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These lectures provide. an introduction to perturbative QCD and some of its cur­
rent applications. 

1 Introduction 

In these lectures, I shall provide an introduction to perturbative QC D and to some 
of its applications. In the limited time available, I shall first concentrate on the 
basics of perturbative QCD and on the tools for calculations. After discussion the 
total hadronic cross-section and jet rates in e+ e- annihilation, I shall discuss the 
QCD parton model. I will end with a discussion of how non-perturbative effects 
are parameterized by using heavy quark effective field theory as an example. There 
are many excellent references for the material in these lectures. Some recent sets 
of lecture notes and review articles should be consulted for more details and an 

alternative view.[1] [2]. 

2 The ·QCD Lagrangian. 

The QC D Lagrangian describes the interactions of n 1 flavors of quarks each of which 
has three colors ( '1/Ji) with an octet of gluon fields ( G~) and may be written as follows: 

-iF:vF:v + J;;f;i(i/Dp,ij- 8ijmj)'l/;j 
•,J 

(1) 

The sum on j runs over quark flavors and gluonic filed strength tensor is written as, 

(2) 
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and the covariant derivative acting on fermion fields by 

(3) 

Here ta are the 3 x 3 representation matrices and the structure constants !abc of SU(3) 
are given by [ta, tb] = ifabctc. 

Apart from the quark masses (mj), which have their origin in the Weinberg-Salam 
model of weak interactions, the theory has only one fundamental parameter, the 
coupling constant g. It is this coupling constant that provides us with an expansion 
parameter. The Lagrangian has a gauge in variance under which 

and 
1 

taGa(x)J.L-+ utaGa(x)J.Lu-1
- ig (81-Lu)u- 1 

where u(x)ij = (exp(itaaa(x))ij· 

(4) 

(5) 

In order to quantize the theory, it is necessary to fix a gauge. In a covariant gauge, 
this is accomplished by adding a term 

(6) 

In this gauge unphysical degrees of freedom for the gluon fields are propagating, these 
are compensated by the ghost Lagrangian involving the propagation of art octet of 
unphysical fields rta 

(7) 

Calculations of physical processes give results that are independent o~ .X. The most 
common choices are .X = 1 (Feynman gauge) and .X = oo (Landau ·gauge). Although 
covariant gauges are the most convenient for calculations, the presence of the ghost 
fields results in a loss of intuition. For this reason, some analyses are best carried out 
in axial gauge accomplished by adding a term 

(8) 

and taking the limit .X -+ oo Here n is an arbitrary 4-vector. In this gauge, there are 
no ghosts and the gluon propagator has the form 

QJ.L"(p) = i . (-gi-L"+ pi-Ln" + p"nJ.L 2 p"pJ.L) 
p2 - u: (np) - n (np)2 (9) 

In the limit p2 -+ 0, pJ.LGJ.L" and nJ.LGJ.L" both vanish demonstrating that only the 
propagator only propagates two physical degrees of freedom./ Some aspects of QCD 
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particularly those associated with the parton model are most easily revealed in this 
gauge although higher order calculations can be technically awkward due to the un­
physical singularities at ( np) = 0. 

If calculations are undertaken beyond the leading order in the coupling constant, 
ultra-violet divergences are encountered. These divergences must be regulated and 
reabsorbed into the fundamental parameters of the theory, i.e. the theory must be 
renormalized and a renormalized coupling constant defined. As an intermediate step 
a regulator must be introduced to render the divergences tractable; counter-terms 
are then added to remove the divergences and the regulator then removed. These 
counterterms correspond to renormalization of the scale of the gluon and quark fields 
and the coupling constant g. In order to be useful the regulator should preserve gauge 
invariance. The most convenient regulator is dimensional regularization.[4] 

In order to understand the procedure, consider the calculation of the gluon self­
energy at 1 loop in Feynman gauge. The dimension of space-time is continued to 
n = 4 - 2e: dimensions, i.e. in loop integrals (~:)4 -+ (~:)n. In n dimensions the 
coupling constant becomes dimensional g -+ 9f.l£ and an arbitrary scale f.l with the 
dimension of mass enters. There are 4 relevant Feynman diagrams, one involving a 
fermion loop, one involving a ghost loop and two with gluon loops, one of these being 
a tadpole that has no dependence on the external momentum. The resultant gluon 
self energy for a gluon of momentum p is 

