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Abstract 

Dealing with quantum weirdness: Holism and related issues 

by 

Andrew Richard Elby 

Doctor of Philosophy in Interdisciplinary Studies~ Philosophy of Physics 

University of California at Berkeley 

Professor Geoffrey Chew, Chair 

I discuss a variety of issues in the interpretation of quantum mechanics. All of 

these explorations point toward the same conclusion, that some systems are holistically 

connected. In other words, some composite systems possess properties that cannot, 

even in principle, be reduced to (or "built up" from) the properties of its subsystems. 

This; I argue, is a central metaphysical lesson of quantum theory, a lesson that will 

pertain even if quantum mechanics eventually gets replaced by a superior theory. 

After outlining this dissertation in chapter 1, I jump into issues of nonlocality in 

chapter 2. There, I establish a new, probabilistic framework in which to formulate 

"algebraic" (perfect correlations) nonlocality proofs. Working within that framework, I 

rule out hidden-variable theories that approximately reproduce the perfect correlations of 
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quantum mechanics, as well as theories that obey locality conditions weaker than those 

needed to derive Bell's inequality. 

In chapter 3, I discuss Superconducting Quantum Interference Devices (SQUIDs). 

Contra Leggett, I show that SQUID experiments cannot rule out Macrorealism. What 

they can rule out is non-invasive measurability, the assumption that it's possible (in 

principle) to measure a system with arbitrarily small disturbance to its future dynamics. 

Failure of non-invasive measurability is best explained as resulting from a holistic 

connection between measuring device and measured system. 

Chapter 4 looks at the interpretational issues surrounding decoherence, the 

dissipative interaction between a system and its environment Decoherence alone neither 

constitutes nor points to a specific interpretation of tJie quantum formalism. It can, 

however, help "modal" interpretations pick out the desired "preferred" basis. After 

raising some potentially fatal objections to the modal interpretation, I show in detail how 

decoherence comes to the rescue. Modal interpretations explicitly incorporate holism. 

Finally, in chapter 5, I explore what varieties of causation can and cannot "explain" 

the EPR correlations. Any purported causal explanation of EPR within the context of 

relativistic quantum theory must renounce the "generative" causal intuition that causes 

bring about their effects. I explore the philosophical ramifications of this result, 

concluding that instead of relying upon "watered down" causal explanations, we should 

instead develop new, holistic explanatory frameworks. 
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Preface 

Hi, Andy here. So, you actually want to read (parts of) this dissertation. I thought 

it would never happen, but hey, I'm happy to be proven wrong. 

If you're an expert on any of these topics, you might not want to read the 

corresponding chapter of this dissertation, which spends a fair amount of time 

establishing context and explaining the central issues to interested philosophers and 

physicists. Instead, you might consider looking up my published papers on these topics. 

(See the references at the end of this dissertation for a partial list.) I've tried to write 

these thesis chapters in such a way that they could serve to introduce someone to the 

field, in the style of a good review paper. 



Elby 

CHAPTER 1: OVERVIEW 

Does quantum mechanics force us, or at least invite us, to revise our metaphysical 

views? And if so, how radically? In this dissertation, I'll argue that we should abandon 

a causal explanatory framework in favor of a holistic one. By "holism," I mean that a 

composite system can possess properties that are not reducible to. and cannot be "built 

up" from. the properties of its parts~ even in principle. 

This argument is hard to make, because many examples of"quantum weirdness" 

can be explained nonholistically. Indeed, none of my chapters directly argue for a 

holistic world view. Instead, my strategy is to show, in a variety of quantum contexts 

that a holistic outlook is one of only two or three viable alternatives. So, none of my 

chapters on its own favors holism. But since all the chapters are about different issues in 

philosophy of quantum mechanics, and since they all establish that a holistic outlook is 

one of only a few viable alternatives, the dissertation as whole manages to argue--almost 

by "brute force"--that holism deserves a closer look. 

For instance, consider the nonlocality explored in chapter 2. There, I establish a 

new, probabilistic framework in which to formulate "algebraic" (perfect correlations) 

nonlocality proofs. Working within that framework, I rule out hidden-variable theories 

that approximately reproduce the perfect correlations of quantum mechanics, as well as 

theories that obey locality conditions weaker than those needed to derive Bell's 

inequality. We can interpret this irreducible nonlocality as resulting from 

(A) a superluminal causal influence, or from direct action at a distance; or 

(B) a holistic connection between the two wings of the experiment. 

1 



Elby Chapter 1: Overview 2 

Explanation (A), though unsettling and problematic, stays within a "classical causal" 

framework, in which individual systems all "have" separate (nonholistic) properties, and 

causal interactions are what bring about changes in these properties. Chapter 2 can't pick 

out which metaphysical outlook--holism or causal nonlocality--is the best choice. It can 

merely present you with those options. 

In chapter 3, I discuss Superconducting Quantum Interference Devices (SQUIDs). 

Contra Leggett, I show that SQUID experiments cannot rule out Macrorealism. What 

they can rule out is non-invasive measurability, the assumption that it's possible (in 

principle) to measure a system with arbitrarily small disturbance to its future dynamics. 

Failure of non-invasive measurability could be explained in terms of 

(A) a weird kind of causal interaction, the severity of which cannot be made 

very small even in principle; or 

(B) a holistic entanglement between the measuring device and measured 

system. 

Again, I can't fmnly establish that we should choose (B) over (A). But it's intriguing 

that the causal alternatives in chapters 2 and 3--choice "A" in both couplets--are 

problematic for different reasons. 

Chapter 4 looks at the interpretational issues surrounding decoherence, the 

dissipative interaction between a system and its environment Decoherence alone neither 

constitutes nor points to a specific interpretation of the quantum formalism. It can, 

however, help so-called "modal" interpretations pick out the desired "preferred" basis. 

Mter raising some potentially fatal objections to the modal interpretation, I show in 

detail how decoherence comes to the rescue, making modal interpretations one of the 
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few viable classes of interpretations currently out there. Modal interpretations explicitly 

incorporate holism. The fact that an aggressively holistic interpretation can "harness" 

decoherence in order to explain our familiar classical reality makes it plausible that 

holism is compatible with everyday experience. Once again, I can't argue that the 

holistic story here is better than (say, Bohm's) causal story. But the holistic modal 

interpr~tation, with some further work, may be just as viable. (And besides, Bohm' s 

theory may well incorporate holism, too.) 

Finally, in chapter 5, I explore what varieties of causation can and cannot "explain" 

the EPR correlations. Any purported causal explanation of EPR must renounce the 

"generative" causal intuition that causes bring about their effects. I explore the 

philosophical ramifications of this result, concluding that instead of relying upon 

"watered down" causal explanations, we can either 

(A) accept one of these eviscerated causal explanations, or 

(B) develop new, perhaps holistic explanatory frameworks. 

As you can see, no one of my chapters should convince you that holism is the way 

to go. But taken together, they present a strong case. 

3 



Elby Chapter 2: Nonlocality 

CHAPTER 2: PERFECT-CORRELATIONS 
NONLOCALITY PROOFS 

Section 2.1: Introduction 

With the exception of Selleri and his "enhancement hypothesis" coterie (see Lepore 

and Selleri 1990), most philosophers of physics agree that Bell's theorem and related 

results show that nature is nonlocal or "contextual" in some sense, assuming the 

predictions of quantum mechanics (QM) are more or less correct But in what sense? 

Some, such as Home and Sengupta (1984) and Fine (1982), have claimed that Bell-type 

results have little to say about nonlocality. Furthermore, the dozens of clever new 

nonlocality proofs discovered over the past seven years (cf. Hardy 1993. Mermin 1990, 

Greenberger et al. 1990) rely on essentially the same detenninistic locality assumptions 

used by Bell way back in 1964. To make useful philosophical headway, we must frrst 

establish, once and for all, that Bell-type results really do say something about 

nonlocality. Then, we must weaken the assumptions used to derive a nonlocality no-go 

theorem, thereby helping us to zero in on what locality assumptions must be renounced, 

and to cut off options previously available to, "local realist" hidden-variable theorists such 

as Selleri. In this huge chapter, I will tty to accomplish these goals. 

First, in section 2.2, I help to establish that Bell-type derivations really do bear on 

the issue of nonlocality, by refuting Home and Sengupta's (1984) argument to the 

contrary. Then, in section 2.3, I criticize Heywood and Redhead's (1983) nonlocality 

proof on the grounds that it relies on too many assumptions. Section 2.4 reviews a 

cleaned-up version of Heywood and Redhead's proof. Then, in section 2.5, I present the 

frrst-ever "algebraic" nonlocality proof that relies on probabilistic (as opposed to 

4 



Elby Chapter 2: Nonlocality 5 

deterministic) locality assumptions. An "algebraic" nonlocality theorem invokes the 

perfect EPR-type correlations of QM, as opposed to the statistical correlations exploited 

by Bell-type inequalities. Section 2.6 cuts off another road previously available to 

hidden-variable theorists, by showing how theorem 2.5 can be modified so as to rule out 

theories that almost, but don't quite, reproduce the perfect correlations of QM. 

(1broughout this dissertation, I name theorems by the Section in which they appear.) 

Finally, returning to the perfect correlations, I derive a nonlocality theorem using 

weakened locality assumptions. The result is, to my knowledge, the "best" nonlocality 

no-go theorem to date, in the sense of using the weakest locality assumptions.1 

Sections 2.2 and 2.3 are nhpicky and dull, recommended only for those with a 

masochistic interest in nonlocality proofs. The real action starts in section 2.4. 

1Bell-type results that attempt 'to use counterfactuals without assuming counterfactual 
defmiteness, if valid, also use very weak assumptions. Comparing the "relative 
weakness" of my locality assumptions to (for instance) Stapp's (1993, 1994) locality 
assumptions is extremely difficult, because the assumptions take such different forms 
(conditional probabilities versus nested modal-logic counterfactuals). I won't attemptthat 
project here. 
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Section 2.2: Nonlocality is the issue 

§2.2.1. Introduction 

Home and Sengupta argue that "contextuality," not nonlocality, is the philosophical 

lesson to be drawn from Bell-type inequalities. In this section, I refute their claim. But 

first, let me set the stage by summarizing another challenge to the "standard" 

interpretation of Bell inequalities. 

Fine (1982) shows that if Bell-type inequalities are satisfied for a given set of 

events, then there exist well-defined joint probabilities for all pairs of events in question. 

For instance, if a Bell inequality is satisfied for events a, b, c, and d, then there exist 

well-defmedjoint probabilities p(a,b), p(a,c), and so on. But according to QM, some 

events are incompatible, and hence do not correspond to a well-defmed joint probability. 

For instance, if operators A and B don't commute, then QM does not ascribe any 

meaning, much less a well-defined value, to the joint probability p(A=a, B=b ), where 

"A=a" refers to observable A 'being measured to have definite value a. Using these 

facts, Fine argues that "what the Bell inequalities are all about" is making "well-defined 

precisely those probability distributions for noncommuting observables whose rejection 

is the very essence of quantum mechanics." For Fine, locality simply isn't the issue. 

Svetlichny et al. (1988) refute Fine in several ways. First, they show that if 

probabilities are interpreted as relative frequencies (in the standard von Mises-Church 

sense), then a Bell inequality can be derived even if some joint probabilities are assumed 

not to exist But more important, they point out that just because a set of assumptions 

(i.e., those leading to Bell inequalities) imply the mathematical well-definedness of 

certain joint probabilities, this does not mean that those joint probabilities correspond to 

physical reality. For instance, the Stapp-Eberhard-Redhead (see Redhead 1987) version 

6 
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of a Bell inequality is derived without assuming joint probability distributions for 

quantum-mechanically incompatible events. Fine's proof shows that consistent, well­

defined joint probabilities indeed exist for those incompatible events. But in the theories 

considered by Stapp and Eberhard, those joint probabilities are meaningless, mere 

mathematical artifacts without any physical content or significance. For this reason, the 

locality conditions used to derive Bell inequalities do not commit us to physically­

meaningful joint probabilities for incompatible events. Bell inequalities are "about" 

locality, not about joint probability distributions. 

Another challenge to the orthodox view that Bell's inequality is a nonlocality result 

comes from Home and Sengupta (henceforth H&S). They claim to derive a Bell-type 

inequality assuming only a noncontextual hidden-variable framework, thereby showing 

that no noncontextual theory reproduces the statistical predictions of quantum mechanics 

(QM). Specifically, H&S claim that their derivation, unlike usual Bell arguments, 

invokes no locality condition. 

I show that their· derivation assumes determinism. Also, H&S's "local 

noncontextuality" is a physically implausible restriction unneeded in Bell arguments. 

Furthermore, not only does their noncontextuality condition encode a weak locality 

assumption, but their inequality fails to rule out an important class of strongly-nonlocal 

theories. Upshot: The only "local" theories constrained by H&S's inequality satisfy 

implausible conditions not assumed in standard Bell arguments. 

§2.2.2. Notation and Preliminary assumptions 
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Consider an electron in a 2P1n state (orbital angular momentum equals 1, total 

angular momentum equals 1/2, in units of)i). The wave-function is 

where Y\m is the spatial spherical harmonic corresponding to total orbital angular 

momentum I and k component of orbital angular momentum m, and where spin states 

Xk+ and xk_ correspond to k component of spin up and down. Note that the spherical 

hannonics specify the electron's·state relative to the nucleus; more on this point in 

section 2.2.5. 

Let In and Sn denote the operators corresponding to the n component of orbital 

angular momentum and n component of spin, while In and Sn denote the corresponding 

observables. Let ln(t) and Sn(t) be the values obtained upon measurement of In and Sn at 

time t, where we take Sn = ±1 instead of ±1/2. 

Finally, let Ln(t) be the "dichotomized" measured value of ln(t), where 

(a) if ln(t)=O, then Ln(t)=+ 1; 

(b) ifln(t)=±1, then Ln(t)=-1. 

Formally, Ln=f(ln), where f(w)=1-2w2. 

Notice that for all directions (unit vectors) a and b, La and Ia commute with Sb, and 

hence la and Sb are commeasurable according to QM. 

8 
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§2.2.3. Determinism 

In this section, I trace H&S's derivation of a Bell-type inequality, revealing their 

determinism assumption. 

Since Lz(t), La(t), and Sb(t) all equal ±1, H&S claim that inequality (1) follows: 

(1) 

9 

The authors write: "Since we are considering the dispersion-free states to be 

noncontextual, it implies that if the outcome [of measuring] Si is Si(t) in one pair, it will 

also be Si(t) in the other pair involving Si." Inequality (1) necessarily holds, however, 

only under the following condition: If we measure Sb and lz at time t and obtain Sb(t), 

then Sb(t) necessarily would have been obtained had we measured Sb and la instead In 

other words, the result of measuring Sb must be counterfactually definite. As Redhead 

(1987, pp. 90-96) and others show, counterfactual defmiteness relies on determinism. 

The following intuition underlies their formal arguments: Suppose measurement of lz or 

lain no way affects measurement of Sb. Even so, we cannot assert what Sb(t) would 

have been had conditions differed, unless we assume determinism. For, if the result of . 

measuring Sbis truly indeterministic (irreducibly random), then measuring Sb and la 

might have yielded a different Sb(t) than was obtained measuring Sb and lz, not because 

measurement of la or lz disturbs measurement of Sb, but simply because Sb(t) is random 

and therefore might have come out differently. Therefore, in writing inequality (1), 

H&S assume determinism. 
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Here's another way to see that counterfactual definiteness enters in. The first term in 

inequality (1) has meaning only if measurement results of two incompatible 

(noncommuting) obsetvables, Lz and La, are simultaneously well-defmed. But if (say) 

Lz gets measured, then "La" can only mean the result we (counterfactually) would have 

obtained upon measuring La. Fortunately for H&S, since we can define those two 

values counterfactually under an assumption of determinism, it is irrelevant that we 

cannot measure them simultaneously. 

Next, H&S note that, for state '¥, if we let directions k and z coincide, then Sz and 

Lz are perfectly correlated: QM predicts that simultaneous measurement of Sz and lz (or 

Lz) yields Sz(t)=Lz(t) with probability one. H&S use this correlation to modify (1): 

(2) 

H&S write: "Summing over the relations of the [form (2)] over all the dispersion­

free subensembles constituting the quantum mechanical ensemble and. taking the 

average, we obtain the following inequality involving the quantum-mechanical 

expectation values: 

(3) 

Quantum mechanics predicts a violation of (3) for suitably chosen angles between a, b, 

andz. 
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§2.2.4. Local noncontextuality 

So far, I've shown that the H&S Bell-type derivation rests on detenninism. I now 

argue that H&S's noncontextuality assumption is physically unmotivated. 

H&S write that their derivation applies to all noncontextual theories. We must 

clarify the meaning of "noncontextual" in order to compare it to the locality assumption 

usually employed in Bell arguments. Generally, "n~ncontextuality" means the 

following: 

Full noncontextuality: The result of a measurement on a system does not depend on 

which other simultaneous measurement(s) we perform on that same system or on a 

second system. 

The locality condition used to derive a Bell inequality in a detenninistic framework (cf. 

Redhead 1987) is 

Bel/locality: The result of a measurement on a system does not depend on which 

measurement(s) we perform on a second system, where measurement of the second 

system occurs spacelike separated from measurement of the first system. 

Clearly, full noncontextuality implies Bell locality. Therefore, ifH&S were to assume 

full noncontextuality, their derivation would lose much of its physical interest, because 

their assumptions (full noncontextuality and detenninism) would be stronger than the 

usual detenninistic Bell assumptions (Bell locality and detenninism). H&S stress, 

11 
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however, that their derivation refers to measurements associated with a single system 

"having no spatially separated components." That is, they claim to assume only 

liJcal Noncontextuality : The result of a measurement on a system does not depend on 

which other simultaneous measurement(s) we perform on that same system. 

12 

Full Noncontextuality is equivalent to the conjunction of Local Noncontextuality and Bell 

Locality. To justify inequality (1), H&S invoke Local Noncontextuality: Sb(t) may not 

depend on which orbital angular momentum component Clz or Ia) undergoes 

measurementatt 

Although obeyed by QM itself, Local Noncontextuality is an unreasonable general 

restriction to place on hidden-variable theories. It is physically motivated only for 

theories in which the measurement result (or measurement-result probability) for a given 

observable depends entirely on the state of the system being measured. By contrast, 

consider Bohm's theory (cf. Bohm et al. 1987), in which measurement results for many 

observables depend both on the hidden-variable microstate of the measured system and 

on the hidden-variable state of the apparatus. In a "spinless" version of Bohm's theory, 

measuring the angular momentum of a system would inevitably involve disturbing its 

position in some manner, which is tum affects the outcome of "spin" measurements. 

(That's because "spin," in this version of the theory, is not an "internal" variable, but is 

instead the "byproduct" of the particle's position in relation to the magnets involved in 

measuring its spin. The details aren't worth dredging up here.) Since all these 

measurements take a fmite amount of time to complete, the two measurement processes 
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would have to occur simultaneously or immediately after each other. In either case, the 

"disturbance" argument just given applies, even though the relevant quantum mechanical 

operators commute. By contrast, in "regular" QM, that disturbance argument could be 

sidestepped, at least in principle, for simultaneous or nearly-simultaneous measurement 

of commuting observables. In brief, Local Noncontextuality is physically unmotivated 

for theories in which the "microstate" of the apparatus matters. 

Since we can derive a Bell inequality without assuming Local Noncontextuality (see 

Jarrett 1984), and since such derivations apply to theories incorporating apparatus­

microstate dependence, the fact that H&S's inequality restricts only Local 

Noncontextuality-obeying theories lessens the physical interest of their considerations. 

§2.2.5. Locality and the H&S derivation 

In this section, I reveal H&S's implicit locality assumption. I also argue that any 

reasonable theory obeying H&S's noncontextuality (Local Noncontextuality) also obeys 

Bell locality. 

Implicit locality. H&S, discussing inequality (3), write, "We have, therefore, an 

example--albeit in the form of a thought experiment--indicating the incompatibility of 

Bell's inequality with quantum mechanical predictions concerning simultaneous 

measurement of commuting observables associated with a system having no spatially 

separated components." 

The "system" is the 2P112 electron, while the "commuting observables" are a 

component of spin and a component of orbital angular momentum. I now argue that a 
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component of orbital angular momentum is a property not just of the electron, but of the 

whole system comprised of electron and nucleus. 

Consider lz, the z component of orbital angular momentum with respect to the 

nucleus. That observable is a function of the relative positions and relative momenta of 

the electron and the nucleus. Formally, lz=Py·x- Px·Y· where Px is the difference 

between the electron's x component of momentum and the nucleus's x component of 

momentum. Similarly for Py· Also, xis the difference between the electron's x 

coordinate and the nucleus's x coordinate. Similarly for y. In brief, a component of 

orbital angular momentum is not a property of the electron; it is a relational property of 

the electron and nucleus. Therefore, a measurement of the electron alone cannot, in 

practice or in principle, constitute a measurement of lz (or Lz). To measure lz, we must 

measure the system-as-a-whole, or some other object (such as an emitted photon) 

produced during an interaction .of the electron with the nucleus. 

For instance, we could measure lz by taking spectra of a lithium ion in state'¥. But 

the measured energy level "fixes" a component of the ion's center-of-:mass velocity, 

because the Doppler shift of the spectral line establishes a component of the ion's 

velocity with respect to the lab frame. The point is, we cannot measure lz without 

measuring some observable that "belongs" to the whole electron-nucleus system (in this 

case, the ion's center-of-mass velocity). I claim this conclusion does not depend on my 

choice of experimental procedure; any experiment to measure the relational property lz 

inevitably involves a measurement (or disturbance or "fixing") of the ion-as-a-whole or 

of the nucleus, not just of the electron. 
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We now see the falsity of H&S's claim that a laboratory test of their inequality 

involves "measurement of commuting observables associated with a system having no 

spatially separated components." H&S make this assertion to stress that their Bell 

argument, unlike its predecessors, does not assume locality. But in fact, H&S's 

noncontextuality assumption incorporates a weak locality condition. Their actual 

assumption is 

H&S noncontextuality!locality: The result of measuring Sb does not depend on which 

measurement (lz or la) we perform simultaneously on the electron-nucleus system-as-a­

whole. 

This is in part a weak locality condition, because part of the system-as-a-whole is 

the nucleus, which is spatially separated from the electron. The condition also 

incorporates Local Noncontextuality, because part of the system-as-a-whole is the 

electron itself. My argument that Local Noncontextuality is physically unreasonable 

therefore applies to H&S noncontextuality/locality. 

Bell vs. H&S Locality. H&S's weak locality is less restrictive than Bell Locality. 

Nonetheless, H&S's inequality (3) restricts only the most implausible Bell-nonlocal 

theories, because only the most physically unreasonable theories obey H&S 

noncontextuality/locality but not Bell locality. Here's why: 

H&S noncontextuality/locality demands that a measurement result on the electron 

not depend 'on the state of a measuring device that acts on a nearby system (i.e., the 

nucleus, or the electron-nucleus composite system). Bell locality demands that a 
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measurement result on the electron not depend on the state of a measuring device that 

acts on a distant (spacelike separated) system. Only a crafty hidden-variable theory will 

allow the states of distant devices, but not the states of nearby devices, to influence 

measurement results. For if some mechanism allows a distant apparatus to affect a 

measurement, then surely that same mechanism will allow a nearby apparatus to affect 

the measurement. In short, a theory obeying H&S noncontextuality/locality but not Bell 

Locality must assume the existence of a "field" that propagates instantaneously and acts 

at a distance, but never acts locally. Such a "field" seems utterly unbelievable. For 

instance, even the strong nuclear force binding quarks in a hadron does not entirely 

vanish at close range. Also, Bohm's "quantum potential" acts both locally and 

nonlocally. 

In summary, not only do H&S implicitly assume a weak locality assumption, but 

any reasonable theory obeying H&S noncontextuality/locality also obeys Bell locality. 

Hence, H&S's inequality rules out only the most physically unreasonable Bell-nonlocal 

theories. 

§2.2.6. Conclusion 

First, I showed that H&S rely upon determinism. Then I discussed problems with 

their Local Noncontextuality, which standard Bell arguments do not use. H&S's 

argument rests not only on Local Noncontextuality but also on a weak locality 

assumption. Finally, we saw that only the most implausible Bell-nonlocal theories obey 

H&S's noncontextuality condition. Except for those unbelievable theories, therefore, 



Elby Chapter 2: Nonlocality ri 

H&S's inequality only restricts deterministic Bell-local theories--the same theories 

restricted by standard Bell derivations in a deterministic framework. 

Furthermore, as H&S admit, Kochen-Specker (1967) type results show the 

incompatibility of quantum mechanics with a broad class of noncontextual hidden­

variable theories. Since H&S rely only on locally maximal observables (spin and orbital 

angular momentum), their derivation is slightly more general than Kochen and 

Specker's. But as argued above, their assumptions (which include Local 

Noncontextuality) are less general than those used in standard Bell arguments. 

For these reasons, Home and Sengupta's derivation, though ingenious, does not set 

significant new limits on hidden-variable theorists, and does NOT displace locality as the 

central "issue" addressed by Bell inequalities. 
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Section 2.3: Extraneous assumptions: A case study 

My argument of last section, combined with refutations to various other challenges 

(e.g., Fine vs. Svetlichny), establishes that Bell inequalities and kindred results have 

something to say about locality (or about noncontextuality, which is stronger than 

locality). Unfortunately, when formulating no-go theorems, we must be careful to 

invoke as few and as weak assumptions as possible. Otherwise, we can't narrow down 

what "flavor" of nonlocality nature violates. 

In this section, I'll show how extraneous assumptions can scuttle an otherwise­

impressive proof. 

18 

In 1983, Heywood and Redhead presented the first-ever "algebraic" nonlocality 

theorem. As noted above, "algebraic" theorems rely only on the perfect EPR-type 

correlations, not on the statistical correlations invoked by Bell-inequality derivations. 

(Such derivations were dubbed "algebraic" because most of them rely on descendants of 

Gleason's 1957 lemma and related results. Perhaps it's a misnomer, but let me retain it.) 

In section 2.4 below, I'll show why well-formulated algebraic proofs have certain 

philosophical advantages over "regular" Bell-type derivations. But here, I'll present a 

"case study" in the dangers of too many assumptions. My result is not particularly 

important, especially in light of sections 2.4 and 2.5, where I present a sleek algebraic 

nonlocality proof invoking the same EPR-type correlations as Heywood and Redhead 

used. Rather we should view this section as a warning buoy. 

§2.3.1. Setting the stage: van Fraassen contextualism 

In standard quantum mechanics, physical observables (other than mass, charge, and 

other quantities that are "fixed" for a given kind of particle) correspond 1:1 to Hermitian 
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operators. But alternative theories could violate this "Correspondence Principle." Bas 

van Fraassen (1973) suggests that multiple ontologically-distinct physical quantities may 

correspond to each nonmaximal (i.e., degenerate) Hermitian operator. (A maximal 

operator is one whose eigenstates span the relevant Hilbert space and whose eigenvalues 

are all distinct, i.e., no degeneracies.) As an example, suppose that maximal operators A 

and B don't commute, but nonmaximal Cis a function of A and also a function of B: 

C=f(A)=g(B), where [A,B];eO. (In a spin-1 system, for instance, "A" could be the z 

component of spin Sz, "B" could be the spin-Hamiltonian H5=aSx2+bSl+cSz2, and 

"C" could be the square of the z component of spin, Sz2.) We could measure physical 

observable in (at least) two different ways: by measuring A and applying function f to 

the result, or by measuring Band applying function g to the result But since [A,B];tO, 

these two different measurement scenarios are mutually exclusive. Therefore, even in a 

deterministic framework, consistency does not require that the value of C found by 

measuring A would necessary equal the value of C found by measuring B. In symbols, 

CA=f(A) need not equal CB=f(B). Consistency with QM requires only that CA and CB 

measurement results display identical statistical distributions, not that CA and CB 

"agree" in individual cases. Using this formal fact, van Fraassen poses the possibility 

that CA and CB are ontologically distinct physical observables, every bit as "different" as 

position and momentum. Which of the many different "C's" is revealed by 

measurement depends on the context in which C is measured, i.e., on whether we 

measure C via A or C via B. For this reason, van Fraassen's construction is called 

"contextual." By contrast, a "noncontextual" theory or interpretation obeys the 

correspondence principle: observables correspond 1:1 to operators, and hence the 

"context of measurement" cannot affect the outcome. 
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§2.3.2. Introduction to Heywood-Redhead 

Heywood and Redhead's algebraic nonlocality theorem relies on four explicit 

assumptions One of those principles, called FUNC*, is a contextualized version of 

FUNC, the algebraic constraint on obseiVables' possessed values from which Kochen 

and Specker derive a contradiction. FUNC, which assumes a noncontextual setting, 

demands that the values of physical obseiVables "mirror" the algebraic relations between 

the corresponding operators: ifQ=f(R), then Q=f(R). Although many kinds of hidden­

variable theories violate FUNC, FUNC* seems so trivial that it defies analysis; indeed, 

in Heywood and Redhead's original prepublication draft, they didn't state FUNC* 

explicitly, but simply built it into their notation.2 Because FUNC* is so obvious, 
• 

however, we must understand its physical content Otherwise, we risk smuggling in 

unanalyzed physical assumptions. Fine (1988) criticizes the Heywood-Redhead proof 

on these grounds: "The 'innocent looking' contextualized function condition [FUNC*] is 

not examined critically nor motivated physically. Indeed, it seems a purely formal 

constraint whose primary virtue is to make possible the demonstration of a no-go 

result." 

In this paper, I explore the properties of hidden-variables theories obeying FUNC* 

and obeying the Value Rule, another of Heywood and Redhead's assumptions. Both 

principles follow in part from a version of Faithful Measurement, which requires 

measurement to "reveal" the value possessed by an obseiVable. These considerations 

allow us to derive a Heywood-Redhead contradiction from physical (as opposed to 

purely formal) conditions, thereby clarifying which theories the contradiction rules out. 

We'll see that Heywood and Redhead make nontrivial "extra" assumptions not needed in 

2Arthur Fine first pointed out the implicit reliance on FUNC*, and proved FUNC* to 
be both consistent with and independent of the Value Rule. 
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standard Bell derivations. Therefore, this particular "algebraic" nonlocality result does 

not improve upon Bell inequalities. 

§2.3.3. Notation and preliminary assumptions 

Consider a system comprised of two well-separated spin-1 particles. Following 

Heywood and Redhead, I restrict attention to operators and observables with discrete 

spectra. An observable is locally maximal iff its associated Hermitian operator is of the 

type A®l or I®B on the product Hilbert space H1 ®H2, where H1 (H2) is the Hilbert space 

associated with particle 1 (2), where I is the identity operator, and where A (B) is 

maximal on H1 (H2). 

To achieve as general a theorem as possible, Heywood and Redhead allow that the 

Correspondence Principle may fail. Therefore, as discussed above, many different 

ontologically-distinct physical quantities { Q} corresponding to Q may exist In 

Heywood and Redhead's "de-Ockhamized" framework, each member of { Q} is 

associated with a different maximal observable. Let Q(R) be the member of { Q} 

ontologically associated with maximal observable R. Let [Q](R)(D,E) be the possessed 

value of Q(R) in an environmental context where measurement of D on particle 1 and 

measurement of E on particle 2 occur at timet. If X is maximal, then [Q](R)(X) denotes 

the possessed value of Q(R)• given that measurement of X occurs at t. Because 

Heywood and Redhead's notation is already so baggy, I won't indicate the time 

dependence of these possessed values. 

If A®l and I®B are locally maximal, then <A,B> denotes a maximal operator 

found by mathematically combining A® I and I®B in the appropriate manner. Strictly 

speaking, many different maximal operators can be forged from A®l and I®B; but 

we'll assume that all these operators correspond to (functions of) a single physical 



Elby Chapter 2: Nonloca.Ji.ty 22 

quantity. (Remember, even in this "contextual" framework, maximal operators and 

observables remain noncontextual, i.e., remain in 1:1 correspondence.) 

Ina hidden-variable theory, these possessed values depend on hidden parameters. 

Let A. denote the ontological (hidden-variable) state at timet of the two-particle system. 

Similarly, J.IQ is the hidden-variable microstate of an apparatus set to measure Q. More 

precisely, an apparatus in state JlQ will "measure" one of the { Qil corresponding to Q. 

Perhaps we don't even know which Q gets measured. 

These A. and Jl may evolve either deterministically or stochastically in time. State A. 

is "consistent with" quantum state cj> iff a system described by quantum state cj> can in 

principle occupy state A. States A., JlQ, and f.LB are "consistent" iff a system in state A. can 

simultaneously interact with measuring devices in states JlQ and JlB· Hence, if JlQ and f.LB 

are mutually consistent with some A., then at least one of the { Q} is commeasurable 

with one of the { BiJ. 

Let p(Q=q I$) be the probability, as calculated by QM, that a system in quantum 

state cj> would yield value q upon measurement of Q. In QM, these probabilities are 

well-d.efmed, since only one physical quantity Q corresponds to Q. In other words, QM 

is a·noncontextual theory. Let p(Q=q, R=r I cj>) be the QM joint probability that 

simultaneous measurement of Q and R would yield q and r, respectively. 

Finally, let "Q=q" denote that measurement of Qat timet yielded result q. Of 

course, when we find that Q=q, we don't know which of the Q actually got measured. 

§2.3.4. Heywood and Redhead's assumptions 

As implied above, Heywood and Redhead assume all observables possess values, 

where many observables may correspond to a single nonmaximal operator. I assume 

this realism of possessed value throughout 
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Next, Heywood and Redhead assume two locality principles: 

Ontological locality (OWC): [Q](<A.B>)(D,E) = [Q](<A.C>)(D,E) 

[where Q is a locally maximal observable associated with particle 1]. 

Environmental locality (EWC): [Q](R)(D,C) = [Q](R)(D,E) 

[where Q is associated with particle 1]. 

ELOC expresses the idea, motivated in part by relativity theory, that a property of a 

particle (e.g., a possessed value associated with that particle) cannot depend on the 

setting of an apparatus well separated from that particle. Redhead (1987) and others 

show that ELOC implicitly rests on counterfactual defmiteness, and therefore applies 

unproblematically only to deterministic theories. 

23 

OLOC requires that observables not be "split" by the ontological context associated 

with a separated system. The local ontological context may split observables; in general 

[Q](<A.B>)(D,E)*[Q](<C.B>)(D,E), because Q(<A,B>) and Q(<C,B>) are different physical 

quantities. OLOC requires that such splitting occur only with respect to the local 

context: Q(<A.B>) and Q(<A.C>) denote the same observable when Q is associated with 

particle 1. See Redhead (1987) for more discussion. Taken together, OLOC and BLOC 

encode the same locality assumptions used in standard Bell derivations in a deterministic 

framework. 

But Heywood and Redhead also assume two auxiliary conditions: 

Value Rule: For maximal R, p(R=r I q,)=O ~ [R](R)(R)#. 
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FUNC*: if R is maximal and Q=f(R), D=g(R), and Q=h(D), then 

[Q](R)(R) = h([D](R)(R)). 

Value Rule requires maximal observables not to possess values "ruled out" by the 

QM formalism. FUNC* requires that, with respect to a given ontological context, the 

values of observables mirror the functional relationships between the corresponding 

operators. In other words, FUNC* demands that within a given ontological context, 

FUNC must hold. The physical significance of these two axioms, especially FUNC*, 

requires explication beyond that provided by Heywood and Redhead. 

§2.3.5. Physical Significance of FUNC* and Value Rule 

In this section, I derive FUNC* and VR from three physical conditions, one of 

which is a contextualized version of Faithful Measurement. This helps me to explicate 

the physical assumptions "hiding" in FUNC*. 

First, I present and briefly discuss my three assumptions. According to QM, 

observables associated with commuting operators are commeasurable. · I impose a 

restricted version of this requirement: 

Commeasurability : If Q=f(R) for maximal R, then for any A. there exist consistent 

apparatus microstates J..IQ, J.l.A, J.l.B, etc., such that a system in state A, upon interacting with 

apparatuses in states { J..IQ, J.l.A, J.l.B··· } , would yield measured values for Q and R. 

Commeasurability asserts that it is possible to measure Q in conjunction with a 

compatible maximal observable R. More precisely, according to Commeasurability, at 

least one of the { Q} is commeasurable with R. Commeasurability does not specify 
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which of the { Q} is measured by this arrangement. Commeasurability also requires 

that such joint measurements yield joint results. This condition does not demand that all 

pairs of obsetvables associated with commuting operators be commeasurable. 

Nonetheless, Commeasurability could fail for some prism model theories, in which 

essential detector inefficiencies prevent certain joint measurements from always yielding 

results; see Fine (1989). 

My second assumption is Faithful Measurement. In the contextual theory under 

consideration, measurement of Q could conceivably reveal [Q](R)(R), [Q](X)(R), or the 

value of some other { Q}. My version of Faithful Measurement requires that the 

member of { Q} picked out by measurement be such that the ontological "context" 

matches the environmental context: 

Faithful Measurement: If Q=f(R) for maximal R, then simultaneous measurement of 

Q and R at time t, or measuring R alone and then applying function f to the result, would 

necessarily yield the value [Q](R)(R) for Q. 

According to Faithful Measurement, measurement of Q in conjunction with 

measurement of (maximal) R reveals the value of Q(R)· Notice that Faithful 

Measurement rests on Commeasurability by assuming the commeasurability of Q and 

R. Only when we measure Q together with a maximal observable does Faithful 

Measurement constrain which member of { Q} is revealed. 

Faithful Measurement fails for theories such as David Bohm's, in which 

measurement results for some obsetvables depend on the hidden-variable "microstate" 

of the measuring apparatus. In such theories, measurement does not simply reveal a 
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property of the particle, because microproperties of the apparatus affect the measurement 

outcome. 

Since Faithful Measurement requires that measurement necessarily reveal some 

property of the particle, this condition can apply only to detenninistic theories. But as 

we saw earlier, the Heywood-Redhead proof applies unproblematically only to 

deterministic theories, due to ELOC; so Faithful Measurement simply exploits a 

determinism assumption already implicit in the theorem. 

My final assumption is 

Measured Value Rule: IfQ=f(R) for maximal R, then 

p(R=r, Q=q I~)=()~ R# or Q;tq. 

Measured Value Rule, which also rests on Commeasurability, requires the 

nonoccurrence of certain joint measurement results "ruled out" by QM. Which hidden...: 

variable theories violate Measured Value Rule? Suppose states A, J.lR, and J.lQ are 

consistent and q.-consistent. Then the set of states {A, J.lR, J.lQ} is "anomalous" if a 

system in state A., upon interacting with apparatuses in states J.lQ and f.lR, would yield 

Q=q and R=r even though p(R=r,Q=q I cp)=O. Thus, a deterministic theory violates 

Measured Value Rule just in case it contains anomalous hidden-variable states. But such 

a theory does not reproduce the statistical predictions of QM unless the anomalous states 

are a zero-measure subset of all accessible particle and apparatus states. In brief, two 

types of theories violate Measured Value Rule: (a) those violating QM, such as those 

proposing small "corrections" to QM; and (b) those incorporating the seemingly ad hoc 

feature of anomalous hidden-variables states in zero-measure sets. 
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Derivation of FUNC* and Value Rule. I now derive FUNC* and Value Rule from 

the three conditions just presented. 

According to Faithful Measurement, measurement of maximal R reveals [R](R)(R); 

to prove this, let Q=R in the definition of Faithful Measurement Before proceeding, I 

must discuss how to measure maximal R. Intuitively, one method is to measure 

observables associated with particles 1 and 2 separately. For instance, if R=<A,B>, then 

we expect that a way to measure R is simultaneously to measure A and B. I prove in the 

appendix to this section that if Q is an operator associated with particle 1 and Q=f(R) for 

maximal R, then there exist an infinite number of pairs of commuting operators 

{ (Q' ,B)} such that R=<A,B>, where A=Q+Q' and where Q and Q' commute. I 

assume that for at least one of these (Q',B) pairs, a way to measureR is to measure Q, 

Q', and B simultaneously. I do not assume that for any arbitrary (Q',B) pair in { (Q',B)}, 

a way to rreasure R is to measure Q, Q', and B. Nor do I make assumptions about how 

to calculate the measurement result R from the measurement results Q, Q', and B. For 

instance, I do not require that the measurement results obey A=Q+Q'. I assume only 

that for given Q and R, there exist Q' and B such that a simultaneous measurement of Q, 

Q', and B constitutes a measurement of R. More precisely, I assume that for some Q' 

and B, there exists a member of { Q'i}, a member of { Bi}, and a member of { Q} such 

that simultaneous measurement of those three quantities constitutes a measurement of R. 

Please regard this assumption as an extension, or perhaps a clarification, of 

Commeasurability. As we have seen, a large class of prism models and Bohm-type 

theories may violate this condition. Such theories escape the following proof: 

Theorem: Faithful Measurement & Commeasurability & Measured Value Rule -7 

FUNC* & Value Rule. 
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Proof First I derive FUNC*. Suppose Q=f(R) for maximal R. Consider an 

experimental arrangement that simultaneously measures Q, Q', and B, where that tri­

joint measurement constitutes a measurement of R. (By the extension of 

Commeasurability just discussed, such a Q' and B exist) For all real numbers ri and all 

quantum states~. p(~f(rJ, R=ri I ~)=0. By Measured Value Rule, it follows that for 

all ri, R:;tri or Q=f(rJ. But R=r for some real number r, by Commeasurability. 

Therefore, Q=f(r)=f(R). In words, the Q measurement result is the "correct" function of 

the R measurement result. 3 

As noted above, the experiment under consideration constitutes a measurement of 

R. Hence, Faithful Measurement demands that R=[R](R)(R). The arrangement also 

incorporates a measurement of Q. Since Q and R undergo simultaneous measurement, 

Faithful Measurement demands that the measurement result Q equal the appropriate 

possessed value: Q=[Q](R)(R). Because Q=f(R), it follows that [Q](R)(R)=f([R](R)(R)). 

By equivalent reasoning, if D=g(R), then [D](R)(R)=g([R](R)(R)). So, if · 

Q=h(D)=hog(R), then [Q](R)(R)=hog([R](R)(R))=h([D](R)(R)). This is just FUNC*. 

Now I derive Value Rule. As before, let Q=f(R) for maximal R. Suppose p(R=r I 

~)=0. Then for all real numbers qi, p(Q=qi, R=r I ~)=0. Measured Value Rule therefore 

requires that for all real numbers Qi, R:;tr or Q;tqi. But Q=q for some real number q, by 

Commeasurability. Therefore R;tr. Since Faithful Measurement demands that 

R=[R](R)(R), it follows that [R](R)(R):;tr. Q.ED. 

§2.3.6. Conclusion 

3This argument resembles a proof given by Fine (1974). 
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The fact that FUNC*, Value Rule, OLOC, and ELOC entail a Kochen-Specker 

algebraic contradiction, along with theorem 2.3.5, implies 

Theorem : Faithful Measurement & Commeasurability & Measured Value Rule & 

OWC & ELOC ~ Kochen-Specker contradiction, 

where ELOC, as well as Faithful Measurement, rests on determinism. This theorem 

clarifies the physical interpretation of Heywood and Redhead's result by pinning down 

which classes of theories the auxiliary assumptions rule out. Specifically, at least three 

classes of deterministic local (OLOC and ELOC obeying) theories incorporating 

possessed values escape the Heywood-Redhead argument: 

(a) Those violating Faithful Measurement. Some such theories incorporate the 

Bohm-1ike feature of allowing measurement results to depend on measuring-device 

microstates. 

(b) Those violating Measured Value Rule. Such theories either violate QM's 

statistical predictions or incorporate anomalous states in zero-measure sets. 

(c) Those violating Commeasurability. Such theories rule out the possibility of 

certain joint measurements permitted by QM, or at least allow those joint measurements 

not to yield joint results. Prism models disobey Commeasurability. Neither Faithful 

Measurement nor Measured Value Rule makes sense if Commeasurability fails. 

Many hidden-variables theories violate Faithful Measurement. Logically, of 

course, a theory could disobey Faithful Measurement while obeying FUNC* and Value 

Rule, in which case the Heywood-Redhead result still applies. But if Faithful 
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Measurement fails, then FUNC* loses its physical motivation, for this reason: FUNC* 

requires the functional relationships between possessed values to mirror the functional 

relationships between the underlying operators, which in tum (according to QM) 

establish functional relationships between joint measurement results. But if possessed 

values do not correspond to measurement results, then we have little reason to suppose 

that the functional relationships between possessed values should mirror the functional 

relationships between measurement results. Hence, if Faithful Measurement fails, then 

FUNC* becomes (as Fine writes) an ad hoc formal constraint instead of a physically 

motivated principle. 

In conclusion, it would be an improvement to derive a Heywood-Redhead type 

contradiction without assuming FUNC* or any such extraneous assumptions. The rest 

of this chapter will accomplish exactly that 

§2.3. 7. Appendix to Section 2.3 

I show that if Q=f(R) for maximal R, and if Q is associated with particle 1, then 

there exist an infinite number of Hermitian operators Q' associated with particle 1 and B 

associated with particle 2 such that R=<A,B>, where A=Q+Q'. 

As throughout, I consider observables with discrete spectra. Recall that R is 

maximal on the two-particle system iff R=LijfijPi®P'j, where the projection operators 

Pi (P'j) form a complete orthonormal basis for the operator Hilbert space associated 

with particle 1 (2), and where the {rij} are all "distinct" (A set of numbers is "distinct" 

iff all of them are different.) Since Q=f(R) and since Q is associated with particle 1, 

Q= LqiPi, where the { qi} are not necessarily distinct. Now consider two operators 

A=I.iaiPi and B=LjbjP'j, where ~e {ad and {bj} are distinct. Then by definition A 

and Bare locally maximal on particles 1 and 2, respectively. As shown in Heywood 



Elby Chapter 2: Nonlocality 31 

and Redhead, R=<A,B> iff R=I.ijF(ai,bj)Pi®P'j, where function F is 1:1 over the 

relevant domain, the ordered pairs (ai,bj). But such a function exists, namely 

F(ai,bj)=fij· To see that this function is 1:1, notice that since the {ail, {bj}, and {rij} are 

distinct; F(ai,bj)=F(ag,btt) iffi=g andj=h. So F is 1:1, and therefore R=<A,B>. Now 

just let Q'=A-Q; that is, Q'=I.i(ai-qJPi. Note that Q and Q' commute, because 

Q'=k(Q), where k(qi)=ai-qi. Hence, I have shown that there exist Hermitian operators 

Q' associated with particle 1 and B associated with particle 2 such that R=<A,B>, where 

A=Q+Q'. In fact, I have demonstrated the existence of an infmity of such Q' and B, 

because there are an infinite number of A=I.iaiPi and B=I.jbjP'j such that the {ai} and 

{ bj} are distinct 
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Section 2.4: Gleason's lemma and nonlocality 

Here, I set the stage for my new proofs in section 2.5. First, I'll briefly review how 

a Gleason-Kochen-Specker algebraic contradiction arises. Then I'll present a ~ersion of 

Brown and Svetlichny's (1990) algebraic nonlocality theorem, which builds upon Stairs 

(1983). Like Heywood and Redhead, Brown and Svetlichny invoke the Kochen­

Specker contradiction. But unlike Heywood and Redhead, Brown and Svetlichny 

assume nothing more than the standard deterministic locality conditions used in Bell 

derivations. That is, Brown and Svetlichny fmd a way to dispense with the kinds of 

extraneous assumptions I criticized in the previous section. I present his nonlocality 

proof because it's interesting (and remarkably simple) in its own right, because I played 

a small role in helping to develop it, and because it naturally leads into my own 

theorems. 

