization of f about some value 94> i.e., the approximation

f(q) = f(qo) + C(a-q4), (3.18)

Where C is some matrix of constants dépending only on the choice of

95- ‘The ‘scheme can be outlined in the following way.

Step Q: Initialization. Run five trajectories; let fi and q; repre-
sent the values of the vectors f and q for the ith
'trajectory.

Step 1: Défine the function by linearizing about 95+ Define the

~matrixes F and Q by
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| =

= (£~f, . . ., £,~£) (3.19a)

Q= (@795 -+ -5 9m) © (3.19)

(since f and q .are 4-D column vectors, F and Q are 4 x 4
ﬁatrices.) The coefficient matrix C is easily shown to be
-1
C=FQ (3.20)
Predict root. One wishes to find the value of q, such that

Eq. (3.17) is satisfied. An approximate q, is given by

-1
1. = 95 +C (fr-fS) - (3.21)

One runs the trajectory with the approximate q,- if If—frl

- is sufficiently small the search stops, if not, the results

of the current trajectory and the four previous ones are
used as imput to Step 1 to recompute the matrix C. (Note

that in each iteration one linearizes about a different point.)

The root search as outlined was not very successful. The

linearizing approximation (3.18) is a very poor one globally and can be

expected to have some validity only in the immediate vicinity of

9

. If the q's used to determine the coefficient matrix are too

widely separated, the resulting linearization may have no validity.

(As an example, consider linearizing a parabola. A carefully chosen

line segment may be a reasonable interpolation over a small region

and a poor extrapolation outside that region, but a linearization

using points on opposite branches will be a poor approximation
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everywhere.) The difficulty can be lessened if one started the
linear search from a crude approximation to the root, rather then
from the real axis. This was done by leaving the last two components

of q as zero and varying the real.and imaginary parts of qn to satisfy
1

Re n, =n ‘ (3.22a)

Imn, = 0 (3.22b)

Once that value of q, was found, the linear search was initiated
1 .
to find the full root. The search in q, was done using the 1-D
. _ : B | '
Fourier search procedure described above. The only modification

were that f, q, and the expansion coefficients were considered

q iq

complex,uand‘the functions ei and & replaced sin q and.cos q,
since the latter pair tended toward linear dependencé for sizeable
imaginary parts of q. |

The combined procedure (i.e., 1-D Fourier followed by 4-D linear,)
was able tb find roots at about half the Monte Carlo points, which,
it is sad to say, made it thg most successful of the root searches
discussed here. Initialization of the Fourier search required
three real trajectories (equivalent in computational effort to one
complex trajectory), covergence to a satisfactory preliminary value
of qnl required three or four complex trajectories, then initialization
and convergence of the linear search required eight to ten more
complex trajectories. (The initialization of the linear search

~maximally utilized existing information: by ﬁsing the last three

trajectories run by the Fourier search, the process required only
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two additional trajectofies, with.non?zero vaiues for Im qjl and

qR’1 resp., to initialize). Thus the root search reduire& twelve to
fifteen trajectories at each Monte Carlo point. The principal

cause of failure was the one already discussed; If the predicted
root lies far from the point about which f is linéarized the guess is
likely to bé a poor one, because Eq. (3.18) has little validity
-there. Thg results of the poor guess are used to recompute C.

The resulfing linearization is likely to be poor everywhere, because -
the inpuf points are widely spaced. The next prediction is likely

to be even worse than the previous one. With two bad guesses the
g_matrix is further degraded and the method becomes a four-dimensional
random waik.' Thus the root éearch procedure either converged rapidly
or diverged rapidly: failure to converge in ten tfajectories was

a definite‘indication of serious problems, ﬁot merely the result

of premature termination. Several modifications of the basic
'prOCédute were attempted in the hope of increasing the chances for

convergence.. The only one which offered any promise was restricting

the step size. The root predictor (3.21) may be rewritten as
q,. % g5 + Aq, (3.23)

where Aqlis the second term in the R.H.S. of Eq. (3.21). The idea
is to let the predictor give the direction of Aq, but‘its magnitude
is restricted to the region where Eq. (3.18) is valid. Sinée

the region'of validity 1is small, the mddified process exhibited a

much slower rate of convergence than its predecessor, requiring over
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thirty trajectories to converge. Furthermore, it showed only about
a ten percent improvement in the success rate. Thus, the modifi;ation
was nét considered useful.

It became clear that significant improvemeﬁt in the root search
procedute'would require a new approach. In view of the success of
the 1-D Fourier search to locate the approximate root described
above, it was felt that extension of the idea to four dimensions
was worth inYestigating. To carry this through, one first expands
the variables n, j and £ in a Fourier series in qn,.'qj and 9 >
retaining only the lowest-order terms. (The usual numerical sub-
scripts‘havé.been suppressed in the present discussion. It is clear
that one mgané the final action variables and the initial angles.)
Because the diatomic is homonuclear, qj and 9 have period T,
and their lowest order terms in the expansion have argument 2q.

Thus the'expansion for n is

n = + a sin(qn) + azcos (qn) + a

a, 1 sin(qu)

3

+ a4cos(2qj) + assin(Zqz) + a6§os(2q£). (3.24)

Similar expansions hold for j and 2. The coefficients are all real
because real values of the angles lead to real values for the
action variables. For complex values of the angles, one applies the

standard identites

sin(q) = sin(Re q) cosh(Imq) +i cos (Req) sinh(Imq) (3.25a)
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cos(q) = cés(Req)cosh(Im q) -i sin(Req)sinh(Im q) (3.25b)

to separate real and imaginary parts of the expaﬁsions. With the

definitions
q = Re q ‘ : (3.26a)
x = sinh(2Im qj) | (3.26b)
.y = sinh(2Im 91)  . (3.26¢)
z = sinh(Im qn) s (3.264)

the conditions for the final action variables become

0O=Imn = (Cllsln q+ Clzcos q) zv+ C13x + Cl4y (3.27a)
0=1Imj= (Czisinvq + szcos q) z + C23x + Cz4y (3.27b)
0=1Im& = (C3lsin q + C32c°S q) z + C33x + C34y (3.27¢)
n, = Ren =2 (C,,8in q - C_,cos q) 1+z2 + C
2 12 11 41
(3.274)

v 2 4. 2
+ 042( I+x"-1) + 043( 1+y™-1) ,

where the C's are real coefficients related to the a's of Eq. (3.24)
and its analogues for j and 2. The search proceeds in the same way
as the linear scheme. After running initializing tfajectories to
determine the coefficients .on the first iteration, one substitutes
the now known coefficients into. Eqs. (3.27), solves them to predict
the root, aﬁd'runs a trajectory to check for convergence. If the

root has not yet been found, the new trajectory is used along with
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several 6f-the old ones to recompute the C's and predict a new root,
and so on. The equations involved in this method are more tedious
than tﬁose required in the linearization scheme. Therefore, the
present method will be described less explicitly éhan the previous
scheme.

Initialization was accomplished with three real trajectories

and two complex ones. The usual re#l trajectories with q, .= o,
7/3, -n/3 were run. With these'resuits as input, Eq. (3.15) wés
used to predict crude values of Re(qn) and Im(qn). At this complex
value of q;, two complex trajectories were run with non-zero values

of Im(qj) and Im(qz) resp. Solution for the coefficients was
straighfforward and required the resdlts of five trajectories. The
initializing trajectories were used on tﬁe first itération, and the
1ast five trajgctoriés to be run were used on subsequent iterations.
Since the values of Re(n) were known for all five trajectories,
evaluation of Eq. (3.27d) for each trajectory gave a system of

five linear equations for the unknown coefficients Cll’ C12, 041,
C42 and C43. Solution requires inversion of a 5 x 5 matrix. With

C11 and-C12 known, the results of the last two trajectories determine

.C13 and 014, requiring 2 x 2 matrix inversion. Solution for the
other coefficients proceeded analogdusly;-making'use of the analégues
of Eq. (3;27d) for Re(j) and Ré(l). Solution for the coefficients

in the j and £ expansions requires invérsion Bf the séme two matrixes

inverted in the n solution. Since inversion of the 2 x 2 matrix is

trivial, the main effort in solving for the coefficients is spent
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on a5 x S_maﬁrix inversion.