(10) 

where 
(11) 

with a(p2
) = 16~2 (D- Jf dx ln(p2x(1- x )) and D = 1/e: + ln( 411") -/E, terms of order 

<: 2 or higher have been dropped and the quark mass has been set to zero (there are 
nf quark flavors). The ultra-violet divergence is manifested in the 1/e: poles. Suitable 
counter-terms involving 1/€ can be added to the original Lagrangian such that these 
poles are eliminated from the calculation for a physical process and a finite result is 
obtained. The exact form of the counter-terms is prescribed once a renormalization 
scheme is specified. The resulting coupling constant parameter g is then dependent 
on that scheme. 

In Quantum Electrodynamics an on-shell renormalization scheme is often used. 
Here the value of the ee1 vertex is defined to be the renormalized charge e of the 
electron if the momentum of the photon is zero and both electrons have momenta 
satisfying p2 = m 2

• Such a scheme has a clear physical definition but it obscures 
an important fact; the renormalized charge e depends upon the choice the choice of 
momenta. This scheme does not work in QCD because at this low (zero) momentum 
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scale the theory is non-perturbative as discussed below. We are therefore forced to 
select an unphysical scheme. One choice (momentum space subtraction) involves 
defining the QCD coupling constant g in terms of the value of the three-gluon vertex 
at the point where the each of the gluon momenta satisfies p2 = -J.L2

• Here again, 
the renormalized coupling is an implicit function of the arbitrary scale f.l· 

A far more convenient renormalization scheme in QCD is the M S scheme [3]. Here 
a process is computed using dimensional regularization then performing a Laurent 
expansion in 1/ e.. This procedure is equivalent to adding a set of counter-terms to the 
original Lagrangian to remove the divergences. The terms involving D (see equation 
11) are dropped and the limit c-+ 0 then taken. The resulting expression for II(P2

) 

IS 

(12) 

The parameter g appearing in the resulting expression is then the renormalized cou­
pling and depends implicitly on f.l· Note the explicit dependence on f.l in this result. 

Now calculate a physical process P(Q2), which depends on some energy scale Q; P 
could, for example, represent a cross-section. It is convenient to choose the quantity 
P to be dimensionless; this can always be done by multiplying it by an appropriate 
power of Q. If we neglect quark masses, and follow the prescription given above then 

(13) 

Here F a function that is finite. Since P is dimensionless it has the form 

(14) 

I have replaced g by a: a = g2 
/ 47r and the coupling constant is now in the M S 

scheme. The scale f.l is arbitrary so that a physical quantity cannot depend upon its 
value 

(15) 

which implies 

( 
2 8F 8F) 

f.l 8f.l2 + ,B(a) 8a = 0 (16) 

Here ,8 (a) is defined by 
_ 2 8a 

,B(a) = f.l 8f.l2 (17) 

We can introduce a momentum-dependent coupling a(t) via 

-la(t) dp 
t = a ,B(p) (18) 
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where t = log( Q 2 
/ J-t2 ). Then Equation 16 has the solution 

F(t, a)= F(1, a(t)) (19) 

Hence the only dependence on the scale Q or t is carried by a(t). We can expand /3 
as a power senes m a. 

/3 a '( a )2 = -b--b- + ... 
471" 471" 

(20) 

Hence a(J-t2 ) has the following form: 

(21) 

Here b = 11 - 2n f /3 where n f is the number of quark flavors with mass less than 1-l· 

We can regard the fundamental parameter of QC D either as a( Q5) or as the scale 
A. Notice that as 1-l becomes small, a becomes large. Therefore, perturbation theory 
cannot be used to discuss processes which involve momentum flows as small as a few 
times A. This is the reason that the on-shell subtraction scheme is impractical. 

3 Processes in e+ e- annihilation 

As a specific example of QC D process, consider the total cross-section for e+ C ~ 

hadrons at center-of-mass energy Js. or the decay width of the Z boson into hadrons 
(f ~ hadrons). If the coupling of the Z to fermions ( '1/Ji) is written as 

(22) 

Then at lowest order in QCD (a~), the cross-section for e+e- ~ hadrons at center 
of mass energy Js = Mz is calculated from the process e+ e- ~ qq and is given by 

L (vJ+a;) 
quarks 

where r z is the total decay width of the z boson. 

