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1. Introduction 

One of the central issues in the recent progress in understanding non-perturbative aspects of string the­
ory has been the realization that singular conformal theories which correspond to singular points in moduli 
of string compactifications in many cases signal the existence of nearly massless solitons [1], [2], [3], [4]. Since 
these nearly massless modes are left out of the low energy spectrum of elementary excitations of strings, 
integrating them out will lead to a singular low energy description. As examples of this phenomenon one 
can mention the enhanced gauge symmetry of type IIA once we compactify on singular limits of K3 (or 
ALE spaces) where the gauge group is ADE depending on the singularity type [2] and the Dynkin diagram 
is determined by the intersection form of vanishing 2-cycles. Another example is provided by the compact­
ifications of type liB strings on singular Calabi-Yau threefolds. If we have a conifold singularity, where a 
3-cycle vanishes, one expects a massless soli tonic hypermultiplet (carrying Ramond-Ramond charge)[3]. It 
is therefore important to understand the nature of the singularity of the conformal theory in these classes of 
examples. This is the main aim of this paper. As a byproduct, the results presented here have led to a dual 
perturbative string description of the massless solitons in both of these classes [5], where the nearly massless 
soliton is realized as an elementary state of the D-string. 

The organization of this paper is as follows. We will first discuss the case of Calabi-Yau 3-fold in 
the presence of conifold singularity. Then we consider ALE spaces with ADE singularities and present a 
conformal theory description of them. Rather surprisingly we find that they are equivalent to symmetric 
fivebrane solutions. We will establish this at the level of conformal theories and give a geometric explanation 
of this phenomenon based on 'stringy cosmic strings' [6]. Also some mysterious connections are found with 
the (1, n) conformal theories coupled to gravity, following a similar connection between the c = 1 at the 
self-dual radius and the conifold singularity of Calabi-Yau threefold [7]: In particular just as the conifold 
singularity is topologically captured by the N = 2 topological theory, one expects that the ADE singularities 
on ALE are captured by N = 4 topological theory [8]. We find indications that this latter N = 4 topological 
system is related and possibly equivalent to (1, n) conformal system coupled to the two-dimensional gravity. 
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2. Conifold in Three Dimensions and Massless Soliton 

We can gain information on the spectrum of the conformal field theory by computing [9] 

F1 = ~ [ d2r tr'(-1lL+FRFLFMHLijHR, 
2 }M

1 
Imr 

where tr' means a trace over the Hilbert space of the N = 2 superconformal non-linear sigma-model on 
the Calabi-Yau threefold in the Ramond sector with zero-energy ( chiral) states eliminated, and FL and FR 
are left and right-moving fermion number operators. This is a standard expression for one-loop partition 
function of a topological string on the Calabi-Yau manifold, but it can also be interpreted as computing 
one-loop correction to R 2 terms in the low energy effective action of the type II superstring theory [10], [11]. 
In general, F1 computed for a compact Calabi-Yau manifold is finite since the spectrum of the sigma-model 
should be discrete with a finite mass gap and therefore tr'( -1)h+FR FLFRqHLijHR becomes exponentially 
small as r ~ oo. In [9], F1 is computed in four different families Calabi-Yau manifolds, each of which has 
a conifold singularity in the moduli space. In the neighborhood of the conifold, local structure near the 
singularity of the Calabi-Yau manifolds can be described in the universal form as the quadric [12] 

2 2 2 2 _ ( c4) Y1 + Y2 + Y3 + Y4- J-1., Y E · (2.1) 

As J1. ---~" 0, the quadric develops a singularity with a collapsing 3-cycle. It turned out that in all the four 
cases, F1 behaves as 1 

1 12 F1....., --log!J-1. 
12 

(2.2) 

as J1. -+ 0. This was further confirmed by computation of F1 in many other examples studied in [13]. To 
be consistent with Strominger's interpretation, this logarithmic divergence should be due to the virtual 
nearly massless solitonic loop [14]. On the other hand, from the point of view of conformal field theory, 
this divergence signals vanishing of mass gap in the spectrum since contributions from massive excitations 
to F 1 are finite. This implies that the perturbative string theory acquires additional light particles in the 
neighborhood of the conifold. These light particles are unstable in string perturbation theory. 

Hints that the topological theory of Calabi-Yau threefold are related to c = 1 strings at self-dual radius 
first appeared in [15] where it was shown to be described by a c = 3 twisted Kazama-Suzuki model [16] for 
a coset SL(2)/U(1) at level k = 3. In fact this explained the observation in [17] that the topological theory 
of this model at genus-g gives Euler characteristic of moduli space of Riemann surfaces which is the same 
as the partition function of c = 1 string at the self-dual radius [18], [19]. The equivalent Landau-Ginzburg 
description for it is given by a superpotential W = -JJ.:r:- 1 by "analytic continuation" from the SU(2)/U(1) 
Kazama-Suzuki model where a superpotential is W = xk+2 for level k [20], [21]. More evidence in favor of 
this description was found by studying the correlators of this model in the Landau-Ginzburg framework and 
obtaining the c = 1 tachyon amplitude~ [22], [23]. 

