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Abstract 

Algorithms for Biomagnetic Source Imaging 

With Prior Anatomical and Physiological Information 

by 

Paul William Hughett 

Doctor of Philosophy 

Engineering-Electrical Engineering and Computer Sciences 
~ 

University of California at Berkeley 

Professor Thomas F. Budinger, Chair 

This dissertation derives a new method for estimating current source amplitudes in 

the brain and heart from external magnetic field measurements and prior knowledge 

about the probable source positions and amplitudes. The minimum mean square 

error estimator for the linear inverse problem with statistical prior information 

was derived and is called the optimal constrained linear inverse method (OCLIM). 

OCLIM includes as special cases the Shim-Cho weighted pseudoinverse and Wiener 

estimators but allows more general priors and thus reduces the reconstruction error. 

Efficient algorithms were developed to compute the OCLIM estimate for instanta­

neous or time series data. The method was tested in a simulated neuromagnetic 

imaging problem with five simultaneously active sources on a grid of 387 possible 

source locations; all five sources were resolved, even though the true sources were 

not exactly at the modelled source positions and the true source statistics differed 

from the assumed statistics. 

The reconstruction quality can be characterized by the error (reconstructed ver­

sus true source distribution), residual (reconstructed versus actual measurements), 

and surprise (likelihood of the reconstruction given the priors). The mean and 

variance of these quality measures were derived for the case that only the source 

and noise covariances are known; the exact distribution was derived for Gaussian 

source and noise statistics. Confidence limits for the reconstruction were derived. 
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"Misinformative" statistical priors inconsistent with the actual source ampli­

tudes, or source models not including the actual source locations, can yield inaccu­

rate or incorrect reconstructions. OCLIM includes a statistical test for this possibility 

but it may not work reliably at the low signal-to-noise ratios of biomagnetic imag­

ing. Thus an OCLIM reconstruction may suggest source locations but does not rule 

out the existence of sources not included in the model. 

An additional contribution was to develop a generalized chi-squared distribution 

in which arbitrary means, variances, and covariances are allowed; the same distribu­

tion describes the squared norm of a Gaussian random vector. The mean, variance, 

and characteristic function of the generalized chi-squared distribution were found. 

A new FFT-based algorithm with error bounds was developed to compute this dis­

tribution, and is applicable to the calculation of other continuous distributions. 

Professor Thomas F. Budinger, Chair 
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Chapter 1 
Introduction 

1.1 Background 

The depolarization and repolarization of nerve and muscle cells is accompanied 

by ion currents through the cell membrane. Since the intercellular medium is 

conductive, these "primary currents" . generate in turn "volume currents" in the 

body [37]. The total current consisting of both the primary and volume currents 

generates magnetic fields inside and outside the body. The magnetic fields resulting 

from the depolarization of a single neuron or myocyte can be detected in vitro but 

are not large enough to be detected outside the body. However, the coordinated 

activity of tens or hundreds of thousands of neurons in the brain or a similar volume 

of myocardium does produce magnetic fields which can be detected by arrays of 

SQUID (Superconducting QUantum Interference Device) detectors placed near the 

head or chest. The recording of these fields is known as magnetoencephalography 

(MEG) or magnetocardiography (MCG). 

The generated magnetic fields are quite small (femtoTesla to picoTesla) in com­

parison to the earth's magnetic field (about 50 microTesla) and are easily concealed 

by naturally and humanly generated magnetic noise. Baule and McFee [6] appear 

to have been the first to detect the magnetic field of the heart, using a coil of 2 

million turns in an open field to reduce the background magnetic noise. Cohen 

and his colleagues [17, 18, 19] introduced the use of magnetically shielded rooms 

and cryogenically cooled SQUIDs; this is still the only practical method of de­

tecting and measuring these tiny. fields in a laboratory or hospital environment. 

1 



Chapter 1. Introduction 

Fagaly [28] is a fairly recent (1990) review of the state of the art in MEG and MCG 

instrumentation. 

The volume currents also generate electric potential differences through Ohm's 

Law; these can be detected by electrodes placed in the body or on the body surface. 

The recording of such potentials from the brain and heart are known as electroen­

cephalography (EEG) and electrocardiography (ECG). The potentials are in the 

microvolt to millivolt range; they are not difficult to measure, although some care 

is required to obtain good quality signals. 

The recording and analysis of these electric and magnetic signals naturally 

generated by the brain and heart provides valuable information about the normal 

and pathological functioning of these organs and are useful in both clinical and 

research settings. The ECG in particular has proven invaluable in the diagnosis of 

cardiac arrhythmias. The magnetic and electric signals arise from the same sources 

and contain approximately the same information. Since it is easier to collect the 

electric data, it is more often used in practice. 

If signals are collected by an array of detectors rather than a single detector, 

it is also possible to reconstruct the location, orientation, and amplitude of current 

sources within the body but high quality data is needed for accurate reconstruction. 

These techniques are known as magnetic source imaging (MSI) and electric source 

imaging (ESI). Magnetic and electric source imaging are complementary, since the 

magnetic field at the surface is most strongly determined by current sources di­

rected tangentially to the surface and the electric potentials are determined by 

current sources directed perpendicular to the surface. It has not yet, however, 

proven practical to simultaneously collect both magnetic and electrical data. MSI 

should offer better reconstruction accuracy than ESI, because all body tissues are 

magnetically transparent and the magnetic fields propagate to the surface without 

distortion, whereas the electric potentials are distorted by conductivity inhomo­

geneities in the body. MSI is, however, more expensive because a shielded room 

and cyrogenically cooled detectors are needed to collect good magnetic data. 

Because of its ability to locate the current sources, magnetic source imaging is 

useful in studies of heart [95] and brain [41] functioning. There are promising clin-
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ical applications in cardiology and epilepsy. It is possible to non-invasively localize 

accessory pathways in Wolff-Parkinson-White syndrome prior to catheter ablation. 

MSI is also used in the surgical treatment of intractable epilepsy to locate both the 

epileptigenic focus to be resected and the functional areas of the brain to be con­

served during surgery [81, 89, 87, 96]. There are other potential uses in neuroscience 

to delineate the spatial and temporal sequence of cognitive processing events in the 

brain in response to auditory, visual, and somatosensory stimuli [3, 27, 53, 83]. 

Biomagnetism also offers a research tool for schizophrenia [80] and for Parkinson 

disease. The function of peripheral sensory and motor nerves can be studied [84, 

107] as can the prenatal MCG. A major strength of MSI is that it can resolve events 

separated by milliseconds, whereas other methods such as functional magnetic reso­

nance imaging (fMRI), magnetic resonance spectroscopy (MRS), positron emission 

tomography (PET) and single-photon emission tomography (SPECT) have time 

resolutions of seconds to many minutes, depending on the information sought. 

The central problem of magnetic source imaging is to reconstruct the current 

distribution inside some inaccessible volume from magnetic field measurements 

made outside that volume. It is an example of an inverse problem, as opposed 

to the forward problem of determining the magnetic field. measurements from a 

known current distribution. 

Magnetic source imaging shares with many other inverse problems two char­

acteristics that make inverse problems generally more difficult to solve than the 

corresponding forward problems. First, the given data do not uniquely determine 

the solution. That is, there are infinitely many current distributions confined to 

the head or chest that generate the same external magnetic fields. Second, inverse 

problems are often ill-conditioned in that small changes in the given data can yield 

large changes in the reconstruction. As a ,result, the reconstruction often has high 

variance and poor resolution . 

Both of these problems can be partially ameliorated by the use of prior infor­

mation about the possible or probable solutions. The primary current sources are 

confined to certain types of tissue, principally the myocardium and the cortex of 

the brain; the location of these tissues in a particular patient can be determined 

3 



Chapter 1. Introduction 

by a preliminary magnetic resonance qr computed tomography scan. The source 

amplitudes are limited by the physiology of the heart and brain. Since coordinated 

activation of many neurons or myocytes is necessary to generate detectable sig­

nals, the source currents are spatially correlated. Requiring that the source current 

reconstruction be consistent with both the given data and these anatomical and 

physiological priors can be expected to improve the reconstruction accuracy. 

Priors used in this way are intended to be "informative," to provide information 

not present in the magnetic field data. It is, however, possible that the priors are 

poorly chosen or that a particular data set is abnormal. If so, the assumed priors 

may be "misinformative" and lead to a less accurate reconstruction. Thus, the 

use of priors potentially carries both benefits and risks: informative priors should 

increase the reconstruction accuracy but misinformative priors may decrease it. 

The purpose of this dissertation is to develop constrained reconstruction algo­

rithms for magnetic source imaging (or other applications) for computing source 

current reconstructions that are consistent with both the given magnetic field data 

and with anatomical and physiological prior knowledge. A second purpose is to 

explore the problem of misinformative priors. 

1.2 Prior Research 

A variety of reconstruction algorithms have been used for the magnetic source 

imaging problem; see Sarvas [86] and van Oosterom [100] for reviews on this topic. 

One approach is to model the unknown current distribution as one or more 

current dipoles with unknown position, orientation, and magnitude and then to find 

the unknown parameters by a least squares fit to the observed measurements [50]. 

This method is computationally expensive because it is nonlinear in the unknowns 

and iterative solution is required. Worse, the method is often numerically unstable 

for twoor more dipoles. 

Various other methods have been used for this problem including the method 

of alternating projections [65] and beamforming [104, 103]. 

A more recent approach models the unknown distribution as an array of dipoles 

with fixed positions but unknown magnitudes [45, 79, 92, 105, 106]. Then the 
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magnetic field measurements b can be written as a linear function b = Fq + w 

of the unknown current distribution q and measurement noise w. The forward 

transfer matrix F is determined by solving the forward problem for unit sources. 

The inverse problem in this form can be solved directly, without iteration. 

There are other medical imaging methods, including transmission tomogra­

phy and magnetic resonance imaging, which provide high resolution on anatomical 

structure but which do not provide the same functional information that MSI does. 

A major theme of this dissertation is the use of prior information, obtained by 

anatomic imaging or other methods, to improve the resolution and accuracy of 

magnetic source imaging by constraining the set of possible solutions. 

The prior knowledge must define at least the possible spatial locations of the 

sources and the locations of the detectors. This provides sufficient information to 

solve the forward problem and define the matrix F. Given only this much prior 

information, the natural method for the inverse problem is the least-squares or 

minimum-norm least-squares (MNLS) method [105, 106]. This method (also known 

as Moore-Penrose inverse or pseudoinverse method) finds the current distribution 

that minimizes the squared difference between the measured fields and the fields 

generated by the reconstructed current distribution. Ferguson et al. [30] have de­

veloped a preconditioned pseudoinverse using a priori source amplitudes which, in 

their tests, gave better results than either truncation or Tikhonov regularization. 

If the statistics of the measurement noise are available, maximum-likelihood 

(ML) methods are appropriate [90]. These methods maximize the likelihood of 

obtaining the measured fields given the reconstructed current distribution; if the 

noise is jointly Gaussian, they also minimize the squared difference between the 

measured and reconstructed fields, weighted to reflect the a priori noise variance. 

If prior anatomical information is available from transmission tomography or 

magnetic resonance imaging, then it may be possible to define the a priori source 

amplitude as a function of position. Then minimum mean-square error (MMSE) 

methods are appropriate; they minimize the mean (average) squared difference 

between the true and reconstructed current distributions. Shim and Cho [91] have 

developed methods using a weighted pseudoinverse but their methods are optimal 
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Chapter 1. Introduction 

and useful only when the a priori source variance is constant. Helstrom [42] has 

developed and applied an MMSE method for image restoration; Smith et al. [93] 

have developed and tested an MMSE method for magnetic source imaging with 

general a priori source variances; Franklin [34] has developed an MMSE estimator 

in the general context of Hilbert spaces. 

1.3 An Approach to the Problem 

The inverse problem with prior information can be represented symbolically as 

follows. We have some measured magnetic field data b which was generated by 

some unknown source current distribution q via some known functional dependence 

b = F( q) + w with measurement noise w. We are given in addition some prior 

knowledge P and seek an estimator H to compute an estimate q = H(b, P) of q 

which satisfies some admissibility conditions A and which is maximally consistent 

with both the data b and the priors P as measured by some objective function 

S(q, b, P). 

Developing an algorithm for constrained reconstruction requires making several 

interlocking choices: the form in which the unknown source distribution q is to be 

represented; the forward model F to be used; the admissibility conditions A; the 

form in which the prior knowledge P is to be represented; the class of functions 

from which the estimator H is chosen; and the objective function S for choosing 

the "best solution" among those that are at least minimally consistent with the 

data and priors. 

These choices represent a compromise among several desiderata: First, they 

should lead to an analytical or numerical solution method for the inverse problem; 

second, the method should involve an objective criterion for correctness or opti­

mality; third, the parameters used in the source model should be physically mean­

ingful, so that the user can understand and interpret the reconstruction; fourth, 

the required priors should be directly measureable (at least in principle) by some 

calibration experiment; fifth, themethod should incorporate some test for misin­

formative priors; and sixth, the reconstruction should include statistical confidence 

limits. 

6 
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Several of these desiderata relate to Popper's demarcation criterion for dis­

tinguishing scientific (or empirical) statements from non-scientific statements [72]. 

Popper asserts that a statement or hypothesis is scientific only if it is potentially 

falsifiable; that is, if there exists some logically possible experimental outcome that 

would disprove it. Scientific hypotheses generally involve reproducible experiments, 

since a statement about a non-reproducible experiment usually cannot be falsified. 

Scientific statements are corroborated to the extent that they have been subjected 

to serious attempts at falsification but have not been falsified. Corroboration does 

not guarantee truth but statements that have been corroborated are generally more 

trustworthy than uncorroborated statements. 

In the contex of the inverse problem, the use of an objective optimality cri­

terion helps to assure that the reconstructions are reproducible between analysts. 

Potentially measureable priors can be falsified by the calibration experiment and 

are thus scientific. If the reconstruction includes confidence limits, it can also be 

tested and perhaps falsified by more definitive (perhaps invasive) tests. 

Many of these choices can be viewed as imposing constraints on the reconstruc­

tion. It is useful to distinguish hard and soft constraints. A hard constraint will 

never be violated by the reconstruction. For example, the source model is a hard 

constraint in that the reconstruction will never yield a source not contained in the 

source model. Conversely, a soft constraint may be violated, if the data support 

the violation. For example, the reconstruction will tend to assign larger source 

amplitudes at locations considered more likely to contain a source than at locations 
.-' 

less likely, unless the data clearly indicate that a less likely source is responsible for 

the data. 

Although each of the necessary choices will be discussed at length in the fol­

lowing chapters, it is helpful to consider them briefly now. 

1.3.1 Source Model 

The source model defines the form of the solution and limits the set of possible 

solutions. For example, expanding the unknown current distribution in a series 

of basis functions limits the possible solutions to the space spanned by that basis. 

7 



Chapter 1. Introduction 

Similarly, requiring that the current density be zero outside the body limits the 

possible solutions. Choosing an appropriate source model can eliminate physically 

or physiologically impossible solutions and reduce the computational effort needed 

for reconstruction. An ill-chosen source model, of course, may not admit or even 

approximate the true distribution. Increasing the number of free parameters in the 

source model will generally increase both £he computational cost and the precision 

with which the true distribution can be approximated. 

We will see that the magnetic field is a linear function of the current distribution. 

That is, the field due to a weighted sum of current sources is equal to the same 

weighted sum of the fields due to the individual sources. Thus, it is convenient 

to represent the unknown current distribution as a weighted sum of elementary 

sources. The sources are chosen in advance to reflect a priori knowledge as to the 

location and orientation of the source currents; the weights are to be found by the 

inverse computation. If there is some prior information as to the magnitude of 

each source, it can be expressed as a probability distribution on the corresponding 

weight. 

For example, in magnetoencephalography a set of current dipoles may be chosen 

as the elementary sources. The position and orientation of these dipoles are chosen 

to match the anatomy determined by magnetic resonance imaging. The volume 

currents induced by these dipoles may be included or ignored in computing the 

magnetic field due to each dipole. 

More generally, a detailed electromagnetic finite element model (60, 97] of the 

brain and head could be used, choosing as the elementary sources a dipole current in 

each element that might contribute to the field. The volume currents are computed 

with the finite element model, as are the magnetic fields due to the elementary 

source and volume currents. 

The source model is a hard constraint, since the reconstructed source distribu­

tion must be contained in the span of the selected elementary sources. 

1.3.2 Forward Model 

The forward model contains the physics of the problem, specifying exactly how 

8 



Chapter 1. Introduction 

the measured magnetic fields depend on the current distribution. It is possible, 

for example, to choose a simple physical model in which the magnetic field outside 

the body is considered to depend on only the primary currents. This model is 

valid for certain simple geometries in which the volume currents have no net effect 

on the magnetic fields but it is only approximately true for more realistic body_ 

geometries. It does, however, have the advantage of theoretical simplicity and can 

be inexpensively computed. This simple model may be satisfactory when only low 

accuracy is required. 

Another possible choice is to assume a simple spherical or· cylindrical geometry 

which approximates the true shape of the body but for which it is possible to obtain 

explicit analytical solutions for the volume currents and magnetic fields. This has 

often been found satisfactory for magnetic source imaging of the brain, where the 

head is modelled as three concentric spheres with different conductivities. 

A third choice is to use a detailed geometric model of the head or torso, possibly 

obtained from magnetic resonance imaging, and to compute the volume currents 

by finite element or boundary element methods. This choice is computationally 

expensive but produces the most accurate results. 

The principal tradeoff involved in the choice of forward model is computational 

cost versus accuracy. 

The choice of forward model generally imposes a hard constraint, often con­

sistency with known physical laws. The requirement of charge conservation is an 

obvious example. 