(23) 

(24) 

At next order in as two process are possible; e+ e- ~ qq and e+ e- ~ qq + gluon. 
If we define x1 and x 2 as the energy of the outgoing quark and anti-quark scaled by 
Mz, viz. x1 = 2EqfMz and x2 = 2E-q/Mz., so that 0::; Xi ::; 1, the cross section for 
the latter process can be written as 

_ 2as j xf +X~ 
a(qqg) = ao 37!" dx1dx2 (1 _ x

1
)(1 _ x

2
) (25) 
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The integral diverges when x1 ---+ 1 or x2 ---+ 1. If'x1 = 1, then either the energy of the 
gluon is zero ("soft divergence"), in which case x2 = 1 also, or the gluon's momentum 
is parallel to the antiquark ("collinear divergence"). Neither of these divergences is 
physically observable since, in this limit, the final state of qq + gluon is indistinguish­
able from qq. Therefore the· 1-loop order as corrections to this process must also 
be considered. A regulator is needed to control these soft and collinear divergences. 
Again we can use dimensional regularization. Equation 25 is then replaced by 

o-(qqg) (26) 

(27) 

The 1-loop corrections to the qq rate are also computed and added to this result. The 
singular terms as c ---+ 0 cancel and the limit c ---+ 0 is taken with the result 

or equivalently 

with 

a 
o-(qq) + o-(qq + gluon) = o-0~ 

7r 

Rz -
r( z ---t hadrons) 

f(Z---+ e+e-) 

Ro(1 +as) 
7r 

(28) 

(29) 

(30) 

Ro = 3 Lquarks( vf + a7) (31 ) 
v2 + a2 e e 

This result is calculated to lowest non-trivial order in as and hence no QCD 
renormalization is needed. At higher orders, the renormalized coupling as(l1) appears 

· and we may write 

(32) 

with c1 = 1.986 - 0.115n1 - (/30 /4) ln(M'i/ 112
), the result for c2 can be found in 

reference [6]. The result looks simplest if we make the natural choice 11 = Mz. 
However this is not necessary. Figure 3 shows the value of Rz as a function of p. 
It can be seen from this figure that the 11 dependence of the result is reduced as 
successively more terms in the perturbation series are included. The 11 dependence 
in as(l1) is compensated by that in Ci· In general one should choose a value of 11 that 
is comparable to the energy in the process. In this case therefore 11 ,....., y8 in order to 
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Figure 1: The value of Rz (see text) as a function of f.J,. The dashed, dotted, and 
solid curves show the order a5 , a; and a; results respectively. 

avoid large logarithms and therefore large values of Ci that indicate a poorly behaved 
perturbative expansion. Many schemes are available to select the appropriate scale 
[5]. However the variation of the result with f.1, is an indication of the size of the 
theoretical uncertainty. 

Other tests of QCD in e+ e- annihilation depend upon the study of the jets of 
particles produced in the final state from the hadronization of the produced quarks 
and gluons. At lowest order in a 5 , the final state consists of a quark-antiquark 
pair; at next order we can get a state with an additional gluon. Since the quarks 
and gluons hadronize into jets of particles, this would seem to imply that the ratio 
#(3jets)/#(2jets) should be of order a 5 • This is only partially true since it is necessary 
to define what is meant by a jet. 

Consider the final state of two quarks and a gluon illustrated . The Feynman 
graphs contains an internal propagators which gives rise to the factor of 1/ ( ( 1 -

· x1 ) ( 1 - x 2 )) in equation 25. As discussed above, this factor becomes singular when 
either the gluon becomes very soft, or when it moves parallel to an outgoing quark 
or antiquark. 

