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Abstract 

These lectures are an attempt to a pedagogical introduction into the el
ementary concepts of chiral symmetry in nuclear physics. Effective chiral 
models such as the linear and nonlinear sigma model will be discussed as well 
as the essential ideas of chiral perturbation theory. Some applications to the 
physics of ultrarelativistic heavy ion collisions will be presented. 
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1 Introduction 

Chiral symmetry is a symmetry of QCD in the limit of vanishing quark masses. We know, 
however, that the current quark masses are finite. But compared with haqronic scales the 
masses of the two lightest quarks, up and down, are very small, so that chiral symmetry 
may be considered an approximate symmetry of the strong interactions. 

Long before QCD was known to be the theory of strong interactions, phenomenological 
indications for the existence of chiral symmetry came from the study of the nuclear beta 
decay. There one finds, that the weak coupling constants for the vector and axial-vector 
hadronic-currents, Cv and CA, did not (in case of Cv) or only slightly (25% in case 
of C A) differ from those for the leptonic counterparts. Consequently strong interaction 
'radiative' corrections to the weak vector and axial vector 'charge' are absent. The same 
is true for the more familiar case of the electric charge, and there we know that it is its 
conservation, which protects it from radiative corrections. Analogously, we expect the 
weak vector and axial vector charge, or more generally, currents, to be conserved due to 
some symmetry of the strong interaction. In case of the vector current, the underlying 
symmetry is the well known isospin symmetry of the strong interactions and thus the 
hadronic vector current is identified with the isospin current. The identification of the 
axial current, on the other hand is not so straightforward. This is due to another, very 
important and interesting feature of the strong interaction, namely that the symmetry 
associated with the conserved axial vector current is 'spontaneously broken'. By that, one 
means that while the Hamiltonian possesses the symmetry, its ground state does not. An 
important consequence of the spontaneous breakdown of a symmetry is the existence of 
a massless mode, the so called Goldstone-boson. In our case, the Goldstone boson is the 
pion. If chiral symmetry were a perfect symmetry of QCD, the pion should be massless. 
Since chiral symmetry is only approximate, we expect the pion to have a finite but small 
(compared to all other hadrons) mass. This is indeed the case! 

The fact that the pion is a Goldstone boson is of great practical importance. Low 
energy /temperature hadronic processes are dominated by pions and thus all observables 
can be expressed, as an expansion in pion masses and momenta. This is the basic idea of 
chiral perturbation theory, which is very successful in describing threshold pion physics. 

At high temperatures and/or densities one expects to 'restore' chiral symmetry. By 
that one means, that, unlike the ground state, the state at high temperature/density 
posses the same symmetry as the Hamiltonian (the symmetry of the Hamiltonian of 
course will not be changed). As a consequence of this so called 'chiral restoration' we 
expect the absence of any Goldstone modes and thus the pions, if still present, should 
become as massive as all other hadrons1 . To create a system of restored chiral symmetry 

1 If of course chiral restoration and deconfinement take place at the ·same temperature, as current 
lattice gauge calculations suggest, the concept of hadrons in the restored phase may become meaningless. 
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in the laboratory is one of the major goals of the ultra-relativistic heavy ion experiments. 
These lectures are intended to serve as an introduction into the ideas of chiral symme

try in particular for experimentalists interested or working in this field. , Thus emphasis 
will be put on the ideas and concepts rather than formalism. Consequently, most argu
ments presented will be heuristic and/ or based on simple effective models. References will 
be provided for those seeking more rigorous derivations. 

In the first section we will introduce some basic concepts of quantum field theory, which 
are necessary to discuss the effect of symmetries on the dynamics. Then we will introduce 
the chiral symmetry transformations and derive some results, such as the Goldberger
Treiman relation. In the second section we will present the linear sigma model as the most 
simple effective chiral model. Using this rather intuitive model we will discuss explicit 
chiral symmetry breaking. As an application we will consider pion-nucleon scattering. 
The third section will be devoted to the so called nonlinear sigma model, which then 
serves as a basis for the introduction into chiral perturbation theory. In the last section 
we will give some examples for chiral symmetry in the physics of hot and dense matter. 

Preparing these lectures I have borrowed from many sources. Those which I personally 
found most useful are listed at the end of this contribution. This is certainly a personal 
choice as there are many other books and articles on subject available. If not stated 
otherwise, the conventions of Bjorken and Drell [1] are used for metric, gamma-matrices 
etc. 
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2 Theory Primer 
} 

2.1 Basics of quantum field theory 

Quantum field theory is usually written down in the Lagrangian formulation (see e.g. 
the book of Bjorken and Drell [1]). Let's start out with what we know from classical 
mechanics. There, one obtains the equations _of motion from the Hamilton principle, 
where one requires that the variation of the action S = J dt L(q, q, t) vanishes 

(1) 

HereS is called the action and L =T-V is the Lagrange-function. For example,.Newtons 
equations of motion for a particle in a potential V(q) derive_ from 

L =~me- V(q) 
2 

.. av 
0 ::::} mq + oq = 

.. oV F 
¢:} mq = -- = aq 

(2) 

_(3) 

If one goes over to a field theory, the coordinates q are replaced by the fields ~(x) and 
the velocities q are replaced by the derivatives of the fields 

(4) 

(5) 

and the Lagrange-function is given by the spatial integral over the Lagrangian· density, £, 
or Lagrangian, as we shall call it from now on 

L 

s 
j d3x£(~(x),ott~(x),t) 
j dt L = j d4 x .C(~(x), ott~(x), t) 

(6) 

(7) 

Lorentz invariance implies that the action S and thus the Lagrangian .c· transform like 
Lorentz-scalars. The equations of motion for the fields are again obtained by requiring 
that the variation of the action S vanishes. This variation is carried out by a variati~n of 
the fields 

~ -+ ~ + 8~ 
at'~ -+ att~+8(atL~) 
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(9) 



/ 

with 

(10) 

Consequently, 

(11) 

where equ. (10) has been used. The derivatives of .C with respect to the fields are so 
called functional derivatives, but for all practical purposes they just work like 'normal' 
derivatives, where .C is considered a function of the fields <.P. Partial integration of the 
second term of equ. (11) finally gives 

(12) 

which leads to the following equations of motion, since the variation 8<.P are arbitrary 

(13) 

If we are dealing with more than one field, such as in case of pions, where we have 
three different charge states, the equations of motion have the same form as in equ. 
(13) only that the fields carry now an additional index labeling the different fields under 
consideration 

(14) 

As example let us consider the Lagrangian of a free boson and fermion field respectively. 

(i) free scalar bosons of mass m: 
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(15) 

(16) 

(17) 



Thus, according to equ. (14) the equation of motionis 

which is just the well known Klein-Gordon equation for a free boson. 

(ii) free fermions of mass m 

By using the conjugate field {;in the equation of motion (14) 

:::} ~~ = (i!JJ-()11-- m)t/; 

a.c 
:::} 8(811-t/;) = 0 

we obtain the Dirac equation for tjJ : 

whereas inserting t/J for <.Pi in (14) leads to the conjugate Dirac equation 

2.2 Symmetries 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

· One of the big advantages of the Lagrangian formulation is that symmetries of the La
grangian lead to conserved quantities (currents). In classical mechanics we know that 
symmetries of the Lagrange function imply conserved quantities. For example, if the La
grange function is independent of space and time, momentum and energy are cpnserved, 
respectively. 

Let us assume that L is symmetric under a transformation of the fields 

meanmg 

.C( <.P + 8<.P) 

:::} 0 = .C( <.P + 8<1>) - .C( <.P) 
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(24) 

(25) 

(26) 



where we have expanded the first term to leading order in bel>. Using equ. (10) and the 
equation of motion (13) we ha.ve 

(27) 

so that 

(28) 

is a conserved current, with fY'.l1, = 0. In the last. equation we have included the indices 
for possible different fields cl>;. 

As an example, let us discuss the case of a unitary transformation on the fields, such 
as e.g. an isospin rotation among pions. For obvious reasons unitary transformations 
are the most common ones, and the chiral symmetry transformations also belong to this 
class. 

(29) 

where 8 corresponds to the rotation angle and T[j is a matrix, usually called the generator 
of the transformation (isospin matrix in case of isospin rotations). The index a indicates 
that there might be several generators associated with the symmetry transformation (in 
case of isospin rotations, we have three isospin matrices). Equation (29) corresponds to 
the expansion for small angles of the general transformation 

(30) 

where the vector on <i> indicates the seVeral components of the field ci> such as 7r+, 7r

and 1r0
• From equ. (28) and equ. (:29) we And the following expression for the conserved 

currents 

[) . 
] a . L ]'a <P 
'11 = -l iJ(iJI,<f>.i) · .ik .· k 

(31) 

where we have divided by the angle ea. This current is often referred to as a Noether 
current, after E. Noether who first showed its exist.ence2

• 

2 Note, that some of the Noet.l1er currents are not. conserved on the quantum-level. In other word, not 
every symmetry of the classical field theory has a quantum analog. If this is not the case one speaks of 
anomalies. For a discussion of anomalies, see e.g. [15). 



Of course, a conserved current leads to a conserved charge 

Q = .J cPa:Jo(:c ); .!!_Q = 0 
dt . 

Finally, let us a.dd a. small symmetry breaking term to the Lagrangian 

(32) 

(33) 

where £ 0 is symmetric with respect to a given symmetry transformation of the fields 
and £ 1 breaks this symmetry. Consequently, the variation of the Lagrangian £ does not 
vanish as before but is given by 

(34) 

Following the steps above, we can easily convince ourselves, that the variation of the 
Lagrangian can still be expressed as the divergence of a. current, which is given by equ. 
(28) or (31 ), in case of unitary transformations of the fields. Thus we have 

(35) 

'Since 6£1 f:. 0 the current 111 is not conserved. Relation (:35) nicely shows how the 
symmetry breaking terrri of the Lagrangian is rela.t.ed to the non-conservation of the 
current. It will also prove very useful when we later on introduce the slight breaking of 
chiral symmetry due to the finite quark masses. 

2.2.1 Example: Massless fermions 

As an example for the Noether current, let us consider the Lagrangian of two flavors of 
massless fermions. Since we will onlv discuss transformations on the fermions, the results 
will be directly applicable to massless QCD. 

The Lagrangian is given by (see eq. ( 19)) 

,. - 1 .• T.. f/J,i, . 
4.-- ·'f·J'I'"'J (36) 

where the index 'j' refers to the two different fiavors, let's say 'up' and 'down', and Eft is 
the usual shorthand for 011 /Jt· . 