§2.4.1. Gleason and descendants 

Consider the unit sphere. Unit vectors correspond 1:1 to points on that sphere. So, 

I can uniquely specify a point by specifying a unit vector. An orthogonal triad is a set 

of three points corresponding to three mutually orthogonal unit vectors. So for instance, 

{north pole, equator at 20° longitude, equator at 110° longitude} is an "orthogonal triad" 

on the Earth's surface. Notice that any given point is a member of many (indeed, an 

infinite number of) orthogonal triads. 

Can we paint the Earth's surface red and blue such that, within any orthogonal triad, 

two points are red and one point is blue?4 Surprisingly, as Gleason (1957) first proved, 

the answer turns out to be "no." 

4I owe this formulation of the problem to Michael Redhead (1987). 
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Bell (1966), and later Kochen and Specker (1967), showed that a Gleason type 

result ensues even when only a finite number of points are considered. Specifically, 

Kochen and Specker consider 43 orthogonal triads, and show that they can't be-.. painted" 

as specified above. Those 43 orthogonal triads consist of only 117 points instead of 

43x3=129, because several points "belong" to more than one triad. Peres (1990) 

improves on the Kochen-Specker result by showing that only 16 triads (consisting of 33 

points) need be considered to reach the same conclusion. 

Bell, and independently Kochen and Specker, realized that Gleason-type results can 

be used to rule out certain hidden-variable theories. For instance, we can quickly 

dissolve a whole class of noncontextual theories that assign defmite values to. all 

observables associated with Hermitian operators. I'll do so now. 

Kochen-Specker theorem. Let [Q] denote the possessed value of observable Q. 

Consider "noncontextual" theories, according to which the (possessed or measured) 

value of a nonmaximal observable5 does not depend on the "context" in which the 

observable is measured. More formally, in the noncontextual theories considered here, 

if nonmaximal operator A=f(B)=g(C), where B and C are commuting or 

noncommuting maximal observables, there exists only one physical quantity A 

corresponding to A. So, there's no van Fraassen style ontological splitting. And 

furthermore, we can calculate the value of A by taking the relevant function of [B] or 

[C]. Formally, [A]=f([B])=g([C]). In brief, I've assumed a condition Kochen and 

Specker call 

FUNC: For all A and B, If A=f(B), then [A]=f([B]). 

5When I call an observable "maximal" or "nonmaximal," I'm really referring to the 
operator associated with that observable. 
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This condition seems innocuous. It simply says, for instance, that a particle's kinetic 

energy can be calculated by squaring the value of its speed and multiplying by m/2: 

[K]=m[ v ]2/2. For noncontextual theories that assign values to all observables 

corresponding to Hermitian operators, FUNC must hold to insure that the possessed 

values obey the "right" algebraic relationships. 

As Kochen and Specker show, however, FUNC implies a Kochen-Specker 

("coloring") contradiction. I'll present a quick version of their argument due to Redhead. 

Consider a spin-1 particle. So, the quantum number s equals 1. From QM, the particle 

occupies an eigenstate of the S2, with eigenvalue s(s+ 1)=2. So, [S2]=2. But of course, 

S2=Sx2+Si+Sz2. FUNC therefore implies 

For a spin-1 particle, [Snl=-1, 0, or J.6 Therefore, [Sn.12::o or 1. Consequently, of the ' 

three values { [Sx]2, [Sy]2, [Sz12 }, two of them must equal 1 while the third must equal 

0. Otherwise, those three values couldn't add up to 2. Furthermore, since 

S2:Sx2+Sy2+Sz2 for any orthogonal triad {x, y, z}, this conclusion applies to the spin-

components along any orthogonal triad of directions. Formally, for any orthogonal triad 

{ x, y, z}, the values { [Sx]2, [Sy]2, [Sz]2} must be such that two of them equal 1 while 

the third equals 0. 

6I've just implicitly assumed the "Spectrum Rule," according to which the possible values 
of an observable are simply the spectrum of the corresponding operator. Since QM 
implies that measurement of an observable yields a value in the spectrum of the 
corresponding operator, violation of the Spectrum Rule would allow observables to 
possess values that don't correspond to measurement results. In other words, the 
measured value wouldn't necessarily equal the pre-existing possessed value. But what's 
the point of introducing "possessed values" (for all observables) if they aren't the values 
"revealed" by measurement? 
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To hook this up to Gleason's lemma and its descendants, color the unit sphere 

according to following scheme: 

if [Sn]2::1, then paint the point corresponding ton red 

if [Sn]2::o, then paint the point corresponding to n blue. 

But as discussed above, this is impossible. We've reached a contradiction. So, we must 

give up at least one of the assumptions. Specifically, we must abandon noncontextual 

deterministic theories that assign defmite values to all observables consistent with 

FUNC. 

Notice that locality didn't enter into this no-go theorem. On the other hand, it only 

rules out theories satisfying a particularly strong (and according to Bell, implausible) set 

of conditions. I won't get into this debate here. 

A quick technical point: Kochen and Specker's original proof doesn't use S2. 

Instead, it uses the "spin-Hamiltonian", H8=aSx2+bSy2+cSz2, where a, b, and care all 

different. The details aren't worth reproducing. As Kochen and Specker discuss, if a 

spin-1 system (such as a helium atom in the "right" state) is placed in a weak magnetic 

field of rhombic symmetry, then H 8 corresponds to its energy (or more precisely, the 

"part" of its energy due to the interaction between spin and magnetic field). So, even if 

you don't think all Hermitian operators correspond to "real" physical quantities, you have 

to admit that Hs does. In fact, Kochen and Specker lay out a complex scheme for 

measuring H8• The fact that this measurement is extremely difficult to carry out in 

practice does not threaten the "validity" of H8 as a real physical observable. 

§2.4.2. Gleason's descendants meet nonlocality 
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Heywood and Redhead, and independently Stairs, were the first to realize that a 

Gleason-Bell-Kochen-Specker contradiction could be used in a nonlocality proof. As 

discussed above, Heywood and Redhead rely on extraneous aSsumptions that cloud the 

physical interpretation of their theorem. And Stairs' result is more a suggestion for a 

possible proof than a fully formalized theorem. But more recently, Brown and 

Svetlichny (1990) formalized Stairs' outline into a rigorous proof., Notably, Brown and 

Svetlichny assume the same deterministic locality conditions invoked in standard Bell 

derivations. 

Assumptions. I'll now lay out those conditions. We'll consider an EPR-type 

experiment in which two particles created at a common source speed in opposite 

directions and get measured at space like separation. I'll call the two particles "1" and 

"2." 

First, assume that measurement results are fully determined by the state of the 

particles. So, this theorem does not address theories in which the apparatus "microstate" 

plays a role. Let [Q®I] denote the value that would be obtained if Q were measured on 

particle 1. [I®Q] denotes the analogous value of particle 2. Physically, [Q®I] is 

determined by the fully specified (hidden-variable) state of the particles. Although my 

notation leaves out the time dependence of [Q®I], such dependence is certainly allowed. 

Second assume "Bell locality": [Q®I] may not depend on which observable gets 

measured on particle 2, and [I®Q] may not depend on which observable gets measured 

on particle 1. Expressed counterlactuall y, Bell locality demands that if we measure Q on 

particle 1 and R on particle 2, then we'll get the same [Q®I] as would have been obtained 

had we measured R' on particle 2. The implicit counterfactual definiteness here is not 

problematic because we've already assumed determinism. Clearly, this condition rules 

out a direct faster-than-light causal connection between the two measurements. I've 
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implicitly assumed that if an experimenter can control a measurement result on particle 1 

by changing a setting on apparatus 2, then the nonlocal connection between those two 

"wings" of the experiment is causal. For a more careful discussion of causalicy: see 

chapterS. 

Finally, assume "Particle Locality": If the measuring apparatus "settings" are 

chosen at time t. then the state of the particles at time t does not depend on that choice of 

settings. Again, this condition rules out an instantaneous influence between two 

spacelike separated events, in this case the manipulation of an apparatus and the state­

evolution of a particle that hasn't yet reached that apparatus. 

Finally. I'll assume the Spectrum Rule, according to which a measurement result on 

Q must equal one of the eigenvalues of Q. As noted above, if this condition fails (for a 

nonzero-measure set of hidden-variable states), then the hidden-variable theory violates 

QM even before consideration of locality are brought in. 

Theorem: Detenninism & Bell Locality & Particle Locality & Spectrum Rule & (no 

apparatus hidden variables) ---7 Contradiction with QM's perfect correlations. 

Proof· I will now show that those assumptions contradict the perfect anticorrelations of 

QM. 

Consider two spin-1 particles in their singlet state, 

On particle 1, we'll measure the spin-Hamiltonian H5=aSx2+bSy2+cSz2, while on 

, particle 2 we'll measure one of corresponding spin components, either Sx, Sy. or Sz. 
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The eigenvalues of Hs are { hx=b+c, hy=a+C, hz=a+b}. Quantum mechanics predicts 

the following perfect anticorrelations: 

(a) p(Hs®l=hx, I®Sx=±1 I '¥singleV=0, 

(b) p(Hs®l=hx, I®Sy=O I '~'singleJ=O, 

(c) p(Hs®l=hx, I®Sz=O I '~'singieJ=O. 

In this notation, p(Q®I=q, I®R=r I '¥) is the probability according to QM that, when the 

particles occupy quantum state'¥, simultaneous measurement of Q on particle 1 and R 

on particle 2 would yield q and r, respectively. 

Particle locality ensures that no matter which observables get measured, the same 

distribution of hidden-variable states underlie the quantum state '¥singlet If the hidden­

variable theory is to reproduce a given perfect correlation, then a measure-1 set of the 

hidden-variable states underlying quantum state '¥singlet must mirror that perfect 

correlation. This proof will consider a finite number of perfect correlations--specifically, 

12 correlations for each of the 16 orthogonal triads used in the Peres-Kochen-Specker 

proof, for a total of 192 perfect correlations. Since the intersection of a finite collection 

of measure- I sets is itself a measure- I set, there exists a measure-1 set of hidden-

variable states that mirror all the perfect correlations considered here.? From now on, 

111 consider the values associated with a hidden-variable state in that "intersection" set 

Suppose that [Hs®l]=hx. Since the hidden-variable state under consideration 

reproduces all the perfect correlations considered in this proof, we have (from above) 

7That last bit of reasoning would not have been possible if my proof considered an 
infinite number of perfect anticorrelations. I'm taking advantage of the fact that the 
Kochen-Specker algebraic contradiction, unlike Gleason's original lemma, relies on a 
finite number of orthogonal triads. To my knowledge, this is the first proof to exploit that 
fact 
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(a) 

(b) 

(c) 

[H
8
®I];thx or [I®Sx]:;t±l, 

[H
8
®I];thx or [I®Sy];t{), 

[H
8
®I];thx or [I®Sz];t{). 

By supposition, [H
8
®1]=hx. So, 

(a) [I®Sx]:;t±l, 

(b) [I®Sy];tO, 

(c) [I®Sz];t{). 

Since [I®Sx]:;t±l, the Spectrum Rule implies [I®Sx]=O. And since, [I®Sy,z];t{), the 

Spectrum Rule implies [I®Sy,z]=±l. In summary, we have [I®Sx]=O, [I®Sy]=±l, and 

[I®Sz]=±l. 

Now of course, that conclusion rests on the provisional assumption that [H
8
®1]=hx· 

If we had supposed instead that [H
8
®1]=hy, equivalent reasoning (using analogous 

quantum perfect anticorrelations) would have given us [I®Sx]=±l, [I®Sy]=O, and 

[I®Sz]=±l. And had we supposed [H
8
®1]=hz, the same reasoning would have yielded 

[I®Sx]=±l, [I®SY]=±l, and [I®Sz]=±O. In summary, no matter what the spin­

Hamiltonian equals, the three values {[I®Sx]2, [I®Sy]2, [I®Si]2} are such that two of 

those values equall, while the third equals 0. 

Since 'I' singlet is spherically symmetric, the· same reasoning--and hence the same 

conclusion--applies to any orthogonal triad of directions. (Remember, the hidden­

variable state under consideration reproduces all192 relevant perfect anticorrelations.) 
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Fonnally, for any of those 192 orthogonal triads, {x', y', z'}, the values {[I®Sx.]2, 

[I®Sy.]2, [I®Sz.]2} are such that two of those values equal 1, while the third equals 0. 

Here's the punch line: For every unit vector n, try to "color" the corresponding 

point on the unit sphere with the value [I®Sn]2. As just shown, the result is such that for 

each orthogonal triad, two points are "1" (red) and the third point is "0" (blue). This is 

impossible, by the Peres-Kochen-Specker theorem. We've reached a contradiction. 

Therefore, any theory consistent with the above assumptions cannot reproduce the 

perfect correlations of quantum theory. Q.ED. 

You may wonder where Bell Locality entered into the reasoning. Well, some of the 

unit vectors involved in the Peres-Kochen-Specker theorem "belong" to more than one 

orthogonal triad. Suppose x is one of them. Then the above theorem ends up invoking 

not just p(H
8
®I=hx, I®Sx=±1 I 'Psinglev=O, but also p(H

8
'®I=hx, I®Sx=±1 I 'Psinglev=O, 

where H 8'=aSx2+bSy·2+cSz•2, with {x, y', z'} another orthogonal triad involving x. The 

value assigned to I®Sx by virtue of its correlation with H
8
®I must equal the value 

assigned to I®Sx by virtue of its correlation with H
8
'®I, or else [I®Sxl isn't uniquely 

defmed and the proof falls through. So, the value [I®Sxl associated with particle 2 may 

not depend on whether H
8 

or H
8

' is measured on particle 1. This is guaranteed by Bell 

Locality. 

§2.4.3. Summary 

In this section, I introduced Gleason's lemma and its descendants, which establish 

the impossibility of mapping values to unit vectors (i.e., to points on the unit sphere) 

consistent with the "coloring rule" discussed above. I then showed how this 

mathematical result can be used to rule out a class of hidden-variable theories. 
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Unfortunately. Kochen and Specker's hidden-variable no-go theorem rules out only 

those theories satisfying a particularly strong set of assumptions. Finally, I showed how 

a Gleason-type contradiction can be employed in an algebraic nonlocality theorem that 

invokes the same detenninistic locality conditions used in Bell derivations. 

In the next section, I'll improve upon Brown and Svetlichny's result by deriving an 

algebraic nonlocality theorem in an indetenninistic framework. 
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Section 2.5: Generalization of algebraic nonlocality proof to 

indeterministic setting 

The most general Bell derivations employ locality assumptions that are weaker than 

those of Brown and Svetlichny in two major ways. First, as Clauser and Home (1974) 

showed, by invoking a probabilistic condition called "Factorizability" we can avoid the 

assumption of detenninism. Second, Bell-type derivations (cf. Jarrett 1984) can allow 

measuring apparatus "microstates" to affect measurement outcomes, as happens in 

Bohm's theory. 

In this section, I'll show that the weakest probabilistic assumptions needed to derive 

a Bell inequality can be used to derive an algebraic nonlocality proof. By "algebraic," I 

mean a proof that invokes only the peifect ( anti)correlations, as opposed to the more 

general statistical correlations, of QM. Then I'll spell out some of the philosophical 

advantages of this approach. (Later on, in section 2. 7, I'll rederive my result from 

weakened locality conditions, conditions from which a Bell inequality cannot be 

derived.) But first, I must review in some detail the precise conditions needed in Bell­

type derivations. . 

§2.5.1. Notation and preliminaries 

In a standard EPR-type arrangement, Let A, A', etc., denote physical quantities that 

apparatus 1 can measure, while Band B' denote quantities that apparatus 2 can measure. 

In other words, A and A' are possible settings of apparatus 1. Notice that I'm 

streamlining the notation by writing A instead of A®I and B instead of I® B. 

Let A. denote the ontological (fully specified) state of the pair of particles 

immediately before the particles undergo measurement In my terminology, the 
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measurement begins when apparatus 1 (2) first starts to interact locally with particle 1 

(2). Importantly, A. does not denote the state of the particles at the source, for reasons 

presented below. 

Let.J..LA denote the ontological state of an apparatus set to measure A. Call J..lA the 

"apparatus microstate." In general, many different microstates are accessible to an 

apparatus macroscopically set to measure A. According to some "micro-contextual" 

theories, measurement outcomes depend not just on the apparatus settings, but also on 

these microstates. The A. and J..L states may evolve either deterministically or stochastically 

in time. 

Throughout this dissertation, I use standard conditional probability notation: p(bla) 

is the objective probability of b given a, and p(bla) is the probability density of b given a. 

My one unusual bit of notation is A 0 (B~, which denotes that apparatus 1 (2) is absent. 

For instance, p(J..L A I A.,A,B0) is the probability density that an apparatus set to measure A 

on a system in state A. occupies microstate J..L A• given that no measurement occurs on 

particle 2. Similarly, p(J..LA'JlB I A.,A,B) is the joint probability density that apparatuses 

about to measure A and Bon a system in state A. lie in microstates J..lA and JlB, 

respectively. 

In a hidden-variable theory, the quantum state~ is epistemic; a system described by 

~actually occupies a fully-specified state A.. By"~," we mean ~t=O), the quantum state 

in which the particles were prepared. So, p(A. I ~) denotes the probability density that a 

pair of particles prepared in quantum state~ (at t=O) occupies ontological state A. at later 

time t, immediately before measurement. 
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Depending on the theory, this probability density reflects an in-practice or in-

principle uncontrollability of the hidden variables. For instance, in David Bohm's pilot-

wave theory, a particle always has a definite position, encoded by A.. But uncontrollable 

fluctuations ensure that identically-prepared particles almost always emerge from the 

source with slightly different initial trajectories. Bohm's law of motion ensures that 

these different initial trajectories "fan out" so as to reproduce the spatial distribution of 

the QM wavefunction. 

Probability theory allows us to defme 

p(A=a I A.,B0) = fp(A=a I A.,JlA,B~·p(JlA I A.,A,B~·dJlA 

p(A=a,B=b I A.)= ffp(A=a,B=b I A.,JlA'IlB)·p(JlA'Ila I A.,A,B)·dJlAdJ.LB, 

where the integrals range over all "contributing" apparatus microstates, namely 

microstates for which p(JlA I A.,A,B0)>0 or p(JlA,JlB I A.,A,B)>0.8 Physically, p(A=a I 

A.,B~ is the 'J.L-averaged' probability that a system in state A. would yield A =a upon 

measurement. 

As a convenient shorthand, define 

80f course, if the apparatus microstates are "discrete" instead of continuous, then p(Jl A I 

... )becomes a probability, and we sum instead of integrate over the microstates. 
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where {bJ are the possible measurement outcomes for B. Physically, p(A=a I A.,J..LA,J..lB) 

is the probability that A-measurement of particle 1 (with apparatus in microstate J..LA) 

accompanied by B-measurement of particle 2 (with apparatus in microstate J..Ls) would 

yield A=a for particle 1. 

According to a hidden-variable theory, the probability that a system prepared in 

quantum state 41 would yield a given measurement outcome is found by averaging over 

the A states underlying cjl: 

p(A=a I41,B0) = fp(A=a I A,B0)·p(A. I 41,A,B0)·dA, 

p(A=a,B=b I 41) = fp(A=a,B=b I A)"p(A. I41,A,B)·dA. 

In this notation, p(A=a I cji,B~ is the probability according to the hidden-variable 

theory that a system prepared in quantum state 41 would yield A=a upon measurement. 

If the hidden-variable theory does not reproduce QM's statistical predictions, then p(A=a 

I41,B~ might not equal PQM(A=a l41), the probability according to QM that a system 

prepared in state 41 would yield A=a. 

In summary, I've defined three levels of measurement-result probabilities. The 

fundamental probabilities of the form p(A=a I A.,J..LA,B~ depend on the particles' state and 

also on the measuring apparatus's microstate. By averaging over apparatus microstates, 

we obtain probabilities of the form p(A=a I A.,B~, which specify the likelihood that a 

system in state A would yield A=a upon measurement. Of course, if measurement 

results do not depend on apparatus microstates, then p(A=a I A.,B~ is a "fundamental" 

probability. Finally, we can average over the A. states underlying the quantum state to 
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obtain p(A=a I cj>,B<». According to the hidden variable theory, this A.-averaged 

probability predicts the statistics we would "observe" by measuring A on many systems 

prepared in quantum state <j>, assuming noB-measurements occur. 

§2.5.2. Stochastic locality conditWns 

"Stochastic Bell locality" is the requirement that, if events a and bare spacelike 

separated, then the occurrence of b cannot depend directly on a. Philosophers usually 

formalize this locality intuition in terms of probabilities: the objective probability that b 

occurs cannot depend on whether a occurs. Therefore, if b is correlated with a, some 

screening-off "common cause" must account for the correlation. A correlation between 

a and b does not violate stochastic Bell locality if there exists a common cause c such 

that p(bla,c)=p(blc), because this equality shows that a does not affect the probability of 

b's occurrence. Rather, the probability that b occurs is "set" by c. If no such common 

cause exists, however, then a correlation between a and b suggests a direct connection 

between those events, in violation of stochastic Bell locality. 

Stochastic Bell locality motivates the specific conditions needed to derive a Bell 

inequality in a contextual, stochastic framework. Many authors consider Factorizability, 

the conjunction of Jarrett's Locality and Completeness, to be the important assumption. 

The locality conditions about the distributions of hidden-variable states are considered 

auxiliary and discussed less fully. Since these distributional locality assumptions are 

nontrivial, however, we must examine their physical content in detail. But first, I'll 

review Factorizability. 

"Locality" & Completeness<=> Factorizability. Jarrett (1984) discusses 
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Jarrett Locality: 

Jarrett Completeness: 

p(A=a,B=b I A.,JlA,Jls) = p(A,=:=a I A,JlA•Jls)·p(B=b I A,JlA,Jls) 

Jarrett Locality demands that a measurement-result probability not depend on the 

setting or microstate of a distant apparatus. If Jarrett Locality fails, then either the 

apparatuses "conspired" ahead of time to bring about certain correlations, or changing 

the state of apparatus 2 can instantaneously affect the probabilities associated with 

particle 1. I'll assume conspiracies don't happen. As Jarrett shows, if the hidden­

variable states were sufficiently controllable, then Jarrett Locality violation would allow 

experimenters to communicate superluminally. For this and related reasons, Jarrett 

Locality violation indicates an instantaneous causal connection between the two wings of 

the experiment, under most notions of causality. (See chapter 5 for more discussion of 

causation.) QM obeys Jarrett Locality, while Bohril's theory violates that condition. 

Jarrett Completeness is often written 

which is equivalent to the above for nonzero p(A=a,B=b I A,J.LA,Jls). This condition 

requires that a measurement-result probability depend only on the pre-measurement 

ontological state of the particles and apparatuses, not on the result of a spacelike 
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separated measurement. Put another way, the particle and apparatus states must serve as 

the Reichenbachian (1956) common cause of the correlated measurement results; those 

states must "screen off' measurement results on particle 1 from measurement results on 

particle 2. 

Why should Completeness hold? After all, we expect that measuring particle 1 

might provide previously unknown information about particle 2, thereby changing our 

epistemic (subjective) measurement-result probabilities associated with particle 2. But 

the objective probabilities considered here reflect the actual state of the particles, not our 

state of knowledge. A change in the objective probabilities associated with particle 2 is a 

real physical change in that particle's properties. We don't intuitively expect that 

obtaining a measurement result on particle 1 can nonlocally "influence" the 

characteristics of particle 2. Completeness rules out precisely this kind of influence. 

According to Completeness, obtaining a measurement result on particle 1 can tell us 

something we didn't know about particle 2, but cannot instantaneously alter the objective 

probabilities associated with particle 2. 

Given this, I can now explain my insistence that A denote the particles' state 

immediately before measurement, not the particles' state at the source. Completeness is 

physically unmotivated if written in terms of the source state. An example will illustrate 

why. Imagine a toy theory in which particles emerging from the source in state Ao 

stochastically evolve into state A1 50% of the time and into state A.z 50% of the time. 

Suppose that particle 1 makes its "choice," and then subluminally communicates its 

choice to particle 2. When the particle pair occupies A17 it always yields measurement 

results A=+ 1 for particle 1 and B=-1 for particle 2. When the particle pair occupies A.z, it 



Elby Chapter 2: Nonlocality 4) 

always yields A=-1 and B=+ 1. In this theory, Completeness formulated in terms of Ao 

fails, because p(B=+ 1 I J.o)=.5 while p(B=+ 1 I J.o, A=-1 )= 1. But this failure does not 

inci.icate a nonlocal influence of the particle-1 measurement result on particle 2. 

Obtaining A=-1 does not physically affect particle 2, but simply reveals that the particles 

evolved into ~ instead of A.1. For this reason, stochastic Bell locality does not motivate 

"J.o-Completeness." By contrast, stochastic Bell locality motivates Jarrett Completeness, 

which is formulated in terms of A. immediately before measurement: 

p(B=+ 1 I A.1) = p(B=+ 1 I A.1, A=-1 ), 

etc., which the toy theory obeys. 

In summary, stochastic Bell locality motivates Completeness only if formulated in 

terms of A. immediately before measurement, not in terms of A. at the source. 

Completeness violation may challenge the "spirit" of relativity, but does not allow 

the possibility of superluminal signaling unless accompanied by Locality violation; see 

Jones and Clifton. QM violates Completeness. The classic example is two electrons in 

their singlet state. But in fact, QM violates completeness for any entangled state. 

Deterministic theories are necessarily Complete, but not vice versa (cf. Elby 1990). 

The logical conjunction of Jarrett Locality and Jarrett Completeness is equivalent to 

Factorizability: 

Factorizability: 

p(A=a,B=b I A.,J.lA,J.lB) = p(A=a I A.,J.lA,BO)·p(B=b I A.,J.lB,AO). 
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'Throughout this chapter, I'll often invoke Factorizability instead of separately invoking 

Jarrett Locality and Jarrett Completeness. 

Distributional liJcality Assumptions: Particle liJcality. To derive a Bell inequality, 

we must make locality assumptions about (i) the distribution of particle hidden-variable 

states, and (ii) the distribution of apparatus hidden-variable states. The first of these is 

Particle Locality: 

p(A. I cj>,A,B) = p(A. I cj>,A,B<» = p(A. I cj>,A 0,B0) 

where the settings are chosen after the particles have left their source, but immediately 

before the particles start to interact locally with the apparatuses (i.e., immediately before 

the measurements begin). This condition formalizes the assumption used above in 

subsection 2.4.2. 

To make Particle Locality more precise, suppose that preparation of the apparatuses 

occurs during a short time interval Llt, which begins at t1 and ends at t2. Suppose further 

that no non-superluminal "signal" emitted from the devices during Llt could reach the 

particles until after t2. In other words, measurement--by which I mean the local 

interaction between the particles and the apparatuses--cannot begin until after t2• Particle 

Locality demands that the probability density for the particles to occupy state A. at time ~ 

be the same as if one or both apparatus preparations had never taken place. 
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Stochastic Bell locality clearly motivates Particle Locality. Particle Locality requires 

the particles' state not to be instantaneously disturbed by an event, specifically the 

preparation of a measuring device, that occurs spacelike separated from the particles. 

Therefore, failure of Particle Locality indicates either a pre-planned conspiracy or a 

superluminallink between the particles and their measuring devices. 

We now see that the physical content of Particle Locality nearly duplicates the 

physical content of Jarrett Locality. Put another way, if some physical mechanism 

mediates Jarrett Locality violation, then we intuitively expect the same mechanism to be 

capable of mediating Particle Locality violation, and vice versa. For this reason, theories 

in which Jarrett Locality holds while Particle Locality fails are no less plausible than 

theories in which Particle Locality holds while Jarrett Locality fails. Consequently, we 

shouldn't consider Jarrett Locality to be "primary" and Particle Locality to be "auxiliary." 

Instead, we should place these two conditions on equal footing. 

To illustrate this point, consider Bohm's theory, in which the quantum wavefunction 

cjl(x,t) is a "pilot wave" that guides a particle's position (as encoded by A.). The particle 

and its wavefunction are separately "real" physical things. The wavefunction evolves 

according to Schrodinger's equation. 

In this theory, Jarrett Locality fails. If the two-particle wavefunction is entangled, 

then measuring particle 1 causes the two-particle wavefunction to entangle with the 

wavefunction of apparatus 1. This "disturbance" of the wavefunction, the precise nature 

of which depends on the setting of apparatus 1, instantaneously alters the trajectory of 

particle 2, thereby altering certain measurement results on particle 2. So, by changing 

the setting of apparatus 1, you can alter the trajectory (and measurement results) of 
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particle 2. (As noted above, however, since the particle trajectories are unknown and 

uncontrollable, you can't use this nonlocality to signal superluminally.) 

Does this mechanism of nonlocal wavefunction entanglement in Bohm's theory . 

also lead to violation of Particle Locality? Yes! To see why, consider a single particle 

approaching Stem-Gerlach magnets. The particle has a definite trajectory, and the 

statistical spatial distribution of identically-prepared particles is detennined by the 

wavefunction q,(x,t). Formally, 

where A. is the state corresponding to particle position x at time t If the particle's state is 

entangled, replace lq,(x,t)12 with the relevant density matrix element In general, a 

wavefunction has long "tails" that extend in front of, and behind, the particle "carried" by 

that wavefunction. Consequently, part of the particle's wavefunction impinges upon the 

measuring apparatus before the particle itself reaches the apparatus. When this happens, 

the particle's wavefunction interacts with the apparatus's wavefunction, leading to an 

entangled wavefunction. This entangled wavefunction instantaneously starts to guide the 

particle (and the apparatus); and the particle's "new" trajectory in general differs from 

what it would have been had the apparatus been absent, or had the apparatus (i.e., the 

magnets) been "set" differently (i.e., tilted at a different angle). At a statistical level, the 

distribution of particle trajectories in the presence of a Stem-Gerlach apparatus set to 

measure Sx differs from the distribution of particle trajectories in the presence of a Stem­

Gerlach apparatus set to measure Sz. Crucially, the differences in trajectories kick in 
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before the apparatus has time to interact locally with the particle, due to the instantaneous 

entanglement between the particle's spread-out wavefunction and the apparatus's 

wavefunction. So, Particle Locality fails. 

Let me repeat the argument of the previous paragraph less rigorously but more 

intuitively. The spatial orientation of the Stem-Gerlach magnets contributes to the 

potential (or if you prefer, boundary conditions) in which the particle's wavefunction 

evolves. Consequently, when the particle's spatial wavefunction impinges upon the 

apparatus, the wavefunction begins evolving differently than it otherwise would have. 

Tiris change in the wavefunction's spatial evolution instantaneously affects the whole 

wavefunction, not just the "part" of the wavefunction near the apparatus. So, the 

presence of the apparatus affects the particle's wavefunction even before the particle itself 

reaches the apparatus. Furthermore, the alignment of the magnets (i.e., the "setting") 

determines the shape of the potential in which the particle's wavefunction evolves. In 

brief, the particle wavefunction's evolution is instantaneously affected by the apparatus 

setting. This instantaneous change in the particle's wavefunction immediately affects the 

particle's trajectory. So, Particle Locality fails. Keep in mind, though, that the "real" 

reason Particle Locality fails in Bohm's theory is wavefunction entanglement between 

the particle and apparatus. 

Here's the point In Bohm's theory, Jarrett Locality fails because nonlocal 

entanglement between the particles and apparatuses instantaneously changes the "pilot 

wave" guiding the particles, and therefore instantaneously changes the particles' 

trajectories. Particle Locality fails for the same reason. The physical mechanism 

mediating Jarrett Locality violation also mediates Particle Locality violation. Bohm's 
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theory confirms the intuition that a physical mechanism behind Locality violation is 

likely also to cause Particle Locality violation, and vice versa Particle Locality is not a 

weak auxiliary assumption that we can safely ignore. 

Distributional Locality Assumptions: TAF. Now that I've shown the importance of 

locality assumptions about the distribution of hidden variables, let's consider the 

distributional locality assumption concerning apparatus microstates: 

Total Apparatus Factorability (T AF): 

p(JlA•fls I A,A,B) = p(JlA I A.,A,B0)•p(fls I A.,A 0,B). 

According to T AF, the likelihood that an apparatus occupies a given microstate depends 

only on the setting of that apparatus (and perhaps on the state of the particle it's about to 

measure), not on the setting or microstate of a distance apparatus. The settings are 

chosen late enough so that the apparatuses could not "communicate" subluminally 

before the measurements occur. 

T AF encodes two physical intuitions. First, the two measuring devices are 

ontologically separable, as opposed to holistically entangled, and therefore it makes . 

sense to specify the states of the two apparatuses separately. Second, changing the state 

of apparatus 1 should not affect the state (or more precisely, the state-occupation 

probabilities) of apparatus 2. Failure ofTAF indicates either a pre-planned conspiracy, 

or else an instantaneous nonlocal connection (perhaps holistic, perhaps causal) between 

the two apparatuses. Stochastic Bell locality motivates T AF, just as it motivates 

Factorizability. 
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During an EPR-type experiment, Bohm's theory violates TAF. (I omit the proof.) 

This should come as no surprise, because the physical mechanism behind that violation 

is wavefunction entanglement--the same holistic entanglement that ultimately leads, in 

Bohm's theory, to Jarrett Locality violation and Particle Locality violation. 

Spectrum Rule. In this probabilistic framework, I'll use a version of the Spectrum 

that a hidden-variable theory must obey in order to reproduce QM's predictions. 

Spectrum Rule: p(A:t:{ one of the eigenvalues of A} I ~ •... ) = 0. 

Recall that, in my notation, p( ... I ... ) is a probability according to the hidden-variable 

theory. In words, the Spectrum Rule requires that no matter what quantum state the 

system occupies, the probability according to the hidden-variable theory that 

measurement of an observable yields a non-eigenvalue of the corresponding operator is 

0. This does not mean that p(A:t:{ one of the eigenvalues of A} I A., ... )=O for all A.. It 

merely means that these "anomalous" A.'s constitute a zero-measure subset of all the 

hidden-variable states underlying the quantum state. 

To keep all this straight, let me introduce some terminology. State A. "mirrors the 

spectrum rule with respect to observable A" if p(A;e{ one of the eigenvalues of A} I 

A.,B0)=0. 

Summary. Factorizability, Particle Locality, and TAF are the standard assumptions 

used to derive a stochastic Bell inequality; see Clifton eta/. (1991). (In most 

presentations, T AF is omitted, because apparatus microstates aren't considered.) These 

conditions, motivated by stochastic Bell locality, encode similar physical content 
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Usually, Factorizability (i.e., Jarrett Locality and Completeness) is considered the 

"primary" assumption, while Particle Locality and TAF are considered auxiliary. As 

argued above, however, a physical mechanism responsible for Jarrett Locality Violation 

is likely to generate Particle Locality or T AF violation as well; and vice versa. Bohm's 

theory illustrates this point. We should not think of Particle Locality or TAF as auxiliary 

conditions, because they encode nontrivial physical content 

§2.5.3. Nonlocality theorem 

In this section, I prove a Heywood-Redhead-Brown-Svetlichny style algebraic 

(perfect correlations) nonlocality theorem from the stochastic locality conditions just 

discussed. Before getting started, I need to prove a trivial lemma: 

F actorizability lemma: 

Factorizability & T AF --7 p(A=a,B=b I A.) = p(A=a I A.,BO)·p(B=b I A.,A 0) 

Proof· 

p(A=a,B=b I A.)= Jfp(A=a,B=b I A.,JlA,JlB)·p(JlA'Jla I A,A,B)•dJlAdJ.iB 

by definition 

= ffp(A=a I A.,JlA'BO)·p(B=b I A,J.lB,AO)·p(JlA'Jla I A.,A,B)·dJ.iAdJlB 

by Factorizability 
. . 

= ffp(A=a I A.,JlA'BO)·p(B=b I A.,JlB,AO)·p(JlA I A.,BO)·p(JlB I A.,AO)·dJ.iAdJ.iB 

byTAF 

= (fp(A=a I A.,JlA,BO)·p(JlA I t..,BO)·dJ.iA]·[fp(B=b I A.,J.lB,AO)·p(JlB I A.,AO)·dJlB] 

separating variables 

= p(A=a I A.,BO)·p(B=b I A.,A 0) 

by defmition. 
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In words, if the A-wing and B-wing probabilities are completely independent (as 

required by Factorizability and T AF), then this probabilistic independence remains after 

we average over the apparatus microstates. This "J..L-less" version of Factorizability is 

what I'll invoke in the proof below. 

Theorem: Factorizability (i.e., Jarrett Locality and Jarrett Completeness) & Particle 

Locality & T AF ~ Contradiction with QM's perfect correlations 

Proof· As in Brown and Svetlichny's proof, consider two spin-1 particles in their 

singlet state, 

On particle 1, we11 measure the spin-Hamiltonian H5=aSx2+bSi+cSz2, while on 

particle 2 we11 measure one of corresponding spin components, either Sx, Sy, or Sz. 

The eigenvalues of Hs are { hx=b+c, hy=a+c, hz=a+b}. 

In this proof, I'll consider 16x12=192 perfect anticorrelations of the form 

P QM(H
5
= ... , Sn=··· I 'l'singlev=O. Sixteen is the number of spin-Hamiltonians I'll invoke, 

corresponding to the 16 orthogonal triads used in the Peres-Kochen-Specker theorem; 

and for each spin-Hamiltonian, I consider 12 perfect anticorrelations. These exact 

numbers aren't important. What's important is that I consider only a finite number of 

perfect anticorrelations. 
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Consistency with QM demands that the hidden-variable theory reproduce these 192 

perfect anticorrelations and obey the spectrum rule. In appendix 2.5.5 below, I prove 

that, if Particle Locality holds, then a measure-1 subset of the A states underlying 'I' singlet 

(i) mirror each of these 192 perfect anticorrelations, and also 

(ii) mirror the spectrum rule with respect to each of the observables considered here. 

Formally, a A state "mirrors" a QM perfect anticorrelation PQM(A=a, B=b I "1')=0 if 

p(A=a, B=b I A)=O. 

For the remainder of this proof, let A. denote any member of this measure-1 subset. 

Crucially, we need to consider only one such A.. This fact acquires greater importance in 

section 2. 7. 

Kochen-Specker contradiction. I now show that any A obeying (i) and (ii) generates 

a Peres-Kochen-Specker contradiction. The only assumption I'll invoke is J..L-less 

Factorizability, which I showed above (in the Factorizability lemma) to follow from 

Factorizability and T AF. 

Since A obeys the Spectrum Rule with respect to H
8

, the only three H
8
-

measurement outcomes that can have nonzero probability are ~. hy, and ~- Since 

probabilities are normalized, 
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("S0" denotes that no measurement occurs on particle 2.) It follows that at least one of 

those three spin-Hamiltonian measurement-result probabilities is greater than zero. 

• Suppose p(H
8
=hx I A.,S~ > 0. 

From QM, we.have the following four perfect anticorrelations: 

(a) P QM(H
8
=hx, Sx=+1 I '~'singleU = 0, 

(a') PQM(H
8
=hx, Sx=-1 I 'PsingleU = 0, 

(b) P QM(H8=hx, Sy=O I 'PsingleU = 0, 

(c) P QM(H8=hx, Sz=O I 'PsingleU = 0. 

Since A. reproduces these anticorrelations, 

(a) p(H
8 
=hx, Sx=+ 1 I A.) = 0, 

(a') p(H
8
=hx, Sx=-11 A.)= 0, 

(b) p(H
8
=hx, Sy=O I A.)= 0, 

(c) p(H
8
=hx, Sz=O I A.)= 0. 

Since J.L-less Factorizability holds, we get 

(a) p(H
8
=hx I A.,S0)·p(Sx=+ 1 I A.,H~ = 0, 

(a') p(H
8
=hx I A.,SD)·p(Sx=-1 I A.,H0) = 0, 

(b) p(H
8
=hx I A.,S0)·p(Sy=O I A.,Ho) = 0, 

(c) p(H
8
=hx I A.,S0)·p(Sz=O I A.,~)= 0. 
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By supposition, p(H
8 
=hx I A.,S<>)>O. Therefore, 

(a) p(Sx=±l I A.,IJO) = 0 

(b) p(Sy=O I A.,H<>) = 0, 

(c) p(Sz=O I A.,H<>) = 0. 

Since A. obeys the spectrum rule with respect to Sx, normalization implies 

From this and (a), we immediately get p(Sx=O I A.,H0) = 1. In summary, we have 

(a) p(Sx=O I A.,H<>) = 1 

(b) p(Sy=O I A.,H0) = 0, 

(c) p(Sz=O I A.,H<>) = 0. 

This conclusion, for the particles in state A., followed from Jl-less Factorizability and 

the supposition that p(H
5 
=hx I A.,S<>) > 0. If we suppose instead that p(H

5 
=~ I A.,H<>) > 0, 

reasoning similar to the above, with x, y, and z cyclically permuted, yields p(Sx=O I 

A,IJO)=O, p(SY=O I A.,H0)=1, and p(Sz=O I A.,H0)=0. Similarly, .if we suppose p(H
5
=hz I 

A.,S<>) > 0, we conclude that p(Sx=O I A.,SO)=O, p(SY=O I A.,H0)=0, and p(Sz=O I A,H<>)=l. 
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As noted above, by the spectrum rule, at least one of those three spin-Hamiltonian 

measurement-result probabilities is greater than 0. Therefore, from the previous 

paragraph, we see that the three values 

must be such that two of the values equal 0 while the third value equals 1. 

Due to the spherical symmetry of the spin singlet state 'P, the same conclusion 

applies to each of the 16 orthogonal triads of directions needed to generate the Kochen­

Specker-Peres contradiction. 

As noted above, each point on the unit sphere is associated with a unit vector (i.e., a 

direction) n. For each of the 33 n's contained in the 16 orthogonal triads, map ton the 

value p(Sn=O I A.,If<>). As just shown, this map is such that for any orthogonal triad, two 

points take on the value 0 while the third point takes on the value 1. But such a map is. 

algebraically impossible, by the Kochen-Specker-Peres contradiction. This contradiction 

establishes that no theory obeying the stochastic Bell locality conditions discussed above 

can reproduce the perfect anticorrelations of QM. Q.ED. 

§2.5.4. Discussion 

This was the first algebraic (perfect correlations) nonlocality proof that used 

stochastic as opposed to deterministic locality assumptions. The "trick" was to associate 

points on the unit sphere with probabilities instead of possessed values. Previously, it 

had seemed that, to rule out stochastic local hidden-variable theories, it would be 
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necessary to consider the statistical correlations of QM, as the Bell inequalities do. But 

actually, something about the algebraic structure of quantum theory--as reflected in the 

perfect correlations--already rules out stochastic locality. In section 2.6, ITI argue that 

these perfect correlations reflect underlying conservation principles, and are therefore in a 

sense more "fundamental" than the general statistical predictions of QM. 

Critics could point out that my theorem isn't as "stochastic" as it initially appears. 

Suppes and Zanotti (1976) prove that any Factorizable theory reproducing all the perfect 

correlations of QM is necessarily deterministic, in the sense that all the probabilities 

"collapse" to zero or one. 

In response, I can point to sections 2.6 and 2.7 below. In section 2.6, I relax the 

requirement that the hidden-variable theory exactly reproduce QM's perfect correlations. 

It might tum out that the perfect correlations under discussion are only approximations 

to a true theory incorporating tiny deviations from the perfect correlations. I prove 

below that such a theory cannot be Bell local. Since the hidden-variable theories 

"captured" by that proof do not reproduce the perfect correlations, they escape the 

Suppes-Zanotti collapse; truly stochastic theories get ruled out by the theorem. 

Similarly, in section 2.7, I weaken the above stochastic Bell locality assumptions, and 

prove that any theory obeying even those weakened conditions cannot exactly reproduce 

the perfect correlations. Since the proof relies on a condition weaker than Factorizability, 

it escapes the Suppes-Zanotti proof. 

So, the main philosophical "work" done by the above proof is to open a new avenue 

of investigation into algebraic (perfect correlations) nonlocality proofs. Specifically, I 

showed how to use stochastic locality assumptions directly in such proofs, without 
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invoking the Suppes-Zanotti collapse. Given this new "tool," ~e can explore stochastic 

local theories in contexts where they do and do not collapse into deterministic theories. 

§2.5.5. APPENDIX: Lemma from theorem 2.5.3 

Particle Locality implies that, if the hidden-variable theory 'reproduces QM's 

predictions, then a measure-I subset of the A. states underlying 'I' 

· (i) mirror each of the 192 perfect anticorrelations used in theorem 253; and 

ii) mirror the Spectrum Rule with respect to each of the 16 spin-Hamiltonians and 33 

spin components considered here. 

Proof· Suppose the theory reproduces QM's perfect anticorrelations and obeys the 

Spectrum Rule, as required by consistency with QM. Let PQM(A=a, B=b I '1')=0 denote 

any one of the 192 perfect anticorrelations invoked in this proof. The corresponding 

hidden-variable theory probability is 

p(A=a, B=b I 'P) = Jp(A=a,B=b I A.)·p(A.I 'P,A,B)·dA. 

=AJp(A=a,B=b I A.)·p(A.I 'P,A0,B0)·dA., 

where I used Particle Locality in the second line, and where A denotes the set of A. states 

for which p(A.I 'P,A0,B~>O. Since this integral must equal zero in order to reproduce the 

QM perfect anticorrelation, it follows that a measure- I subset of A is such that each A. in 

the subset mirrors the perfect anticorrelation, i.e., p(A=a, B=b I A.)=O for each A. in that 

subset. So, corresponding to each of the 192 perfect anticorrelations is a measure-1 

subset of A such that each element of the subset mirrors the perfect anticorrelation. 
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These 192 subsets are not necessarily equivalent But from measure theory, the 

intersection of a finite number of measure- I subsets of A is itself a measure-1 subset of 

A. Call this "intersection" subset A'. Every A. in A' mirrors each of the 192 perfect 

anticorrelations. 

Similar considerations apply to the Spectrum Rule. Let A denote one of the 

16+33=49 observables considered in this proof. Let {ail denote the eigenvalues of A. 

For consistency with QM, the hidden variable theory must give 

where I again used Particle Locality. Smce A' is a nonzero-measure subset of A, it 

follows that 

Therefore, a measure-1 subset of A' is such that each A. in the subset mirrors the 

Spectrum Rule with respect to A, i.e., p(A~{ ai} I A.,B<>)=O for each A. in the subset. 