These soft and collinear divergences correspond precisely to those parts of phase 
space where a detector would only detect two jets. Consider an idealised detector 
consisting of a set of elements each of which covers an angular cone of opening angle 
8 and has an energy threshold E. This detector will incapable of resolving two jets if 
one of them is very soft (energy E or less), or if the two jets have an angular separation 
which is less than 8. We can define the f to be the fraction of total cross-section in 
which all but a fraction E of the total energy is deposited into two cones of opening 
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angle 8. Then to order as, 
(1 _ f) = 0"3-iet 

O"total 
(33) 

provides a definition of the three jet fraction. 
We can calculate this fraction by restricting the range of the x1 and x2 integrals 

in Equation 25. Hence[7] 

( 1 - f) = 1 1 du ( 34) 
,,s <Ytotal dx1 dx2 

4as 2 
- 3;"(4log(1/8)log(1/2c)- 3log(1j8) + 1r /3 -7/4) (35) 

Notice that as E and 8 become very small the logarithms in this expression can be­
come very large. Ultimately the perturbation expansion in as breaks down since there 
are terms in next order which are of order a;log2 (1/8). Since this is not small com­
pared with a.slog(1/ 8), the expansion is not reliable. The situation can be improved 
by resumming these large logarithms to all orders. 

This fixed angle cone scheme, although very intuitive, is difficult to extend to 
larger numbers of jets. Jet recombination algorithms are more general. In the JADE 
algorithm [8] particles of momenta Pi and Pi are combined into a pseudo-particle of 
momentum Pi + Pi if the invariant mass of the pair is less than y0 y'S. The process 
is then iterated until no more pairs of particles or pseudo-particles remain. The 
remaining number is then defined to be the number of jets in the event and can 
be compared to the QCD prediction. This algorithm can be applied directly to the 
perturbative QCD final state of quarks and gluons and to the experimental final state 
of hadrons. The Durham algorithm is slightly different, in computing the mass of a 
pair of partons it uses M 2 = 2min(Ei,Ei)(1- cosOiiJ for partons of energies Ei 
and Ei separated by angle Oii [9]. This is a more physical algorithm as it merges the 
slowest particle with the one closest to it in angle. Most tests of QCD using jet events 
in e+e- annihilation use one of these algorithms [17]. 

4 Parton Model 

In order to discuss processes which involve hadrons in the initial state, we must discuss 
the parton model. Consider the case of electron-proton scattering ( ep -+ eX), where 
the cross-section can be written as 

d<Y 47r a~m s [ 1 + ( 1 - Y )2 2 ( 2 2 ] 
dxdy = Q4 2 2xFI(x, Q ) + 1- y)(F2(x, Q ) - 2xF1(x, Q )) 

(36) 
The variables are defined as follows (see Figure 4 ): q is the momentum of the 
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•) 

e 

Figure 2: Diagram illustrating the variables in deep inelastic scattering electron + 
proton ---+ electron + anything. 

exchanged photon and P is t,he momentum of the target proton and k is that of the 
incoming electron 

ll 

- ....9!_ 
- 2mpv X 

y - !1:E. 
- k·p 

s = 2p· k+m; 
(37) 

where mp is the proton mass. I have neglected parity violating effects which arise 
from the exchange of a Z boson instead of a photon. 

In the naive parton model the proton is viewed as being made up of a set of 
non-interacting partons. The structure functions F1 and F2 are related to the prob­
ability distribution qi( x) which represents the probability of finding a parton of type 
i (quark or gluon) inside the proton with fraction x of the proton's momentum, and 
the scattering cross-section for such a virtual photon from a parton. 

(38) 

where ei is the charge of parton of type i. The 8-function appears from the cross­
section for q + 1 ---+ q and corresponds to the- constraint that the massless quark in 
the final state is on mass-shell. 
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q 

• r 
k -q 

g 

Figure 3: Diagram showing g + 1--+ q + q. 

Let us consider QC D corrections to this scattering. At next order in as, there are 
contributions from gluon emission which lead to the final state q + g and also from 
virtual gluons (see Figure 4). 

The gluon momentum must be integrated over. In the cases discussed previously, 
the divergences arose from large momentum flows inside loop diagrams (ultra-violet 
divergences). In this case these divergences cancel. However here we encounter infra­
red and collinear divergences. The former cancel between the real and virtual dia­
grams, but, unlike the case of jet production in e+e- annihilation, the latter do not. 
Using dimensional regularization to regulate this divergence and keeping the terms 
that are singular or non-zero as c --+ 0, to order as Equation 38 is replaced by 