The next step in the\procedure, prediction of the root to give
the values éf the coefficients, requires solution of Eqs. (3.27)
for q, x, y and 2. The solution is straightforward but algebracially
tedious;.thus the process will be described rather than given
expiicitly. One first considers Egqs. (3.27a, b, c) as a set of
homogeneous linear equations in x, y and z. If the system is to
have a non—-trivial solution, the determiﬁant of the "coefficient"

matrix must vanish:

Cllsin q + Clzcos q C13 C14
Clein q + szcos q C23 C24 =0 (3.28)
C3lsin q+ C32cos q C33 C34

Expansion of the determinant yields a readily found algebraic expression
for tan q, which is too tedious to be quoted here., With the value
of q'fixed, one can solve for x aﬁd‘y in terms of z. Substitution

into Eq. (3.27d) yields
£(z) = ay + o fz? + o, (A+a%2" -1) + ay( +822% 1) (3.29)

where A, B and the a's are algebraic functions of the C's, sin q,
cos q, and n,, the desired final vibrational action. The value

of q is already known, and x and y are known in terms of z, with
proportionality constants A and B, resp. Thus solution of Eq.
(3.29) fo; z will completely determine the predictéd root. Solution

of Eq. (3.29) proceeded in two steps: first a crude guess for the
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solution was generated, then the value was refinea by either a

quadratic or a Newton-secant method. The crude guess was generated

by the fdllbwing procedure. First, all the square roots were

expanded for small values of z. The terms in z2 and za'weré retained.
The resulting equation was solved by quadratic formulé for zz. 1f

the solutiop were non-negative, it was used as the starting point for

the refining‘search. If no acceptable sélutionvwaé found for small

z, an asymptotic expansion was done for large z. .The resulting equations
contained ‘a constant term and terms in z and z-l. Multiplication by =z
gave a quadratic équation whose solution, if it existed, was used as

the crude guess. .If again there was no acceptable solution, the Qalue

of the function was computed at the origin and gt a value 2y sufficiently
largé that the asymptotic expansion was valid. If the function exhibited
a sign change, the refining search started with these two points.

If there was no sign change, a marching procedure was instituted. The
interval between zero aﬁd zg was divided into twen;y sub-intervals and
function values were checked for a sign change between the end points.

of each sub-interval. 1If no sign change was found, one assumed

that Eq. (3.29) had no real solution and the entire root search
-procedure stopped.

Before being applied to the problem of intergst, the procedure
'deséribed.above was tested on model problems in which it had to
fiﬁd»roots of functions defined by Fourier series with higher-order
terms presént. The method failed to converge if the higher-order

coefficients were more than one-tenth of the lowest order coefficients.
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Predictably; the method had little success with the problem of
boundary conditions for complex trajectories. A priori, one assumed
that the procedure would work well because the expahsion (3.24)
and its analogues may be valid globally, if the coefficients are
well-chosen and if indeed the higher-order Fourier terms are small.
Of course, if the expansions are onlya moderately good approximation
to the true functional dependence of the action vaiables on the angles,
part of thé difficulty of the root search may lie with the method
of determining the expansion coefficients, which uses data on the
real part of the an action variable to compute coefficients in the
expansion of its imaginary part. If Eq. (3.24) and its analogues were
exact, the procedure would be valid; however, if they hold only
approximately, the optimum coefficient values in the expansions of
the real and imaginary parts may differ. The first modification
was to utiiize all the information available to compute the co-
efficients. The problem was then ove:determined, and the coefficients
were found by a least squares procedure.

The least-squares solution for the coefficients is somewhat tedious.
As an iliuétration, the coefficients in the n expansion will be
found; the solution for the coefficients in the j and % expansions

proceeds analogously. Given the results of several trajectories

one seeks the coefficients in the expansion equations

3
‘Ren=fzx ) C, u, (3.30a)
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V. +Cv. +D.v. +D,v . - (3.30b)

Imn =g ~ Cv) + Cyuv, + Dyv3 + D,v,

which will minimize the fitting error, defined by

| 2 | 2
E'—'E wk(fk ZCiuik) + E wk(gk—ZCivik XDiVik) (3.3
The variables,fk, gk, W Vik represgnt the values of f, g, Uy
v, for the kth trajectory under consideration, and Vi represents

a weighting'factor, if one wishes to do a weighted least-squares
solutionf The correspondence between Eqs. (3.30) and (3.27a, 4),
which defines the u's and v's, is readily apparent. To minimize
E one sets the partial_derivativgs of Ew.r.t. the coefficients
equal to 2er6; and then solves the resulting equations for the

céefficients. By making the definitions

Fj = Ewkfkujk (3.32a)
Gj = Ewkgkvjk _ (3.32b)
Uij.=zkwkuik'ujk (3.32¢)
Vig = Ewkvik.vjk , (3.32d)

one can show that the defining equations for the optimal coefficients
are for j=1,2
2

F. + G, = C.(U..+V
375 izl 1 Uy i

5 4
)+ } Ccu,,+ ) DV, (3.33a)
= = R
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for j=3 thru 5,

5
F,= c.U ‘
] 121 143
for j=3,4
2 4
G,= ) CcuVv,,+) DV

Jogmp 1M 4o 143

These may be rewritten more compactly as

> >
= ¢-x
where
= (F4G., F.4G., F., F
= (Fy¥Gys Fy¥6ys Fyo Fys Fss G G,
¢=(., C.,C., C,,C,D.,D
C - ( 19 2, 3, 4’ 5, 39 4)
and
UpptYie UtV Ui Uiy Ugs Vg
UpitVa1  UpgtVyy  Upg Uy Ups Vg
Usy Usy U3 U3 Uy O
x= Ui Y42 Uz Uaw U5 O
Usy Uso Usy Ug, Uss O
Vs, V., 0 0 0 V.
Va1 V42 0 0 0 V43

(3.33b)

(3.33c)

(3.34a)

(3.34b)

(3.34¢)

(3;34d)
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Solution for the coefficiéﬁts requires inversion of the 7 x 7 matrix
X. The coefficients in the expansions for j and £ were found
analogbusly; ;equiring only modification in the definition of F and
G. Sipce the basis functions in each expansion are the same, the
matrix X does not change. Thus oue inversion yields all three sets
of coefficients. The weighting factors in Eqs. (3.31) and (3.32),

if used, were taken to be
w = ()" - min (e,) (3.35)
Tk k kT )

where € is the error associated with the kth trajectory, that is,
the difference between the desired and calculated final valuesvfor
the action vafiables. The largest Qeighting factor can be taken
as unity without loss of generality, since multiplying each factor
by a constant, equivalent to rescaling the L.H.S. of Egs. (3.32),
leaves Eqs; (3.33) unchanged. Tests on modeldproblems indicated
that the procedure worked best with the weighting factors all set
to unity, amounting to a non-weighted scheme, and results of the
last five function evaluations included in the sums of Egqs. (3.32).
Convergence was slower, since the values of the coefficients did
not change as rapidly with new data as in the ofiginal version,

and the success rate in dealing with higher-order Fourier terms
showed only a marginal increase over the original version. uThe
improvement in handling the complex-trajectory final boundary-value
problem was also slight.