Hence, corresponding to each of the 49 observable~s is a measure-1 subset of A' such that 

each A. in the subset mirrors the Spectrum Rule with respect to that observable. The 

intersection of these 49 measure-1 subsets of A' is itself a measure-1 subset of A'. Call 

this intersection subset A". Each element of A" not only (i) mirrors all192 perfect 

anticorrelations, but also (ii) mirrors the Spectrum Rule with respect to all 49 

observables used in this proof. And A" is a measure-1 subset of A', which is itself a 
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measure-1 subset of A, the hidden-variable states underlying the quantum state. In 

summary, a measure-1 subset of the A. states underlying 'I' obey (i) and (ii). 

To reach this conclusion, I required the hidden-variable theory to reproduce QM's 

predictions, and to obey Particle Locality. Q.ED. 

Notice that the proof would have failed if we weren't considering only a finj.te 

number of perfect correlations. That's why Bell (1966) and Kochen and Specker (1967) 

are improvements upon Gleason (1957): Gleason needs an uncountable infinity of 

orthogonal triads, whereas Kochen and Specker need only a fmite number. 
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Section 2.6: Imperfect correlations nonlocality proof 

In the previous section, I showed that no Bell local theory can precisely reproduce 

the EPR-type perfect anticorrelations of QM. Now I'll show that no local theory can 

even approximate those perfect anticorrelations. This line of reasoning addresses a 

common criticism of proofs that rely on the perfect anticorrelations: Due to detector 

inefficiencies, the perfect anticorrelations cannot be confirmed experimentally. At best, 

we can confinn that they hold to excellent approximation. Therefore, an empirically 

adequate hidden-variable theory need not exactly reproduce those correlations. The new 

kind of proof introduced in this section prevents a hidden-variable theorist from using 

this escape route to try to resurrect local causality. Mter completing the proof, I'll 

discuss in more detail the philosophical implications of this kind of proof. 

§2.6.1. Near-peifect correlations 

I'll begin by formalizing the requirement that a theory nearly, but not precisely, 

reproduce the QM perfect correlations. 

The perfect (anti)correlations considered in algebraic nonlocality theorems 

emerge from fundamental conservation principles. For instance, consider two spin-1 

particles prepared in such a way that their total angular momentum is 0. Then the 

probability that both particles will yield "up" when their n-component of angular 

momentum gets measured is P QM(Jn®l=+ 1, I®Jn=+ 1 I 'I'J=o)=O. This perfect 

anticorrelation reflects, and in a sense directly encodes, conservation of angular 
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momentum. The perfect anticorrelations considered in section 2.5, and reconsidered 

here, also stem from angular momentum conservation. 

We know, however, that some conservation laws are approximate instead of 

absolute. A good example is charge-conjugation/parity (CP) invariance, originally 

considered fundamental, but now thought to be violated by 'weak nuclear' interactions . 
........ 

Perhaps angular momentum conservation, like CP invariance, is only approximate. Or 

perhaps some other small interaction "breaks" the perfect correlations stemming from 

angular momentum conservation. In either case, the perfect anticorrelations predicted by 

QM for the spin singlet state could fail. But the failure would be small enough so as to 

escape easy detection. Therefore, an empirically adequate hidden-variable theory would 

almost reproduce those QM anticorrelations. Formally, if angular momentum 

conservation fails only minutely, we expect the following Near-Perfect Correlations 

condition to hold: 

Near-Perfect Correlations: 

P QM(Q=q, R=r I q>) = 0 ~ p(Q=q, R=r I q,) ::;; o, 

where P QM(Q=q, R=r I q,)=O is any QM perfect anticorrelation stemming from 

conservation of angular momentum. Recall that P QM( ... I q,) denotes a probability 

according to QM, while p( ... I q,) denotes the corresponding probability according to the 

hidden-variable theory, found by averaging over the hidden-variable states underlying 

the quantum state. The "nearness parameter" o encodes how closely the hidden-variable 

theory reproduces the perfect correlations. 
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As just noted. a hidden-variable theorist could posit such violations for many 

reasons besides angular momentum non-conservation; see section 2.6.4. But in some 

theories, failure of Near-Perfect Correlations indicates that angular momentum 

conservation fails utterly. and cannot be considered even approximate. 

Recall from above that we needed to consider 16xl2=192 perfect anticorrelations to 

complete the Peres-Kochen-Specker style proof. I will prove that foro< 
1 = 

192x9 

-
1
-. Near-Perfect Correlations is inconsistent with stochastic Bell locality. If this o 

1728 

seems low, keep in mind that Clifton eta/. (1991) have derived a similar result in which 

0=0.2. Rob Clifton and I worked together (by FAX) to develop this style of proof. 

§2.6.2. Imperfect correlations nonlocality theorem, part I 

In this subsection. I'll prove that foro< 
1 

= -
1
-. the Near-Perfect 

192x9 1728 

Correlations condition just introduced implies that the hidden-variable theory obeys a 

mathematical condition I'll call "Fuzzy Correlations." The proof relies only on pure 

mathematics (e.g .• measure theory) and on Particle Locality. In subsection 2.6.3. 111 

show that no theory obeying the usual stochastic Bell locality conditions can satisfy 

Fuzzy Correlations. These two subsections. taken together. prove that no Bell local 

theory can obey Near-Perfect Correlations. That is. no local theory can even 

approximate the perfect correlations of QM. 

Streamlined Kochen-Specker type arguments may show that we need fewer than 192 

anticorrelations to reach a contradiction. To account for that possibility.let N denote the 
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minimum number of anticorrelations needed to complete a Kochen-Specker style proof 

Here's the mathematical condition I'll need. Let PQM(Q=qi, Ri=ri I 'P)=O denote the i-

th perfect anticorrelation used in the proof of section 2.5. So, i ranges from 1 to N. The 

Q's are spin-Hamiltonians, and the Ri's are spin-components. But in this section, it 

doesn't matter what perfect correlations I'm talking about 

Fuzzy Correlations: For a nonzero-measure set of A. states underlying 'I', 

p({h=qj, Ri=ri I A.)< 1!9 for all i from 1 toN. 

In words, Fuzzy Correlations demands that at least some of the hidden-variable states 

underlying 'P approximately reproduce all of the relevant quantum anticorrelations. 

Theorem: Foro < -
1
-, Near-Perfect Correlations & Particle Locality --+Fuzzy 

9N 

Correlations. 

Proof: By cOntradiction. Suppose Fuzzy Correlations fails. Then, for each A. 

belonging to a measure- I subset of the hidden-variable states underlying 'P, there exists 

ani such that p(Q=qi, Ri=ri I A.) ;::: 1/9. In other words, each A. in that measure- I subset 

belongs to at least one set {'-1}, where {'-1} denotes the set of states for which p(Q=qi, 

Ri=ri I A.);::: 1/9. Therefore, measure theory trivially implies 
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where m { A.i} is the measure of set { A.i} with respect to p(A. I '¥). 9 

From(*), it follows that, for at least one i, m{~}~ 1/N. Consider that i. R-ecall that 

for each member of {A.J, p(Q=qi, Ri=ri I A.)~ 1/9 even though P QM(Q=qj, Ri=ri I 

'P)=O. So, for that i, the relevant "observable" probability, according to the hidden-

variable theory, is 

p(Qi=qi, Ri=ri I 'P) = fdA·p(Q=qi, Ri=ri I A.)·p(A. I '¥) 

~ {Aj}fdA. -p(Qi=qi. Ri=ri I A.)·p(A. I 'P) 

since { A.i} is a subset of the A.'s underlying 'P 

1 
~ {Aj/dA.·g-·p(A. I'¥) 

since p(Q=qi, Ri=ri I A.)~ 1!9 for all A.'s in {A.i} 
1 

= 
9 

{Aj}JdA·p(A. I '¥) 

1 
= -m{A.-} 9 1 

by definition of this measure 

9Formally, m{A.)={Aj}fp(A. I 'P)·dA, where as indicated the integral ranges only over states 

in {A.i}. Notice that this measure is uniquely defined only because I've assumed Particle 

Locality, which implies that p(A. I 'P., Q, Ri)=p(A. I 'P, Q?, RO) for all i. Since the 

distribution of A. states underlying the quantum state doesn't depend on what's being 

measured, we can call that distribution p(A. I '¥). 

By the way Lm{A.j} might be greater than 1, instead of merely equal to 1, since 

some A.'s might belong to more than one set { ~}. 
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1 1 
~ -(-) 

9 N 

since m{A.)~ 1/N for the i under consideration. 

71 

In brief, for the particular perlect anticorrelation under consideration, the hidden-variable 

theory predicts that p(Q=qi, Ri=ri I 'P) ~ 
9
k. But according to Near-Perlect 

Correlations (with o< 
9
k ), p(Q=qi, Ri=ri I 'P) < 

9
k. This completes the proof by 

contradiction. Q.ED. 

I just showed that if a theory approximately reproduces the perlect anticorrelations 

of QM and also obeys Particle Locality, then it necessarily violates a mathematical 

condition, Fuzzy Correlations. 

§2.6.3. Imperfect correlations nonlocality theorem, part II 

In this section, I'll prove that no stochastic Bell local theory can obey Fuzzy 

Correlations. When combined with the theorem just proven, this result shows that no 

local theory can obey Near-Perlect Correlations. 

Theorem: Factorizability & T AF & Spectrum Rule & Fuzzy Correlations ~ Kochen-

Specker contradiction. 

Proof" 

Let A be a state such that the implication 
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holds for each of the N=192 anticorrelations considered in this proof. By Fuzzy 

Correlations, a nonzero-measure set of A. states satisfies this condition. 

We'll now focus on 12 of these 192 perfect anticorrelations, namely those involving 

H
8 
=aSx2+bSl-t-cSz2 for a particular orthogonal triad of directions, { x,y ,z}. 

• Suppose p(H
8 
=hx I A.) ~ 1!3 on particle I, when particle 2 isn't measured. From 

QM, we have the following four perfect anticorrelations: 

(a) P QM(H
8 
=hx, Sx=+ 1 I '1') = 0, 

(a') PQM(H
8
=hx, Sx=-1 I '1') = 0, 

(b) P QM(H
8 
=hx, Sy =0 I '1') = 0, 

(c) PQM(H
8
=hx, Sz=O I '1') = 0. 

Fuzzy Correlations, applied to those four equalities, implies 

(a) p(H
8 
=hx, Sx=+ 1 I A.) < 1/9, 

(a') p(H
8
=hx, Sx=-1 I A.)< 1/9, 

(b) p(H
8
=hx, Sy=O I A.)< 1/9, 

(c) p(H
8 
=~, Sz=O I A.) < 1/9. 

Applying J.L-less Factorizability (implied by Factorizability and TAF) yields 

(a) P(H =h I A.)·p(S =+ 1 I A.) < 1/9, 
S X X 
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(a') p(H
5
=hx I A.)·p(Sx=-1 I A.)< 1/9, 

(b) p(H
5 
=hx I A.)-p(Sy=O I A.)< 1/9, 

(c) p(H
5
=hx I A.)•p(Sz=O I A.)< 1/9. 

By supposition, p(H5=~ I A.)~ 1/3. From simple algebra, it follows that 

(a) p(Sx=+ 1 I A.) < 1/3, 

(a') p(Sx=-1 I A.) < 1/3, 

(b) p(Sy=O I A.) < 1/3, 

(c) p(Sz=O I A.) < 1/3. 

According to the Spectrum Rule, the only three outcomes of measuring Sx that have 

nonzero probability are {-1,0,+1 }. By normalization we then have 

From this and inequalities (a) and (a'), we get p(Sx=O I A.) > 1 - 2/3; that is, p(Sx=O I A.)> 

1/3. 

In summary, we have 

(a) p(Sx=O I A.) > 1/3, 

(b) p(Sy=O I A.)< 1/3, 
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(c) p(Sz=O I A.)< 1/3. 

Now I defme a mathematical step function, which has no physical interpretation or 

importance: 

K(x) = 0 if x < 1/3 

1 ifx ~ 1/3. 

Applying the K function to inequalities (a), (b), and (c) yields 

(a) K(p(Sx=O I A.)) =1, 

(b) K(p(Sy=O I A.)) =0, 

(c) K(p(Sz=O I A.)) =0. 

This conclusion followed from Factorizability, TAP, Fuzzy Correlations, Spectrum 

Rule, and the supposition that p(Hs =hx I A.)~ 1/3. If we suppose instead that p(Hs =~ I 

A.)~ 1/3, similar reasoning (cyclically permuting x, y, and z) yields K(p(Sx=O I A.)) =0, 

K(p(SY=O I A.)) =1, and K(p(Sz=O I A.)) =0. Or, if we suppose that p(Hs=hz I A.)~ 1/3, we 

get K(p(Sx=O I A.)) =0, K(p(Sy=O I A.)) =0, and K(p(Sz=O I A.)) =1. 

In summary, if p(Hs =hx I A.)~ 1/3, or if p(Hs =hy I A.)~ 1/3, or if p(Hs =hz I A.)~ 1/3, 

then the three values 
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{ K(p(Sx=O I A.)), K(p(Sy=O I A.)), K(p(Sz=O I A.)) } 

are such that two of the values equal 0 while the third value equals 1. But by 

normalization and the Spectrum Rule, 

from which it follows that at least one of those three spin-Hamiltonian measurement­

result probabilities is greater than or equal to 1/3. Therefore, the three values 

are indeed such that two of the values equal 0 while the third value equals 1. 
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Due to the spherical symmetry of the quantum spin singlet state, the same argument 

applies to all orthogonal triads of directions {x,y,z} corresponOin~ to the spin­

Hamiltonian and spin-component operators utilized in this style of Kochen-Specker 

proof. (See section 2.5 above.) So, by mapping the value K(p(Sn=O I A.)) to each unit 

vector n considered in the Kochen-Specker-Peres theorem, we generate an inconsistent 

map. Q.ED. 

This completes the proof that Fuzzy Correlations contradicts either the stochastic 

Bell locality conditions (Factorizability, TAF, and Particle Locality) or the Spectrum 

Rule (a violation of which would immediately contradict the predictions of QM). 

§2.6.4. "Orthodox spin" theories and conservation 
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In section 2.6.2, I proved that any theory that approximately reproduces a particular 

set of QM perlect anticorrelations must obey a mathematical condition called Fuzzy 

Correlations. Then, in section 2.6.3, I proved that Fuzzy Correlations contradicts the 

stochastic Bell locality conditions (assuming the Spectrum Rule). So, no Bell-local 

theory obeying the Spectrum Rule can even approximately reproduce the EPR-type 

perfect correlations of QM. In this section, I'll examine the philosophical implications of 

this result by focusing on the connection between perfect correlations and conservation 

principles. 

As discussed in above, the quantum mechanical perfect anticorrelations invoked in 

my theorems emerge from conservation of angular momentum, which in turn follows 

from rotational invariance. In some hidden-variable theories, those anticorrelations also 

emerge from rotational in variance. Call such constructions "orthodox spin" theories. 

Orthodox spin theory: Let T denote all the first principles of a theory other than 

rotational invariance. The theory is an orthodox spin theory iff (a) Spin 'observables' 

obey the Spectrum rule, and (b) T & (rotational invariance) ~(the perfect 

anticorrelations used in the above theorems). 

This definition does not presuppose that rotational invariance is a postulate of an 

orthodox spin theory, but does suppose rotational invariance to be consistent with T. 

In some theories, of course, rotational invariance doesn't appear as a separate first 

principle, but instead gets "built into" other postulates. If such a theory obeys the 
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Spectrum Rule (for spin observables) and reproduces the relevant perfect 

anticorrelations, then it's an orthodox spin theory. 

We now have 

Theorem: An orthodox spin theory either violates stochastic Bell locality or violates 

relativity, 

which follows trivially from theorems 2.6.2 and 2.6.3, the definition of orthodox spin 

theories, and the fact that rotational invariance is a first principle of relativity. 

Later, I'll discuss the dilemma this theorem poses for orthodox spin theorists. But 

first, I explore which theories fit that description. 

Any theory obeying the following three conditions is an orthodox spin theory: 

(A) Some particles display a discretized intrinsic ('spin') angular momentum. 

Measurement of a spin component yields ±1 or 0, in appropriate units. 

(B) For those particles, the perfect anticorrelations invoked above follow, in part, 

from conservation of angular momentum. 

(C) Conservation of angular momentum follows from rotational invariance. 

Condition (A) receives strong, though indirect support from Stem-Gerlach type 

experiments, in which a beam of spin-1 particles gets split into tlrree beams upon 

passing between the magnets. To claim that those experiments support (A), we must 

assume a certain relation between a particle's spin and magnetic moment (The copious 
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"direct" evidence from particle accelerator experiments that spin-1 particles exist is 

"evidence" only if we assume conservation of angular momentum--an assumption we 

can't make lightly in the present discussion!) 

Condition (C) holds not only for quantum mechanics and quantum field theory, but 

also for classical mechanics, classical electrodynamics, and special relativity. Noether's 

theorem shows that whenever equations of motion can be derived via variational 

calculus from a Lagrangian, symmetries of the Lagrangian lead to conserved quantities. 

I know of no present theory in which rotational invariance doesn't lead to a conserved 

"angular momentum" quantity. 

Condition (B) is perhaps the fishiest. In quantum mechanics, (B) holds because 

spin is quantized and particles exist in "superposition" states of indefinite n-component 

of angular momentum, among other reasons. A general theory might not incorporate all 

these features, and hence (B) could fail. (B) could also fail because an undetected form 

of angular momentum or of spin-orbit coupling exists. Yet, (B) may hold for a large 

· class of theories that propose small corrections to quantum mechanics without 

overhauling the whole theory. 

(A), (B), and (C) are sufficient conditions for an orthodox spin theory. But they 

aren't necessary. Notably, a "spinless" version of David Bohm's (1987) construction 

violates (B) and (A) but is nonetheless an "orthodox spin" theory. In this theory, 

particles don't have intrinsic angular momentum. Stem-Gerlach experiments turn out 

the way they do because of an elaborate interaction, mediated by a 'quantum potential,' 

between the particle and the magnet. Nonetheless, in Bohm's theory, the EPR perfect 
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anticorrelations emerge from rotational in variance of the relevant quantum potential. 

Indeed, all hidden-variable theories with which I'm familiar are orthodox spin theories. 

In summary: Although we have limited a priori motivation for singling out 

orthodox spin theories, such theories are plausible and important. Quantum mechanics 

itself, along with the best-developed hidden-variable constructions, are orthodox spin 

theories. Therefore, no-go results about orthodox spin theories deserve philosophical 

analysis. 

In the next subsection, I show that orthodox spin theorists must renounce at least 

the spirit of relativity. 

§2.6.5. Locality and the spirit of relativity 

As theorem 2.6.4 shows, an orthodox spin theorist must abandon either rotational 

invariance or Bell locality. Failure of stochastic Bell locality violates at least the spirit of 

relativity theory, as I now argue. 

In my view, the spirit of relativity demands that the physical characteristics of a 

system (and its measuring device) be affected only by events or states-of-affairs in the 

backward light cone of that system (and measuring device). Therefore, by the spirit of 

relativity, neither putting the particle-2 measuring device into a certain state, nor 

obtaining a measurement result on particle 2, may instantaneously affect the ontological 

measurement-result probabilities associated with particle 1 and its measuring apparatus. 

Sure, measuring particle 2 may change our state of knowledge about particle 1, by 

revealing previously-unknown information. But measuring particle 2 may not change 

the physical properties of particle 1. 
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Assuming no "conspiracies," failure of Locality, Particle Locality, or T AF almost 

certainly constitutes a nonlocal causal link (under most notions of causality), in violation 

of the spirit of relativity. And recall from section 2.5.2 that when Completeness fails, 

obtaining a measurement outcome on particle 2 actually changes the propensities of 

particle 1, instantaneously at a distance. Therefore, violation of Completeness, though 

consistent with the relativistic formalism, constitutes a nonlocal connection that also 

violates the spirit of relativity as just defined This conclusion holds no matter whether 

you consider the nonlocality to stem from a "causal" link or from a "holistic" connection 

between the particles. (111 address the causality vs. holism issue in chapter 5.) 

So, theorem 2.6.4 raises a dilemma for orthodox spin theorists. Either they must 

abandon stochastic Bell locality, thereby violating the spirit of relativity; or they must 

abandon rotational invariance, thereby contradicting the formalism of relativity. The 

irony is this: Even though Bell locality encodes the spirit of relativity, Bell locality is 

logically inconsistent with relativity for orthodox spin theories. 

Clifton et al. (1991), working along different lines, have also derived an "imperfect 

correlations" algebraic proof. Their work can be used to show that Near-Perfect 

Correlations contradicts stochastic Bell locality, though they do not do so explicitly. The 

advantage of their proof, which does not invoke the Kochen-Specker contradiction, is its 

reliance on a very small number of anticorrelations. As a result, the o Clifton et al. 

would get in their Near-Perfect Correlations condition is 0=0.2, about 350 times larger 

than mine. 

Clifton et a/. stress the experimental implications of their imperfect correlations 

proof. Specifically, they believe the predictions of QM are correct, so that experimental 
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deviations from the perfect correlations stem from detector inefficiencies. Only an ideal 

detector could confirm QM's perfect correlations. But an imperfect detector can verify 

Near-Perfect Correlations for large enough o. Therefore, Clifton's work allows'·a 

practical perfect-correlations experiment to rule out stochastic Bell locality. Furthermore, 

Clifton et al. note, their experiment could improve slightly on Bell-type experiments by 

showing that a higher fraction (i.e. measure) of A. states contradict one of the stochastic 

Bell locality conditions. See Clifton et al. (1991) for details. 

My focus, on the other hand, is more abstractly philosophical. Independent of 

whether an experiment can in practice verify my Near-Perfect Correlations assumption 

(with o<l/1728), I'm interested in the dilemma raised by the logical contradiction 

between Near-Perfect Correlations and stochastic Bell locality (assuming the Spectrum 

Rule). This contradiction forces a local realist to deny that certain quantum correlations 

hold even approximately. And this contradiction forces an orthodox spin theorist to 

renounce either the spirit of relativity theory as encoded by Bell locality, or relativity 

theory itself. 

§2.6.6. Summary 

In this section, I took advantage of my new framework for proving algebraic 

(perfect-correlations) nonlocality proofs using probabilities instead of possessed values. 

Specifically, working within this probabilistic framework, I showed that a stochastic Bell 

local theory cannot even approximate the perfect correlations of QM, correlations that 

stem from fundamental conservation principles. This result not only demonstrates the 

power of working within a stochastic framework, but also helps to quash the hopes of 
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"local realist" hidden-variable theorists who hope to circumvent nonlocality no-go 

theorems by proposing small "corrections" to QM or by proposing small but essential 

detector inefficiencies. Furthermore, this result underscores the tension between the 

spirit of relativity theory (as encoded by Bell locality) and the letter of relativity theory 

(specifically, rotational invariance), in quantum framework. 
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Section 2.7: Imperfect correlations nonlocality proof 

Here, 111 modify the main theorem of section 2.5 in order to derive an algefuaic 

(peifect-correlations) nonlocality theorem from assumptions weaker than the usual 

stochastic Bell locality conditions (Factorizability, TAF, and Particle Locality). To my 

knowledge, no nonlocality result uses weaker assumptions.1o I'm working on this 

project with Martin Jones. 

The proof involves some tedious measure-theoretic reasoning that I've relegated to 
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an appendix (section 2.7.6). After deriving the relevant technical result, I'll discuss the 

philosophical implications. In a nutshell, here's the scoop: The standard stochastic Bell 

locality conditions encode the requirement that the occurrence of an event not affect the 

probability of a spacelike separated event. By contrast, our weakened locality conditions 

allow event a to affect the probability of spacelike separated event b. The weakened 

locality conditions demand only that, roughly speaking, event a not affect the possibility 

of event b (i.e., a may not affect whether or not b is possible). More on this later. First, 

we've got some technical results to wade through. 

§2.7.1. Weakened locality assumptions 

First, I'll introduce the three weakened locality conditions, briefly discussing their 

physical content. Then, in section 2.7.2, I'll prove that these weakened conditions 

contradict the QM perlect anticorrela~ons invoked above. 

10Remember, derivations relying on counterfactual definiteness implicitly assume 
determinism, which is stronger than Completeness. Stapp (1993, ~994) proves a 
nonlocality theorem involving counterlactuals without counterlactual defmiteness, under 
certain versions of modal logic. Stapp's locality conditions are probably neither stronger 
nor weaker than mine. Explicating the precise logical and physical relationships between 
Stapp's locality assumptions and "standard" locality assumptions constitutes an 
interesting but difficult project which I won't undertake here. 
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Each of the three standard stochastic Bell locality assumptions--Factorizability, 

Particle Locality, and TAF--can be weakened. In these conditions, A (B) refers to an 

observable associaied with particle 1 (2). A o (BO) denotes a lack of a measurement 

performed on particle 1 (2). 

Weak Factorizability: 

p(A=a I A.,JlA,B0) > 0 and p(B=b I A.,Jl8,A~ > 0 

~ p(A=a, B=b I A.,JlA,JlB) > 0. 

Particle Compatibility: 

p(A. I cp,A,B) > 0 ~ p(A. I cp,A,B0) > 0 ~ p(A. I cp,A 0,B0) > 0. 

Apparatus Compatibility: 

(i) p(JlA I A.,A,B~ > 0 and p(Jl8 I A.,B,A 0) > 0 

~ p(JlA,JlB I A.,A,B) > 0. 

(ii) If p(JlA>JlB I A.,A,B) is finite, then so are p(JlA I A.,A,B0) and p(Jl8 I A.,B,A 0). 

Let's quickly compare these conditions to the corresponding Bell locality assumptions. 

Particle Compatibility. Particle Compatibility permits nonlocal connections 

prohibited by Particle Locality, according to which p(A.I cp,A,B) = p(A.I q,,A,B~ = p(A.I 

cp,A 0,B0). Under the Particle Compatibility corollary, setting up an apparatus (or 

changing an apparatus setting) can make the particles more or less likely to occupy a 
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given state. The corollary demands only that setting up an apparatus, or changing its 

setting, not make it impossible for the particles to occupy a previously-possible A.. (In 

section 2.7.3, I1l explain why I equate "impossibility" with zero probability density.) So 

for instance, Particle Compatibility demands that if it's possible for the particles to 

occupy state A. when the B-apparatus is turned on, then it's also possible for the particles 

to occupy state A. when the B-apparatus is switched off. 

Particle Locality trivially implies Particle Compatibility, but not vice versa. 

Weak F actorizability and Apparatus Compatibility. These two conditions take 

roughly the following form: If some event on the A-wing of the EPR experiment has 

nonzero probability (density) when apparatus 2 is turned off, and some event on the B-

wing has nonzero probability (density) when apparatus 1 is turned off, then those two 

events have nonzero probability (density) of happening together when both apparatuses 

are turned on. For instance, Weak Factorizability allows the A-measurement outcome to 

affect the probability of obtaining B=b on particle 2, in violation of regular 

Factorizability. In symbols, Weak Factorizability allows p(B=b I A=a, A.,J.LA,J.ls)*P(B=b I 

A.,J.L8 ,A<l). Weak Factorizability demands only that ifp(B=b I A.,J.L8 ,A0)>0, then p(B=b I 

A=a, A.,J.LA,J.!s)>O. In words, given the fully-specified state of the particle pair, obtaining 

a measurement outcome on particle 1 cannot reduce to zero probability an otherwise-

possible11 measurement result for particle 2. 

11Here, by "otherwise-possible," we mean a measurement result having nonzero­

probability of occurring. Of course, a measurement outcome can be possible even when 
its probability is zero. In section 2.7.3, I'll treat these subtleties more carefully. 
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Similarly, Apparatus Compatibility allows the state of apparatus 2 to depend 

nonlocally on the state of apparatus 1. This violates T AF, according to which p(j..L A•J.la I 

A.,A,B) = p(j..LA I A.,A,B<»·pUJ.a I A.,A0 ,B). Apparatus Compatibility requires only that the 

nonlocal connection (i) not be "strong" enough to render any (j..LA,Jl.B) pair incompatible, 

and (ii) not be so strong that, by turning off apparatus 1, we can make a given apparatus 

2 microstate infinitely more likely to occur than would have been the case had apparatus 

1 remained on. 

TAF implies Apparatus Compatibility, and Factorizability trivially implies Weak 

Factorizability. But both converses fail. 

In summary, each of the three new locality conditions weakens the corresponding 

Bell locality assumption. 

§2.7 .2. Nonlocality theorem using the weakened conditions 

!11 now prove 

Theorem: Weak Factorizability & Particle Compatibility & Apparatus Compatibility--? 

Contradiction with QM's predictions. 

Proof" Recall the structure of my original nonlocality theorem in section 2.5.3 above. 

Invoking Particle Locality, I first proved (in appendix 2.5.5) that if the hidden-variable 

theory reproduces QM's predictions, then there exists a A. that 
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(i) mirrors all192 QM perfect anticorrelations needed to complete the proof, and 

(ii) mirrors the Spectrum Rule with respect to the 49 observables used in the proof. 

I then showed that, in any stochastic Bell local theory, this A generates an inconsistent 

map (by the Kochen-Specker-Peres contradiction). 

My strategy here is similar. In the frightfully boring appendix at the end of this 

' chapter, 111 show that if the hidden-variable theory reproduces QM's predictions, then 

Particle Compatibility implies the existence of a A obeying (i) and (ii). For now, let me 

take this result as given. It only remains to show that, given such a A, a Kochen-Specker 

contradiction follows from Weak Factorizability and Apparatus Compatibility. 

To complete the proof, it will be useful for me to first prove a lemma. Specifically, 

111 show that Weak Factorizability and Apparatus Compatibility imply a certain 

mathematical condition. From that condition, the Kochen-Specker contradiction will 

follow relatively quickly. 

Lemma: If Weak Factorizabilityand Apparatus Compatibility hold, then the 

following implication holds: 

p(A=a, B=b I A)=O ~ p(A=a I A,B0)=0 or p(B=b I A,A 0)=0. 

The proof of this lemma proceeds by contrapositive. Suppose that p(A=a I A,B0)>0 

and p(B=b I A,A 0)>0. That is, suppose 

p(A=a I A,BD) = fp(A=a I A,JlA,BD)·p(JlA I A,A,B0)·dJlA > 0, 

p(B=b I A,A D) = fp(B=b I A,Jl8 ,A 0)·p(J..L8 I A,B,A 0)·dJl8 > 0. 
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· Therefore, there exists an "anomalous" set of JlA-states, call it MA, for which p(JlA I 

A,A,B0)>0 and p(A=a I A.,J.1A,B0)>0; and MA is a nonzero-measure subset of {JlA}, the 

set of all microstates for which p(JlA I A,A,B~>O. Similarly, there exists M8, the set of 

J.ls-States for which p(J.18 I A.,B,A~>O and p(B=b I A,J.ls,A~>O; and M8 is a nonzero­

measure subset of { J.1s } . 

Let MAxM8 denote the set of "anomalous" joint microstates formed by pairing each 

member of MA with each member of M8 . Since MA is a nonzero-measure subset of 

{JlA} and M 8 is a nonzero-measure subset of {J.18 }, it follows that MAxM8 is a nonzero­

measure subset of {JlA}X{Jls} with respect to the measure p(JlA I A.,A,B0)p(J.1s I A.,B,A0). 

In symbols, 

Does it follow that MAxMB also has nonzero measure with respect to p(JlA'Jls I A,A,B)? 

Yes, and here's why. By Apparatus Compatibility part (i), if p(JlA I A,A,B~p(Jls I A,B,A0) 

> 0, then p(JlA•Jls I A.,A,B) > 0. And by Apparatus Compatibility part (ii), if the product 

p(JlA I A,A,B0)p(J.1s I A,B,A0) "blows up" to infmity at some (JlA, J.18) pair, then so does 

p(JlA,Jls I A.,A,B). More precisely, if p(JlA I A.,A,B~p(Jls I A,B,A~·dJ.1AdJ.ls > 0 (due to a 

"delta function,"), then p(JlA,Jls I A.,A,B)dJ.1AdJ.ls > 0. Roughly speaking, Apparatus 

Compatibility guarantees that for all (JlA, J.ls) pairs, p(JlA•Jls I A.,A,B) is always a finite 

fraction of p(JlA I A,A,B~p(J.18 I A.,B,A0). Therefore, by measure theory, 
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MA~fp(J.LA,J.!s I A.,A,B)·dJ.!AdJ.ls > 0. 

Since by construction p(A=a I A.J.LA,B0
) > 0 and pcB=b I A.J.!s,A D)> 0 for all (J.LA, J.Ls) 

pairs in M A xM8 , it follows that 

By Weak Factorizability, since p(A=a I A.,J.LA,B0)·p(B=b I A,J.18 ,A0) > 0 for all (J.LA, J.Ls) 

pairs in MAxM8 , it follows that p(A=a, B=b I A,J.LA,J.!s) > 0 for all (J.LA, J.Ls) pairs in 

MAxM8 . Since all these probabilities are finite, we don't have to worry about "blow 

ups," and hence it immediately follows .that 

Since MAxMB is a subset of all possible (J.l.A,J.l.s) pairs, we have 

But the left-hand side of this inequality is, by defmition, p(A=a, B=b I A.). So, we 

conclude that p(A=a, B=b I A.) > 0. 

Assuming Weak Factorizability and Apparatus Compatibility, I just proved that if 

p(A=a I A.,B0)>0 and p(B=b I A.,A 0)>0, then p(A=a,B=b I A.)>O. It follows that if 
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p(A=a,B=b I A.)=O, then p(A=a I A.,B~=O or p(B=b I A.,A 0)=0. That's exactly the lemma I 

needed to prove. Q.E.D. 

Given this lemma, and Kochen-Specker contradiction can easily be reached by 

reprising th7 reasoning of section 2.5.3. Remember, for now we're taking as given the 

result from the upcoming appendix that any theory reproducing QM's predications and 

obeying Particle Compatibility must contain a particle state A. that mirrors all of those 

perfect anticorrelations and also mirrors the spectrum rule with respect to the relevant 

spin-component and spin-Hamiltonian observables. Consider this A.. 

Since A. obeys the spectrum rule with respect to a spin-Hamiltonian H
5

, the only 

three H
5 
-measurement outcomes that can have nonzero probability are hx· hy, and 11z. 

Since probabilities are normalized, 

("S0 " denotes that no measurement occurs on particle 2.) It follows that at least one of 

those three spin-Hamiltonian measurement-result probabilities is greater than zero. 

• Suppose p(H
5
=hx I A.,S0) > 0. 

From QM, we have the following four perfect anticorrelations: 

(a) PQM(H5=hx, Sx=+ll 'PsingleV = 0, 

(a') P QM(H
5 
=hx, Sx=-1 I 'P sing leV = 0, 

(b) P QM(H
5
=hx, Sy=O I 'PsingleV = 0, 

(c) P QM(H5=hx, Sz=O I 'PsingleV = 0. 
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Since the A. under consideration reproduces these anti correlations, 

(a) 

(a') 

(b) 

(c) 

p(H
8
=h,c, Sx=+ll A.)= 0, 

P(H =h S =-1 I A.) = 0 
S X' X ' 

p(Hs =hx, Sy=O I A.) = 0, 

p(Hs =hx, Sz=O I A.) = 0. 

From the lemma just proven, we immediately get 

(a) p(H
8
=hx I A,S0) = 0 or p(Sx=+1 I A,HD) = 0 

(a') p(H
8
=hx I A,S0) = 0 or p(Sx=-1 I A.,HD) = 0 

(b) p(H
8 
=hx I A,S0) = 0 or p(Sy=O I A,H0) = 0, 

(c) p(H
8 
=hx I A.,S0) = 0 or p(Sz=O I A.,H0) = 0. 
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(HD denotes that no measurement occurs on particle 1.) By supposition, p(H5=hx I A.,S0) 

>0. Therefore 

' 

(a) p(Sx=±l I A.,H0) = 0 

(b) p(Sy=O I A,H0) = 0, 

(c) p(Sz=O I A.,~)= 0. 

Since A. obeys the spectrum rule with respect to Sx, normalization implies 
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From this and (a), we immediately get p(Sx=O I J..,H>) = 1. In summary, we have 

(a) p(Sx=O I A.,H0) = 1 

(b) p(Sy=O I A.,H0) = 0, 

(c) p(Sz=O I A.,SO} = 0. 

This conclusion, for the particles in state A., followed from the above lemma (proven 

by assuming Weak Factorizability and Apparatus Compatibility), and from the 

supposition that p(H
5 
=hx I A.,S0) > 0. If we suppose instead that p(H

5 
=~ I A.,S0) > 0, 

reasoning similar to the above, with x, y, and z cyclically permuted, yields p(Sx=O I 

A.,S0)=0, p(SY=O I A.,H0)=1, and p(Sz=O I A.,H0)=0. Similarly, if we suppose p(H
5
=hz I 

A.,S~ > 0, we conclude that p(Sx=O I A.,H0)=0, p(SY=O I A.,H~=O, and p(Sz=O I A.,H~=l. 

As noted above, by the spectrum rule, at least one of those three spin-Hamiltonian 

measurement-result probabilities is greater than 0. Therefore, from the previous 

paragraph, we see that the three values 

must be such that two of the values equal 0 while the third value equals 1. 
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Due to the spherical symmetry of the spin singlet state '1', the same conclusion 

applies to each of the 16 orthogonal triads of directions needed to generate the Kochen­

Specker-Peres contradiction. Now all we have to do is map the value p(S
0
=0 rA.,If>) to 

the point n on the unit sphere, for all n used in this proof. As discussed in sections 2.4 

and 2.5, this map is algebraically impossible, by the Kochen-Specker-Peres 

contradiction. This contradiction establishes that no theory obeying the weakened 

locality conditions (Particle Compatibility, Apparatus Compatibility, and Weak 

Factorizability) can reproduce the perfect anticorrelations of QM. Q.ED. 

In summary: As shown in the upcoming appendix at the end of this chapter, 

Particle Compatibility implies the existence of a A. that reproduces the relevant perfect 

anticorrelations and mirrors the spectrum rule for the relevant observables, assuming the 

hidden-variable theory reproduces QM's predictions. By the Kochen-Specker 

contradiction, such a A. is inconsistent with the mathematical condition introduced in the 

above lemma: p(A=a, B=b I A.)=O ~ p(A=a I A.,B0)=0 or p(B=b I A.,A 0)=0. This 

condition follows from Weak Factorizability and Apparatus Compatibility. Putting all 

· this together, we see that no theory consistent with QM can obey my three weakened 

locality assumptions (Particle Compatibility, Apparatus Compatibility, and Weak 

Factorizability ). 

§2.7.3. Philosophical implications: Zero probability vs. impossibility 

In the following sections, I'll explore the philosophical ramifications of theorem 

2.7.2. To do so, I must first review the connections between zero-probability and 



Elby Chapter 2: Nonlocality 

impossibility. Then, 111 show that the three weakened locality conditions used in 

theorem 2.7.2 are motivated by weakened Bell locality, a metaphysical constraint less 

stringent than regular Bell locality. Because the theorem suggests that nature violates 

weakened Bell locality, 111 explore the physical and metaphysical content of this 

constraint 

An event can be possible even though its probability of occurring is zero. To see 

why, imagine choosing a random real number between zero and one. It's possible that 

you11 pick 0.6. Indeed, that number is as likely as any other. Put more technically, the 

probability density of getting 0.6 equals the probability density of getting any other 

number between zero and one: p(0.6)=1. Nonetheless, the probability of choosing 0.6 

is zero, because 0.6 is one of an uncountably infinite number of possible results. 

By contrast, in this game, choosing the number -0.6 is impossible. Mathematically, 

this corresponds to the fact that getting -0.6 not only has zero probability, but also has 

zero probability density: p(-.6)=0. 

This game illustrates two related points. First, in "standard" cases, a possible event 

a has zero probability because it is one of an uncountably infinite number of possible 

events. 

Second, an event is impossible if and only if it has zero probability density of 

occurring. For if an event has nonzero probability density, then it would have nonzero 

probability of occurring were the relevant "game" repeated an uncountably infinite 

number of times; hence the event is possible. And if an event has zero probability 

density, then it would occur zero times, even if the game were repeated an·infmite 

number of times. AsP. Suppes (personal conversation with Martin Jones) notes, most 
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probability theorists agree that it's unproblematic to associate zero probability density 

with impossibility 

Now consider a game in which only a fmite number (or at most a countable 

infinity) of results are possible. As a simple example, imagine a machine that prints out 

one of two numbers, either 100 or 101. No other result is possible. And furthermore, 

suppose that obtaining the result 100 has zero probability. Does it follow that getting 

100 is impossible? The answer depends on the inner workings of the machine. If the 

laws describing those inner working are such that 100 simply cannot be obtained, then 

100 is indeed impossible. But suppose the machine, as an intermediate stage, picks a 

random real number between zero and one; and then the machine prints out II 10011 if that 

random number is 0.6, and prints out II 101 II otherwise. In this weird case, obtaining 100 

is indeed possible, even though that result has zero probability. 

My point is this: When the relevant "game" has a fmite number of possible results, 

one of those results can have zero probability, but only in specially-contrived cases. In 

standard cases, we expect that if a is one of a fmite number ·of possible results, then a 

will have nonzero probability. 

§2.7.4. Philosophical implications: Weakened BeU locality 

In this subsection, I introduce weakened Bell locality, and show that this 

requirement motivates Weak Factorizability, Particle Compatibility, and Apparatus 

Compatibility, the three weakened locality conditions of theorem 2. 7 .2. I reproduce 

these conditions for easy reference: 



Elby 

Weak Factorizability: 

" Chapter 2: Nonlocality 

p(A=a I A.,J.LA,B~ > 0 and p(B=b I A.,J.L8 ,A<» > 0 

~ p(A=a, B=b I A.,J.LA,J.LB) > 0. 

Particle Compatibility: 

Apparatus Compatibility: 

(i) p(J.I.A I A.,A,B~ > 0 and p(J.L8 I t..,B,A 0) > 0 

~ p(J.I.A,J.I.B I A.,A,B) > 0. 

(ii) If p(J.I.A,J.I.B I A.,A,B) is finite, then so are p(JlA I A.,A,B0) and p(J.1.8 I A.,B,A 0). 

Suppose a and b are spacelike separated events. Then we have 

WEAKENED BELL LOCALITY: An event a cannot affect the possibility of a 

spacelike separated event Specifically, if b is possible when a does not occur, then b is 

possible when a does occur. Also, if b is impossible when a does not occur, then b is 

impossible when a does occur. 

Put another way, a cannot render impossible a spacelike separated event that otherwise 

might have occurred. Nor can a render possible a spacelike separated event that 

otherwise could not have occurred. 
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Because events are possible just in case they have nonzero probability density, 

weakened Bell locality logically implies both Particle Compatibility and Apparatus 

Compatibility part (i).l2; if a particle or apparatus state has nonzero probability density of 

obtaining when an apparatus is off (on), then a spacelike separated event--the switching 

off or on of a distant apparatus--cannot "rule out" that state. 

Weakened Bell locality, however, does not entail Weak Factorizaoility or Apparatus 

Compatibility part (ii). Weak Factorizability dem~ds that obtaining an A-measurement 

outcome not reduce to zero the probability of getting a certain B-measurement result As 

discussed above, a zero-probability event can be po~sible. Consequently, a theory 

violates Weak Factorizability without violating weakened Bell locality if, and only if, the 

theory asserts that a joint measurement result A=a & B=b is possible even though it has 

zero probability. 

Similar considerations apply to Apparatus Compatibility part (ii). If that condition 

fails, then an apparatus microstate with infinite probability density (and hence, nonzero 

probability of occurring) can have its probability reduced to zero by the switching on of 

a distant apparatus. Since that zero-probability microstate still has nonzero probability 

density and is therefore still possible, a theory could incorporate this feature without 

violating weakened Bell Locality. 

In the remainder of this subsection, I argue that such a theory is highly contrived 

and physically implausible. 

Let's start with Weak Factorizability. The A's and B's used in the above nonlocality 

theorems are spin-component and spin-Hamiltonian observables on spin-1 particles. 

12J'm assuming no "conspiracies." 
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These observables are discrete. According to any theory consistent with QM, the 

probability is zero that measurement will yield a non-eigenvalue; and these spin 

observables have a finite number of eigenvalues. Therefore, if a zero-probability joint 

measurement result A =a & B=b is possible, it's not because A =a & B=b is one of an 

infinite number of possible results. This experiment is not analogous to picking a 

random real number between zero and one. Rather, in order to incorporate a zero­

probability yet possible result A=a & B=b, a theory must rely on some contrivance, 

analogous to the "100" machine described above. 

For instance, consider particle and apparatus states such that p(A=a,B=b I 

A.,J.l.A,Jls)=O. A hidden-variable theorist could claim the following: When A and B 

undergo measurement, nature picks out a random real number between zero and one. If 

that number is .6, then the measuring devices record "A=a" and "B=b." Otherwise, the 

measuring devices record another pair of outcomes. In this theory, the measurement 

result A=a & B=b is possible, even though it has zero probability. This theory, 

however, is artificial and implausible. 

Alternatively, the hidden-variable theory could simply declare, as a first principle, 

that A=a & B=b is possible even though its probability is zero. This move seems ad 

hoc. 

In less contrived theories, a perfect anticorrelation usually reflects an underlying 

conservation law, as discussed in section 2.6 above. For instance, in QM, the perfect 

anticorrelations invoked in theorem 2.7 .2 follow ultimately from rotational symmetry, 

which leads to conservation of angular momentum. Conservation of angular 

momentum is considered to be a fundamental law. Therefore, in QM, we can assert 
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with full counterlactual force that a (non-erroneous) joint measurement result directly 

contradicting conservation of angular momentum would not occur. In other words, for 

the A's and B's invoked in theorem 2.7.2, correctly obtaining A=a & B=b when p(A=a, 

B=b I 'Psingiev=O is impossible, according to QM. This conclusion applies to all 

theories in which the relevant perlect anticorrelations follow from fundamental 

conservation laws. 

In Bohm's theory, too, perlect anticorrelations are impossible to violate. Bohm's 

theory is deterministic. Under determinism, events evolve inexorably. ·All future states 

of affairs, except the one pre-determined by the initial conditions, could not occur. 

Therefore, when the complete state of the universe is such that p(A=a,B=b I A.,J.l.A,J.!s)=O, 

obtaining A=a & B=b is physically impossible. This conclusion applies to all 

deterministic theories. 

So, far, I've shown that only a contrived theory would violate Weak Factorizability 

without also violating weakened Bell locality. A similar though less "clean" argument 

applies to Apparatus Compatibility part (ii). Suppose that condition fails. Then there 

exists some J.l.A's such that p(J.LA I A.,A, ... ) is infmite when apparatus 2 is turned off, but 

finite when apparatus 2 is turned on. So, there must be an uncountable infmity of J.l.A's. 

An infmite p(J.LA I A.,A, ... ) means that J.l.A has nonzero probability of occurring. But as just 

discussed, usually when an event has nonzero probability, it's because the event is one of 

a countable number that could occur. To violate Apparatus Compatibility part(ii) 

without violating weakened Bell locality, a theory has to do more than simply introduce 

a state space {J.LA} in which a bunch of discrete delta-function "spikes" stick up out of the 

background "soup" of finite-probability density J.l.A's. The theory must also incorporate a 
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nonlocal interaction strong enough-and contrived enough--to "shrink" those spikes back 

into the soup when apparatus 2 gets turned on. Furthermore, in shrinking the "spiked" 

JlA probability densities by a factor of infinity, the interaction may not also shririk by an 

infinite factor the "non-spiked" JlA probability densities, because doing so would reduce 

those probability densities to 0, in violation of Apparatus Compatibility part (i). So, this 

p-shrinking interaction would have to be miraculously selective. Indeed, it would be 

hard for interaction terms to have these properties unless they were specifically 

constructed with that purpose. For this reason, only a contrived theory would violate 

Apparatus Compatibility part (ii) without also violating weakened Bell locality. 