(i) Consider the following transformation 

Av: 
T-

:::: (1- i-0)'11.> 2 ' (37) 



where i refers to the Pauli - (Iso)spin- matrices, and where we have switched to a iso
spinor notation for the fermions, 'I/'= (u. d). The conjugate field, {; transforms under Av 
as follows 

-
.!. ---+ e+it0 -l7'::::: ( 1 + i~G)J. 
'f' ' 2 ' 

and, hence, the Lagrangian is invariant under 1\ ,, 

i·/.::11.,/, ---+ i·l[,::!IU..,- i0 'lbi::ll-lf,- ?/•-i::JI1b - -(- f -i ) 
'f''f/ 'f' ' 'f ' ' 'f 2 ' '1- 2 'f ' 

Following equ. (31) the associated consen·cd curTent is 
_a. 

- I 

'

/(1. = •)/, .... , -·ll.' 
'' ~- '"2 I 

and is often referred to as the 'vector-current'. 

(ii) Next consider the transformation 

-iA,, !(!) . . T -
~)---+ e v2 ·lj, ·= (1- 1-"')'s20)1/' 

=? ·J. ---+ e-iA,d<'\J.:::::: (1 .:._ i"'s~G)·I. ' . '·2 'f' 

(38) 

(39) 

(40) 

( 41) 

(42) 

where we have made use of the anti-commutation relations of the gamma matrices, specif
ically, "'Yo"'Ys = -"')'s"'YO· The Lagrangian transforms under !\A a.s follows 

i{;fft'l/' ---+ i;fif)'l/'- ·iG (~t. ifJ,,J'"I.s~ ~· + ·l'"'Ys~io.-1"1/J) (43) 

- i {;fft~' ( 44) 

where the second term vanishes because /';:, anti-commutes with ;·.,. Thus the Lagrangian 
is also invariant under i\.4 with the conserved 'axial - vector' current 

(45) 

In summary, the Lagrangian of mass.less fermions, and, hence, massless QCD, is invariant 
under both transformations, A F and l\.4 3 symmetry is what is meant by chiral symmetry4

. 

3 Note, that the above Lagrangian is also invariant. under the operations 1j; -;. exp( -i6)1/; and 1/J -+ 

exp( -i-y5 6)1j;. The first operation is related t.o the conservation of the baryon number while the second 
symmetry is broken on the quantum level. This is referred to as the U(l) axial anomaly, which is real 
breaking of the symmetry in contrast to the spontaneous breaking discussed below (see e.g. [15]). 

4 0ften, people talk about 'chiral' symmetry but. actually only refer to the axial transformation AA· 
This is due to its special role is plays, since it. is spontaneously broken in t.he ground state. 



The chiral symmetry is often referred io by it.s group structure a.s the SU(2)v x SU(2)A 
symmetry. 

Now let us see, what happens if we introduce a. mass term. 

( 46) 

From the above, 15£ is obviously invariant. under the vector transformations Av but not 
under AA 

( 47) 

Thus, AA is not a good symmetry, if the fermions (quarks) have a. finite mass. But as long 
as the masses are small compared to the. relevant. scale of the theory one may treat AA as 
a.n approximate symmetry, in the sense, that predictions based under the assumption of 
the symmetry should be reasonably close to t.hc actual results.s. 

In case of QCD we .know that the masses of the light quarks are about 5 - 10 MeV. 
whereas the relevant energy scale given by !\QeD ~ 200 MeV is considerably larger. We, 
therefore, expect that A.4 should be an approximate symmetry and that the axial current 
should be approximately (partially) conserved. This slight symmetry breaking due to the 
quark masses is the basis of the so called Partial Conserved Axial Current· hypothesis 
(PCAC). Furthermore, a.s long a.s the symmetry breaking is sma:ll, one would also expect, 
that its effect can be described in a. pert.urbative approach. This is carried out m a. 
systematic fashion in the framework of chiral perturbation theory. 

2.3 Chiral Symmetry and PCAC 

2.3.1 Chiral transformation of mesons 

In order to develop a. better feeling for the meaning of the symmetry transformations Av 
and AA, let us find out pions and rho-mesons transform under these operations. To this 
end, let us consider combinations of quark fields. '~rhich carry the quantum numbers of 
the mesons under consideration. This should give us the corre.ct transformation properties: 

pion-like state: if = 7:·1/Ji;'.s'l/.'; 
rho-like state: Ptt = 1/Ji;'i,'l/,: 

sigma-like state: a = 1/J'l/J 
arlike state: a].t~ = 1/Jir~J.Is'l/J 

5 A wheel which is slightly bent and thus not. pel'fect.ly inval'iant. under rotations, can for most practical 
purposes still be considered as being round, as long as t.he bending is small compared to the radius of 
the wheel. ( 
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(i) vector transformations Av, see eqs. (:37,:38): 

,... · ,;./.,...."'51/, ---t t"·1bT·~'s1!' + 8 · (".~T-~'5 T_i 1/, - 1/, Tj T·'V5•1•) "t • <•'f/'t 1 y ''t 1. J. ,. .7 'f· 1. J. 
2 

Y Y 2 t I 'f/ 

,;1/,r·.~·5 ·t'' + ·~·e !,c.·" ·~/.~,sr"·'· I· i 1 I' i . .7 '-l.J . f· I' . 'f/ (48) 

where we have used the commutation relation between the T matrices [ri, Tj] = 2iEijkTk. 

In terms of pions this can be written as 

( 49) 

which is nothing else than an isospin rotation, namely the isospin direction of the pion is 
rotated by 8. The same result one obtains for t.he p - meson 

(50) 

Consequently, the vector-transformation i\ ,. can be identified with the isospin rotations 
and the conserved vector cunent with the isospin current, which we know to be conserved 
in strong interactions. 

(i) axial transformations i\ .. 1 , see eqs. (41.42): 

(51) 

where we have made use of the anti-commutation relation of the T matrices { Ti, Tj} = 28ij 
and of 1515 = 1. In terms of the mesons this reads: 

(52) 

The pion and the sigma-meson are obviously rotated into each other under the axial 
transformations A.4. Similarly the rho rota.1es int.o the o1 

(53) 

Above we just have convinced ourselves that. o'\ .. 1 is a symmetry of the QCD Hamiltonian. 
Naively, this would imply, that states 'vhich can be rotated into each other by this sym
metry operation should have the same Eigenvalues, i.e the same masses. This, however, 
is clearly not the case, since m.P = 770 MeV and 17101 = 1260 MeV. We certainly do not 
expect that the slight symmetry breaking due t.o the finite current quark masses is respon
sible for this splitting. This should lead to mass differences which are small compared 
to the masses themselves. In case of t.he p and a. 1 , however, the mass difference is of the 
same order as the mass of the p. The resolution t.o this problem will be the spontaneous 
breakdown of the axial symmetry. Before we discuss what is meant by that, let us first 
convince ourselves, that the axial vector is conserved to a. good approximation, so that 
the axial symmetry must be present someho\\". 

10 



2.3.2 Pion decay and PCAC 

Let us first consider the weak decay of the pion. In the simple Fermi theory the weak 
interaction· Hamiltonian is of the current-current type, where both currents are a sum 
of axial and vector currents, as we have defined them above (see e.g. [2]). Because of 
parity, the weak decay of the pion is controlled by the matrix element of the axial current 
between the vacuum and the pion< OIA~I7r >. This matrix element must be proportional 
to the pion momentum, because this is the only vector around 

(54) 

and the proportionality constant J1r = 93M e V is determined from experiment4• Let us 
now take the divergence of equ. (54) 

(55) 

To the extent, that the pion mass is small compared to hadronic scales, the axial current 
is approximately conserved. Or in other words, the smallness of the pion mass is directly 
related to the partial conservation of the axial current, i.e. to the fact that the axial 
transformation is an approximate symmetry of QCD. In the literature the above relation 
(55) is often referred to as the PCAC relation. The above relations (54,55) also suggest, 
that the axial current carried by a pion is 

(56) 

or that the divergence of the axial-vector current can be identified with the pion field (up 
to a constant). Here ~(X) is the pion field. Sometimes this relation between pion field 
and axial current is also referred to ·as the PCAC relation. 

2.3.3 Goldberger-:Treiman relation 

There is .more evidence for the conservation of the axial current. Let tis consider the axial 
current of a nucleon. This is simply given by (see equ. ( 45)) 

(57) 

where '1/JN =(proton, neutron) is now. an isospinor representing proton and neutron. The 
factor 9a = 1.25, is due to the fact, that the axial current of the nucleon is renormalized 

4The are several definitions 9f J1r around, depending on whether factors of 2, v'2 are present in equ. 
(54). 
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by 25%, as seen in the weak beta decay of the neutron. Since the nucleon has a large 
mass MN, we do not expect that its axial current is conserved, and indeed by using the 
free Dirac equation for the nulceon one can show that 

(58) 

which vanishes only in case of vanishing nucleon mass. We know, however, that the. 
nucleon interacts strongly with the pion. Therefore, let us assume that the total axial 
current is the sum of the nucleon and the pion contribution. Using the PCAC-relation 
(56) and equ. (57) we have 

(59) 

If we require, that the total current is conserved, a11- All- = 0, we obtain 

!11N -
811-8J.£~ = -ga i f1r '1/JN/sT'I/JN (60) 

where we have used (58). This is nothing else but a Klein Gordon equation for a massless 
boson (pion) coupled to the nucleon. Hence, requiring the conservation of the total axial 
current immediately leads us to predict that the pion should be massless. This is exactly 
what we also concluded from the weak pion decay. If we now allow for a finite pion mass, 
which is equivalent to.requiring _that the divergence of the axial current is consistent with 
the PCAC result (55), then we arrive at the Klein Gordon equation for a pion coupled to 
the nucleon 

( 811-BJ.£ + m;) ~ = -ga i~: '1/J~/sT'I/JN (61) 

where the pion-nucleon coupling constant is given by 

/11N 
91rNN = 9a f1r ~ 12.5 (62) 

This is to be compared with the value for the pion-nucleon coupling as extracted e.g. from 
pion-nucleon scattering experiments 

(63) 

which is in remarkeble close agreement, considering the fact, that equ. (62) relates the 
strong-interaction pion-nucleon coupling 91rNN with quantities extracted from the weak 
interaction, namely 9a and f1r· Of course, the reason why this works is that there is some 
symmetry, namely chiral symmetry, at pla.y, which allows to connect semingly different 
pieces of physics. Equation (62) is usually called the Goldberger-Treiman relation. 