One more variant of multi-dimensional Fourier searches was

attempted. In this one, the coefficients were allowed to become
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complex, thereby doubling the number of fitting parameters and,
it was hoped, increasing the flexibility of the expansions. The
f2, f3.

to be n, j, £, resp. One may then write expansion (3.24) and its

method can be outlined as follows. First one defines fl’

analogues as

£, = Zaijuj | : (3.36)

where the afs are the (now complex) expansion coefficients and

uy thru u, are the various sines and gosines appearing in Eq.
(3.24), and u, is unity, the function multiplying the coefficient
aq in Eq. (3.24). Seven real.trajectories are used to initialize
the scheme. As usual, one defines the matrices F and U with
#vand ujk

th . s . .
k trajectory. It is convenient in later iterations to separate

elements fi representing the value of fi and uj for the
real and imaginary parts in solving for the coefficients. (Of
~course, on the first iteration all the imaginary parts are zero.)

One writes, using a super-matrix notation,

ReU ImU
(ReF, ImF) = (ReA, ImA) - (3.37)
-ImU- "RelU

Solution»requires inverting a 14 x 14 matfix. This method of

finding the coefficients has two advantages: fifst, it uses real
arithmetic, and second, it manifestly keeps the coefficients real unless
forced to do otherwise. That is, as long as the real part of the

action variables depends only on the real part of the expansion
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functions and analogously for the imaginary part, the coefficients

will remain real.

" Predicting the root requires solution of the set of equations

Zalj u; =0, (3.38a)
Im (Zazj Uj) =0, (3.38b)
Im (za3j Uj) =0 . (3.38c)

To solve the system, one first uses Eq. (3.38a) to find sin(qn)
and cos(qn) in terms Of qj and qp- Substituting the results into

Eqs. (3.38b, c) gives the reduced system

Im f2(Im qj, Im qz) =0 (3.39a)

i
o

Im f3(Im qj, Im qz) = (3.39%)

The root of Eqs. (3.39) is found by a generalization to two dimensions
of the Newton-Raphson scheme. On each iteration one assumes the

functions can be approximated as

Im f2 . Im f2 3 (Im f2,

+ . .
3(Im q,, Im q,)
f3 new Im f3 old J 27\l

Im £,) [Aq,
3 3 (3.40a)

'Im

where the derivative matrix is evaluated at the old value of qj and
9q- The variables qu,‘quv are the corrections to the imaginary
parts ofqj and 9+ It will be recalled that the

real parts of these angles are specified by the Monte Carlo
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procedure; the root search can modify only the imaginary parts.
At each step, the correction to the root of Eqs. (3.39) is predicted

by

Aq 1

i _ 3 (Im f2’ Im f3) . f2 ;
3 (Im qj, Im ql) f . (3.40b)

3

Aqg old

The derivative matrix is easily found, since the Cauchy criteria
for the differentiability of functions with complex arguments require,

inter alia, that

8(f2, f3) 9(Im f2, Im f3)

Re | ————— = . (3.41)
B(qj, qz) 9 (Im qj, Im ql)

The derivatives of L.H.S. of Eq. (3.41) can be found by differentiating
Eqs. (3.36) for f2 and f3, keeping in mind that sin q, and cos q,

are now defined as functions of qj and qq by use of Eq. (3.38a).

Once Eqs. (3.39) are solved, the usual process of running a

trajectory, checking the results, and recomputing the coefficient
matrix to make the next prediction of the root is followed. On
subsequent iterations, if the imaginary part of any of

the angles (usually qn) becomes substantial, it may be necessary

to use eiq iq

and e 1 in place of sin(q) and cos(q) in the co-
efficient determination, since the second pair of functions tends
toward linear dependence. This poses problems only in the solution
for the coefficients; the solution of Eqs. (3.38) is unaffected.
Application of the various four-dimensional Fourier searches to

the problem of interest resulted in rather disappointing success rates.
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The procedures were able to find roots in less than twenty percent
of the Monte Carlo points sampled. - This is appreciably worse than
tﬁe more simple-minded approach using the linearizing approximation.
The unexpected failure of the Fourier methods.prompted an attempt

to gauge the importance of higher-order térmsvin the Fourier
expansions of n, j and &. For a randomly chosen impact parameter
and total angular momentum several hundfed real trajectories were
run: a coafse'grid was set up in q, and‘qj, and at each grid point
trajectories corresponding to fifty equally spaced 9 values between-
0 and 7 were run. The idea was to Fourier analyse the results

at each grid point to obtain the coefficients of the qp terms.
(Naturally, the "coefficients" would be function of qa and qj.)

Two more seqﬁential Fourier analyses, first fof different values of
qj at fiXedﬁqn and then for different values of qﬁ, would determine
the coefficients in Eq. (3.24) and higher-order corrections.
However, only the analysis for qq was completed. It showed that

for different (qn, q,) grid points there were from six to thirty

3
qq - tefms with comparable coefficients. Usually n had the most
rapidly converging series, and £ was somewhat slowér to converge
than j. The most apparent conclusion, however, was that Fourier
expansions retaining only lowest-order terms could not possibly

' be expected to give a reasonable representation of the actual
functional dependence involved. Thus a search based on such
expansibns was most probably doomed to failure, at least at the

one Monte Carlo point discussed heré. In practice, the usual

manifestation of failure at a Monte Carlo point was a breakdown
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‘in the solution of the equations predicting the root. Since these
equations were to be solved by an iterative numerical procedure,

it was not clear whether the expansion broke down, i.e., the
equations had no solution because of pathological values for the
coefficients, or whether the numerical procedure was merely unable
to find a solution which did in fact exist. Thus besides the
fundamental question of the validity of the expansion, there is

the additional practical complication that the equations predicting
the root are not amenable to easy analytic solution.

A curious point to ponder is the observation that the linear
search exhibited a higher success rate than the first-order Fourier
searches. One would expect a Fourier expansion of n, j and 2
w.r.t. the angles to converge faster than a Taylor series, primaril&
because the Fourier basis functions have the correct periodicity
built into them. Yet fhe search based on truncating the more
slowly converging series does better than one based on the more
rapidly convergent series. The resolution of this seeming paradox
may lie in the differing natures of the two expansions. The salient
properties/will emerge from a consideration of the one-dimensional
case,

Thevonehdimensional analogue of the linearization scheme is
the Newton—seéant method. If the two points determining the secant
line coalesce, one recovers the Newton-Raphson method, which amounts

to truncation of the Taylor series after the linear term. If one has

f(xHAx) = £(x) + ) £M™ . an® (3.42)

L
1
n=1 0!
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oﬁe knows that for small enough Ax, the linear term will dominate
the sum. Tﬁus theklinear method éives a good apppoximationvlocall§
and a poor enevglobally, reflecting the nature of the Taylor series
as an approximation about avpoint. On the other hand, the Fourier
series’is an‘approximation on an'interﬁal. Its primary concern is

a global one-—periodicity. . One has then

f(x) = a

0 + Zancos(nx) +-zbnsin(nx) (3.43a)

f(xtAx) = £f(x) + Ax(Xn-bn~cos(nx) - Zn-an-sin(nx)) (3.43b)

It is aséumed that f(x) has period 2w, end only fhe lowest-order term
in Ax wae'retained in Eq. (3.43b). Inspectioﬁ of Eqs. (3.43) reveals
two discdncerting observations. First, neglect of higher-order Fourier
terms ih‘Eq. (3.43a) implies neglect in Eq. (3;43b) of terms first-
order in Ax. _Second, neglect of small terms in the first equation
may lead to.neglect of much larger terms in the second equation.
Because the coefficients in the sums of Eq. (3;435) contain an

added factor of n, it is clear that a truncation which gives a
reasonable value of f(x) may give very unreasonable values for its
derivatives, and thus may give a good representation globally and

a poor ene locally. One concludes that if the coefficients of
higher—order Taylor terms are appreciable, the linear procedure

gives an approximation to the function which is guaranteed

to be good on some smell interval about x and poor beyond that

interval. 1In the first-order Fourier procedure, if higher-order
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coefficients are important, one has an approximation which is exact
at the three points used to determine the first-order coefficients
and poor everywhere else, although it will predict global properties
better than local ones. Numerical root-searching procedures are
dependent on local properties, since one is usually given f(x) and
seeks a Ax such that f£(x + Ax) will be zero. This is fundamentally
a local prqblem. Thus it is reasonable, in retrospect, to expect
the linear search to do better, unless the function is represented
extremely well by a first-order Fourier series. The latter seems
to be the case for nz(qn), which would explain the success of the
complex 1-D Fourier search in q,-