Further evidence for the c = 1- Calabi-Yau connection emerged from [10] where it was noticed that as 
a function of J1. the genus-g partition function of topological theory near conifold limit scales as F9 ....., J-1. 2- 29 , 

which is the same as one expects for c = 1 theory coupled to gravity. This connection was explained in [7] 
by noting that the sigma-model for (2.1) is related to the Landau-Ginzburg model with a superpotential 

W( ) -1 2 2 2 2 
:r:, Y = - J.I.X + Y1 + Y2 + Y3 + Y4 · 

The equation W = 0 in a weighted projective space WCP~2• 1 , 1 , 1 , 1 satisfies the Calabi-Yau condition with 
the central charge c = 3 [24]. Note that adding quadratic fields does not change the conformal fixed point 
and is a standard technique for relating Calabi-Yau compactifications with Landau-Ginzburg theories [25]. 
When :r: =ft 0, we can set :r: = 1 without any loss of generality and W = 0 in this patch is equivalent to the 
deformed conifold (2.1). As far as J1. =ft 0, the patch with :r: = 0 is associated with oW = oo and would 

1 At genus-onE}, the t()pological string actually computes a~-'F1 since we need to fix one-point on a torus. More 

generally for F9 we would be interested in F9 1p-o which is the topological expansion of F9 in the conifold limit. 
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not arise in the geometric description of the theory (at least in a suitable regime of field space - it would 
be interesting to check these from the viewpoint of linear sigma models [26]). These results in particular 
explain the universal behavior of F1 near the conifold singularity. Moreover for g > 1, using the result for 
c = 1 string partition function we learn that F9 of the Calabi-Yau near the conifold limit is given by 

F _ B2g 2-29 
g - 2g(2g - 2) J.L , (2.3) 

where Bn is the Bernoulli number and B29 /2g(2g- 2) is the Euler class of the moduli space of genus-g 
Riemann surfaces. At g = 2, this expression is consistent with the conifold limit of the result in [10] where 
the g = 2 topological string amplitude is computed for the quintic threefold. More recently it was shown 
that the behavior (2.3) is consistent to all order in g with the corresponding correction to R2 F 29- 2 in four 
dimensions where one considers a virtual loop of a nearly massless soliton [27] thus generalizing the work in 
[14] to all loops and providing a strong check for the conjecture of Strominger that a nearly massless solitonic 
object 'explains' topological singularity of conformal theory in the conifold limit. 

2.1. Geometrical Pictu're of the Conformal Theory 

The conformal theory describing the conifold is thus the untwisted version of the SL(2)/U(1) Kazama­
Suzuki model with k = 3. The non-supersymmetric version of this is the Euclidean black hole system in two 
dimensions [28]. The geometrical picture developed there is as follows (see also [29]): The geometry is that 
of an infinitely long "cigar." For most of the geometry, if we are far enough from the tip of the cigar, we have 
a cylindrical geometry parameterized by X running over a circle and ¢ along the length of cigar. Moreover 
there is a linear dilaton in the¢ direction with the string coupling becoming weaker as we go along the cigar. 
The supersymmetric description has basically the same bosonic piece, but in addition the standard fermionic 
partners. As for the physical states of the c = 1 string at the self-dual radius, they come from the discrete 
representations of SL(2) [15] and they can be viewed as bound states at zero energy near the tip of the cigar 
[29]. On the other hand the waves propagating down the cigar correspond to non-topological states, and are 
BRST trivial in the sense of the c = 1 string - However those are precisely the ones which are responsible 
for the continuous spectrum of the Calabi-Yau near the conifold. This interpretation is consistent with the 
considerations of unitarity: We expect that the conformal theory of Calabi-Yau has a unitary spectrum. The 
analysis of [30] concluded that for this level of k essentially none of the discrete representations of the coset 
model is unitary (the exception being the one corresponding to the cosmological constant operator which is 
also a real deformation of Calabi-Yau), whereas all the continuous representations are unitary. In fact this 
meshes nicely with the picture advocated in [31] if we think of the length of the tube as being related to 
-logJ.L and connected to the rest of the Calabi-Yau conformal theory. The states of c = 1 string which- are 
bound to the tip of the cigar do not communicate with the rest of the Calabi-Yau because the coupling is 
weaker by a factor of J.L, and moreover they do not arise as physical states ofthe Calabi-Yau compactification, 
consistent with unitarity requirements. 