12 



2.3.4 Spontaneous breakdown of chiral symmetry 

There appears to be some contradiction: On the one hand the meson mass sepctrum does 
not reflect the axial-vector symmetry. On the other hand, the weak pion decay seems 
to be consistent with a (partially) conserved axial-vector current. Also the success of 
the Goldberger-Treiman relation indicates that the axial-vector current is conserved and, 
hence, that the axial transformation AA is a symmetry of the strong interactions. 

The solution to this puzzle is, that the axial-vector symmetry is spontaneously broken. 
What does one mean by that? One speaks of a spontaneously broken symmetry, if a 
symmetry of the Hamiltonian is not realized in the ground state. 

This is best illustrated in a classical mechanics analog. In fig. 1 we have two rotation
ally invariant potentials ('interactions'). In (a) the ground state is right in the middle, 
and the potential plus ground state are still invariant under rotations. In (b), on the 
other hand, the ground state is at a finite distance away from the center. The point at 
the center is a local maximum of the potential and thus unstable. If we put a little ball in 
the middle, it will roll down somewhere and find its groundstate some place in the valley 
which represents the true minimum of the potential. By picking one point in this valley 
(i.e picking the ground state), the rotational symmetry is obviously broken. Potential plus 
groundstate are not symmetric anymore. The symmetry has been broken spontaneously 
by choosing a certain direction to be the groundstate. However, effects of the symmetry 
are still present. Moving the ball around in the valley (rotational excitations) does not 
cost any energy, whereas radial excitations do cost energy. 

Let us now use this mechanics analogy in order to understand what the spontaneous 
breakdown of the axial-vector symmetry of the strong interaction means. Assume, that 
the effective QCD-hamiltonian at zero temperature has a form similar to that depicted in 
fig. 1(b), where the (x,y)-coordinates are replaced by (u, i)-fields. The spacial rotations 
are then the mechanics analog of the axial-vector rotation AA, which rotates i into u (see 
equ. (52)). Since the ground state is not in the center but a some finite distance away 
from it, one of the fields will have a finite expectation value. This can only be the u-field, 
because it carries the quantum numbers of the vacuum. In the quark language, this means 
we expect to have a finite scalar quark condensate < ijq ># 0. In this picture, pionic 
excitation correspond to small 'rotations' away from the ground-state along the valley, 
which do not cost any energy. Consequently the mass of the pion should be zero. In other 
words, due to the spontaneous breakdown of chiral symmetry, we predict a vanishing pion 
mass. Excitations in the u-direction correspond to radial excitations and therefore are 
massive. 

This scenario is in perfect agreement with what we have found above. The sponta
neous breakdown of the axial-vector symmetry leads to different masses of the pion and 
sigma. However, since the interaction itself is still symmetric, pions become massless, 
which is exactly what we find from the PCAC relation, provided that the axial current 

13 



(a) 

(x,cr) 

(b) 

(x,cr) 

Figure 1: Effective potentials. (a) No spontaneous breaking of symmetry. (b) Spontaneous 
breaking of symmetry. 
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is perfectly conserved. Thus the mesonic mass spectrum as well as the PCAC- and the 
Goldberger-Treiman relation are consistent with a spontaneous breakdown of the axial
vector symmetry AA. The pion appears as a massless mode (Goldstone boson) as a result 
of the symmetry of the interaction. 

Incidentally, the assumption of a spontaneously broken axial-vector symmetry also ex
plains the mass difference between the p- and a1 meson and one predicts that ma1 = .J'imp 
in good agreement with the measured masses. The derivation of this result, however, is 
too involved to be presented here and the interested reader is referred to the literature 
[3, 4]. 

One expects, that at high temperature/densities the finite expectation value of the 
scalar quark condensate melts away resulting in a system, where chiral symmetryis not 
spontaneously broken anymore. In this, as it is often called, chirally restored phase 
pion/sigma as well as rhoja11 if t~eyexist5 , should be degenerate and the pion looses its 
identity as a Goldstone boson, i.e. it will become massive. The effective interaction in 
this phase would then have a shape similar to fig 1 (a). It is one of the major goals of the 
ultrarelativistic heavy ion program to create and identify a macroscopic sample of this 
phase in tl,le laboratory. 

In the following section we will construct a chiral invariant Lagrangian, the sd called 
'Linear-sigma-model', in order to see how the concept of spontaneous breakdown of chiral 
symmetry is realized in the framework of a simple model. We will also discuss how to 
incoorporate the effect of the finite quark masses leading to the explicit breaking of chiral 
symmetry. 

5If deconfinement and chiral restoration occur at the same temperature, it may become meaningless 
to talk about mesons above the critical temperature. 
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3 Linear sigma-model 

3.1 Chirallimit 

In this section we will construct a simple chirally invariant model involving pions and nu
cleons, the so called linear sigma- model. This model was first introduced by Gell-Mann 
and Levy in 1960 [5], long before QCD wa.s known to be the theory of the strong intera::
tion. In order to construct such a model, we have to write down a Lagrangian which is a 
Lorentz-scalar and which is invariant under the vector- and axial-vector transformations, 
Av and AA. 

In the previous section, we have shown, that the pion transforms under Av and AA as 
(52). 

(64) 

Similarly one can also show, that the a--field transforms like 

Av: u- u (65) 

Since Av is simply an isospin rotation, the squares of the fields are invariant under this 
transformation 

(66) 

whereas under AA they transform like 

(67) 

However, the combination ( 1r
2 + o-2

) is invariant under both transformations, Av and AA 

(68) 

Since this combination is also a Lorentz-scalar, we can build a chi rally invariant La
grangian around this structure: 

• Pion-nucleon interaction: 
The standard pion nucleon interaction involves a pseudo-scalar combination of the 
nucleon field multiplied by the pion field: 

(69) 

where from now on we denote the pion-nucleon coupling constant simply by 91r· 
Under the chiral transformations this transforms exactly like 1r

2, because the term 
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involving the nucleon has the same quantum numbers as the pion. Chiral invariance 
requires that there must be another term, which transforms like u 2 , in order to have 
the invariant structure (68). The simplest choice is a term of the form, 

(70) 

so that the interaction term between nucleons and the mesons is 

(71) 

• Nucleon mass term: 
We know that an explicit nucleon mass term breaks chiral in variance (see section 
2.2.1 ). The nucleon mass is also too large to be simply a result of the small explicit 
chiral symmetry breaking as reflected in the PCAC relation (55). The simplest6 

way to give the nucleon a mass without breaking chiral symmetry, is to exploit the 
coupling of the nucleon to the u-field (70), which has the structure of a nucleon 
mass term. This, however, requires that the u-field as a finite vacuum expectation 
value, 

(72) 

where choice of u0 = J1r is dictated by the Goldberger-Treiman relation (62) in 
the limit of 9a = 1. A finite vacuum expectation value for the u-field immediately 
implies, that chiral symmetry will be spontaneously broken, as discussed in the last 
section. In order for our model to generate such an expectation value, we have to 
introduce a potential for the sigma field, which has its minimum at u = f1r· This 

. brings us to the next ingredient of our model. 

• Pion - sigma potential: 
The potential, which generates the vacuum expectation value of the u field has to 
be a function of the invariant structure (68) in order to be chirally invariant. The 
simplest choice is: 

(73) 

This potential, which is plotted in fig. (2) (see also fig. (1) for a three-dimensional 
view ) indeed has its minimum at u = J1r for 1r = 0. Due to its shape, it is often 
referred to as the 'Mexican- hat- potential'. 

6 Actually one can allow for an explicit nucleon mass term if one also includes the chiral partner of 
the nucleon, which is believed to be the N*(1535). This is an interesting alternative approach which is 
discussed in detail in ref. [6] 
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• Kinetic energy terms: 
Finally we have to add kinetic energy terms for the nucleons and the mesons which 
have the form i'¢~1/; and !(aiL7raiL7r + aiLuaiLu), respectively. Both are chirally invari
ant. The first term is just the Lagrangian of free mass less fermions, which we have 
shown to be invariant. The second term again has the invariant structure (68). 

V(cr, n=O) 

Figure 2: Potential of linear sigma-model 

Putting everything together, the Lagrangian of the linear sigma-model reads (remem
ber that the potential Venters with a minus-sign into the Lagrangian): 

.CL.S. = i;jJ~'l/J- Y1r ( '¢1sT'l/J if+ '¢1/; 0") 

-~ ((1r2 + u 2
)- f )

2 +~a 1ra~t1r +~a ua~tu 4 .7r 21L 21L (74) 

What are the properties of this model? Let us start with the ground state. As already 
mentioned, in the ground state the u - field has a finite expectation value, whereas the 
pion has none, because of parity. Furthermore, the nucleon obtains its mass from its 
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interaction with the sigma field. But what are the masses of the a and 1r- mesons? There 
are no explicit mass terms for the a- and 1r-fields in the Lagrangian (74), but, as with 
the nucleon, there could be some coupling to the expectation value of the u field, which 
gives rise to mass terms. From the structure of the potential (see figs (2) and (1)) as well 
as from our discussion of the spontaneous breakdown of chiral symmetry, we expect the 
pion to be massless and the u-meson to become massive. In order to verify that, let us 
expand the potential (73) for small fluctuations aroun.d the ground state. 

u = u0 + ( bu); 1r = ( 61r) (75) . 

Actually, it is these fluctuations ( ( bu ), ( 61r) ), which are to be be identified with the 
observed particles ( u- and 71'- meson). Since a bosonic mass term is quadratic in the fields 
(see Lagrangian ( 15)), let us expand the potential up to quadratic order in the fluctuations 
(bu) (61r). Expanding around a minimum, the linear order vanishes, and we have: 

(76) 

where we have used that u0 = f1r· Comparing with the Lagrangian of a free boson we 
identify the mass ofthe sigma to be (remember that L =T-V) 

(77) 

We find no mass term for the pion in agreement with our expectation, that the pion 
should be the massless Goldstone boson of the spontaneously broken chiral symmetry. 