Doubtlessly a contributing factor to the success of the combined
1-D Fourie;, 4-D linear search was the locationvof the root. In all
cases where a root was found, the imaginary parts of qj and 9y
were small, less than one-tenth. Thus once the approximate value
of q, was found by the complex 1-D Fourier procedure, the linear
search was initiated very close to the root, thereby rendering its
chances of convergence good. It was hoped that this location of the
root coﬁld be exploited by a different type of root-search. This
final root-searching effort involved alternating application of
two root—searches. First a complex 1-D Fourier search was done
in q, to sét n to its desired value. Then with q, fixed, a
2-D linear search varied Im qj and Im 9 to set Im j and Im 2 to
zero, changing the value of n in the process. Now the values of
Im qj and Im q, were fixed and qn was again varied to return n

to its desired value, and so on. This procedure was more time-consuming
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than the 1-D Fourier, 4-D linear; and it showed a lower success rate.
Since the 50% success rate of the best root-search was considered
unacceptably low, the 4-D root-search problem was circumvented by

neglecting the last two terms in ¢, i.e,,

(qj°j) + (qp 2)
(see Eq. (2.59b). It was felt that this approximation to ¢, in
effect a neglect of the rotational and orbital contributions to
the forbiddenness of the transition, was justified by the small
vélues 6f the imaginary parts of qj and.qz. The resultant
simplification of the root-search required only that the (complex)

equation

nz(qn) =0 (3.44)

be satisfied. The problem was eésily handled by the complex 1-D
Fourier search in q.- The procedure showed a 957 success rate when
applied to this problem.

The results of this study have been published previously
(Raczkowski and Miller, 1974) and will only be briefly summarized
here. Figure 2 shows ;he cross séctions for vibrational de-activation’

of H, by Li+F—i.e.,

2 (E

1) for (nl,Jl) = (1,0) and n, = Q0--

ij.
nyd ™
for total energy E = 1.2 eV. The values labeled SC are the present
classical-limit results, and the error bars indicate the satistical
error in the Monte Carlo average; 1000 Monte Carlo points were used.

The points designated QMI in Fig. 2 are the results of Schaefer

and Lester's quantum mechanical calculation with a coupled channel
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Fig. 2. Final j-state distribution for scattering from the (0,1) state of
H'Z—Li+ at E = 1.2 eV (total) QM1, QM2 -- coupled-channel results
SC -- Classical-limit calculation
STAT -- Statistical distribution.
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expansion including the states )
n=0; j=0,2, 4, 6, 8, 10 (3.45)
n=1; j =0, 2, 4
n=2'"3j=0,2

The values labeled QM II‘are their results obtained by adding one
additioﬁal rotational state to each vibraﬁional manifold:
j= 12 fpr n =0, j=6forn=1, and j = 4 for n = 2.

The 13rge change in the quantum results with this increase in
basis set seems to indicate that the coupled channel expansion
is still some ways from convergence, a rather disconcerting
observation since the basis set already produces up to 75 coupled
chénnels. (It should be noted that Scﬁaefer and Lester were
primarilyvinterested in pure rotational transitiohs, n, =mn,,
and ﬁheir results do indicate the expansion to be convefged for
these proéééses.) Another possibility is that the difference
between the.QM I and QM II results is due to numerical error, since
the algdrithm used for solving the coupled equations does not seem
vwe11—su1ted for treating processes -with small transition probabilities.
The cross section summed over final rotational states, O

=0, is 1.87 a 2, 1.15 a 2 , and
o o

nt
for (nl’jl) = (1,0) and n,
0.83 aoz, respectively, for the QM I, QM II, and classical-limit
calculations. Within the uncertainty of the quantum mechanical

results, therefore, the classical-limit cross sections are in excellent

agreement with the quantum values, both in magnitude and in the
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distribution of rotational states (Fig. 2) populated in the
vibrational de-activation.

Finally, it is interesting to ask what the rotational state
distribution in Fig. 2 signifies about the dynamics of the inelastic
process. First, one sees that a substantial ambunt of the energy
released by the vibrational de-activation goes into rotational
excitation. The amount of rotational excitation is considerably
less than that of a '"resonant" process (no change in translational
energy), however which would require a final rotational state
j2 = 8. It is also interesting to compare to a statistical

distribution of final rotational states; this corresponds to

0oy, «10Ep) = @i + 1) [E = €(0,3)] ,  (3.46)

2
where E is the total energy and E(O,jz) the vibrational-rotational

energy of H, for n= 0 and j = j2. This distribution, normalized

2
to the classical-limit cross section, is the dashed line in Fig. 1.

The amount of rotational excitation is thus also much less than

that based simply on available phase space.
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B._Hz—He

2

three-dimensional application of the_partially—averaged classical-

As stated earlier, the H_He systém was the subject of the first
limit theory (Miller and Raczkowski, 1972). The results obtained were
not very encouraging, since they showed that a large fraction of the
trajectories did not complete. The problem was ultimately traced to
the fitting form of the interaction potential. The potential surface
used in this study was based on the ab initio calculations of Gordon

and Secrest (1970). Of the several calculations presented in their

-paper, only the one labelled AASCF(5,2,2) provides values of the

potential for non—equilibriumvseparations of the diatomic. The authors

provide an analytic fit for this potential, given as

V(r,R,y) = cebr-C

-ao)-R

1 (A(Y)-B(Y) -Ar), (3.45)

where the coordinates are as illustrated by Fig. 1 (Ar.is the deviation
from the equilibrium oscillator separation), and all the parameters

are intrinsicélly positive. If one considers R and Y fixed and looks
merely at the potential's dependence on r, the first factor‘is an
exponential in Ar with positive cdefficient, and the second factor is
linear with negative slope. Clearly then, for large r the potential
becomes infinitely attractive with increasing r, that is, the potential
becomes negative and exponentially large. In all fairness to the
authors one must point out that the breakdown of the fitting form occurs
far from the region where the ab inito values are kﬁown, whereas

the authors stipulate that their form is intended only for interpolation

between the ab inito points and caution against its use for extrapolating
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the potential. One should also note that the fotal potential consists
of the in;graction potential and the potential for isolated Hz.
In the case of real trajeétories, for example, the latter term would
confine the.system to a small region about the equilibrium position.

However, complex trajectories can tunnel into the H, potential until

2
they reach the region where the spurious values of the intéraction
potential dominate.

Because of these difficulties with the potential surface the
calculations on the Hz—He system were suépended in favor of HZ—Li+.

After the completion of the H -Li+ study outlined earlier, attention

2

turned once again to Hz—He. Since successful continuation of the
project would at least have reqﬁired refitting the Gordon-Secrest data
to a less problematic functional form, it was decided to start afresh
with the ab inito values calculated by Tsapline and Kutzelnigg.

These points were fitted to an analytic form; however, preliminary
calcula;ions indicated that the potential at atom-diatom separations
smaller than those used by Tsapline and Kutzelnigg were also important.
Thus.the potential was extended to shorter R-distances (see Fig. 1)
using the joint MOLECULE-ALCHEMY program package, which incorporates-
the MOLECULE integral program and the ALCHEMY SCF program. MOLECULE
was written by Dr. J. Almlof of the University of Uppsala, Sweden.