Since the argument of this subsection is messy, let me summarize it Weakened 

Bell locality entails Particle Compatibility and Apparatus Compatibility part (i). 

Therefore, any theory violating either of those conditions automatically violates 

weakened Bell locality. By contrast, a theory could conceivably violate Weak 

Factorizability or Apparatus Compatibility part (ii) without violating weakened Bell 

locality. Such a theory must claim, for instance, that some of its perfect anticorrelations­

-i.e., some of its zero-probability joint measurement results--are possible. The perfect 

anticorrelations considered here involve observables for which only a fmite number of 

outcomes have nonzero probability. (These experiments do not resemble choosing a 

random real number.) Therefore, some contrivance would be needed to ensure that 

zero-probability joint measurement results could occur. For instance, the theory could 

claim that the final measurement outcome depends on an "intermediate result," where 

the intermediate result corresponding to the perfect anticorrelation is one of an infinity of 

possible intermediate results. In my view, such contrivances, and also the contrivances 
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needed to "escape" Apparatus Compatibility without violating weakened Bell locality, 

seem artificial and physically implausible. In brief, only a highly contrived theory would 

violate my weakened locality assumptions without violating Weakened Bell locality. In 

this sense, Weakened Bell locality is the "guiding principle" behind Weak 

Factorizability, Particle Compatibility, and Apparatus Compatibility. 

§2.7.5. Bell locality vs. weakened BeU locality 

Throughout this subsection, I'll assume that no "contrivances" of the kind discussed 

above actually obtain. In this case, assuming QM's predictions hold, theorem 2.7.2 

implies that nature violates weakened Bell locality. We now briefly explore the 

philosophical implications of this result. 

Bell inequalities and previous algebraic nonlocality theorems suggest only that 

nature violates (stochastic) Bell locality. Bell locality requires that an event a not affect 

the probability of spacelike separated event b. By contrast, weakened Bell locality 

makes the less stringent demand that event a not affect the possibility of spacelike 

separated event b. To explore the physical difference between regular and weakened 

Bell locality, suppose that Bell locality fails while weakened Bell locality holds. Then we 

can picture the world as follows: Events evolve in spacetime, constrained by certain 

rules. The set of events {a} that could possibly occur in spacetime region R is 

determined entirely by events that occurred in the backwards light cone of R.13 The 

13We mean "event'' in its broadest sense. For instance, we call the state of all the objects 
in region R--or if you prefer, the state of R--an event. 
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probability (density) however, that a given element of {a} occurs depends also on events 

spacelike separated from R. So, a nonlocal connection can "tweak" the likelihood that a 

specific element of {a} occurs. But no nonlocal connection is "strong" enough to alter 

{a}. 

By contrast, if weakened Bell locality fails, then {a} itself is detennined, in part, by 

spacelike separated events. 

With this said, I'll now admit that this distinction between regular and weakened 

Bell locality carries limited metaphysical significance. Local connections between events 

are capable of "ruling out" some events. If Bell-nonlocal connections exist, why should 

they be any less capable of ruling out events? In other words, if Bell locality fails, why 

shouldn't weakened Bell locality also fail? 

· Also, notice that if detenninism holds, then regular and weakened Bell locality are 

equivalent. Under determinism, changing an event's probability (say, from zero to one) 

is tantamount to changing its possibility (in this case, from impossible to possible). 

Therefore, with respect to deterministic theories, theorem 2. 7.2 does not force us to 

accept new philosophical consequences. 

Nonetheless, I think theorem 2.7.2 is worthwhile, not just because the physical 

distinction between regular and weakened Bell locality is kind of interesting (for 

stochastic theories), but also because some philosophers may try to attach more 

metaphysical significance to this distinction. Also, this result shows for the first time 

that algebraic (perfect correlations) nonlocality proofs are better in a sense than regular 

Bell-type statistical arguments, in the sense that algebraic proofs can get by with weaker 

assumptions. 
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Summary: Because zero-probability events can be possible, weakened Bell locality 

does not imply all three of our weakened locality conditions. But in order to violate 

Weak Factorizability without also violating weakened Bell locality, a theory would have 

to incorporate a physically-implausible contrivance. For this reason, weakened Bell 

locality strongly motivates our weakened locality assumptions. Since these assumptions 

imply a contradiction with QM's predictions, we have strong reason to think that nature 

violates weakened Bell locality. This violation forces us to accept that spacelike 

separated events not only affect each other's probabilities, but also affect each other's 

possibilities. 

§2.7.6. APPENDIX: Part of theorem 2.7.2 

If a hidden-variable theory reproduces QM's predictions, then Particle 

Compatibility implies the existence of a A. that 

(i) mirrors all192 QM peifect anticorrelations used in theorem 2.7.2; and 

(ii) mirrors the spectrum rule with respect to the 49 observables used in that theorem. 

Proof· Let P QM(Ai=ai, Bi=bi I 'P)=O denote any one of the relevant perfect 

anticorrelations or spectrum rule occurrences used in theorem 2. 7 .2. For instance, 

At=H8 , at=hx, Bt=Sx, and bt=+l; A2=H8 , a2=hx, B2=Sy, and b2=0; and so on. To 

mirror the Spectrum Rule with respect to H8 , set A193=H8, a193={non-eigenvalues of 

H8 }, and B193=So, where so indicates that no measurement occurs on particle 2. 

Crucially, we'll need to consider only a finite number of i's. 
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Since the hidden variable theory reproduces those perfect anticorrelations and 

spectrum rule occurrences, 

(*) 0 = p(A·=a· B·=b· I 'P) = }p(A=a· B·=b· I A.)·p(A. I 'I' A B·)·A"' 1 I• 1 1 {A} 1 I• 1 1 ' I> 1 UJI., 

for all i, where {A.} is the set of A. states for which p(A. I 'P,Ai,BJ>O. By Particle 

Compatibility, p(A. I 'I',Ai,BJ>O iff p(A. I 'P,AO,BO), arid hence {A.} is the same for all i. 

Remember, p(A. I 'P,AO,BO) denotes the probability density when no measurement occurs 

on either particle. 

To complete this proof, I'll consider two cases: (1) {A.} contains a finite or 

countably infmite number of members, and (2) {A.} contains an uncountable infinity of 

members. 

Case 1: {A.} finite or countably infinite. Then eq. (*) becomes a finite or infmite 

sum, and the nonzero probability density becomes a nonzero probability: 

where the sum is only over A. states for which p(A. I 'P,Ai,BJ>O. If we assume that a 

probability measure on a countable number of elements never assigns nonzero 

probability density except when it assigns nonzero probability, then the sum is over the 

states in {A.}. As discussed in section 2.7.3, this extra assumption is valid. When the 

number of elements is uncountably infmite, then an element can have nonzero 

probability density but zero probability. But here, it's vacuous to say that p(A. I 
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'P,Ai,BJ>O even though p(A.I 'P,Ai,Bi)>O, because if p(A.I 'P,Ai,BJ>O, then that A. state 

doesn't contribute to sum. Therefore, even though p(A.I 'P,Ai,Bi)>O, that A. state in no 

sense "contributes" to the hidden-variable states underlying the quantum state. 

From eq. (**),it follows that for all A. states in {A.}, p(Ai=ai, Bi=bi I A.)=O. As 

noted above, by Particle Compatibility, {A.} is the same for all i. So, for all i and for all 

members of {A.}, p(Ai=ai, Bi=bi I A.)=O. In words, the elements of {A.} reproduce all the 

perfect anticorrelations and spectrum rule occurrences needed to complete theorem 2. 7 .2. 

This completes the argument for the finite or countably infinite case. 

Case 2: {A.} uncountably infinite. By Particle Compatibility, p(A.I 'P,AO,BO)>O iff 

p(A. I 'P,Ai,BJ>O; and {A.} denotes the set of states for which p(A.I 'P,AO,BO)>O. 

From eq. (*) above, p(Ai=ai, Bi=bi I A.)=O almost everywhere in {A.}. It follows 

from measure theory (cf. Wheedan and Zygmund 1977) that for any finite probability 

density p, p_}p(Ai=ai, Bi=bi I A.)·p·dA. = 0. I want to reach the conclusion that 

pjp(Ai=ai, Bi=bi I A.)•p(A.I 'P,AO,BO)·dA. = 0. But this doesn't immediately follow, 

because p(A.I 'P,AO,BO) might not be finite. That is, there might exist A.'s such that p(A.I 

'P,AO,BO) is infinite, i.e., p(A.I 'P,AO,BO)·dA. > 0. So, my strategy is to show that, "at 

worst," p(A. I 'P,AO,BO) blows up at a countable number of A.'s. Hence, we can "subtract 

off' from {A.} the states for which p(A.I '¥,A0,BO) blows up, and we'll be left with a 

nonzero-measure set of states with respect to all relevant measures. It will then be easy 

to complete the argument. 

Let Abiow denote the subset of {A.} whose probability densities blow up. Formally, 

Ablow contains the states A. such that p(A.I '¥,A0,B0)·dA. > 0. So, the states in Ablow have 
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nonzero probability of occurring, and that probability is p(A I '¥,AO,B0) = p(A I 

It should be intuitively clear that Abiow contains only a countable number of 

members. Since fp(A I 'I',AO,BO)·dA = 1, it follows that A fp(A I 'I',Ao,BO)·dA ~ 1. 
{A.} blow 

But A fp(A I 'I',AO,BO)·dA is really a sum over the elements of Ablow: 
blow 

A fp(A I 'I',AO,BO)·dA =LA p(A I 'I',AO,BO), 
blow . blow 

where all the p(A I 'I',Ao,Bo) are greater than 0. From measure theory, a sum of positive 

nonzero numbers is finite only if the number of terms in the sum is at most countably 

infinite. In other words, the sum LA p(A I 'P,AO,BO) would blow up if Ablow 
•"blow 

contained an uncountably infinite number of members. 

Since Ablow contains at most a countably infinite number of members, A fdA = 0. 
blow 

Therefore, since A. fdA > 0, the "remainder" set {A} - Ablow obeys A. fdA > 0. 
{ } { }-Ablow 

(This reasoning assumes that the hidden-variable states have a "volume measure" given 

by dA, and not just a p-measure given by p(A I 'I',AO,BO)·dA. A hidden-variable theory 

whose uncountably infinite states "live" in a strange space that allows no volume-

measure could escape our proofs.) 

Since A. fdA > 0, it follows that A. fp(A I 'P,Ai,Bi) > 0 for all i. Here's the 
{ }-~low { }-Ablow 

proof, suggested by Tim Callahan. For integer n, let An denote the subset of {A }-Ablow 

all of whose members satisfy p(A l 'P,Ai,Bi) > 1/n. Could it be the case that for all n, 

fdA= 0? In other words, could all the An have zero volume measure? If so, then Un=l 
An 

to oc.A.n, the union of the An sets for all n, also has zero volume measure, since the union 
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of a countable number of zero-measure sets is itself a zero-measure set. But Un=l to ....An 

is {A. }-Abtow• which does not have zero volume measure. This contradiction establishes 

that for some n, An has nonzero volume measure with respect to p(A. I 'I' .Ai,Bi). In 

symbols, for some n, fdA.= e for some e > 0. And by construction, p(A.I 'I',Ai,B0 > 
An 

1/n for each element of An. Therefore, fp(A.I 'I',Ai,Bi)·dA. > e/n. In words, for some n, 
An 

An has nonzero measure with respect to p(A.I '1',Ai,Bi). Since An is a subset of {A.}-

Abtow. it follows that {A.}-Abtow has nonzero measure with respect to p(A.I '1',Ai,Bi). 

And this is true for all i. By the exact same reasoning, it's also true that {A.}-Abtow has 

nonzero measure with respect to p(A.I 'I',AO,BO). Just run the argument of this 

paragraph, everywhere substituting "p(A.I 'I',AO,BO)" for "p(A.I 'I',Ai,Bi)." 

Now we're home free. From eq. (*) above we get 

fp(A=a· B·=b· I A.)·p(A.I 'I' A B·)·dA. = 0 {A.}-Ablow 1 1• 1 1 , 1• 1 • 

Since {A.}-Abtow has nonzero measure with respect to p(A.I 'I',Ai,Bi), it follows that 

p(Ai=ai, Bi=bi I A.)= 0 almost everywhere in {A.}-Abtow· Since p(A.I 'I',AO,BO) is a finite 

measure on {A.}-Abtow --that was the whole point of "subtracting off' Abtow --it 

immediately follows from measure theory that 

Jp(A=a· B·=b· I A.)·p(A.I 'I' AD BO)·dA. = 0 
{ ~} A 1 1, 1 1 , , , 
"'- blow 

for all i. Since (as shown above) {A.}-Abtow has nonzero measure with respect to p(A.I 

'I',Ao,Bo), it follows that for each i, a measure- I subset of {A.}-Abtow with respect to p(A. 
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I '¥,AD,B0) obeys p(Ai=ai, Bi=bi I A.)= 0. In words, for any given i, a measure- I subset 

of the A. states in {A. }-Ablow obey the corresponding perfect anticorrelation or spectrum 

rule occurrence. Since the algebraic nonlocality proof under consideration uses a finite 

number of perfect anticorrelations and spectrum rule occurrences (i.e., we're considering 

a finite number of i's), we can take the intersection of those measure- I subsets, and the 

result is itself a measure- I subset of {A. }-Ablow· All the A. states in that "intersection set" 

obey all the relevant perfect anticorrelations and spectrum rule occurrences. Q.E.D. 
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CHAPTER 3: NON-INVASIVE 
MEASURABILITY AND SQUIDs 

Section 3.1: Introduction 

In chapter 2, I added my contributions to the argument that nature disobeys local 

109 

causality. But from those arguments, we can't tell whether nature violates local causality 

because of "causal" action at a distance, superluminal causal mediation, or a holistic, 

nonseparable connection between "different" objects. I'll press harder on this causality 

vs. holism distinction in chapter 5. Here, I'll use SQUIDs to argue that holism is the 

culprit. My conclusion will emerge from an extended discussion concerning the 

following questions: Do macroscopic systems, like the microscopic systems considered 

in chapter 2, disobey some kind of local causality? And if so, what does it tell us about 

·nature? 

Motivating this discussion is the observation that local causality no-go theorems 

apply to microscopic systems such as electron pairs and photon pairs. Perhaps all 

macroscopic systems can be described by a more "classical" theory. If so, then under 

certain metaphysical assumptions, macroscopic reality isn't infected by quantwn 

weirdness.I4 Indeed, it's well known that "decoherent" interactions between a 

141f one takes the "naive realistic" position that any such theory of macroscopic reality 
must ultimately reduce to the "fundamental" theory of microscopic reality, then a 
"classical" theory of macroscopic reality wouldn't be as metaphysically exciting, because 
the underlying fundamental theory of all reality--including macroscopic reality--would 
incorporate violation of local causality. Although macroscopic reality would hide those 
violations, they'd still be lurking beneath the surface. 

By contrast, some antirealists believe that theories don't really "get at" reality, but 
instead give us a bastardized, veiled version of what's out there, a version filtered through 
our experimental, theoretical, and perhaps cultural biases. Within this framework, two 
theories describing different domains need not reduce to one another or to a 
"fundamental" theory that subsumes them both. So for instance, a theory of macroscopic 
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macroscopic system and its environment cause the system's density operator to quickly 

"reduce" to the classically-expected mixture. I'll discuss the interpretation of such results 

ad nauseam in chapter 4. For now, 111 focus on macroscopically "coherent" systems 

such as Superconducting Quantum Interference Devices (SQUIDs) and superfluids, 

systems that keep their weird "interference" properties for an appreciable time before 

"succumbing" to environmentally-induced decoherence. Can such systems also be 

described by a "classical" (hidden-variable) theory devoid of nonlocal/holistic 

connections and other examples of quantum weirdness? 

As Leggett (1986a,b) shows by considering hypothetical SQUID experiments, the 

answer is "no." Leggett and Garg (1985) derive a "temporal Bell inequality" that's 

violated by any theory consistent with QM's statistical predictions, an inequality than can 

perhaps be tested in the lab (see Tesche 1990). But Leggett and I disagree about why 

macroscopic reality violates this inequality (assuming QM's predictions hold). 

According to Leggett, it's because SQUips violate, "Macrorealism," which requires all 

macroscopic objects to possesses certain macroscopic properties at all times. In this 

chapter, I'll argue that Leggett's conclusion is unwarranted I'm not claiming that 

Macrorealism holds. I'm claiming only that SQUID experiments have little to tell us 

about Macrorealism. But Leggett-style SQUID experiments can rule out "Non-invasive 

measurability," the requirement that it be possible, at least in principle, to measure an 

object without disturbing its state more than a tiny bit After establishing this result, I'll 

argue that violation of non-invasive measurability indicates the existence of holistic 

connections between "different" objects. 

reality need not reduce to a theory of microscopic reality. The two theories could be on 
"equal footing," with neither more fundamental than the other, because neither theory is 
taken to be a fundamental description of reality itself In this framework, the microscopic 
and macroscopic regimes can in principle be considered separately, and hence, a 
"classical" theory of all macroscopic reality would be dramatic. 
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Here's the garhe plan. In section 3.2, I'll lay out some formal details about 

SQUIDs. Then, in section 3.3, 111 present Leggett's derivation of a temporal Bell 

inequality, and I'll discuss the philosophical implications. In particular, I'll poke holes in 

his argument that violation of the inequality implies failure of Macrorealism. Finally, in 

section 3.4, I'll present my own derivation of Leggett's temporal Bell inequality, a 

derivation that relies on conditions significantly weaker than those.used by Leggett. 

Specifically, my derivation does not assume Macrorealism. Using the new technical 

result, I'll argue that violation of the temporal Bell inequality has nothing to say about 

Macrorealism, but strongly suggests that nature violates non-invasive measurability. 
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Section 3.2: SQUID formalities 

An rf SQUID consists of a superconducting ring (often several millimeters in 

diameter) containing a single Josephson junction. According to quantum mechanics, the 

Cooper-paired electrons are all in the same state, forming a Bose .. gas." So, we can treat 
0. . . ~ 

the SQUID's current as a single macroscopic parameter, call it/ . .For the SQUIDs under 

consideration, the currents are typically on the order of milliamps, which is indeed 

macroscopic both in terms of the number of electrons involved and in terms of easy 

detectability. In the absence of the Josephson junction, the SQUID's current eigenstates 

would correspond to integral Planck-units of magnetic flux threading through the loop, 

where the magnetic field is created by the current itself. This is still true when we insert 

the Josephson junction, which, in very rough terms, inserts an energy barrier between 

clockwise-current states and counterclockwise-current states. Leggett (1986b) works 

through the details. For my purposes (and Leggett's purposes), the technical minutiae 

aren't important. What's important is that, when the rf SQUID is placed in a properly­

tuned external magnetic field, the effective potential as a function of current looks 

roughly like this: 

-----Eo 

-To 0 +Io 
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Qualitatively, the energy eigenstates are similar to those found in a box-with-a-barrier-in­

the-middle potential or an ammonia molecule (inversion state), but with a major 

difference: The SQUID's current, unlike a boxed particle's position, is quantized, since 

the magnetic flux through the SQUID ring is quantized. Io denotes the "quantum" of 

current. By tweaking the relevant parameters (size of ring, properties of Josephson 

junction), we can ensure that I=±Io lies near the bottom of the left and right energy wells, 

as drawn above. 

Let I+> and 1-> denote the I=+Io and I=-lo eigenstates of the current operator, which 

I'll call Q so as not confuse it with the identity operator. My goal is to find the time,. 

dependent state function of a SQUID prepared in state I+> or 1-> at time t=O,. Given that 

state function, I can grind out the conditional probabilities (and correlation coefficients) 

invoked below. To fmd that state function, I'll first derive the relevant energy 

eigenstates. 

No other current eigenstates besides I+> and 1-> contribute appreciably to the two 

lowest energy eigenstates. The "mixing" with higher current states is negligible, because 

the energies associated with II=±21o>, II=±31o>, etc., are very high compared to the 

energies associated with I+> and 1->. So, to excellent approximation, the state space 

from which I'm going to construct the lowest-energy eigenstates (lEo> and IE1>) is 

spanned by two states, I+> and 1->. 

Given this approximation, the usual way to derive the energy eigenstates is to 

invoke the symmetry of the potential to argue that the Hamiltonian takes the form 

H~[~' :,] in the basis I+>~(~) and 1->=(~} The Hamiltonian must be symmetric 

under transposition, since transposing the matrix corresponds to mirror-reflecting the 

potential well around I=O (i.e., re-labeling I+> as 1-> and vice versa). And it must 
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contain off-diagonal terms, or else I+> and I-> would be energy eigenstates, a conclusion 

we know to be wrong both phenomenologically and theoretically. Theoretically 

speaking, the energy eigenstates in a symmetric potential must by symmetric and 

antisymmetric. By graphing I+> and 1-> as "spikes" on the above potential diagram, you 

can see that neither state is symmetric or antisymmetric. So, the "b" cross terms are 

needed. 

It's easy to fmd the eigenvalues and eigenvectors of H. But I'm going to use a cute 

shortcut to fmd those eigenvectors (i.e., the energy eigenstates). As just mentioned, in a 

symmetric potential, the energy eigenstates are symmetric and antisyirunetric; in other 

words, they're eigenstates of the parity operator P. Now obviously, Pl+>=l-> and Pl­

>=1+>, since one state "turns into the other" if we mirror-reflect the system. By 

inspection, the only way to create normalized parity eigenstates in the state space 

spanned by I+> and 1-> is as follows: 

lEo>= 

lEt>= 

~(I+>+ 1->) 

1 -(1+>-1->) .J2 ' 

where I've chosen arbitrary phases, and where the ground state is symmetric 

(PIEo>=IEo>) and the first excited state is antisymmetric (PIE1>=-IE1>). So, the 

current-eigenstates are superpositions of the first two energy eigenstates: 

I+>= 

1-> = 



.. 
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Therefore, if we prepare a SQUID in one of these current eigenstates, it won't stay in that 

eigenstate. Rather, it will oscillate back and forth between I+> and 1->, just as the 

ammonium molecule oscillates back and forth between inversion states. See Bransden 

and Joachain (1989, pp. 649-653), or Cohen-Tannoudji et. al. (1977, pp. 464-466). 

For instance, suppose the quantum state at time t=O is I'P(t=O)> = I+> = }z (lEo> + 

lEt>). Defme roo=~ and rot=Et!K. Then the SQUID's state at arbitrary later timet, 

assuming negligible dissipation, is 

l'l'(t)> = _l_[IEo>e-iroot + IEt>e-irolt] 
..,fi 

= ~ [ }z (I+>+ 1->)e-iroot + ~(I+> -1->)e-irolt:J 

= i [l+>(e-iroo4 e-irolt) + 1->(e-iroot- e-irolt}). 

To express this in prettier form, multiply all the exponential terms by ei(roo + ro1)t/2, and 

pull a factor of e-i(roo + ro1)t/2 out front. (So, on net, I'm multiplying the right-hand side 

by 1.) This "trick" yields 

I'P(t)>= i e-i(roo+rol)t/2[1+>(ei(ro1-roo)t/2 + e-i(ro1-ro0)t/2) 

+ l->(ei(ro1-roo)t/2 _ e-i(ro1-ro0)t/2)]. 

= e-i(roo+rol)t12[1+>cos ~ t + 1->isin ~ t ], 

where I've defined ro= Et- Eo. The SQUID, just like the ammonia molecule, oscillates 

back and forth between its two "classical" states. 

For my purposes, the relevant information to "extract" from I'P(t)> is the 

conditional probability of finding the SQUID in state I+> or 1-> at arbitrary time t, given 

that the SQUID was prepared in state I+> at t=O. The calculation is trivial. In my 
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notation, "Q(t)=+" is shorthand for "measurement of the SQUID's current at timet 

yields a clockwise current." 

(1) PQM[Q(t)=+ I Q(t=O)=+] = k+I'P(t)>l2 = cos2 ~ t 

PQM[Q(t)=- I Q(t=O)=+] = k-I'P(t)>l2 = sin2 ~ t. 

Readers familiar with Bell-type experiments may recognize these cosine-squared 

and sine-squared conditional probabilities. Consider the canonical Bell thought 

experiment, in which two spin-1/2 particles in their singlet state rush in opposite 

directions and undergo measurement of (perhaps different) components of spin. 

Suppose particle 1 is measured to have Sz=+, and suppose particle 2 undergoes 

measurement of S0 , where the angle between z and n is 180° -e. Then, the quantum 

probability that particle 2 will yield spin up vs. spin down is 

PQM(Sn=+ I Sz=+) = cos2 ~ 

· PQM(Sn=- I Sz=+) = sin2 ~ . 

The spin correlations in standard Bell-type experiments are formally equivalent to the 

116 

temporal correlations predicted to occur between successive current measurements on a 

SQUID. Therefore, quantwn mechanics predicts a violation of a temporal Bell 

inequality, provided that the inequality is formally equivalent to a standard Bell inequality 

violated by spin-1/2 systems. Leggett in section 3.3, and I in section 3.4, will take 

advantage of this fact. 
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Section 3.3: Leggett's inequality: Derivation & interpretation 

In this section, I'll present my version of Leggett and Garg's derivation of=a 
I 

temporal Bell inequality. First, I'll present their assumptions (Macrorealism and Non­

invasive measurability). Then I'll show how those assumptions lead to an inequality 

violated by any theory consistent with QM's statistical prediction~. I'll also briefly 

discuss how these inequalities couf<:I be tested in the lab. Finally, I'll begin my critique of 

Leggett's interpretation of these results, along the following lines: Leggett argues that 

Non-invasive measurability is a "natural corollary" of Macrorealism, and hence, any 

theory that violates Non-invasive measurability isn't really macrorealistic in some sense. 

Therefore, violation of the temporal Bell inequality implies that Macrorealism fails. In 

response, I'll argue that in certain kinds of theories, Macrorealism could hold even 

though Non-invasive Measurability fails. Therefore, even if experiments violate the 

temporal Bell inequalities, we can't jump to conclusions about the failure of 

Macrorealism. Further argument is needed to pin down the philosophical implications 

of such a violation. (In section 3.4, I'll pursue that project.) 

§3.3.1. Leggett's conditions 

Leggett and Garg's (1985) first assumption is Macrorealism: 

Macrorealism: A macroscopic system with two or more macroscopically distinct 

states available to it will at all times be in one of those states. 

Quantum mechanics under a standard Copenhagen interpretation violates this 

condition: A SQUID described by l'l'(t)>= e-i(c.oo+coi)t/2[1+>cos ~ t + 1->isin ~ t] 
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occupies a macroscopic superposition in which it doesn't actually possess either a 

clockwise or a counterclockwise current, just as an electron in a double-slit experiment 

cannot be said to actually traverse the left slit or the right slit But remember, Leggett is 

considering whether an alternative ("hidden-variable") theory could satisfy certain natural 

"classical" conditions, one of which is Macrorealism. Keep in mind that Macrorealism 

allows superposed properties in the microscopic realm, It demangs only that 

macroscopic physical quantities belonging to macr8'scopic objects always possess 

definite values, 

Leggett's second assumption is 

Non-invasive measurability: It is possible, in principle, to determine the 

(macroscopic) state of a system with arbitrarily small perturbation of its subsequent 

dynamics. 

When we measure the SQUID's current, we can't help exerting some "back-action." 

This is true in both quantum and classical mechanics. But in "classical" theories, that 

back action can (in principle) be made arbitrarily small. In that case, the SQUID's post­

measurement state evolution will (to good approximation) proceed as if the 

measurement hadn't occurred I'll formalize and discuss this condition more fully in 

section 3.4 below. For now, let me show how these conditions lead to a temporal Bell 

inequality. 

§3.3.2. Temporal BeU inequality 

In a macrorealistic framework, we can let Q(t) denote the SQUID's current direction 

at time t Let Q(t)=+ 1 and Q(t)=-1 denote clockwise and counterclockwise current, 
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respectively. According to Non-invasive measurability, the value of Q(t3) does not 

depend on whether the SQUID underwent a (sufficiently careful) earlier measurement at 

time t1 or t2, because the SQUID's state evolution proceeds as if the earlier mea,_surement 

hadn't occurred. So, Q(t3) is uniquely defmed. Therefore, if we measure the SQUID's 

current at t1 and t3, and obtain Q(t3)=+ 1, then we would have obtained Q(t3)=+ 1 even if 

the earlier measurement had occurred at t2 instead of t1. 

Now actually, I've just assumed counterfactual definiteness, which is valid only if 

the SQUID's state evolves deterministically. Here,'s why: If the SQUID evolves 

stochastically, then we can't say what would have happened had the earlier measurement 

occurred at t2 instead of t1. That's not because measuring the SQUID at t2 instead of t1 

"disturbs" the state evolution. It's simply because, if we "rerun" the SQUID's state 

evolution in a stochastic universe, we might get a different result, even if all initial and 

intervening conditions are the same. That's just what it means to be stochastic! So, my 

derivation of Leggett and Garg's temporal Bell inequality implicitly assumes 

determinism. But in section 3.4 below, I11 derive an equivalent Bell inequality in a 

stochastic framework. For now, I'll stick to a deterministic framework in order to keep 

the exposition simple. 

Consider the following expression: 

(*) Q(tt)Q(t3) + Q(tl)Q(4) + Q(t2)Q(t3) - Q(t2)Q(4). 

As just noted, by Non-invasive measurability and counterfactual definiteness, the 

"Q(t3)" paired with Q(t1) equals the Q(t3) paired with Q(t2). Each of the four Q's can 

equal ±1. 
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This expression has only two possible values, ±2. To see this, rewrite the 

expression as 

Clearly, if [Q(t3) + Q(4)]=±2, then [Q(t3)- Q(4)]=0; and vice versa. So, the overall 

expression can only equal ±2. 

Now suppose we consider N SQUIDs (or if you prefer, N different experimental 

runs on the same SQUID). Let Q refer to the i-th SQUID. As just shown, for each of 

those N SQUIDs, 

(2) 

Therefore, 

From the triangle (Schwartz) inequality, a sum of absolute values is less than or equal to 
N N 

the absolute value of the sum: I I bi I:::; :Libil. So, we have 
i=l i=l 

In the limit as N~. k i~I Q(t1)Q(t3) is the correlation coefficient between Q(t1) and 

Q(t3), by which I mean the expectation value of that joint measurement result In the 
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messy inequality can be abbreviated as 

(3) I<Q(tl)Q(t3)> + <Q(tl)Q(4)> + <Q(t2)Q(t3)>- <Q(t2)Q(4)>1::;; 2. 

This inequality involving correlation coefficients is precisely what we can test via 

experiment. Notice that eq. (3) is formally equivalent to the Stapp-Eberhard-Redhead 

form of a regular Bell inequality. And recall from eq. (1) in section 3.2 that the relevant 

SQUID conditional probabilities (and hence the correlation coefficients) are formally 

equivalent to the spin-singlet state correlations. So, since spin systems violate the Stapp-

Eberhard-Redhead inequality, SQUIDs violate Leggett's inequality (3), according to any 

theory that reproduces the statistical predictions of QM. 

Let me prove this explicitly. I'll start by deriving the general ~xpression for 

<Q(ta)Q(tb)> for a SQUID prepared in quantum state I+> at time t=O. It's clearly15 

<Q(ta)Q(tb)> = (+1)(+1)(PQM[Q(ta)=+ I Q(t=O)=+])(PQM[Q(tb)=+ I Q(ta)=+]) 

+ (+1)(-1)(PQM[Q(ta)=+ I Q(t=O)=+])(PQM[Q(tb)=- I Q(ta)=+]) 

+ (-1)(+1)(PQM[Q(ta)=- I Q(t=O)=+])(PQM[Q(tb)=+ I Q(ta)=-]) 

+ (-1)(-1)(PQM[Q(ta)=- I Q(t=O)=+])(PQM[Q(lb)=- I Q(ta)=-]) 

15Jn the calculation, it appears that I have assumed wavefunction collapse. For the 
purposes of calculation, I have. But keep in mind that no-collapse QM yields the exact 
same conditional probabilities, as you can confrrm by writing out the overall 
SQUID/measuring-device entangled wavefunction. Indeed, it's well known that, only by 
measuring certain weird holistic observables can you reveal a difference between the 
statistical predictions of collapse QM vs. no-collapse QM. When performing repeated 
measurements of the same observable, collapse and no-collapse QM always agree about 
conditional probabilities, correlation coefficients, and all other statistical predictions. 
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= (PQM[Q(ta)=+ I Q(t=O)=+])(PQM[Q(tb)=+ I Q(ta)=+]) 

- (PQM[Q(ta)=+ I Q(t=O)=+])(PQM[Q(tb)=- I Q(ta)=+]) 

- (PQM[Q(ta)=- I Q(t=O)=+])(PQM[Q(tb)=+ I Q(ta)=-]) 

+ (PQM[Q(ta)=- I Q(t=O)=+])(PQM[Q(~)=-1 Q(ta)=-]) 

= (cos2 ~ ta)(cos2 ~ (tb-ta)) 

- (cos2 ~ ta)(sin2 ~ (tb-ta)) 

- (sin2 ~ ta)(sin2 ~ (tb-ta)) 

+ (sin2 ~ ta)(cos2 ~ (tb-ta)) 

= (cos2 ~ ta)[cos2 ~ (tb-ta)- sin2 ~ (tb-ta)] 

+ (sin2 ~ ta)[cos2 ~ (tb-ta)- sin2 ~ (tb-ta)] 

where in the last two steps I used trig identities. For a surprisingly large range of 

choices of t1 through 4, inequality (3) is violated. For instance, pick t1 =0, t2= l~ , 
t3= ~, and 4= ~~. Then, the left-hand side of inequality (3) equals 

I<Q(ti)Q(t3)> + <Q(tt)Q(14)> + <Q(t2)Q(t3)>- <Q(t2)Q(4)>1 

= Ieos 27t + cos ~ + cos ~ - 01 

1 1 
= 11 + ...[2 + ...[2 -01 

""2.41, 

122 
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which violates the inequality. 

In brief: Any SQUID theory consistent with QM's statistical predictions violates an 

inequality derived from Macrorealism and Non-invasive measurability. 

§3.3.3. Philosophical implications: Is Macrorealism the culprit? 

According to Leggett, Non-invasive measurability is a "natural corollary" to 

Macrorealism, by the following argument: If the SQUID actually has a discrete 

macroscopic current, then we expect the current not to get "knocked around" by a very 

careful measurement, since only a large disturbance could "knock" a clockwise current 

so hard that it becomes counterclockwise. Leggett doesn't claim that Macrorealism 

logically implies Non-invasive measurability. He claims only that we physically expect 

Macrorealistic theories "automatically" to obey Non-invasive measurability. If this 

argument is true, then experimental violation of Leggett's inequality would strongly 

suggest that nature in fact violates Macrorealism. 

111 dispute this conclusion by outlining a few classes of Macrorealistic theories that 

could plausibly violate Non-invasive measurability. For the remainder of this 

subsection, let "z" denote the parameter or parameters that control when the SQUID's 

current "flips" from clockwise to counterclockwise (and vice versa). 

Case 1: Chaos. Suppose that the SQUID's definite current isn't always exactly 

I=±Io. Instead, when the SQUID's current is clockwise, it's actually in a narrow range 

centered on the expected value: Io-M <I< Io+M, where the "current spread" M is tiny. 

(Note that Min this case represents an epistemic, not an ontological uncertainty.) 

' 
Similarly for counterclockwise current. Suppose z is a function of I and/or microscopic 

degrees of freedom of the SQUID. If z follows a chaotic equation of motion, then the 
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back action produced by even the most careful measurement will affect the later state­

evolution of the SQUID. 

I should note that even in quantum theory, there might be some spread in !:­

Remember, I is quantized because the magnetic flux through the SQUID ring is 

quantized. If (for instance) the radius of the ring gets a little bigger, the value of I 

corresponding to one Planck-unit of magnetic flux changes slightly. Consequently, if 

the ring radius fluctuates even a tiny bit during the measurement interaction--due to a 

back-action magnetic field, for instance--& will be nonzero. And if z(l) is truly chaotic, 

it simply doesn't matter how small M is; Non-invasive measurability will be violated, if 

we allow the SQUID to evolve for enough time. 

So, SQUID experiments cannot rule out "case 1" theories, which violate Non­

invasive measurability despite the fact that they obey Macrorealism. 

Case 2: Delicate flip parameter. Suppose that, even though the SQUID's current 

is macroscopic and definite, the "flip parameter" z depends sensitively on microscopic 

degrees of freedom of the SQUID. Then, even the most careful measurement could 

"disturb" z, and hence, the SQUID's later state evolution. 

In response, Leggett could argue that a truly "classical" theory would not 

incorporate a "delicate z." To formalize this claim, he could argue that in a classical 

theory, the state evolution of macroscopic quantities depends only on the values of 

macroscopic quantities. For instance, in Newtonian physics, the time evolution of the 

center-of-mass position of a baseball depends only on the initial position, initial velocity, 

and net force as a function of time. Microscopic degrees of freedom simply "don't 

matter." Similarly, Leggett could argue, in a "classical" SQUID theory, we expect z to 

depend only on I (and perhaps on other macro-parameters such as the SQUID's 

diameter). 
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I think this discussion serves to show that not all Macrorealistic theories obey all of 

our classical intuitions. But the point still remains that an experimental violation of 

Leggett's inequality would not force us to renounce Macrorealism per se. It would force 

us only to renounce Macrorealistic theories that obey further classical conditions, 

conditions that imply (or at least strongly motivate) Non-invasive measurability. 

Case 3: Bohm-type theories. In Bohm's "pilot wave" theory, particles at all times 

possess defmite positions. A particle's trajectory is determined, in part, by a "quantum 

potential" corresponding to the particle's wavefunction. (Roughly put, the wavefunction 

is taken to be a physically real "pilot wave" that guides the particle through space.) The 

wavefunction obeys Schrodinger's equation. According to Schrodinger's equation, if 

two objects interact, their wavefunctions become entangled. In particular, a 

"measurement" interaction, no matter carefully performed, necessarily involves an 

entanglement between the system's wavefunction and the measuring device's 

wavefunction. (This is true even for "null-result" measurements, as I'll discuss below.) 

Therefore, by measuring a system, you automatically entangle its wavefunction, thereby 

altering the quantum potential that guides the particle's motion. So, Bohm's theory, like 
/ 

QM itself, violates Non-invasive measurability. (In section 3.4, I'll further discuss why 

QM violates Non-invasive measurability.) 

Now imagine a Bohm-type theory about SQUIDs, in which the SQUID's current is 

always defmite, and the value of the current is guided in part by the wavefunction. Such 

theories are Macrorealistic. But, as just shown, they violate Non-invasive measurability, 

due to wavefunction entanglement between the SQUID and its measuring apparatus. 

These examples, and others like them, establish that physically sensible 

Macrorealistic theories could violate Non-invasive measurability. Therefore, assuming 

Leggett's inequality is violated by experiment, we should not jump to the conclusion that 
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Macrorealism fails. Perhaps Non-invasive measurability--and Non-invasive 

measurability alone--in the "culprit" I'm not claiming here that Macrorealism holds. 

I'm claiming only that Leggett's considerations do not force us to abandon 

Macrorealism, even if experiments violate his inequality. Indeed, in section 3.4, I'll 

present evidence that violation of Leggett's inequality forces us to renounce Non-invasive 

measurability, not Macrorealism. 

Before launching into that argument, however, I'll briefly discuss the best candidate 

to date for a "non-invasive" measurement scheme. 

§3.3.4. Testing Leggett's inequality: Null-result measurements 

Tesche (1990) proposes an experiment that uses "null-result" measurements to test 

Leggett's inequalities against QM's statistical predictions. Her measuring device is 

designed to register a response if the SQUID occupies one eigenstate of current, say, 

clockwise. If the SQUID occupies the other current eigenstate (counterclockwise), then 

her device registers no response and exerts negligible back action on the SQUID's 

quantum state evolution. If we assume Macrorealism, then a null measurement result 

(i.e. no response) indicates, in this example, that the SQUID has counterclockwise 

current. And if that null-result measurement causes negligible back action, as we 

intuitively expect, then the time evolution of the SQUID's macroscopically distinct state 

is undisturbed. Consequently, null-result measurements are a good candidate for 

"revealing" the non-invasive measurability of SQUIDs, if Non-invasive measurability in 

fact holds. 

To experimentally determine the correlation coefficients <Q(t:JQ(lt,)> using 

Tesche's "trick," prepare the SQUID in the relevant initial state, 1+>. Let it evolve until 

time ta, and then perform a null-result measurement If you get the null result, say 
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counterclockwise, then take another measurement at time tb. (That second measurement 

can be invasive, because no further measurements will occur.) H you don't get the null 

result at time t8 , then simply record that result as "clockwise," and don't bother taking 

another measurement at time ~· 

After getting good statistics, do the same experiment, but "reset" the null-result 

measurement device so that "clockwise" now corresponds to the n_ull result. 

At the end of all this, you'll have good statistics on what fraction of the SQUIDs 

were "clockwise" vs .. "counterclockwise" at time t8 • So, you know p[Q(ta)=+ I 

Q(t=O)=+] and p[Q(ta)=- I Q(t=O)=+]. You've also measured the conditional probability 

that a Q(ta)=+ SQUID later yields Q(tb)=+ vs. Q(tb)=-, and the conditional probability 

that a Q(ta)=- SQUID later yields Q(tb)=+ vs. Q(tt,)=-. That is, you've measured all the 

conditional probabilities of the form p[Q(tt,)=± I Q(ta)=±]. So, you can immediately 

calculate the experimental value of <Q(ta)Q(tb)> using 

<Q(ta)Q(tb)>exp. = (+1)(+1)(p[Q(ta)=+ I Q(t=O)=+])(p[Q(tb)=+ I Q(ta)=+]) 

+ (+1)(-1)(p[Q(ta)=+ I Q(t=O)=+])(p[Q(tb)=- I Q(ta)=+]) 

+ (-1)(+1)(p[Q(ta)=- I Q(t=O)=+])(p[Q(tb)=+ I Q(ta)=-]) 

+ (-1)(-1)(p[Q(ta)=- I Q(t=O)=+])(p[Q(tb)=-1 Q(ta)=-]). 

Of course, this procedure assumes that nature doesn't throw us a "biased" sample of 

SQUIDs when the null-result measuring device is set to "clockwise" vs. 

"counterclockwise." For a detailed discussion of this kind of "randomness" assumption, 

see chapter 4 of Redhead (1987). 
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Section 3.4: 

assumptions 

Derivation of Leggett's inequality from weaker 

In this section, we derive Leggett's inequality from assumptions weaker than 

Leggett's. (By "we," I mean Sara Foster and myself.) The first condition is a stochastic 

version of non-invasive measurability. The second condition is a realism assumption 

much weaker than Macrorealism, a condition obeyed by any Markovian theory, 

including QM. Consequently, if QM's predictions hold and therefore Leggett's 

inequalities fail, no Markovian theory underlying or replacing QM can allow the 

possibility of non-invasive measurements, even for null-result measurements on 

macroscopic systems. 

This result clarifies the philosophical meaning of Leggett's inequality. As discussed 

above, Leggett's derivation shows that we must renounce Non-invasive measurability or 

Macrorealism (or both). Our new proof singles out Non-invasive measurability as the 

condition we must renounce. And if you buy Leggett's argument that Non-invasive 

measurability is a "natural corollary" to Macrorealism (despite my critique in section 

3.3.3), then our new proof shows that you must renounce both Macrorealism and Non­

invasive measurability. 

§3.4.1. Notation and preliminaries 

Like Leggett, we consider possible theories in which presently-unknown parameters 

supplement or replace the quantum state description of the SQUID. Let A.(t) denote the 

SQUID's fully specified macrostate at time t The macrostate is the aspect of the 
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SQUID's state causally relevant to electric current measurement results. So, A.(t) 

contains all relevant information about the SQUID's macroscopic current characteristics 

and about the SQUID's probability of evolving into a different macrostate at a later time. 

According to QM, A.(t) is just 'l'(t), the quantum state vector. But in a general theory, A. 

may encode information not contained in'¥. We do not assume that A. specifies a 

definite current for the SQUID; our A. states do not necessarily correspond to Leggett's 

"macroscopically distinct states." For instance, as in QM, A. may encode measurement­

result probabilities instead of certainties. 

The macrostate A., as defmed by us, does not contain information about microscopic 

degrees of freedom irrelevant to macroscopic current measurement results, if such 

degrees of freedom exist 

Let Jl(t) denote the state of the device used to measure the SQUID's current, 

according to the general theory. In some theories, this "apparatus microstate" plays an 

important role. 

A SQUID in quantum state 'I' could occupy one of many underlying states A.. Let 

p[A.(t1)] denote the probability density that a SQUID prepared to be in quantum state'¥ at 

~ t1 occupies state A. at t1. Similarly, p[Jl(t)] is the probability density that an 

apparatus set to measure the SQUID's current at time t occupies state J.1 at t Assume 

p-independence: 

(i) p[A.(t1)] does not depend on whether the SQUID undergoes a measurement at 

time ~t1 . 
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(ii) p[J.i(t)] does not depend on whether the SQUID underwent another 

measurement before t. 

The frrst part of this condition is trivial. It requires that the SQUID not "know in 

advance" whether it is going to be measured at a later time. If this condition fails, then 

either some kind of backwards-in-time causation influences the SQUID's state 

preparation, or else nature has "conspired" to bias our sample of SQUIDs. This 

requirement is weaker than Particle Locality, the p-independence condition used in Bell 

derivations. Condition (i), unlike Particle Locality, allows spacelike influences. 

Condition (i) only rules out backwards timelike influences. 

Condition (ii) demands that, if the same device measures the SQUID at t1 and ~· 

then we can "zero" (reset) the device between measurements. An easy way to ensure 

that this condition holds is to use different measuring devices at t1 and~· and to "zero" 

the~ device after time t1. Given this scheme, p-independence condition (ii) fails only if 

the frrst measuring device somehow sends information to the second device, 

information that "survives" when the second device gets reset. Although considerations 

of local causality do not rule out this possibility, it seems mighty conspiratorial and ad 

hoc, especially if we don't even tum on the second device until the frrst one gets shut off. 