In summary, the properties of the ground state of the linear sigma-model are: · 

<u> uo = f1r (78) 

<11'> 0 (79) 

MN Y1r Uo = Y1r f 1r (80) 
m2 - A{;# 0 ,(81) 

(7 

n~1r - 0 (82) 

Before we conclude this section, let us calculate the conserved axial current and check, 
if the PCAC-relation is satisfied in our model. The infinitesimal axial transformations of 
the nucleon, pion and sigma fields are given by (see (41), (64) and (65)) 

1/J 
. Ta a ' (83) ~ t/1- Z/s-0 t/1 2 

1f'i ~ 1f'i + eabi,a(J' (84) 
(1 ~ (1 - ea1f'a (85) 
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Comparing with the general form (29) for unitary transformations, we find that the gen
erator of the axial transformation ra act on the fields in the following way 

Ta1/J 
'Ta 

-rs2E>a1/; (86) 

Ta7rj - ia8a,j (87) 
Taa - -i7ra (88) 

Using the expression for the conserved current (31) the conserved axial current is given 
by 

(89) 

In order to check the PCAC-relation, we a.ga.in expand the fields around the ground 
state (see eq. (75)) 

(90) 

where we have used that a0 = f1r· Since the PCAC-relation involves the matrix element 
< OIA~I1ri > only the last term of (90) contributes. The other terms would require either 
nucleons or sigma-mesons in the final or initial state. Thus, as far as the PCAC relation 
is concerned, the axial current reduces to ( ( 81r) = 1r) 

A~(x)PcAc = J1r8p.1r(x) 

in agreement with the PCAC-results eq. (56). 

3.2 Explicit breaking of chiral symmetry 

(91) 

So far we have assumed that the axial-vector symmetry is a perfect symmetry of the 
strong interactions. From our discussion in section 2.2.1 we know, however, that the 
small but finite current quark masses of the up and down quark break the axial-vector 
symmetry explicitly. This explicit breaking of the symmetry should not be confused with 
the spontaneous breakdown, we have discussed before. In case of a spontaneous breaking 
of a symmetry the Hamiltonian is still symmetric, whereas in case of an explicit breaking, 
already the Hamiltonian is not symmetric. 

One may wonder if the whole concept of spontaneous symmetry breaking makes any 
sense if already the Hamiltonian is not symmetric. The answer to that, again, depends 
on the scales involved. If the explicit symmetry breaking is small, i.e. if'the quark masses 
are small compared to to relevant energy scale of QCD, as we believe they are, then it 
will be sensible to apply the notion of a spontaneously broken symmetry. 
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To illustrate that, let us again utilize our little mechanics analogy, which we have 
developed in the previous section. An explicit symmetry breaking would imply that 
both potentials of figure ( 1) are not invariant under rotation. This could for instance 
be achieved by slightly tilting them towards, say, the x-direction. As a result, also the 
ground state of potential (a) is away from the center (x, y = 0). But the dislocation is 
small compared to that due to the spontaneous breaking. Furthermore, as long as the 
potentials are tilted only slightly, rotational excitation (pions) in potential (b) are still 
considerably softer than the radial ones (sigma-mesons). So in this sense, we expect the 
effect due to the spontaneous breakdown of chiral symmetry to qominate the dynamics, 
as long as the explicit breaking is small. In the linear sigma-model, the mass scale 
generated by the spontaneous breakdown is the nucleon mass, whereas that generated by 
the explicit breakdown will be the mass of the pion, as we shall see. Thus, indeed the 
explicit breaking is small, and our picture, developed under the assumption of perfect 
axial-vector symmetry, will survive the introduction of the explicit breaking to a very 
good approximation. 

After these remarks let us now'~introduce a symmetry breaking term into the linear 
sigma-model. In QCD, we know, that the symmetry is explicitly broken by a quark 
mass-term 

8£xxsB = -m.ijq (92) 

where the subscript XxSB stands for explicit chiral symmetry breaking. If we identify, 
as we have done before, the scalar quark-field combination ijq with the u field, this would 
suggest the following symmetry breaking term in the sigma-model 

6£sB = f.U (93) 

where f. is the symmetry breaking parameter. This term clearly is not invariant under the 
axial transformation AA but preserves the vector symmetry A v. Including this term, the 
potential V (73) now has the form 

V(u,1r) = ~ ((1r2 + u 2
)- v0 )

2
- f.U (94) 

where we now have repiaced J1r of eq. (73) by a general parameter v0 , which in limit of 
f. ---+ 0 will go to f1r· The effect of thesymmetry breaking term is to tilt the potential 
slightly towards the positive u direction, and thus to break the symmetry (see fig. (3)). 

What are the consequences of this additional term? First of all, the minimum has 
shifted slightly. If we require that the value of the new minimum is still J1r in order to 
preserve the Goldberger-Treiman relation, we find for the parameter v0 to leading order 
lllf. 

. f. 

Vo = f1r - 2>.!; (95) 
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V(cr, n=O) 

---
-- a 

Figure 3: Potential of linear sigma-model with explicit symmetry breaking 

Also the mass of the sigma is slightly changed 

2 - 82 v I - ·) _:._ 
mu - 8u2 - ..,>.J-rr + f-rr 

uo 

(96) 

But most importantly, the pion now acquires a finite mass 

(97) 

which fixes the parameter € 

(98) 

Thus, the square of the pion mass is directly proportional to the symmetry breaking 
parameter € as we would have expected it from our previous discussion. 

Due to our choice of u0 = f-rr, the nucleon mass is not changed, which, however, does 
not mean that there is no contribution to the nucleon mass from the explicit symmetry 
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breaking. If we split the nucleon mass into a contribution from the symmetric part of the 
potential ("" v0 ) and one from the symmetry breaking term ("" f), 

(99) 

we find that the contribution from the symmetry breaking, which is often referred to as 
the pion-nucleon sigma-term7, is given by 

2 
~ _ cMXxSB _ f. "" f m'lr 

1rN- o N - g1r?'f2 - g'lr 1r-2 
~"' 1r m 17 

(100) 

As we shall see below, the pion-nucleon sigma-term can ·be measured in pion-nucleon 
scattering experiments and its is currently believed to be (7) ~1rN(O) = 35 ± 5MeV. 

Since chiral symmetry is now explicitly broken, the axial-vector current is not con
served anymore. The functional form of the axial current is the same, however, as in the 
symmetric case, eq. (89), because the symmetry breaking term (93) does not involve any 
derivatives (see equ. (31) ). Its divergence is related to the variation of the symmetry 
breaking term in the Lagrangian, as shown at the end of section 2.2. 

(101) 

which leads directly to the PCAC relation (55). Here h(O') denotes the variation of the 
0'-field with respect to the axial-vector transformation AA, not the fluctuation around the 
ground state. As in equ. (31) the angel ea has been divided out. 

The main effect of the explicit chiral symmetry breaking was to give the pion a mass. 
But we can utilize the symmetry breaking further to derive8 some rather useful relations 
between expectation values of the scalar quark operator ijq and measurable quantities like 
!1r, m'lr, and ~1rN· 

When we introduced the symmetry breaking term into our model, we had required 
that it has the same transformation properties under the chiral transformations as the 
QCD-symmetry breaking term. The overall strength of the symmetry breaking, f we then 
adjusted to reproduce the ground state properties, namely the pion mass. Therefore, it 
seems reasonable to expect, that that the vacuum expectation value of the symmetry 
breaking terms in QCD (92) and in the effective model (93) are the same. 

< OlfO"IO > = < Ol- miJ.qiO > (102) 

7This definition of the pion-nucleon sigma term should be taken with some care'. For a rigorous 
definition see e.g. [7, 8]. In the framework of the sigma-model, this definition, however, is correct to 
leading order in L 

8These 'derivations' are merely heuristic, but I feel they nicely demonstrate the physics which is going 
on. For a rigorous derivation see e.g. [8]. 
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If we insert for € = m;.J'Ir and use < OluiO >= J1r we arrive at the so called Gell-Mann -
Oakes- Renner (GOR) relation [9, 8] 

m-:J; = - mu ; md < O!uu + dd!O > (103) 

where we have written out explicitly the average quark mass, m, and the quark operator 
ijq. The GOR relation is extremely useful, since it relates the quark condensate with J1r 
and/or the pion mass with the current-quark mass. 

Similarly, but less convincingly, one can argue, that the contribution to the nucleon 
mass due to chiral symmetry breaking, E1rN, is the expectation value of the symmetry 
breaking Hamiltonian 8HxxsB = -8.CxxsB between nucleon states. This leads to the 
exact expression of the pion-nucleon sigma-term in terms of QCD variables [7, 10] 

mu + md -E1rN = < N!uu + dd!N > 
2 

(104) 

This relation will turn out to be very helpful in order to estimate the change of the chiral 
condensate in nuclear matter at finite density. 
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3.3 S-wave pion-nucleon scattering 

In order to see how chiral symmetry affects the dynamics, let us, as an example, study 
pion-nucleon scattering in the sigma-model. Let us begin by introducing some·notation. 

q- 1t . -- --- ' 1t _q -----
p N N p' 

The invariant scattering amplitude T(q,q') is commonly decomposed into a scalar and 
a vector part9 (see fig. (3.3) for the notation of momenta) 

T(q, q') = A(s, t) + i1~-'(q~-' + q~)B(s, t) (105) 

where (s, t) are the usual Mandelstam variables, and q and q' denote the incoming and 
outgoing pion..: four-momenta. The relativistic scattering amplitude is related to the more 
familiar scattering amplitude in .the center of mass frame, :F( q, qi) by 

x+:Fx'= MNr;.u(p,s)Tu(p',s') (106) 
47ryS 

Here x are Pauli-spinors for the nucleon representing spin and isospin and u(p, s) stand 
for a relativistic spinors for a nucleon of momentum p. 

The scattering amplitude can be decomposed into isospin-even and -odd components10 

+ 1 [ ] -
Tab= T bab + 2 Ta, Tb T (107) 

w~ere the indices a, b refer to the isospin. 
In the discussion of pion-nucleon scattering instead of ( s,t) one usually uses the in

variant variables [7] 

v 

VB = 

s-u 
4MN 

1 1 1 ( 2 12) ---q~-'q = -- t - q - q 
2MN ~-' 4MN 

9For details see e.g. the appendix of [11]. 

(108) 

(109) 

10Notice, that the isospin-odd amplitude is the negative of what in the literature is commonly called 
theiso-vector amplitude whereas the isospin-even amplitude is identical to the ~o called isoscalar one (see 
[11]). 
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The spin-averaged, non-spin-flip (s = s'), forward scattering (p = p') amplitude, which 
will be most relevant for the aspects of chiral symmetry, is usually denoted by D and is 
given in terms of the above variables by 

1 
D = 2 L:u(p,s)Tu(p,s) =A+ vB 

s 
(110) 

Finally, if one wants to extract effects due to explicit chiral symmetry breaking, one best 
analyses the so called subtracted amplitude 

- i; v1 
D = D- Dpv = D- ---=--=-

MN v1- v2 
(Ill) 

Now let us calculate the pion-nucleon scattering amplitude in the sigma- model. At 
tree level the diagrams shown in fig. ( 4) contribute to the amplitude. The first two 
processes represent the the simple absorption and re-emission of the pion by the nucleon. 
Provided, that there is a coupling between pion and nucleon, one would have written 
down these diagrams immediately, without any knowledge of chiral symmetry. The third 
diagram (c), which involves the exchange of a sigma-meson, is a direct result of chiral 
symmetry, and, as well shall see, is crucial in order to give the correct value for the 
amplitude. 