- The ALCHEMY SCF program was written by Drs. P. S. Bagus and B. Liu

of the IBM San Jose Research Laboratory. The interfacing of these

programs was performed by Drs. U. Wahlgren (presently at the University

of Uppsala) and P, S. Bagus at IBM, For a description of MOLECULE
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see J, Alml?f; "Proceedings of the Second Seminar on Computational
Problems in Quantum Chemistry,'" p. 14, Strassburg, 1972 (Max-Planck
Institute, Munich 1973). TFor a description of the ALCHEMY-SCF
program, see: P. S. Bagus, "Documentation for ALCHEMY - Energy
Expressions for Open Sheil Systems'" IBM Research Report RJ 1077 (1972).
The ALCHEMY quantum chemistry programs were written primarily by
P. S. Bagus, B.'Liu, A. D. McLean and M, Yoshimine of the Theoretical
Chemistry Group at IBﬂ Research in Sén Jose, Califprnia. Preliminary
descriptions of the program are given in: (a) A. DT McLean,
"Potential Energy Surfaces from ab initio Computation: Current and
Projected Capabilities of the ALCHEMY Computer Program,' Proceedings
of the Conference on Potential Energy Surfaces in Chemistry held at
the Universiey of California, San Cruz, August 1970; and (b) P. S. Bagus,
"ALCHEMY Studies of Small Molecules," Selected Topics in Molecular
Physics, Vgrlag Chemie (1972).

The célculation consisted of a Roothaan approach to the SCF, followed
by a CI witﬁ éll single and double excitations. Each configuration
is a pure spin eigenfunction with S = 0. The number of configurations
used depends on the symmetry being considered (Roos, 1972). 1In all,

three angles ( and related symmetries) were considered (see Fig. 1):

Y = 0, or collinear approach (C_ symmetry), Y = m/4 (Cs) and

Y = /2, or perpendicular approach (CZV); The basis set used by
Tsapline and Kutzelnigg consisted of gaussian lobes. For He, the
7s basis set of Huzinaga was contracted (3,1,1,1,1) following Dunning.

It was augmented by three sets of p—grbups with orbital exponents
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n =16, 0.6, 0.22, and a set of d-groups with n = 0.8. Each H

was described by the 6s Huzinaga basis set in the (3,1,1,1) contraction
of Dunning, augmented by three sets of p~groups with n = 1.57, .43,

.15 and a d-set with n = .25. This large basis set was necessary

for describing the long-range Van der Waals interaction of the system,
arising from the correlation term.. At the shorter distances probed

in the present potential-surface calcuiations, the interaction is
dominated by the répulsive SCF term; correlaéion provides only a small
correction. Thus ip the interest of reducing the computational burden,
the basié set used here consisted of the same s-functions és above
augmented by two sets of p-~groups on each center, with orbital exponents
n = 1.1, 0.41 for He and n = 1.0, 0.29 for each H.

, Symmetry at R = 4.0

2

au., r = 1.406 au. The SCF terms for the basis sets are essentially.

Table 1 shows a comparison of results for C

identical, and the smaller basis'set gives almost 807 of the CI
correction. The discrepancy is due almost exclusively to neglect of
the d~functions: a 2pld augmentation on each center gave virtually the
same results as the large basis set, Similarly, retaining the tﬁree
sets of p-groups on each center gave essentially the same result as the
2p augmentation. The last point to be made about the suitability of
the basis set is that even at R = 4, a 20% error in the correlation term
represents an error of three percent in the total interaction. As one
goes to smaller values of R, two trends should further reduce the
relat%ve error. First, the SCF term should increasingly dominate

over the CI correction, and secondly the relative error in the CI

caused by neglect of the d-functions should décrease, because the
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*

Table I. Basis set comparison

’ sz symmetry, r = 1.406 au.

Hf6s3pld/4s3pld] H[6s2p/4s2p]

-3.9905592 (H)
- .0726905
-3.9945912

.0719772

+ .0040230

- .0007133

Basis Set
He[7s3pld/5s3pld] He[7s2p/5s2p]
E(SCF), R = 4 au  -3.9907871 (H)
E(CI), R=4au - .0764175
E(SCF), R = 20 au  -3.9948078
E(CI) , R = 20 au - .0755000
AE(SCF + .0040207
AE(CI) - .0009175

AE (TOT) + .0031032

+ .0033187

% .
See text for contractions and orbital exponents.
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véry diffuse d-orbitals should become less important in describing the
system at close distances. ' In the region probed, ohe would expect
relative error to be a few parts per thousénd, certainly less than one
percent.

For eaéh of the three symmetries discussed above the interaction
potential was calculated on a grid of points with R = 1.8, 2.2, 2.6
au, and r = 0.9, 1.406, 2.2 au. (The asymptotes for each r-value

were calculated in C symmetry with R = 20 au.) The results for the

2v
sz and Cs éymmetries at each value of R were interpolated quadratically
to give the values at r = 1.0 and 1.8 au. The results for r = 2,2

in va symmetry were suspect because the CI correction was positive,
i.e,, the correlation in the close-in system was less thap in the
asymptote. It was felt that this could signal a.éurve—crossing or

some other‘complication. The collinear calculations were repeated

atr = 1.8 with R=1.8 2.2, 2.6, 3.0 and 3.5 au. The corrélation
correction was once again positive at R = 1.8. The results were
plotted on semi-log paper to reveal a linear relationship for all

the points except the first, with R = 1.8, which lay above the line.

In other word, the potential was increasing exponentially with
decreasing R, as one would expect for an SCF-dominated interaction,
until R = 2.2,and then rose more sharply at distances smaller than

this. To ease the task of fitting the points, the éxponential was

extrapolated to R = 1.8, and this value was used in place of the

questionabie ab initio one. The collinear values at r = 1.0 were

obtained by quadratic interpolation of the values at r = 0.9,

1.406, and 1.8 au.
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A Legéﬁdre analysis was'performed on the'potential values as
a function of angle. The symmetry of the homonﬁélear diatomic allows
only even terms in the Legendre sgfies. At the R-distances used in
the present extension, as well as the selec; points at which Tsapline
and Kutzelnigg give results for Y = w/4, the coefficients of the

first three Legendre terms, viz., PO, P2, P , were calculated. At

4
the other Tsapline-Kutzelnigg points, only the coefficients of
Pb and PZ could be found. The results showed that the P4 coefficient
was negligible for R > 4 au. The potential was then fit to the

.following analytical form.

VI(t,R,Y) = Vo(r,R)°P0(cosY) fAYZS?,R)-PZ(cosy) + Vé(r,R)-PA(cosy)

(3.46)
where the coefficients are given by the following relations (all
distances are in au., all energies in Hartrees.)
V (r,R) = A (r) e 2:16789-R g (1) pl1e74-216°R ¢ (r).R7O
0 0 0 0
(3.47a)
Ay(x) = 18.532 (1 + .2451-Ar - .1646 - (Ar)) . (3.47b)
By(r) = 8.146 (1 + 1.7711-Ar + .3886 (Ar)") (3.47¢)
C(r) = =5.032 (1 + .5813:Ar - .2347 - (Ar)?) (3.47d)
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-1,667-R

V,(£,R) = A, (r)+ (I+,311R-Ar) e 2R, cz(r).(l‘e . Y (3.48a)
Ay(r) = 2,811 (1 + .7613-Ar + .2197+ (A1) ?) (3.48b)
Cy(r) = -1.067 (1 + 1.5764-Ar + 1.2274- (Ar)%) (3.48¢)
V,(r,R) = (A, (r) + R+B, (r)).e 3-6R (3.49a)
4 4 4
A,(r) = 13.4238(1 - 2.4036-Ar - 2.0953+ (Ar) ) (3.49b)
B,(r) = -1.0024(1 - 29.3771:6r - 27.2996+ (Ar)%)  (3.49¢)

A comparison of ab initio and fitted values is given in Table II;
the units are milli-Hartrees (ImH = 300°K). The quality of the fit
can be summarized by stating that large relative errors correspond
to small absolute errors, and large absolute errors correspond to small
relative ones. In view of the restrictions on the fitting form,
this is the best that one can reasonably expect. The chief restriction,
of course, is that the form must be analytic (in the complex variable
sense), so that the potential can be continued into the complex
plane. This eliminates the possibility of using aifferent forms in
different regions, and thus the single functional form chosen must
adequately represent the ab initio values over five orders of magnitude.
Judging the adequacy of the fit is problematic since numerical measures
of the error, such as least-squares, are not as meaningful as one
might expect. For example, in V0 and V2 the well-depth is four orders
of magnitude smaller than the highest computed point on the repulsive

wall. A naive least-squares determination of the coefficients in an

"exp-six" form will give a fit which is correct to 0.1%7 for the highest



Table IIa. Comparison For V_.