Let M+(t) denote the performance of a null-result measurement at time t such that a 

null response is taken to indicate positive (clockwise) current. M+(t)=+l denotes that 

such a measurement indeed gave the null result, signaling positive current. Define M_(t) 

and M_(t)=-1 analogously for negative (counterclockwise) current 
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As in chapter 2, I'll continue to use standard conditional probability notation. For 

instance, p[M+(t)=+ 1 I A(t), fJ.(t)] is the probability, according to the general (hidden-

variable) theory, that a SQUID in state A at t, upon measurement at t with an apparatus in 

state fJ., would yield the null result, indicating positive current. Similarly, 

is the probability that a SQUID in state A at t1, upon measurement at~ with an apparatus 

in state fJ., would yield positive current, given that an earlier null-result measurement at t1 

indicated positive current By a "measurement at t1," we mean a measurement that 

begins at t1• 

p[M+(t:z)=+ 1, M+(t1)=+ 1 I A(t1)] is the joint probability that a SQUID in state A at 

t1, upon sequential null-result measurements, would yield the null result both times, 

indicating positive current 

§3.4.2. The main assumptions 

We now discuss the two primary assumptions we'll use to derive Leggett's 

inequality. (Actually, we11 be deriving the temporal equivalent of the stochastic Clauser­

Home inequality, which turns out to be statistically equivalent to inequality (3) above. 

More on this later.) Our conditions, like Leggett's, can be tested by Tesche's null-result 

measurement procedure. 

Non-invasive measurability for null-result measurements. In the context of general 

(perhaps nonmacrorealistic, perhaps stochastic) theories, a null-result measurement is 
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designed to register a response for only one of the two possible measurement results on 

the SQUID. Such a measurement, even if carefully done, may disturb some 

microscopic degrees of freedom of the SQUID. For instance, the back action of the 

measuring device might jiggle some electrons in the SQUID ring. But suppose that the 

SQUID's macroscopic current characteristics over time, as encoded by the macrostate, 

do not depend too delicately on these microscopic degrees of freedom. Then the back 

action only negligibly disturbs the SQUID's macrostate and its evolution. We explore 

this possibility by assuming 

Non-invasive measurability for null-result measurements (NIMN): The evolution 

of the SQUID's macrostate is disturbed arbitrarily weakly by a sufficiently careful null­

result measurement (when the null result occurs). 

This is essentially Leggett's Non-invasive measurability, rephrased so as not to 

presuppose Macrorealism. Whether Tesche's experiment is "sufficiently careful" is, of 

course, an open question. NIMN demands only that such an experiment be possible in 

principle, even if technology hasn't reached that level.· 

One could argue that non-invasive measurability is intuitively compelling only for 

macrorealistic theories, and therefore NIMN is physically unmotivated in the more 

general case. We disagree. Whether or not A. specifies a definite current, NIMN will 

hold provided that A. does not depend too delicately on the SQUID's microstate and 

provided that obtaining a measurement result doesn't "automatically" collapse or 

"effectively collapse" the SQUID's density operator, as happens in QM. QM-style 
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effective collapse is not a necessary feature of all non-macrorealistic theories. It's simply 

a feature of the most familiar non-macrorealistic theory. 

We now express NIMN mathematically. According to a general SQUID theory, a 

freely evolving SQUID in state A. at time t1 has a certain probability (or probability 

density) of occupying state A.' at later time~· Let p[A.'(~) I A.(t1)] denote this state­

evolution probability density. Similarly, p[A.'(~) I A.(t1), M+(t1)=+ 1] is the probability 

that a SQUID in state A. at t1 would occupy state A.' at ~. given that a null-result 

measurement beginning at t1 indicated positive current (by null result). According to 

NIMN, 

NIMN p[A.'(~) I A.(t1), M+(t1)=+ 1] = p[A.'(~) I A.(t1)] 

p[A.'(~) I A.(t1), M_(t1)=-1] = p[A.'(~) I A.(t1)] 

Of course, these equations apply only when p[M+(t1)=+1 I A.(t1)]:;t0 and p[M_(t1)=-1 I 

A.(t1)]:;t0, respectively. In deterministic theories, all the p[ ... I A.(t1)]dA. are equal to zero or 

one. 

Quantum mechanics violates NIMN. Even during an ideal measurement, null­

result or otherwise, a SQUID formerly in quantum state 'P becomes "entangled" with 

the measuring apparatus, and therefore the density operator describing the SQUID 

changes. (Certain so-called "interference terms" get smaller.) Or, if we assume 

wavefunction collapse, measurement collapses the SQUID into an eigenstate of current. 

Either way, a measurement entangles or collapses the SQUID's state, thereby changing 
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the SQUID's density operator, and hence, its state evolution. This is true, according to 

QM, even when the null result is obtained. So, QM violates NIMN. 

SQUID Completeness. Our second major assumption is 

SQUID Completeness: A SQUID measurement-result probability at time t depends 

only on the SQUID's state (and on the measuring device state) at timet. 

SQUID Completeness is an incredibly weak realism assumption. It demands only 

that the state of the SQUID (and its measuring apparatus) completely determine 

measurement-result probabilities.16 SQUID Completeness does not presuppose a 

defmite current for the SQUID. 

QM obeys SQUID Completeness: Given the type of measurement (i.e., the 

Hermitian operator corresponding to the measured observable), the quantum state at 

timet completely specifies measurement-result probabilities at timet: Since QM 

disobeys many "realism" assumptions, the fact that QM obeys SQUID Completeness 

suggests that our condition is very weak. 

SQUID Completeness does not prohibit an influence by earlier measurements on 

later measurement results. For instance, by measuring the SQUID at t1, we may disturb 

its state evolution so as to change measurement-result probabilities at 12· This happens 

16Jarrett's Completeness condition, discussed in chapter 2, encodes similar content But 
Jarrett's condition rules out a nonlocal connection between a measurement result on 
particle 1 and a measurement result on particle 2. SQUID Completeness, by contrast, 
has nothing to do with locality, because there's only one measured system (a single 
SQUID)' involved. So, SQUID Completeness can hold in nonlocal theories. 
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in QM: by measuring the SQUID at t1, we entangle or collapse its state and thereby 

alter its state-evolution, leading to changed measurement-result probabilities at~- What 

SQUID Completeness disallows is a direct mysterious "influence" by the earlier 

measurement result on the later measurement result, an influence not propagated via the 

SQUID's state evolution. SQUID Completeness demands nothing more than 

Markovian state evolution: A complete specification of the present state of the SQUID 

(and its measuring device) must probabilistically "screen off' the SQUID'spast, 

rendering the past states irrelevant All theories that can be cast in terms of "state 

functions" automatically obey SQUID Completeness. Newtonian mechanics, relativistic 

mechanics, classical electromagnetism, quantum mechanics, and quantum field theory 

all obey SQUID Completeness. All hidden-variable theories that I know of also obey 

this condition. Frankly, it's hard to imagine a non-Markovian fundamental theory. 

Since by definition, all characteristics of the SQUID causally relevant to Q­

measurement results are encoded by the macrostate A., we have 

SQUID Completeness 

p[M+(~)=+ 1 I~(~), J.L(~), M(t1)=+ 1] = p[M+(~)=+ 1 I A.(~), J.L(~)] 

This condition demands that a measurement-result probability depend on the SQUID's 

present macrostate, not on how the SQUID reached its present macrostate. Again, 

SQUID Completeness is nothing more than a Markov requirement. 
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All macrorealistic theories are SQUID Complete (since the SQUID's definite 

current at timet determines the result of measuring I at time t),I7 but not vice versa. 

SQUID Completeness is much weaker, as just discussed. 

§3.4.3. Derivation of Leggett's inequality 

In this section, we derive Leggett's inequ~ity from NIMN, SQUID Completeness, 

and the p-independence assumptions introduced in section 3.4.1. Speciflcally, we'll 

show that our conditions imply 

Factorizability: 

Factorizability implies the Clauser-Home version of Bell's inequality, as I'll discuss 

below. 

To derive Factorizability, we fust prove a crucial lemma. 

Lemma: NIMN & SQUID Completeness & p-independence --? 

Proof of Lemma: 

From probability theory and p-independence of the J..L states, 

11Like Leggett, I'm assuming a "Faithful Measurement" principle, according to which the 
value of the SQUID's definite current (when it exists) is the value "revealed" by 
measurement. 
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p[M+(1:2)=+ 1 I M+(t1)=+ 1, A.(t1)] 

= Jfp[J.1(1:2)]dJ.l"dA.'·p[A.'(l:2) I A.(t1), M+(t1)=+ 1]-p[M/1:2)=+ 1 I M+(t1)=+ 1, A.'(l:2), J.1(1:2)] 

= Jfp[J.1(1:2)]dJ.l"dA.'·p[A.'(l:2) I A.(t1), M+(t1)=+ 1]-p[M/~)=+ 1 I A.'(l:2), Jl(~)] 

by SQUID Completeness 

= Jfp[Jl(~)]dWdA.'·p[A.'(~) I A.(t1)]-p[M+(~)=+ 1 I A.'(~), Jl(~)] 

byNIMN 

by probability theory. 

This proves the lemma. Q.E.D. 

Armed with this Lemma, we now easily prove 

Theorem: NIMN & SQUID Completeness & p-independence--? Factorizability 

Proof· From probability theory, 

(*) p[M+(1:2)=+ 1, M+(t1)=+ 1 I A.(t1)] = 

p[M+(t1)=+ 1 I A.(t1)]-p[M+(~)=+ 1 I M+(t1)=+ 1, A.(t1)]. 
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By the Lemma, the second factor on the right-hand side equals p[M/~)=+ 1 I A.(t1)]. So, 
_, 

eq. (*) immediately becomes 
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which is Factorizability. Q.ED. 

Now all that remains is to show that Factorizability, along with p-independence of 

the A. states, implies the Clauser-Home inequalities. By reasoning equivalent to the 

above, our conditions also imply 

p[M_(l::z)=-1, M+(t1)=+1 I A.(t1)] = p[M+(t1)=+1 I A.(t1)]1>[M_(tz)=-11 A.(t1)], 

p[M_(~)=+1, M+(t1)=-11 A.(t1)] =p[M+(t1)=-11 A.(t1)]-p[M_(~)=+11 A.(t1)], 

p[M_(tz)=-1, M+(t1)=-1 I A.(t1)] = p[M+(t1)=-11 A.(t1)]-p[M_(l::z)=-1 I A.(t1)]. 

In other words, Factorizability holds in general, not just for specific measurement 

results. To get from Factorizability and p-independence to the Clauser-Home 

inequalities takes a lot of uninstructive algebra See Redhead (1987, chapter 4) for the 

boring details behind this well-known result. The outcome is a Bell inequality 

statistically equivalent to Leggett's inequality (3) derived above (in section 3.3.2). In 

other words, a theory's statistical predictions violate the Oauser-Horne inequalities if and 

only if they violate inequality (3) above. So, if Leggett's inequality is violated, then so is 

the Clauser-Horne inequality, proving that no theory about SQUIDs can obey NIMN, 

SQ_!!ID Completeness, and p-independence. 

§3.4.4. Philosophical implications: Comparison to previous results 
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If Tesche's and others' experiments violate Leggett's inequalities, as QM predicts, 

then Leggett's derivation suggests that we should renounce non-invasive measurability 

or macrorealism. Since both of these assumptions are "controversial," and since a 

theory could obey one but not the other (as argued above in section 3.3.3), a reasonable 

theory could disobey either (or both!). 

Our contribution is to show which assumption is probably "at fault" if QM's 

predictions turn out to be correct SQUID Completeness, unlike Macrorealism, is so 

weak that we expect any reasonable theory to obey it And p-independence only rules 

out conspiratorial theories, or theories that allow backwards-in-time causation. NIMN, 

SQUID Completeness and p-independence lead to a Bell-type inequality violated by any 

theory that reproduces QM's statistical predictions. Therefore, if QM's predictions are 

correct we should renounce the possibility of performing non-invasive measurements 

even in principle, even if we use ingenious null-result measuring procedures to measure 

macroscopic quantities. In brief, our derivation strongly suggests that if Leggett's 

inequality fails, non-invasive measurability is "to blame." 

This result improves upon Ballentine (1987). Ballentine argues that non-invasive 

measurability alone implies Leggett's inequality. According to him, NIMN entails that 

the correlations between sequential SQUID measurement results do not depend on 

whether an intervening (non-invasive) measurement occurs. But this independence 

follows only if we make some assumption about the relationship between the SQUID's 

state and the SQUID's measurement-result probabilities. Our SQUID Completeness 

assumption fills precisely this gap in Ballentine's reasoning. Without SQUID 
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Completeness (or a stronger assumption such as macrorealism), non-invasive 

measurability has no empirical consequences. 

If you believe (following Leggett) that no reasonable Macrorealistic theory would 

violate NIMN, then our result establishes that you must renounce both NIMN and 

Macrorealism, instead of one or the other. 

§3.4.4. Philosophical implications: Holism. 

We now see that if QM's predictions hold, and if p-independence and the weak 

form of realism encoded by SQUID Completeness hold, then failure of non-invasive 

measurability is not simply a quirk of the quantum formalism. Instead, that failure 

indicates nature's unwillingness to allow non-invasive measurements even in principle. 

This is what SQUIDs have to tell us about metaphysics, even though they can't tell us 

about Macrorealismper se. 

But what does violation of non-invasive measurability tell us about nature? In other 

words why does non-invasive measurability fail? One possibility is that the measuring 

device "disturbs" the measured system significantly, in the usual "causal" sense of 

"disturbance." But if this were the case, then we'd expect a null-result measurement to 

disturb the system less than a regular measurement, when the null result is obtained. In 

other words, we'd expect the size of the disturbance to depend in some way on the 

severity of the "intrusion." But according to QM, the disturbance doesn't scale down 

with the intrusion in this way; even a "perfect" null-result measurement effectively 

collapses the SQUID's density operator, leading to a violation of Leggett's inequality. 

So, if we want to retain a causal picture of the measurement as an intrusion leading to a 
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disturbance, we have to abandon our classical causal intuitions about how the size of the 

cause relates to the size of the effect 

The quantum formalism suggests another metaphysical interpretation of why non-

invasive measurability fails. As discussed above, any measurement, simply by virtue of 

being an interaction between two quantum systems, inevitably leads to wavefunction 

entanglement between the measuring device and measured system. After this 

. entanglement, the two systems are holistically connected, in the following senses: 

Neither the SQUID nor its measuring apparatus alone has its own state vector. And the 

two-part system as a whole has properties and/or propensities that don't supervene on 

the separate properties/propensities of the individual systems. Put roughly, the 

properties of the whole don't reduce to composite properties of the parts. These holistic 

properties include correlations between, say, the SQUID's current and the measuring 

device's pointer reading. So, non-invasive measurability fails not because of some 

"causal" disturbance, but because·the SQUID becomes holistically entangled with 

another system, an entanglement that changes the probabilities associated with the 

SQUID alone. 

This holistic view of violation of non-invasive measurability helps us explain why 
,, 

making the measurement less "disturbing" doesn't lead to a smaller violation of non-

invasive measurability (assuming QM's predictions hold). In my holistic framework, 

the severity of interaction leading to holistic entanglement shouldn't matter. All that 

matters is whether the systems become holistically connected. Since a measurement is 

an interaction designed to bring about a correlation between the measured system and the 

measuring device's "pointer reading," and since (in this framework) the correlations 
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result from holistic entanglement, it follows that any measurement worth its name leads 

to holistic entanglement 

This argument alone isn't strong enough to make you abandon your "causal" world 

view in favor of a "holistic" one, whatever that means. But this argument isn't alone. In 

chapter 5, 111 argue in detail that the best way to explain the local causality violations 

discussed ad nauseam in chapter 2 is to renounce "causality" in favor of "holism." And 

in chapter 4, I'll show how an explicitly holistic interpretation of QM may be able to 

account for the macroscopic world as we observe it So, every chapter of this 

dissertation adds to the argument that quantum reality is best interpreted within a holistic, 

noncausal metaphysical framework. 
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CHAPTER 4: DECOHERENCE AND 'MODAL' 
INTERPRETATIONS OF QM 

143 

In the past five years, "decoherence" has received loads of attention. Various 

decoherence-based interpretations of QM claim to recover a "classical" world at the 

macroscopic level.18 In this chapter, 111 critically evaluate these claims. Decoherence, I'll 

argue, does not in itself define or even a suggest an interpretation, nor does it provide us 

with a new metaphysical framework. It turns out, however, that results from 

"decoherence theory" can save certain interpretations from otherwise-fatal technical 

problems. Specifically, the phenomenon of decoherence can help to "pick out" a special 

pointer-reading basis. (But a preferred basis alone does not an interpretation make.) 

To focus my analysis of what decoherence can and cannot accomplish, I'll devote 

substantial discussion to a promising, comparatively new class of interpretations called 

"modal" interpretations. After briefly outlining how these interpretations work (section 

4.1 ), I'll show why, without decoherence, these interpretations are doomed to failure. 

Roughly put, the modal interpretations without decoherence pick out the "wrong" 

pointer-reading basis after a non-ideal measurement; and all measurements of certain 

observables are in fact non-ideal. Then, in section 4.3, 111 show how decoherence can 

perhaps rescue the modal interpretations (and certain other interpretations) from the 

"imperfect measurement problem" just mentioned. Finally, in section 4.4, I'll explore 

whether the modal interpretations, aided by decoherence, have a fighting chance of 

"solving" the measurement problem, even when the observer's brain is taken into 

account and treated as another quantum mechanical system. We'll see that the modal 

interpretations fare surprisingly well. 

18The SQUIDs discussed in chapter 3 escape these claims because they interact 
minimally with their environment, and hence take a long time to "decohere." 
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Modal interpretations 

In this section, I'll motivate and describe the modal interpretations, and I'll show 

how they apparently solve the "measurement problem" in an elegant, powerful way. 

§4.1.1. Historical and philosophical motivation 

144 

Instead of diving right into the formal details, let me situate and motivate the modal 

interpretations. Classical intuitions suggest that physical observables have defmite 

values at all times, and hence, a probabilistic descriptions of those quantities reflects our 

ignorance about the actual values. But we know from Bel1(1966), Kochen and Specker 

(1967), and similar results that we can't consistently assign values to all observables in a 

way consistent with both the QM formalism and certain intuitive rules. Only some 

observables may possess (noncontextual) values at.a given time. But which ones? 

Interpretations split into two broad classes based on their answer to this question. The 

wedge is provided by the 

Eigenvector-eigenvalue link: A physical quantity Q has a defmite value if and only if 

the quantum state is an eigenstate of the corresponding Hermitian operator Q. 

Standard cOpenhagen interpretations with wavefunction collapse obey this 

"orthodox" value-assignment rule. In a sense, so do relative-state interpretations, 

according to which Q has a defmite value with respect to a given branch of the 

sup-erposition only if that branch is an eigenstate of Q. But many interpretations violate 

the eigenvector-eigenvalue link. Such interpretations have two choices. They can either 

(i) a priori set in stone which observables have defmite values, or else (ii) let the 
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quantum dynamics "pick out" which observables have defmite values at a given time. 

Bohm's interpretation is type (i): It assigns definite positions to all particles at all times, 

whether or not the particle occupies an eigenstate of the position operator. 

By contrast, other theorists who renounce the eigenvector-eigenvalue link prefer 

option (ii). They prefer not to put in "by hand" which observables are definite. They 

think the quantum dynamics itself should select the preferred observables (i.e., the 

preferred basis). For instance, Zurek (1993a,b) bases an interpretation around the claim 

that the definite-valued observables associated with a system S are those corresponding 

to operators that commute with Hint> the interaction Hamiltonian between S and its 

environment More on this later. The modal theorists, on the other hand, claim that the 

quantum state picks out which observables take on definite values; and a stochastic 

equation of motion describes the evolution of those defmite values.19 

Why might someone prefer such a theory to Bohm's? It has to do with how far 

you're willing to depart from the "pure" quantum formalism. In Bohm's theory, the 

Hilbert space formalism describes nothing more than how a "quantum potential" (pilot 

wave) evolves in time. The particles themselves are separately real entities that follow an 

independent equation of motion. And the "privileged" status of position is put in by 

hand. By contrast, in modal interpretations, the Hilbert-space state vector describes the 

particles themselves, although the description it provides isn't complete. But the 

quantum state picks out which observables receive definite values, values that 

"complete" the state description. For these reasons, the modal interpretations allegedly 

stay "closer" to the quantum formalism than Bohm-type theories do. 

§4.1.2. Modal interpretations and the measurement problem 

19To date~ a completely successful equation of motion for these "hidden variables" has not 
been formulated. Dieks and his group at Utrecht are working on this. 



Elby Chapter 4: Decoherence & T1UJdal interpretations 146 

But of course, staying close to the quantum formalism is no virtue if these 

interpretations can't solve the measurement problem. In this section, 111 present the rule 

by which the modal interpretation picks out definite-valued observables in violation of 

the eigenvector-eigenvalue link. Throughout this chapter, my description of "the modal 

interpretation" will refer to the common elements shared by Dieks (1989, 1994) and 

Healey (1989). Those two interpretations disagree about certain subtleties that aren't 

relevant here. (Most of the following discussion applies also to the original modal 

interpretation of van Fraassen (1979), as ~ell as the later interpretations of Kochen 

(1985) and.Clifton (1994)). Then, I'll show how this interpretation apparently solves the 

measurement problem. 

Modal interpretation. For simplicity, consider an isolated quantum system 

composed of two entangled subsystems, 1 and 2. If we let IQ> and IRi> denote a 

complete basis for subsystems 1 and 2, respectively, then the quantum state takes the 

following form: 

The system as a whole possesses no properties other than the ones corresponding to the 

quantum state vector. But the individual subsystems do possess definite values for 

certain observables. To specify which observables, the modal interpretation takes 

advantage of the 

Biorthogonal decomposition theorem: For any quantum state I<J>> describing two 

subsystems, there exists locally maximal Hermitian operators A (describing subsystem 

1) and B (describing subsystem 2) such that I<J>> can be "biorthogonally decomposed" as 
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follows: lcp> = LciiAi>®IBi>, where { IAi>} and { IBi>} are eigenstates of A and B. 

Furthermore, if all the nonzero lcil's are distinct (i.e., if the "contributing" IAi>'s and 

IBi>'s are nondegenerate), then the biorthogonal decomposition is unique. 

This theorem provides the modal interpretation with the "preferred basis" it needs. 

According to the interpretation, if LiCiiAi>®IBi> is the unique biorthogonal 

decomposition of lcp> with respect to subsystems 1 and 2, then observables A and B 

both have definite (but in general unknown) values. If the biorthogonal decomposition 

of lcp> isn't unique, then certain degenerate observables take on defmite values, but no 

locally maximal observables do. Of course, as the quantum state evolves in time, the 

observables picked out by the biorthogonal decomposition keep changing. So, unlike 

Bohm's theory, in which position is always defmite, the modal interpretation allows 

different observables to be "preferred" at different times. 

The modal theory, we see, gives us a prescription to figure out the definite-valued 

observable associated with any object Call that object subsystem 1, and the rest of the 

universe subsystem 2. Biorthogonally decompose the quantum state of the universe 

with respect to subsystems 1 and 2, and read off the observable picked out for 

subsystem 1. It's easy to show that the "basis" selected in this way is the basis that 

diagonalizes the reduced density operator describing subsystem 1. Specifically, when 

lcp> = LciiAi>®IBi>, the reduced density operator describing subsystem 1 is 

p=Lici121Ai><Ail, a "mixture" of A-eigenstates. So, as van Fraassen (1991) points out, 

the modal interpretation assigns definite values as if the ignorance interpretation of 

mixtures were correct. According to the ignorance interpretation of mixtures, a system 

described by a mixture really does occupy one of the eigenstates in that mixture. But 

there's a big difference between a "true" ignorance interpretation and the modal 
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interpretation. As 111 discuss later, a true ignorance interpretation applies consistently 

only to collapse theories, in which the quantum state of subsystem 1 "collapses onto" an 

A-eigenstate (in this example). In the modal interpretation, by contrast, no collapse of 

the wavefunction happens. The quantum state of the universe continues evolving· 

according to Schr&linger's equation. When the density operator of subsystem 1 is 

p=Lilcii21Ai><Ail, then subsystem 1 has a defmite value for A, even though the 

quantum state of the universe (1<1>> = LiciiAi>®IBi>) is not an eigenstate of A. This 

reminds us that the modal interpretation violates the eigenvector-eigenvalue link. In a 

sense, the defmite values picked out by the biorthogonal decomposition are "hidden 

variables," though modal interpreters resist this term. But the interpretation assigns 

definite values to the observables you'd "expect" by looking at density operators. In this 

way, modal interpreters stay "close" to the quantum formalism. 

The measurement problem. Let's see how this interpretation addresses the 

measurement problem, which I'll now briefly review. 

Consider a spin-1/2 particle initially described by a superposition of eigenstates of 

Sz, the z-component of spin: 

Let IR=+> and IR=-> denote the "up" and "down" pointer-reading eigenstates of an 

apparatus that measures Sz. According to pure QM (with no collapse), if the apparatus 

ideally measures the particle, the combined system evolves into 

(1) Ideal measurement 
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Common sense based on everyday experience insists that, after the measurement, the 

pointer reading is definite. But according to the eigenvector-eigenvalue link, the pointer 

reading is defmite only if the quantum state is an eigenstate of R, the pointer-reading 

operator. Since I~> is not an R-eigenstate, the pointer reading is indefinite, according to 

"orthodox" interpretations with no collapse. But notice that state (1) is a l?iorthogonal 

decomposition! Therefore, according to the modal interpretation, the particle has a 

defmite z-component of spin, and the pointer has a definite reading, assuming lc11;elc21. 

So, the modal interpretation neatly solves the measurement problem, at least for ideal 

measurements. (In section 4.2 below, I'll discuss what difficulties arise' for imperfect 

measurements.) And it does so without proposing a modification to Schrodinger's 

equation, such as wavefunction collapse. 

A critic could object that assigning defmite values based on biorthogonal 

decompositions (or equivalently, diagonal density operators) is an arbitrary, physically 

unmotivated "trick." In response, Clifton (1995) shows that, if we want the quantum 

state to "choose" which observables take on definite values, then the biorthogonal 

decomposition is the only "basis selection rule" that obeys certain natural classical 

conditions. But even if the modal basis selection rule weren't a priori unique in some 

sense, we'd still have to take it seriously if it solved the measurement problem. 
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Section 4.2: Imperfect measurements in the modal 

interpretation 
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In this section, I'll show that modal interpretations do not in fact solve the 

measurement problem (without the "help" of decoherence). The argument runs as 

follows: When the measurement interaction isn't ideal, the biorthogonal decomposition 

picks out a basis that might not even be "close" to the pointer-reading basis. This is 

relevant, because real-life measurements of some observables are necessarily non-ideal, 

according to the QM formalism. 

§4.2.1. The problem with non-ideal measurements 

I'll now expand upon an argument first presented by Albert and Loewer (1990) 

about why the modal interpretation fares poorly if measurements are non-ideal. 

For concreteness, continue to consider a spin-1/2 particle about to be measured by 

an Sz-measuring device. If the measurement interaction is non-ideal, then an initially 

spin-up (ISz=+>) particle has nonzero probability of yielding a "down" pointer reading 

(IR=-> ). Similarly, an initially spin-down particle has a nonzero probability of yielding 

an "up" pointer reading. Let's assume that when an initially spin-up particle yields a 

"down" measurement outcome, the particle's state is not always flipped into the ISz=-> 

state. It follows from the linearity of Schrodinger's equation that the post-measurement 

state of the particle/apparatus system is 

~~ (2) Imperfect measurement 

lcp'> = cuiSz=+>®IR=+> + C}21Sz=+>®IR=-> + C2JISz=->®IR=+> + C221Sz=->®IR=->, 
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where the "mistake-term" coefficients c12 and c21 are small but nonzero. Later, I'll argue 

that eq. (2) describes real-life measurement interactions. For now,let me assume this is 

the case. Notice that eq. (2) is not a biorthogonal decomposition. Therefore, according 

to the modal interpretation, neither the apparatus's pointer reading nor the particle's z­

component of spin has a definite value. To fmd out which observables do have definite 

values, we must re-express state lcl)> in eq. (2) as a biorthogonal decomposition. (Such 

a decomposition always exists, as noted above.) Doing so yields 

(2') 

where { IS'=Sj>} are eigenstates of some operatorS' that doesn't commute with Sz, and 

{ IR'=ri>} are eigenstates of some operator R' that doesn't commute with R. Physically, 

S' is a spin-component of the particle along some direction other than the z-direction; and 

R' is an observable whose eigenstates correspond to a macroscopic superposition of 

different pointer-readings. According to the modal interpretation, S' and R' have definite 

values, while the pointer reading does not have a definite value. 

As I'll discuss later, this wouldn't necessarily be disastrous if R' were some 

observable very "close" to the pointer reading R, i.e., if the R' eigenstates were very 

nearly R eigenstates.2° But, as Albert and Loewer point out, no matter what 

measurement-interaction Hamiltonian is assumed, there exist a range of coefficients CI 

and c2 such that a particle initially in state l<p> = C}ISz=+> + c2ISz=->, upon interacting 

with the measuring device, results in a particle/apparatus state whose biorthogonal 

decomposition picks out an apparatus observable not even close to the pointer reading. 

As Dickson (1994) shows, the range over which CI and c2 "misbehave" might be very 

20Formally, R' is "close" toR if and only if, for all i, <R'=r'i I R=ri>""'l. 
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small. But it's not clear that an evil scientist could not prepare a bunch of particles in a 

"misbehaving" state. In brief: A non-ideal measurement does not always yield a 

definite result. Therefore, if real-life measurements are indeed imperfect (as described 

by eq. (2)), the modal interpretation does not solve the measurement problem. 

As mentioned above, eq. (2) fails to describe a non-ideal measurement only if a 

spin-up particle, when it mistakenly yields a "down" measurement outcomes, always 

gets its spin flipped into the ISz=-> state; and vice versa. By playing around with 

measurement-interaction Hamiltonians, you can confirm that such 100%-reliable spin­

flipping is extremely unlikely to occur. Which isn't surprising, because we have no 

physical reason to expect that it would occur. 

§4.2.2. Why measurements are non-ideal, part 1 
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How important is the "imperfect measurement problem" just discussed? In the 

following two subsections, I'll prove that measurements are always non-ideal, according 

to the QM formalism itself. In other words, ideal measurements are physically 

impossible. It follows that no amount of technological prowess can produce an ideal . 

measuring device, even in principle. 

Here, I present a plausibility argument that measuring devices inevitably make 

mistakes, due to unavoidable "fluctuation" interactions between the particle/apparatus 

system and its environment. 

Consider the following experiment: Spin-1/2 particles get shot between Stem­

Gerlach magnets. A large distance behind the magnets, we place two "photographic" 

plates~ Plate I lies in the "up" path of the particles, while plate 2 lies in the "down" path. 
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To be ideal, this measurement of Sz must satisfy the following condition: When 

the initial spin state of the particle is lcj>>= c1ISz=+>+c2ISz=->, then the final state of the 

system is 

hv> = c1lparticle on plate l>®ldot on plate 1> 

+ c2lparticle on plate 2>®1dot on plate 2>; 

or, if the system becomes entangled with environmental degrees of freedom, the reduced 

density operator describing the particle/apparatus system must be a mixture of !particle 

on plate 1>®1dot on plate 1> and !particle on plate 2>®1dot on plate 2>. 

Suppose an ISz=+> particle passes through the magnets. A stray photon or other 

stray particle hitting plate 2 might initiate reactions that produce a dot, thereby registering 

an incorrect "down" reading. In addition, an environmental interaction might prevent the 

"up" dot from forming on plate 1. A photon, for instance, occasionally causes a bound 

electron on the surface of the plate to ionize, via the photoelectric effect That ionized 

electron might "bump into" the incoming particle, preventing it from reaching plate 1. 

I must stress the physical impossibility of completely eliminating these 

environmentally induced errors. We can cool down an experiment to reduce thermal 

fluctuations, but we can never reach absolute zero, even in principle. Although we can 

shield the experiinent from electromagnetic radiation, some blackbody radiation invades 

even the coldest experiments, and blackbody radiation contains all frequencies. Under 

optimal conditions, environmentally induced "fluctuation" errors will occur rarely, 

perhaps only 10-1000 percent of the time. But if such mistakes have any nonzero chance 

of occurring, the pointer reading does not become perfectly correlated with the particle's 
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z-component of spin, and hence, the modal interpretation does not assign a definite value 

to the pointer reading. 

In this section, I have not formally proven that all measurements suffer from 

environmentally induced errors. But I've made this assertion highly plausible. 

A modal interpreter could respond as follows: For a particle described by state lcp>= 

c11Sz=+~ISz=->, lc112 specifies the probability that the particle, upon interacting with 

an ideal measuring device, would acquire definite value "up" for Sz. The physical 

impossibility of performing the relevant ideal measurement in no way threatens the 

coherence or beauty of this modal interpretation. To see why, consider Newton's first 

law. No real-life particle travels uniformly (i.e., at constant velocity in a straight line), 

because of the gravitational forces exerted by other particles. Nonetheless, the first law 

occupies a crucial place within the logical structure of Newtonian mechanics. 

Furthermore, in the limit as the forces acting on the particle become arbitrarily weak, the 

particle follows a trajectory that approaches a straight line. For these reasons, the 

physical impossibility of uniform motion in no way threatens the coherence or beauty of 

Newton's frrst law within the framework of Newtonian mechanics. Similarly, a modal 

interpreter could argue, the fact that measurements can only approach "idealness" does 

not threaten the coherence or beauty of the modal interpretation, even though such an 

interpretation rests, in part, on the notion of ideal measurement 

In reply, I would emphasize that an adequate solution to the measurement problem 

must explain why real-life measuring devices register (or at least seem to register) 

definite results. If an interpretation cannot explain why all (or at least, almost all) 

measuring devices appear to display definite readings, then the interpretation cannot 

explain our experiences. And if an interpretation can't explain our experiences, then it's 

inadequate, end of story. An interpretation must do more than explain the experiences of 
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conscious observers in a hypothetical idealized universe; it must explain our experiences 

in our universe. If an interpretation works only in idealized cases, then it is at best a 

tentative frrst step. 

In reply, a modal interpreter could say, "Fine, my interpretation is just a first step 

towards a deeper understanding of quantum mechanics. But it's a good frrst step." Let 

me pursue this line of thought Imagine an alternate universe, subject to Newton's laws, 

that contains only one particle. This particle would travel uniformly. The physical 

impossibility of uniform motion in a many-particle Newtonian universe follows not 

from Newtonian mechanics alone, but from the existence of many particles (along with 

Newtonian mechanics). Therefore, the concept of uniform motion is coherent within a 

Newtonian framework, even though such motion never occurs in our universe. 

Similarly, a modal interpreter could argue, the faultiness of real-life measurements 

follows not from QM alone, but from the existence of certain kinds of environmental 

interactions (along with QM). We can imagine an alternate universe, subject to 

nonrelativistic quantum mechanics, that contains only two objects, a particle and a 

measuring apparatus. Since this fictional universe contains no stray particles, 

environmentally induced errors won't plague the measurement interaction between the 

particle and the device. My arguments so far give us no reason to deny that the 

measurement interaction could be ideal. Perhaps the concept of ideal measurement can 

coherently occupy a central place within an interpretation of QM, in which case the 

modal interpretation seems to be a useful "first step" toward a deeper understanding. 

In the next subsection, however, I show that modal theorists cannot invoke the 

"good first step" argument of the previous paragraph. Specifically, I demonstrate that 

the quantum formalism itself rules out ideal measurements of most observables. 
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Therefore, an interpretation that "works" only for ideal measurements does not work at 

all. 

§4.2.3. Why measurements are non-ideal, part 2 

I now present a plausibility argument for the following claim: The faultiness of 

most measurements follows not just from environmental "fluctuation" interactions, but 

from the logical structure of QM itself. 

Consider the Stem-Gerlach experiment described above. Suppose the particle 

initially occupies state ISz=+>. This particle is described by a reasonably localized 

spatial wavepacket that deflects upward upon passing between the Stem-Gerlach 

magnets. But the spatial wavepacket has infinitely long "tails," by which I mean the 

wavefunction has nonzero amplitude arbitrarily far from its peak. SchrOdinger's 

equation implies that these tails exist, no matter what spatial wavefunction initially 

described the particle. A wavefunction localized within a bounded volume at time t=O 

develops infinite tails for any time t>O, except perhaps for a finite number of later times 

(out of the continuous infmity of times available). And a particle that begins with infinite 

tails keeps them forever (except perhaps at a finite number of times). Therefore, an 

initially ISz=+> particle has nonzero probability of "hitting" plate 2. By similar 

reasoning, an initially ISz=-> particle has nonzero probability of producing a dot on plate 

1. Consequently, this measurement is non-ideal, no matter how carefully we forge our 

magnets and coat our plates. The measurement error results not from environmental 

interactions, but from wavefunction tails. QM itself, specifically Schrodinger's equation, 

implies that these tails exist 21 Therefore, QM implies that this measurement scheme 

21Furthermore, these infinite wavefunction tails don't go away when we switch to a 
relativistic framework. As Fleming (1965), Ruijsenaars (1981),and Hegerfeldt (1974, 
1985) show, if a Klein-Gordon or Dirac particle is localized at t=O within a bounded 
volume, then the particle has nonzero probability of being found arbitrarily far away at 
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cannot be made ideal, even in principle, even in an alternate universe containing no stray 

particles. 

From this example, you can see that all"indirect" measurements are intrinsically 

non-ideal. Measurement of A is "indirect" if, during the measurement interaction, (i) A 

becomes correlated with X, where X is the position of the particle (or the position of an 

auxiliary system), and (ii) the "pointer reading" becomes correlated with X. I conjecture 

that many physical quantities can only be measured indirectly. Any purported counter-

example will have to withstand intense scrutiny, during which we must treat all inner 

workings of the measuring apparatus quantum mechanically. 

Let me summarize the plausibility argument given above. For most observables, 

"measurement" involves the measured observable becoming correlated with the position 

of the particle or the position of an auxiliary system (e.g., something inside the 

measuring device). QM implies that the spatial wavefunction describing the particle (or 

the auxiliary system) has infinite tails. Consequently, when the pointer reading becomes 

correlated with the position of the particle (or the position of the auxiliary system), a 

huge "mistake" has a nonzero chance of occurring. Therefore, QM implies that indirect 

measurements are necessarily non-ideal. Therefore, since we have no reason to believe 

that all (or even most) observables can be measured directly, an interpreter of QM must 

not lean too heavily on the notion of ideal measurement. 

In subsections 4.2.2 and 4.2.3, I've extended and clarified Albert and Loewer's 

arguments about imperfect measurements, by pinpointing two reasons why measuring 

devices make mistakes. If faulty measurements resulted solely from environmental 

interactions, then we could coherently ground an interpretation of QM partly on the 

any time t>O; the position probability amplitude "leaks out" of the relevant light cone. But 
the problem remains even if the tails merely fill the forward light cone, because that's 
enough to ensure that an up-deflected wavepacket has nonzero probability density at the 
down plate. 
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notion of ideal measurement, invoked counterfactually. But QM itself implies that 

indirect measurements are non-ideal, due to wavefunction tails. In any universe that 

obeys QM, ideal indirect measurements are physically impossible. Therefore, if the 

modal interpr~tation works well only for ideal measurements, it is not even a "good first 

step" toward a deeper understanding of QM. 

Given all this, things look bad for the modal interpretation. In sections 4.3 and 4.4, 

however, we'll see that decoherence comes to the rescue. 
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Section 4.3: Decoherence as savior? What decoherence can 

and cannot do for interpretations of QM. 

1.59 

In this section, 111 explore to what extent.decoherence can save the modal 

interpretation, and also relative-state interpretations, from objections raised against them. 

Decoherence cannot help these interpretations address the general metaphysical 

challenges raised against them.22 But decoherence can help pick out a "special" basis 

that determines which observables receive definite values. 111 explore to what extent 

decoherence rescues the modal (biorthogonal) basis-selection rule, and Zurek's 

(environmental interaction) basis-selection rule, from the basis degeneracy problem and 

the imperfect measurement problem. "Basis degeneracy" occurs when a selection rule 

does not pick out a unique basis. The "imperfect measurement" problem, discussed in 

detail in section 4.2, occurs when a selection rule, designed to choose the pointer-reading 

basis after an ideal measurement, chooses a basis not even close to the pointer-reading 

basis after a non-ideal measurement. Decoherence, we'll see, gives the modal 

interpretation a fighting chance of escaping these technical difficulties. 

§4.3.1. The formalism of decoherence, and what it means physically 

22As Arntzenius (1988) discusses, some versions of the modal interpretation--notably 
Koch en's and Dieks '--do not in general allow "property composition." (Healey's 
interpretation avoids this problem.) For instance, imagine a rock floating through space. 
According to the modal interpretation, it's possible that the left side of the rock has a 
definite position, as does the right side, even though the rock as a whole does not have a 
definite position. We'll see later the decoherence can't eliminate this metaphysical 
weirdness, though decoherence can assure that this weirdness almost never applies to the 
position of parts vs. wholes. 



Elby Chapter4: Decoherence & modal interpretations 

In this section, I clarify the meaning of "decoherence." This is necessary, because 

many claims circulating around the physics community seem to be based on a 

misunderstanding of what decoherence is. 

First, let me clarify what decoherence is not. I'll draw an analogy with a more 

familiar phenomenon, friction in Newtonian mechanics. By friction, I mean regular 

sliding friction as well as air resistance and all "dissipative" interactions of that sort, 

interactions that tend to slow down and heat up macroscopic objects. Friction is not an 

interpretation of classical physics. Nor is it a physical phenomenon implied by the 
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logical structure of classical physics. You can imagine a Newtonian universe consisting 

of just a few particles. In that universe, "friction" doesn't exist. 

Instead, friction is a physical phenomenon whose existence in our universe is 

implied by classical physics. Because our universe is filled with stray particles, a 

macroscopic object moving through the atmosphere--or even through outer space-­

inevitably slows down due to Newtonian interactions with those stray particles. So, we 

can't "turn off' friction, at least, not completely. In some cases, it acts quickly and 

thoroughly, while in other cases, it can be neglected. Crucially, friction must be taken 

into account in order to explain certain phenomenon. 

Decoherence plays a similar role within the realm of quantum physics. 

Decoherence is not an interpretation. Rather, it's a physical phenomenon that results 

from the interaction of a (usually but not necessarily) macroscopic object with many 

"stray particles" in its environment23 Decoherence is not implied by the logical structure 

of QM; in a quantum universe containing only one or two particles, decoherence 

wouldn't exist But since our particular universe is filled with stray particles that interact 

with objects according to certain interaction Hamiltonians, decoherence in our universe is 

23 An object's own internal degrees of freedom interacting with each other in a 
"dissipative" manner can also constitute decoherence. 
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implied by the quantum formalism. Macroscopic objects inevitably undergo a 

"dissipative" interaction with their environment, i.e., an interaction that tends to wipe out 

the phase coherence between macroscopically distinct states. This is decoherence. 

Let illustrate decoherence with an example. Consider a standard double-slit 

experiment, in which a bunch of "coherent" small particles pass through a double slit 

with a "photographic" plate behind it. After passing through the slits, a given particle is 

described by a macroscopic superposition, such as hv>= 2-1/2{ lpassed through slit 1> + 

lpassed through slit 2> }. Because this "combination" of states is a superposition 

(instead of a "mixture"), those two states "interfere," producing the characteristic pattern 

on the photographic plate. But if the particle, soon after traversing the slits, interacts 

strongly with stray particles, it becomes entangled with those particles. Depending on 

the "severity" of this environmental interaction, the interference effects get more and 

more "washed out." 

To see how this decoherence works formally, let me streamline my notation for the 

particle states by letting 1~1> and I~> denote lpassed through slit 1> and lpassed through 

slit 2>. If the particle doesn't interact with its environment, then it is described by the 

quantum state hv>= 2-112{1~1> + 1~>}, corresponding to density operator 

with c1=c2=2-1/2 in this case, (The subscript "s" stands for "superposition.") The 

"interference terms" c 1c2*l~1><~l and c2c1 *l~><~1l encode the size of the interference 

effects. 
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But if the particle interacts with its environment, it becomes entangled with 

environmental degrees of freedom. Let IE1> and IEz> denote the state of the 

environment after interacting with a particle in·state I<Pt> and l<!>z>, respectively. Then, 

the particle/environment state right before the particle reaches the photographic plate is 

We can find the new density operator describing the particle by tracing over the 

environmental degrees of freedom. To do so, let l-Et> denote an environmental state 

that's orthogonal to lEt> ~d that lies in the "plane" of Hilbert space picked out by the 

rays lEt> and IEz>: 

The "reduced" density operator describing the particle is 

= 2-t<E1 I<Pt>®IEt><<!>ti®<Et I Et> + 2-t<Et I<Pt>®IEt><<j>zi®<Ez lEt> 

+ 2-t<Et 14>2>®1Ez><<!>ti®<Et I Et> + 2-1<Et 14>2>®1Ez><<j>zi®<Ez I Et> 
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+ 2-1<-Et lch>®IEt><chi®<Et I -Et> + 2-1<-Et lch>®IEt><<I>21®<E2 l-Et> 

+ 2-1<-Et I4>2>®IE2><chi®<Et I -Et> + 2-1<-Et I4>2>®IE2><4>2I®<E2 I -Et> 

= 2-1{ 14>t><4>tl + <E2 1Et>14>t><4>21 + <Et IE2>I4>2><4>tl + I<E2 

IEt>l2l4>2><4>2l 

since I<E2IE1>l2 + I<E2 I-E1>12 = 1, as the above diagram shows. (To see this, note 

that I<E2IEt>l= cos e and I<E2I-Et>l= sin e.) In summary, the particle's density 

operator takes the form 

with lc12l and lc21l proportional to I<E2IEt>l. In other words, the interference terms 

(and the resulting interference effects) get more and more "washed out" as the 

environmental states approach orthogonality. In the "decoherence" limit as I<E2 

IE1>1~0. the interference terms disappear entirely, leaving us with the "mixture" 

In tfiat limit, the particles don't produce an interference pattern on the photographic plate. 

Instead, they produce a "classical" statistical mixture, exactly as if each individual particle 



Elby Chapter 4: Decoherence & modal interpretations 164 

had passed through slit 1 or slit 2. The photograph plate would display two dark 

clumps, one behind slit 1, the other behind slit 2 . 

. But this classical statistical mixture does not automatically imply that each 

individual particle really does pass through one slit or the other, in the classical sense. In 

fact, we have reasons for denying that classical interpretation. Imagine a double slit 

experiment in which the experimenter can turn on or turn off the "environment" 

(perhaps a bunch of air molecules, perhaps a photon bath) between the slits and the 

photographic plate. Of course, she can't turn off the environment completely; but she 

can control its "strength." Crucially, let's say the environment is initially "off," and 

experimenter doesn't decide whether to switch it on until after the particle has traversed 

the slits. If the experimenter leaves the environment "off," then she gets an interference 

pattern. By the usual interference arguments, this suggests that the particle doesn't pass 

through slit 1 or slit 2, in the classical sense. But now suppose the experiment is 

repeated; and for each particle, the environment is switched on (after it has traversed the 

slits). Since this new experiment is exactly the same as the previous one until after each 

particle has already passed through the slits, then either (i) it's still the case that the 

particle doesn't pass through slit 1 or slit 2, in the classical sense; or (ii) each particle 

somehow "knows" ahead of time whether the experimenter will turn on the 

environment, and when it knows the environment will be turned on, it decides to pass 

through slit 1 or slit 2 in the classical sense. 