The picture advocated in [31] was in connection with the explanation of the unreliability of string 
perturbation theory. In such a picture the coupling being infinitely strong at the tip of the cigar in the 
limit J.L .- 0 shows that the perturbation theory should break down if J.L < A, where A is the string coupling 
constant. In fact this already follows from the computation of the topological amplitude above: Namely if 
we turn on a background F and compute the correction to R2 , as explained above, near the conifold the 
genus-g correction goes as F9 ""J.L2- 29 A29-2 and thus if J.L < A each successive correction gets larger and the 
perturbation sum becomes unreliable2 • 

The main puzzle is how does this fit with the geometry of the Calabi-Yau near the conifold? To begin 
with we have a vanishing S3 . Where did the cigar shaped object appear? When did we turn on the dilaton? 
We will be able to shed some light on this after our discussion on the singularities of the conformal theory 
near K3 degenerations. 

2 This story is very similar and possibly related to the issue of heterotic/type I duality recently discussed in [32]. 
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3. ADE Singularities in K3 and Fivebrane Solution 

Let us turn our attention to singularities in K3 surfaces. From the duality between type II and het­
erotic string models in six dimensions, it is expected that the perturbative type II string on K3 x R 6 will 
have singularities when the dual heterotic string on T 4 x R6 approaches enhanced gauge symmetry points 
[2]. These special points for K3 are modeled (and generalized) by the ALE spaces which have ADE-type 
singularities given by 

An-1: Y?+Y~+y~=Jl (n;::: 2) 

D~+1: Yt + Y1Y~ + Y~ = Jl (n :even;::: 6) 

E6: yf + y~ + y~ = Jl (3.1) 

E1: YrY2 + Y~ + Y~ = Jl 

Es: yr + y~ + y~ = Jl, (x E C3
) 

with appropriately chosen values of the Kahler moduli [33]. As in the case of Calabi-Yau threefolds, we can 
add one more variable x and consider corresponding Landau-Ginzburg models with superpotentials 

An-1 : W = -px-n + Y? + y~ + y~ 
D~+1 : W = -px-n + Yt + Y1Y~ + Y~ 

E6 : W = -px- 12 + yf + y~ + y~ 
E1 : W = -px- 18 + YrY2 + ~ + Y~ 
Es: w = -px-ao + Yr + Y~ + Y~· 

(3.2) 

It is straightforward to verify that the equation W = 0 satisfies the Calabi-Yau condition with c = 2. 
Note also that, as is usual in Gepner models, to get a connection with Calabi-Yau, we have to mod out 
by exp(27riJ0 ) which imposes the charge integrality condition and summing over the spectral flow [34]. For 
example for the An-1 series this results in modding out by a Zn. 

Let us analyse the Hilbert space structure of these models. They-dependent parts of (3.2) are nothing 
but the superpotentials of theN= 2 superconformal minimal models associated to the ADE-type modular 
invariants [20], [21] with 

c=1-2. 
n 

(for An-1 and D~+1 

n = 12, 18,30 for E6, E1, Es). 

On the other hand, the Laudau-Ginzburg model with a potential x-n is equivalent to the Kazama-Suzuki 
model for the coset SL(2, R)n+2/U(1) at the critical point. Above we presented evidence for this analytic 
continuation in the form of the superpotential W from SU(2) to SL(2) when n = 1 and we are assuming 
this is generally valid. Therefore the Landau-Ginzburg models given by the potentials (3.2) are products of 
the Kazama-Suzuki model and the N = 2 minimal models modded out by an appropriate discrete group: 

gm X S(?V 
U{f) U1 

G 
(3.3) 

where G = Zn in the An-1 case. Before going to the detail of the conformal theory construction and in 
particular the orbifoldizing of (3.3) by G, we would like to mention what the outcome is. Let us first consider 
the An-1 series. The bosonic piece of SL(2)/U(1) coset model can be viewed geometrically as a cigar shaped 
object [28] which is physically the Euclidean two-dimensional black hole. This is a non-compact space, and 
except for a finite region near the tip of the cigar it can be viewed as a semi-infinite cylinder. We will 
coordinatize the length of it by <P and the circle coordinate we will denote by X with radius R = .J2n (which 
can be read off· from the level of the affine Lie algebra). Moreover, there is a linear dilaton for¢, i.e. it is 
a Feigin-Fuchs system (this is true if we are far enough from the tip of the cigar). In addition we have, in 
this region, two free fermionic partners of <P and X. As for the supercoset SU(2)/U(1), it is more difficult to 
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describe geometrically, but basically they are the representation of the parafermionic algebra together with 
a free boson (whose momentum is correlated with representations of the parafermionic system). In modding 
out by a = Zn, the Zn acts trivially on the fermionic pieces of SL(2)/U(1) coset model, but acts on the 
momentum (winding) states around X by n-th roots of unity. At the same time, it also acts on the free 
bosonic part of the SU(2)/U(1) minimal model. The net effect onhis modding is to recombine X and the 
free boson in the minimal model into two bosons of radii J2(n- 2) and 1. The momentum of the boson 
with radius J2(n- 2), which we denote by H, is still correlated to the representations of the parafermion 