1.3.3 Prior Knowledge 

The boundaries between prior knowledge and the other parts of the inverse problem 

are not always distinct. For example, the prior knowledge that all sources must be 

in the cortex or the myocardium may be most conveniently represented as part 

of the source model. Similarly, the requirement for charge conservation will be 

automatically incorporated in a finite element forward model. 

A common form of prior knowledge that does not fall into any of the other cat­

egories is statistical knowledge about the source distribution and the measurement 
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nmse. Statistical prior knowledge is a soft constraint, since it defines a preference for 

the more probable solution over the less probable but does not absolutely exclude 

any solution. 

The imposition of priors into the inverse problem introduces a potential risk, 

since it is not guaranteed that the given data will in fact be consistent with the 

priors and it is imprudent at best force the reconstruction to be consistent with 

the priors when the data are not. This implies that a constrained reconstruction 

algorithm should-if possible-include some test to determine whether or not the 

given data are consistent with the assumed priors. 

1.3.4 Admissibility Conditions 

It is appropriate in many applications to impose admissibility conditions on the 

solution. For example, the test mentioned in the last section as to whether or not 

the data are consistent with the priors is just such an admissibility constraint. For 

another, it might be reasonable to require that the fields due to the reconstructed 

distribution match the measured fields to within some prespecified error. Such 

admissibility conditions can, of course, be incorporated in the objective function by 

adding a term which is zero if the conditions are satisfied and +oo if they are not, 

but it is often convenient to consider them separately. Admissibility conditions are 

hard constraints by definition. 

1.3.5 Estimator Class 

The estimator H may be restricted to a linear function or to a function of some 

particular parametric form. The class of allowable estimators is often chosen so that 

it is easy to determine the parameters defining the particular estimator or so that 

the estimate is easy to compute. As a general rule, the more restricted the class 

from which the estimator is drawn, the less good the resulting estimate is. That 

is, it is often possible to compute a poor estimate quickly, but a good estimate will 

require more time either in analysis or computation. 

Given a particular Class of estimators, there are often many different numeri­

cal algorithms for computing the estimate. For example, a linear estimator may 
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be defined as a system of linear equations and solved by any of a variety of algo­

rithms, depending on the detailed structure of the linear system. The choice of an 

appropriate algorithm may have a major impact on the computational cost, but 

all algorithms for a given estimator should compute essentially the same solution, 

apart from roundoff and truncation errors. 

1.3.6 Objective Function 

There are many dimensions along which the quality of the reconstruction can be 

measured. For example, the reconstruction should match the true source distribu­

tion as closely as possible; it should be consistent with the priors assumed for the 

problem; and the reconstructed magnetic fields should match the measured fields 

as closely as possible. In addition, it may be desireable that the reconstruction be 

"smooth" in some defined sense. 

It is not possible, in general, to achieve the best possible reconstruction on all 

dimensions simultaneously. The purpose of the objective function is to reduce all 

the conflicting requirements to a single measure of quality so that it is possible to 

decide which is the "best" estimator out of the class of all admissible estimators. 

Different choices of the objective function will, of course, lead to different "optimal" 

estimators and it may be useful to consider the tradeoff's between different objective 

functions. The objective function is a soft constraint. 

Once the objective function is chosen, it may be of interest to examine how well 

the corresponding estimator does on other measures of reconstruction quality. 

The objective function and admissibility conditions together define the most 

desireable estimator within the given class. For example, the "best" estimator 

may be the one that matches the true source distribution as closely as possible on 

average subject to the constraint that it must match the measured fields within a 

specified error. 

1.4 Overview of the Dissertation 

Chapter 2 discusses source modelling and the biomagnetic forward problem of de­

termining the field measurements for a given source current distribution. Several 
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forward models are presented, from fast and simple to slow and accurate. Practical 

methods for computing the volume currents in realistic body geometries are also 

covered. 

Chapter 3 discusses the nature and formalization of the prior knowledge, fo­

cussing on statistical prior knowledge of the source and noise amplitudes. Attention 

is paid to the physical interpretation of the priors and the way in which they could 

possibly be determined by experiment. 

Chapter 4 presents a unified development of the linear inverse problem, per­

haps with prior knowledge, including the MNLS, ML, weighted pseudoinverse, 

and MMSE methods and derives the optimal constrainted linear inverse method 

( OCLIM) as the most general and most accurate of these methods. It shows fur­

ther that the weighted pseudoinverse, Gaussian maximum likelihood, and MNLS 

methods can all be obtained as special cases of OCLIM by an appropriate choice 

of priors. 

Chapter 5 defines a generalization of the x2 distribution which will be needed 

to describe the statistics of reconstruction quality in the next chapter, and devel­

ops a numerical algorithm for computing it. As it turned out, the generalized x2 

distribution is not essential to the use of OCLIM, but it appears to have other uses 

in statistics. 

Chapter 6 discusses several useful measures of reconstruction quality and de­

velops, for the estimators of Chapter 4, formulas for the mean reconstruction error, 

mean residual, a posteriori variance, and confidence limits. Several of these quality 

measures are random variables distributed according to the generalized x2 distri­

bution. 

Chapter 7 discusses efficient computational methods for OCLIM and shows the 

results from a Monte Carlo simulation to verify the theoretical predictions of the 

previous chapters and to compare reconstruction quality between methods with and 

without statistical priors for the sources. It also demonstrates that misinformative 

priors can, in fact, yield less accurate reconstructions than uninformative priors. 

Chapter 8 attempts to address the problem of misinformative priors by devel­

oping and demonstrating by simulation a statistical test for misinformative priors 
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that detects some but not all data sets inconsistent with the priors. This test, 

unfortunately, does not appear to work reliably at the low signal-to-noise ratios 

characteristic of magnetic source imaging; furthermore, it appears that this inabil­

ity is characteristic of the magnetic imaging problem rather than the specific test 

developed. 

OCLIM provides an explicit estimate of the reconstruction error for given priors. 

Chapter 9 shows how this estimate can be used as an objective function for the 

optimal design of magnetometer arrays for MSI. That is, the geometry of the array 

can be chosen to provide the most accurate reconstruction for given priors, within 

the limits of technology. 

OCLIM can be used to reconstruct dynamic sources distributions from time 

series of magnetic field measurements but a direct implementation is computa­

tionally expensive. Chapter 10 shows that the computational cost can be reduced 

by several orders of magnitude by making some assumptions about the nature of 

the spatiotemporal correlations between sources and gives specific computational 

algorithms. Also shown are some sample reconstructions using these algorithms. 

The preceeding chapters investigated the characteristics of OCLIM in simplified 

problems. Chapter 11 demonstrates its performance in a realistic neuromagnetic 

source imaging problem; it also summarizes what appears to be the best implemen­

tation of OCLIM for the non-time-series case. 

Finally, Chapter 12 summarizes the important results and indicates unresolved 

questions for future research. 
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Chapter 2 
Biomagnetic Forward Problem 

An inverse problem solver does not itself specify the physics of the problem to be 

solved but instead depends on a forward model. That forward model may be as 

simple or as detailed as the user feels is appropriate and the inverse problem solver 

will produce a solution consistent with the particular forward model used. 

The first part of this chapter shows that, under a broad range of assumptions, 

the forward model for magnetic source imaging can be written in the linear form· 

h=Fq+w (1) 

where b is a vector of field measurements, q is a vector of source amplitudes, F is 

a forward transfer matrix, and w is a vector of measurment errors or noise. 

The forward transfer matrix F will, of course, depend on the particular as­

sumptions made and the reconstructed source distribution for any given data set 

will depend on the forward model via the matrix F. If, for example, the forward 

model assumes that the sources are current dipoles in an infinite homogeneous 

medium, that the volume currents can be ignored, and that the detectors measure 

the magnetic field at a point, then F will have one value and the inverse problem 

solver will reconstruct the source amplitudes under those assumptions. If, instead, 

the forward model uses the actual torso geometry, includes volume currents, and 

models magnetometer coils with finite area, then F will have a different value and 

the inverse problem solver will reconstruct the source amplitudes under these dif­

ferent assumptions. 

The middle part of this chapter develops several specific forward models and 

shows how the forward transfer matrix F may be computed in each case, given a 
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forward problem solver for computing the magnetic field for a specified source cur­

rent distribution. The models range in realism from a simple dipole model with no 

volume currents and point magnetometers to a sophisticated model with distributed 

current sources, volume currents in a realistic body shape, and magnetometer coils 

of arbitrary shape (including gradiometer configurations). 

In the most sophisticated and accurate forward model considered, the volume 

currents and magnetic fields must be computed numerically using a finite element 

model (FEM) or boundary element model (BEM); the final part of the chapter 

discusses these methods in more detail. 

2.1 Previous Research 

The forward problem has received considerable attention. The bioelectric forward 

problem is to compute potentials and currents within the body and at the sur­

face from the primary current sources and the conductivity distribution within the 

body. The biomagnetic forward problem adds to this the problem of computing 

the magnetic fields induced by the primary and volume currents. 

The general area of electrophysiology is fundamental to the biomagnetic for­

ward has received considerable research attention. Plonsey [71] discusses the gen­

eral theory of bioelectric phenomena. Nunez [64] discusses the theory of electroen­

cephalography in particular. Bayley [8] is a monograph on the theory of vector 

electrocardiography, primarily directed toward physicians but including some of 

the physics and mathematics. 

Foster [32], Karlon [48] and Rush [85] give physiological values for the electrical 

conductivity and dielectric constants of tissue. 

The following references discuss the formulation of the forward problems in 

general terms; methods of solution for specific versions of the problem will be 

discussed later. 

McFee and Johnston [56, 57, 58] develop a theory of electrocardiography in 

terms of lead fields. Brody et al. [12] generalize this to compound leads and a lead 

tensor. 
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Plonsey [69) discusses applications of the method of images to the problem of 

the current flow due to a current dipole in a spherical or cylindrical conductor. In 

a companion paper [70), he shows how the Helmholtz reciprocity theorem can be 

applied to problems in electrocardiography and relates it to lead field theory. 

Geselowitz [36, 35) gives explicit surface integrals for the magnetic field gener­

ated in a piecewise homogeneous volume conductor of arbitrary shape. Baule and 

McFee [7) give a similar analysis using lead field theory. 

2.2 Source Models 

It is convenient to represent the unknown current distribution ](r) as a weighted 

sum of N known elementary sources J n (r) in the form 

N 

](r) = L qn ln(r, Pn) (2) 
n=l 

where qn is a source amplitude and Pn is a (possibly empty) vector of other param-

eters describing the elementary source. Each elementary source Jn(r) is a vector­

valued function giving the vector current density at any position r. The inverse 

problem is to estimate the values of the unknown parameters qn ·and Pn. 

There are many possibilities for the set of elementary sources ln(r), depending 

on the assumptions made about the unknown distribution ](r). 

If the unknown distribution is assumed to be well-described by a few localized 

sources, then it is reasonable to use a few current dipoles whose positions, mag­

nitudes, and orientations are to be determined [50); then Pn includes the source 

positions and orientations. These "moving dipole" methods were the first developed 

for magnetic source imaging and yield a conceptually simple distribution containing 

only a few discrete sources. They are, however, computationally expensive because 

the nonlinear dependence of the measured fields on the source positions generally 

requires iterative solution. 

The methods described in this report assume positions fixed a priori and are 

not directly useful in a moving diple formulation; they could possibly be used to 

find optimal source amplitudes at each step of an iterative scheme for improving 

the source position estimates. 
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The estimation of moving dipoles is expensive because the measured fields de­

pend nonlinearly on the position and iterative solution is required; if only the source 

amplitudes are unknown, it becomes possible to solve the problem directly. But if 

the source model consists of only a few dipoles, it is not reasonable to assume that 

their positions are known a priori; there are too many possible source locations in 

the brain or heart. 

An alternative is to assume that the unknown distribution is smooth and to 

expand it in a set of basis functions at fixed positions; these basis functions are 

the elementary current sources. A grid of current dipoles [106] or a finite element 

mesh [60, 97] define localized elementary sources; lead fields [106], multipole expan­

sions [101], or Fourier basis functions define non-localized elementary sources. Then 

. the unknown current distribution is completely defined by the weights q1, q2, ... , qN 

in the summation 
N 

1Cr) = L qn 1n(r) (3) 
n=l 

and can be completely described by a vector q = [q1, q2, ... , qN f. 
The choice of the source model generally involves a tradeoff between accuracy 

and computational cost, so it is preferable to use a source model no more com­

plex than is necessary for accuracy. De Munck [25] has compared the potentials 

at the surface of the head due to dipoles versus more realistic models of physio­

logical current sources for various conductivity models; he concludes that there is 

no significant difference between the realistic sources and dipole sources for EEG. 

Fender [29] reviews various source models used for dipole localization in the head 

and discusses their impact on the reconstruction accuracy. 

2.3 Primary Currents and Volume Currents 

The source models just described do not distinguish between the primary physio­

logical current sources and the volume currents that they induce. In fact, the total 

current distribution consists of two distinct components [41]: a non-ohmic primary 

current ]P(r) directly related to neural activation and an ohmic volume current 
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JvCr) required by charge conservation. That is, the total current density 

(4) 

is the sum of two components: a primary current ]P which is non-ohmic and 

generated by physiological processes within the body; and a volume current Jv 
which obeys Ohm's law 

(5) 

and is induced by the primary current sources. 

We will see shortly that the volume currents can be computed by analytic, 

finite element, or boundary element methods. Suppose that the primary source 

distribution is represented as a weighted sum 

]P(r) = L qn J~(r) (6) 
n 

where J~(r) is a convenient set of basis functions for the primary current ]P(r). Let 

]~(r) be the volume current induced by the corresponding primary current source 

J~(r). Then the elementary sources Jn(r) may be defined as the primary sources 

plus the corresponding volume currents 

(7) 

The total current due to a primary current distribution ]P(r) is then by super­

position 

n 

n n 

and so the primary current alone must be 

]P(r) = L qn ]~(r) (9) 
n 

That is, given estimates of qn by some inverse method, it is possible to reconstruct 

either the total or the primary current. This is useful because the primary current 

is more directly related to the physiology of interest. 
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2.4 Significance of the Volume Currents 

Accounting for the volume currents adds to the computational cost, so this should 

be done only if they have a significant effect on the magnetic fields. In fact, previous 

workers have found that the volume currents in realistic head [22] and torso [95] ge­

ometries contribute significantly to the total magnetic field and should be included 

in the forward model for the best accuracy. Purcell, Stroink, and Horacek [76] have 

also investigated the effects of the torso, lung, and blood pool boundaries in MCG 

and ECG. They find that both the isopotential and isofield maps are affected by 

the inclusion of tissue boundaries compared to a homogeneous infinite half-space. 

Figure 2.1 shows the normal and tangential components of the magnetic field 

produced by the volume currents alone on a plane 1 em above the chest wall for 

a 1 pA-m dipole source, which is typical of cardiac current dipoles; the source 

is in the anterior wall of the heart and directed almost tangential to the chest 

wall. These fields were computed using a very detailed finite element model with 

186536 elements developed by Eisenberg et al. at Boston University. Each contour 

represents 2500 IT, so the maximum field perturbation is about 22 500 IT, which 

is much larger than the measurement noise, typically about 50 IT. That is, the 

field perturbation cannot be ignored compared to the measurement noise and so 

the volume currents must be included in the forward model. 

Section 11.2.2 shows that the volume currents can significantly affect the mea­

sured magnetic fields in neuromagnetic imaging. 

2.5 Forward Problem 

The biomagnetic forward problem is to compute, given any ]P, the corresponding 

total current J, magnetic field B, and flux '1/Jm threading each detector coil. 

The frequencies involved in biomagnetic imaging are low (1-1000 Hz) compared 

to the times required for a disturbance to propagate through the body and it is suf­

ficiently accurate to treat it as .a quasistatic problem. Under quasistatic conditions, 

charge conservation requires 

(10) 
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Figure 2.1 Cardiomagnetic field perturbations due to volume currents. These two 
plots show the magnetic fields on a plane 1 em above the chest wall due to the volume 
currents alone for a typical cardiac current dipole of lpA-m on the anterior wall of the 
heart, as shown by the arrow. The upper plot shows the lateral component of the field 
(across the chest); the lower plot shows the anterior component (normal to the chest). 
The dotted line indicates zero field; the solid line is positive; and the dot-dash line is 
negative. The contour interval is 2500 fT and a typical measurement noise level is 50 fT. 
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Introducing the scalar potential </> defined by 

(11) 

and substituting yields 

(12) 

and therefore 

(13) 

which is Poisson's equation for the potential. Barr, Pilkington, et al. [5] give the 

appropriate boundary condition, which is that the normal component of \7 </> van­

ishes at the surface of the body. Since this is a Neumann boundary condition, the 

solution </> is unique up to an additive constant. If it is required in addition that 

</>(ro) = 0 at some fixed point ro, then the solution is unique and the mapping 

]P ~---+ </> is linear. 

Once the potential </> is known, the total current is simply 

(14) 

The flux through a given coil is most easily computed through the vector potential 

(15) 

It is assumed that the permeability is constant and equal to the permeability of 

vacuum f..lO = 47r X w-7 Hjm. The magnetic flux density, if desired, is defined by 

(16) 

Suppose that the shape of the mth coil is defined by a closed curve Cm defining 

a surface segment Sm. Then the magnetic flux threading that coil is 

1/Jm = f fJ . da = 1 A. . dr , 
Jsm Jcm (17) 

where Stoke's law has been used to obtain the last equality. Define 1/; as the column 

vector [ 1/Jm]. 
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Now observe that each of the mappings q ~--+ ]P ~--+ <P ~--+ J ~--+ A ~--+ 'ljJ is 

linear and therefore that the composite mapping F : q ~--+ 'ljJ must also be linear. 