0
r=1.0 au
(au) Potential (mH) . Fit Abs. Error »‘ Rel. Error 'tj
8 221.11538 220.50339 < -0.61199 ~0.00277 | SS
.2 105. 33280 . 106.69225 1.35945 0.01291 t;
.6 49.10775 47.67970 ~1.42806° -0.02908 é;
.0 2.34623 2.44200 0.09577 0.04082 | X
.0 ~0.04740 -0.03138 0.01602  -0.33800
.0 ~0.01473 ~0.01339 = 0.00134 . =0.09096 | &
.0 ~0.00380  -0.00364 0.00016 -0.04122 N =
, ~
r = 1.406 au | . | '
(au . Potential (mH) Fit Abs. Error Rel. Error )
.8 229.60883 229.00071 -0.60813 ~0.00265
.2  115.17960 117.33850 ' 2.15890 0.01874
.6 56.59436  54.97151 . -1.62285 - -0.02868
.0 25.75935 25.49497 ~0.26439 ~0.01026
.0 3.35439 3.56826 0.21387 0.06376

.0 0.26267 0.31978 0.05715 0.21761



Table Ila. Comparison For V. (Cont'd)
r = 1.466 au
R (au) Potential (mH) Fit Abs. Error- Rel. Error
6.0 -0.04707 -0,03574 0.01132 -0.24059
6.5 ;0.04787 -0.04371 0.00416 -0.08696
7.0 -0.03940 -0.04556 0.00384 -0.09751
8.0 -0.02020 -0.01849 0.00171 -0.08447
9.0 -0.00993 ~-0.00940 0.00054 -0.05388
10.0 -0.00523 -0.00502 0.00021 -0.03985
r =1.8 au
R (au) Potential (mH) Fit Abs. Error Rel. Error
1.8 229.54969 229.0983 -0.45286 -0.00197
2.2 '121.35257 123,34083 | 1.98826' 0.01638
2.6 62.45119 60.46051 ~-1.99068 -0.03188
4.0 4.55460 4.78582 0.23122 0.05077
6.0 -0.03627 -0.03042 0.00585 -0.16126
8.0 -0.02553 - =0.02203 ©0.00350 -0.13709
10.0 —0.60677 =0.00599 0.00077

-0.11441




Table I1b. Comparison For V2-

r = 1.0 au

R (au) Potential (mH) - Fit Abs. Error .~ Rel. Error
1.8 31.50332 | 30.16833 -1.33498 -0.04238
2.2 12.58261 13,.59269 1.01008 0.08028
2.6 5.83526 5.77960 -0.05567 -0.00954
4.0 0.26087 0.19400 -0.06687 ~0.25633
6.0 -0.00880 -0.00981 -0.00101 0.11498
8.0 -0.00247 -0.00229 0.00018 “ -0.07133
10.0 ~-0.00060 -0.00060 -0.00000 0.00180
r = 1.406 au B
R kau) Potential | Fit Abs. Error Rel. Error
1.8 59.49735 53.71098 —5.78637 -0.09725
2.2 24.91813 26.45402_. 1.53589 0.06164
2.6 12.26209 12.31603 0.05395 0.00440
3.0 5.22535 5.56225 0.33690 -0.06447
4.0 . 0.73315 1 0.68447 -0.04868  —0.06640
5.0 0.05935 '0.05943 0.06008 0.00131
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Table IIb. Comparison For V,. (Cont'd)

r = 1.406 au
R (au) Potential (mH) Fit : Abs. Error Rel. Error
6.0 ~0.01513 -0.00559 0.00954  -0.63048
6.5 -0.01295 -0.00779 0.00516 -0.39838
7.0 -0.01080 ~0.00673 0.00407 -0.37672
8.0 -0.00500" -0.00375 0.00125 -0.24922
9.0 -0.00247 -0.00196 0.00050 -0.20351
10.0 -0.00107 -0.00106 0.00001 ~0.00543
r=1.8 ;u
R (au) Potential (mH) Fit Abs. Error Rel. Error
1.8 86.01750 83.22312 -2.79438 -0.03249
2.2 41.83965 43,85438 2.01473 0.04815
2.6 21.00903 2i.49706 0.48803 0.02323
4.0 1.60580 1.40625 ~0.19955 -0.12427
6;0 -0.01573 -0.00144 0.01429 —0.90853
8.0 -0.00887 -0.00654 | 0.00233 - =0.26265
10.0 -0.00193 -0.00192 0.00002> -0.00889

-00T-



Table IIc. Comparison For V4.

R (au)
1.8
2.2

2.6

R (au)
1.8
2.2
2.6
3.0
4.0

5.0

R (au)
1.8

2,2
2.6

r=1.0 au

Potential (mH) Fit
5.37260 ©10.24889
0.67170 1.20033
\0.21872 ~0.00654

r = 1.406 au

Pqtential (mH) Fit
17.74197 17.82208
-3.59722 -4,07684
1.05296 0.93139
0.29979 0.21249
0.03195 0.00525

—0.00229 0.00013

. R=1.8 au

Potential (mH) N Fit
30.76614 35.38704

10.21711 10.54249

2,80045 3.00918

Abs. Error

4.,87629
0.52863

-0.22525

Abs. Error
0.08012
0.47962

-0.12157

-0.08730

-0.02671

©0.00241

Abs. Error

4.62090

0.32538
0.20873

Rel. Error
10.90762
0.78699

-0.02989

Rel. Error

- 0.00452

0.13333

~0.11545

- -0.83578

-0.83578

-1.05604

Rel. Errof
0.15019

0.03185
0.07453

=101~
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two points on the wall and completely obliterates the well. Modi-
fication ;f the least-squares to minimize the relative error also gives
poor results, since a 207 error is insignificant if the gg'initiol
value is one degree Kelvin, but very significant if the value is one
eV. Thus one must settle for the sort of trade-off described above:
small relative error for for small values. Unfortunately, in this
approach oné 1oses any clear—-cut quantitative criterion for deciding
when the fitting parameters have been optimized. ' One must ultimately
make a subjective judgement about when the fit is "good enqugh".‘

With the potential defined by Eqgs. (3.46) thru (3.49) scattering
calculations using both the coupled-channel and the classical-limit
techniques were performed at four total energies: 0.9, 1.1, 1.3 and
1.5 eV. The classical-limit calculations were a stfaightforward
application of the methods developed for Hz—Li+. The partial-averaging
and»the appfoximation of neglecting the rotational and orbital
contributions to the damping function, both discussed extensively in
the previoﬁs section, were used to rgduce the problems incurred in the
root-search. The searching procedure converged for over 90% of the
Monte Carlo points with the higher energies showing higher cdnvergence
rates than the lower energies. The coupled channel calculations were
done using the Lester version of the Gordon program. The nature of
the method has been discussed in the previous chapter, and the reader
is referred to the articies by Gordon (1970, 1971) and Lester (1973)

for further details. All tolerance values in the program were set to

10_4, and the basis set used consisted of the following states:
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n=1,3=0, 2, 4, 6 (3.50)

The wavefunctions of these statés, required to compute the coupling
matrix (see Eq. (2.33b), were foundbby.numerical sdlution of Eq. (2.12¢)
using the Numerov ﬁethod with v(r) taken to be the Kolos-Wolniewicz
potential.