· algebra. On the other hand, the boson at R = 1 is decoupled and can be converted into two free fermions. 
The parafermionic system t_ogether with the H field forms a bosonic SU(2) system. Thus we finally end 
up after orbifoldization by a with a bosonic system consisting of SU(2) at level k = n - 2 and a Feigin 
Fuchs system ¢ with background charge. We have also 4 free fermions, three of which make an N = 1 
superconformal SU(2) model and the last one is a superpartner of¢. The background charge of¢ is tuned 
so that the total c equals 2. This is the same as the symmetric fivebrane conformal theory [35] with a charge 
associate to the B field (H charge) equal to n. Note that our system is a capped version of [35], in the sense 
that instead of the ¢ going off to infinity, where the coupling becomes infinitely strong, we end up instead 
at'the tip of the cigar. This is the region where the splitting of the SL(2)/U(1) coset system to¢, X fails. 

Now we come to a more detailed description of the orbifoldization above using the characters of conformal 
field theory, concentrating on how the orbifoldization by a leads to the SU(2) characters. To perform the 
orbifoldization (3.3), we first note that the U(1) current J of theN = 2 algebra in the Kazama-Suzuki model 
SL(2, R)n+2/U(l) takes the form 

(3.4) 

where 1/;, -If are free fermions that are superpartners of the bosonic coset SL(2, R)/U(1) and X is a free 
scalar living on 8 1 with radius R = ...j27Ti (where X is dual to X described above). This can be shown in 
the following way. In the Kazama-Suzuki model, the N = 2 superconformal algebra are realized as 

a+ = tf;J+, a- = ;fJ-
2 - 2 3 

J = (1 + - )1/;t/; - -J 
n n 

(3.5) 

where J±, J3 are the generators of SL(2, R)n+2· To take the quotient by U(1), we introduce an U(1) gauge 
field A= iaX, BRST ghosts (B, C) of weights (1, 0) and a BRST current 

- 3 /n 
JBRST = c(t/;1/;- J - iv 2ax). 

The coefficient in front of X is determined by requiring the nilpotency of the BRST charge QBRST· This 
also implies that X should live on 8 1 of radius R = .j'ifn. It follows that the U(1) current J in (3.5) is 
equal to (3.4) up to a BRST trivial operator. 

Now we are ready to perform the orbifoldization of the Landau-Ginzburg model, noting that the gener­
ator of a acting on the SL(2)/U(l) piece can be identified with exp(27riJo) and so in particular using (3.4) 
it acts only on the X piece of the coset. The relevant partition function of the X system is given by 

where 

t?m,n(r) 
7J( r) ' 

t?m,n(r) = Lqn(s+~)2. 
&EZ 

(3.6) 

For the SU(2)/U(l) system, which is the N = 2 minimal model, we use a character of an irreducible 
representation of the N = 2 superconformal algebra, which is denoted by ch~'::,2)( r), where l and m' are 

- related to the ~onformal weight hz,m' and the U(1) charge of the highest weight state Qm' as . 

l(l + 2)- m'2 

him'= , ' 4n 

5 

m' 
Qm'=-. 

n 



The charge integrality condition, which is imposed by the orbifoldization by G, requires that we choose m 
in (3.6) to be equal tom' in ch~~2) so we only consider the combination 

' 

19m,n(r). h(n-2)( ) 

() 
Czm r. 1JT , 

(3.7) 

To sum over the spectral flow, we make use of the following expression for the N = 2 character [36] 

n-2 
h(n-2)( ) _ 

C l,m T - I: c},~ 2)( r)1?m'n-m(n-2),n(n-2)( T /2), 
m'=-n-1 

where c~~2)( r) is the string function(= parafermionic partition function x 1J( r)) ofthe affine SU(2) algebra. 
The stri~g function can be obtained by expanding a character of an irreducible representation of the affine 
SU(2) algebra at level (n- 2) with the highest weight l, x}n-2)(r), in terms of the theta-function as 

(n-2)( ) ~ (n-2)( )19 ( ) Xz r = L.J Cz,m r m,n-2 r . (3.8) 
m 

The information on the U(1) charge is carried by the theta-function piece of this expression. Thus the 
problem reduces to computing 

I: 1?m,n( r)1?m'n-m(n-2),n(n-2)( T /2). 
m 

This can be done by using the multiplication formula of the theta-function. By using (3.8), we can recombine 
the string function and the theta-function into the SU(2) character as 

n~1 19m,n(r) . ch(n-2)(r) = 
L.J 1J(r) l,m 

m=-1 
00 

(3.9) 

= IT (1 + qr-112)2 . x}n-2)< r) 
r=1 

Thus we have shown that the orbifoldization of the N = 2 minimal model combined with one free scalar 
X coming from the Kazama-Suzuki model gives the SU(2)n-2 WZW for the A-series (where the left and 
right characters are identical) plus two free fermions. It is straight-forward to generalize this construction 
for the D- and E-series of ALE above, with the modification that the resulting SU(2) partition function will 
be the D or E-type modular invariant [37]. This is clear because the corresponding modular combinations 
for the N = 2 minimal models follows that of the underlying SU(2). Note that, generally speaking, the 
orbifoldization of the c = 2 Landau-Ginzburg model introduces the affine SU(2) symmetry of level 1, which 
is a part of the (small) N = 4 superconformal algebra [38], [39], and which is different from the SU(2)n-2 
symmetry manifesting itself in (3.9). 