(39) 

with 

ai(z, Q2
) = ;; ef [(ln(Q2 

/ tL
2

) + D)Pqq(z) + f(z) + 0 ( ~2 )] (40) 

and 
P. (z) = ± (1 + z2) 

qq 3 1- z (41) 

for z =f. 1. Here again the scale 11 has appeared from dimensional regularization. 
In order to see the origin of the singular terms, consider the graph of Figure 4 

and work in a frame where k~-' = (k, k, 0, 0). If the transverse momentum of the gluon 
(p) relative to k is small then we can take p = (TJk + ki_/2TJk, Tjk, k1.. 0). (Terms 
of order ki_ are neglected.) The internal quark line now has invariant mass squared 
r 2 = (k- p)2 = ki./TJ, so that the squared amplitude from the graph will contain 
1/kf. Now, at very small k1. helicity conservation forbids the emission of a real gluon 
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from a quark line, so that one factor of ki appears in the numerator (this physical 
result is most easily revealed in axial gauge). We now have for the total cross-section 

q + 1 --+ q + anything, a contribution 

0' ,...., as J dki 
27l" ki 

( 42) 

which gives rise to a logarithmic singularity. Dimensional regularization causes this 
singularity to appear as the term D in equation 40. Note that for a massive quark 
the singularity becomes log(Q2 lm;). 

· We have obtained a result that is not physically meaningful. But Equation 39 
contains the unknown quantity qi(y). We can define 

·( M 2 ) _ ·( ) as(D + ln(M
2 I p?) 11 

dy ( )P (~) q~ X, - q~ X + 
2 

q y qq 
7l" X y y 

( 43) 

Hence 

F1 = 2t11 
e7; qi(y,M

2
) [s (~ -1) + ;;u (~)] +ln(Q

2
IM

2
)Pqq (~)) + O(a

2
) 

(44) 
The singularity has been eliminated at the cost of introducing an M-dependent struc­
ture function. The scale M is called the factorization scale since it is the scale at 
which the parton distribution function qi(x, M 2 ) is evaluated. The natural choice in 
this case is Q = M which simplifies result. However its choice is arbitrary, the value 
of the structure function Fi(x, Q2

) does not depend in principal depend on it. Just 
as in the case of the J.L dependence for Rz, there is a compensation between the M 
dependence of qi(x, M 2 ) and theM dependence appearing explicitly in equation 44. 
As in the earlier case the M dependence of the full result is reduced as more terms 
in the perturbative expansion are included. 

I have so far considered an oversimplification of the true problem. To order as 
there is an additional partonic process, namely gluon + 1--+ q + q. This process also 
contains a log ( Q2 IJ.L2

) arising from the propagation of the internal quark close to its 
mass shell. This singularity results in the replacement of Equation 39 and 40 by 

F1(x, Q2
) =I;~ [I:i erqi(Y) [8(;) + ~ [(D + ln(Q2 I J.L

2 ))Pqq(;) + Jq(;)] 

+(I:i el)g(y )~ [ (D +In( Q2 I J.L
2

) )Pq9 ( ;) + f9 ( ;) ]] 

with Pq9 (x) = ll2(x2 + (1- x) 2
). The singularities can be absorbed by defining 

as 11 
X X dy qi(x, M 2

) = qi(x) + -
2 

(D + ln(M2 I J.L 2
)) (qi(Y )Pqq(-) + g(y )Pq9 (-))-

7!" X y y y 
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so that the,quark and gluon distributions (qi(x) and g(x)) are now coupled. This 
equation can be recast in the more familiar form (DGLAP equations) [10] 

M
2
dqi(x, M

2
) = as(M

2
) 11 

( ·( )P. (~) ( )P. (~)) dy 
d l M 2 2 qt y qq + g y qg 

n 1r x y y y 
(46) 

The equation for the evolution of the gluon distribution is 

M
2
dgi(x, M

2
) = as(M

2
) 11

( ·( )P. (~) ( )P. (~))dy 
d l M

2 2 qt y gq + g y gg 
n 1r x y y y 

(47) 

Given data from which qi(x, M0 ) and g(x, M0 ) can be obtained as functions of x 
for a fixed M0 , these equations for the evolution of q(x, M 2

) and g(x, M 2
) with M 

can be solved to obtain them for all M. Note that structure functions at x1 and 
M 1 depend only on those at x > x1 provided M 1 > M 0 • Since these equations are 
valid only to lowest order in a 5 , M0 must be sufficiently large for a 5 (Mo) to be small 
enough so that the perturbation .. series can be trusted. If the equations are used to 
extrapolate to M > M0 the series will become more trustworthy. The order a~ terms 
in the DGLAP equations are known and are included in some parameterizations of 
qi(x, M 2