Furthermore, F can be represented as a matrix with columns 

(18) 

where en is the vector with 1 in the nth position and 0 elsewhere. That is, the 

nth column of the forward transfer matrix F is computed by solving the forward 

problem with the nth source set to unit amplitude and all others set to zero. 

Letting the mth measurement be bm = 'l/Jm + wm with noise Wm, the measure­

ment vector can be written in the canonical form 

h= Fq+w (19) 

Then, given a method to estimate the source amplitudes qn, the estimated primary 

current distribution is 

]P(r) = L qn JK(r) (20) 
n 

The total current distribution, if desired, is similarly 

](r) = L qn Jn(r) (21) 
n 

where Jn(r) is the total current induced by the primary current JK(r) and computed 

in the forward problem for q = en. 

2.6 Forward Models without Volume Currents 

It is possible to obtain a simple forwqrd model by assuming that the volume currents 

have no appreciable effect on the field measurements and that the detectors sample 

the magnetic field at a point; such models are useful for testing inverse methods but 

are not usually accurate enough for real biomagnetic imaging. Then the current 

density can be represented as a weighted sum of N known elementary sources JnCr) 
in the form 

N 

J(r) = L qn 1n(r) (22) 
n=l 
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Using the Biot-Savart law [49, pages 151-153], the magnetic field due to J is 

(23) 

where 

(24) 

is the magnetic field at position r due to the nth source. 

Now suppose that there are M detectors, the mth of which measures the com­

ponent of the field in direction sm at position rm. Furthermore, the measurement 

is contaminated by some noise Wm. Then that measurement bm can be written as 

bm = sm · B(rm) + Wm 

= Lqnsm · Bn(rm) +wm 
n 

_""" [J.to i sm · ln(P) x (rm- p) da-] + - 6 qn 4 //.... ....,,3 P Wm 
n 7r R3 T"m- P 

= LFmnqn+wm· (25) 
n 

where 

(26) 

is the response of the mth detector to the nth source. The forward transfer coeffi­

cient Fmn can also be regarded as the lead field [106] of the mth detector integrated 

over the current distribution of the nth source. 

Rewriting these equations for bm in matrix form yields 

b= Fq+w (27) 
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2. 7 Dipole Sources 

In the particular case that each source Jn is a current dipole with moment 'ifn at 

position Pn (and still ignoring the volume currents), the field is 

(28) 

and the forward transfer matrix F has entries· 

(29) 

A "rotating" dipole of unknown orientation at a given position may be repre­

sented as two or three orthogonal fixed dipoles. The fixed dipoles may be oriented 

along the coordinate axes; normal and tangential to the cerebral cortex; or along 

the principal axes of the assumed probability density for the rotating dipole. In the 

last case, the fixed dipoles will be uncorrelated. 

In magnetoencephalography, a dipole source will ordinarily be oriented normal 

to the cerebral cortex and .the direction of Jn may be chosen to match. If the 

surface is strongly curved, a normal dipole with large expected amplitude and two 

tangential dipoles with smaller expected amplitude may be used. 

2.8 Forward Models with Volume Currents 

The previous models are deficient in two major respects. First, in realistic torso 

geometries, the volume currents can significantly affect the measured fields. Second, 

practical magnetometer configurations do not sample the field at a point but rather 

measure the flux threading some coil of finite area. 

As was shown above, the F matrix can be computed for the general case in 

terms of its columns 

(30) 

where en is the vector with 1 in the nth position and 0 elsewhere. That is, the 

nth column of the forward transfer matrix F is computed by solving the forward 

problem with the nth source set to unit amplitude and all others set to zero. 
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One path for that computation follows the sequence en ~---t J~ ~---t ¢n 1---t Jn ~---t 

An 1---t '1/;mn. The computation of the total current J n and vector potential An 

from the primary current J~ may be done by finite element or boundary element 

methods and will be discussed at length in the remainder of this chapter. 

The computation of flux '1/;mn from vector potential An may be done simply by 

discretizing the defining equation 

'1/;m = 1 A. dr= 1 [Jlo f !(j)~ d3p] . dr 
Jcm Jcm 47r JR3ilr- Pll 

= ~; k3 ](j}). [fcm I if': Pll] d
3
p 

= 110 f ](P) . L(r) d3iJ , 
47r }R3 . 

(31) 

where the curve Cm defines the shape of the coil and L(r) is the vector lead field 

corresponding to that coil. If the coil is circular, or a sum of circles, the lead 

field reduces to an elliptic integral, or a sum of elliptic integrals. The problem of 

efficiently computing the flux from the total current will not be considered in this 

dissertation. 

2.9 Analytic Methods 

This section and the two following it discuss methods for computing the volume 

currents in various geometries from simplistic to realistic. This section reviews 

analytic results for such simple geometries as an infinite halfspace, sphere and 

cylinder. 

Wilson and Bayley [108] give exact closed form solutions for the potential in­

duced by current sources in a sphere, as does Frank [33]. Okada [66] gives a solution 

for a finite-length circular cylinder. 

Sarvas [86] gives the magnetic fields due to a current dipole in a sphere or an 

infinite half-space. Cuffin and Cohen [23] give analytic solutions for the magnetic 

field due to a current dipole in an infinite half-space, sphere, prolate spheroid, or 

oblate spheroid. They show the effects of the dipole and volume currents separately 

and note that the normal component of the magnetic field is usually due entirely 

or mostly to the dipole source rather than the volume currents. 
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2.10 Finite Element Methods 

Finite element methods solve Poisson's equation (13) for the potential by dividing 

the volume of interest into many polyhedral regions and assuming that the potential 

is constant within each region or varies according to a simple polynomial function. 

Requiring that the potential is continuous across the boundaries of each region 

yields a system of linear equations which can be solved by numerical methods. 

Given the potential, the total current and magnetic field can be determined directly. 

Jin [46) is a monograph on the use of finite element methods for electromagnetics 

in various applications but does not specifically discuss biological applications. 

Miller [60) is a review of finite element methods for bioelectric phenomena, in­

cluding electrocardiology. Surprisingly, there is no discussion of electroencephalog­

raphy. 

Thevenet et al. [97) discuss the use of finite element modelling to obtain the 

potential distribution due to a current dipole in the head. They note that, unlike 

the boundary element method, it can model aniotropic conductors. 

Yan, Nunez, and Hart [109) describe a three-dimensional finite element model 

of the head with a new formulation of dipole current sources. They test the finite 

element model by comparing it to analytic results for the three-spheres model of 

the head. Results for a more realistic head model are also presented. 

Ragan [77, 78) uses a finite element model of the canine torso to estimate the 

electric fields and current densities produced by rapidly changing magnetic fields. 

Finite element methods have the advantage that they can model anisotropic 

conductors such as muscle; but it is often difficult to model point or dipole sources. 

Finite element methods also are often more expensive to compute than are boundary 

element methods. 

2.11 Boundary Element Methods 

Boundary element methods are applicable when the conductivity is isotropic and 

piecewise constant. Then Poisson's equation can be transformed to an integral 

equation over the boundaries separating the regions of different conductivity. These 
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boundaries are divided into triangular patches of constant or linearly varying po­

tential and requiring continuity again yields a system of linear equations. 

Barr, Pilkington, et al. [5] have presented a boundary element method for com­

puting the potentials on the surface of a piecewise homogeneous volume due to 

current sources within the volume. The surfaces bounding homogenous volumes 

are defined by triangular tesselations. They develop a set of linear equations relat­

ing the potentials of the actual geometry to the potentials at the same positions for 

an infinite homogeneous medium; these equations are singular but can be solved 

iteratively. The coefficients in the linear equations are related to the solid angle sub­

tended by each triangle as seen from each other triangle; van Oosterom [102] gives 

an efficient algorithm for computing the necessary solid angles given the triangle 

vertices. 

Horacek [43] modifies the Barr-Pilkington method to compute the magnetic 

fields produced by source and volume currents by introducing fictitious current 

layers at the boundaries that modify the currents induced in an infinite homogenous 

medium. Some of his results are identical to those of Geselowitz · [36, 35], who did 

not explicitly show the fictitious layer currents. He handles the singularity of the 

linear equations by deflating them using a method due to Lynn and Timlake [51]. 

Purcell and Stroink [75] show that this linear system need not be solved itera­

tively. They perform a LU decomposition of the matrix, compute its inverse, and 

solve the linear system by multiplying by the inverse. This provides a significant 

speedup in moving dipole solutions of the inverse problem, where it is necessary 

to repeatedly solve the forward problem. In fact, it is not necessary to compute 

the matrix inverse explicitly; the LU decomposition can be used directly to solve 

the linear system at no increase in computational cost. In a later paper, Nenonen, 

Purcell, et al. [63] compute the matrix inverse using a singular value decomposition. 

Ferguson, Zhang, and Stroink [31] generalize the boundary element method to . 
provide for a linear variation of the potential across each triangle. 

Meijs et al. [59] recommend several methods for improving the accuracy of 

the boundary element method in electro- and magnetoencephalography, where the 

strong conductivity contrast between the skull and soft tissues degrades the nu-
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merical accurary. He does not address magnetocardiography and it is not known 

whether the same numerical problems occur there. 

HamaJ.ainen and Sarvas [40] discuss the problems introduced by the low con­

ductivity of the skull and suggest methods for solving those problems. They also 

conclude that for magnetoencephalography it suffices to consider only the compart­

ments inside the skull; the volume currents outside the skull appear to contribute 

negligibly to the magnetic fields. 

Budiman and Buchanan [13] introduce a variant of the boundary element 

method, which they call "weighted vertices." 
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Prior Knowledge 

The biomagnetic inverse problem is almost always ill-posed in that there are in­

finitely many current distributions that will yield the observed magnetic field values. 

The measured data alone provide no basis for distinguishing among all these possi­

ble solutions. But we usually know more than just the observed field values since we 

can draw on a general knowledge of biophysics and physiology as well as previous 

in vitro and invasive experiments. 

The primary purpose of this dissertation is to develop and test algorithms for 

incorporating such anatomical and physiological prior knowledge into biomagnetic 

source imaging problems. This offers two advantages: First, the constraints im­

posed by the prior knowledge will restrict the set of possible solutions, possibly 

defining a unique solution consistent with both the measured data and the priors. 

Second, enforcing these constraints as part of the reconstruction guarantees that 

the solution will in fact satisfy these constraints. (Of course, it also means that 

the satisfaction of the constraints is no longer evidence for the plausibility of the 

reconstruction.) 

3.1 Kinds of Prior Knowledge 

For example, suppose that an experiment is intended to determine the regions of 

the brain that are activated in reading and the time history of activation at each 

of these lo"cations. (Similar remarks will apply to other experimental and clinical 

applications.) Then it is reasonable to assume that: 

1. The primary current sources are located within the cortex of the brain. 
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2. In fact, the primary sources' for this cognitive task are probably located within 

the specific regions of the cortex previously implicated as involved in reading. 

3. The primary sources are correlated over distances of several millimeters and 

over time intervals of tens to hundreds of milliseconds. 

4. The amplitudes of the primary currents are consistent with the amplitudes 

estimated from a detailed cellular physiological model and with amplitudes observed 

in previous invasive experiments. 

5. The volume currents satisfy Ohm's law for some determinable conductivity 

distribution within the head. 

6. The total current satisfies charge conservation and is zero outside the body. 

7. The magnetic fields at the detectors are determined by the the total current 

distribution via the Biot-Savart law. 

8. The measurement noise due to the intrinsic noise of the detectors and due 

to external magnetic sources is similar to the noise observed in previous calibration 

experiments without a subject present. 

9. The measurement noise due to current sources in the subject outside the 

brain (muscle twitches, eye motions, heart beat, and so on) is consistent from 

subject to subject if the experimental conditions are kept constant. 

3.2 Reliability of Priors 

Note that these various kinds of prior information differ significantly in reliability. 

There would seem to be little risk that the Biot-Savart law or Ohm's law will be 

violated. The assumptions about the probable source and noise amplitudes involve 

rather more risk; the generalization from previous experiments to the current one 

may be plausible but it is also possible that some new phenomena may be waiting to 

appear in this new experiment. The assumption that the brain will be active in only 

those areas previously implicated in reading is definitely a risky one, especially since 

one goal of the current experiment is to locate the active regions in this task; refusing 

to look outside the expected regions of activation may well blind a reconstruction. 

algorithm to evidence for other active regions. Chapter 8 will show that this risk 

is real and discuss a method for detecting such "misinformative" priors. 
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3.3 Sources and Forms of Priors 

Many of the priors listed above may conveniently be treated as non-statistical or 

hard constraints that must be satisified for a possible solution; others may conve­

niently be treated as soft or statistical constraints that establish preferences between 

solutions but do not absolutely rule out any solutions. Furthermore, some of the 

priors listed above require some additional information about the specific subject 

or a suitable population of similar subjects. 

This dissertation does not attempt to solve the problem of estimating apprpriate 

priors for any particular experiment. But the following remarks should make it 

plausible that it is possible to obtain suitable priors and to represent them in a 

form suitable for inclusion in an inverse problem. 

Ohm's law, the Biot-Savart law, charge conservation, and the other laws of 

electromagnetics are incorporated into the forward model. 

The anatomy of the head may be determined for the individual subject by 

magnetic resonance imaging, giving the spatial locations of the skull, scalp, cere­

brospinal fluid, grey matter, and white matter. The electrical conductivities of 

these various tissues are known and may be combined with the spatial coordinates 

to yield the conductivity distribution within the head. The conductivity distribu­

tion may then be used in the forward model to account for the volume currents. 

The possible (as opposed to probable) locations of the primary current sources 

may be determined from the known location of the cerebral cortex. 

The probable amplitudes of the cortical sources and their spatial and temporal 

correlations may be represented as a probability distribution. The mean values, 

variances, covariances, and other parameters of this distribution may be estimated 

from several lines of investigation including detailed bioelectric models of the brain, 

invasive measurements made in animals ( ar:J.d when possible, in humans) and anal­

ysis of MEG measurements on.a population of similar subjects. 

The probable locations of the cortical regions activated by the reading task 

may be determined by locating previously implicated anatomical regions in the 

MR image. The relative probability of different possible source regions may be 
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represented as differences in the expected source variance (which is proportional 

to average source power). If desired, the most likely orientation of these sources 

may be set to be normal to the cortical sheet. Alternatively, the regions activated 

by the reading task could be indentified by functional MR imaging of blood flow 

differences in the brain between task and non-task conditions, or by PET imaging 

of metabolic differences. 

The statistics of the measurement noise due to intrinstic detector noise and 

magnetic sources external to the subject can be estimated by tests of the detector 

system without a subject. The statistics of measurement noise due to sources in 

the subject but outside the brain may be estimated by testing a suitable population 

of subjects under non-task conditions. 

Summarizing, the prior knowledge used to constrain the reconstruction may 

be expressed as (1) the laws of physics incorporated into the forward problem; (2) 

a source model defining a set of elementary current sources which are consistent 

with the known anatomy and physiology; (3) a probability distribution for the 

source amplitudes; and ( 4) a probability distribution for the detector noise. The 

forward model and source model have already been discussed; the remainder of this 

chapter will consider the representation of statistical prior information concerning 

the source and noise amplitudes. 

3.4 Source and Noise Statistics 

As already discussed, the forward problem may be represented in the general form 

h= Fq+w (32) 

for measurements b, forward transfer matrix F, source amplitudes q, and measure-

ment noise w. 

The vector q of source amplitudes qn is assumed to be a random vector with 

mean zero and covariance matrix A = E qqT with entries cxrj = E qiqj. If the 

expected amplitudes are not zero-mean, the shifted vector q = q- E q is zero­

mean and can be used instead. Since A is a covariance matrix, it is symmetric 

and positive semidefinite. The diagonal entries cx~n are non-negative and CXnn is 
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Signal Source Signal Strength Frequency Range 

(femtoTesla) (Hz) 

Cardiogram 50000 0.1-100 

Encephalogram ( 8) 1500 0.3-50 

Auditory Evoked Response 500 0.2-40 

Visual Evoked Response 200 0.1-50 

Evoked Cortical Activity 60 0.2-50 

Figure 3.1 Some typical values for biomagnetic signals. These data are taken from 
Fagaly [28, Figure 1]. For comparison, the earth's magnetic field is about 50 microTesla. 

the root-mean-square (RMS) amplitude of the nth source. The off-diagonal entries 

a}j, i =J j are the correlations between sources and may be positive, negative, or 

zero. Electrical activity in the brain and heart is spatially coherent and sources 

separated by less than the coherence length will be correlated; these correlations 

correspond to non-zero off-diagonal elements in A. 

The noise vector w is assumed to be a random vector with mean zero and 

covariance matrix E = E wwT with entries a[j = E WiWj· Since Eisa covariance 

matrix, it is symmetric and positive semidefinite. Each diagonal entry a~m is the 

expected noise power of the mth detector and is non-negative; C1mm is the RMS 

noise amplitude of the mth detector. The off-diagonal entries a[j, i =J j are the 

noise covariances and may be positive, negative, or zero. If the noise is uncorrelated 

between sensors, then E is diagonal. 

The cross-covariance between the source and noise amplitude vectors is r = 

E qwT with entries /nm = E qnwm. In many applications, there will be no source­

noise correlation and r will be zero. 

Fagaly [28, Figure 1] gives some typical values for signal strength as seen at the 

magnetometer; some of these are reproduced in Figure 3.1. In terms of the notation 

used in this dissertation, the listed values are typical·values for the measured signals 

bm. The source amplitudes can be estimated from these values but are less well 

constrained. 