The remainder of the Kazama-Suzuki model, apart from the two fermions of the SL(2)/U(1) model, 
is a free scalar <P with a background charge Ql/> "'"' 1/.,fii. The easiest way to see it is to use the Wakimoto 
construction of SL(2, R) which realizes J±, J 3 in terms of one scalar field <P and a pair of bosonic ghosts 
(j3, -y) of weights (1, 0). Following the analysis of [15], one finds that (j3, -y) and (B, C) makes the Kugo-Ojima 
quartet and decouple (in a suitable region of field space 'away' from the tip of the cigar). The remaining 
<P has a background charge Qif>, and the screening operators of the Wakimoto construction go over to the 
screening operators for ¢. 

To summarize, we have found that the orbifoldized Landau-Ginzburg model with the superpotential 
given by (3.2) is equivalent to the SU(2)n-2 WZW model, four free fermions and one scalar with the 
background charge Ql/>. In particular, the resulting model has SU(2)n-2 x SU(2h symmetry. Combined 
with the free scalar <P and the (small) N = 4 supercurrent, they generate the (large) N = 4 superconformal 
algebra [40]. 
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In claiming a connection between ALE spaces and LG models one has to precisely specify the Kahler 
moduli in order to get a singular conformal theory [33]. For example consider the A1 singularity. If we 
consider it as an orbifold R4 I Z2, the usual orbifold CFT is not singular precisely because the periodic B 
field in the orbifold model is B = 1r and not zero. If we adjust B, keeping the sphere collapsed, there are two 
values for which the resulting theory has an extra Z2 symmetry: B = 1r, 0. The case B = 0 is the one which 
gives the singular conformal theory. In fact, in our models, the Kahler moduli are automatically tuned such 
that the B fields are zero. To see this let us consider the A1 case as an example. In general, the orbifoldized 
Laudau-Ginzburg models have discrete symmetries so called quantum symmetries, which fix the value of the 
the Kahler moduli [41]. For the case of A1 considered above we have to mod out by a Z2 so we will indeed 
get a Z2 quantum symmetry in the orbifoldized model. So we are either at B = 0 or B = 1r. Since the 
concrete description of our conformal theory given above shows that it is not equivalent to standard R4 I Z2 

orbifold CFT, which has B = 1r we conclude that B = 0 in the above construction. 
As mentioned before for the case of the An- 1 series, the orbifold Laudau-Ginzburg model we just 

constructed is identical to the conformal field theory of the symmetric fivebrane solution with the H charge 
n [42], [35], [43]. The target space geometry of the fivebrane solution has an asymptotically flat region and 
there is a semi-infinite cylinder (wormhole) attached to its center. The scalar field ¢ corresponds to the 
radial coordinate along the cylinder, and the SU(2)n-2 WZW model describes the S3 part, which is the 
cross-section of the cylinder. The volume of the cross-section is proportional to the H charge n [42]. Thus 
if this were a bosonic system, the level of the SU(2) algebra would be equal to n. However we must also 
take into account four fermions which are superpartners of¢ and the SU(2) WZW model. Initially they are 
are not free but are coupled to the generalized connections on the target space. However in the fivebrane 
solution, these connections are parallelized by the anti-symmetric tensor field and we can transform the 
fermions into free ones by chiral gauge rotations. This procedure causes the shift n -+ n - 2 through chiral 
anomalies. 

Recently Witten has examined the phase structure of the linear sigma model for the A1 type singularity 
and conjectured that it should be related to the fivebrane solution based on the similarity between their 
global geometric structures [31]. Here we have proven his conjecture by studying the Hilbert space structure 
of the model explicitly, and we have determined the value of the H charge to be 2. We also extended it 
to all An-1, with the result that the ALE singularity given by An-1 is equivalent to the conformal theory 
describing the symmetric fivebrane with the charge n. There are two subtleties to consider: The first one 
is that if we consider type IIA(B) on ALE it is equivalent to type liB( A) on the symmetric fivebrane. This 
exchange is easy to see, because in the LG model above we could vary the complex structure of ALE, i.e. 
it is a B-model description of the theory, whereas in the symmetric fivebrane, the description is in the A­
model (i.e. the sigma model origin for supercharges). This statement will become even more clear in the 
next section which is related to resolving yet another puzzle: How come we got the H field and the dilaton 
field turned on, while we thought we were talking about K3 target space? A hyperkahler metric on K3 is 
uncorrected in worldsheet theory and gives rise to a conformal theory. Where do we get the dilaton and H 
fields from? This is the topic of the next section, where we use the stringy cosmic string description of K3 
given in [6] to show how the H and dilaton arises as well as rederiving the relation between the value of 
charge of the symmetric fivebrane and the value of n in the An-1 type singularity. 