,q 'I,' ,q g: q q' 
.... ---- r;---' , ... ., 

' .... ., , .... ., ., 
' , .,'>-, 
' 

p 'ta 'tb p' p 'tb 'ta p' p p' 

(a) (b) (c) 
Figure 4: Diagrams contributing to the pion-nucleon scattering amplitude Tab· 

In the following, we will restrict ourselves to the forward scattering amplitudes, i.e. 
q = q' and p = p'. Using standard Feynman-rules (see e.g. [1]), the above diagrams can 
be evaluated in a straightforward fashion. For diagram (a) we obtain 

(112) 
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where we have used that /5/p. = -/p./5, 1l = 1, TaTb = bab + ~[ra, rb], and the Dirac 
equation (Pp./P.- m )u(p) = 0. Obviously, diagram (a) contributes onl~ to the v,ector piece 
of the amplitude, B, and the isospin-even and -odd amplitudes are the same 

2 
B+ - B- - 91r 

(a) - (a) - - S - M'k (113) 

The contribution of the crossed or u-channel ( diagram (b)) one obtains by replacing 

with the result 

s ~ u 

(rarb) ~ (rbra) 

q ~ -q 

2 

B+ - g'lr - B-
(b) - M2 - - (b) u- N 

Here isospin-even and -odd amplitudes have the opposite sign. 

(114) 

(115) 

(116) 

(117) 

It is instructive to calculate the scattering amplitude resulting from the first two 
diagrams only. If we didn't know about chiral symmetry, and, hence, the existence of 
the u-exchange diagram, this is what we would naively obtain. At threshold ( q = 0), the 
combined amplitudes are 

g; ( 1 ) v B(:)+(b) - M . m2 
N 1-~ 

4MN 

2 1n1r ( 1 ) 
vB<:zl+(b) = g1'{2M'k 1- -Rk 

4MN 

(118) 

(119) 

Using equations (105, 106) the resulting s-wave isospin-even and isospin-odd scattering 
scattering length, which is related to the scattering amplitude D (110) at threshold by 

± 1 ± 
a = 41r(1 + ~~) Dat threshold 

(120) 

would be 

aci ( (a) + (b)) (121) 

a0 ( (a) + (b)) (122) 
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where we have made of the Goldberger-Treiman relation g1rf1r = MN. This is to be 
compared with the experimental values of [11] 

aci( exp) = -0.010(3) m;1 a0(exp) = 0.091(2)m;1 (123) 

While we find reasonable agreement for the isospin-odd amplitude, the isospin even 
amplitude is off by two orders of magnitude! A different choice of the pion-nucleon 
coupling 91r would not fix the problem, but just shift it from one amplitude to the other. 
Before we evaluate the remaining diagram (c), let us point out that in the chirallimit, 
i.e. m1r = 0, the isospin-odd amplitude vanishes. 

In order to evaluate the a-exchange diagram, we need to extract the pion-sigma cou
pling from our Lagrangian. This is done by expanding the potential V (73) up to third 
power in the field fluctuations ( ( 81r) and ( 8u)). The terms proportional to I"V ( 81r )2( 8u) 
then give the desired coupling. 

(124) 

The resulting amplitude is then given by 

-( ) (c) ( ) 2'Aj7r r 
U p Tab U p = -g1r t 2 Ua.b 

-mu 
(125) 

It only contributes to the scalar part of the amplitude, A, and only in the isospin-even 
channel. Using 2A.J; = m~ - m; (see eqs. (96, 97) ) we find 

A+ = _ g1r m~ - m;. = 91r ( 1 _ t - m;.) 
(c) f m2 - t f t - m2 1r q 1r q 

(126) 

To leading order, the contribution to the s-wa.ve scattering lengths of diagram (c) is 

(127) 

(128) 

Thus, to leading order, the contribution of the u-exchange diagram (c) exactly cancels that 
of the nucleon-pole diagrams ( (a) and (b)) and the total isospin-even scattering length 
vanishes 

(129) 

in much better agreement with experiment. The cancelation between the large individual 
contributions to the isospin-even amplitude is a direct consequence of chiral symmetry, 
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which required the u-exchange diagram. In the chirallimit, this cancelation is perfect, i.e. 
the isospin-even scattering amplitude vanishes identically, because the corrections "' m1!' 

are zero in this case. 
Furthermore, since the third diagram (c) does not contribute to the isospin-odd am

plitude, the good agreement found above still holds. In other words, with the 'help' of 
chiral symmetry both amplitudes are reproduced well. 

Putting all terms together the isospin-even amplitude n+ is given in terms of the 
variables v and VB 

(130) 

Here the first term in the second line is the contribution form diagra~s (a) and (b) and 

the other two term are from diagram (c). At threshold, where v = m1!', Vf! = - 2~~, and 
t = 0 this reduces to 

( 2 2) + _ 91!' m1!' m1!' 
Dat threshold- --{ 41112 _ m2 + m2 

• rr N 1!' u 

(131) 

As already pointed out, to leading order ("' m~) or in the chiral limit, this amplitude 
vanishes, as a result chiral symmetry. However the contribution next to leading order 
"' m; involve also the mass of the u-meson, which has not yet been clearly identified 
in experiment. In the sigma-model, this mass essentially is a free parameter, since it 
is directly proportional to the coupling >.. Since >. gives the strength of the invariant 
potential V, chiral symmetry considerations will not determine this parameter. Thus, 
aside from the very important finding, that the isosp,in-even scattering length should be 
small, the linear sigma-model as no predictive power for the actual small value of the 
scattering length 11 

Notice, that although D is the spin averaged, forward (t = 0) scattering amplitude, 
we can obviously study it an any value of v, t or equivalently v and VB. A kinematical 
point of particular interest is the so called Cheng-Dashen point, given by 

v = 0, t = 2m.7!' -+ VB = 0 (132) 

11 In the framework of chiral perturbation theory, the value of the isospin-even amplitude is essentially 
regarded as an input to fix the parameters of the expansion. There are attempts to relate the value of 
the scattering length to contributions from the Delta [12]. In this approach, the problem is shifted to the 
determination of an unknown off-shell parameter appearing in the Delta-propagator. 
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At this kinematical point , the subtracted amplitude lJ ( 111) is directly related with the 
pion-nucleon sigma-term "£1rN [7] 

- "£7rN 
D( v = 0, t = 2m7r) = r; (133) 

In the sigma-model we find for the subtracted amplitude to leading order in the pion 
mass 

- 91r m! "£1rN 
D(v = O,t = 2m7r) = --

1 
- 2 = -12 7r mu 7r 

(134) 

where we have used the expression for the sigma-term, derived above (100) from the con
tribution of the explicit chiral symmetry breaking to the nucleon mass. Notice, although 
the Cheng-Dashen point is in an unphysical region, it can nevertheless be reached via dis
persion relation techniques, and, thus, the sigma-term can be extracted from pion-nucleon 
scattering data. For a detailed discussion, see ref. [7]. 
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4 Nonlinear sigma-model 

One of the disturbing features of the linear sigma-model is the existence of the o--field, 
, because it cannot really be identified with any existing particle. Furthermore, at low 

energies and temperatures one would expect that excitations in the o--direction should 
be much smaller than pionic ones, which in the chirallimit are massless (see fig. (1)). 
This is supported by our results for the pion-nucleon scattering, where in the final result 
the mass of the sigma-meson only showed up in next to leading order corrections, which 
vanish in the chirallimit. 

Let us, therefore, remove the o--meson as a dynamical field by sending its mass to 
infinity. Formally this can be achieved by assuming an infinitely large coupling ). in the 
linear sigma-model. As a consequence the mexican hat potential gets infinitely steep in 
the sigma-direction· (see fig. ( 4) ) . This confines the dynamics to the circle, defined by 
the minimum of the potential. 

(135) 

V(cr, 1t=O) V(cr, 1t=O) 
\ I 
l , \ ' 
l ,' \ I 
I I \ I 
I I \ I 
I I \ I 
I I \ I 
\ I \ I 
\ I \ I 
\ I \ I 

This additional condition removes one degree of freedom, which. close to the ground 
state, where < O" >= J1r, is the sigma field, and we are left with pionic excitations only. 
Because of the above constraint (135), the dynamics is now restricted to rotation on the 
so called chiral circle (actually it is a sphere). Therefore, the fields can be expressed in 
terms of angles ~, 

o-(x) 
<I>(x) 

- f1r cos( h)= J1r + 0(<1>2
) 

1f(x) - J1r~sin(<I>J:)) = ~(x) + ;(<1>3
) (136) 
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which to leading order can be identified with the pion field. Here, ~ = ~- Clearly, 
this ansatz fulfills the constraint (135). Equivalently, one can chose a complex notation 
for the fields, as it is commonly done in the literature 

U( ) ir~{.r) (~(x)) .... ;,. . (~(x)) 1 ( ....... ) 
x = e '"' =cosh +zT'J!'Sin h = J1r a+zT7r (137) 

where U represents a unitary (2 x 2) matrix. The constraint (135) is then equivalent to 

(138) 

Since chiral symmetry, or more precisely axial-vector symmetry, corresponds to a symme
try with respect to rotation around the chiral circle, all structures of the form 

(139) 

are invariant.· Already at this point it becomes obvious that we eventually will need some 
scheme, which tells us which structures to include and which ones not. This will lead us 
to the ideas of chiral perturbation theory in the following section. 