Fagaly also [pages 26-28] discusses the measurement noise. The SQUID mag-
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Typical RMS noise (IT) 
Noise spectral power 

Bandwidth 
100 

50 

10 

5 

1 

(ITivilz) 

100 
1000 

707 

316 

224 

100 

10 
100 

71 

32 

22 

10 

Figure 3.2 Some typical RMS noise values for biomagnetic signals. These data are 
computed from the data of Figure 3.1. 

netometer itself has a spectral noise power of about 10 IT I v'HZ but environmental 

noise is often much larger: An eddy current shielded room can reduce the enviro­

mental noise to less than 200 IT I v'HZ; a magnetically shielded room to less than 

3 IT I v'HZ, which is less than the intrinsic noise of the detector itself. Figure 3.2 

shows the RMS measurement noise for various conbinations of bandwidth and noise 

spectral power typical of MEG. 

3.5 Measurement Statistics 

Given these definitions, the measurement covariance is 

(33) 

In the case that r = 0, this simplifies to B = FAFT +:E. The expected signal 

power at the mth detector is (where em is the vector with one in the mth position 

and zeros elsewhere) 

(3~ = E(bm- wm)2 = E(e~Fqp 

= e~FAFTem (34) 

which is just the mth diagonal element of F AFT. The total signal power over all 

detectors is 'l:m (3~ = Tr(FAFT). The total noise. power is 'l:m a~m = Tr(:E) and 
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Signal-to-noise ratio (dB) 

Noise spectral power 

(IT/VHz) 

Signal Source 100 10 

Cardiogram 34.0 54.0 

Encephalogram ( 8) 6.5 26.5 

Auditory Evoked Response -2.0 18.0 

Visual Evoked Response -11.0 9.0 

Evoked Cortical Activity -21.4 -1.4 

Figure 3.3 Some typical SNR values for biomagnetic signals. These data are com­
puted from the data of Figure 3.1, assuming that the full bandwidth is used and that no 
signal averaging is used. 

so it is reasonable to define the signal-to-noise (power) ratio as 

SNR = Tr(FAFT)/ Tr(:E) (35) 

Dividing the numerator and denominator by the number of detectors M yields the 

equivalent definition 

SNR 
_ (1/M) "'£m f3'?n _ f3~vg 
- 2 - 2 

(1/M) "'£m <7mm <7avg 
(36) 

where f3~vg and a~vg are the average expected signal and noise power per detec­

tor. Now suppose that the typical spectral noise power is n in IT/VHz and the 

measurement bandwidth is B in Hz. Then the rms noise is a 2 = Bn2 and the SNR 

can be written in the form 

SNR = /3~vg 
Bn2 

The signal-to-noise ratio expressed in decibels (dB) is 10 log10 SNR. 

(37) 

The SNR for a particular system and experiment will depend on the signal 

sought (cardiogram, encephalogram, or evoked potential), instrument configura­

tion (magnetometer or gradiometer), ambient magnetic noise, shielding, and signal 

averaging. Most practical experiments should fall in the range 0--40 dB. 
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Figure 3.3 shows the calculated SNR for the signal types described in Figure 3.1, 

for some typical values of noise. These values can be improved by signal averaging 

or narrowing the bandwidth. 

3.6 Assumption A 

We pause here to introduce a technical assumption-to be called assumption A­

that will be useful later. Precisely stated, we will assume hereafter that that none 

of the source amplitudes qn or the noise amplitudes Wm is almost surely equal to 

a linear combination of the remaining source and noise amplitudes. (Two random 

variables are "almost surely" equal if they are equal with probability one.) That 

is, every source and noise amplitude has some non-zero residual variance even after 

the effect of every other source and noise amplitude has been accounted for. 

Assumption A is unlikely to be an issue in practice. About the only way to 

violate it is to set some a priori source variance to zero or to use some field measure­

ment twice; the problem is easily fixed by omitting the source with zero variance 

(since it is known a priori), choosing a nonzero variance, or omitting the redundant 

measurement. 

The value of assumption A is mathematical; it authorizes some algebraic ma­

nipulations that would otherwise be questionable. Specifically, we will use the 

following consequences: 

1. The covariance matrices A = E qqT, :E = E wwT, and B = E bbT are 

all invertible, symmetric positive definite, and have Cholesky decompositions [38, 

pages 141-142) in the forms 

A=RRT, :E =SST, and (38) 

where R, S, and L are lower triangular and invertible. Furthermore, expressions of 

the form R-1 X, s-1 X, or L - 1 X can be efficiently computed by forward substitu­

tion [38, pages 86-90) without explicitly computing the matrix inverse. 

2. The formE IIDbJJ2 is strictly greater than zero for every non-zero matrix D. 

The remainder of this section is devoted to proving these consequences. 
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Definition: A set of random vectors XI, ... , Xn is linearly dependent if there 

exist constant vectors UI, ... , Un, not all zero, such that uf XI + · · · + u'!;xn = 0 

almost surely. If the set XI, ... , Xn is not linearly dependent, it is linearly indepen-

dent. 

Proposition: Assumption A implies that the set { q, w} is linearly indepen­

dent. 

Proof: Suppose that q and ware linearly dependent. Then there exist vectors 

u and v, not both zero, such that uT q + vT w = :Z:::::i Uiqi + :Z:::::j VjWj = 0 almost 

surely. But at least one component of u or v is non-zero. Say that component is Ui. 

Then solving for qi yields an linear expression in the remaining components that is 

almost surely equal to qi. Thus assumption A must be false. • 
Proposition: Suppose that a set of random vectors is linearly dependent. 

Then adding any additional random vector to the set yields a linearly dependent 

set. 

Proof: Set the coefficient of the added vector to zero. I 

Corollary: Any subset of a linearly independent set is linearly independent. 

Corollary: The vector q is linearly independent. So is w. 

Proposition: The measurement vector b = Fq + w is linearly independent. 

Proof: Suppose that b is linearly dependent. Then there exists a non-zero 

constant u such that uTb = 0 almost surely. But this implies that uTFq+uT w = 0 

almost surely. Thus q and w must be linearly dependent. • 
Proposition: Suppose that the random vector xis linearly independent. Then 

the correlation matrix Cx = E xxT is nonsingular. 

Proof: Suppose that Cx is singular. Then there exists a constant u =J. 0 such 

that uTCxu = 0. But uTCxu = uT E(xxT)u = E(uT xxT u) = E l!uT xl! 2 which 

can be zero only if uT x = 0 almost surely. But this implies that x is linearly 

dependent. • 
Corollary: The covariance matrices A = E qqT, :E = E wwT, and B = E bbT 

are all invertible. 
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Corollary: Since all covariance matrices are symmetric and positive semidef­

inite, A, :E, and Bare symmetric positive definite and have Cholesky decomposi­

tions in the forms 

A=RRT 
' 

(39) 

where R, S, and L are lower triangular and invertible. 

Proposition: If xis linearly independent, then E IIDxll2 > 0 for every matrix 

D :/= 0. 

Proof: Suppose that E IIDxll 2 = 0. Then, almost surely, IIDxll 

implies that Dx = 0, which implies that xis linearly dependent. 

3. 7 Gaussian Priors 

0, which 

• 
Many of the results that will be presented hereafter are independent of the actual 

distributions of q and w, provided that the covariances and cross-covariance are 

known. Some results, however, depend on the particular form of the distribution. 

For these results, it is convenient to assume that q and w are jointly Gaussian. 

More explicitly, we assume that the composite vector 

V= [ !] (40) 

is jointly Gaussian with mean 0 and covariance matrix 

Cv= [tr ~] (41) 

Given this additional assumption of normality, it is possible and useful to com­

pute the conditional distributions of q and w given any particular b. Suppose that 

x and y are zero-mean, jointly Gaussian random vectors with covariance matrices 

Cxx and Cyy and cross-covariance Cxy = C~. Then [62, page 88, property 3.3], 

for given y, x is normally distributed with mean 

and variance 

Cxly = Cxx - CxyCYi Cyx 
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-
In this case, it is convenient to compute the mean and covariance of v given b; 

then it is trivial to compute the means, covariances, and cross-covariance of q and 

w. Thus, 

(44) 

and 

(45) 

Furthermore, 

(46) 

and 

Thus, for given b, the vectors q and w are jointly Gaussian with means 

E(q I b)= Cqbcb~b 

=(AFT +r)(FAFT +Fr+rTFT +:E)-1b , (48) 

E(w I b)= CwbCb~b 

= (rTFT + :E)(FAFT + Fr + rTFT + :E)-l b , (49) 

covanances 

Var(q I b)= A- Cqbcb~c~b (50) 

=A-(AFT +r)(FAFT +Fr+rTFT +:E)-1(FA+rT) , 

Var(w I b)= :E- CwbCb~ c~b (51) 

= :E- (rTFT + :E)(FAFT + Fr + rTFT + :E)-1(Fr +:E) , 

and cross-covariance 

Cov(q, w I b)= r- Cqbcb~c~b (52) 

= r- (AFT+ r)(FAFT + Fr + rTFT + :E)-1(Fr +:E) 
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The Linear Inverse Problem 

With Prior Knowledge 

Given the forward problem and priors discussed in the previous chapters, the inverse 

problem is to find a "best" estimate q of the unknown source amplitude vector q 

from given values for the forward transfer matrix F, the field measurements b, and 

perhaps other information such as the noise covariance :E and source covariance A. 

This dissertation considers only linear inverse methods. That is, the best esti­

mate q is always computed in the form 

q=Hb (53) 

where His a linear operator depending on F, A, :E, and r. 
The simple solution q = F-1 b does not work in general for inverse problems; 

F is rarely invertible and usually rectangular. The inverse problem is often both 

overdetermined in the sense that no solution q exactly solves Fq = b and underde­

termined in that many different values of q provide equally close approximations. 

Different criteria for the "best" approximation lead to different inverse methods. 

4.1 Minimum-Norm Least Squares Methods-

The least squares (LS) criterion is to minimize the residual 

(54) 

which is a measure of the discrepancy between the measured and reconstructed 

field values. The least squares solution is not necessarily unique; there may be 

many different solutions that achieve the minimum c2 . The minimum-norm least 
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squares (MNLS) criterion chooses from all these minimum-residual solutions the 

unique solution with smallest norm 11411 2. No prior information is necessary and 

the value of c2 can be computed for any given b. 

The maximum likelihood (ML) criterion is, assuming that w is jointly Gaussian, 

to minimize the weighted residual 

(55) 

which is a measure of the discrepancy between the measured and reconstructed field 

values, weighted by the a priori noise variance. As with least squares, the solution 

is not necessarily unique. Noise statistics are required but source statistics are not. 

If the noise amplitudes are assumed to be independent and identically dis­

tributed (:E = a 2I), then the MNLS solution minimizes the x2 statistic and is also 

the maximum likelihood solution. 

The Moore-Penrose generalized inverse (also known as the pseudoinverse) is a 

generalization of the matrix inverse to arbitrary rectangular matrices. It was first 

reported by Moore [61] in 1920 as the unique matrix satisfying certain algebraic 

conditions not relevant here, and rediscovered by Penrose [67] in 1955 using different 

but equivalent algebraic conditions. Penrose [68] also showed that the generalized 

inverse computes the MNLS solution. 

The Moore-Penrose inverse can be computed from the singular value decompo­

sition (SVD) [38, page 243] of the forward transfer matrix F. To fix notation, the 

SVD theorem states that the M x N matrix F can be decomposed in the form 

K 

F=UAVT = LAkUkVk 
k=l 

(56) 

where the rank ofF is K ::=; K' = min(M, N); U is an N x N orthogonal matrix 

with orthonormal columns uk; Vis an M x M orthogonal matrix with orthonormal 

columns vk; and A is an M x N diagonal matrix with diagonal entries >.1 > >.2 2: 

· · · > AJ< > AJ<+l = · · · = AJ<' = 0. The values >.k fork= 1, ... , K are the singular 

values ofF; the vectors uk and vk fork= 1, ... , K are the left and right singular 

vectors of F. The additional vectors uk, k = K + 1, ... , M, span the complement 
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of the range space of F; the additional vectors Vb k = K + 1, ... , N, span the null 

space of F. 

The Moore-Penrose inverse ofF is then 

Ft = L Akl vkuf 
.Xk#O 

(57) 

and is equal to the ordinary matrix inverse if F is non-singular. If F is singular, the 

system Fq = b is ill-posed and has infinitely many possible solutions; q = Ftb is 

the particular solution with the smallest norm, or the minimum-norm least squares 

(MNLS) solution. 

The Moore-Penrose inverse in its pure form is not generally suitable for inverse 

problems with measurement noise. Suppose that b = Fq + w and consider the 

estimate q = Ftb = FtFq + Ft w. The error due to noise is 

Ftw = L .\;;1(uf w)vk 
.Xk#O 

(58) 

which grows withbut bound as the singular values Ak decrease toward zero. The 

error in q is roughly proportional to the reciprocal of the smallest singular value 

and can easily swamp the correct answer. 

One simple cure is to drop all singular values less than a threshold E, defining 

a truncated pseudoinverse 

(59) 

Wang, Williamson, and Kaufman [105, 106] have used a truncated pseudoinverse for 

magnetic source imaging, although they do not state their truncation criterion. The 

threshold € must be chosen with care, as is illustrated in Figure 7.3; the weighted 

pseudoinverse method discussed below provides one systematic approach. 

4.2 Weighted Pseudoinverse Methods 

The minimum mean square error (MMSE) or mean square criterion is to minimize 

the average reconstruction error 

"72 = Ee2 = Ellq- <1112 
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which is a measure of the discrepancy between the reconstructed and the true 

current distributions. The error e2 = llq-qjj2 depends on the true distribution and 

cannot be computed for any specific b; only its mean value ry2 can be determined. 

The mean square error ry2 depends on the source and noise statistics, so both of 

these must be known (or assumed) a priori. 

To avoid the numerical problems of MNLS, Shim.and Cho [91] have defined a 

weighted pseudoinverse (which they call the stochastic SVD pseudoinverse) 

F w ""' ,-1 T = ~ ck"'k vkuk 
Ak#O 

(61) 

where the weights ck are chosen to yield the minimum mean square error. Restrict-

ing the weights to zero and one yields a truncated pseudoinverse. Their derivation 

and results unfortunately contain some typographical errors; the following deriva­

tion hopefully corrects those errors without introducing any new ones, and gen­

eralizes their result by allowing correlations between noise and source amplitudes 

(r =f. o). 

Shim and Cho have applied the optimal truncated pseudoinverse method ( OT­

PIM) and optimal weighted pseudoinverse method ( OWPIM) to PET reconstruc­

tion; Jeffs, Leahy, and Singh [45] have used the optimal truncated pseudoinverse 

for magnetic source imaging of the brain. 

To determine the optimal ck, write the source and noise vectors in terms of the 

singular vectors of F to obtain 

and (62) 

Note that ak = vfq and sk = ufw, so that Eak = 0 and Esk = 0. Define the 

covanances 

k= 1, ... ,N 

k = 1, ... , M ; and 

k = 1, ... ,K' 

(63a) 

(63b) 

(63c) 

which are the diagonal entries of the rotated covariance matrices yT A V, UT:EU, 

and vTru respectively. The notation here may be a bit confusing; the symbols 
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a.rj, at, and /ij with two subscripts denote the entries of the unrotated covariance 

matrices A, :E, and r. 
The optimal estimate of q is q = Fwb with error 

e = q - q = q- Fwb = q - Fw (Fq + w) 

= q - FwFq- Fww 
N N M 

= L akvk.:.... FwF L akvk- Fw L SkUk 
k=l k=l k=l 

and since VJ<+l, ... , VN are in the null space ofF and UJ<+l, ... , uM are in the 

null space of Fw, 
N K K 

e= Lakvk-FwFLakvk-FwLskuk 
k=l k=l k=l 
K N 

= L [(1- ck)ak- c~sk] vk + L akvk 
k=l k k=K+l 

(64) 

Then the mean square error is 

(65) 

Finding the minimum by the usual procedure yields the coefficients 

a.~-\~ + lkAk 
Ck - --;::;:~"'--'"'------...,.. 

- a.~.A~ + 2{kAk +a~ 
k= 1, ... ,K (66) 

for the optimal weighted pseudoinverse of F. 

Note that the off-diagonal covariances E aka!, E sksz, and E aksz with k =/= l 

do not appear in the above expression. In effect, they are assumed to be zero. 

Equivalently, the covariance matrices yT A V, uT:EU, and vTru are assumed. to 

be diagonal. This is called the case of "coaxial" priors and will be discussed later. 

If the weights are restricted to ck = 0 or ck = 1, the weighted pseudoinverse 

becomes a truncated pseudoinverse. Thus, any truncated pseudoinverse is a special 

case of the weighted pseudoinverse and will, in general, have a larger error than the 

optimal weighted pseudoinverse. 
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To obtain the optimal truncated pseudoinverse, consider the kth error term 

2 2 
2 ( )2 2 2ck(ck -1hk cko-k 

Tlk = ck - 1 ak + .A + ~ 
k /\k 

{ 

a 2 ifck = 0 

= o-ijA~ if Ck = 1 
(67) 

The minimum error is achieved when the smaller of the two possible values is taken; 

that is, the kth term should be retained if o-f/ .A~< a~{::} Ak > o-kfak and dropped 

otherwise. Thus the optimal truncated pseudoinverse is 

(68) 

Ak >uk /cr. k 

The ratio a~ .A~/ O"f can be interpreted as the signal-to-noise ratio for the source 

vector v k, so that the optimal truncated pseudoinverse retains exactly those terms 

for which the SNR exceeds one. Setting o-f/ .A~= a~ in equation (66) yields ck = ~' 

so rounding ck to 0 or 1 in the optimal weighted pseudoinverse yields the optimal 

truncated pseudoinverse. Note that the optimally truncated pseudoinverse does not 

necessarily comprise the largest singular values. 