Option (ii) implies something far worse than Bell locality violation; it implies 

backwards in time causation, or else a pre-planned "conspiracy." For this reason, a non­

hictden-variable explanation of this experiment should assert that the washing out of the 

interference pattern results from the particles' interactions with the environment, not 

from the particles' really passing through slit 1 or slit 2 in the classical sense. 
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Of course, in some hidden-variable theories such as Bohm's, the particle does in 

fact pass through one slit or the other, in the classical sense. The point of my argument 

is that, if the particle behaves classically at the slits when the environment is turned on, it 

should also behave classically at the slits when the environment is turned off (assuming 

the environment isn't "switched on" until after the particle traverses the slits). 

I'm dwelling on this experiment in order to make the following interpretive point: 

Although "decoherence" results in classical statistics (i.e., essentially no interference), we 

cannot automatically conclude that the underlying individual objects behave classically. 

Classical behavior implies classical statistics, but the converse fails. The double slit 

experiment illustrates this point perfectly. Unfortunately, you can find many 

misunderstandings in the literature that boil down to an unwarranted assumption that 

classical statistics imply classical behavior (in some sense). 

Now that I've explicated decoherence with an example, let me show how it applies 

to measurement interactions. 

Zurek (1993a,b), Joos and Zeh (1985), Bacciagaluppi and Hemmo (1995), and 

others use general plausibility arguments and worked examples to argue the following: 

The measuring apparatus undergoes a "dissipative" interaction with its environment. 

This interaction quickly destroys the coherence between the two branches of the , 

superposition in eq. (1). 

(1) Ideal measurement 

In this way, the environment picks out the pointer-reading basis. 

To see what this means formally, let IE+> denote the state of the environment (i.e., 

the, rest of the universe) after it interacts wlth a particle/apparatus system in state 
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ISz=+>®IR=+>. Similarly for IE->. When a particle/apparatus system described by eq. 

(1) interacts with its environment, the universe evolves into 

(3) 

As time passes, the environmental states corresponding to different pointer readings 

quickly approach orthogonality. Formally, as t--7oo, <E+IK>--X). For all practical 

purposes, this "decoherence" takes less than a billionth of a second. In this limit, the 

reduced density operator describing the particle/apparatus system, found by tracing over 

the environmental degrees of freedom, is the mixture 

Put roughly, the environment "damps out" the interference terms in the density operator 

lcp><cpl. 

I must stress that according to pure QM, Pm describes the particle/apparatus system 

only because eq. (3) describes the universe, with ~IE->=0 in the inf'mite-time limit. In 

other words, Pm is a "reduced" ("improper") mixture, found by tracing out ariother 

subsystem (the environment) with which the system of interest is entangled. As the 

double slit experfment illustrates, we can't automatically apply a "classical" interpretation 

to this classical statistical mixture. I'll have more to say about that in the next subsection. 

Eq. (1), however, does not describe most real-life (non-ideal) measurements. The 

more realistic state contains "mistake terms": 

(2) Imperfect measurement 
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lq>'> = cuiSz=+>®IR=+> + C121Sz=+>®IR=-> + C2t1Sz=->®IR=+> + C221Sz=->®IR=->, 

Remember, even if our equipment is flawless, imperfect measurements follow 

inevitably from wavefunction tails and from environmental fluctuations whose existence 

is implied by QM. For this reason, a Stem-Gerlach experiment cannot be made ideal, 

even in principle. Although CI2 and c21 can be inade small, they cannot be eliminated 

Why is this important? Because, after the particle/apparatus system interacts with 

its environment, the fmal state is given not by eq. (3), but by 

(4) I'P'> = cuiSz=+>I®IR=+>®IE++> + ct21Sz=+>®IR=->®IE+-> 

+ cztiSz=->®IR=+>®IK+> + C221Sz=->®IR=->®IE __ >. 

As t---7oo, the environmental states corresponding to different pointer readings approach 

orthogonality: <E++ IE+->---70, <E-+ IE+->---70, <~+ IE__>---70, and <E-+ IE __ >---70. But 

at any finite time, these states are not strictly orthogonal. 

Instead of narrowly focusing on how these considerations affect the modal 

interpretation, let me branch out and explore which other classes of interpretations are 

helped by decoherence. For now, I'll examine how "decoherence-helped" interpretations 

interpret eq. (3). Later, we'll see whether these interpretations successfully carry over to 

non-ideal meastirements. 

§4.3.2. Decoherence-helped interpretations 

· Decoherence-helped interpretations--and we11 see that more than one exists--agree 

on the following: 
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When the state of the universe takes the fonn of eq. (3) with the environmental states 

(nearly) orthogonal, then the pointer reading, or some observable "close" to the pointer 

reading, is "definite." 

Several interpretations fit into this framework, due partly to the different senses in which 

an observable can be "definite." I'll carve up decoherence-helped interpretations into 

different classes based upon their answers to two crucial questions: 

(A) Does "definite" mean "definite in the absolute, classical sense"? 

(B) Does the eigenvector-eigenvalue link hold? 

Decoherence interpretation #1: "Definite"= "classically definite," but the eigenvector­

eigenvalue link fails. 

According to decoherence interpretation #1, an observable (e.g., the pointer reading) 

can possess a definite value even when the quantum state isn't an eigenstate of the 

corresponding operator. To pick out which observables become defmite, we can rely on 

the form of the quantum state, as modal interpreters do; or we can invoke formal 

properties of the relevant interaction Hamiltonian. Although these approaches differ in 

formal detail, they're both part of the same program of letting the interactions between 

subsystems deteimine which observables acquire definite values. 

Therefore, decoherence interpretation #1 is just a "modal" interpretation, perhaps 

with a different basis-selection rule. 

Decoherence interpretation #2: "Definite" = "classically definite," and the 

eigenvector-eigenvalue rule holds. 
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According to this interpretation, which is prima facie appealing to many physicists 

I've spoken with, we can assign an ignorance interpretation to the mixture describing the 

particle/apparatus system. That is, we can say that the particle/apparatus system really 

does occupy a quantum state corresponding to one of the "legs" of the mixture. But 

despite its intuitive appeal, decoherence interpretation #2, is inconsistent Here's why: 

By assumption, the eigenvector-eigenvalue rule holds. Therefore, the apparatus has 

a defmite pointer reading only if the quantum state is an eigenstate of R. But the 

quantum state, given by eq. (3) or by eq. (4), is not an eigenstate of R. 

The inconsistency of decoherence interpretation #2 illustrates D'Espagnat's (1976) 

point that within pure QM, we cannot assign an ignorance interpretation to an 

"improper" mixture. It also underscores my conclusion from the double slit experiment, 

that classical statistics do not imply classical behavior. 

Decoherence interpretation #3: Relative-state. 

According to this view, the pointer reading becomes definite not in some absolute 

sense, but relative to its branch of the superposition. Within each branch, the 

eigenvector-eigenvalue rule holds. 

Before discussing whether decoherence solves the ontological problems associated 

with relative-state and many-world interpretations, I'll briefly discuss what these 

interpretations are supposed to mean. Both Zurek (1993b) and Zeh (1993), two of the 

most respected decoherence theorists, stress that their interpretations flesh out Everett's 

"relative-state" interpretation, not deWitt's many-world interpretation. (See deWitt and 

Graham's 1973 anthology.) Although Zurek and Zeh (and Everett) never 

unambiguously spell out the precise ontology of their interpretations, 111 try to 

reconstruct an argument that captures (or at least supports) their views. 
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According to de Witt, after a measurement, each branch of the relevant superposition 

lives in its own world. If these separate worlds are physically inaccessible to each other, 

then no interactions can occur between inhabitants of the different worlds, even in 

principle. Therefore, no "interference" can occur between different branches of the 

superposition, even in principle. But Zurek and Zeh espouse "pure" QM, according to 

which Schr&linger's equation governs all state evolution, and hence all interference 

effects pennitted by Schrodinger's equation are possible in principle. For this reason, 

Zurek and Zeh want the different branches of eq. (3) to inhabit different "realities" that 

could in principle (though not in practice) interfere. This, along with the radical 

metaphysics of the many-world view, could partially explain why Zurek and Zeh ally 

themselves more with Everett than with deWitt. 

Unfortunately, the ontology of the Everett-Zurek-Zeh view is unclear. To see why, 

consider a system in state 

1'1'> = qiSz=+>®IR=+>®IE+> + czl$z=->®IR=->®IE>. 

We can "see" interference between the two branches of the superposition by measuring 

Q = S'®R'®E', where S' doesn't commute with Sz, R' doesn't commute with R, and E' 

doesn't commute with E= aiEv<E+I + biK><EJ. Although we cannot in practice 

measure Q, the quantum formalism does not rule out such measurements in principle. 

Because the "up" and "down" branches can interfere, those branches cannot be said to 

inhabit "separate" physical realities. Therefore, what it means for an observable to 

become definite "relative to its branch" is ambiguous. See Albert and Loewer (1988) for 

a detailed discussion of this objection. 
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Some physicists downplay the severity of this metaphysical problem. They argue 

as follows: Sure, when the two branches interfere, it becomes meaningless to assert that 

the pointer reading is definite relative to its branch. But most of the time, the up and 

down branches don't interfere. During these times, it's unproblematic to claim that the 

pointer reading is definite, relative to its branch. 

This counterargument fails to resolve the ontological ambiguities raised above. 

When the two branches aren't interfering, do two "copies" everything exist? If not, then 

in what sense are both measurement results actualized? If so, and if the two branches 

don't inhabit separate worlds (in deWitt's sense), then how do they co-exist in space and 

time? In some recent talks, Zurek has taken a more subjectivist stance; minds "live" in 

one branch or the other, although the world itself doesn't split. But since I have nothing 

to add to the general arguments for and against relative-state and many-world 

interpretations, I won't press these questions any further. My point is this: First, the 

ontology of the relative-state (as opposed to many-world) framework adopted by some 

decoherence theorists is, at best, ambiguous. Second, decoherence cannot help us to 

address the metaphysical difficulties facing relative-state and many-world interpretations. 

If you think these interpretations make no sense, decoherence cannot change your mind. 

Summary. In this subsection, I sketched the three most popular decoherence-helped 

interpretations. (Other such interpretations, though logically possible, have not been 

developed to my knowledge.) Decoherence cannot help the modal, relative-state, and 

many-world interpretations fend off general metaphysical criticisms. What decoherence 

can do is help these interpretations pick out a "special" basis. In the modal view, this 

special basis determines which observables acquire definite values. In the relative-state 

and many-world view, this special basis determines how physical reality "branches" (in 

some sense). 
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I'll now explore to what extent decoherence can help these interpretations select the 

pointer-reading basis. 

§4.3.2. Decoherence: Selecting the "right" basis 

Any interpretation relying on a "special" basis must specify formal rules that pick 

out the basis. Since we're trying to explain \VhY measurements result in defmite pointer 

readings, a successful basis-selection rule must choose the pointer-reading basis, or 

something very "close" to the pointer reading basis, in almost all situations we want to 

call "measurements." With respect to basis selection, the decoherence-helped 

interpretations discussed above potentially suffer from two major obstacles: The 

imperfect measurement problem, and the basis degeneracy problem. 

Basis degeneracy problem. This difficulty arises when a basis-selection rule 

doesn't always choose a unique basis. As an example, consider the usual "modal" rule, 

also advocated by deWitt for many-world interpretations, ofletting the biorthogonal 

decomposition pick out a special basis. If any two ICjl's are equal, then the quantum state 

has multiple biorthogonal decompositions. For instance, consider the particle/apparatus 

system in state 

lcp> = CJISz=+>®IR=+> + C21Sz=->®IR=->. 

If ct=c2=2-112, then lcp> can be rewritten as 

lcp> = 2-112[1Sx=+>®IR'=+> + ISx=->®IR'=->], 

where 
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ISx=±> = 2-l/2[1Sz=+> ± ISz=->] 

IR'=±> E 2-l/2[1R=+> ± IR=->]. 
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Because of this degeneracy, nothing is "special" about the pointer-reading basis, at least, 

not if we retain the modal basis-selection rule. According to the modal interpretation, if 

the biorthogonal decomposition isn't unique, then none of the relevant nondegenerate 

observables acquires a defmite value. This is troublesome, at least in principle, because 

we want Sz-measurement of a particle initially in state ISx=+> to yield a defmite pointer 

reading. 

Decoherence cannot rescue an interpretation from the basis degeneracy problem. 

There will always exist coefficients Ct and Cz such that a particle initially in state lcp> = 

ctiSz=+> + c2ISz=->, after interacting (ideally or non-ideally) with a measuring 

apparatus that then interacts with the environment, results in a degenerate biorthogonal 

decomposition with respect to the apparatus. But arguably, the basis degeneracy 

problem isn't really a problem at all. Of the infinite number of possible initial states of 

the particle, only a fmite number are such that the pointer basis ends up degenerate. And 

each of those "anomalies" will be "surrounded" in Hilbert space by a continuum of well­

behaved initial states. So, no matter how precisely you can prepare your initial states 

(provided you can't do so with infinite precision), we expect such occurrences to happen 

with zero probability. 

Nonetheless, such an occurrence is possible. Should this bother us, i.e., should it 

count as a "strike" against the modal interpretation (or any interpretation that suffers 

from basis degeneracy)? David Albert (personal communication) gives us insight into 

this metaphysical dilemma by raising an analogous example from classical statistical 
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mechanics. It's possible (though extremely unlikely) for a cold bucket of water to 

spontaneously boil. This highly counterintuitive--and never experienced--behavior is 

predicted by the theory. But we don't count it as a strike against the theory, ·because the 

theory explains our more commonplace experiences so accurately~ Similarly, if 

quantum mechanics interpreted modally explains our everyday experiences of definite 

pointer readings, we can't discredit such an interpretation simply because it predicts the 

possibility of a counterintuitive, never-experienced occurrence, provided it assigns 

sufficiently low probability to such an occurrence. 

A purist could respond that the pointer shouldn't be "allowed" to have an indefinite 

reading, even in principle. But I tend to side with Albert The ''job" of a physical theory 

and its interpretation is to explain our experiences. If a theory and interpretation 

accomplish that goal with simplicity, elegance, breadth, etc., then it's at most a minor 

aesthetic annoyance if the theory!mterpretation predicts the occasional oddball 

occurrence. If you can forgive classical statistical mechanics that sin, then you should 

also forgive the modal interpretation of quantum mechanics. 

So, the basis degeneracy problem isn't really a problem; or, if it is a problem, 

decoherence can't do anything about it. 

Now let's return to the imperfect measurement problem. I'll save until section 4.4 a 

full discussion of how well the modal interpretation fares. (The suspense builds!) For 

now, let me take a close at Zurek's basis-selection rule. Instead of relying on the form of 

the quantum state, he lets the apparatus/environment interaction Hamiltonian, Hint• pick 

out a basis. Here's how: 

Let R' denote an arbitrary apparatus observable that doesn't commute with the 

pointer reading, R. Using "toy" examples, along with general considerations, Zurek 

argues that Hint commutes with R, but does not commute with any R'. In rough terms, 
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the interaction between the apparatus and its environment uniquely picks out the pointer­

reading basis. Formally R is a "special" pointer-reading observable iff [Hint.R]=O. 

To see the physical motivation behind this selection rule, pretend that the apparatus's 

time evolution depends only on its interaction with the environment In other words, 

"tum off' the apparatus's internal Hamiltonian, Ho. In this pretend universe, if the 

apparatus begins in a pointer-reading eigenstate at time t=O, it remains in that eigenstate, 

because [Hmt.R]=O. In words, the apparatus/environment interaction leaves the pointer 

reading undisturbed. By contrast, the environment would knock the apparatus out of an 

R'-eigenstate. 

(Because Hint is tremendously complicated in all but the simplest examples, we 

don't yet know whether Zurek's basis-selection rule avoids the basis degeneracy 

problem. But based on the examples worked out so far, the prospects look promising.) 

Zurek's basis-selection rule cannot suffer from the imperfect measurement 

problem, because the basis picked out by the apparatus/environment interaction in no 

way depends on the measurement interaction between the apparatus and the "particle." 

Formally, the special basis depends only on the apparatus/environment interaction 

Hamiltonian Hint. not on the particle/apparatus interaction Hamiltonian Hmeasurement· 

Therefore, it doesn't matter how imperfect Hmeasurement is. 

But don't get the idea that Zurek's basis selection rule suffers from no problems. 

Zurek does not specify when the relative-state "branching" occurs, i.e., at what time the 

pointer reading acquires a definite value (relative to its branch). Since the environment 

interacts with the apparatus before, during, and after the measurement, it's not clear when 

the measurement ends, so to speak. To address this difficulty, Zurek and colleagues 

must look beyond Hint· 
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Before continuing, it's worth pointing out that, at least in certain crucial idealized 

cases of decoherence, the pointer basis picked out by Zurek's rule is precisely the basis 

asymptotically approached by the modal (biorthogonal) rule. For instance, in the 

standard "particle in a hannonic-oscillator heat bath" example, the interaction 

Hamiltonian is a function of (and therefore commutes with) the particle's position 

operator. Hence, Zurek's rule selects position as the preferred basis. What about the 

modal basis-selection rule? The biorthogonal decomposition of the particle-plus-heat­

bath picks out a particle operator that asymptotically approaches the position operator. 

Roughly put, modal interpreters assign a defmite value to a physical quantity '\rery 

close" to particle position. 

At least in some cases, Zurek and the modal interpreters agree about what basis gets 

selected. 24 The only difference is that Zurek's interpretation picks out the expected 

pointer-reading basis at all times, whereas the modal interpretation at finite times picks 

out a basis very close to the pointer-reading basis. So, as mentioned above, Zurek's 

basis-selection rule solves the imperfect measurement problem. But the modal 

interpretation still suffers from the problem, unless you think that "close is good 

enough." Again, I'll discuss the "closeness" question more carefully in section 4.4 

below. 

When the system of interest is macroscopic, the pointer basis picked out by both 

interpretations usually corresponds to states of highly-localized position. Or at least, 

that's the hope. 

(Of course, the modal interpretation also picks out a basis before decoherence kicks 

in, and also picks out a basis in situations where decoherence doesn't happen or happens 

24In Elby (1994), I suggested that modal interpreters consider adopting Zurek's basis 
selection rule. 
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very slowly. Zurek's has nothing to say about those cases, opening his interpretation up 

to a charge of "incompleteness.") 

We now see that, in many crucial cases, the major difference between Zurek's 

(relative-state) interpretation and the modal interpretation is metaphysical, not technical. 

Remember, in the modal interpretation, the "selected" obsetvables take on definite values 

that are controlled by an independent equation of motion. There's~ust one "branch" of 

the universe, and a given defmite-valued obsetvable possesses just one of its many 

possible values. By contrast, in relative state interpretations, all the different possible 

values of an obsetvable are actualized, in some sense, due to "branching" of the 

universe. 

§4.3.3. Summary 

Decoherence cannot help modal, relative-state, or many-world interpretations fend 

off general metaphysical criticisms. The value of decoherence lies in its ability to pick 

out a special basis. In the infinite-time limit, modal interpreters and Zurek agree about 

what "pointer-reading" basis gets picks out. But as I'll discuss below, at finite times, the 

biorthogonal decomposition picks out a basis close to pointer-reading basis. 

Furthermore, there exist a nonzero-measure set of initial states such that the 

biorthogonally-selected basis doesn't get very close to the pointer-reading basis until a 

noticeable length of time has passed. So, in deciding whether the modal interpretation 

solves the measurement problem, we must decide whether (i) "Close is good enough," 

and (ii) It's acceptable that in some cases, nothing even close to the pointer reading takes 

on a definite value. In the next section, I'll press on exactly these questions. 
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Section 4.4: Does the modal interpretation, with the help of . 

decoherence, solve the measurement problem? 

NOTE TO READERS: A better version of the following argument can 

be found in a paper by Bacciagaluppi, Elby, and Hemmo, (probably) in 

the British Journal for the Philosophy of Science, 1996 or 1997. 

4.4.1. INTRODUCTION 

Taking into account decoherence between systems and their environments, we'll 

explore how well "modal" interpretations address the measurement problem. 

Our argument relies on teasing apart two strands of the measurement problem: the 

objectification of pointer readings versus the objectification of observers • beliefs about 

pointer readings. An adequate solution to the measurement problem must explain why a 

person, after looking at a pointer, perceives its reading as definite. Usually, interpreters 

of quantum mechanics (QM) assume that if the pointer reading becomes definite, then 

an observer "automatically" acquires the corresponding definite belief. In modal 

interpretations, however, the definite values of observables at time to play no role in 

"choosing" which observables possess defmite values at later time t1• The quantum state 

alone selects which physical quantities receive defmite values. Therefore, the 

definiteness of a pointer reading does not guarantee that an observer acquires a definite 

belief about its reading. Whether the person acquires a definite belief depends entirely 

on the biorthogonal decomposition of the overall quantum state in terms of her brain. 

For this reason, the debate about whether modal interpretations pick out an 

observable sufficiently "close" to the pointer reading partially misses the point Even if 
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the pointer reading is defmite, a person might not acquire a defmite belief about the 

pointer reading, in which case the measurement problem remains unsolved. 

We show that whether an observer acquires a definite "pointer-readirtg" belief 

depends on matters of fact about brain neurophysics. Specifically, we pinpoint 

necessary conditions that must be satisfied by the physical brain states underlying our 

definite-belief states, in order for the modal interpretation to assign the observer a 

definite belief. We then establish the plausibility of these conditions. Finally, we outline 

what philosophical moves a modal interpreter must make to conclude that the pointer 

possesses a defmite position. 

This paper advances two kinds of arguments: Direct arguments about the modal 

interpretation, and methodological meta-arguments about the kinds of "tests" to which 

we should subject interpretations of QM. Our direct arguments attempt to show that 

•Definite pointer readings do not imply definite beliefs about pointer readings. 

• Whether the modal interpretation solves the measurement problem depends on 

how brains interact with their environment 

•Human brains (and other conceivable conscious beings' brains) probably satisfy 

two necessary conditions needed for the modal interpretation to work. 

•To assign 'definite' pointer positions, modal interpreters must make some 

nontrivial yet palatable philosophical maneuvers. 

Our controversial methodology insists on dragging mental states and physical brain 

states into the discussion. Despite our lack of knowledge about the relationship between 

the mental and the physical, a critical evaluation of an interpretation cannot ignore the 

observer, even when the observer supposedly is not an integral part of the interpretation. 

We hope to demonstrate the possibility of invoking brain and mental states to make 

coherent arguments for and against an interpretation. 
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4.4.2. NOTATION AND PRELIMINARY ASSUMPTIONS 

Consider a spin-112 particle prepared in a superposition of eigenstates of Sz, the z­

component of spin. Denote these eigenstates ISz=+> and ISz=->, respectively. The 

particle interacts with an apparatus designed to measure Sz. Let.R denote the pointer­

reading observable, with eigenstates IR=+> and IR=->, respectively. After the 

measurement, Diana looks at the pointer. More technically, Diana's brain interacts with 

the apparatus, largely via the environment of photons. According to QM, the physical 

state of her brain becomes entangled with the apparatus. 

If we want QM to help explain why Diana acquires a defmite pointer-reading belief, 

then we must assume a connection between the mental and the physical. In particular, 

we assume "supervenience": mental states supervene on physical states. 

Some would say our reasoning shouldn't get off the ground, precisely because the 

relationship between mental and physical is obscure. But many compelling theories of 

mind assume supervenience. If an interpretation of QM combined with those theories 

of mind can help to explain our defmite beliefs, then the QM interpretation and those 

theories of mind receive new support. But if a QM interpretation along with 

supervenience demonstrably cannot explain our post-observation beliefs, then adopting 

that interpretation practically forces us to renounce supervenience. Unless we're 

convinced that supervenience fails, not merely skeptical about whether it holds, we 

shouldn't let an interpretation of QM make us renounce supervenience. For these 

reasons, it's worthwhile to explore whether an interpretation of QM, along with 

supervenience, can explain why we acquire definite beliefs about pointer readings. 
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Let l"up",n> denote a brain state corresponding to a "pointer-reading-is-up" belief 

state. Since many different brain states may fit this description, the index n is needed. 

Most likely, an uncountable infinity of brain states are "up" states. Our notation won't 

try to capture this fact, because nothing rides on it. 

To define these brain states more carefully, we must consider the "eigenvector-

eigenvalue" link, according to which an obsetvable Q possesses ,.a definite value if and 

only if the system occupies an eigenstate of the corresponding operator Q. If the 

eigenvector-eigenvalue link holds, and if Diana believes the pointer registered up~ then 

by definition her brain occupies state l"up",n> for some n.25 Similarly for l"down",n>. 

We do not assume a 1: 1 correspondence between physical brain states and belief states. 

For brevity, we11 often calll"up",n> an "up" belief state, though it's really a physical state 

underlying the an "up" belief. 

Let IE+++n> denote the state of the· environment (i.e., the rest of the universe) 

corresponding to a particle/apparatus/brain in state ISz=+>®IR=+>®I"up",n>. To see 

what this means, suppose the particle initially occupies state let>>= CtiSz=+> + c2ISz=->. 

Suppose the apparatus ideally measures the particle, but Diana "non-ideally" perceives 

the pointer reading. In other words, when Diana looks at an apparatus in state IR=+>, 

she has nonzero probability of perceiving the reading as down; and vice versa. Then the 

universe ends up in state 

Ctt1Sz=+>®IR=+>®I"up",1>®1E+++l> + Ct21Sz=+>®IR=+>®I"down",1>®1E++-1> 

25Strictly speaking, l"up",n> might not refer solely to Diana's brain, which constantly 
exchanges particles with the rest of Diana's body and with its immediate environment. 
Rather, l"up",n> refers to the state of Diana's brain, body, and perhaps the environment 
with which she has recently interacted (other than the particle and the apparatus), when 
Diana believes the pointer registered up. 
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+ C2t1Sz=->®IR=->®I"up",2>®1E __ +2> + C221Sz=->®IR=->®I"down",2>®IE ___ 2> 

(1) 

State (1) does not represent real life. We use it merely to illustrate notation, and to 

bolster an argument presented in section 4 below. 

4.4.3. TWO MEASUREMENT PROBLEMS 

In this section, we tease apart two strands of the measurement problem: The 

objectification of pointer readings, versus the objectification of belief states. 

On most occasions, when Diana looks at the pointer, she perceives its reading as 

definite, either up or down. But according to the eigenvector-eigenvalue link, a system 

described by state (1) or any similarly-entangled state does not possess a definite 

apparatus pointer reading. Similarly, if the eigenvector-eigenvalue link holds, we can't 

say Diana has a definite "up" belief, because (1) isn't an eigenstate of any operator of the 

form LnLmanml"up",n><"up",ml. 

Some interpretations of QM, such as David Bohm's (see Bohm et a/. 1987), 

address the pointer-objectification problem; they explain why the pointer reading is 

indeed definite. For example, according to Bohm, particles always have definite 

positions, and hence pointers have definite centers of mass. Notice that Bohm 

renounces the eigenvector-eigenvalue link. 

Other interpretations attack the measurement problem by showing why our beliefs 

about pointer readings become defmite. According to such interpretations, the pointer 

reading may be indefinite; but that's acceptable, provided we can explain why people 

perceive pointers as having definite readings. Some versions of Everett's relative-state 
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interpretation may fit under this umbrella; Albert and Loewer's (1988) many-minds 

interpretation certainly does. Such interpretations attempt to solve only the belief­

objectification problem, not the pointer-objectification problem. 

Critics of this approach argue as follows: If pointer readings aren't definite, but we 

nonetheless perceive them to be definite, then nature is fooling us into believing 

something untrue. In response, the belief-objectificationists argue that we can demand 

only that an interpretation "save the phenomena" by showing why our beliefs behave as 

they do. 

We need not take a stand on whether explaining belief objectification is sufficient 

for solving the measurement problem. But it's certainly necessary. To see why, 

imagine an interpretation according to which a pointer possesses a definite reading, but 

Diana's brain--incapable of directly "perceiving" the pointer reading--ends up in an 

"effective" physical state corresponding to a superposition of "up" and "down" belief. 

Such an interpretation fails, because it cannot explain why Diana believes, with all her 

heart, that she perceived an up pointer reading. (The fact that Diana sometimes isn't sure 

does not affect the above argument, because on occasions when Diana is sure the pointer 

registered up, the interpretation must account for her definite belief.) 

This point sometimes gets forgotten. Interpreters of QM tend to take it for granted 

that once the pointer-objectification problem is solved, the belief-objectification problem 

takes care of itself. As the previous paragraph shows, however, definite pointer readings 

alone do not entail definite pointer-reading beliefs, and hence do not constitute a full 

solution to the measurement problem. 

In sections 4.4.6 through 4.4.8, we show that modal interpretations teeter near the 

edge of this trap, but probably don't fall in. 
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4.4.4 MODAL INTERPRETATION 

To the set the stage for section 6, we now briefly review modal interpretations. 

Whether these interpretations solve the belief-objectification problem depends on matters 

of fact about brain neurophysics. 

Although the modal interpretations of van Fraassen (1979, 1991), Kochen (1985), 

Dieks (1989, 1994), and Healey (1989, 1995), differ in significant ways, they share 

enough common elements for us to discuss them as a group. By "modal interpretation," 

we mean the common elements shared by Kochen, Dieks and Healey. 26 

Modal interpretations retain the linear dynamics of QM, but break the eigenvector-

eigenvalue link; an observable can possess a definite value even when the quantum state 

isn't an eigenstate of the corresponding operator. To pick out which observables receive 

definite values, the modal interpretation relies on the biorthogonal decomposition 

theorem. This theorem proves that any state vector describing two subsystems can, for 

a certain choice of bases, be expanded in the simple "biorthogonal" form :LiciiAi>®IBi>, 

where the { IAi>} and { IBi>} vectors are orthonormal, and are therefore eigenstates of 

Hermitian operators A and B associated with subsystems 1 and 2, respectively. 

Kochen, Healey, and Dieks assert that when :LiciiAi>®IBi> is the unique biorthogonal 

decomposition of the quantum state with respect to subsystem 1 and 2, then A and B 

both have definite values.27 (Subsystem 2 can be the "rest of the universe.") So, which 

26van Fraassen' s interpretation is developed along somewhat different metaphysical 
lines. 

27Some recent formulations of the modal interpretation let the unique spectral resolution 

of the density operator describing a subsystem pick out the definite observables 
associated with that subsystem. If the universe occupies a pure state, this basis 
selection rule is equivalent to the biorthogonal basis selection rule. 
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observables possess definite values is detennined entirely by the quantum · state. 

According to Dieks and Healey, a separate set of dynamical laws control the stochastic 

evolution of the definite values. 

Let's apply this "basis-selection" rule to state (1). The pointer reading is definite if 

that state can be written in the form IR=+>®I~1>+ IR=->®1~2>, where <~~~~2>=0. By 

inspection, state (1) already takes that form: 1~1>=1Sz=+>~(c11 1"up",1>®1E+++I> 

+c1l'down",1>®1E++-1>) is orthogonal to 1~2>=1Sz=->®(c21 1"up",2>®1E __ +2> 

+c221"down",2>®IE_ __ 2>), because <Sz=+ISz=->=0. So, if measurements are ideal, then 

the modal interpretation solves the pointer-objectification problem. 

Does this mean the belief-objectification problem is also solved? Not necessarily. 

Intuitively, we want to say that when Diana looks at the pointer, she directly perceives 

the pointer's reading (when it's definite). But according to modal interpretations, that 

doesn't necessarily happen. When subsystems 1 and 2 interact, the definite values 

associated with subsystem 1 do not determine which observables associated with 

subsystem 2 become definite, or vice versa. The definite value associated with the 

pointer does not directly "cause" Diana to acquire a definite belief about the pointer. 

Whether Diana acquires a definite belief depends entirely on the biorthogonal 

decomposition of the resulting quantum state with respect to her brain. Of course, if 

Diana forms a definite belief, then the dynamics of the definite values can ensure with 

high probability that her belief mirrors the pointer's actual reading. 

In state (1), the observer possesses a definite "up" or "down" belief if the four 

environmental states are precisely orthogonal. But those states won't be precisely 

orthogonal. Indeed, if l"up",l> and l"down",l> are not macroscopically distinct--for 

instance, if memories are stored in atomic spins--then IE+++1> and IE++-1> won't be 
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even nearly orthogonal. In that case, the biorthogonal decomposition of state (1) with 

respect to brain states almost certainly picks out states not even close to "up" and 

"down" states, unless c12 and c21 are tiny. We're not claiming that memories -are stored 

in spins and that perceptions are highly imperfect. In fact, we argue below that because 

brains satisfy certain (contingent) conditions, "up" and "down" states do get selected in 

almost all real-life observations. Nonetheless, our current point is this: In the modal 

interpretation, the defmiteness of the pointer reading does not entail the definiteness of 

Diana's belief about the pointer reading. zs 

Let us summarize the main points of this section. 

Point 1: Whether the modal interpretation explains belief objectification depends on 

matters of fact about brain neurophysics, i.e., on how brains interact with pointers and 

with the environment. This conclusion continues to hold when we consider a realistic 

particle/apparatus/brain/environment state. 

Point 2: Point 1 holds even though state (1) assigns the pointer a definite reading. 

Therefore, it's possible for the modal interpretation to solve the pointer-objectification 

problem without solving the belief-objectification problem. The modal interpretation 

illustrates our general point that defmite pointer readings alone do not entail definite 

pointer-reading beliefs, and hence do not constitute a full solution to the measurement 

problem. (Notably,·this conclusion applies also to Bub's (1992) modal theory, which 

ascribes a priori definite readings to pointers.) 

For this reason, the ongoing debate about whether modal interpretations assign a 

definite value to an observable "sufficiently close" to the pointer reading misses a crucial 

28This conclusion, you can quickly convince yourself, applies equally well to essentially 

all interpretations that attempt to solve both the belief-objectification and the pointer­

objectification problems. 
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point By parrying the "imperfect measurement" challenge posed by Albert and Loewer 

(1990) and by Elby (1993), modal interpreters can establish only that the modal 

interpretation adequately addresses the pointer-objectification problein. - And '·that's not 

good enough. 

4.4.5. IMPERFECT MEASUREMENTS AND PERCEPTIONS 

So far, we've established that the modal interpretation might explain pointer 

objectification without also explaining belief objectification. To pursue these issues, we 

must write down the actual (non-idealized) post-measurement, post-perception quantum 

state of the particle/apparatus/person/environment. 

First, we'll briefly reiterate Elby's (1993) argument that wavefunction tails and 

inevitable environmental "fluctuations" prevent the pointer-reading from becoming 

perfectly correlated with the particle's z-component of spin. Then, we'll argue that 

Diana's perceptions are imperfect, for the same reasons. As a result, her "up" and 

"down" belief states do not become perfectly correlated with up and down pointer 

readings. Finally, taking into account these imperfections, we'll write down the overall 

quantum state. It's ugly. 

Imperfect measurements. QM implies that measurements of some observables are 

non-ideal, no matter how well we design our equipment. To see why, imagine a 

standard Stem-Gerlach experiment; a spin-1/2 particle passing between two magnets 

gets deflected up or down (roughly speaking). Two separate "photographic" plates, one 

in the up path, the other in the down path, await the particle. The particle hits one of the 

two plates and produces a dot. 
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According to SchrOOinger's equation, even if the particle was initially localized 

within a bounded volume, its wavefunction immediately "spreads out" so as to cover all 

space. (Even in relativistic QM, the wavefunction spreads over the whole forward light 

cone.) Therefore, an initially spin-up particle has non-zero probability of hitting the 

"down" plate, because the tail of the up-deflected wavefunction reaches the down plate. 

Imperfect measurements also result from environmental flu.ctuations, according to 

QM. Suppose the particle "reaches" the up plate. It might produce no dot, because it 

has a nonzero probability of tunneling through the plate or embedding itself without 

producing a dot Also, stray particles hitting the down plate have nonzero probability of 

producing a dot. Of course, these "fluctuation" probabilities are ridiculously small. 

Nonetheless, environmental fluctuations guarantee that upon measuring a spin-up 

particle, we may end up with a dot only on the down plate. 

In brief, due to wavefunction tails and environmental fluctuations, the post­

measurement state of the particle/apparatus/environment system is 

cuiSz=+>®IR=+>®IE++> + C121Sz=+>®IR=->®IE+-> 

+ C21ISz=->®IR=+>®IE.+> + C221Sz=->®IR=->®IE __ >, (2) 

where c12 and c21 are small but nonzero. Actually, c12 and c21 can be large for poorly 

designed or broken measuring devices. The environmental states corresponding to 

different pointer readings are very nearly, but not exactly, orthogonal. 

Imperfect perceptions. What happens when Diana looks at the pointer? Her eyes 

interact with photons, some of which previously interacted with the apparatus. 

According to QM, this (mediated) interaction yields imperfect correlations between the 

pointer reading and Diana's perception thereof, for the reasons just discussed. 
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·For instance, suppose Diana obsexves a pointer in state IR=+>. The photons 

streaming into her eyes from the pointer have small but nonzero probability of failing to 

"activate" the appropriate receptors on her retina Similarly, thermal fluctuatiens could 

cause certain nexve cells to fire so as to "simulate" seeing a down pointer. Again, QM 

assigns an infinitesimal but nonzero probability to this eventuality. So, Diana has 

nonzero probability of acquiring a "down" belief state after obsexving an up pointer. Her 

perceptions are imperfect. 

Now actually, when Diana "misperceives" an up pointer, she might not acquire a 

"down" belief. She might acquire no belief at all, or might end up in a superposition of 

these possibilities. To capture these options, let 1-"up",n> denote a brain state that isn't 

an "up" state. Keep in mind that 1-"up",n> does not always correspond to believing the 

pointer is "not up." It corresponds to £lOt believing the pointer is "up." So, the "down" 

states are only a subset of the 1-"up",n> states. 

Of course, so-called "psychological" factors may contribute far more to Diana's 

imperfect perceptions. A critic could say that, if such psychological factors exist, then 

Diana's brain does not occupy a proper "ready state" to "measure" the pointer reading. 

We've just shown that according to QM, no matter how "ready" Diana is to perceive 

accurately, she will sometimes err. Nonetheless, our everyday experiences strongly 

suggest that perceptions work well over a broad range of "initial" brain states. Diana's 

brain need not occupy one particular ready state to perceive the pointer with high 

accuracy. Almost any of the brain states corresponding to "paying close attention to the 

pointer" will do. 

Because of perceptual imperfection, when Diana looks at the 

particle/apparatus/environment described by state (2), the system evolves into 
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CI111Sz=+>®IR=+>®I"up",1>®1E+++l> + CJ121Sz=+>®IR=+>®I-"up",1>®1E++-l> 

+ CizliSz=+>®IR=->®1-"down" ,2>®1E+-+2> + CizziSz=+>®IR=->®I"down" ,2>®1E+--2> 

+ czniSz=->®IR=+>®I"up" ,3>®1E_++3> + CziziSz=->®IR=+>®I-"up" ,3>®lE_+-3> 

+ C2211Sz=->®IR=->®I-"down",4>®1E_+4> + CzzziSz=->®IR=->®I"down",4>®IE__-4>. 

(3) 

The coefficients corresponding to "misperceptions," such as c112 and c121, are extremely 

small. The coefficients corresponding to "mismeasurements" but not misperceptions, 

such as c122 and czu, could be small or large, depending on the sloppiness of the 

measurement See Elby (1994) and especially Bacciagaluppi and Hemmo (1994, 1995) 

for some of the technical details leading to state (3). Crucially, two "different" brain 

states are very close if they correspond to particle/apparatus states that differ only in the 

spin of the particle. For instance, consider the cn1 and c211 terms. Because some of the 

photons that interact with the spin-1/2 particle eventually reach the observer, the 

observer's brain state "depends" on the particle's spin. But this dependence is 

negligible. Formally, <"up",11"up",3>=1. 

At this point; we've written the non-idealized, post-measurement, post-perception 

state of the whole system. Now we can use this state to explore whether the modal 

interpretation solves the belief-objectification problem and the pointer-objectification 

problem. 

4.4.6. ARE BELIEF STATES DEFINITE? 

In this section, we'll argue as strongly as possible that state (3) does not assign 

Diana a definite "up" or "down" belief state, according to the modal interpretation. (In 
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sections 7 and 8. we'll argue the other side.) Before advancing these arguments, 

however, we must explore some characteristics of belief states in the context of the 

orthodox interpretation. 

Assume the eigenvector-eigenvalue rule holds. We've defmed the l"up",i> states as 

follows: If Diana believes that the pointer reading is up, then the quantum mechanical 

state of her brain is l"up",n> for some n. 

Suppose Diana's brain occupies a superposition of "up" states, :Lqgil"up",i>. Does 

she believe the pointer registered up? Not necessarily. A superposition of "up" states 

necessarily equals another "up" state just in case a Hermitian operator corresponds to 

"up" belief, i.e., just in case a projection operator Pup exists with the property 

P l"up" i>=l"up" i> for all i up ' . ' . 

Now suppose Diana's brain occupies state gtl"up",l>+htl-"up",l>, where h1 is 

tiny. In words, Diana's brain occupies a state very close to a definite "up" state. Does 

Diana believe the pointer registered up? If she does, then her brain occupies state 

l"up",n> for some n*l, because by definition, if she believes the pointer reading was up, 

then she occupies an "up" brain state. That is, Diana perceives the pointer as "up" only 

if g11"up",l>+h11"down",l>=l"up",n> for some n. In other words, when we say 

g11"up",l>+h1"down",l> is sufficiently close to a definite "up" belief state, we're really 

saying that g1"up",l>+h11"down",l> is a defmite "up" belief state. Put another way, if 

Diana can't distinguish between her beliefs when her brain occupies l"up",l> versus 

when her brain occupies gtl"up",l>+htl"down",l>, then gtl"up",l>+htl"down",l> is 

just as definite an "up" belief state as l"up",l> is, and hence 

gtl"up",l>+htl"down",l>=l"up",n> for some n*l. 

Now for the punch line. Suppose Diana's brain occupies state 

Ligl'up",i>+Lihil-"up",i>, where all the hi and most of the gi coefficients are tiny 



Elby Chapter 4: Decoherence & modal interpretations 192 

(though not strictly 0). Does Diana believe the pointer registered up? By the argument 

oflastparagraph, only if.Ligl'up",i>+Lhil-"up",i>= l"up",n> for some n. To explore 

whether this equality holds, we must consider two cases. 

Case 1: No Pup operator exists. Therefore, the superposition I.~l'up",i> is not 

necessarily an "up" state. Therefore, Ligil"up",i>+Lhil-"up",i> is not necessarily an 

"up" state, even if the hi's vanish entirely. 

Case 2: A Pup operator exists, and hence the "up" states live in a closed subspace. 

But then, Lgl'up" ,i>+ Lhil-"up" ,i> does not inhabit the "up" subspace, no matter how 

small LlhP is, provided it's nonzero. Therefore, Ligl'up",i>+Lihil-"up",i> does not 

equall"up",n> for any n; Diana does not believe the pointer registered up. 

We've just shown that whether or not a Hermitian operator corresponds to "up" 

belief, Ligil"up",i>+lihil-"up",i> is not necessarily a definite "up" belief state, no 

matter how small L1hil2 is. 

Why is this relevant to the modal interpretation? When we biorthogonally 

decompose state (3) with respect to Diana's brain, the "selected" observables have 

eigenstates of the form and 

Lgil"down",i>+Lhil-"down",i>, where lgil=l for one i, and all the other coefficients 

are small (though nonzero).29 As just shown, this state of affairs does not necessarily 

correspond to Diana's having a definite "up" belief or "down" belief (or "unsure" belief). 

Therefore, the modal interpretation might not solve the belief-objectification problem. 

4.4.7. RESCUING DEFINITE BELIEFS: CLOSENESS 

29States of the form I.igil"?",i>+lihil-"?",i> also get picked out, where l"?",i> 

corresponds to a mental state of being unsure. This doesn't affect our argument. 
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But all is not lost. Section 6 focuses us on some characteristics that brains must 

possess in order for the biorthogonal decomposition to pick out "up" and "down" (and 

"unsure") beliefs. In this section, we discuss why the biorthogonally selected brain 

states are extremely close to definite "up" and "down" belief states. Then, in section 8, 

we show why "close" is probably good enough to explain our definite beliefs. 

As just noted, when state (3) is decomposed, "effective" brain states of the form 

(*) 

or the analogous "quasi-down" states get picked out, where (say) lgtl is close to one, and 

all other coefficients are close to zero. By "effective" state, we mean the state that 

corresponds to a definite possessed property, according to the interpretation under 

consideration. The modal interpretation uses biorthogonal decompositions to choose 

effective states. The more closely lg11 approaches one, the "closer" state (*) is to a 

defmite "up" state, namely l"up",l>. How closely lg11 approaches one depends on two 

factors: 

(a) How well brain states become correlated with the corresponding pointer-reading 

states; and 

(b) To what extent the brain's "environment," such as thermal degrees of freedom, 

brings about decoherence between the various "up" and "down" belief states 

superposed in state (3).30 

30The "very close" brain states, such as l"up",l> and l"up",3>, need not decohere for 
factor (b) to "work." Which is good, because "close;' states can't decohere. 
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At first glance, factor (a) might seem to downplay the role of the environment For 

suppose that (nearly) orthogonal brain states become extremely well correlated with 

orthogonal pointer-reading states. In other words, suppose our perceptions are-excellent 

Then, even if the environmental states in (3) were highly non-orthogonal, the relevant 

biorthogonal decompositions would pick out apparatus states extremely close to pointer­

reading eigenstates, and brain states of the form (*) with lg1l extrer,nely close to one. So, 

if observers have excellent perceptions, then environmental decoherence seems to play 

no role in ensuring that the apparatus and brain effective states are extremely close to the 

ones we want This conclusion violates an emerging orthodoxy about the importance of 

the environment. 

A closer examination, however, reveals the orthodoxy not to be threatened by factor 

(a). Recall that the environment mediates the interaction between the pointer and Diana's 

brain. To see why that mediated interaction "needs" decoherence, let lup photons> and 

ldown photons> denote the state of the photons reaching Diana's eyes from an up pointer 

and down pointer, respectively. Suppose that lup photons> becomes extremely well 

correlated with "up" belief. Then, since the relevant interaction Hamiltonians are linear, 

it follows that the "misperception" terms 

I...>®IR=->®I"up" ,i>®l. .. > 

have total "probability" 

kup photons I down photons>l2. 
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In other words, the squares of the coefficients of the I...>®IR=->®I"up",i>®l...> terms 

add up to this "probability" value.31 Therefore, if the up and down photon states aren't 

nearly orthogonal, then Diana's beliefs become poorly correlated with the pointer 

reading. 

This argument proves that beliefs become well correlated with pointer readings only 

to the extent that the corresponding environmental states are n~ly orthogonal--that is, 

only to the extent that the environment decoheres the pointer-reading eigenstates. 

Indeed, decoherence must "work" so well that near-orthogonality applies even to small 

spatial regions of the environment So, decoherence plays a key role in guaranteeing 

closeness. 