) (see below). The structure functions fall to zero as x tends to 1. The quark 
and gluon distributions at Q2 = 20 Ge V2 as given by the MRS D~' are shown for 
illustration in Figure 4 [12] Before leaving the DGLAP equations, I would like to 
discuss the behaviour of the structure functions at very small values of x. As the 
energy available in an ep collision increases it becomes possible to reach smaller and 
smaller values of x at fixed Q2 • Consider the behaviour of the gluon distribution at 
small x, We can neglect the generation of gluons from quarks since the gluon density 
is larger at small x (see figure 4). The DGLAP equation simplifies to 

!g(x, t) = ;; 11 

d: g(y, t)P99, (;) • ( 48) 

where I have introduced t = lnQ2
• Furthermore P99 (x) maybe approximated by 

Equa~ion 48 can be recast as 

6 
P99 (x) =­

X 

_ d2 (xg(x, t)) _ 12 ( ) 
x dxdlogt - b xg x, t 

( 49) 

(50) 

Here I have eliminated a 5 (q 2
) using Equation 21. Equation 50 can be solved to give 

( 
48 ) xg(x, Q2

) ex exp z;log(ljx)loglog(Q2 ) (51) 
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Figure 4: Diagram showing the behavior of the quark and gluon distributions as 
functions of x for various Q2 . Plotted is xf(x) for gluons divided by 10 (dashed line) 
and as solid lines from top to bottom, u, d, d, u and s ( = s) quarks at Q2 = 20 Ge V 2 

• 
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This approximate result ("double log approximation") corresponds to summing terms 
of order (as ln(1/ x) In( Q 2

) )n to all orders in perturbation theory. The full solution of 
the DGLAP equation is equivalent to summing all terms of the type (as In( Q 2 ) )n (and 
terms of order (a~ In( Q2 ) )n-l if the next to leading order equation is used) with the 
full x dependence. The DGLAP result breaks down at very small values of x where 
as(Q)In(1/x) I'V 1. An alternative formulation is available [11], that is complimentary 
to DGAP. This BFKL formulation sums terms of order (as ln(1/ x) )n and is applicable 
provided that as(Q) ln(Q2 ) << 1. Data are available from experiments at HERA 
[13]; it is not clear whether accessible values of x are small enough for BFKL to be 
applicable. 

The growth of g(x) at small x is very rapid. It is eventually cut off when the 
equations break down [14]. We can estimate the position of this breakdown as follows. 
The DLAP /BFKL equations describe the growth of incoherent parton showers: the 
shower initiated by one parton is independent of that of the other partons. This 
assumption must eventually break down. Let us view the proton in a frame where 
is moving extremely fast, the appropriate frame for the parton picture. The proton 
looks like a pancake with area 1/m;. Viewed on a scale Q2 it contains a set of partons 
each of size 1/Q. The fractional area occupied by partons is 

(52) 

Provided this fraction is small the partons are not densely packed and the incoherent 
approximation is correct. If the fraction is of order one, the incoherent approximation 
breaks down and the growth of g(x, Q2

) is cut off. 
A vital property of QC D is that the distribution functions defined by equation 

43 are universal. In order to illustrate this, consider the Drell-Yan process in proton­
proton collisions. In the naive parton model, the cross-section for the production of 
a p+ f-l- pair of invariant mass Min a proton-proton collision (the Drell-Yan process) 
with total center-of-mass energy y8 is· given by 

Here ij_ is an antiquark distribution. The fundamental process is quark-antiquark 
annihilation into p+ f-l-. Consider the corrections to this at order as. As in the case 
of ep scattering these can involve either virtual or real gluons (see Figure 4). These 
corrections modify Equation 53, viz., 
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Figure 5: A parton diagram showing an order as correction to the Drell-Yan process, 

PP --+ 1-l+ 1-l- +X 

[8(1- z) + 0(1- z)~[2Pqq(z)(D + ln(M2 I J-t 2 )) + f'(z)]] 

+[l:i er(qi(xl) + qi(x1))G(x2) + (1 {::} 2)] 

[0(1- z)~[Pq9 (z) + f"(z)] (54) 

where z = M 2 l(sx1x2 ) (15]. The last part of the expression arises from the process 
g + q--+ 1-l+J-l- + q. 