4. Stringy Cosmic Strings, K3 and its Dual 

Let us recall the construction of stringy cosmic string [6]. We start with compactificat~on on a two torus 
T 2 • The moduli for this compactification is given by two complex parameters ( r, p) where r parameterizes 
the complex structure of T 2 and p parameterizes the complexified Kahler class of T 2 . Note that both are 
defined up to an S£(2, Z) transformation. Moreover there is an exchange symmetry r....,.. p which is obtained 
by applying R -+ 11 R to one of the circles. Viewed in eight-dimensional terms, the moduli r and p appear 
as complex scalar fields. We consider finding solutions to the low energy eight-dimensional equations of · 
motion, where fields depend only on 2 extra parameters (i.e. we are interested in keeping a six-dimensional 
Poincare invari.ance). Let us denote the extra two-dimensional space by z. A nice class of such solutions [6] 
can be obtained by taking r(i) to depend holomorphically on z, and to take p to be constant, independent 
of z. In making sense of such a solution one has to recall that r Is defined only up to SL(2, Z) and so we 
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are allowed to have jumps in r up to this transformation. Geometrically what this means is that as we go 
around some cycles on the z-plane, if we follow the compactified T 2 , it comes back to itself, but with some 
monodromy. In other words if we follow a given cycle of T 2 continuously it does not necessarily come back to 
itself. Geometrically this is a perfectly nice condition. If around some point say z = 0 we have monodromies, 
it must mean that the T 2 fiber above it is singular where a cycle vanishes, and the monodromy of cycles 
around z = 0 can give additions of this vanishing cycles. Recall that a degenerating T 2 can be viewed near 
its degeneration point by 

xy= q 

where x, y are coordinates on some patch, and q denotes the plumbing fixture modulus. As q --+ 0 we get 
a torus with a vanishing cycle. Now let us replace q --+ z and think of the degenerating family of elliptic 
curves over the z-plane given locally by xy = z. At z = 0 we have our degenerating torus. Note however, 
that the total space is not singular despite the fact that the fiber is singular. The easiest way to see this is 
to consider x, y as the coordinates. Clearly z is fixed uniquely in terms of x, y as z = xy and so the space 
looks locally like C 2. The points over which the fiber degenerates are the points where there is a 'cosmic 
string' (if we were dealing with compactifications down to 4). 

We can, however, develop a singularity if we get n > 1 singular fibers approach each other. Let ai 
denote the z coordinate of n singular fibers with i = 1, ... , n. Suppose the singularities are such that the 
point on T 2 where they degenerate are the same. Then a local description of this singularity can be given as 

xy = IT(z- ai) 
i 

and if we take a; --+ 0 we would be discussing the An-1 singularity at x = y = z = 0. 
In solving the eight-dimensional equations of motion, one realizes that since there is energy density due 

to the variation of the scalar field r there is curvature. In fact it was shown in [6) that if we have n points 
where the fiber degenerates in the way we discussed above the z-plane will have a conical asymptotic with 
conical angle given by 2?r(1- r2). In particular with n = 12 we get a cylindrical behavior and with n = 24 
the z-plane compactifies to a sphere and the total space is compact. This compact space is nothing but K3! 

The low energy equations of motion that were solved to give the stringy cosmic string solution are 
inapplicable precisely where the fiber degenerates. However it was argued in [6) that there exists a metric on 
the total space which leads to a hyperKahler metric on the total space. This is also clear in the case where 
n = 24 as K3 admits a hyperKahler metric and we can view K3 as an elliptic fibration over the sphere (i.e. 
K3 is an elliptic surface). 