Of course, lup photons> doesn't always lead to "up" beliefs, for the quantum 

mechanical reasons discussed above. But because our eyes receive billions of photons 

from pointers, not all of those photons need to be "perceived" properly in order for our 

eyes to form the right image. Neurons are "well-designed" and macroscopic. The odds 

are infmitesimal that enough neurons will misfire so as to misread the pointer. In brief, 

environmental decoherence, when combined with the macroscopic, redundant nature of 

our visual systems, ensures that perception states (and presumably, the corresponding 

belief states32) become extremely well correlated with pointer-reading states. 

For this reason, factor (a) is all that's needed to ensure that Diana acquires a definite 

belief. Factor (b), by contrast, is needed to ensure that definite belief states are "stable." 

For suppose that brain/environment decoherence picked out a new basis not close to 

"up" and "down" states. Then, soon after Diana observes the pointer, the biorthogonal 

3IJn state (3), the I. .. >®IR=->®I"up",i>®l...> terms are "built into" the 
I...>®IR=->®1-"down" ,i>®l. .. > terms. 
32We must assume that when the visual cortex forms a representation of an up pointer, 
and Diana is "paying attention" to this image, then she almost always acquires an "up" 
belief. 
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decomposition of the particle/apparatus/brain/environment with respect to Diana's brain 

would select those new states, not the definite belief states. In other words, decoherence 

would "knock" her brain from an "up" or "down" effective belief state into a new 

effective state. But empirically, we know that beliefs persist far longer than the 

"decoherence time." For this reason, the modal interpretation can solve the belief­

objectification problem only if the Belief Stability Condition hold~: 

Belief Stability Condition: Brain/environment decoherence picks out (states very close 

to) definite belief states. 

This condition, we must emphasize, does not follow from the modal interpretation. 

Rather, it's an empirical hypothesis about brains, the falsehood of which would doom 

the modal interpretation. We'll briefly discuss two reasons for affirming this condition. 

First, even though neuroscientists don't understand the details of memory 

formation and storage, they strongly suspect that the spatial distribution of chemical 

compounds plays a key role. Roughly put, memories are probably "stored" not in the 

spins or energy states of molecules, but in their positions. If "up" versus "down" 

memories indeed correspond to billions of molecules occupying even slightly different 

positions, then thermal-bath decoherence alone would probably ensure the stability of 

those memories. Of course, no has proven that thermal-bath decoherence in a 

complicated potential picks out a basis close to the position basis; but this assumption 

seems reasonable, given the decoherence results to date. In brief, preliminary data from 

neuroscience and from decoherence theory suggest (but do not prove) that the Belief 

Stability Condition holds. 
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Second, if this condition fails, then it's hard to see how any interpretation of QM-­

except explicitly dualistic ones--can account for the stability of our beliefs. You can 

confirm that if the Belief Stability Condition fails, then Bohm's theory, relative-state 

interpretations, and collapse models run into trouble. If this condition fails, then 

brain/environment decoherence would not prevent quantum interference between 

different belief states, precisely the kind of interference we never ~eem to "experience." 

In this section, we argued that except in rare pathological cases of near-degeneracy, 

the modal interpretation picks out brain states of the form (*) that are extremely close to 

definite "up" and "down" states.33 Pointer/environment decoherence ensures that the 

photons reaching Diana's eyes from an up pointer are sufficiently "orthogonal" to 

photons reaching her eyes from a down pointer that her perception becomes well 

correlated with the pointer reading. But brain/environment decoherence entails that those 

beliefs persist only if the Belief Stability Condition holds. As just discussed, we have 

independent reasons for thinking it does. 

4.4.8. IS 'CLOSE' GOOD ENOUGH FOR BELIEFS? 

For easy reference, we'll rewrite the effective state (*) picked out by the modal 

interpretation: 

(*) 

33If we consider measurements of continuous variables, then things get more 
complicated. Then the g's become a probability density, g(i), with i a continuous 
parameter. This probability density is sharply peaked. In other words, the only "up" 
states appearing with non-negligible probability density in (*) are all very close to each 
other. (Recall that two states are close if their inner product is nearly 1.) 
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where (say) lgtl""l, and all other coefficients are close to zero. As emphasized in section 

6, this state corresponds to a definite "up" belief only if(*)= l"up",n> for some n:;el. 

Now, we want Diana to acquire a definite belief no matter what pre-measurement state 

the particle occupies. Therefore, since the particle's initial state partly "controls" the gi's 

and ~·sin(*), that state had better be a defmite "up" state over a broad range of gi's and 

hi's such that one lgil is close to one. That is, the modal interpretation can solve the 

belief-objectification problem only if the Belief Imperturbability Condition holds: 

Belief Imperturbability Condition: "Many" of the states very close to l"up",i> must 

themselves be "up" states. 

Like the Belief Stability Condition, the Belief Imperturbability Condition does not 

follow from general formal considerations or from the modal interpretation. It's another 

empirical hypothesis that must be satisfied, or else the modal interpretation cannot 

explain belief objectification. 

Some philosophers would argue that the adequacy of a solution to the measurement 

problem should not depend so crucially on contingent facts about brain architecture. We 

agree that if an interpretation depends on delicate and peculiar facts about human 

neurophysiology, then we have grounds for complaint But if the Imperturbability 

Condition holds for any conscious being likely to evolve (or get built), then smart 

lizards, artificially-intelligent computers, and Martians could all agree that the modal 

interpretation fares well. 

Our everyday experiences give us ample reason to affirm this condition. For 

suppose Diana looks at the pointer reading and then accidentally bumps her head. If she 

bumps it hard enough, she will forget what she observed. So, a head-bump disturbs the 
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"aspect" of Diana's effective brain state on which definite pointer-reading beliefs 

supervene. (Although cognitive science has no idea what "aspect" means, our argument 

applies to most conceivable senses of "aspect," including "degrees of freedom") Now 

suppose Diana bumps her head softly. Presumably, she thereby disturbs the relevant 

"aspect" of her effective brain state, though less severely. More formally, the effective 

brain state picked out by the biorthogonal decomposition preSUJl1ably gets knocked into 

a nearby state. But after soft head-bumps, Diana almost always retains (remembers) 

her old pointer-reading belief. Similar arguments apply to most other conscious beings, 

because they too could not avoid occasional bumps. These considerations strongly 

suggest that the Belief Imperturbability Condition holds. By the way, many other 

interpretations of QM may rest on this condition, too. 

At first glance, the Belief Imperturbability Condition seems dispensable for modal 

interpreters, provided the Belief Stability Condition holds. Here's the reasoning, put 

roughly: Even if a head-bump knocks Diana out of an "up" effective brain state, 

decoherence quickly knocks her back into a definite-belief effective brain state, before 

she notices the disturbance. And the dynamics of the possessed values can ensure that, 

with high probability, she ends up with the same belief she held initially. To see the flaw 

in this argument, let lpre> and lpost> denote the effective brain state picked out by the 

biorthogonal decomposition and by the dynamics of the possessed values immediately 

before and immediately after the head-bump. The above argument implicitly assumes 

that only lpre>, but not lpost>, is part of the basis picked out by decoherence. We have 

no reason to assume this. Perhaps lpre> and lpost> are degenerate basis vectors selected 

by decoherence. 

To summarize: We've now spelled out the Belief Stability and Belief 

Imperturbability Conditions. Although they seem similar or redundant, these conditions 
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are logically independent If either of them fails, the modal interpretation can't solve the 

belief objectification problem.34 But we have independent reasons to affirm both these 

conditions. In this sense, the modal interpretation passes a crucial "test" regarding its 

ability to solve the measurement problem. 

4.4.9. CONCLUSION 

This paper 'teased apart two strands of the measurement problem, the pointer­

objectification problem and the belief-objectification problem. Many interpreters of QM 

take it for granted that a solution to the pointer-objectification problem automatically 

addresses the belief-objectification problem as well. But this isn't true in the modal 

interpretation, because a brain does not directly perceive the actual value of the pointer 

reading. Whether the observer acquires a definite belief depends entirely on the 

biorthogonal decomposition of the state resulting from the quantum mechanical 

interaction between the brain, pointer, and environment /fthe quantum state "gives" the 

observer a definite belief, then the dynamics of the possessed values can ensure that she 

almost certainly acquires the "correct" belief. 

Because measuring devices don't ideally measure particles, and brains don't ideally 

"measure" pointer readings, the final quantum state of the 

particle/apparatus/brain/environment system is a mess, state (3). The modal 

interpretation, applied to state (3), assigns a defmite value to an observable whose 

eigenstates take the form Lgl'up",i>+Lhil-"up",i> (or the "down" analog), where 

I gil= 1 for one i and all other coefficients are nearly zero. This state of affairs corresponds 

34 Actually, as just implied, Belief Imperturbability could fail provided most accessible 
lpost> states are not part of the decoherence basis. 
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to a defmite "up" or "down" belief state only if most brain states very close to an "up" 

state are themselves "up" states. But the persistence of our beliefs in the face of brain­

jostling strongly suggests that this imperturbability condition holds. Furthermore, by 

arguing that an object's macroscopic "position" supervenes on an object's physical state 

but does not correspond 1:1 to the quantum mechanical position operator, we can make 

sense of the claim that the pointer has a defmite position when an observable "close" to 

the pointer reading is definite. Overall, the modal interpretation appears to fare well with 

respect to both pointer and belief objectification. 
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Section 4.5: Holism in the modal interpretation 

In my previous chapters, I've used no-go results to argue that nature incorporates a 

kind of holism. But I've been sketchy about what "holism" is and what philosophical 

work it does. In this section, I'll show in exactly what sense "holism" gets incorporated 

into the modal interpretation. Since the modal interpretation is viable, and since other 

viable interpretations (such as Bohm's) also incorporate a kind of holism, this discussion 

could shed some (perhaps veiled) light on how holism is a feature of the world. 

My philosophical points will closely follow those of Healey (1994). But my 

discussion will clear up some technical oversimplifications that plague Healey's 

presentation. 

§4.5.1. Singlet-state: Before measurement 

Continue to consider two spin-1/2 particles in their singlet state. Particle 1 passes 

through a z-aligned Stem-Gerlach magnet and gets deflected up or down. It eventually 

hits a "photographic" plate in the "up" or "down" path. All of this happens before 

particle 2 gets measured . 

. If particle 1 is measured to have spin up, particle 2 now has (conditional) probability 

unity of yielding spin down. Therefore, according to EPR's necessary condition for an 

"element of reality," there exists an element of reality corresponding to the definite z-spin 

of particle 2. If quantum mechanics is "complete," that element of reality didn't exist 

until particle 1 was measured. Therefore, according to EPR, an element of reality 

associated with particle 2 was nonlocally created by measuring particle 1. And this 

nonlocality is metaphysically unacceptable. 
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The modal interpretation addresses this "paradox" as follows. As we'll see, an· 

element of reality corresponding to the z-spin of particle 2 is indeed created when particle 

1 gets measured. But that element of reality is not a property of particle 2. Rather, it's a 

holistic property of the two-particle system Measuring particle 1 doesn't create an 

element of reality associated with a separate, distant system. Rather, it creates an 

element of reality associated with an "extended" system of which particle 1 is a "part" 

The nonlocal connection between particles 1 and 2 is a holistic nonseparability, not a 

superluminal signal or other classically "causal" agent 35 

To see how this holistic interpretation of Bell-nonlocality follows from the modal 

interpretation, first consider the particles before particle 1 reaches the magnet Their state 

is lsinglet>=2-112{1Sz=+>t®ISz=->2- ISz=->1®ISz=+>2}. Since this biorthogonal 

decomposition isn't unique, no nondegenerate observable associated with either particle 

takes on a definite value. In other words, neither particle has a definite spin component 

in any direction. But the two-particle system as a whole possesses a definite "spin­

correlation" property Plsinglet> corresponding to the Hermitian operator Plsinglet>= 

lsinglet><singletl. This property encodes the perfect spin anticorrelations between the 

two particles. And crucially, this spin-anticorrelation property Plsinglet> doesn't "pick 

out" any direction. The particles' spins are anticorrelated not only in the z-direction, but 

also in the x-direction, y-direction, and so on. 

I can't overemphasize the fact that Plsinglet> is a holistic property, by which I mean it 

can't be reduced to (or "built up from") the properties of the individual particles. In 

philosopher's lingo, the property of the whole does not supervene on the properties of its 

parts. This departs radically from the reductionistic metaphysics of classical physics. In 

a Newtonian universe, a two-particle system has zero net angular momentum because 

35J'll address causation more carefully in chapter 5. 
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the two individual particles have no angular momentum, or because the particles have 

equal and opposite angular momenta. 
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Now consider the particles after particle 1 has passed through the Stem-Gerlach 

magnet, but before it reaches a photographic plate. This is the "intermediate" stage of the 

measurement process. Let 1$up> and l<!>down> denote the spatial wavefunction of particle 

1 when it gets deflected up and down, respectively. The "interme<;liate" state of the 

system is 

!intermediate> = 2-1/2{ 1Sz=+>1®1Sz=->z®l<!>up> - 1Sz=->1®1Sz=+>z®l<l>down>}. 

To find the definite properties associated with each subsystem, we must look at the 

relevant biorthogonal decompositions. Well, with respect to the spin of particle 1, 

!intermediate> is biorthogonally decomposed (That's because 1Sz=->z®l$up> is 

orthogonal to ISz=+>z®l<l>down>, since opposite spin states are orthogonal.) But the 

decomposition isn't unique, because the expansion coefficients are degenerate: c1=cz= 2-

1/2. So, particle 1 still doesn't have a defmite spin component in any direction. By 

similar reasoning, the same goes for particle 2. 

But things get more interesting when we take as our "subsystem of interest" the 

spin characteristics of the two-particle system as a whole. !intermediate> is not 

biorthogonally decomposed with respect to that subsystem. Here's why: A 

biorthogonal decomposition takes the form LiCiiAi>®IBi>, where IAi> are orthogonal 

states describing the subsystem of interest, and IBi> are orthogonal states describing 

everything else. Since the subsystem of interest is the spin-characteristics of the two­

particle system, the IAi> states are ISz=+>1®ISz=->zand 1Sz=->1®1Sz=+>z, which are 

indeed orthogonal. But the IBi> states, 1$up> and l<!>down>, are not orthogonal, because of 
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their overlapping wavefunction tails, as discussed in section 4.2 above. So, 

!intermediate> is not biorthogonally decomposed with respect to the subsystem of 

interest To fmd the defmite-valued observable associated with this subsystem, we must 

re-write !intermediate> in terms of a new, biorthogonal basis. (By the biorthogonal 

decomposition theorem, such a basis exists.) Since lc~>up> and lcl>ctown> are nearly 

orthogonal, the biorthogonal decomposition takes this form: 

Since we're "close to a degeneracy"--i.e., since ld11 and ld2l are almost equal, or perhaps 

exactly equal--IAt> will not in general be close to ISz=+>t®ISz=->2. However, IAt> 

and IA2>will always take the form 

IAt> =cos a ISz=+>t®ISz=->2 +sin a ISz=->t®ISz=+>2 

IA2> =sin a ISz=+>t®ISz=->2 +cos a ISz=+>t®ISz=->2 

for some angle a. Mathematically speaking, the two-particle spin states picked out by 

the biorthogonal decomposition lie in the subspace of Hilbert space spanned by 

ISz=+>t®ISz=->z and ISz=->t®ISz=+>2. Physically speaking, we know this has to be 

the case, or else the particles would have nonzero probability of yielding the same· 

outcomes (i.e., two ups or two downs) upon measurement of their z-spins. 

If ldtl :t: ld2l, the biorthogonal decomposition of !intermediate> is unique. Where 

does this leave us? Formally, there exists a Hermitian operator A of which IA1> and 

IA2> are eigenstates. According to the modal interpretation, the observable A 

36This does not mean that IAt>= IS0 =+>t®IS0 =->2 for some direction n that's very close 
to z. In general, IAt> and IAz> will be entangled states. 
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corresponding to A has a definite value. As just noted, the property of A-def"miteness 

encodes, among other things, a perfect anticorrelation between the particles' z­

components of spin .. And A-definiteness is a holistic property, in the sense discussed 

above. The particles "have" a z-spin anticorrelation even though neither individual 

particle has a definite z-component of spin. 

If ldtl = ld2l, then !intermediate> is a non-unique biorthogonal~.decomposition with 
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respect to the subsystem under consideration, the spin characteristics of the two-particle 

system. Healey's modal interpretation would pick out as def"mite a degenerate 

observable A, where A is a projector onto the subspace spanned by ISz=+>t®ISz=->2 

and ISz=->t®ISz=+~. So, that degenerate A would encode the same holistic property of 

z-spin-anticorrelation just discussed. 

Let me summarize the results so far. Initially, and also in the intermediate stage, 

neither particle has a definite z-component of spin. Before particle 1 passes through the 

magnet, the two-particle system has a definite value for Ptsinglet>• which corresponds to 

perfect spin anticorrelations in all directions. By contrast, after particle 1 traverses the 

magnet, the two-particle system no longer has a definite value of Ptsinglet>· Instead, i~ 

has a def"mite value of A, which corresponds to a perfect spin anticorrelation in the z­

direction only. This modal value assignment reflects the fact that, if we measure the n­

spins of both particles after particle 1 passes the z-aligned magnet, we won't always get 

opposite outcomes, unless n=z. 

§4.5.2. Singlet-state: After measurement 

Now I'll explore what properties become def"mite after particle 1 strikes one of the 

photographic plates. To do so, I must first write the updated quantum state. The 

particle's spin gets "disturbed" when it interacts with the electrons and other particles 
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comprising the plate. In quantum mechanical terms, this means that the spin of particle 

1 becomes entangled with the spin (and orbital) angular momentum of the particles in 

the plate. To capture this fact, I'll write the fmal state of the photographic plates-and their 

environment as IR=up,ij>, where "i" denotes the z-spin of particle 1 before striking the 

plate, and ''j" denotes the z-spin of particle 1 after interacting with the plate. So for 

instance, IR=up,+-> denotes the fmal state of the plates (and their environment) when 

particle 1, initially in state ISz=+>, leaves a dot on the "up" plate and has its spin 

"flipped" to ISz=->. Similarly, IR=down,++> denotes the case where particle 1, despite 

having initial z-spin up, nonetheless strikes the down plate (due to the spatial 

wavefunction tail of l~p>) and does not have its spin flipped. Notice that I'm "building 

the environment" into these states, instead of writing the environmental states separately. 

Let's think about the difference between IR=up,++> and IR=up,+->. In both cases, 

particle 1 leaves a dot on the "correct" plate, by which I mean the plate corresponding to 

the pre-measurement spin of particle 1. The only difference between these two states is 

whether the plate "flips" the spin of particle 1. This depends on microscopic interactions 

between particle 1 and the plate particles. So, we expect that IR=up,++> and IR=up,+-> 

differ microscopically but not macroscopically. Nonetheless, IR=up,++> and IR=up,+-> 

are orthogonal, because they correspond to states of different angular momentum. To 

see why, suppose a z-spin-up particle hits the upper plate. (In this mini-experiment, 

there's no particle 2.) Then the final state of the universe is a superposition of 

IR=up,++>®ISz=+> and IR=up,+->®ISz=->. Because angular momentum is conserved 

during the. interaction, these two branches of the superposition must have the same 

angular momentum. Since ISz=+> and ISz=-> differ in angular momentum by Jl, so 

must IR=up,++> and IR=up,+->. For instance, if the plate before the interaction had total 



Elby Chapter4: Decoherence & modal interpretations 

angular momentum 0, then IR=up,++> must have angular momentum 0, while 

IR=up,+-> must have angular momentum +Jl. 
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By contrast, IR=up,++> and IR=up,--> are not necessarily orthogonal. Remember, 

IR=up,--> is the plates' state when an initially down particle "mistakenly" hits the up 

plate, and doesn't have· its spin flipped. And IR=up,++> is the plates' state when an 

initially up particle "correctly" hits the up plate, and doesn't have its spin flipped. So, for 

both IR=up,++> and IR=up,-->, the plate's total angular momentum is unchanged during 

the interaction. 

111 now return to the two-particle EPR-type experiment discussed above, and write 

the state of the universe after particle 1 hits one of the plates, but before particle 2 

interacts with anything. I'll use boldface coefficients to indicate "big" terms. The other 

terms are tiny, because they stem from wavefunction tails (e.g., an initially up particle 

hitting the down plate): 

lfmal> = ISz=->2{ cuiR=up,++>®ISz=+>t + cniR=up,+->®ISz=·>t 

+ duiR=down,++>®ISz=+>I + d12IR=down,+->®ISz=->1} 

+ ISz=+>2{c21IR=up,-+>®ISz=+>l + c22IR=up,-->®ISz=->1 

+ duiR=down,-+>®ISz=+>t + d22IR=down,-->®ISz=·>t}. 

Before looking at the possessed properties of the particles, let's first confirm that the 

pointer-reading is definite, i.e., that a dot really is on the upper plate or on the lower 

plate. We can't answer this question simply by looking at lfmal>, because I've built the 

environment into the pointer-reading states, instead of teasing them apart. But we know 

from earlier considerations that the IR=up,ij> states decohere with the IR=down,ij> 

states. Therefore, when we biorthogonally decompose lfmal> with respect to the pointer 
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reading states (i.e., the state of the photographic plates), a degenerate observable gets 

picked out that's very close to the observable corresponding to R=up and R=down states. 

In other words, the plates have a dot either on the up or on the down plate. This 

conclusion fails only if the relevant biorthogonal decomposition is degenerate, which 

will be the case if and only if R=up and R=down are exactly equally likely. If the 

measurement were ideal, this degeneracy would kick in, since pa¢cle 1 is "up" half the 

time and "down" half the time. But due to the wavefunction tails, obtaining a dot on the 

up vs. the down plate is exactly equally likely only if, for instance, the plates are exactly 

the same size and are placed in a precisely symmetric configuration with respect to the 

initial state of the particles. If the up plate is (say) an angstrom closer to the magnets 

than the down plate is, then it has a slightly higher chance of getting hit. The probability 

is actually 0 that the two plates have exactly the same probability of getting a dot. 

Ironically, the impossibility of performing a perfectly ideal measurement saves the 

modal interpretation from a basis-degeneracy disaster. 

But because the "up" and "down'' probabilities are so close, the relevant 

biorthogonal decomposition will be nearly degenerate. Normally, this would imply that 

the biorthogonally-selected basis is not even close to the desired pointer-reading basis. 

But here's where decoherence saves the day. As time passes, the environmental states 

corresponding to R=up and R=down become closer and closer to orthogonal. This 

ensures that, no matter how close to a degeneracy we're "standing," decoherence will 

eventually ensure that the biorthogonal decomposition picks out states close to IR=up> 

and IR=down>. Roughly put, unless there's an exact degeneracy, decoherence eventually 

"knocks" the photographic plates into a state close to IR=up> or IR=down>. 

But this isn't good enough, if the pointer reading stays indefmite for a noticeable 

length of time. Intuitively, the dot had better appear as soon as we develop the 

( 
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photographic plates! Fortunately, decoherence acts sufficiently quickly. See 

Bacciagaluppi and Hemmo (1995) for lots of formal details. For instance, suppose the 

R=up and R=down outcomes have probabilities that differ by only 1 part in 1~0. Since 

the dots are macroscopic, decoherence ensures that states very close to IR=up> and 

IR=down> get picked out in under a thousandth of a second. Decoherence can 

"overcome" even the most severe near-degeneracy. 

So, if you accept the "closeness" arguments from section 4.4, the modal 

interpretation ensures that a system in state lfinal> has a defmite pointer-reading, by 

which I mean a defmite dot on one of the plates. 

Given all that, let's return to questions of nonlocality and holism. In the modal 

interpretation, does this definite measurement result on particle 1 cause particle 2 to 

(nonlocally) acquire a definite z-component of spin, as would be the case in 

"wavefunction collapse" models? No. To see why not, notice that the quantum 

mechanical density operator describing particle 2 does not change when particle 1 gets 

measured. In state lsinglet>, !intermediate>, or lfrnal>, the reduced density operator of 

particle 2 is 

P2 = 2-1 { ISz=+><Sz=+l + ISz=-><Sz=-1}, 

which can be rewritten as P2 = 2-l{ISn=+><Sn=+l + ISn=-><Sn=-1} for any direction n. 

Tills is just to say that the biorthogonal decomposition of lfinal> with respect to particle 2 

is non-unique.37 So, according to the modal interpretation, particle 2 does not have a 

definite value of Sn for any n. Measuring particle 1 does not bring into existence a 

37 A reduced density operator is diagonalized in terms of a unique basis if and only if the 
biorthogonal decomposition of the total quantum state uniquely picks out that same basis. 
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physical property associated with particle 2. In this sense, the modal interpretation does 

not violate EPR's locality requirement.3B 

Nonetheless, if we get a dot on the upper plate, we know that subsequent z..spin 

measurement of particle 2 will almost certainly yield "down." The modal interpretation 

must encode this fact, or else it's "incomplete" in some sense.39 To see how the modal 

interpretation "completes" itself, it helps to regroup the terms in lf!p.al>: 

lfinal> = ISz=+>1 { cuiR=up,++>®ISz=->z + duiR=down,++>®ISz=->2 + 

+ c21IR=up,-+>®ISz=+>2 + d21IR=down,-+>®ISz=+>z} 

+ ISz=->1 { c121R=up,+->®ISz=->z + d12IR=down,+->®ISz=->2+ 

+ c22IR=up,-->®ISz=+>2 + dzziR=down,-->®ISz=+>z}. 

Since the four boldfaced terms are either precisely or almost precisely mutually 

orthogonal, 40 and the other terms contribute negligibly, this expansion of lfinal> is 

almost biorthogonal with respect to particle 1. Unless the coefficients happen to add up 

in exactly the right way, the biorthogonal decomposition of lfinal> with respect to particle 

1 will be unique. Here's why. The density operator describing particle 1 is non-uniquely 

38EPR-locality demands, roughly speaking, that nothing we do to particle 1 can 
instantaneously bring into existence an "element of reality" associated with particle 2. 
39See Elby, Brown, and Foster (1993) for a detailed discussion of what "incomplete" 
means. We contrast "EPR-completeness" with "statistical completeness." In the present 
context, these fme distinctions aren't important 

Digression for EPR fans: Even when particle 1 yields "up," particle 2 does not 
have probability 1 of yielding "down," due to waveftinction tails. So, the physical 
property that encodes particle 2's near-certainty of yielding z-spin down does not meet 
EPR's sufficient condition for being an "element of reality." As just noted, according to 
the modal interpretation, this physical property--whatever it turns out to be--is not a 
physical property of particle 2 per se. 
40Recall from above that IR=up,++> and IR=up,+-> are strictly orthogonal, due to angular 
momentum conservation. And IR=up,ij> is almost orthogonal to IR=down,ij>, due to 
decoherence. 
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diagonalizable only if Pl = 2-1{1Sz=+><Sz=+l + ISz=-><Sz=-1}, which is the case 

(roughly speaking) only if particle 1 has an exactly 50% chance of fmishing the 

measurement interaction with spin "up." This will be the case if, for instance, both 

plates have exactly the same probability of flipping the particle's spin during the 

measurement interaction. Epistemically, of course, these "spin flip" probabilities for the 

upper and lower plate are equal. But the objective quantum probabilities depend on the 

microstates of the photographic plates. For instance, suppose the upper plate is exactly 

the same as the lower plate, except that the upper plate contains one extra atom of 

impurity. That one-atom difference changes the interaction Hamiltonian between the 

plate and particle 1, and thereby changes the odds that particle 1 's spin gets flipped. Of 

course, this difference in odds is unbelievably small. But as long as it's nonzero, the 

biorthogonal decomposition (and equivalently, the density matrix written as a "mixture") 

avoids degeneracy. 

Because we're so close to a degeneracy, the definite value associated with particle 1 

corresponds to an operator that might not even be close to Sz. But that's o.k. Because 

the measurement interaction "disturbs" the particle, we don't physically expect particle 1 

to end up with a defmite value of Sz. The key fact is that there's a definite value 

associated with particle 1, because lfmal> can be uniquely biorthogonally expanded in the 

form LiciiAi>®IBi>, where IAi> are orthogonal states of particle 1 and IBi> are 

orthogonal states of plates/environment/particle 2. According to the modal 

interpretation, there exists an operator A associated with particle 1, of which IAi> are 

eigenstates. The corresponding observable A has a definite value, which is just to say 

that particle 1 has the defmite property corresponding to IAi> for some i. (Here, i ranges 

from 1 to 2.) Similarly, there exists an operator B of which IBi> are eigenstates; and the 

corresponding observable B has a defmite value. As just hinted, this B-defmiteness is a 
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holistic property of the plates, particle 2, and the environment. Let's explore the nature of 

this property. 

Crucially, the IBi> states will be superpositions of the four boldfaced terms-, with 

only small contributions from the other terms. And all four of those boldfaced terms 

correspond to a perfect anticorrelation between the measurement outcome on particle 1 

and the z-spin of particle 2. So, the IBi> states are extremely "close" to states that encode 

this same anticorrelation. In other words, plates/environment/particle 2 possesses a 

defmite holistic property corresponding to an almost perfect anticorrelation between R 

and Sz (for particle 2). 

Let me summarize and clarify these results. Due to decoherence, an obsexvable 

very close to the "pointer-reading" R has a defmite value; there really is a dot on one 

plate or on the other plate. Furthermore, the plates/environment/particle 2 possesses a 

property corresponding to a nearly perfect anticorrelation between R and the z-spin of 

particle 2. Nonetheless, particle 2 considered as an individual system does not have a 

defmite z-spin. However, since something close to R is definite, and since R is 

anticorrelated with the z-spin of particle 2, the equation of motion governing these 

modally-possessed values ensures that, if the z-spin of particle 2 (or something 

correlated with that spin) ever acquires a defmite value, that value will with high 

probability be anticorrelated with R. In other words, if we ever measure particle 2, it will 

almost certainly produce a dot on the "correct" plate. 

In brief: After particle 1 gets measured but before particle 2 gets measured, particle 

2 doesn't have a definite z-component of spin. \But the modal interpretation still encodes 

the fact that subsequent z-spin measurement of particle 2 will almost certainly yield the 

opposite result to that obtained on particle 1. The modal interpretation does so by (i) 

assigning a defmite value to the particle 1 measurement outcome, (ii) assigning a definite 
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holistic property corresponding to n anticorrelation between the particle 1 measurement 

outcome and the z-spin of particle 2, and (iii) having an equation of motion ensure that 

this anticorrelation becomes actualized when particle 2's z-spin (or some observable 

correlated with it) becomes definite. 

In this scheme, the Bell~nonlocal connection between the two wings of the 

experiment takes the form of a holistic property, not a classically ·:~causal" connection. 

It's not that particle 1 or its measuring apparatus sends a "signal" to particle 2 or 

otherwise affects a property of particle 2. Rather, measuring particle 1 causes a holistic 

property of apparatus/particle 2 to evolve in such a way that the spin-anticorrelation will 

almost certainly be manifested if particle 2 undergoes measurement 

The spirit of this discussion agrees with Healey (1994). But Healey's discussion 

doesn't treat the near-degeneracy problem, nor does it allow the spin of particle 1 to be 

disturbed during measurement. As a result, he and I disagree about what observables 

have definite values at what times. Nonetheless, we agree about the central role played 

by holistic properties in mediating--indeed, constituting--the nonlocal connection. 

Precisely because the modal interpretation is one of the few viable interpretations of 

nonrelativistic QM, these insights about holism might apply in some veiled form to 

nature itself, even if QM itself or the modal interpretation turns out to be wrong. 
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CHAPTER 5: CAUSATION VS. HOLISM 

5.1. INTRODUCTION 

This chapter explores whether we can causally explain the quantum mechanical 

EPR correlations, under the assumption that relativistic quantum theory is fundamental. 

Other papers addressing this topic, including Redhead (1992) and Elby (1992), 

typically set necessary conditions on causation, and then show these conditions to rule 

out a "causal" explanation of EPR. As Healey (1992) emphasizes, however, different 

philosophers deploy different conceptions of causation in different contexts. Even the 

most popular conditions on causation, such as Reichenbach's principle of the common 

cause, may fail for certain notions of causation. Therefore, causation no-go theorems in 

the style of Redhead or Elby fail to establish that no variety of causal explanation can 

account for the EPR correlations within a quantum framework. 

In this paper, I tease apart three often-combined yet distinct notions of causation. 

According to "minimalist" causation, a causal relation is nothing more than a suitably­

formulated lawlike dependence between events. "Generative" causation demands that 

causes generate (bring about) their effects. And "continuity" causation requires that 

causal connections be mediated by continuous processes. 

To disentangle these notions of causation, I evaluate their commitment to two 

necessary conditions: (1) A Reichenbachian screening off requirement called Reich; and 

(2) "Causal Unidirectionality," which (roughly) requires effects not to cause their causes. 

111 argue that only generative causation is committed to both Reich and Causal 

Unidirectionality. By contrast, a causal minimalist can sensibly renounce Causal 

Unidirectionality in the case of spacelike causation. Minimalist causation can also 
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abandon Reich, but only by renouncing a compelling intuition I'll discuss below. 

Continuity causation can renounce Causal Unidirectionality, by dropping the "standard" 

though often tacit assumption that causal processes correspond to physical processes 

involving transport of energy density, current density, or some other conserved quantity. 

(Continuity causation can also renounce Reich, but only by allowing non-Markovian 

processes.) The bulk of this paper explores the philosophical ramifications of 

renouncing Reich or Causal Unidirectionality, for generative, minimalist, and continuity 

causation. 

Then, I prove that within the framework of relativistic quantum theory, we cannot 

causally explain the EPR correlations consistent with Reich, Causal Unidirectionality, 

and a. symmetry requirement that applies to all explanations, both causal and noncausal . 

. Therefore, generative causation cannot account for EPR. But certain flavors of 

minimalist or continuity causation can account for these nonlocal quantum correlations. 

I'll explore what these "causal" explanations of EPR could look like. 

In summary, this paper attempts to pinpoint which notions of causality provide a 

framework in which we can explain the EPR correlations within the context of 

relativistic quantum theory. Armed with these results, philosophers can debate whether 

we should explain EPR causally, or abandon causality in favor of a new, perhaps holistic 

explanatory framework. 

2. THE EPR CORRELATIONS 

Before discussing different notions of causation, I briefly review Bohm's version of 

the Einstein-Podolsky-Rosen (EPR) correlations. 
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In a typical EPR thought-experiment. two electrons, prepared in the spin singlet 

state, leave their source and travel in opposite directions towards measuring apparatuses. 

Both apparatuses measure the same component of "spin," which is a particle's intrinsic 

angular momentum. The "A-wing" of the experiment refers to one of the apparatuses 

along with the electron it measures, while the "B-wing" refers to the other apparatus and 

the electron it measures. 41 

According to relativistic quantum theory, when the two electrons occupy a spatially 

symmetric spin singlet state, they display the following characteristics: 

• In the rest frame of the source, the probability density of fmding an electron at 

spacetime point (x,t) equals the probability density of fmding an electron at 

spacetime point ( -x,t). The probability distributions for velocity are also symmetric. 

• The spin properties of the two electrons are equivalent. Formally, the same spin 

density operator describes both electrons. 

Furthermore, if the two measurements occur at spacelike separation, they cannot be 

objectively time ordered; neither measurement happens "before" the other. So, in 

relativistic quantum theory, the spatially symmetric spin singlet state'¥ corresponds to a 

physically symmetric state of affairs. Therefore, if the measuring apparatuses occupy 

the same quantum state, then relativistic quantum theory describes the A-wing and B­

wing of the experiment equivalently (before either measurement occurs). According to 

relativistic quantum theory, interchanging the A-wing with the B-wing would result in 

the same physical state of affairs. Succinctly, the pre-measurement physical state of 

affairs is symmetric with respect to A-wing H B-wing exchange. 

4IDon't take this wording to suggest that we can talk sensibly about "this electron" versus 
"that electron." For now, I'm just describing the experiment in rough terms. 
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Of course, other theories describe this experiment asymmetrically. For instance, in 

nonrelativistic quantum mechanics and in Bohm's hidden-variable theory (see Bohm and 

Hiley ~987), the existence of "absolute time" allows a time-ordering of the two-­

measurements. This time ordering breaks the symmetry between the two wings. 42 

Here, however, I will focus on causal explanations within the framework of relativistic 

quantum theory. That is, I'll assume relativistic quantum theory gtves a true account 

Tiris is, of course, highly unlikely; but the "true" theory might resemble relativistic 

quantum theory in the relevant ways. so that my philosophical analysis still applies. 

Let~ ~) denote the event of the A-wing (B-wing) apparatus measuring an 

electron and yielding result a(~). For electrons in state'¥, whenever a=fl/2, f3=-fi/2; 

and whenever a.=- fl/2, ~=+ fl/2. Importantly, '¥ does not screen off these 

experimentally-confirmed correlations, as we'll see below. 

Later on, I'll discuss whether, within the context of relativistic quantum theory, we 

can "causally" explain the EPR correlations. But first, I must outline some different 

notions of causation. 

3. THREE NOTIONS OF CAUSATION 

In this section, I review three intuitive, widely-held conceptions of causation. 

"Minimalist causation" asserts that a causal relation is nothing more than a lawlike 

dependence between cause and effect "Generative causation" insists that causes bring 

about their effects. And "continuity causation" asserts that continuous processes 

mediate causal connections. 

42Except when the two measurements occur simultaneously, which happens in a zero­
measure subset of cases. 
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Of course, most theories of causation lean on intuitions drawn from more than one 

of the above. But to explore which notions of causality provide a framework in which 

we can explain EPR, I must disentangle these three notions. Given this goal, I-will not 

discuss all of the objections raised against these three notions. For my arguments to get 

off the ground, I need to assume only that the three conceptions of causation, when 

properly fleshed out, could be rendered reasonably coherent. 

These notions of causation agree that causal relations are relations between events. I 

will not address alternatives. 

3 .1. Minimalist causation. This viewpoint carries less ontological baggage than other 

varieties of causation do. According to causal minimalists, if a suitably formalized 

lawlike dependence holds between two events, then the events are causally related (or 

else jointly caused by a common cause), simply by virtue of the lawlike dependence. If a 

causes b, it's not because a physical process connects a to b, and it's not because a 

"brings about" b in some independent sense. Rather, it's because a and b satisfy formal 

relations encoding their lawlike dependence. Proponents of causal minimalism need not 

rely on potentially murky metaphysical constructions such as "continuous processes" or 

other causal mechanisms. 

As an example, consider a standard "regularity" view of causation, according to 

which if p(bla)>p(b) is lawlike43 then either a and bare directly causally connected, or 

else a common cause c is connected to both a and b. (Here, p(x) denotes the objective 

probability that event x occurs, while p(ylx) is the probability of y given x.) In this 

43Delineating which correlations are lawlike and which are coincidental turns out to be 
notoriously difficult. In this paper, however, I can sidestep the issue, because I'm 
exploring the possibility of causal explanation within the framework of relativistic 
quantum theory. Therefore, for my purposes, a correlation is lawlike if predicted by 
relativistic quantum theory. These are the only correlations I address. 
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framework, the causal connections between events exist by virtue of these lawlike 

correlations, not by virtue of some independent metaphysical connection between the 

events. 

220 

Although Lewis's (1986) theory of causation differs markedly from regularity 

causation, Lewis-causation is also a variety of causal minimalism. According to Lewis, 

two events are causally connected if the propositions corresponding to the occurrence of 

those events, and the propositions corresponding to the non-occurrence of those events, 

satisfy a certain set of counterfactual relations. For my purposes, the details of Lewis's 

program aren't important. What's important is that, in Lewis's scheme, events are 

causally related because certain counterfactual statements are true, not because an 

independent physical or metaphysical connection links the events. Indeed, Lewis rejects 

talk of causal mechanisms as superfluous. 

Despite the differences between competing versions of minimalist causation, all of 

them flesh out the same intuition: A causal relation is nothing more than a properly­

formalized assertion that the events non-coincidentally, and perhaps even necessarily, 

tend to occur "together." 

3 2. Generative causation. According to generative causation, a is a partial cause of b 

just in case a helps to bring about b .. 

The "generation" relation is stronger than a mere affirmation that a and bare 

correlated, even if the correlation supports counterfactuals. I can't (and therefore won't) 

formalize or explicate "generation." Rather, 111 treat it as a pre-systematic relation rooted 

in our causal intuitions. 

Generative causation does not rule out superluminally-mediated causal connections, 

action at a distance, or even backwards-in-time causation. Generative causation 
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demands only that causes bring about their effects in some strong sense. Indeed, the 

central intuition underlying generative causation demands that all events, except the Big 

Bang, be brought about by other events. (I mean "event" in its broadest sense,.as 

including the physical state of affairs in a spacetime region.) Presumably, several 

different formulations of causation fit wholly or partly into a generative-causal 

framework. 

Before continuing, I must acknowledge a criticism that threatens the very notion of 

generative causation. One could claim that, upon closer examination, the distinction 

between generation and lawlike dependence breaks down, especially when the 

dependence supports counterfactuals. Here's the argument Suppose that b necessarily 

occurs after a, and necessarily does not happen at any other time. Suppose also that no 

common cause of a and b exists. Then a "brings about" b in the sense that, when a 

happens, b must follow. What else could we possibly mean when we say a brings 

about b? Put another way, how can we coherently claim that a does not bring about b, 

given that b necessarily follows a and never happens at any other time (and given that no 

common cause exists)? According to this argument, we can ascribe no meaning to the 

"generation" relation that goes beyond the lawlike dependence between the events. 

Therefore, generative causation reduces to a version of minimalist causation. 

In section 4.3, I'll show how we can tease apart generative causation from 

minimalist causation. Before tackling this issue, however, I'll introduce the third notion 

of causation addressed in this paper. 

33. Continuity causation. Some philosophers, including Salmon (1984), argue that 

events are causally connected just in case they are connected by the right kind of 

continuous process. What counts as a "continuous process" varies by philosopher. 
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Indeed, the fuzzy concept of "process," notoriously difficult to define, threatens the 

coherence of continuity causation. But let's assume continuity causation can be rendered 

coherent 

As an example of continuity causation, consider a television set. Pressing the 

remote control button causes my TV to switch on, because continuous processes 

corresponding to propagation of electromagnetic radiation, flow of electrons, and so on, 

connect the button-pressing to the switching-on. Usually in this framework, the 

continuous causal process corresponds to a physical process involving energy­

momentum transfer. This is true even in quantum mechanics, because a propagating 

wavefunction usually "carries" energy-momentum density. As Healey (personal 

communication) points out, calling wavefunction propagation a "process" makes sense 

only if we interpret the wavefunction non-instrumentally, as somehow coding real 

physical properties of the system. 

According to continuity causation, an unmediated nonlocal correlation either doesn't 

exist or doesn't correspond to a causal connection. For instance, if a and b are correlated 

even though no continuous processes connect the events to each other or to common 

causes, then the correlation is noncausal. 

In section 4.3, looking at Healey's explanation of EPR, we'll examine a continuous 

process that some philosophers might hesitate to call causal, and we'll explore the 

intuitions underlying this hesitation. 

3.4. Wrap-up. A typical classical causal explanation invokes intuitions drawn from both 

generative causation and continuity causation. We often say that a cause brings about its 

effect via a continuous causal process. Indeed, causal intuitions might tempt us to assert 

that a generates b just in case the right kind of continuous process connects a to b. The 
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resulting hybrid notion of causation functions well in a "classical" nonrelativistic or 

relativistic universe. That's because classical correlations almost always result from 

direct contact action or from propagation of energy-momentum, both of which.seem 

intuitively "generative." By contrast, nonlocal quantum correlations force us to choose 

which of our causal intuitions to retain and which to abandon. For this reason, we must 

further disentangle minimalist causation from generative causation from continuity 

causation. I'll now try to accomplish precisely that. 

4. NECESSARY CONDITIONS ON CAUSATION 

This section discusses two popular necessary conditions on causation: a 

Reichenbach-inspired screening-off requirement called Reich; and Causal 

Unidirectionality, the requirement that effects not cause their causes. Specifically, we'll 

explore which of the three notions of causation introduced above must obey these 

necessary conditions. Doing so will drive wedges between the different conceptions of 

causation. 111 also introduce Explanatory Symmetry, which requires a causal 

explanation to mirror any symmetries inherent in the underlying physical description of 

the phenomena. 

As proven in section 5, any formulation of causation obeying Reich, Causal 

Unidirectionality, and Explanatory Symmetry cannot provide a causal explanation of the 

EPR experiment, within the framework of relativistic quantum theory. This result 

increases the importance of deciding which notions of causation must obey those 

conditions. 
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4.1. Reich. Reich demands that causes, when taken together, probabilistically screen off 

their effects from each other and from other events. If C is the set of all partial causes of 

some event e, then Reich insists that given C, no other event is probabilistically.relevant 

to e, except effects of e: 

Reich: Cis all the partial causes of e only if p(el C,w) = p(el C) for all w (besides e and 

its effects). 

To explore whether minimalist causation must endorse Reich, let's jump right to the 

EPR correlations. Consider a standard EPR experiment in which the A-wing 

measurement occurs absolutely before the B-wing measurement. As mentioned above, 

p~ I~ ,'P)*P~ I '¥). Furthermore, since we're assuming that relativistic quantum 

theory holds, the correlation between ~ and g_b is sufficiently lawlike and necessary to 

satisfy the formal "lawlike dependence" relations posed by any reasonable version of 

rirl.nimalist causation. Therefore, according to minimalist causation, simply by virtue of 

that lawlike dependence, either 

(i) ~ and~ are directly causally connected; or else 

(ii) g_a and ~ are not causally connected, but there exists a common cause, 

presumably'¥ (or'¥ in conjunction with other events). 

Under choice (i), Reich holds. Under choice (ii), Reich fails, because the common cause 

doesn't screen off its effects from each other. This is true even if we build into '¥the 

pre-measurement state of the entire universe. 
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Strictly speaking, minimalist causation is compatible with choice (ii), failure of 

Reich. But the spirit behind minimalist causation strongly motivates us to choose (i). 

Before discussing this motivation in general, let me illustrate it with a specific case, 

namely Lewis's minimalist-causal framework. According to Lewis's rules,'¥ is not the 

cause of ~b' because~ isn't necessitated by'¥. But given'¥,~ is the cause of~; given 

the state preparation '¥, a down outcome occurs on the B-wing just in case an up 

outcome happens on the A-wing. See Buttertield's (1992) article, "David Lewis meets 

John Bell." 

The following argument helps to motivate Lewis's (and other causal minimalists') 

choice of (i), and more generally, their endorsement of Reich. The state preparation 

alone does not determine which B-wing outcome will occur, or even which B-wing 

outcome is most probable. The B-wing result depends also on the A-wing outcome. 

Since~ irreducibly depends on ~' even when all other factors are taken into account, 

and since causal relations are nothing more than appropriately-formulated lawlike 

dependencies, ~ is a (partial) cause of~· exactly as Reich demands. This same 

intuitive argument, modified and augmented, applies to regularity causation. Put another 

way: Since causal connections are lawlike dependencies (or at least, correspond very 

closely to lawlike dependencies), each "independent" lawlike dependency should 

correspond to a separate causal connection. This is exactly what Reich demands. 