Let us continue by rewriting the Lagrangian of the linear sigma-model (74) in terms 
of the new variables U or ~. After a little algebra we find that the kinetic energy term of 
the mesons is given by 

~8 a8J.£a = .f1r tr(o u+ 8J.£U) 211· 4 tt 
(140) 

Next, we realize that nucleon-meson coupling term can be written as 

-g'lr ( {JV; a+ {J15i1j; i) = -g'lr{y [.r'lr (cos( 1) + hsi~ sin( 1)) ]1/; 

- -g'lr'¢ (.r1rei-y5 T~S.r)) 1/J 

- -g~f'lr(i,AAV; (141) 

where we have defined 

. r~(.rl 

A = e''Y5 """'I"[;;"" 

If we now redefine the nucleon fields 

1/Jw - AV; 

=::::? {Jw 1/J+ A +/O hom}=O 1/J+IO A= (i,A 
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the interaction term (141) can be simply written as 

(145) 

where we have used the Goldberger-Treiman relation (62). In terms of the new fields, 
'1/Jw, the entire interaCtion term as been reduced to the nucleon mass term. If we want 
to identify the nucleons with the redefined fields '1/Jw we also have to rewrite the nucleon 
kinetic energy term in terms of those fields. 

(146) 

Since A is space-dependent through the fields 4>( x ), the derivative also acts on A, giving 
rise to additional terms. After some straightforward algebra, one finds 

with 

v,.. -

A,.. -

~ 

·~ [~+a,..~+ ~a,..~+] 

~ [~+a,..~- ~a,..~+] 
.7'<ii(z) 

e'~ :::} U = ~~ 

(147) 

(148) 

(149) 

(150) 

We do not need to transform the potential of the linear sigma-model, V( 7r, u ), since 
it vanishes on the chiral circle due to the constraint condition (135). Putting everything 
together, the Lagrangian of the nonlinear sigma-model, which is often referred to as the 
Weinberg-Lagrangian, reads in the a:bove variables 

(151) 

were we have dropped the subscript from the nucleon fields. Clearly, this Lagrangian 
depends nonlinearly on the fields ~. It is instructive to expand the Lagrangian for small 
fluctuations 4> / J1r around the ground state. This gives 

.Cw ~ ~(i~-MN)'I/J+4(a~~)2 

+ 2~'/r (~1,../sf'I/J)fJ,..~- 4~; (~'Y,..f'I/J)· (~ x (8,..~)) (152) 

where ~ is now to be identified with the pion. Comparing with the linear sigma-model, the 
a--field has disappeared and the coupling between nucleons and pions has been changed to 
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a pseudo-vector-one, involving the derivatives (momenta) of the pion-field. In addition, 
an explicit isovector coupling-term has emerged. From this Lagrangian it is immediately 
clear that the s-wave pion nucleon scattering amplitudes vanishes in the chiral limit, 
because all couplings involve the pion four-momentum, which at threshold is zero in case 
of massless pions. Thus, the important cancelation between the nucleon pole-diagrams 
and the a--exchange diagram, which we found in the linear sigma-model, has been moved 
into the derivative coupling of the pion through the above transformations. 

On the level of the expanded Lagrangian (152), the explicit breaking of chiral symme
try is introduced by an explicit pion mass term. Consequently corrections to the scattering 
lengths due to the nucleon pole diagrams should be of the order of m;, since two derivative 
couplings are involved. However, the coupling b£ =- 4 } 2 (¢1JJ.i'!jJ) · (<P x (oJJ.<P)), which 
contributes to first order to the isospin-odd amplitude, should give rise to a term ,...., 7f 
in agreement with our previous findings (122). Not too surprisingly one finds, that the 
above Lagrangian gives exactly the same results for the scattering-length as the linear 
sigma-model, except, that correction ,...., ~ are absent, because we have assumed that the 

m" 
mass of the a--meson is infinite~ However, the full Lagrangian (151) would give rise to 
many more terms, if we expand to higher orders in the fields ~' which then would lead to 
loops etc. How to control these corrections in a systematic fashion will be the subject of 
the following section, where we discuss the ideas of chiral perturbation theory. 
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5 Basic ideas of Chiral Perturbation Theory 

In the previous sections we were concerned with the most simple chiral Lagrangian in 
order to see how chiral symmetry enters into the dynamics. As we have already pointed 
out, many more chirally invariant terms terms can be included into the Lagrangian and 
thus we need some scheme which tells what to include and what not. This scheme is 
provided by chiral perturbation theory. 

Roughly speaking,· the essential idea of chiral perturbation theory is to realize that at 
low energies the dynamics should be controlled by the lightest particles, the pions, and the 
symmetries of QCD, chiral ·symmetry. Therefore, s-mati'ix elements, i.e. scattering am
plitudes, should be expandable in a Taylor-series of the pion-momenta and masses, which 
is also consistent with chiral symmetry. This scheme will be valid until one encounters a 
resonance, such as the p-meson, which corresponds to a singularity of the s-matrix. Prac
tically speaking, above the resonance, a Breit-Wigner distribution cannot be expanded in 
a Taylor series. 

It is not too surprising that such a scheme works. Imagine, we did not know anything 
about QED. We still could go ahead and parameterize the, say, electron-proton scattering 
amplitude in powers of the momentum transfer t. In this case the Taylor coefficients 
would be related to the total charge, the charge radius etc. With this information we 
could write down an effective proton-electron Lagrangian, where the couplings are fixed 
by the above Taylor-coefficients, namely the charge and the charge- radius. This effective 
theory will, of course, reproduce the results of QED up to the order, which has been fixed 
by experiment. I~ is in this sense, the effective Lagrangian, obtained in chiral perturbation 
theory, should be understood; namely as a method of writings-matrix elements to a given 
order in pion-momentum/mass. And to the order considered, the the effective Lagrangian 
obtained with chiral-perturbation theory should ~e equivalent with QCD [13, 14]. 

It should be stressed, that chiral perturbation theory is not a perturbation theory in 
the usual sense, i.e., it is not a perturbation theory in the QCD-coupling constant. In this 
respect, it is actu~lly a nonperturbative method, since it takes already infinitely many 
order of the QCD coupling constant in order to generate a pion. Instead, as already 
pointed out, Chiral perturbation theory is an expansion of the s-matrix elements in terms 
of pion-momenta/masses. 

From the above arguments one could get the impression, that chiral perturbation 
theory has no predictive power, since it represents simply a power expansion of measured 
scattering amplitudes. Although this may true in some cases, one could easily imagine 
that one fixes.the effective Lagrangian from some experiments and then is able to calculate 
other observables. For example, imagine that the effective pion-nucleon interaction has 
been fixed from pion nucleon-scattering experiments. This interaction can then be used 
to calculate e.g. the photo-production of pions. 
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To be specific, let us discuss the case of pure pionic interaction, i.e. without any 
nucleons. As pointed out in the previous section, chiral invariance requires that the 
effective Lagrangian has to be build from structures involving u+ U (138) such as 

. i'~(z) 

Furthermore, each U = ez ftr contains any power of the pion-field <I>, which may give rise 
to loops etc. To specify, which of the above terms should be included into the effective 
Lagrangian and how much each term should be expanded in terms of the pion field, one 
has to count the powers of pion momenta. contributing to the desired process (scattering 
amplitude). 

Consider a given Feynman-diagram contributing to the scattering amplitude. It will 
have a certain number L of loops, a certain number Vi of vertices of type i involving di 
derivatives of the pion field an a certain number of internal lines lp. The power D of the 
pion momentum q, this diagram will have at the end, can be determined as follows: 

• each loop involves an integral over the internal momenta J d4q "'"' q4 

• each internal pion line corresponds to a pion propagator, and thus contributes as 1
2 . q 

• each vertex Vi involving di derivatives of the pion field, contributes like qd; 

Consequently, the total power of q, qD is given by 

(154) 

This can be simplified by using the general relation between the numbers of loops, internal 
lines and vertices of a given diagram 

L = lp- L Vi+ 1 (155) 
z 

to give 

(156) 

With this formula we can determine to which order of the Taylor expansion of the scat
tering amplitude a given diagram contributes. 

In order to see how this counting rule leads to an effective Lagrangian of a given 
order, we best study the simple example of pion-pion scattering. Since u+ U = 1 does not 

36 



Figure 5: Leading order diagram for 1r-1r scattering. 

contribute to the dynamics, the simplest contribution to the effective Lagrangian is given 
by 

(157) 

where the subscript denotes the number of derivatives involved. Since we are discussing 
pion-pion scattering, we have to expand at least up to fourth order in the pion fields, 

(158) 

where the second term contributes to the pion-pion scattering amplitude. Although this 
term has two contributions, for the purposes of power counting, the second term may be 
considered as one vertex function, because both contributions have the same number of 
derivatives. Thus, to lowest order, we have just one diagram, which is shown in fig. (5). 
It has no loops, L = 0, and the vertex function carries two derivatives of the pion field. 
Using the above counting rule (156), the order of this diagram is D = 4. 

We can easily convince ourselves that there are no more terms contributing to this 
order. Including terms into the Lagrangian with four derivatives of the pions field such as 
e.g._ tr[(811-u+a~~-U)2] immediately leads to D $ 6. Also expanding the above Lagrangian 
(157) up to sixth order in the pion field leads to D $ 6, because two of the pion fields have 
to be combined into a loop, since we are only considering a process with four external 
p10ns. 

Obviously, the order of the effective Lagrangian depends on the process under con
sideration. Whereas a term involving six pion fields contributes to the order D $ 6 to 
pion-pion scattering, it would conti:ibute to order D = 4 to a process with three initial 
and three final pions. Of course, having realized, that we are actually parameterizing 
s-matrix elements, this is not such a surprise. 

As already mentioned, to order D = 6 we have contributions from different sources. 
First of all, form higher derivative terms in the Lagrangian and secondly, from the ex
pansiOn to higher order in the pion fields, giving rise to loops. The beauty of chiral 
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perturbation theory is, that the effects of loops can be systematically be absorbed into 
renormalized couplings and masses. For details see e.g [15]. 

By now, the astute reader will have asked himself: How do I know, that a momentum 
is small, or in other words, what is the expansion scale? There are several answers on the 
market. Georgi [16] argues, based on renormalization arguments, that the scale should be 
47r J1r "' 1 GeV, whereas others argue [17, 15], that the mass of t};le lowest lying resonance 
should give the scale, since this is the energy, where the entire game seizes to work. 
This seems to be a reasonable argument and, assuming that there is no u-meson of mass 
"' 500 MeV, the mass of the p-meson should provide a reasonable benchmark. 