The calculations yielded a plethora of results. The cross—-sections
are the first level at which a meaningful comparison can be made
between the coupled-channel and classical-limit results. Figure 3 shows
the coupled—chamnel result for 01;0+0

The cross-sections for the other initial j-states behave very

as a function of total energy.

similarly. They are all approximately equal at .9 eV; the cross-sections
for jl = 4 and 6 rise somewhat more rapidly, becoming about twice and
four times as large, resﬁ., as 01,0+O at 1.5 e V. It would appear

that values of the cross-sections at 1.5 eV are too large. This

could be due to neglect of the state (1,8). Pure rotational transitions
from the lowerj1 states to (1,8) would, of course, decrease the cross
sections for the V-R transitions to the ground state. For reasons

étated below, one would expect such large Aj transitions to (1,8)

to become more important at higher energies. Figure 4 shows the same

quéntity, 01 050’ calculated by the classical-limit method. Qualitatively
3’

the behaviour is similar, however the classical-limit results are two
to three ordérs of magnitude larger than the coupled channel results.

This is a disasterous showing, especially'in view of the quantitative
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+
agreement in the H_-Li study.

2
It is also illuminating to examine the distribution of final
j-states. Figure 5 shows this distribution for scattering arising
from the (1,0) state, calculated by the coupled-channel method.
Again the other initial j-states follow a well-defined\pattern. At
.9 eV the scattering from each state peaks at j2 = j1 + 2; at higher
energies the same relation hold for all states except j1 = 0, which
peaks at j2 =3j; + 4. Figure 2 shows that Hz-Li+ follows a similar
distribution. The qualitative features of the final rotational
distribution can be rationalized by observing that the system has
weak coupling and widely-spaced energy levels. In the limit of no
coupling both the internal energy and rotational_angular momentum
would be conserved. With weak coupling, the system would like to
undergo transitions which almost conserve these two quantities. Of
course, that is impossible. Small Aj's require large energy changes,
on the order of .5 eV if jl‘= O.. Similarly, small E's require

j's on the order of six or eight. At .9 eV, Aj = 2 is the most

probable transition, with |AE| = 48, .42, .35, .30 eV for j1 =0, 2,

4, 6 resp. at higher energies, Aj = 4 is more probable for jl 0,
with |AE| = .38 eV. For the other initial j—states, the Aj = 4
transition also rises more rapidly than Aj = 2 with increasing total
energy, but Aj = 2 still remains the most probable transition. This
trend can be understood by recalling that rotational excitation
takes place by transfer of angular momentum from the orbital to the

rotational mode. Loss of angular momentum is more likely if the initial

orbital angular momentum is large, i.e., AL = -4 is more likely if
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1

finite range, say.bmax, the largest orbital angular momentum of any

2. = 30 than if 21 = 6. However, if the interaction potential has a

consequence 1is lmax = k bmax' For f£-values larger than Qmaﬁ the
corresponding impact parameter is so large that the system never enters
the interaction region and all asymptotic quantities are comnserved.

The wavenumber k depends on the energy, of course, with the consequence
that for fixed bmax’ lmax increases in energy. vThus one would expect
Aj = 4 transitions to increase more rapidly with energy than Aj = 2
'transitions; In the case of j1 = 0, the transitions are -roughly
comparable at .9 eV, so at higher energies Aj = 4 becomes dominant.

For the other j-states, Aj = 4 is one or two orders of magnitude
smaller than Aj = 2, so althoﬁgh it rises more rapidly, it does not
dominate over Aj = 2. Of course, the importance of Aj = 4 transitiomns
at higher energies may invalidate the results for (1,6) cross-sections
at 1.5 eV, since the state (0,10) was not in the basis set. Figure

6 shows.the finai rotational distribution from state (1,0), computed
by the classical-limit method. The distribution clearly overestimates
the relative probability of the j = 4 transition. This seems to

be true for other jl—states and energies as well. It would appear
that the very poor showing of the classical-limit results for this
system is due to the approximation neglecting the rotational '
contribution to the damping function. The H,-He systems exhibits far

2

less angular anisotropy than H —Li+, and apparently the rotational

2

contribution to the "forbiddenness'" cannot be neglected, as it was

in the H2—L1+ calculations. Thus it follows that a successful

application of the classical-limit method to H, -He can only be done

2
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Fig. 6. Final j-state distribution for scattering from the (1,0) state of Hz-He at E= .9 eV
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using the full boundary conditions of Egs. (3.2) and necessitating

the use of a four-dimensional root-search procedure.
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The final step in the HZAHe calculations was the use of the cross-
section data to find the rate constants and relaxation times. Rate
constants connecting specific quantum levels were fdﬁnd by fitting the
corresponding quantum cross-sections to a power law and carrying out
the integration of Eqs. (2.68). More specifically, to find the rate
of transition from state i to f the cross-section was fit to the form

' p
c & A(Etr) s (3'50)

f+i‘
where E;r is the translational energy in state i.and the values of A

and p were found by taking the logarithm of both sides of the equation
and paséing a least-squares line through the known points. Substitution
of Eq. (3.50) into Eqs. (2.68) and use 6f Eq. (2.67) gives the follow-
ing final expression for the rate constant:

1 .
Keos = (—"% )1/2-A-(kBT) (p+2‘).r(p+2) (3.51)

0f course, only the downward rate constants (i.e., i>f) need be
computed this way: the reverse ratés are given by the detailed
balance relationship (see Eq. (2.76)). Once all the off-diagonal
elements of the rate matrix were found the diagonal elements Qere
 computed by use of Eq. (2.74).

With the rate matrix known the relaxation rate was computed iﬁ
two ways. The first approach can be termed a pseudo two~éta;e method,
since it makes use of the well-known result that the relaxation rate

is given by
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K o=k - (e P 0E, | (3.52)

for a system with two levels, labelled zero and one in this case.
The variable AE is just the energy spacing of the two levels. 1In
abplying this approach to Hz*ﬁe one approximates the system by two
states, corresponding to n=0 and n=1. The relaxation rate is then

given by Eq. (3.52) with the parameters defined by

(1 ~B(E,. -E_)
jl<j2k0j2<-lj1 A2s+1) - e 13, 00
k. = ; (3.53a)
0«1
}j(zjl+1)-e"3(E1jl'Eoo)
I
AE = (B, B (3.53b)

The second method used was the diagonalization scheme outlined in

Section (II1.C). The states included in the rate matrix were

n=0,3=0,2, 4, 6, 8

n=1, j=0, 2, 4, 6

the results of the two methods agreed to better than one-half of a
percent for temperatures below 2,000°k.

Relaxation rates were also computed on the basis of the classical-
limit scattering results. However, because of the uncertainties in

the final j-state distribution of these results the procedure involving
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specific quantum levels had to be modified. The cross-seections
fit to the power law of Eq. (3.50) were first sqmmed over the final
rotational state, i.e., they were of the form:

Onqs — ) Ops uqs (3.54)
0<1j, i, 03,413,

Evaluation of Eq. (3.51) then gave an approximate value for k0+lj .
1

Substitution of this value into Eq. (3.53a) gave the classical-limit

relaxation rate, since k can equivalently be defined by

0*-1j1

k0<_1jl = j2 kszflji (3.55)
The diagonalization scheme could not be applied to the classical-limit
resultsvfor two reasons. The first is the finél j-state distribution
mentionéd earlier, The second is that the séheme requires the rates

for purely‘rotational transitions within the n=0 and n=1 manifolds.