For suppose Reich fails: Cis the whole cause of e even though p(el C,w) * p(el C). 

Then, even though w is lawlike correlated withe, and even though this correlation isn't 

screened off by other correlations, w is not causally connected to e. Nonetheless, Cis 

causally connected to e. In other words, if we consider two correlations, both of which 

(I'll assume) satisfy the same formal rules of lawlike dependency and both of which are 

"independent" in the same sense, one of them might not correspond to a "causal" 
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connection even though the other one does. This seems unacceptable, given the causal 

minimalist's insistence that any lawlike dependency satisfying certain formal conditions 

automatically corresponds to causation (either a direct causal connection or els~_mutual 

dependence on a common cause). 

In brief, a compelling minimalist-causal intuition motivates Reich: Each 

independent lawlike dependence in nature corresponds to a separate causal relation, so 

that no lawlike dependence is left "unexplained" A causal minimalist can reject Reich 

only at the expense of renouncing this intuition. 

Crucially, the above arguments, and the conclusion just stated, apply equally well 

when ~ and ~ are spacelike separated. In that case, other considerations may push us 

to deny a causal connection between ~a and~· and hence, to renounce Reich. But as 

we'll see below, those other considerations stem from continuity-causal intuitions, not 

from the minimalist-causal intuitions. For this reason, abandoning Reich in a purely 

minimalist-causal framework weakens the appeal of the resulting causal explanations. 

4.2. Reich, generative causation, and continuity causation. So far, I've examined to 

what extent minimalist causation is committed to Reich. Now 111 discuss whether 

generative causation must endorse Reich. 

Since generation is a stronger relation than lawlike correlation, it is logically possible 

for a lawlike correlation to result neither from direct causation nor from common causes. 

Such a correlation would violate Reich. But generative causation rules out Reich 

violation as physically (though not logically) impossible. Here's why: 

According to the central generative-causal intuition, all lawlike correlations in the 

world stem from an intricate web of generative-causal connections. This intuition 

implies Reich. To see why, visualize each generative-causal connection (i.e., each 
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"bringing about") as a strand connecting two events. Since in generative causation all 

lawlike dependencies must be "explained" by this web, it follows that if wand e are 

. lawlike correlated, then either a strand runs directly from w to e, or else there exists some 

common cause that sends strands to both wand e. But suppose Reich fails: p(el 

C,w)>p(el C), where w is not an effect of e, and where Cis supposedly the whole cause 

of e. Since Cis the whole cause of e, no strand runs from w toe, either directly or via a 

common cause. In other words, the lawlike dependence of eon w isn't explained by the 

generative web. As just noted, this contradicts the central intuition behind generative 

causation. Rejecting this intuition is tantamount to rejecting generative causation. For 

this reason, generative causation is committed to Reich as a necessary condition. 

Notice how this argument resembles the minimalist-causal justification of Reich 

discussed above. A causal minimalist can (at great cost) reject the intuition that 

independent correlations warrant separate causal relations. But a generative causation 

advocate cannot reject this intuition, because each independent correlation must be 

"brought about," i.e., must correspond to a separate strand (or set of strands) in the 

generative web. 

How does continuity causation fare with respect to Reich? Many advocates of 

continuity causation, including Salmon (1984), endorse a screening-off requirement. 

For concreteness, suppose a continuous process connects c (in spacetime region Rc) to e 

(in spacetime region Re); and suppose no other events or processes are causally relevant 

to e. Under most formulations of continuity causation, the "state" d of the causal 

process in spacetime region Rd, where Rd is spatiotemporally between Rc and Re, 

screens off e from c. In other words, given d, the probability of e does not depend on 

whether c occurred: 
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p(eld,c) = p(eld,-c), 
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where -c denotes the non-occurrence of c. More generally, each stage of the continuous 

causal process screens off the effect from preceding stages. 

Despite the traditional incorporation of screening off into continuity causation, I 

now argue (following Cartwright and Jones 1992) that continuity causation need not 

obey Reich. 

Suppose the c-?d-::,e process described above is non-Markovian, so that p(eld) * 
p(eld,c). This inequality holds not because an independent continuous process links c to 

e (without passing through d), and not because the "process" under consideration is 

really the result of multiple intertwining processes, but simply because later stages in the 

continuous causal process do not screen off earlier stages. In this non-Markovian case, 

Reich suggests that we call c and d separate causes of e. But continuity-causal intuitions 

lead us to assert that c and d are not separate causes of e; instead, c and dare merely 

different stages <?f the same continuous causal process leading to e. Here's my point: 

Given non-Markovian processes, a continuity causation advocate can sensibly renounce 

Reich as a necessary condition. 

Continuity causation advocates such as Salmon could defend Reich by denying the 

possibility of non-Markovian processes. To do so, they could emphasize that modem 

physical theories, including relativistic quantum theory, rule out non-Markovian 

fundamental processes. More precisely, according to all physical theories (that I know 

of) formulated in the past 300 years, the evolution of a system's fully-specified physical 

state S is strictly Markovian: S(t) screens off S(t+dt) from all previous states of the 

system. In words, a system does not "remember" its past state, except insofar as those 

memories are stored in the current state. Physical intuitions suggest that future physical 
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theories will also be Markovian; see Elby and Foster (1992). For this reason, a 

continuity causation advocate can deny the existence of non-Markovian "processes," and 

thereby defend Reich, by claiming that a "continuous causal process" corresponds to a 

physical processes, which by defmition supervenes on the evolution of the fully­

specified physical state. It's unclear, however, whether a priori philosophical 

considerations, other than Markovian physical intuitions, give us reason to rule out non­

Markovian processes. 

In summary: Minimalist causation can give up Reich, but only by renouncing the 

intuition that each independent lawlike dependence between events correspond to a 

separate causal relation. Generative causation cannot renounce this intuition, because 

each independent lawlike correlation must be "brought about." In continuity causation, 

Reich pops out as a compelling necessary condition only if we insist that "continuous 

causal processes" correspond to physical processes. Within the framework of 

relativistic quantum theory, this correspondence ensures that causal processes will be 

Markovian, because physical processes are Markovian. 

43. Causal Unidirectionality. My next allegedly necessary condition on causation is 

Causal Unidirectionality: If two events are ·causally connected, then one "causes" the 

other, but not vice versa. Therefore, if a is a cause of b, then b cannot be a cause of a 

(unless a and bare part of a closed timelike loop). 

This condition asserts that causal connections consist of "cause" and "effect"; and that 

effects cannot cause their causes. Within a causal explanation of events, if a somewhere 
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functions as a cause of b, then nowhere in the explanation may b function as a cause of 

a, unless a and b are part of a closed timelike loop. 

Causal Unidirectionality as formulated here is absolute, not observer-relative. To 

see what this means, suppose a and b are spacelike separated. Observer A (B) inhabits a 

reference frame in which a (b) occurs first. In some cases, we might be tempted to 

claim that a causes b for observer A, while b causes a for observe~ B. But Causal 

Unidirectionality rules out such an explanation. Roughly speaking, Causal 

Unidirectionality requires that the direction of causation be an unambiguous fact about 

the world, not an observer-relative vestige of our causal explanations. 

Generative causation must endorse Causal Unidirectionality. Intuitively, the 

generation relation is intrinsically asymmetric, even when the events can't be time 

ordered: If a generates b, then it makes no sense to say that b generates a .44 Because a 

symmetric "bringing about" relation would violate our deepest intuitions about 

generation, any resulting "explanation" would fall outside the framework of generative 

causation. For this reason, Causal U nidirectionality is a reasonable necessary condition 

to place on generative causation. 

111 now show that minimalist causation need not obey Causal Unidirectionality. To 

do so, I'll first argue that minimalist causation need not rule out spacelike causation. For 

spacelike causation, I'll then argue, minimalist-causal intuitions do not promote Causal 

Unidirectionality. 

44 At first glance, this conclusion seems fishy in the context of a closed timelike loop. 
You might want to say that "a causes b causes a causes b ... " But how did the loop itself 
come to be? This question illustrates the difficulty of retaining a generative causal 
framework when there's closed timelike loops. Fortunately, I can sidestep this tricky 
issue by confining my attention to relativistic quantum theory in our universe, where 
closed timelike loops are impossible. In the abs~nce of such loops, the "generation" 
relation is intrinsically asymmetric. · ' 

• 
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Almost all versions of minimalist causation either postulate or imply that, if two 

causally connected events are timelike separated, then the earlier event is the cause, while 

the later event is the effect. But suppose a and b are spacelik:e· separated. A causal · 

minimalist could simply rule out nonlocal causation. But this move violates the spirit of 

minimalist causation. In a minimalist framework, a causal connection does not 

correspond to a fancy metaphysical construction. Rather, it expre$ses a properly­

formulated lawlike dependence between two events. If a and b are lawlike correlated, 

and this correlation is "independent" from the correlations between those events and their 

other causes, then minimalist-causal intuition strongly suggests that a separate causal 

connection links a and b. In subsection 4.1, I argued this point more fully, to show that 

causal minimalists have good reason to endorse Reich. As we'll see below, our 

intuitions against spacelike causation come from continuity causation. So, "pure" 

minimalist causation has no reason to rule out nonlocal (spacelike) causal connections. 

And given a causal connection between space like separated a and b, a "pure" causal 

minimalist has no incentive to deny that the events mutually cause each other. Or better 

yet, the causal minimalist can dispense with asymmetry-connoting talk of "cause and 

effect" in favor of a symmetry-connoting talk of a "directionless causal link." For if 

neither event precedes the other, then what motivation remains for calling one event the 

"cause" and the other event the "effect"? By accurately mirroring the directionless 

(symmetrical) lawlike dependence between the events, the directionless causal link 

avoids introducing excess ontological baggage. And this avoidance of superfluous 

metaphysics is a cornerstone of minimalist causation. So, minimalist causation is not 

committed to Causal Unidirectionality. 

In response, a causal minimalist who likes Causal Unidirectionality could argue that 

it's nonsensical to say two events mutually cause each other in any sense. But as we saw 
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above, this argument rests on a generative-causal intuition about the asymmetry of the 

generation relation. Here's my point: If we really view causal relations as corresponding 

to nothing more than lawlike dependency, then we have no a priori incentive to-deny a 

symmetric causal link between a and b. Nor do we have reason to deny that a causes b 

and b causes a. 

Of course, a causal minimalist may adhere to Causal Unidir~tionality, even for 

spacelike causation. This fact does not threaten my argument that a causal minimalist 

can choose whether to adopt Causal Unidirectionality as a necessary condition. Raw 

minimalist causation is not committed to Causal Unidirectionality. 

For this reason, Causal Unidirectionality functions as a wedge we can drive between 

generative causation and minimalist causation. Recall from subsection 3.2 that 

according to some philosophers, the generation relation, when stripped of its rhetorical 

gloss, amounts to nothing more than a necessary lawlike dependence between two 

events; and hence generative causation reduces to minimalist causation. But generative 

causation, unlike minimalist causation, is committed to Causal Unidirectionality. For 

example, suppose that for spacelike separated a and b, the (non)occurrence of a 

necessitates the (non)occurrence of b, and vice versa Here, the "necessitation" relations 

are symmetric. The generation relation, by contrast, is intrinsically asymmetric. For this 

reason, "generation" does not reduce to a lawlike dependence (such as necessitation). In 

brief, Causal Unidirectionality teases out a distinction between minimalist causation and 

generative causation, showing that distinction to be more than merely semantic.· 

In reply, as Paul Teller (personal communication) points out, a detractor of 

generative causation could argue as follows: Let m'-causation denote a variant of 

minimalist causation that adopts Causal Unidirectionality as a necessary condition. Then . 

generative causation, when stripped of metaphysical fluff, reduces to m'-causation. 
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I have two responses to this. First, as argued above, Causal Unidirectionality is 

motivated by generative-causal intuitions, not by purely minimalist-causal intuitions. 

Therefore, m'-causation is two-faced: It relies on generative-causal intuitions to-motivate 

Causal Unidirectionality, and then dismisses as nonsensical the metaphysics underlying 

those intuitions. Or, if the m'-causation advocate denies relying upon generative-causal 

intuitions, but fails to provide a purely minimalist-causal motivation for Causal 

Unidirectionality, then m'-causation is ad hoc, in that it contains an unmotivated rule. 

For these reasons, m'-causation isn't a palatable alternative to generative causation. 

But even if generative causation ultimately reduces to a less metaphysically-loaded 

version of causation, this paper still makes a worthwhile argument. In section 5, I prove 

that any theory of causation committed to Causal Unidirectionality, Reich, and 

Explanatory Symmetry cannot account for the EPR correlations within the framework 

of relativistic quantum theory. In my view, a popular and intuitive conception called 

generative causation satisfies these conditions. If generative causation reduces to 

something else, then my proof applies to that "something else," whatever it is. 

So much for generative causation vs. minimalist causation. Let's now explore 

whether continuity causation must obey Causal Unidirectionality. 

In standard continuity-causal explanations, a continuous causal process corresponds 

closely to a physical process involving transfer of some conserved quantity, such as 

energy, angular momentum, and baryon number. This is true even in relativistic 

quantum mechanics, because a propagating wavefunction carries energy density, current 

density, etc. According to relativistic theories, both classical and quantum, transfer of a 

conserved quantity cannot exceed the speed of light. 45 Therefore, such processes 

45Specifically, the "center" of a system's energy density, or angular-momentum density, 
or baryon-number density, etc., cannot exceed the speed of light, and hence cannot 
connect two spacelik~ separated events. 
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propagate forward in time. For this reason, if two events are causally connected by such 

a process, the earlier (later) one can unproblematically be called the cause (effect). 

Therefore, Causal Unidirectionality automatically holds in standard continuity-causal 

explanations. 

But the nonseparability of entangled wavefunctions in quantum mechanics may 

open the door to "nonstandard" continuous processes, ones that dqn't correspond to 

transport of a conserved quantity. Some such processes may violate Causal 

Unidirectionality. 

As a detailed example of a pwported Unidirectionality-violating "continuous 

process," consider a crucial component of Richard Healey's (1992) explanation of the 

EPR experiment His explanation is embedded within relativistic quantum theory 

without wavefunction collapse. Consider the case where g_a and ~ occur at spacelike 

separation; neither measurement happens (absolutely) before the other. Suppose Ms. A 

observes the experiment from a reference frame in which ~ happens before~· 

According to Ms. A, g_a happens at time to and g_b happens at t1, where t1 >fo. At fo, the 

two-electron wavefunction becomes entangled with the A-wing apparatus. At tl' this 

entangled wavefunction becomes further entangled with the B-wing apparatus. 

Relativistic quantum theory describes how, from Ms. A's perspective, the wavefunction 

evolves between to and t1. Crucially, this entangled wavefunction is nonseparable; the 

A-wing and B-wing of the experiment are holistically connected. The wavefunction 

evolution between to and t1 is continuous, in that the wavefunction at time t+dt differs 

only infinitesimally from the wavefunction at timet, for all t between to and t1. And this 

continuous wavefunction evolution connects~ to ~ in the following sense: At fa. 

"part" of the nonseparable wavefunction is localized at the A-wing measuring device. 

The wavefunction evolves between to and t1 such that at t1, "part" of the wavefunction is 



• 

Elby Chapter 5: Causation vs. holism 235 

localized at the B-wing apparatus.46 So, the wavefunction evolution connects g_a (at to) to 

Similarly, Mr. B, who observes the experiment from a reference frame in which~ 

precedes ~. can give a description of how the nonseparable wavefunction continuously 

evolves so as to connect~ (at Mr. B's to) to~ (at Mr. B's t1). 

According to Healey, the continuous process linking~ and f.b corresponds to the 

conjunction of the wavefunction-evolution descriptions given by Ms. A and Mr. B. This 

process is "continuous" and "connecting" in that, according to any observer,47 the 

nonseparable wavefunction evolves continuously between when the "first" and ;'second" 

measurements occur; and the wavefunction evolution connects those two measurements 

in the sense described above. 

This continuity-causal partial explanation of EPR violates Causal Unidirectionality. 

Ms. A would say that~ is a partial cause of~· while Mr. B would claim~ is a partial 

cause of g_
8

• In Healey's explanatory framework, neither observer is "absolutely" right; 

the explanation deploys g_a as both a cause of~ and an effect of~· (Alternatively, a 

continuity causation advocate could claim that talk of causes and effects makes no sense; 

we can speak only of the continuous process that mediates the causal connection 

between events.) Either way, Healey's explanation violates Causal Unidirectionality, 

which requires f.
8 

to function in the explanation as either the cause or the effect of~· but 

not both. Interestingly, however, Healey's explanation obeys an observer-relative 

version of Causal Unidirectionality: 

46If you consider talk of "parts" to be out of place for entangled wavefunctions, then 
here's what I mean: At to, the electron probability density at the A-wing apparatus is 
significant; and at t1, the electron probability density at the B-wing apparatus is 
significant 
47It's not clear how Healey's scheme treats an observer for whom the two measurements 
occur exactly simultaneously. But this might not be too important; see footnote 2 above. 
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Observer-relative Causal Unidirectionality: If two events are causally connected, 

then any particular observer will describe exactly one event as the "cause." Therefore, if 

a particular observer claims that a is a cause of b, then she cannot also claim that b is a 

cause of a (unless a and b are part of a closed timelike loop). 

A "particular observer" differs from the "detached explainer," whose overall explanation 

of the events must subsume the descriptions given by different observers. 

A continuity causation advocate who endorses Causal Unidirectionality will deny 

that evolution of the nonseparable wavefunction counts as a continuous causal process 

linking the two measurement outcomes. This advocate could argue that unless a single 

identifiable part of the wavefunction actually propagates from~ to~ (or vice versa), 

we cannot say the wavefunction evolution causally connects~ to~· Healey could reply 

that since the nonseparable wavefunction is holistic, we cannot sensibly talk about 

individuated parts of the wavefunction. The Causal Unidirectionality advocate's best 

response, I think, is to fall back on the "standard" continuity-causal requirement that a 

causal process correspond to a physical process involving transfer of some conserved 

quantity. By this argument, since no probability current density (and hence no energy 

density) flows from~ to~· the continuous process does no.t co~ect ~to~-

The above paragraph raises a crucial issue: To deny that unusual Unidirectionality­

violating processes (such as Healey's) are "causal," a continuity causation advocate has 

little choice but to fall back on the requirement that a continuous causal process 

correspond to a physical process involving transfer of a conserved quantity from cause 

to effect. Therefore, we must exhume the intuitions underlying this standard 

requirement 



• 

Elby Chapter 5: Causation vs. holism 

Intuitively, quantities such as energy and angular momentum are "active": When 

transferred to an object, they change the object's properties. In a causal process, if the 

relevant "effect" follows physically from these changed properties, then the transfer of 

energy or angular momentum "brings about" the effect, in some strong intuitive sense. 

By contrast, Healey's nonseparable wavefunction evolution does not seem to carry a 

generative agent from ~ to ~- Instead, the nonseparable wavefunction mediates a 

holistic, non-generative connection between~ and~· To deny that seemingly 

"passive" connections between events (such as Healey's nonseparable wavefunction 

evolution) count as "causal," a continuity causation advocate must insist that a causal 

process carry something "active" (generative) from cause to effect. So, to escape 

Healey's conclusion that certain continuous processes violate Causal Unidirectionality, a 

continuity causation advocate must smuggle in generative-causal intuitions. 

Healey's explanation of EPR is unusual in that it employs continuity causation 

almost completely disentangled from the generative-causal intuitions usually present in 

continuity-causal explanations. The resulting "99% pure"48 continuity causation violates 

Causal Unidirectionality. Of course, some philosophers will argue that "pure" continuity 

causation fails to provide intuitively pleasing explanations. I'll address this point in 

section 6. For now, let me reiterate my goal of disentangling generative causation from 

continuity causation from minimalist causation, to see how each notion of causation 

fares with respect to EPR. Healey proves that we can causally explain EPR, if we 

employ continuity causation stripped of essentially all generative-causal intuition . 

In summary, although most theories of causation assume or imply Causal 

Unidirectionality, only generative causation is committed to this necessary condition. 

48Healey (personal communication) notes that his explanation may harbor the 
consequence of a residual g-causal intuition: Within a given reference frame, we can still 
talk of the "cause" and the "effect"; and cause precedes effect. That is, Observer-relative 
Causal Unidirectionality holds. 
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When we strip continuity causation of all generative-causal intuitions, thereby allowing 

Healey-style "passive" processes to count as causal, Causal Unidirectionality can fail. 

To defend Causal Unidirectionality, a continuity causation advocate can impose-the 

standard requirement that causal processes correspond to physical processes involving 

transfer of conserved quantities. As just shown, however, generative-causal intuitions 

motivate this standard requirement. Furthermore, for spacelike separated events, 

minimalist-causal intuitions alone do not rule out a symmetric, directionless causal link. 

According to minimalist causation, a causal relation corresponds closely to a lawlike 

dependence between events, with no superfluous metaphysics. Therefore, a completely 

symmetric lawlike dependence could correspond to a symmetric causal connection. 

4.3. Explanatory symmetry. My third necessary condition on causation requires causal 

explanations to mesh with physical descriptions: 

Explanatory Symmetry: Suppose that a physical description D of some phenomena 

incorporates a fundamental symmetry. Let E be an explanation of the phenomena. If E 

takes D to be a "complete" physical description of the phenomena in question, then E 

must reflect the symmetry of D. 

A physical description is "complete" only if the theory on which it is based is 

fundamental, and only if the description is as fme-grained as the theory allows. 

Because Explanatory Symmetryis technically ambiguous (e.g., I don't supply a 

sufficient condition for the "completeness" of a physical description, or a definition of 

"fundamental" symmetry), it must serve more as a guiding principle than as a formal 

necessary condition. The "version" of this principle 111 invoke later applies to EPR: 
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EPR Explanatory Symmetry: If our physical description of the EPR experiment, 

assumed to be complete, is physically symmetric under A-wing H B-wing exehange, 

then our corresponding explanation must not introduce an asymmetry between the two 

wings. 

Relativistic quantum theory provides a description of the EPR experiment that is 

symmetric under A-wing H B-wing exchange. Therefore, if we explain EPR within 

the context of relativistic quantum theory, EPR Explanatory Symmetry implies the 

following: 

If~ is a partial cause of 4• then 4 is a partial cause of~· 
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Explanatory Symmetry, I now argue, is a reasonable constraint on all varieties of 

causal and noncausal explanation. An explanation should do more than reiterate our 

bare-bones physical description of the events. The explanation should complement or 

flesh out those physical details, thereby helping us to "understand" the phenomena more 

deeply. Put another way, our metaphysical description of events, which may include 

causal connections, should combine with our physical description to provide a unified, 

coherent "picture" of the phenomena. 

These considerations immediately motivate Explanatory Symmetry. When 

Explanatory Symmetry fails, our physical and metaphysical descriptions "disagree" 

about whether the phenomena are symmetric. Therefore, we cannot unify those physical 

and metaphysical components into a pleasing, coherent picture of what's going on. 
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Let's specialize these considerations to the EPR correlations. According to 

relativistic quantum theory, the A-wing and B-wing are physically equivalent; 

exchanging the two wings would make no physical difference.49 This physical 

description strongly suggests that neither wing is "special." But if our explanation 

violates EPR Explanatory Symmetry, then one wing of the experiment gets singled out. 

For instance, if we claim that ~ causes gb, but not vice versa, then we've picked out the 

A-wing as causally "special." Such an explanation, by clashing with our symmetric 

physical description, fails to help us fmd a unified way of viewing the EPR correlations. 

(Of course, if we explain EPR within the framework of a theory that introduces a 

physical asymmetry between the two wings, then Explanatory Symmetry allows causal 

asymmetry. For instance, "absolute-time" theories, in which one measurement precedes 

the other, may incorporate causal asymmetry without violating Explanatory Symmetry.) 

In summary: Explanatory Symmetry is not motivated by specifically minimalist, 

generative, or continuity-causal intuitions. This constraint follows from the more 

general requirement that an explanation combine metaphysical constructs (such as causal 

connections) with physical description to provide a coherent way of looking at the events 

in question. 

49Strictly speaking, an A-wingHB-wing interchange "switches" an ~a=up, ~=down joint 
measurement outcome into ga=down, ~=up, which is a different physical state of affairs. 
We can easily escape this difficulty, in two ways. One, we could consider two identical 
bosons in their triplet state. Those particles always yield _g_a =up and~ =up, or ~=down 
and~ =down. Alternatively, we could stick with our spin-1/2 particles in their singlet 
state, but build into our wing-interchange a spatial rotation that changes up into down and 
vice versa. Since rotational symmetry is fundamental in relativistic quantum theory, 
Explanatory Symmetry still holds. 

.. 
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4.4. Summary. The following table summarizes section 4 by briefly stating the 

status of Reich, Causal Unidirectionality, and Explanatory Symmetry with respect to the 

three notions of causation addressed in this paper. 

Minimalist 
causation 

Generative 
causation 

Continuity 
causation 

Reich 

Holds, unless we 
renounce the intuition 
that each independent 
lawlike dependence 
correspond to a separate 
causal relation 

Holds, because each 
independent lawlike 
correlation must be 
"brought about" 

Holds, except for non-
Markovian processes, 
which cannot 
correspond to 
fundamental physical 
processes 

5. CAUSAL NO-GO THEOREM 

Causal 
Unidirectionality 

Can fail, especially in 
spacelike case, since a 
symmetric lawlike 
dependence can corres-
pond to a symmetric 
causal connection 

Holds, because the 
"generation" relation is 
intrinsically asymmetric 

Fails, unless we require 
(for instance) that a 
causal process 
correspond to physical 
transfer of a conserved 
quantity 

Explanatory 
Symmetry 

Holds, since a causal 
explanation should 
mirror symmetries 
inherent in the complete 
physical description 

Holds, since a causal 
explanation should 
mirror symmetries 
inherent in the complete 
physical description 

Holds, since a causal 
explanation should 
mirror symmetries 
inherent in the complete 
physical description 

I now prove that any causal explanation of the EPR correlations consistent with 

Reich, Causal Unidirectionality, and Explanatory Symmetry is incompatible with the 

symmetric physical description provided by relativistic quantum theory. Then, I'll use 

the conclusions of section 4 (summarized in the table) to explore the philosophical 

implications. 

Causal No-go Theorem: 
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Within the framework of relativistic quantum theory, we cannot causally explain the 

EPR correlations consistent with Reich, Causal Unidirectionality, and Explanatory 

Symmetry. 

Proof: 

Suppose that~ and~ are directly causally connected. Then Causal 

Unidirectionality requires that exactly one of those two events be a (partial) cause of the 

other. For concreteness, let's say ~is a partial cause of ~b· Then Causal 

Unidirectionality requires us not to call ~ a partial cause of ~a; but EPR Explanatory 

Symmetry requires us to call ~ a partial cause of~· This contradiction prevents us 

from claiming that the two measurement outcomes are directly causally connected. 

Therefore, we must claim that 'P, or perhaps 'P supplemented by other events, is 

the common cause of~ and~· But according to relativistic quantum theory, 

Specifically, p~ I 'P) equals 1/2, while p~ I 'P, ~a) equals 0 or 1. This is true even if 

we build into 'P the complete pre-measurement state of the universe. (According to 

quantum theory, the probability of~ depends on nothing other than ~and the pre-

measurement quantum state of the particles.) Therefore, within the framework of 

relativistic quantum theory, Reich rules out any causal explanation of~ that doesn't 

include~ as a partial cause. But, as shown above, Causal Unidirectionality and EPR 

Explanatory Symmetry imply that a causal explanation of g_b must not include ~a as a 

partial cause. So, within the framework of relativistic quantum theory, one cannot 
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causally explain the EPR correlations consistent with Reich, EPR Explanatory 

Symmetry, and Causal Unidirectionality. Q.ED. 

6. IMPLICATIONS FOR EXPLAINING EPR CAUSALLY 

I'll now spell out the philosophical implications of this no-go .theorem 
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6.1. Should we explain the EPR correlations generative-causally or minimalist­

causally? A generative causation advocate cannot renounce Causal Unidirectionality or 

Reich (or Explanatory Symmetry). Therefore, if she accepts relativistic quantum theory 

as fundamental, she must admit that some correlations in nature cannot be causally 

explained. 

Many previous articles, including Elby (1992), reach the italicized conclusion. 

Section 4 clarifies this conclusion by showing that it applies only to a specific notion of 

causation, namely generative causation. We can explain EPR within the context of 

minimalist causation or continuity causation. 

Since minimalist causation is not committed to Causal Unidirectionality (for 

spacelike causal connections), a causal minimalist can explain the EPR correlations as 

follows: '¥ and ea are partial causes oft;,. while '¥ and t;, are partial causes of ea, end 

of story.so This causal story, however, seems not to have explained anything. Rather, 

this "explanation" merely calls "causal" the lawlike correlations encoded by relativistic 

quantum theory, without providing a deeper understanding of what's happening. A 

minimalist causation advocate could respond that we shouldn't expect anything more 
.. 

50 Alternatively, at great intuitive cost (see section 4.1), a causal minimalist can renounce 
Reich, and explain the measurement results in terms of a "non-screening-off common 
cause." Cartwright (1989) makes essentially this move. 
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from an explanation, because all talk of "bringing about" or continuous processes is 

nonsense, a pleasant way of helping us organize our thoughts. If you accept this 

response, however, then all lawlike dependencies in nature simply don't have a deeper 

explanation, and therefore you have little reason to assign causal relations to events. You 

might as well just catalog the lawlike dependencies and call it quits. Indeed, critics of 

minimalist causation often focus on its apparent explanatory empti,ness. 

Let me raise a brief sociological point: Mter examining the metaphysical pitfalls of 

generative causation and continuity causation, a philosopher might be tempted to 

embrace minimalist causation. I contend, however, that if an minimalist-causal 

explanation sounds appealing, it's only because the listener secretly fleshes out the 

explanation with generative-causal or continuity-causal intuitions. For example, an 

minimalist-causal explanation of why my TV turns on when I hit the remote control 

button would list the chain of lawlike dependencies between button pushings, cathode­

ray tubes becoming warm, and so on. This catalog of dependencies appeals to our 

intuitions because we're secretly picturing infrared rays racing from the remote control to 

the TV, etc. These illicit continuity-causal images spice up the bare-bones minimalist-

causal explanation to make it palatable. The minimalist-causal explanation, when 

stripped of these continuity-causal intuitions, seems just as non-explanatory as the 

minimalist-causal explanation of EPR. Nonlocal quantum correlations help us to 

entertain this criticism of minimalist causation, by providing a scenario in which we're 

less inclined to flesh out our minimalist-causal explanation with illicit continuity-causal 

or generative-causal intuitions . 

• 
62. Should we explain the EPR correlations continuity-causally? 

• 
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A continuity causation advocate can explain EPR by renouncing Reich or Causal 

Unidirectionality. As long as "causal processes" mirror physical processes, Reich holds, 

because fundamental physical processes are Markovian. But we can renounce ~usal 

Unidirectionality by allowing "passive" processes (ie., those not corresponding to 

transfer of a conserved quantity) to count as causal. Healey's explanation of EPR 

violates Causal Unidirectionality, but obeys Reich. As discussed in section 4.3, such 

continuity-causal explanations are stripped of almost all generative-causal intuition. 

These "eviscerated" continuity-causal explanations clarify issues both in philosophy 

of quantum theory and in philosophy of causation. The quantum philosopher, if he 

wants to explain the EPR correlations causally within the context of relativistic quantum 

theory, and if he considers minimalist causation to be explanatorily empty, must adopt a 

continuity-causal explanation in which the continuous causal process does not 

correspond to the flow of current density, energy, momentum, or any such quantity. 

Should we label such a process "causal"? As discussed in subsection 3.4, in a 

classical framework, most continuity-causal explanations incorporate generative-causal 

intuitions, and vice versa The intuitions urging you to call Healey's explanation 

"noncausal" are precisely those generative-causal notions normally present in continuity 

causation. On the other hand, any sympathies you feel for calling Healey's explanation 

"causal" stem from pure continuity-causal intuitions. So, EPR helps us to see what bare 

continuity causation looks like. 

These considerations do not tell us what causation really is, or whether that question 

even makes sense. They merely help to clarify our options. 

7. CONCLUSION 
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Redhead (1992), Elby (1992), and others attempt to show that we cannot causally 

explain the EPR correlations within a quantum framework. These arguments involve 

setting necessary conditions on causation. As Healey (1992) points out, however, 

causation is not a sufficiently univocal concept to invite universal necessary conditions. 

Therefore, the philosophical implications of causation no-go theorems are unclear. 
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In this paper, I tried to sharpen these no-go theorems by teasip.g apart three 

overlapping yet distinct notions of causation, namely minimalist causation, generative 

causation, and continuity causation. By exploring which necessary conditions each 

conception must adopt, we (at least partially) disentangled these causal notions. My no­

go theorem showed that within a relativistic quantum framework, we cannot causally 

explain the EPR correlations consistent with Reich, Causal Unidirectionality, and 

Explanatory Symmetry. Therefore, a "causal" explanation of the EPR experiment 

within a relativistic quantum framework must be minimalist-causal or continuity-causal, 

stripped of almost all generative-causal intuition. 

So, if you think all lawlike correlations warrant a causal explanation, you must 

severely water down your causal intuitions. Arguably, instead of watering down 

causation, we should search for a new, perhaps holistic framework in which to explain 

quantum correlations. 
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CHAPTER 6: CONCLUSION 

Each chapter of this thesis was about a different topic. Chapter 2 explored 

nonlocality, and presented some new algebraic nonlocality proofs utilizing assumptions 

of unpr~edented weakness. Chapter 3 argued that SQUID experiments say little about 

Macrorealismper se, but can rule out non-invasively measurability. In chapter 4, I 

showed how decoherence rescues modal interpretations from otherwise-fatal objections. 

And chapter 5 argued that any "causal" explanation of the EPR correlations will be 

severely watered down. In each chapter, I argued that the piece of "quantum weirdness" 

under discussion could be explained well by holism, the idea that composite systems 

possess properties that cannot even in principle be reduced to the properties of the parts. 

No one of my chapters presents a drop-dead argument that we should adopt a holistic 

explanatory framework. But taken together, my chapters point us in that direction. 



Elby Riferences 

REFERENCES 

Albert, D. and B. Loewer (1988), "Interpreting the Many-Worlds Interpretatioii", 

Synthese 77: pp. 195-213. 

Albert, D. and Loewer, B. (1990), "Wanted Dead or Alive: Two Attempts to Solve 

Schrodinger's Paradox", in A. Fine, M. Forces, and L. Weasels (eds.), Proceedings of 

the 1990 Biennial Meeting of the Philosophy of Science Association, Volume 1. East 

Lansing: Philosophy of Science Association, pp. 277-285. 

Arntzenius, F. (1988), in Proceedings of the 1988 Biennial Meeting of the Philosophy of 

Science Association, Volume 1. East Lansing: Philosophy of Science Association. 

Bacciagaluppi, G. and M. Hemmo (1995), "The Modal Interpretation of Imperfect 

Measurements", forthcoming in Studies in the History and Philosophy of Modern 

Physics. 

Ballentine, L. (1987), Physical Review Letters 59: pp. 1493-

Bell, J. (1964), "On the Einstein-Podolsky-Rosen Paradox", Physics 1: pp. 195-200. 

Reprinted in Bell (1987), pp. 14-21. 

Bell, J. (1966), "On the Problem of Hidden Variables in Quantum Mechanics", Reviews 

of Modern Physics 38: pp. 447-475. Reprinted in Bell (1987), pp. 1-13. 

.. 



I 

Elby References 

Bell, J. (1987), Speakable and Unspeakable in Quantum Mechanics. Cambridge: 

Cambridge University Press. 

Bohm, D., B. Hiley, and P. Kaloyerou (1987), "An Ontological Basis for the Quantum 

Theory", Physics Reports 144: pp. 321-375. 

Bransden, B. and C. Joachain (1989), Introduction to Quantum Mechanics. New York: 

Longman Scientific & Technical (co-published with Wiley). 

Brown, H. and G. Svetlichny, "Nonlocality and Gleason's Lemma, part 1: Deterministic 

Theories", Foundations of Physics 20: pp. 1379-1387. 

Cartwright, N. (1989), "Quantum Causes: The Lesson of the Bell Inequalities", in 

Philosophy of the Natural Sciences: Proceedings of the 13th International Wittgenstebi 

Symposium. Vienna: Verlag Holder-Pichter Tempsky. pp. 120-127. 

Cartwright, N., and M. Jones, M. (1991), "How to Hunt Quantum Causes", Erkenntnis 

35: pp. 205-231. 

Clauser, J. and M. Home, "Experimental Consequences of Objective Local 

theories", Physical Review DJO: pp. 526-535. 

Clifton, R., M. Redhead, and J. Butterfield (1991), "Generalization of the Greenberger­

Horne-Zeilinger Algebraic Proof of Nonlocality', Foundations of Physics, 21, pp. 149-

184. 



Elby References 

Clifton, R. (1995), "Independently Motivating the Kochen-Dieks Modal Interpretation of 

Quantum Mechanics", forthcoming inBritishJournalfor the Philosophy of Science. 

Cohen-Tannoudji, C., B. Diu, and F. Laloe (1977), Quantum Mechanic, volume 1. 

Translated from the French by S. Hemley, N. Ostrowsky, and D Ostrowsky. New 

York: John Wiley & Sons. 

D'Espagnat, B. (1976), Conceptual Foundations of Quantum Mechanics. Reading, 

Massachusetts: Addison-Wesley-Benjamin-Cummings. 

deWitt, B. and R. Graham, (eds.), The Many-Worlds Interpretation of Quantum 

Mechanics. Princeton: Princeton University Press. 

Dickson, M. (1994), "Wavefunction Tails in the Modal Interpretation", in D. Fine, M .. 

Forces, and R. Burian (eds.), Proceedings of the 1994Biennial Meeting of the 

Philosophy of Science Association, Volume 1. East Lansing: Philosophy of Science 

Association. pp. 366-376. 

Dieks, D. (1989), "Quantum Mechanics without the Projection Postulate and its 

Realistic Interpretation";Foundations of Physics 19: 1395-1423. 

Dieks, D. (1994), "Objectification, Measurement and the Classical Limit According to 

the Modal Interpretation of Quantum Mechanics", in P. Busch, P. Lahti, and P. 



.. 

Elby Riferences 

Mittelstaedt ( eds. ), Proceedings of the Symposium on the Foundations of Modern 

Physics, 1993. Singapore: World Scientific. 

Elby, A. (1990a), "On the physical interpretation of Heywood and Redhead's algebraic 

impossibility theorem", Foundations of Physics Letters 3: pp. 239-247. 

Elby, A. (1990b), "Critique of Home and Sengupta's derivation of a Bell inequality", 

Foundations of Physics Letters 3: pp. 317-324. 

2Sl 

A. Elby, (1990c) "Nonlocality and Gleason's lemma, part II: Stochastic theories", 

Foundations of Physics 20: pp. 1389-1397. 

Elby, A. (1992), "Should we explain the EPR Correlations Causally?", Philosophy of 

Science 59: pp. 16-25. 

Elby, A. (1993), "Why Modal Interpretations of quantum mechanics don't solve the 

measurement problem", Foundations of Physics Letters 6: pp. 5-19. 

Elby, A. (1993), "Why local realistic theories must violate, nontrivially, the EPR-type 

perfect correlations", British Journal for the Philosophy of Science 44: pp. 213-230. 

Elby, A. (1994), "Can decoherence solve the measurement problem?" in P. Mittelstaedt, 

P. Lahti, and P. Busch (eds.) Symposium on the Foundations of Modern Physics 1993. 

Singapore: World Scientific. 



E~ R4~~~ & 

Elby, A. (1994), "The decoherence approach to the measurement problem", in D. Hull, 

M. Forces, and R. Burian (eds.) Proceedings of the 1994 Biennial Meeting of the 

Philosophy of Science Association, volume 1. East Lansing: Philosophy of Science 

Association. pp. 355-365. 

Elby, A. and Sara Foster (1992), "Why SQUID experiments can. rule out non-invasive 

measurability", Physics Letters A 166: pp. 17-23. 

Elby, A. and M. Jones (1992) "Weakening the locality conditions in algebraic 

nonlocality proofs", Physics Letters A 171: pp. 11-16. 

Elby, A., H. Brown, and S. Foster (1993), "What makes a theory physically 

complete?", Foundations of Physics 23: pp. 5-19. 

Fine, A. (1974), "On the Completeness of Quantum Theory", Synthese 29: pp. 257-

289. 

Fine, A. (1982), "Hidden Variables, Joint Probability, and the Bell Inequalities", 

Physical Review Letters 48: pp. 291-295. 

Fine, A. (1988), book review, Foundations of Physics Letters 1: p. 91. 

Fine, A. (1989), Foundations of Physics 14: pp. 453-

Fleming, G. (1965), Physical Review B139: p. 963. 

• 



0 

Ell7y Rtferences 

Foster, S. and A. Elby (1991), "A SQUID no-go theorem without macrorealism: What 

SQUID's really tell us about nature", Foundations of Physics 21: pp. 773-785:- , 

Gleason, A. (1957), "Measures on the Closed Subspaces of a Hilbert Space", Journal of 

Mathematics and Mechanics 6: pp. 885-893. 

Greenberger, D., M. Home, A. Shimony, and A. Zeilinger (1990), "Bell Theorem 

Without Inequalities", American Journal of Physics 58: pp. 1131-1143. 

Hardy, L. (1993), "Nonlocality for 2 Particles Without Inequalities for Almost All 

Entangled States", Physical Review Letters 71: pp. 1665-1668. 

Healey, R. A. (1989), The Philosophy of Quantum Mechanics: An Interactive 

Interpretation. Cambridge: Cambridge University Press. 

Healey, R. (1992), "Chasing Quantum Causes: How Wild is the Goose?", 

Philosophical Topics 20: 181-204. 

Healey, R. A. (1994), "Nonseparable Processes and Causal Explanation", Studies in 

History and Philosophy of Science 25: pp. 337-374. 

Hegerfeldt, G. (1974), Physical Review D10: p. 3320. 

Hegerfeldt, G. (1985), Physical Review Letters 54: p. 2395. 



Elby References 

Heywood, P. and M. Redhead (1983), "Nonlocality and the Kochen-Specker Paradox", 

Foundations of Physics 13: pp. 481-499. 

Home, D. and G. Sengupta (1984), Physics Letters A102: pp. 159-162. 

Jarrett, J. (1984), "On the Physical Significance of the Locality Conditions in Bell 

Arguments", Nof1s 18: pp. 569-580. 

Joos, E. and Zeh, H. D. (1985), "The Emergence of Classical Properties Through 

Interaction with the Environment", Zeitschriftfur Physik B 59: pp. 223-243. 

Kochen, S. and E. Specker (1967), "The Problem of Hidden Variables in Quantum 

Mechanics", Journal of Mathematics and Mechanics 17: pp. 59-87. 

Leggett, A. (1986a), in G. Grinstein and G. Mezenko (eds.), Directions in 

Condensed Matter Physics: Memorial Volume in Honor ofShang-keng Ma. 

Singapoi,"e: World Scientific. pp. 185-

Leggett, A.(1986b), in J. de Boer, E. Dal, and 0. Ulfbect (eds.), The Lesson of 

Quantum Theory: Niels Bohr Centenary Symposium. Amsterdam: Elsevier. pp. 

35-

Leggett, A. and A. Garg (1985), Physical Review Letters 55: pp. 857-



• 

Elby References 

Lepore, V. and F. Selleri (1990), "Do Performed Optical Tests Disprove Local 

Realism?", Foundations of Physics Letters 3: pp. 203-220 . 

Lewis, D. (1986), Philosophical Papers, Vol. /I. Clarendon Press: Oxford. 

Mermin, N.D. (1990), "Extreme Quantum Entanglement in a Superposition of 

Macroscopically Distinct States", Physical Review Letters 65: pp. 1838-1840. 

Peres, A. (1990), "Incompatible Results of Quantum Measurements", Physics Letters 

Al51: pp. 107-108. 

Redhead, M. (1987), Incompleteness, Nonlocality, and Realism: A Prolegomenon to 

the Philosophy of Quantum Mechanics. Oxford: Clarendon Press. 

Redhead, M. (1992), "Propensities, Correlations, and Metaphysics", Foundations of 

Physics 22: 381-394. 

Reichenbach, H: (1956), The Direction ofTime. Edited by M. Reichenbach. Berkeley: 

University of California Press. 

Ruijsenaars, S. (1981), Annals of Physics (New York) 137: p. 33 

Salmon, W. (1984), Scientific Explanation and the Causal Structure of the World. 

Princeton: Princeton University Press. 

2S5 



Elby References 

Stairs, A. (1983), Philosophy of Science 50: pp. 587-

Stapp, H. (1993), "Significance of an Experiment of the Greenberger-Home-Zeilinger 
Kind", Physical Review A47: pp. 847-853. 

Stapp, H. (1993), "Stapp's Algebraic Argument for Nonlocality--Reply", Physical 

Review A49: pp. 4257-4260. 

Suppes, P. and M. Zanotti (1976), "On the Detenninism of Hidden-Variable Theories 

with Strict Correlation and Conditional Statistical Independence of Observables", in P. 

Suppes (ed.), Logic and Probability in Quantum Mechanics. Dordrecht: Reidel. 

Svetlichny, G., M. Redhead, H. Brown, and J. Butterfield (1988), "Do the Bell 

Inequalities Require the Existence of Joint Probabilities?", Philosophy of Science 55: 

pp. 387-40 1. 

Tesche, C. (1990), "Can a Non-invasive Measurement of Magnetic Flux Be 

Performed with Superconducting Circuits?", Physical Review Letters 64 : pp. 

2358-2361. 

van Fraassen, B. (1973), "Semantic Analysis of quantum Logic", in C. Hooker (ed.), 

Contemporary Research in the Foundations and Philosophy of Quantum theory. 

Dordrecht: Reidel. pp. 80-113. 

van Fraassen, B. (1979), "Hidden Variables and the Modal Interpretation of Quantum 

Mechanics", Synthese.42: pp. 155-165. 



• 

E~ R~reoc~ ~ 

van Fraassen, B.:(1991), Quantum Mechanics: An Empiricist View. Oxford: 

Clarendon Press. 

Wheedan, R. and A. Zygmund (1977), Measure and Integral: And Introduction to 

Real Analysis. New York: Marvel Dekker, Inc. 

Zeh, H. (1993), "There are No Quantum Jumps, nor are there Particles", Physics Letters 

A172: pp. 189-192. 

Zurek, W. (1993a), "Preferred States, Predictability, Classicality, and the Environment­

Induced Decoherence", Progress in Theoretical Physics 89: pp. 281-312. 

Zurek, W. (1993b), "Negotiating the Tricky Border Between Quantum and Classical: 

Zurek Replies", Physics Today 46 no. 4: pp. 84-90 . 



•r._ ;.-

~ 

~ I~ ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY 

~I I TECHNICAL AND ELECTRONIC INFORMATION DEPARTMENT 

~~UNIVERSITY OF CALIFORNIA I BERKELEY, CALIFORNIA 94720 

~- . -~"' 