So far we have worked in the chirallimit, i.e. assuming that the pion mass vanishes. 
The explicit breaking of chiral symmetry is introduced by terms of the form "' tr( u+ + U) 
and and the simplest symmetry breaking is 

j2m2 1 
8CxxsB = Ttr(U+ + U) ~ 4- 2m!~

2 + 0(~4 ) (159) 

which to leading order in the pion-fields corresponds to a pion mass-term (the constant 
term does not contribute to the dynamics). Again, one can have many symmetry breaking 
term involving the above structure, such as 

tr(u+ + U), tr(8Jtu+8JtU)tr(u+ + U) ... (160) 

so that an ordering scheme is necessary. Therefore, in the realistic case of explicit chiral 
symmetry breaking, the scattering amplitudes are not only expanded in terms of the pion 
momenta but also in terms of the pion masses. The counting-rule is the same as given 
above (156), where di now gives the number of derivatives and pion masses of a given 
vertex of type i. The total effective Lagrangian for pion-pion scattering to order D = 4 
is then given by 

(4) _ 1 2 1 2 2 1 [ ... ... 2 · 2 ... Jt ... ) m; ... ... 2 
£ 2 - "2(8Jt~) + 2m7r~ 6!; (~ · 8Jt~) - ~ (8Jt~ · 8 ~) + 

241
; (~ · ~) (161) 

In principle the 'adjustable' parameters of this Lagrangian are the pion-mass and the 
pion-decay constant, which have to be fixed to the experimental values. 

The resulting pion-pion scattering length and volumes are then given by [18] 

(162) 

where the subscript denotes the angular momentum and the superscript the isospin of 
the amplitude. As shown in table (I) [15], the leading order results agree reasonably well 
with experiment and are improved by the next to leading order corrections. Apparently 
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Experiment Lowest Order First Two Orders 
0 a0 m1!" 0.26 ± 0.05 0.16 0.20 
2 a0 m1!" -0.028 ± 0.012 -0.045 -0.041 

a 1m3 
1 11" 0.038 ± 0.002 0.030 0.036 

Table 1: Pion-pion scattering length 

we do not find perfect agreement with experiment even for the s-wave scattering lengths, 
although already to leading order we haven taken into account terms quadratic in the 
momenta, so that higher orders in the pion momentum will not improve the situation. 
However, remember, that we not only expand in terms of the pion momenta, but also, as 
a result of the explicit symmetry breaking, in terms of the pion mass, which in principle 
can contribute to any order to the s-wave scattering length. 

As already pointed out in the beginning of this section, chiral perturbation theory, or 
moreprecisely, the expansion in momenta breaks down, once we get close to a resonance. 
This one easily understands by looking at the Breit-Wigner formula for the scattering 
amplitude involving a resonance. 

. f/2 
f(E)"' ER-E- if/2 (163) 

For energies, which are small compared to the resonance energy, E ~ ER this amplitude 
may be expanded in terms of a power series and the concept of chiral perturbation theory 
works well 

(164) 

However, once we get close to the resonance-energy, we need to expand to higher and 
higher order until at E ~ ER the power-series in E seizes to converge. To be specific, 
we expect that in the the isovector p-wave channel, which is dominated by the p-meson 
resonance, the chiral perturbation expansion should fail for energies E "' mp. 

Finally, let us include the nucleons into the chiral counting. Naively, one would think, 
that this should destroy the entire concept, because the nucleon has a large mass, which is 
of the order of the expansion scale. However, since at low energies the scattering amplitude 
may also be calculated in a nonrelativistic framework, we do not expect the nucleon mass 
to enter directly, but, to leading order, only via. the kinetic energy "' 

2
LN, which is small , 

compared to that of the pion at the same momentum. Therefore, chiral perturbation 
theoryshould also work with nuCleons present (for details see. [19]). Th~ above argument 
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can be formalized by realizing that the nucleon only enters the amplitudes through the 
nucleon propagator (see e.g. the results of section (3.3)). At low momenta, the nucleon 
propagator contributing to diagram (a) of fig. ( 4) can be written as 

(165) 

where 

(166) 

projects on positive energy states. Hence, to leading order, each nucleon propagator 
contributes like ~ to the power of pion momentum of the scattering amplitude. This leads 
to the following counting rule, which now also includes the nucleons [19] 

1 1 
D = 2 +?L--EN+"' V;(d· + -n·- 2) ~ 2 ~tt 2' 

t 

(167) 

Here the notation is as in equ. (156) and EN denotes the number of external nucleon 
lines and ni the number of nucleon fields of vertex i, which is typically ni = 2. 

For the simple nucleon-pole diagram using·pseudovector coupling we thus would have: 
L = 0, EN = 2, d = 1, n = 2 such that, d + ~n- 2 = 0 and, D = 1. 

On top of the expansion in terms of pion-momenta. and pion masses, from equ. (165) 
we, therefore, also have an expansion in the velocity of the nucleons v ,....., ifJ:;. This is 
carried out in a. systematic fashion in the so called Heavy-Baryon Chiral-Perturbation 
Theory, as introduced by Jenkins and Manoha.r [20]. This approach essentially corre
sponds to a systematic nonrelativistic expansion for the nucleon wave-function, on the 
basis that the nucleon (baryon) is heavy compared to the momenta involved. We should 
mention, that the effect of the nucleon can also be included in a fully covariant fashion 
as discussed by Gasser et al. [21 ). 

Including the nucleon gives rise to a.dditional structures which explicitly break the 
chira.l symmetry, such as 

. - ¢2 -
8.C =a tr(U+ + U)~~ ~ a(1-

21
;) ~~ (168) 

To leading order, this is just a contribution to the nucleon mass, which allows us to 
identify the coefficient a with·the sigma-term L-1rN (100) 

(169) 
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The next to leading term in the above expression is an attractive interaction between 
pion and nucleon, which contributes to the order D = 2 to the amplitude. This term 
by itself is quite large and would lead to a wrong prediction for the s·wave pion-nucleon 
amplitude. However, there are additional terms contributing to the same order, which in 
the heavy-fermion expansion comes from the nucleon-pole diagrams. The coefficients of 
these terms then need to be chosen such, that the resulting scattering length acquire the 
small value observed in experiment [22]. 
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6 Applications 

In this last section, we want to discuss a few applications of chiral symmetry relevant 
for the physics of dense and hot matter. First we briefly address the issue of in medium 
masses of pions and kaons. Then we will discuss the temperature and density dependence 
of the quark condensate. We will conclude with some general remarks on the properties 
of vector mesons in matter. 

6.1 Pion and kaon masses in dense matter 

Changes of the pion mass in the nuclear medium should show up in the iso-scalar pion 
s-wave optical potential. To leading order in the density this is related to the s-wave 
iso-scalar scattering-length at by [11] 

m7r + 2wU = -4?r(1 + -
1 

) a0 p 
Jv..N 

(170) 

where w is the pion energy. Since the s-wave iso-scalar scattering length is small, as a 
result of chiral symmetry, and slightly repulsive, we predict a small increase of the pion 
mass in the nuclear medium, which at nuclear matter amounts to ~m1r ~ 5MeV. One 
arrives at the same result by evaluating the effective Lagrangian, as obtained from chiral 
perturbation theory, at finite density [23, 22]. This is not surprising since the s-wave 
iso-scalar amplitude is used to fix the relevant couplings. 

In case of the kaons, which can also be understood as Goldstone bosons of an extended 
SU(3) x SU(3) chiral symmetry, some interesting features occur. Chiral perturbation 
theory predicts a repulsive s-wave scattering length for ](+-nucleon scattering and a large 
attractive one for]{- [24, 23]. Using the above relation for the optical potential (170) this 
led to speculations about a possible s-wave kaon condensate in dense matter [24, 25] with 
rather interesting implications for the structure and stability of neutron stars [26, 27]. 
Experimentally, however, one finds that the iso-scalar s-wave scattering length for the 
f{- is repulsive, calling into question the results from chiral perturbation theory. The 
resolution to this puzzle is the presence of the A(140.5) resonance just below the kaon
nucleon threshold. This resonance, which has not been taken into account in the chiral 
perturbation analysis, gives a large repulsive contribution to the scattering amplitude at 
threshold. Does that mean, that chiral perturbation theory failed? Yes and no. Yes, 
because, as already pointed out, it is not able to generate any resonances and thus leads 
to bad predictions in the neighborhood of the resona.nce12 . No, because it predicts a 

12Lee et al. [28) have attempted to include the A(1405) as an explicit state in a chiral perturbation 
theory analyses of the kaon-nucleon scattering length. While this approach may be a reasonable thing to 
do phenomenologically, it appears to be beyond the original philosophy of chiral perturbation theory. 
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strong attraction between the proton and the J(-, which, if iterated to infinite order can 
generate the A(1405)-resonance as a bound state in the continuum [29]( in the continuum, 
because the A(1405) decays into :E7!"). 

This situation is well known from nuclear physics. The proton-neutron scattering 
length in the deuteron channel is repulsive although the proton-neutron interaction is 
attractive. The re~on is, that in this channel a bound state can be formed, the deuteron, 
which gives rise to a strong repulsive contribution to the scattering amplitude at threshold. 

To carry this analogy further, we know that in nuclear matter the deuteron has dis
appeared, essentially due to Pauli-blocking, revealing the true, attractive nature of the 
nuclear interaction. As a result we have an attractive mean field potential for the nucle
ons. Similarly, one can argue [30], that the A(1405), if it is a J(- -proton bound state, 
should eventually disappear, resulting in an attractive s-wave optical potential for the J<
in nuclear matter. Indeed, an analysis ~f f{- atoms [31], shows, tliat the optical potential 
turns attractive already at rather low densities p =:;; 0.5p0 • Extrapolated to nuclear mat
ter density the extracted optical potential would be as deep as --'200 MeV, in reasonable 
agreement with the predictions from chira.l perturbation theory. 

6.2 Change of the quark-condensate in hot and dense matter 

6.2.1 Temperature dependence 

One of the applications of chiral perturbation theory relevant to the physics of hot and 
dense matter, is the calculation of the temperature dependence of the quark condensate. 
Here we just want derive the leading order result. A detailed discussion, which includes 
also higher order corrections can be found in ref. [32]. The basic idea, is to realize that 
the operator of the quark-condensate, ijq, enters into the QCD-Lagrangian via the quark 
mass term. Thus, we may write the QCD-Ha.miltonian as 

\ 

(171) 

The quark condensate at finite temperature is then given by the following statistical sum. 

_ Li < ilijq e-Hftli·> 
< qq >T= " 'I H/Tl' L..i < z e- z > 

(172) 

Since f) H / f)mq = ijq this can be writ ten as 

f) 
< ijq >T= T-f) ln Z(m9 ) 

1n9 

(173) 

where the partition function Z is given by Z = Li < ile-H/Tii >. 
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In chiral perturbation theory we do not calculate the partition function of QCD, but 
rather that of the effective Lagrangian. To make contact with the above relations, we 
utilize the Gell-Mann Oakes Renner relation (103). To leading order in the pion mass the 
derivative with respect to the quark mass, therefore, can be written as 

a < OlqqiO > a 
8mq = - .r; om; (174) 

Next to leading order contributions arise, among others, from the quark-mass dependence 
of the vacuum condensate. 