The corresponding cross-sections had not been computed in the classical-
limit calculations (only vibrationally inelastic transitions were
considered), and these rates wefé not available. However, because

of the agreement between pseudo two-state and diagonalization results
for the COUpled—channel data, it can be presumed that the pseudo two-
state results are an accurate representation of the relaxation rate

for the classical-limit data.

Figure 7 shows a comparison of the classical-limit, coupled

channel; and experimental results for the relaxation rate in the



10" I T |
I(S'6 — 7
|6|7 | _
EXP
0%
T(.J
)
w
’ <19 .
Rt CL-
xh
10°°L —
CC
ICSZI__ ]
500°k 300 | . 100 50
022] | l L
O.i2 0.15 - 0.20 0.25 0.27
T" /3
XBL 759-7226
Fig. 7. Relaxation rate for HZ—He system as function of temperature.

-114-

CC -- Coupled-channel
c -~ Classical-limit
EXP -- Experiment
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temperature range of 50 to 500°K. Clearly thevclassical—limif
results are in very poor agreement with experiment. They predict
the wrong curvature and are several ordere of magnitude in error
over most of the range. The coupled-channel results show much better
agreemeet. The curvature is qualitatively correct but much weaker
than that shown by the experimental poiﬁts. Exfension of the curves
to highe; temperatures (not shown) indicates essentially quantitative
agreement in the range of 1500 - 3000°K between the coupled-~channel
results and the ehock—tube data of Dove, Jones and Teitelbaum, as
quoted by Audibert, et al. (see Ref. 2 of Audibert, Joffrin and
Ducuing). The classical—limiﬁ results in this range fall about two
orders of magnitude above the eiperiment.

Inbofder to draw any conclusions from thése comparisons one
must recall that the underlying cross—sectione were computed in the
range of .9-1.5 eV total energy, or .3-1.0 eV relative translational
energy, since the internal energies of the states dominating the
relaxation; namely (1,0), (1,2), (1,4), are about .5-.6 eV. The
translational energies correspond to temperatures of 3,000 to .
10,000°K. Thus the shock-tube«experiments probe the relaxation rate
at temperatures comparable or slightly below the energy range of the
cross-section calculations. Not suprisingly then, the high-
temperature relaxation rates reflect the discrepancy between the
coupled-channel and classical-limit cross—seetiohs; with the coupled-

channel results being essentially exact,
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The low temperature (T<500°K) relaxation results depend
sensitively on thg behavior of the cross-section immediately above
threshold. This behaviour is poorly represented by a power-law
extrapolation from higher energies. Below room temperature the

relaxation rate is dominated by k (see Eq. (3.53a)), and test

0«10
calculations indicate that the extrapolation used here would result
in a serious underestimate of the underlying corss-section,

00+l,0’ for Etr < .042 eV (=460°K). 1In this energy range vibrational
deactivation competes only with elastic scattering: pure rotational
transitions to higher states of the n=1 manifold are energetically
forbidden. Of course, in the range where the cross-sections were
computed purely rotational transitions are allowed; their effect is to
reduce the probability of vibrational deactivation. (That is, if

the states n=1, j=2, 4, 6 were dropped from the cbupled—channel

calculatibn, the effect would be to increase O ) Extrapolation

0¢1,0°
of the cross—-section curve to low energies underestimates the
cross-sections around threshold by improperly including the effects
of purely rotational transitions, which in fact cannot take place

at those energies. It is felt that this is the cause of fhe
discrepancy in degree of curvature between the curvature between the
coupled-channel results and the experimental work of Audibert,
_g..gl, Unfortunately, removing this discrepancy would call for very
difficult calculations just above threshold to determine the correct

cross-section behaviour there. Test calculations show that the S-matrix

elements of interest are very small, less than 10-8. Computing



00404303488

-117-

them reliébly would require exacting tolerances. Further, because of
the low transitions probabilities involved, it may prove necessary
to use the de Vogelaere algorithm in place of the Gordon method

used in the present study.
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" Iv. CONCLUSiONS

As stated in the introduction, the purpose of this project was
to develop a method of uéing complex trajectories to extend the
applicability of quasi-classical calculations to classically forbidden
problems and to test the validity of the proposed method by comparison
with essentially exact quantum calculations. Thus there are three
basic questions which must be answered by this concluding summaryf
how well does the proposed method compare with exact caiculations,
how can_the comparison be improved, and what difficulties can be
expected in generalization to systems larger than atom-diafom.

The first two questions have, in essence, been answered in
the body of this dissertation; however, a recapitulation is in order.

+ ,
Agreement for the H_-Li system was quantitative, both in the size of

2

the cross-sections and in the distribution of final rotational states.

In comparison, agreement for the H, -He case was very poor. The

2

classical-limit cross-sections were one to two orders of magnitude
too large, they rose too sharply, and the distribution of final
rotational states peaked at the state immediately above the correct
maximum.

The cause of these difficulties is also clear, The angular

anisotropy of the H_-He interaction potential is much smaller than ’

2

+
that of H2—Li . Consequently the neglect of the rotational and

\

orbital contributions to the damping integral of Eq. (2.59b)

introduced a much more serious error into the results for H2-He. As

expected, an underestimate of the damping function yields an overestimate
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of the cross-sections, in this case amounting to at least a factor of

ten.. Similarly, the final rotational distribution was analyzed as

a trade-off between energy and angular-momentum conservation. Since

the approximation described above overestimates the ease of rotational~

orbital COUpling, one would expect ﬁhe classical-1limit distribution

to show more internal-energy conservation and thus be shifted to

higher final j-values.

It will be recalled that the épproximation of neglecting part

/thhedamping integral was introduced to reduce the root-search

problem to manageable dimensionality, The original four-dimensional

problem proved not to be amenable to easy solution at each point of

the Monte Carlo éverage. The results of the H,_-He study force one -

2

to conclude that if the proposed classical-limit method is to be

made completely reliable in all cases, the full damping integral

must be used and the 4-D root-search must be performed at each Monte
Carlo point. This means that if this line of research is to be
continued, the first order of business must be the development of

a reliable and efficient multidimensional rbot—seafching procedure. ;

Of course, even in its present state the proposed method is of

potential htility. The H2—Li+ results show that the method works
well if the éngular anisotropy of the potential is large, and it is in
precisely such cases that coupled-channel calculations become tedious,
since many partial waves must be included in the sum for the cross-
sections. The proposed classical-limit method can be used to

complement exact quantum procedures. In systems with weak rotatiomal

coupling, coupled-channel calculations are easily done; the
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classical-1imit method proposed here can be applied conveniently
and reliably to systems with strong rotational coupling.

Lastly, there is the question of extension to larger systems.

The first problem is obtaining reliable potential surfaces describing
the interaction of such systems. However, since this problem
applies to all exact methods, it is not germane to the discussion.

As regards extension of the claséical—limit formulation to larger
systems, the complication of the rotational motion should be
tractable without major difficulties. Problems arise, however,

from the presence of several vibrational modes. Apart from increasing
the dimensionality of the root-search (with "partial-averaging' over
rotation, the rotational modes will each contribute'one dimension to
the root-search; the vibrational modes will each contribute two
dimensions), the presence of more than one vibrational mode will
necessitate a reexamination of the algorithm use to stabilize complex
trajectories.

It will be recallgd that the current version of thé algorithm
varies one independent Vériable (the argument of the time path) to
control the value of one dependent variable (the oscillator separation).
In the case of larger systems several dependent variables (correspond-
ing to separations in the several vibrational modes) will have to
be bounded. One could, of course, try bounding some suitably
weighted sum of such separations; this would at least restore the
parity of one independent variable and one dependent variable.
Nonetheless, the matter would require careful scrutiny. Thus,

extension to larger systems would require a reliable multidimensional
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root-search procedure and a modification of the stabilizing algorthm

for complex trajectories.
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