If we replace q( x) by q( x, M 2 ) defined by Equation 43 then the resulting expression 
will have no explicit divergences, viz., 

d~2 = ~-;;;; j dx1dx2[efqi(x1, M2)ili(x2, M2)8(x1x2-M2 Is )+(1 {::} 2)+0( as( Q2
))] 

(55) 
where the order a 5 (M2 ) terms are free of divergences. This absorption of the singular 
terms into q(x, M 2

) is known as factorization; it is a universal property which guar­
antees that hard processes can be reliably calculated in perturbative QC D and that 
the same set of structure functions should be used for all processes [16].. 

In summary, all cross-sections involving the transfer of large momentum (greater 
than "' 10 GeV) or the production of heavy particles in hadron hadron collisions can 
be calculated using the parton model. The cross-sections are given by 

a=~ j dx1dx2Ji(x1, Q2)]j(x2, Q2)dij 
Z,J 

(56) 

Where the sum runs over the parton types (quarks and gluons) and aij is the cross­
section involving partons that is calculated using perturbative QCD. 
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5 Pre-Asymptotic Effects 

In the processes discussed so far, I have concentrated on those characterised by some 
large energy scale Q which can then be. calculated using perturbation theory. All 
processes are affected by contributions that cannot be calculated in perturbation 
theory. In general we can write the result for a QCD prediction in the form 

P(Q) = f(as(Q)) + g(A/Q) (57) 

where A is the scale where QCD perturbation theory breaks down (as(A) "' 1) and 
g(O) = 0. While a non-perturbative method is needed to compute g(y ), in many cases 
it is possible to perform an expansion g(y) = "L::i aiyi, the first few terms will give 
a reasonable approximation at small y or large Q and hence the non-perturbative 
effects can be parameterized by a few constants. By using the underlying properties 
of QCD, it is often possible to relate the quantities ai between processes. Hence ai can 
be determined by experiment for some process and then used to predict others. One 
of the earliest applications of this technique is the "QCD sum rules" [20]. Students 
are encouraged to learn about this [21]. 

In these lectures, I shall give a discussion of another applicati6n: Heavy quark 
effective theory. There are a number of excellent review articles and I refer the reader 
to them for more details [2]. In the limited time available here, I shall provide an 
introduction to the subject. Consider a heavy quark Q (such as a b-quark) with mass 
MQ > > A. Two types of meson states can exist using Q; the states of QQ such as 
the family of Upsilon resonances and Qq states where q is a light quark (up, down, 
or strange). If MQ is large enough so that the binding energy of the QQ state is 
much bigger than A, then the full spectrum will be computable using perturbative 
QCD. However this is not the case for the Upsilon system. Some properties are 
computable such as the ratio of decay widths r(Y-+ hadrons )jr(Y -+ 1 + hadrons ). 
Unfortunately the top quark lifetime is too short for a toponium system to form, 
although interesting effects are present in the process e+ e- -+ ti near threshold[19]. 

In order to study systems consisting of one heavy quark and one light antiquark, 
an effective Lagrangian approach can be used. If we are interested in momentum 
transfers less than the heavy quark mass, then pair production of QQ will not be 
possible. Furthermore in the limit MQ -+ oo, the dynamics of the binding become 
independent of the mass. The heavy quark acts like a' static color charge as far as the 
light degrees of freedom are concerned. Therefore up to corrections of order 1/ M Q, we 
can use the properties of one Qq system (such as B mesons) to predict the properties 
of another (such as D mesons). Start with the Lagrangian describing the interactions 
of a heavy quark (remember that the gluon field is hiding in the covariant derivative):-

LQ = Q(i/D- MQ) 
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If we are interested in momentum transfers k, that are small compared to MQ, we can 
write the momentump of the heavy quark as pi-L = MQv~-t+k~-t, where v~-tv~-t = 1. Define 

hv(x) = exp(iMQv~-tx~-t)P+Q(x) and Hv(x) = exp(iMQv~-tx~-t)P_Q(x), where P± = (1± 
/v)/2. Hence jvhv = hv, jvHv = -Hv and Q(x) = exp(-iMQv~-tx~-t)(hv(x) + Hv(x)) 
and 

where D~-t = Dj_ - v~-tv · D which implies v · D 1.. = 0. Note that Lorentz invariance 
has been lost as we are working with a quark of fixed velocity. It can be recovered by 

summing over v [22]. The operator corresponding to H reptesents the excitation of a 
quantum of mass 2MQ, i.e.the creation of a QQ pair. Solve the equation of motion 
for H 

and insert the solution back into LQ 

LQ = hv(iv · D)hv + hvi/DJ.. M 
1

. Di/DJ..hv 
2 Q+W· 

We can expand this as a power series in 1/ MQ 

(60) 