It was also observed in [6) that we can exchange the role of r +-+ p in the above construction, and the 
T-duality of the problem implies that we must have still a solution to the equations of motion. This of course 
means that type IIA in one case is equivalent to type liB on the dual. Once we apply the duality, the metric 
of T 2 is now varying as well as the B field, because p = :!. + iVG on T 2 • Thus the analog of the singular 
fibers around which we have the monodromy r--+ r + 1 now corresponds to a fixed r with p--+ p + 1, i.e., 
B --+ B + 2?r. This in particular means that if we take a three cycle consisting of a circle S1 around the 
point with degenerate fiber, times the fiber T 2 and integrate 

_.!:._ r H - r dB - _.!:_~BI - 1 
· 2?r lr2xs• - JT2xS' 2?r - 2?r 5 ' -

we have one unit of H charge in that region. Note also that hidden in this discussion is that there is now also 
a dilaton turned on. To see this note that the duality that exchanges r +-+ p also changes the dilaton so that 
p2f>.2 = p2exp(-2¢>) is invariant. Thus in the new solution exp(2¢>) = AVG for some constant A. Note that 
if we consider the. case where n cosmic strings come together, where we would get An- 1 singularity, we will 
have in the dual r +-+ p description n units of H charge, with the dilaton turned. This is beginning to look like 
the symmetric fivebrane solution of [35). However to be more explicit we need to go beyond the adiabatic 
approximation used in [6) where roughly speaking the metric is split to a block diagonal form involving 
T 2 x S 2 • Given that the singularity takes place at a given point in four space, this adiabatic approximation, 
which treats all points on T 2 symmetrically, misses even the symmetries of the leading singularity. Note 
that the singularity occurs at a given point in four space, which is of the same geometry as the symmetric 
fivebrane and given that it carries an H charge, it is natural to expect that the leading singular piece of the 
two conformal theories be equivalent, as was demonstrated in the previous section. 
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5. K3 and Calabi-Yau Threefold Singularities 

In section three of this paper we discussed the singularity corresponding to ALE spaces and in section 
two that of the conifold singularity. Is there a connection between them? The answer is yes, as anticipated 
in the description of conifold singularity given in [44] and used in [5]: We can consider compactifying down 
to six dimensions on T 2 x T 2 and talk about the variation of each of the complex structures r 1 and r2 of 
the two T 2 as a function of an extra z-plane (this wa.S also briefly considered in [6]). Now as a function of 
the z-plane the Tl(z) and r2(z) might be singular at different points. Let us denote the coordinates of the 
degenerating first torus by 'plumbing fixture' coordinates x, y as before, and those of the second one by u, v. 
Let us assume that the first torus degenerates at z = 0 a:nd the second one at z = J.l for J.l close to zero. 
Then locally the description of the three manifold looks as 

xy= z uv = z- J.l 

which, by eliminating z is equivalent to 
xy- uv = J.L 

which is the conifold singularity. We will now describe this in the conformal theory language and show how 
the conifold conformal theory is related to that for the AL:E space. Before doing so, let us generalize the 
above singularity to the one corresponding to c = 1 at radius n times the self-dual value. In that case the 
singularity can still be given a description as above where n cosmic strings of the first torus come together 
on the z-plane, i.e. we have 

xy= :zn uv = z- J.l (5.1) 

which upon eliminating the z variable give the R = nj.../2 singularity [45] 

xy=(uv+J.Lt 

Now it is clear how to write down the conformal theory corresponding to these singularities. Consider the 
Landau-Ginzburg theory 

W = Cn + zn + a2 + b2 + A(z- xy). 

This is the same superpotential as the An-l singularity except for the additional fields' A,x and y and the 
interaction A(z-xy). Upon integrating out A we would get the identification of z = xy and the superpotential 
becomes 

Note that for n = 1 this is the same superconformal theory as we discussed in section two,·for the Calabi-Yau 
conifold and it is known. For other values of n, apart from the above LG description, we do not have the full 
conformal theory description. Anyhow this rederivation of the conifold conformal theory shows a parallel 
consistency between the two classes of conformal theories we discussed and their geometric relation between 
the two explained above. It also explains the appearance of two-dimensional Euclidean black hole in the 
discussion of the conifold singularity. 

This also raises the question of the conformal theory of 'one cosmic string', i.e. symmetric fivebrane 
with charge 1. This is the case where the level of the SU(2) theory is -1, which presumably means that 
we have to interpret it as SL(2) at level 1. Thus we end up with the product of two SL(2)/U(1)'s one at 
level 1 and the other at level 3. So it seems that the geometry for one symmetric fivebrane has a different 
description from the n > 1 case. It would be worthwhile studying this further. 

6. K3 Singularity and c < 1 Topological String 

In section two, we have seen that topological string amplitudes on a Calabi-Yau manifold 'near the 
conifold are computable by transforming them into the c = 1 string amplitudes. Here we will provide some 
evidence that topological string amplitudes on K3 near the ADE singularities are related to the c < 1 
topological strings [46], [47], [48] corresponding to the ADE (1, n) matter coupled to gravity. 
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The first evidence for this relation is that the y-part of the superpotential (3.2) is that for the N = 2 
minimal model, whose topological twisting gives the standard description of the c < 1 topological string [46]. 
The relation between the c < 1 topological string and the twisted minimal model is further clarified in [49] 
where it is pointed out that the system of the Liouville field, the ( 1, n) matter and the BRST ghosts has the 
N = 2 superconformal symmetry of c = 1- 2/n with the same chiral ring structure as that of the twisted 
N = 2 minimal model of the An _ 1 type. However there is another choice of twist (by using the matter current 
instead of the Liouville) which leads to an N = 2 algebra with c = 1 + 2/n. This observation, in the case 
of n = 1, led to the description of the c = 1 string at the self-dual radius in terms of the Landau-Ginzburg 
model with W = x- 1 [15]. Therefore the c < 1 string may also be related to the model with W = x-n, in 
the case of the An-1 series. Curiously the superpotential (3.2) for the ADE singularity is combining these 
two descriptions of the c < 1 string. 