4.3 Optimal Constrained Linear Inverse Method 

The Shim-Cho weighted pseudoinverse is optimal (in the MMSE sense) over all 

possible weighted pseudoinverses but is not, in general, optimal over all possible 

linear estimators of the form q = Hb. 

The optimal constrained linear estimator is given by the matrix H that mini-

rmzes 

and since b = Fq + w, 

= E JJq- H(Fq + w)JJ 2 

= E JJ(I- HF)q- Hwi1 2 

(69) 

(70) 

Now consider a variation H + € 8H where € is a scalar and 8H is a matrix to obtain 

ry2 = E JJ(I- HF- E8HF)q- Hw- €8HwJJ 2 
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= E 11(1- HF)q- Hw- E8H(Fq + w)ll 2 

= E 11(1- HF)q- Hwll2 

+ 2E E(Fq + w)T 8HT[(I- HF)q- Hw] 

+ E2 E II8H(Fq + w)ll 2 

= CO + C! € + C2€
2 

for scalars co, q, and c2 which depend on 8H. 

(71) 

Now H can minimize ry2 9nly if q is zero for any value of 8H. To see this, assume 

on the contrary that there is some non-zero 8H such that q is not zero. Assumption 

A ensures that c2 = E II8H(Fq + w)ll 2 = E II8Hbll 2 is positive whenever 8H is not 

zero. Then ry2 has a unique minimum at Emin = -cr/(2c2)· But this means that 

ry2 is smaller for H + Emin 8H than for H. T~us, contrary to our assumption, His 

not the minimum. Therefore, q must be zero for every 8H. 

The positivity of c2 also guarantees that ry2 has a minimum rather than a 

maximum. Furthermore, since ry2 is quadratic in E, the minimum is unique and 

there is no maximum. That is, the optimal H exists and is unique. 

Now observe that, for random vectors x andy, the expectation ExTDy is zero 

for all D only if ExyT = 0. _(Consider the set of matrices D in which one entry 

takes the value one and all the other entries are zero.) Then the scalar q can be 

zero for arbitrary 8H only if 

0 = E [(I- HF)q- Hw](Fq + w)T 

= EHFqqTFT- EqqTFT + EHwqTFT 

+ EHFqwT- EqwT + EHwwT 

= HFAFT- AFT+ HrTFT 

+HFr-r+H:E 

which can be solved to yield 

(72) 

(73) 

where assumption A guarantees the existence of the inverse. Franklin [34] has 

developed essentially the same formula in the more general context of Hilbert space. 
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4.4 Useful Special Cases 

There are several special cases in which the OCLIM filter reduces to previously 

known inverse methods. 

4.4.1 Noise Uncorrelated with Sources 

If the noise is uncorrelated with the sources, then r = 0 and the filter simplifies to 

(74) 

This mean square estimator has been previously used by Helstrom [42] for image 

restoration and by Smith et al. [93] for magnetic source imaging. 

The preconditioned pseudoinverse of Ferguson [30] has the form 

(75) 

where D is a diagonal matrix of the expected source amplitudes and L = FD is 

a preconditioned forward transfer matrix. Substituting A = DDT and ::E = 0 in 

equation ( 7 4) yields 

H = D(DTFT)((FD)(DTFT) + 0)-1 

= DL(LLT)-1 

which is exactly the preconditioned pseudoinverse. 

(76) 

The OCLIM filter (74) is also related to the filtered backprojection algorithm 

for emission tomography[pages 60-63] [47]. The factor (FAFT + ::E)-1 filters the 

projections b, the factor FT backprojects, and A weights the result according to 

the a priori probabilities. 

Furthermore, observe that 

FT + FT::E-1FAFT = FT::E-1FAFT + FT 

¢::> (A - 1 + FT::E-1F)AFT = FT::E-1(FAFT +:E) 

¢::> AFT(FAFT + ::E)-1 =(A -1 + FT::E-1F)-1FT::E-1 

Thus the optimal filter can also be written in the form 

H =(A -1 + FT::E-~F)-1FT::E-1 
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This form represents a variant backprojection algorithm in which filtering is done 

after backprojection; Budinger et al. call this the "filter of the backprojection algo­

rithm" [14). The factor :E-1 normalizes the noise variance in the projections, pT 

backprojects, and (A - 1 + FT:E-1 F)-1 filters the backprojected image. 

4.4.2 Coaxial priors 

Suppose that the covariance matrices A, :E, and r all become diagonal when they 

are rotated into the U and V coordinates defined by the singular vectors of F. 

That is, suppose that the rotated matrices yT AV, UT:EU, and vTru are all 

diagonal. Then the matrices F, A, :E, and r can all be written in terms of the 

singular vectors uk and vk defined by the singular value decomposition ofF, or 

K 

F= ~>.kukvf 
k=1 
N 

A= ~a~vkvf 
k=1 
M 

:E = ~ o-fukuf , and 
k=1 
K' 

r= ~/kVkllr 
k=1 

(79a) 

(79b) 

(79c) 

(79d) 

In other words, these matrices all share the same singular axes; this may be called 

the case of "coaxial priors." Since A and :E are positive definite, a~ > 0 for 

k = 1, ... , N, and <7f > 0 for k = 1, ... , M. Recall that K = rank(F) ::::; K' 

min(M,N). 

Then the OCLIM filter can be expressed in the same axes as 

(80) 

which is exactly the optimal weighted pseudoinverse of F. That is, the optimal 

weighted pseudoinverse is obtained as a special case of the optimal constrained 
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linear filter when the covariance matrices are coaxial with the forward transfer 

matrix; it is inferior to OCLIM otherwise. 

Except for the special case of uniform priors (discussed below), coaxial priors 

seem unlikely to occur in practice. 

The truncated pseudoinverse can also be obtained as a special case of coaxial 

priors, although the assumptions required are rather perverse: ak = 0 = rk implies 

Ck = 1; and either ak = 00 or ak = 0 = /k implies Ck = 0. 

4.4.3 Stationary Priors 

Suppose that the source and noise amplitudes are (spatially) stationary, that there 

are the same number of sources and detectors ( M = N), and that the forward 

transfer function is shift-invariant. Then A, :E, and Fare all square and (approx­

imately) circulant. Thus [44, p. 145], they are all diagonalized by the discrete 

Fourier transform represented as the unitary matrix 

[W]mn = _1_ e~j2rrmn/N 
ffi 

(81) 

That is, A = WAW* is diagonal and the diagonal entries, which we will de­

note Pq(k), constitute the power spectrum of the source amplitudes qn. Similarly, 

:E = W:EW* is diagonal and its diagonal entries Pw(k) constitute the noise power 

spectrum. Furthermore, F = WFW* is diagonal and its diagonal entries F( k) 

constitute the transfer function in frequency space. Since F is real, pT = F* and 

the optimal filter can be written asH= AF*(FAF* + :E)-1, or 

H = WHW* = AF*(FAF* + :E)-1 

and, since all the matrices are diagonal, 

1l k _ Pq(k)F*(k) 
( ) - JF(k)J2Pq(k) + Pw(k) 

(82) 

which is the Wiener deconvolution filter [15, pages 209-210]. 
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4.4.4 Uniform Priors 

In the case of "uniform priors," the approximate amplitude of the elementary 

sources is known but there is no basis for believing that any one is more active 

than any other; and the same is true of the noise amplitudes. That is, the source 

amplitudes are independent and identically distributed; so are the noise ampli­

tudes. Then every source has the same expected activity a 2 and the covariance 

matrix A takes the form a 2I; the noise covariance :E takes the form a-21 and the 

cross-covariance r is zero. It follows that A, :E, and r are all coaxial with any 

forward transfer matrix F. Then both OCLIM and OWPIM simplify to 

(83) 

where we have used the fact that >..k = 0 whenever k > K to reduce the upper limit 

from K 1 to K. · Since FFT is positive semidefinite, the indicated matrix inverse 

exists whenever a-2 ja2 > 0. The only prior knowledge required is the ratio a 2 /a-2 ; 

thus this special case is useful for noise-tolerant reconstruction given only rough 

estimates of source and noise amplitude. 

This form can be regarded as a Marquardt [54, 55] or Tikhonov [99] regular­

ization of the pseudoinverse yt = FT(FFT)-1. One important difference is that 

the value of the regularization parameter is determined by the given value of a-2 / a 2 

and need not be determined by experiment. 

4.4.5 No Prior Information 

The case of "no priors" may be approached by letting a 2 go to infinity. In this 

case, the OCLIM filter goes to the limit 

/{ 

H= L:>..k"Ivkuf (84) 
k=l 

which is just the Moore-Penrose inverse or the MNLS estimator. Taking the limit 

as the noise goes to zero ( a-2 -+ 0) yields the same result. 
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4.5 Maximum A Posteriori Estimation 

The OCLIM estimator can also be obtained as the maximum a posteriori estimator 

when q and w are Gaussian but uncorrelated. In maximum a posteriori (MAP) 

estimation, we seek the estimate q which maximizes the a posteriori probability 

p( q I b) of q given a set of measurements b. 

Now suppose that q and ware uncorrelated zero-mean Gaussian random vectors 

with respective covariance matrices A and :E. Given these, the a priori probability 

of a given source vector q is 

(85) 

Similarly, the probability of a given noise vector w is 

(86) 

Since w = b- Fq, the probability of a given measurement b given a source vector 

q must be 

Given these, Bayes' rule gives the a posteriori distribution of q as 

p(q I b)= p(b I q)p(q) 
p(b) 

(88) 

Since we are seeking the maximum with respect to q and the denominator p(b) is 

independent of q, it suffices to maximize the product 

p(blq) p( q) = ((27r)M I:EI)-112 exp( -~(b- Fq)T:E-1(b- Fq)) 

x ((27r)N IAI)-1/2 exp( -~qT A -1q) 

But maximizing this is equivalent to maximizing 

(89) 

log(p(blq) p( q)) = -~(b- Fq)T:E-1 (b- Fq)- ~qT A -lq (90) 

or m1mm1zmg 

T
2 = (b- Fq)T:E-1(b- Fq) + qT A - 1q 
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The minimum can be determined by a variational analysis. Suppose that q 

minimizes T
2 and write q = q + 8q. Then 

T
2 = (q + 8q)T A - 1(q + 8q) + (Fq- b + F8q)T~-1 (Fq- b + F8q) 

= qT A - 1q + (Fq- b)T~- 1 (Fq- b) (line 1) 

+ 28qT A -lq + 28qTFT~- 1 (Fq- b) (line 2) 

+ 8qT A - 18q + 8qTFT~- 1F8q . (line 3) 

For q to be a minimum, we must have line 3 non-negative and line 2 zero for 

any value of 8q. Since A and ~ are positive definite, line 3 is positive whenever 8q 

is non-zero. Line 2 will be zero for any 8q provided that 

(92) 

Solving for q yields 

(93) 

which is one form of the OCLIM estimator. 

4.6 Nuisance Sources 

In some applications it happens that many sources are expected but only some 

of them are of interest to the experimenter. This section considers whether es­

timating the amplitudes of the uninteresting "nuisance" sources will improve the 

estimates for the interesting source amplitudes. Suppose that the source vector q 

is partitioned into a vector of N1 interesting sources q1 and N2 nuisance sources 

~ arranged as 

(94) 

Then we wish to find a linear estimator H 1 in the computation <l1 = H 1 b that will 

minimize the error 

(95) 

in the interesting sources alone. 
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The expected mean square error can be rewritten in the form 

and introducing a variation H1 + b'H yields 

ryf + bryf = E(ql- H1Fq- H1w)T(q1- H1Fq- H1w) 

- 2 E(Fq + w)T bHT ( q1 - H1Fq- H1 w) 

+ E(Fq + w )T bHT b'H(Fq + w) 
( 

The existence of an extremum requires that 

E(q1- H1Fq- H1w)(Fq + w)T = 0 , 

which simplifies after some algebra to 

H1 = (A1FT + rl)(FAF + Fr + rTFT + :~::.n- 1 

where 

and 

(96) 

-
(97) 

(98) 

(99) 

(100) 

consist of the first N1 rows of A and r. In fact, the selective estimator H1 consists 

of the first N1 rows of the complete estimator H. 

We can further write 

(101) 

and 

b = Fq + w = [F1 F2] [ ~~] + w (102) 

Then A 1FT+ r1 = AuF1 + A12F2 + r1 and the selective estimator becomes. 

H1 = (AuF1 + A12F2 + r1)(FAF + Fr + rTFT + :E)-1 (103) 

If the interesting and nuisance·sources are uncorrelated, then A12 = 0 and the 

selective estimator is 

(104) 

That is, the nuisance sources must be included in the measurement covariance 

(105) 

but may be ignored thereafter. An experimental determination of the priors thus 

requires estimating the measurement covariance B and the covariance matrix A 11 

of the interesting sources only. 
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4.7 Estimation Subject to a Linear Constraint 

The inverse problem can be generalized by requiring in addition that the solution 

q satisfies a linear equality constraint of the form Cq = 0. 

For example, charge conservation under quasistatic conditions requires that 

\72 J = 0; a finite difference discretization leads to a linear constraint of the form 

DJ. = 0 where J is a vector of current density values at the selected grid points. 

Although this approach to imposing charge conservation appears inferior to finite 

element or boundary element approaches and was not pursued further, it may be 

useful for other applications. 

For Cq = CHb = 0 for every b consistent with the priors, it is necessary 
I 

and sufficient under Assumption A that CH = 0. Sufficiency is obvious. For 

necessity, suppose that CH =/= 0. Then there exists a b such that CHb =/= 0. But, 

under Assumption A, the measurement covariance B = E bbT is nonsingular and 

it follows that b is not confined to any subspace. That is, there is always a b 

consistent with the priors such that CHb =/= 0. 

Then the method of Lagrange multipliers yields the augmented objective func-

tion 

S= ElliJ-qll2 + 2:>-fCHek 
k 

(106) 

where each Ak is a column vector of Lagrange multipliers and ek is the kth standard 

basis vector. Then, since q = Hb = HFq + Hw, 

S = E(HFq + Hw- q)T(HFq + Hw- q) + L A.[CHek 
k 

The first variation is 

8S = 2E(HFq + Hw- q)T(8HFq +8Hw) + LA.fC8Hek 
k 

(107) 

= 2 E(HFq + Hw- q)T 8H(Fq + w) +LA.[ C8Hek (108) 
k 

which must equal zero for arbitrary 8H when H is optimal. This implies that 

1 
E(Fq + w)(HFq + Hw- q)T + 2 L ekA.[ C = 0 (109) 

k 
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Assuming for convenience that q and w are uncorrelated and absorbing the constant 

factor 1/2 into the >..k yields 

FAFTHT- FA+ EHT + Lek>..JC = 0 , 
k 

or, after transposing and extracting common terms, 

where 

H(FAFT +E)-AFT +CTA=O 

A= L>..kek 
k 

is a matrix of Lagrange multipliers. Solving for H yields 

Now the desired constraint is that CH = 0, or 

Since (FAFT +E) is non-singular, this is equivalent to 

C(AFT- cT A) = 0 . 

(110) 

(111) 

(112) 

(113) 

(114) 

(115) 

Now assume without loss of generality that the rows of Care linearly indepen­

dent. Otherwise Cq = 0 contains a redundant constraint that could be removed 

without changing the set of admissable q. Then it follows [94, pp. 157-158] that 

CCT is nonsingular and so 

(116) 

Finally, substituting into the expression for H yields 

(117) 

Note that (J-CT(ccT)-1C) is the projection matrix onto the null space of C and 

so the optimal solution subject to the constraint Cq = 0 can be obtained simply by 

projecting the unconstrained solution into the null space of the constraint matrix 

C. 
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Chapter 5 
The 

Chi-squared 
Generalized 
Distribution 

This chapter defines and develops a generalization of the x2 distribution which will 

be necessary later to describe the statistics of various measures of reconstruction 

quality. The generalized x2 distribution is the distribution followed by the sum 

of the squares of Gaussian random variables with arbitrary means, variances, and 

covariances. Altematively, it is the distribution followed by the squared norm of 

an arbitrary Gaussian random vector. 

The generalized x2 distribution is important to this dissertation for the follow­

ing reason: The measurement residual r = b- Fq, or the difference between the 

actual measurements and the measurements predicted by the reconstruction, gives 

an indication of the completeness of the source model used in the reconstruction. 

The squared residual x2 = Jlrll2 reduces the residual to a single number which, if 

too large, indicates that the source model is possibly incomplete. It is important to 

know the distribution of Jlrii2 to decide what is meant by "too large." If reconstruc­

tion is done using a least-squares method, then the squared residual JlrJJ 2 follows 

the standard x2 distribution. If, however, OCLIM is used for the reconstruction, 

then the squared residual follows a generalization of the x2 distribution. It is the 

purpose of this chapter to define that generalization and to develop an algorithm 

for computing it. The algorithm developed is applicable to any continuous random 

variable meeting certain regularity conditions and may be useful in its own right. 
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5.1 Some Mathematical Preliminaries 

It is useful· to collect here some elementary results about random vectors, charac­

teristic functions, and Fourier transforms which will be used later in this chapter. 

Proposition: Let p( x) be the probability density of a real-valued random 

variable and qy(t) = E{ eitx} its characteristic function. Let 

. F: f(x) ~ F(u) = 1: e-i2rruxf(x)dx (118) 

denote the Fourier transform. Then 

F{p(x)} = qy( -2?ru) and (119) 

Proof: Substitute t = -2?ru into the definition of the characteristic function. 

Then take the inverse Fourier transform. • 
Proposition: Let p( x) be the probability density of a real-valued random 

variable and qy( t) = E { eitx} its characteristic function. Then 

and 

xn p(x) = i-n 1oo qy(n)(t) e-itx dt 
211" -oo 

lxn p(x)l ::S 2~ J: I4Y(n)(t)l dt . 