(61) 

- 1- 2 9- 2 
LQ = hv(iv · D)hv + 

2
MQ hv(i/DJ..) hv + 

4
MQ hvup.vp~-tvh + 0(1/MQ) (62) 

Note that the leading term does not contain the quark mass and that there is no spin 
structure; the gluon field couples to hv as if it were a scalar field. The propagator for 

hv is 

and the gluon- hv vertex is 

i 1 + /v 
v·k 2 

(63) 

(64) 

If we haveN heavy quarks, the system will have and SU(2N) heavy quark symmetry. 
Note that this symmetry is not a non-relativistic approximation. At order 1/ MQ there 
are t'wo terms ( -1/2MQ )hvD2 h which can be thought of as a "residual kinetic energy" 
and (gjMq)hv(S · B)hv which represents the interaction of the heavy quark spin with 
the color magnetic field (B). The heavy quark symmetry immediately gives us a 
relation been the masses of the spin-0 and spin-1 D and B mesons:-

Mn- Mv = M'B- MB + O(A/Mc) 

Alternatively, since (DIS· BID) = (BI S ·BIB)+ 0(1/ MQ) 

M;;-Mv MB 
-

MB-MB Me 
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Experimentally the left side of this equation is 14~/:fee: = 3.1 in very good agreement 
with the expectation. 

One of the main applications of heavy quark effective field theory has been in the 
study of weak decays. Consider a heavy ( Qq) meson state of momentum p normalized 
so that (pjjp') = ~(21r)383(p'- p) scattered into another state of momentum p' by 
the coupling of a heavy quark to an external current which changes the heavy quark 
momentum. The light (quark and gluon) degrees of freedom need to adjust in order to 
"catch up" with the recoiling heavy quark. This results in a form factor suppression 
for the transition amplitude that depends only on v- v'. As an example, suppose 
that the current is a vector current of the form JJ.J. = hvl~thv then its matrix element 
between two pseudoscalar mesons has the form 

(p(v')l JJ.l.lp(v)) = e(v. v')(v + v')J.l. (67) 

e does not depend on MQ and there is no form factor proportional to ( v - v~ since 
jvhv = hv. The current Jp, is conserved and hence e(1) = 1. Transitions involving 
spin-1 mesons (V) are also controlled bye, since V can be obtained from P by flipping 
the spin of Q and in the effective theory this is a symmetry transformation. We can 
use this to show that the matrix element involving a vector meson of velocity v and 
polarization state E is 

Let us now use these results to derive some physical results. First consider the 
decay constant of a pseudoscalar meson X with momentum pf.l., defined by 

(69) 

where the state (X (p) I has conventional normalization. If X is a heavy meson state 
of velocity v, we have 

(70) 

and therefore taking into account the different normalizations for (X(p)j and (X(v)l 
we have 

fB = {Kf; + O(A/Mc) 
fn VAJ; (71) 

This result does agree with recent results from lattice gauge theory where ~ ~ 1 [18] 
indicating that for this relation the A/ MQ corrections must be large. 

The next application involves the semi-leptonic decay B -t Dev. This process 
is mediated at the quark level by the interaction b -t cev which is given in terms 
of the Fermi constant and the Kobayashi Maskawa mixing matrix element Vbc· The 
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hadronic transition involves the matrix element of a vector current discussed above 
and hence 

I 

(D(p')l V~tiB(p)) = ~(v · v')jMBMv(J;B +:;D) (72) 

At the kinematic point where the leptons carry no momentum v · v' = 1 and therefore 
an experimental determination of the decay width can be used to extract Vbc· Of 
course, the data must be extrapolated to this kinematic point. It can be shown that 
all of the 1/ MQ corrections to this result vanish at this special point (23], so great 
confidence can be given to the resulting value of Vbc· There are perturbative QCD 
corrections, but these can be computed. 
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