The relation between the W = x-n potential and the c < 1 string can be stated more explicitly. Let us 
first examine the case of n = 2 by using the description in term of the Kazama-Suzuki model SL(2, R)4/U(1). 
In this case, the U(l) current of theN= 2 algebra (3.4) takes the form 

and the BRST current is 
- 3 

JBRsT = C('I/J'I/J- J - ioX). 

In this case, the scalar X lives on S1 with R = 1. We can then rewrite the U(l) current J as 

- 3 
J = 31/J'I/J- 2J - iox- {QBRsT, B}. 

After the topological twisting by J, (if;, 1/;) become of weights (2, -1) and we may identify them as the BRST 
ghosts for diffeomorphism. Since X is at radius R = 1, we can fermionize it to (b, c) which become of weights 
(1, 0) after the twisting. As in the case of the c = 1 string, ((3, 1) of the Wakimoto construction of SL(2, R)4 
decouple together with (B, C), and we are left with the scalar field <P with c = 27. We can then combine 
(b,c) and <P to make bosonic ghosts (/3,7) of weights (2,-1). The resulting system of (if;, 'If;) and (/3,7) is 
nothing bU:t the pure topological gravity [50], [51], [52]. 

For general n, the U(l) current (3.4) of the Kazama-Suzuki model can be written as 

- 3 ~ 1 J = 381/;- 2J - i -(n- 1)8X- 2(1-- ){QBRST, B}. 
n n 

Therefore the topological twist by J again transforms (1/;, if;) into the BRST ghosts of weights (2, -1). The 
central charge for the scalar <P becomes 

and the scalar X has 
cx=1-6(n- 1)

2 

n 

In other words the topological theory we are dealing is equivalent to the (1, n) matter coupled to the two­
dimensional gravity. 

Thus we are led to conjecture that the topological string theory on the ADE singularities (3.1) is 
related to the c < 1 topological string [46], [47], [48]. In the case of n > 2, however, there is a subtlety since 
we need to perform the orbifoldization of the Landau-Ginzburg model as in section two and therefore the 
SL(2, R)n+2/U(1) Kazama-Suzuki model and the N = 2 minimal model are not completely decoupled. To 
clarify this point, let us work on the Landau-Ginzburg model directly. 

For the c = 2 model, the most natural class of string amplitudes are N = 2 string amplitudes [53], which 
can be expressed as N = 4 topological string amplitudes [8]. Let us consider the An- 1 singularity described 
by the superpotential 
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This potential can be deformed by adding chiral primary fields. In order to preserve the N = 4 symmetry, 
we only allow chiral primary fields of charge 1 given by 

¢; = xi-n-lyi-l (i = 1, 2, ... , n- 1). (6.1) 

In particular, ¢i=l changes the value of JJ. At genu&-0, N = 4 topologiCal amplitudes are defined for four or 
higher points [8] as 

A?1 ... ;m = j d2
z4 · · ·d2zn(¢it(0)¢;2 (1)¢;3 (oo)x 

(6.2) 
X Ji Jfi.¢; 4 (z4)G£G"R¢; 5 (zs) · · ·G£G"R¢; .. (zn)), 

where J- is one of the SU(2) current of level 1 which belongs to the (small) N = 4 algebra. 
It turns out that the selection rule for this amplitude is consistent with that of the (1, n + 1) matter 

coupled to the two-dimensional gravity. The (1, n + 1) matter can be realized as a twisted N = 2 minimal 
model [46] with the superpotential 

W(y) = yn+l. 

This superpotential can be deformed by adding chiral primary fields given by 

<P~=yi (i=0,1, ... ,n-1) 

If we consider four or higher points at genus-0, a topological string amplitude involving ¢~=O vanishes since 
a- annihilates it. Therefore only¢~ with (i = 1, ... , n) are relevant in the comparison. By using the U(1) 
charge conservation and the parafermion selection rule, it is straightforward to show that the selection r.ule 
for the (1, n + 1) topological string amplitude [46), [47), [48] satisfies the selection rule for the N = 4 string 
amplitude ( 6.2) provided we identify ¢~ with ¢; ( i = 1, 2, ... , n- 1). It is not yet clear why the shift n - n + 1 
of the level takes place, and this merits further investigation. ' 
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