Proof: Differentiating the definition of qy( t) n times yields 

qy(n)(t) =in;_: xn p(x) eitx dx 

(120) 

(121) 

from which the Fourier integral theorem yields the first result. The second result 

then follows immediately by taking the absolute value. • 
Definition: The Frobenius norm of a general matrix G is defined as 

IIGII} = L9fj (122) 
ij 

Given this definition, it is trivial to show the useful fact that II Gil}= Tr(GGT). 

Proposition: Let x be a random vector with mean x and variance Cx and 

let A be a symmetric positive definite matrix with Cholesky decomposition RRT. 

Then 

E(xT Ax)= Tr(RTCxR) + xT Ax 
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and, in particular, 

(124) 

Proof: Consider first the case that x = 0. Then ExT x = l:j ExJ = Tr(Cx)· 

Then consider 

ExT Ax= E(x- x + x)TRRT(x- x + x) 

= E(x- x)TRRT(x- x) + E(x- x)TRRTx 

+ ExTRRT(x- x) + ExTRRTx 

Now observe that the random vector RT(x- x) has mean zero and variance 

RT CxR; then the first equality follows immediately. The second equality follows 

from the substitution A = I. • 
5.2 Definition 

We now consider the problem of computing the distribution of the norm of a Gaus­

sian random vector. 

This distribution can be viewed as a generalization of the well-known x2 dis­

tribution. A random variable Y is said to have a x2 distribution with v degrees of 

freedom if it can be written as 

(125) 

where the x j are independent, identically distributed Gaussian random variables 

with mean zero and unit variance. In the generalized x2 distribution, the Xj may 

have arbitrary means, variances, and covariances. 

More concisely, suppose that x is a Gaussian random vector with mean x and 

covariance Cx. Then the squared norm llxll 2 = l:j xJ will be said to have a gener­

alized x2 distnbution with parameters x and Cx. In symbols, llxll2 
f'V x2(x, Cx)· 

Some previously known distributions are special cases of the generalized x2 

distribution and will be discussed later. 

58 



Chapter 5. The Generalized Chi-squared Distribution 

5.2.1 Canonical Form 

We begin with a narrower canonical form of the generalized x2 distribution and 

show that it defines exactly the same class of distributions as the more general 

form above. 

Definition: Suppose that z j, j = 1, ... , v are independent normal random 

variables with respective means f..lj and variances o} > 0. Let f..LO be a real constant. 

Then the random variable 
v 

Y=J.L~+L:zJ (126) 
j=l 

has a generalized x2 distribution. (Note that the requirement that <7j -=/= 0 involves 

no loss of generality; any such terms can be gathered into the constant term f..L~.) 

The central and non-central x2 distributions with v degrees of freedom and 

noncentrality parameter f..L2 are obtained as special cases by setting f..LO = 0, f..ll = f..L, 

f..L2 = f..L3 = , · · = f..Lv = 0 and <7j = 1. The Rayleigh distribution with v degrees 

of freedom and variance <7
2 is obtained by setting f..LO = f..lj = 0 and <7j = <7. The 

computational algorithm described here will be applicable to these special cases 

but may or may not be more efficient than algorithms specific to the Rayleigh or 

non-central x2 distributions [20, 26, 73, 74, 82]. 

5.2.2 Characteristic Function 

There does not appear to be an explicit expression for the probability density 

function for the generalized x2 distribution. However, the characteristic function 

can be found and provides a method for numerically evaluating the probability 

density. 

We begin by developing the characteristic function for a single term ( v = 1). Let 

X be a normal random variable with mean f..l and variance <72 and define Y = X 2 . 

Then the cumulative distribution function for Y is 

Prob(Y:::; y) = Prob(X2 :::; y) = Prob( -Jy:::; X:::; Jy) 

= Prob (-v!Y- f..l < X- f..l < vfY- f..l) 
0 - (/ - (/ 

yY-Jl. 
= _1_ r 0 e-z2j2 dz 
~ 1~:/Y-J.I. 

0 
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Differentiating by Leibnitz' rule yields the density function 

p(y) = 1 [exp (- (y'Y- !1-)2) + exp (- (y'Y + !1-)2)] 
2a-..J2ifY 2a-2 2a-2 

The characteristic function is 

1/;(t) = E{eitY} 

= roo eity [exp (- (y'Y- !1-)2) + exp (- (y'Y + !1-)2)] dy 
J 0 2a-VErY 2a-2 2a-2 

Substituting y = x2 and simplifying, 

= 1 . roo exp (- (1 - 2ia-2t)x2- 2j1X + /1-2) dx 
a-v"f; lo 2a-2 

1 looo ( (1- 2ia-
2
t)x

2 + 2j1X + /1-2) d + exp - x 
a-v"f; 0 2a-2 

and applying formula 7 .4.2 of Abramowitz and Stegun [2], 

and since 

erfc(x) + erfc( -x) = 1- erf(x) + 1- erf( -x) 

= 2- erf(x) + erf(x) 

=2 ' 

we obtain the result 

( 
. 2t ) 1/;(t) = (1 - i2a-2t)-112 exp '/,~ 2 1 - '/,20" t 

(127) 

The moments of X and Y are conveniently computed via the characteristic 

function of X, 

yielding 

EX = <Px(O)/i = f.1 , 

E y = EX2 = <Px(O)/i2 = a-2 + /1-2 , 

E X 3 = <Px(O)ji3 = f.1(3a-2 + f.12) , and 

E y2 = EX4 = <P~(O)/i4 = 3a-4 + 6a-2/1-2 + !1-4 
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Furthermore, the variance of Y is 

Var(Y) = E(Y- EY)2 = EY2 - (EY)2 = EX4 - (EX2)2 

= 2o-2(o-2 + 2J.}) (129) 

Then for the general case of X j, j = 1, ... , v, independent and normally dis­

tributed with means f.lj and variances o-J, the random variable 

1/ 

Y = f.LB + I:xJ 
j=l 

must have the characteristic function 

the mean 

and the variance 

1/ 

E.Y = f.LB + I:co-J + f.LJ) 
j=l 

1/ 

VarY= L 2o-J(o-J + 2!-LJ) 
j=( 

(130) 

(131) 

(132) 

(133) 

Note also that the mimimum possible value of Y is f.LB· If v > 0, there is no upper 

bound. 

5.2.3 General Form 

The distribution of 11Yii2 for a Gaussian random vector y can be expressed in terms 

of the canonical x2 distribution developed above. Suppose that y is a Gaussian 

random vector with mean y and covariance matrix Cyy. Then the squared vector 

magnitude IIYII2 = yT y has a generalized x2 distribution. To see this, observe 

that the covariance matrix Cyy is positive semidefinite and can be written in the 

form Cyy = UDUT where U is orthogonal and Dis diagonal with non-negative 

elements. Define z = UT y. Then the mean of z is z = E z = uT y and the variance 

lS 

E(z- z)(z- z)T = EUT(y -y)(y- y)TU = UTCyyU = D 
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That is, the components Zj of z are independent Gaussian random variables with 

means J-lj = [UTy]j and variances a"] = D jj = [UT Cyy U]jj. (Remember that if 

any variances crJ are zero, the corresponding J-lj must be lumped into the constant 

J-LB of the canonical x2 distribution.) Then llzii2 = L:j z] has a generalized x2 

distribution. Furthermore, since U is orthogonal, 11Yii2 = IIUzjj 2 = llzii 2 has the 

same distribution. 

The mean and variance of 11Yii2 can also be written in matrix form as 
> 

E IIYII 2 = Tr(Cyy) + IIYII 2 (134) 

and 

(135) 

The expression forE jjyjj2 holds for any random vector y. To see that the expression 

for Var 11Yii 2 is valid, consider 

2Tr(Ch) + 4yTCyyY = 2Tr(UDUTUDUT) + 4yUDUTy 

= 2Tr(D2 ) + 4zTDz 

= 2 L crj + L 4J-L]crJ 
j j 

= Var llzll 2 = Var IIYII
2 

Now suppose that A is a symmetric positive definite matrix with Cholesky 

decomposition A= RRT and consider the distribution ofyT Ay = IIRT yjj 2. Since 

R T y is a linear combination of Gaussian random variables, it is Gaussian and must 

have mean RTy and variance RTCyyR. It follows that IIYT Ayjj 2 must have a 

generalized x2 distribution, or 

(136) 

5.2.4 Asymptotic Behavior 

We prove here the asymptotic properties of the characteristic function <P( t) and 

of the density p( x) which are essential to proving the convergence of the numer­

ical algorithm for p( x) proposed later. For convenience, only the case v > 4 is 

considered. 
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Lemma: For all real values oft, 

_!!:_ < ~ 'lj.l < 0 2 ( . 2t ) 
a-2 - 1 - i2o-2t - ' 

(137) 

from which it follows that 

e-JJ?ja-2 <I exp ( ip2t ) I< 1 
- 1- i2a-2t -

(138) 

In both inequalities, the upper limit is obtained at t · 0 and the lower limit at 

t = ±oo. 
Proof: Consider 

~ ( ip
2
t ) = ~ ( ( ip

2
t)(1 + i2a-

2
t) ) 

1- i2a-2t (1 - i2a-2t)(1 + i2a-2t) 

= ~ (ip2t - 2p2a-2t2) 
1 + 4a-4t2 

-2p2a-2t2 

- 1 + 4o-4t2 

The derivative of this last quantity is -4a-2 p2t / ( 1 + 4o-2 p2t2), which is negative for 

t positive, zero fort= 0, and positive fort negative. It follows that the maximum 

must occur at t = 0 and minima at t = ±oo. Substitution then yields the limiting 

values given above. • 
Lemma: For all real values oft, 

11- i2o-2tj-112 ::; j2a-2tj-112 (139) 

Proof: j1- i2a-2tj-112 = j1 + 4a-4t2j-1/4 ::; j4a-4t2j-1/4 = j2o-2tj-1/2 • 

Proposition: Let 4>( t) be the characteristic function of a generalized x2 vari­

able as given above. Then, for all real values oft, 

1</>(t)l ~ ( z-v/2 fJ ujl) ltl-v/2 

Proof: Consider 

lc/>(t)j = leif.l6tl· IT j1- i2a-Jtj-1/2. exp ( ipJt ) 
1 - i2o-J~t . 

j=l 
1/ 

:::: (1). II l2a-Jti-l/2 . (1) 
j=l 

(
2-v/2 tr o-jl) jtj-v/2 

J=l ( 
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Proposition: The probability density function p( X) for a generalized x2 vari­

able exists and is differentiable everywhere for v > 4. 

Proof: ( 1) For the existence of p( x) it suffices to show than 4>( t) is continuous 

on the real axis and that it is absolutely integrable. Continuity is obvious. For 

absolute integrability consider that 

;_: lc/>(t)i dt ~ 1: B iti-v/2 dt 

where B = 2-v/2 Tij aj1 , and that the latter integral exists and is finite whenever 

v > 2. 

( 2) For differentiability of p( x) consider its derivative 

IP'(x)l ~- itcf>(t)i dt 1 100 
27r -00 

~ 1: iti B iti-vj2dt 

= 1: B itil-v/2dt ' 

which converges whenever v > 4. • 
Remark: The case v ~ 4 should be accessible to a more sophisticated analysis. 

It appears that p( x) exists for all v > 0 and is continuous for v > 2. 

To determine the asymptotic behavior of the density p( x) it is convenient to 

start with the simple case v = 1, for which the characteristic function is 

For notational convenience, define the polynomials 

and 

~roposition: The nth derivative of 'l/;(t) can be written in the form 

'lj;(n)(t) = qn(g(t)/ f(t)) (f(t))-n-1/2 eg(t)/f(t) 

where qn ( s) is the polynomial of degree n or less defined by the recursion 

qo(s) = 1 and 

qn+l(s) = q~(s)(i;.t2 + i2a2s) + qn(s)(i;.t2 - (n + ~) + i2a2s) 

64 

(141) 

(142) 

(143) 

(144) 



Chapter 5. The Generalized Chi-squared Distribution 

Furthermore, suppose that qn(s) = 'L,"J=o qnj si. Then 

l'!f(n)(t)l < Qn 11- i2a2tl-n-1/ 2 ::S Qn l2a2tl-n-1/ 2 , (145) 

where 

Qn = t lqnjl u:s 
]=0 

(146) 

Proof: (1) We consider first the claim that 1f(n)(t) can be written in the given 

form. The formula qo = 1 follo~s immediately from the equation '!f(0)(t) = '!f(t). 

For the general case we proceed by induction. Assume that 

Then differentiation yields 

'!f(n+1f= [q~(ip;2 + i2a2(g/J) + qn(ip;2- (n + ~)+ i2a2(g/f))] f-n-3/2 egff 

= qn+1(gjf)J-(n+1)-1/2 egff , 

as required, given the definition 

(2) For the first bound, observe that 

I 
g(t) I I ip;2t I ( p;4t2 ) 1/2 p;2 
f(t) = 1- i2a2t = 1 + 4a4t2 < 2a2 

Since lg/fl is bounded and qn(s) is a polynomial, the polynomial qn(gjf) must also 

be bounded, with the bound Qn as defined above. Now recall that the factor legffl 

is bounded by 1. Then the bound on 1f(n) follows immediately. The second form 

of the bound follows from the previous lemma that 11 - i2a2t 1-112 < l2a2t 1-1/ 2. • 

The first few values for qn and Qn can be easily computed and are: 

q0(s) = 1 

q1(s) = ip;2 - ~ + i2a2s 

q2(s) = i- 2a2 p;2 - p;4 - i2p;2 + s( -4a4 - 2a2 p;2 - ia2)- s 2 4a4 

Qo(p;,a)=1 

Q1(p;,a) = (! + p;4)1/2 + p;4 

(147a) 

(147b) 

(147c) 

(148a) 

(148b )/ 

[ ] 
1/2 [ ] 1/4 Q2(J.L, a) = (i- 2a2 p;2- p;2)2 + 4p;4 + (2a2 + p;2)2 +! p;2 + p;~148c) 
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Proposition: Let ¢( t) be the characteristic function of a generalized x2 ran­

dom variable. Then 

where 

11 ( 2 ) ( 4 2)-1-v/4 1¢ (t)l < vQ2max + v(v- 1)Qlmax 1 + 4o-mint 

Q2max = m:x Q2(1-Lb o-k) , 

Q1max = mfX Q1 (J.Lb o-k) , and 

O"min = rmn O"k • 
k 

Proof: The characteristic function can be written in the form 
/.1 

¢(t) = II vYk(t) , 
k=l 

where 

Differentiating twice yields 

<~>" = LvYZ II vYc+ LLvYkvY~ II vYm , 
k C k C m 

(149) 

(150a) 

(150b) 

(150c) 

where k ranges over 1, 2, ... , v, R. covers the same range but omits k, and m covers 

the same range but omits both k and R.. Furthermore, 

1¢"1 < L IV;%1 II lvYcl + L L IV;k V;£1 II lvYml 
k C k C m 

< L Q2k l!kl-512 II l!el-112 

k c 
+ L L Qlk Qu lfkl-312 1fel-312 II lfml-1

/
2 

, 
k e m 

where Qnk = Qn(J.Lk,o-k) and fk = (1- i2o-ft). Now observe that for a< 0, 

lfkl-a = 11- i2o-ftl-a :S 11 - i2o-~int1-a 

Then it follows that 

1¢"1 < vQ2max 11- i20"~int1-2-vf2 + v(v -l)Qimax 11- i2CI~int1-2-v/2 

= (vQ2max + v(v- 1)Qimax) 11- i2o-~int1-2-vf2 

= (vQ2max + v(v- 1)Qimax) (1 + 4o-~int2)- 1 -v/4 
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Proposition: Let p( X) be the probability density for a generalized x2 variable. 

Then for all values of x, 

·0 ~ p(x) ~ Ax-2 (151) 

where the real constant A has the value 

vQ2max + v(v- 1)Qrmax r(v/4 + ~) 
A- ·----=-

- 4y0fa2. r(v/4 + 1) mm . 
(152) 

Proof: Since p( x) is a probability density it is necessarily non-negative. For the 

upper limit it suffices to show that lx2 p(x)l ~A. Now consider 

!x2 p(x )I < - I<P" (t)l dt 1 100 
2rr _00 

~ _!_(l{Q2max + v(v -1)Qfmax) 100 
(1 + 4a~int2)-l-v/4 dt 

2rr -oo 

1 2 y0r r(v/4 + ~) 
= 2rr (vQ2max + v(v -1)Qlmax). 2a2. . r(v/4 + 1) 

mm 
vQ2max + v(v- 1)Qrmax r(v/4 + ~) - . -A 

- 4 !Jia2' r(v/4 + 1) -Y" mm 

where the integral has been evaluated by formula 615 in Beyer [10). • 
5.3 Numerical Algorithm 

The preceeding section has developed an explicit form for the characteristic function 

of the generalized x2 distribution, but there does not appear to be any explicit 

form for the density itself. In this section we consider the problem of numerically 

computing that density using the fast Fourier transform (FFT). 

The problem can be stated in more general form as follows: Supposing that 

we know an explicit form for the Fourier transform F(u) of a real continuous-time 

function f(x), how can f(x) be computed? 

Provided that both F( u) and J( x) are smooth and decay rapidly, it should be 

possible to to estimate f(x) by evaluating F(u) at some finite number of points, 

taking the inverse FFT to obtain f( x) at some finite number of points, and inter­

polating the result to yield an estimate of f(x ). Since F( u) is evaluated only at a 

finite number of discrete points, the estimated f ( x) will be distorted by sampling 

and truncation errors. 
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This approach to computing probability distributions is only sparsely repre­

sented in the literature. Bohman [11] briefly describes an FFT method for proba­

bility density functions but does not address the errors introduced by sampling and 

truncation. Belov and Galkin [9] describe a similar method for computing the com­

pound Poisson distribution; they estimate the accuracy in the specific cases that 

they compute but do not address the general case. Mrundonald [52] and Thisted [98] 

mention the FFT only in the context of time series analysis; they do not discuss 

any application to the computation of probability distribution functions. Several 

other authors have applied the FFT to the calculation of discrete distributions; see, 

for example, Abate and Whitt [1], Cavers [16], Drugle [24], and Griibel [39]. 