To leading order the partition function is simply given by that of a noninteracting 
p10ngas 

. 3 
In Z =In Zo + ln Z1r-gas = ln Zo + ( 2~)3 j d3p ln(l- exp( -EfT)) (175) 

where Z0 stands for the vacuum contribution, which we, of course, cannot calculate in 
chiral perturbation theory, since we are only concerned about fluctuation around that 
vacuum. Thus the temperature dependence of the quark condensate in the chirallimit is 
given by 

_ < Olqqlo > a 1 < qq >T - < OjqqjO > - J2 ;:) 2 Z1r-gas 
7r un~7r m7r-+O 

T2 
< OjqqjO > (I - "/2 ) 

~ 7r 
(176) 

Thus to leading order, the quark condensate drops like "' T2
, i.e. at low temperatures 

the change in the condensate is small. 
Corrections include the effect of pion interactions, which in the chiral limit are pro

portional to the pion momentum and thus contribute to higher orders in the temperature. 
Including contributions up to three loops, one finds see e.g. [:32] 

< qq >T ( T2 ) ( y2 ) 
2 

( y2 ) 
3 

Aq 8 
< qq >o = 1 - Ct Sf; - c2 s.r; - C3 - s.r; ln( T) + O(T ) (177) 

For N1 flavors of massless quarks the coefficients are given in the chirallimit by 

(178) 

The scale Aq can be fixed from pion scattering data. to be i\9 = 4 70 ± 110 MeV. In 
fig. (6) we show the temperature dependence of the quark-condensate as predicted by 
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Figure 6: Temperature dependence ·of the quark condensate from chiral perturbation 
theory ( chirallimit )-

the above formula. Currently, lattice gauge calculations predict a critical temperature 
Tc ~ 150 MeV, above which the quark condensate has disappeared. At this temperature 
chiral perturbation theory predicts only a drop of about 50 %, which gets even smaller once 
pion masses are included [32]. However, we do not expect chiral perturbation to work well 
dose to the critical temperature. The strength of this approach is at low temperatures. 
The prediction, that to leading order the condensate drops quadratic in the temperature 
is a direct consequence of chiral symmetry and can be used to check chiral models as well 
as any other conjectures involving the change of the quark-condensate, such as e.g. the 
change of hadron masses. 

6.2.2 Density dependence 

For low densities, the density dependence of the quark condensate can also be determined 
in a model independent wa.y13

• We expect that to leading order in density the change in 
the quark condensate is simply given by the amount of quark condensate in a nucleon 
multipliedby the nuclear density, 

< qq >p=< qq >o + < NlqqiN > p +higher orders in p (179) 

13 Again, we give a heuristic argument. A rigorous derivation based on the Hellmann-Feynman theorem 
can be found e.g. in (33, 34]. 
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All we need to know is the matrix element of ijq between nucleon states. This matrix 
element, however, enters into the pion-nucleon sigma-term (104) 

1
- I _ L:1T'N _ " < qq >o < N qq N >- - .:...J1T'N 2 2 

mq m1T'J1!' 
(180) 

where we also have made use of the COR-relation (103), namely mq = ;q~~;o. Thus 
we predict, that the quark condensate drops linearly with density, as compared to the 
quadratic temperature dependence found above 

(181) 

Corrections to higher order in density arrise, among others, from nuclear binding effects. 
These have been estimated by Brockmann [:35] to be a.t most of the order of 15 % for 
denities up to twice nuclear-matter density. Assuming a value for the sigma term of 
L:1T'N ~ 45 MeV we find that the condensate has dropped by about 35 % at nuclear matter 
density 

< ijq >p=< ijq >o (1- 0.35~) 
Po 

(182) 

Thus, finite density is very efficient in reducing the quark condensate and we should 
expect that any in medium modification due. to a dropping quark condensate should 
already be observable at nuclear matter density. The above findings also suggest, that 
chiral restoration, i.e. the vanishing of the quark-condensate, is best achieved in heavy 
ion collisions at bombarding energies, which still lead to full stopping of the nuclei. 

6.3 Masses of vector mesons 

Finally, let us briefly discuss what chiral symmetry tells us about the masses of vector 
mesons in the medium. Vector mesons, such as the p-meson, are of particular interest, 
because they decay into dileptons. Therefore, possible changes of their masses in medium 
are accessible to experiment. 

Using current algebra and PCAC, Dey et a.l. [36] could show, that at finite temperature 
the mass of the rho-meson does not change to order T 2• Instead to order T 2 the vector
correlation function gets an admixture from the axial-vector correlation function 

Cv(T) = (1 - t)Cv(T = 0) + tCA(T = 0) (183) 

with t = it~. The imaginary part of this vector-correlation function is directly related to 
the dilepton-production cross-section. As depicted in fig. (7), the above result, therefore, 
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Figure 7: Vector-spectral functions at T = 0 and to leading order in temperature as given 
by equ. (183). 

predicts that· to leading order in the temperature, the dilepton invariant mass spectrum 
develops a peak at the mass of the a 1-meson in addition to that at the mass of the p. At 
the same time, the contribution at the p-peak is reduced in comparison to the free case. 
Furthermore, the position of the peaks is not changed· to this order in temperature. This 
general result is also confirmed by calculations in chiral models, which have been extended 
to include vector mesons [37, 38). Notice, that the above finding also rules out that the 
mass of the P-meson scales linearly with the quark condensate, because previously (see 
section 6.2.1) we found that the quark condensate already drops to order T 2 , whereas the 
mass of the p does not change to this order. 

Corrections to higher order in the temperature, however, are not controlled by chiral 
symmetry alone and, therefore, one finds model dependencies. Pisarski [38) for instance 
predicts in the framework of a linear sigma model with vector mesons, that to order T 4 

the mass of the p decreases and that of the a1 increases. Song [37), on the other, uses 
a nonlinear u-model and finds the opposite, namely, that the p goes up and the a1 goes 
down. At the critical temperature, both again agree qualitatively in that the masses of a1 

and p become degenerate at a value which is roughly given by the average of the vacuum 
masses~ 1 GeV. This agreement, again, is a result of chiral symmetry. 

At and above the critical temperature, where chiral symmetry is not anymore spon
taneously broken, chiral symmetry demands that the vector and axial vector correlation 
functions are the same. One wa:y to realize that is by the having the same masses for 
the vector (p) and axial-vector ( a1 ). However, this is not the only possibility! As nicely 
discussed in a paper by Kapusta and Shuryak [39), there are at least three qualitatively 
different possibilities, which are sketched in fig. (8). 

1. The masses of p and a1 are the same. In this case, clearly the vector and axial 
vector correlation functions are the same. Note, however, that we cannot make any 
statement about the value of the common mass. It may be zero, as suggested by 
some people, it may be somewhere in between the vacuum masses, as the chiral 
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Figure 8: Several possibilities for the vector and axial-vector spectral functions in the 
chirally restored phase. 

models seem to predict and it my be even much larger than the mass of the a1 . 

2. We may have a complete mixing of the spectral functions. Thus, both the vector 
and axial-vector spectral functions have peaks of equal strength at both the mass 
of the p and the mass of the a 1 , leading to two peaks of equal strength in the 
dilepton spectrum (modulo Boltzmann-factors of course). One example would be 
given by the low temperature result (18:3) with the mixing parameter t:(Tc) = ~· 
Using the low temperature result for € = ~~ would give a critical temperature of 

Tc = ../3!7': ~ 164MeV, which is surprisingly close to the value given by recent 
lattice calculations. 

3. Both spectral functions could be smeared over the entire mass range. Due to thermal 
broadening of the mesons and the onset of deconfinement, the structure of the 
spectral function may be washed out and it becomes meaningless to talk about 
mesonic states. 

To summarize, the only unique prediction derived from chiral symmetry (current al
gebra) about the temperature dependence of the p-mass, is that it does not change to 
order T 2

, i.e. at low temperatures. Furthermore, at and above the critical temperature, 
chiral symmetry requires that the vector and axial-vector spectral functions are identical, 
which, however, does not necessarily imply, that both exhibit just one peak, located at 
the sam~ position. Corrections of the order T 4 cannot be obtained from chiral symmetry 
alone. 

Finally let us point out, that the above findings do not· rule out scenarios, which 
relate the mass of the p with the temperature dependence of the bag-constant or gluon 
condensate, such as proposed by Pisarski [40) and Brown and Rho (41). This ideas, 
however, involve concepts which go beyond chiral symmetry, such as the melting of the 
gluon condensate. Consequently in these scenarios, a certain behavior of the mass of the 
p-meson can only indirectly be brought in connection with chiral restoration. 
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7 Appendix: Useful references 

This is a selection of references, which the author found useful in preparing these lectures. 
It is by no means a complete representation of the available literature. 

1. D.K. Campbell, 'Chiral symmetry, pions and nuclei', 
in 'Nuclear Physics with Heavy Ions and Mesons', Volume 2, Editors: Balian, Rho 
and Ripka, (Les Houches XXX, 1977),North Holland. 
Comment: Very nice introduction to chiral symmetry. 

2. H. Georgi, 'Weak Interactions and modern Particle Physics', 
Benjamin/ Cummings, 1984 
Comment: Good introduction to the idea of chiral pert. theory, sometimes a little 
brief. 

3. J.J. Sakurai, 'Currents and Fields', 
Chicago Univ. Press, 1969 
Comment: Nice little book about current algebra etc. These are lecture notes and, 
therefore, rather explicit. 

4. De Alfaro, Fubini, Furlan and Rosseti, 'Currents in hadron Physics', 
North Holland, 1973. 
Comment: The current algebra 'bible'. Contains everything up to 1973 (no chiral 
pert. theory). 

5. U. Meissner, 'Recent developments in chiral perturbation theory', 
Rep. Prog. Phys. 56 (1993) 903 
Comment: Good review about the technical aspects of chiral pert. theory. 

6. H. Leutwyler, 'Principles of Chira.l Perturbation Theory' 
Lectures from 'Hadrons 94" workshop, Gramado, RS, Brasil, hep-ph/9406283 
Comment: Very nice review about the conceptual aspects of chiral perturbation 
theory. Somewhat complementary to that of Meissner . 
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