The use of the FFT to approximate the continuous Fourier transform is com­

monplace in the practice of digital signal processing but an error analysis is rarely 

done. The estimation of a probability density function is equivalent to the problem 

of estimating the spectrum of a non-time-limited signal given only a finite number 

of samples. Cooley et al. [21] describe the use of the FFT to compute Fourier 

integrals and analyze the error as a sum of aliasing (or sampling) and truncation 

errors; they do not, however, give explicit error bounds. 

5.3.1 CFT /DFT Correspondence 

We begin with the following theorem which gives conditions under which the con­

tinuous and discrete Fourier transforms (CFT and DFT) are equivalent. Cooley et 

al. [21, Theorem 1] give a different correspondence theorem. 

Theorem (CFT/DFT Correspondence): Suppose that F(u) is a spectrum 

which has been sampled and truncated so that it can be written in the form 

(N/2)-1 

F(u)= L F(k/T)8(u-k/T) (153) 
k=-(N/2)+1 

Then the N- 1 values F( -(N /2) + 1 ), ... , F( (N /2)- 1) suffice to define F( u) and 

the corresponding signal (via the continuous Fourier transform) is 

(N/2)-1 

f(x) = L F(k/T) ej27rkx/T (154) 
k=-(N/2)+1 
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Now letT= T/N and define the discrete-time function 

f[n] = f(nT) for n = 0, ... , N - 1 , (155) 

and the discrete-frequency spectrum 

{ 

F(k/T) k = 0, ... , (N/2) -1 
F[k] = 0 k = N/2 

F((k- N)/T) k = (N/2) + 1, ... ,N -1 
(156) 

Then f[n] and F[k] are related through the discrete Fourier transform 

N-1 
f[n] = L F[k] ej2Trkn/N ' (157) 

k=O 

and f ( x) and f[ n] are related by the band-limited interpolation 

N-1 . 
f(x) = L f[n] sm1r~N -1)(x- nT)/T . 

n=O sm 1r(x- nT )/T 
(158) 

Proof: (1) To see the connection between f[n] and F[k], consider 

f[n] = f(nT) = [ (NE-1 F(k/T) ej2Trxk/T] 

k=-(N/2)+1 x=nT/N 

(N/2)-1 
L F(k/T) ej2Trnk/N 

k=-(N/2)+1 

N/2-1 -1 
= L F(k/T) ej2Trnk/N + L F(k/T) ej2Trnk/N . 

k=O k=-(N/2)+1 

Substituting k' = k + N or k = k'- N in the last summation yields, after using 

the fact that e-j21rnNjN = 1 for all integer n, 

N/2-1 N-1 
f[n] = L F(k/T) ej2Trnk/N + L F((k'- N)/T) ej2Trnk' /N ' 

k=O k'=(N/2)+1 

and since F[N/2]ei2rrn(N/2)/N = 0. ej2Trn(N/2)/N = 0, 

N-1 
f[n] = L F[k] ej2Trnk/N 

k=O 
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(2) To see the connection between f(x) and f[n], note first that F[k] is given 

by the inverse discrete Fourier transform of f[n], or 

N-1 
F[k] = L f[n] e-j2Trkn/N 

n=O 

Then consider 

(N/2)-1 
f(x) = L F[k] ej2TrkxjT 

k=-(N/2)+1 

(N£:-
1 [~1 

f[n] e-j2Trkn/N] ej2Trkx/T 

k=-(N/2)+1 n=O 

~ f[n] [ (N£:-
1 

e-j2Trkn/N ej2Trkx/T] 

n=O k=-(N/2)+1 

~1 
f[n] [ (N£:-l ( .,.i2•(x-nr)/T) k] 

n=O k=-(N/2)+1 

N -1 [ ( ej2Tr(x-nr)JT) (N -
1
)/

2 
_ ( ej2Tr(x-nr)fT) -(N -

1
)/

2
] 

L f[n] 1/2 -1/2 
n=O ( ei2Tr(x-nr)fT) _ ( ei2Tr(x-nr)fT) 

= ~1 
f[n] [sin 1r(N- 1)(x- nr)/Tl 

n=O sin 1r(x- nr)/T 

5.3.2 The Algorithm 

• 

In the general case, sampling and truncating F( u) to meet the conditions of this 

theorem will introduce errors in the computation of f(x). Truncating F(u) corre­

sponds to lowpass filtering f ( x), so provided that both F( u) and f ( x) are reasonably 

smooth and decay rapidly, it should be possible to use the following algorithm to 

estimate f ( x). 

1. Choose a value T which sets the range of x over which f( x) is to be computed 

and a value N which sets the number of points at which f(x) is to be computed. 

For efficiency, N should be a power of two. 

2. Compute theN- 1 values F(k/T) fork= -(N/2) + 1, ... , (N/2)- 1 and 

append a zero value to get exactly N values. Note that when f(x) is real, F(u) 
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has Hermitian symmetry and that in fact only N /2 distinct values actually must 

be computed. 

3. Take the inverse FFT of these N values to obtain the N values f(n) for 

n = 0, ... ,N -1. 

4. These values define the points f(nT/N) of the function f(x). If desired, 

interpolate these data to obtain f as a continuous function. 

The interesting question now, is whether or not this procedure converges to the 

correct answer as N and T increase, and what the error bounds might be for a 

specified N and T. 

5.3.3 Error Bounds 

This section gives error bounds for the algorithm and states conditions under which 

the algorithm will converge as N and T increase toward infinity. Cooley at al. [2~] 

discuss the sources of error but do not give explicit error bounds. Condition (1) 

of the following theorem is imposed because we require an error bound for a non­

negative random variable; it could be replaced by a condition similar to (2) for a 

general real random variable. Condition (2) requires that f(x) is "almost" time­

limited in the sense that its tails decay rapidly enough that they can be ignored for 

N and T large enough; this allows us to bound the sampling error introduced by 

evaluating F( u) only at discrete points. Condition (3) requires that f( x) is "almost" 

band-limited in the sense that the tails of its spectrum F( u) decay rapidly enough 

that they can be ignored; this allows us to bound the truncation error introduced 

by considering F( u) over only a finite interval. 

Theorem (Error Bounds): Let f(x) be a function and F(u) its Fourier 

transform and suppose that there exist constants A, B, a > 1, and (3 > 1/2 such 

that 

( 1) f ( x) = 0 for all x < 0; 

(2) Jf(x)J < AJxJ-a for all x > T; and 

(3) JF(u)J < BJuJ-,8 for allJuJ > N/2. 
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Let h ( x) be the approximation to f ( x) computed by the procedure given above. 

Then the approximation error defined by 

[ 

T ]1/2 
llf- hll = fo lf(x)- f2(x)l 2 dx (159) 

is bounded by 

A a B r/3+1/2 ( 2 ) /3-1/2 
11!-hll < ro:-1/2. a-1 + ..j/3-1/2 N-2 

(160) 

Proof: The diagram below summarizes the connections among F( u), h ( x), and 

f( x). The abbreviations are ICFT = inverse continuous Fourier transform; IFS = 

inverse Fourier series; IDFT = inverse discrete Fourier transform. To periodify a 

signal is to convolve it with an infinite sequence of impulses (the "comb" function). 

F(u) sample 

liCFT 

f ( x) periodify 

truncate· 

lowpass interpolate 

F2[k] 

liDFT 

h[k] 

The claim that h(x) is is obtained from h[k] by interpolation is justified by 

the correspondence theorem just proven. Now since II ·II is a norm, we have that 

II!- hll ::; II!- fi II+ llfl - hll 

and it suffices to evaluate each of the error terms llf - fi II and llfl - h II· 
(1) For the first term, consider 

II!- fi 11 2 =loT lf(x)- fl(x)l 2 dx 

lo
T oo 

= .. lf(x)- Lf(x +£T)I2 dx 
0 £=0 
T oo 2 

= [ Lf(x +RT) dx 
lo £=1 

~ fl~lf(x+fT)r dx 
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But given that a > 1, 
00 00 

:Le-a= 1 +:Le-a 
.e=l .e=2 

< 1 + 1oo e-a da 

= 1 + [-1-el-a] oo 
1- a 1 

a -1 

and so it follows that 

llf- II 112 ::s; A2Tl-2a [-a-] 2 
a-1 

That is, the error term II!- II II can be reduced below any given value by choosing 

T large enough, provided that 1- 2a < 0, which is always true if a> 1. 

(2) For the second error term, consider 

IIII - 12112 =loT III - 1212 
dx 

' 00 

= T L IFI[k]- F2[k]l2 by Parseval's theorem 

k=-oo 
= T :2: IF1[k]l2 since F1[k] = F2[k] for lkl < N/2 

lki~N/2 

= T :2: IF(k/T)I2 by definition of F1 
lki~N/2 

< T L B2 1k/TI-2~ 
lki~N/2 

00 

= 2B2T1+2~ L k-2~ ' 

k=N/2 

where the series converges provided that j3 > 1/2, 
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::; 2B2T 1+2/3 foo k-2/3 dk , 
j(N/2)-1 , 

= 2B2T1+2/3 [ 1 (N- 2) 1-2/3] 
2(3- 1 2 

= 2B2 T1+2/3 (N- 2)1-2/3 
2(3 -1 2 

which, provided that (3 > 1/2, converges to zero for any fixed T as N -too. • 

and 

Corollary: For any € > 0, choosing 

T > ( AaE ) 2/(2a-l) 
2(a -1) 

N > 2 + 2 BE T/3+1/2 
( ) 

2/(2/3-1) 

2J(3 -1/2 

is sufficient to guarantee that 

[ 

T ]1/2 
II!- 1211 = ~ lf(x)- f2(x)l 2 

dx < € 

(161) 

(162) 

(163) 

Proof: It suffices to require that II!- f1 II < E/2 and\ llfl - !211 < E/2. Simple 

algebra then yields the claimed results. • 
Proposition: The algorithm given above converges for the generalized x2 dis­

tribution with v > 4. The parameters that appear in the error bound have the 

values 

vQ2max + v(v -1)Qrmax r(v/4 + ~) 
A= ·----=-

4vhfo-~in r(v/4 + 1) 
a=2 

B = 2-v 'lf-v/2 (fi o-j1) 
J=1 

(3 = v/2 

(164a) 

(164b) 

(164c) 

(164d) 

Proof: The first two results follow immediately substituting the asymptotic 

limits for the generalized x2 distribution in the error bounds just derived. For B 

74 



Chapter 5. The Generalized Chi-squared Distribution 

and (3, it is necessary to restate the asymptotic limit of the characteristic function 

in terms of the Fourier transform by making the substitution t = - 2?Tu to obtain 

or 

for B and (3 defined as above. • 
Given the generalized x? distribution, we now have the tools to statistically 

characterize thereconstruction quality; this will be the subject of the next chapter. 
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Chapter 6 
Reconstruction Quality 

There are various ways in which a reconstruction can be "good." First, the recon­

structed source distribution can closely match the true source distribution. That is, 

the reconstruction error e = q - q can be close to zero. Second, the reconstructed 

fields can closely match the measured fields. That is, the measurement residual 

r = b- Fq can be close to zero. Third, the reconstruCted source distribution can 

closely match the assumed priors. That is, the quantity q can be close to zero, 

which is the assumed mean of the prior source distribution. Each of these qual­

ity measures is a vector quantity and may be reduced to a scalar by taking some 

appropriate vector norm. 

The purpose of this chapter is to characterize the meaning and statistical dis­

tribution of each of these measures and their norms. In the general case, only the 

means and covariances of q and w are known and it is possible to determine only 

the means and variances of the quality measures and the means of their norms. But 

if q and w are assumed to be jointly Gaussian, then these quality measures follow 

a generalized x2 distribution. 

6.1 Reconstruction Error 

:rhe reconstruction error e = q - q measures how closely the reconstructed current 

distribution q matches the true current distribution q. Although it is not possible 

to compute e in a real reconstruction problem (since it depends on the unknown 

true distribution q), it is possible to compute the statistical distribution of e, which 

is a useful metric for the quality of a reconstruction algorithm. 
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The mean and variance of e may be computed in straightforward fashion from 

its definition. The mean is 

E e = E( q - q) = E( q - H(Fq + w)) = 0 

The variance is 

Var(e) = E(q- Hb)(q- Hb)T 

= EqqT- Eq(Hb)T- EHbqT + EHbbTH , 

and since EqbT = Eq(Fq + w)T =AFT+ r, 

Var(e) =A- (AFT+ r)H- HT(AFT + r)T 

+H(FAFT +Fr+rTFT +:E)HT 

= (I - HF)A(I - HF)T + H:EHT 

- (I - HF)rHT - HrT (I - HF)T 

If H is the OCLIM estimator, then the variance simplifies to 

(165) 

(166) 

In the common case that r = 0, the error variance for OCLIM reduces further to 

Var(e) =A- AFT(FAFT + :E)-1FA 

= (A -1 + FT:E-1F)-1 (168) 

The mean squared norm 772 = E llell 2 of the reconstruction error is the quality 

metric optimized by both the OCLIM and OWPIM estimators. Its value is simply 

ry2 = Tr(Var( e)) (169) 

For the weighted pseudoinverse with coaxial priors, the mean square error ry2 can 

also be computed via equation ( 65). 

6.2 Gaussian Priors and Confidence Limits 

In the case of Gaussian priors, it is possible to say a little more about the distri­

butions of e and llell 2 . Note first that e = q- HFq- Hw is a linear combination 

77 



Chapter 6. Reconstruction Quality 

of Gaussian random vectors and so e must also be Gaussian with the mean and 

variance derived above. Furthermore, the squared norm llell2 must be generalized 

x2 with parameters 0 and Var(e), or, in symbols 

(170) 

Given the distribution of e, it is also possible to establish confidence limits on 

the reconstructed source amplitude q. For a given measurement data set p, the· 

expected reconstruction error is 

E( e I b) = E( q - Hb I b) = E( q I b) - Hb 

= (AFT+ r)(FAFT + Fr + rTFT + :E)-1 b- Hb 

= ((AFT+ r)(FAFT + Fr + rTFT + :E)-1 - H) b (171) 

If His the OCLIM estimator, then E(e I b)= 0. Thus, OCLIM has no systematic 

error but all other estimators do (unless they happen to coincide with the OCLIM 

estimator). 

Now for any given b, q = Hb is a constant and so the variance of the recon­

struction error is 

A 
6 

Var( e I b) = Var( q - q I b) = Var( q I b) 

=A- (AFT+ r)(FAFT + Fr + rTFT + :E)-1(FA + rT) (172) 

which is also the a posteriori variance of q given b. Using the Cholesky decompo­

sition 

(173) 

we obtain a form which is convenient for computation 

(174) 

If the noise is uncorrelated with the sources, then r = 0 and the error variance 

becomes 

A= A- AFT(FAFT + :E)-1FA 

=A- (L -lFA)T(L -lFA) 
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using the Cholesky decomposition 

(176) 

Note that in either case the error variance does not depend on the actual measure­

ments b and thus can be computed in advance. 

Each diagonal entry a~n of A is the error variance of the corresponding estimate 

qn; hence each qn has a standard (1o-) error equal to Gnn and the 90% confidence 

limits are qn ± 1.645 Gnn· 

6.3 Measurement Residual 

The measurement residual r = b - Fq measures how closely the reconstruction 

matches the measured fields. It depends only on known qualities and thus can be 

computed in a real reconstruction problem. If the residual is large, there may be 

some reason to doubt that the source model and reconstruction are adequate to 

explain the meaured fields. This section discusses the statistical distribution of the 

residual. The residual can be written in the form 

r =(I- FH)b (177) 

from which it is obvious that it has mean value 

E( r) = (I - FH) E b = 0 (178) 

and variance 

Var(r) =(I- FH) E bbT(I- FH)T 

= (I- FH)(FAFT + Fr + rTFT + :E)(I- FH)T (179) 

For the OCLIM estimator with r = 0 we have 

I- FH =I- FAFT (FAFT + :E)-1 = :E(FAFT + :E)-1 (180) 

and the variance simplifies to 

Var(r) = :E(FAFT + :E)-1:E 

= (L-1:E)T(L-1:E) 
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The appropriate norm for r should account for variations in noise or measure­

ment accuracy between different detectors. The natural choice is 

X2 = (b- F<l)T:E-1(b- Fq) 

= bT(I- FH)T:E-1(I- FH)b (182) 

which is also the traditional x2 statistic of linear regression. 

The mean squared norm E x2 of the residual reveals how closely a reconstruction 

matches the given measurements on average and is useful as a figure of merit for a 

reconstruction filter H. It depends only on the mean and variance of rand can be 

computed as 

Ex2 = EbT(I- FH)T:E-1(I- FH)b 

= EbT(I- FH)Ts-Ts-1(I- FH)b 

= E IIS-1(I- FH)bll2 

= Tr(S-1(I- FH)B(I- FH)Ts-T) 

= Tr((S-1(I- FH)L)(S-1(I- FH)L)T) 

= IIS-1(I- FH)LII} . 

For the weighted or truncated pseudoinverse, 

M 

I- FH = L(l- ck)ukuf , 
k=1 

which yields the form 

M 
2 

Ex2 = 2:::(1- ck)(s-1uk)(LT uk)T 
k=1 F 

For the OCLIM estimator with r = 0, observe that 

I- FH =I- FAFT(FAFT + :E)-1 

= :E(FAFT + :E)-1 

= SSTL-TL-1 
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It then follows that 

(187) 

In the case of Gaussian priors, it is possible to determine also the distribution 

of r and x2. Since r is a weighted sum of Gaussian random vectors, it is also a 

Gaussian random vector with the mean and variance given above. Furthermore, 

x2 = rT:E-1 r must have a generalized x2 distribution with parameters 0 and 

s-1 Var(r) s-T. In symbols, 

For the OCLIM estimator with r = 0, this simplifies to 

. 
x2 r-v x2(o, (L -1s)r (L -1s)) (189) 

6.4 Surprise 

The solution q = Hb is also a random vector for which the mean and variance can 

be computed. The mean is 

E(q) = E(Hb) = 0 (190) 

and the variance is 

Var( q) = Var(Hb) = H(FAFT + Fr + rTFT + :E)HT (191) 

For the OCLIM estimator, the variance simplifies to 

or, if r = 0, 

The natural norm for q is 

p2 = q_T A -1q_ = IIR-14112 ' 
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which is weighted to reflect the a priori uncertainty in the source amplitudes and 

is thus a measure of the goodness of fit between the reconstucted source distribu­

tion and the a prior current distribution. Since p2 increases as the reconstruction 

becomes less likely relative to the priors, it will be ·called the "surprise." The 

mean surprise E p2 indicates to what extent the reconstruction filter uses the prior 

information rather than the given measurements; it has the value 

Ep2 = E IIR-1Hbll2 

= Tr(R-1HBHTR-T) 

= Tr((R-1HL)(R-1HL)T) 

= II(R-1HL)II} 

For the OCLIM estimator with r = 0, the mean surprise simplifies to 

For the weighted pseudoinverse, the mean surprise simplifies to 

K 

L ck~kl(R-lvk)(LT uk)T 

k=l F 

(195) 

(196) 

(197) 

In the case of Gaussian priors, it is also possible to determine the distributions 

of q and p2. Since q is a weighted sum of Gaussian random vectors, it is also a 

Gaussian random vector with the mean and variance given above. Furthermore, 

p2 = qA -l q must be distributed as a generalized x2 random variable, or 

(198) 

For the OCLIM estimator with r = 0, the distribution simplifies further to 

(199) 
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Chapter 7 
Inverse Methods Compared 

This chapter compares the inverse methods discussed in the previous chapters using 

a Monte Carlo simulation. 

7.1 Algorithms for Numerical Linear Algebra 

Much research effort has been devoted to the efficient computer implementation 

of operations in linear algebra. The following three paragraphs briefly summarize 

the most useful results for the present purpose; more extensive discussions may be 

found in Golub [38) or another textbook on numerical linear algebra. Many of these 

algorithms are available in the LAPACK and BLAS libraries [4], which are written 

in FORTRAN 77; these two libraries were used to implement OCLIM. 

The operations of computing the product of a matrix and a vector, the product 

of two matrices, the sum or difference of two matrices or vectors, and the product of 

a scalar and a vector or matrix can all be implemented in the obvious fashion from 

their definitions. A product of the form y = AT x can be directly implemented 

as Yi = :Ej AjiXj without explicitly computing the transpose; similarly, products 

such as XTX and AFT can be done directly. 

The operation of solving the linear system Ay = x for given A and x benefits 

from a less direct approach. If A is symmetric and positive definite (which holds 

for all the linear systems considered in this dissertation), it has a Cholesky decom­

position A= RRT where R is lower triangular. Efficient algorithms for computing 

the Cholesky decomposition are known and may be found in any textbook on nu­

merical linear algebra. Furthermore, there are efficient algorithms, known as back 
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substitution and forward substitution, for computing expressions of the form A - 1 x, 

R-1x, and R-1s once the Cholesky decomposition is known. 

The operations of computing the norm of a vector arid the Frobenius norm of 

a matrix can also be implemented in the obvious fashion from their definitions and 

are included in BLAS. Computing the trace of a matrix is not included but can be 

done trivially from the definition. 

7.2 Computational Algorithms for OCLIM 

The implementation of OCLIM breaks into two parts: a setup or initialization 

which is independent of the measured values b and can be done in advance, and 

the computation of the estimate q for one or more measurement vectors b. Only 

the case r = 0 is considered here; that is, the noise is assumed to be uncorrelated 

with the sources. This section describes the computational algorithm actually used 

for these simulations; Section 11.1 describes an improved algorithm. 

7 .2.1 Initialization 

Initialization includes the following steps. The values ofF, A, and :E are required 

as inputs. Operation counts are given only for the more expensive steps; a flop is a 

floating point operation such as the addition or multiplication of two~floating point 

numbers. 

1.0 Compute the matrix F using equation (26) or (29) in O(MN) flops. Al­

ternatively, compute the elements of F via equation (30) using a detailed finite 

element model as discussed in Chapter 2; this approach incorporates realistic body 

geometry and volume currents but is not used in this chapter. 

1.1 Compute and save the product FA for later use. This requires O(MN2) 

flops. 

1.2 Compute the matrix B = F AFT + :E by direct matrix multiplication and 

addition in O(MN2) flops. Compute and save Tr(FAFT). 

1.3 Compute the Cholesky decomposition LLT of Bin O(M3) flops. 

1.4 Compute X= L - 1 FA by back substitution in O(M3) flops. 
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1.5 Compute A= A- xTx directly in O(N3) flops. The diagonal entries &~n 

of A are the squares of the standard errors for the corresponding estimates fl.n. 
1.6 Compute the mean reconstruction error ry2 = Tr(A). 

1.7 Compute the Cholesky decomposition ssT of the matrix :E in O(M3) flops. 

1.8 Compute E x2 = IIL:-1SII} in O(M3) flops. 

1.9 Compute the signal-to-noise power ratio SNR = Tr(FAFT)/ Tr(:E). 

The values ofF, L, S, and FA must be saved for use in inverting particular 

data sets. The values of A, ry2, E x 2, and SNR provide information to help the user 

interpret the reconstruction results. The total cost is O(M3) + O(N3) flops; some 

minor improvements are possible if A and :E are diagonal. 

7 .2.2 Reconstruction 

Computing the estimate for each input b includes: 

2.1 Compute p = L -TL -l b by back substitution in O(M2) flops. 

2.2 Compute the solution q = (FA)T pin O(MN) flops. 

2.3 Compute the residual r = b- Fq in O(MN) flops. 

2.4 Compute x2 = IIS-1rll 2 in O(M2 ) flops. 

The value of q is the desired reconstruction. The values of r and x2 are in­

tended to provide insight into the quality of the reconstruction. The total cost per 

reconstruction is O(M2 ) + O(MN) flops. 

7.3 Methods 

The four reconstruction methods discussed in Chapter 4 have been implemented in 

FORTRAN 77 for noise uncorrelated with sources (r = 0) and independent priors 

(A and :E diagonal). The LAPACK and BLAS libraries [4] were used for linear 

algebra computations. All computations were done in double precision. 

More specifically, the methods implemented were the minimum-norm least 

squares method (MNLS) as defined by equation (59), with the threshold set to 10-10 

times the largest singular value; the optimally truncated pseudoinverse method 

(OTPIM) defined by equation (68); the optimally weighted pseudoinverse method 

(OWPIM) defined by equation (61) and using the weights defined by equation (66); 
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and the optimal constrained linear inverse method ( OCLIM) defined by equation 

(74). 

This computer implementation was used in a Monte Carlo simulation to verify 

the theoretical results of Chapter 4. Three different geometrical configurations 

were tested, each at five different signal-to-noise ratios. All sources were modelled 

as current dipoles. 

Figure 7.1 shows one of the test configurations. The sources are arranged in a 4 

x 4 cm2 planar array perpendicular to the detector plane, and centered below that 

plane with its nearest edge 1 em away. The source plane contains an 8 x 8 array of 

current dipoles directed perpendicular to the plane. For non-uniform priors, the 28 

sources in the central cruciform region are assigned a source variance a~= 1.0; the 

remaining sources are assigned a different source variance a1 = 0.01. For uniform 

priors, all 64 sources are assigned the same source variance a 2 = 1. 

Figure 7.2 shows the detector array, which has a 12 x 12 cm2 planar array of 

144 detectors arranged in a 12 x 12 grid. Each detector measures the magnetic 

field perpendicular to the plane of the array. Noise amplitudes taken from indepen­

dent normal distributions with mean zero and variance a-2 are added to each field 

measurement. 

This test configuration does not accurately model any real magnetometer or 

clinical application; it is intended to provide a fair comparison of the methods but 

not to demonstrate the results possible in any particular application. 

7.4 Simulation Results 

As was mentioned in Section 4.1, the choice of threshold in the truncated pseu­

doinverse can have a dramatic effect on the reconstruction error. Figure 7.3 shows 

the reconstruction error ry2 with uniform priors for a truncated pseudoinverse as a 

function of the signal-to-noise ratio and smallest singular value retained (denoted 

>-min)· Curves are shown for SNR = 127 dB (leftmost), 87 dB, 47 dB, and 7 dB 

(rightmost); the corresponding noise variances are a-2 = 1o-20, w-16, 10-12, and 

10-8. The error rises sharply as Amin is decreased below the optimal value a/ a; 

thus it is generally better to retain too few terms than too many. 
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Figure 7.1 A simple test configuration. The source plane is perpendicular to the 
detector plane and contains 64 dipoles perpendicular to the source plane. In the case 
of uniform priors, all dipoles have the same expected power. In the case of non-uniform 
priors, the dipoles in region A have higher expected power. 

Table 1 shmys the theoretical and experimental results for the test configuration 

with uniform priors (a~= a~) as the SNR varies from 128 to -32 dB. Note that 

the theoretical and experimental values all agree within 2 standard errors. 

As predicted, OCLIM and OWPIM show identical results for uniform priors. 

OTPIM typically has slightly larger values of ry2 , E x 2 , and E p2 than either. MNLS 
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Figure 7.2 Detector grid. The detector grid contains a 12 by 12 array of sensors 

that sample the field perpendicular to the array. All sensors have the same prior noise 
vanance. 

has better E x2 values than any of the other methods but its error is orders of 

magnitude worse. The mean error ry2 and mean residual E x 2 both increase as the 

noise increases; the mean surprise E p2 decreases. 

Table 2 shows the theoretical and experimental results for the test configuration 

with non-uniform priors (a~ =/= a~) as the SNR varies from -37 dB to 123 dB (and 

noise variance <7
2 from 10-20 to w-4). The theoretical and experimental values 

again agree within 2 standard errors. Most of the other observations on Table 1 

remain true. The big change is that OC~IM now has a smaller mean error ry2 than 

any of the other methods. The difference is largest when the noise is small and 

decreases to insignificance when the noise is large enough. 

Figure 7.4 shows the reconstruction error from Table 2. The MNLS method 

is much worse than the other three,· with reconstruction error orders of magnitude 

larger than the true solution. 

Figure 7.5 shows the reconstruction error for OTPIM, OWPIM, and OCLIM 

only. The optimally truncated and weighted pseudoinverses give similar results, 
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Figure 7.3 Reconstruction error for a truncated pseudoinverse. The reconstruction 
error ry2 is plotted as a function of the smallest singular value Amin retained in the 
truncated pseudoinverse, for the test configuration with uniform priors. The four curves 
are for SNR = 127 dB (leftmost), 87 dB, 47 dB, and 7 dB (rightmost), with corresponding 
noise variances o-2 = lo-20, w-16, lo-12, and w-8 . The source variance is a 2 = 1.0 
for all sources and all curves. The horizontal dashed line shows the a priori error I: a 2, 
which is the error obtained by setting all source estimates to zero. 

with OWPIM slightly better. OCLIM is definitely better than either, with the 

difference increasing as the SNR increases. 

Figure 7.6 shows the mean residual E x2 for all four methods under the same 

conditions. MNLS has the smallest residual, which is independent of the SNR. The 

other three methods have a moderately larger residual which decreases as the SNR 

increases; differences among OTPIM, OWPIM, and OCLIM are slight. 

Uniform priors give similar results, except that OCLIM and OWPIM become 

identical in this case. 

Note that the knowledge of approximate source and noise amplitudes provided 

by the priors has allowed OCLIM, OWPIM, and OTPIM to generate much better 
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Table 1. This table shows how the reconstruction quality varies with noise level when the four 
different methods are used on the test configuration with uniform priors. 

OCLIM OWPIM OTPIM MNLS 

Configuration 1 with cr2 = 1.000 x 10-20 , a~ = 1.000, a~ = 1.000, SN R = 127.5 db, and 10000 
data sets: 

r.P theo 18.193 18.194 19.543 2.417 X 105 

expr 18.157 ± 0.059 18.157 ± 0.059 19.533 ± 0.062 (2.391 ± 0.021) X 105 

Ex
2 theo 98.187 98.191 99.144 84.999 

expr 98.012 ± 0.140 98.006± 0.140 98.986± 0.143 84.797± 0.130 

Ep2 theo 45.807 45.806 47.543 2.417 X 105 

expr 45.919 ± 0.094 45.918 ± 0.094 47.636± 0.099 (2.391 ± 0.021) X 105 

Configuration 1 with cr2 = 1.000 X 10-16, 0'~ = 1.000, 0'~ = 1.000, SN R = 87.5 db, and 10000 data 
sets: 

1]2 theo 30.762 30.762 31.860 2.417 X 109 

expr 30.729± 0.077 30.729 ± 0.077 31.862 ± 0.079 (2.391 ± 0.021) X 109 

Ex
2 theo 110.762 110.762 112.324 85.000 

expr 110.666 ± 0.148 110.666 ± 0.148 112.254± 0.151 84.797 ± 0.130 

Ep2 theo 33.238 33.238 33.860 2.417 X 109 

expr 33.352 ± 0.080 33.352 ± 0.080 33.983 ± 0.083 (2.391 ± 0.021) X 109 

Configuration 1 with cr2 = 1.000 x 10-12, a~ = 1.000, a~ = 1.000, SN R = 47.5 db, and 10000 data 
sets: 

1]2 theo 43.890 43.890 45.452 2.417 X 1013 

expr 43.918 ± 0.092 43.918 ± 0.092 45.503 ± 0.094 (2.391 ± 0.021) X 1013 

Ex
2 theo 123.890 123.890 125.658 85.000 

expr 123.730± 0.157 123.730± 0.157 125.476 ± 0.160 84.797± 0.130 

Ep2 theo 20.110 20.110 21.452 2.417 X 1013 

expr 20.135± 0.061 20.135 ± 0.061 21.454± 0.069 (2.391 ± 0.021) X 1013 

Configuration 1 with cr2 = 1.000 x 10-8 , a~ = 1.000, a~= 1.000, SN R = 7.5 db, and 10000 data 
sets: 

1]2 theo 56.880 56.880 57.803 2.417 X 1017 

expr 56.878 ± 0.105 56.878± 0.105 57.824± 0.107 (2.391 ± 0.021) X 1017 

Ex
2 theo 136.880 136.880 137.989 85.000 

expr 136.667 ± 0.165 136.667 ± 0.165 137.739± 0.167 84.797 ± 0.130 

Ep2 theo 7.120 7.120 7.803 2.417 X 1017 

expr 7.161 ± 0.035 7.161 ± 0.035 7.883 ± 0.043 (2.391±0.021) X 1017 

Configuration 1 with cr2 = 1.000 x 10-4 , a~ = 1.000, a~ = 1.000, SN R = -32:5 db, and 10000 
data sets: 

1]2 theo 
expr 

theo 
expr 

theo 
expr 

63.923 
63.995 ± 0.113 

143.923 
143.651 ± 0.170 

0.077 
0.076 ± 0.001 

63.923 
63.995 ± 0.113 

143.923 
143.651 ± 0.170 

0.077 
0.076 ± 0.001 

90 

64.000 
64.068 ± 0.113 

144.080 
143.806± 0.170 

0.000 
0.000 ± 0.000 

2.417 X 1021 

(2.391 ± 0.021) X 1021 

85.000 
84.797 ± 0.130 

2.417 X 1021 

(2.391 ± 0.021) X 1021 
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Table 2. This table shows how the reconstruction quality varies with noise level when the four 
different methods are used on the test configuration with non-uniform priors. 

OCLIM OWPIM OTPIM MNLS 

Configuration 1 with (]'2 = 1.000 x 10-20 , o:~ = 1.000, o:1 = 0.010, SN R = 122.9 db, and 10000 
data sets: 

1]2 theo 4.486 10.727 11.419 2.417 X 105 

expr 4.456 ± 0.025 10.709± 0.041 11.400 ± 0.043 (2.391 ± 0.021) X 105 

Ex
2 theo 101.352 98.999 100.316 84.999 

expr 101.172± 0.141 98.809± 0.140 100.117 ± 0.143 84.797 ± 0.130 

Ep2 theo 42.651 231.248 256.449 8.441 X 106 

expr 42.763 ± 0.090 232.159± 0.821 257.459 ± 0.943 (8.395 ± 0.081) X 106 

Configuration 1 with (]'2 = 1.000 x 10-16, o:~ = 1.000, o:1 = 0.010, SN R = 82.9 db, and 10000 data 
sets: 

1]2 theo 10.209 17.039 17.519 2.417 X 109 

expr 10.205 ± 0.041 17.002 ± 0.054 17.492 ± 0.055 (2.391 ± 0.021) X 109 

Ex
2 theo 114.253 111.774 111.585 85.000 

expr 114.161 ± 0.150 111.688± 0.149 111.483± 0.150 84.797± 0.130 

Ep2 theo 29.747 225.663 257.338 8.443 X 1010 

expr 29.747 ± 0.075 225.201 ± 0.775 257.600 ± 0.927 (8.395 ± 0.081) X 1010 

Configuration 1 with (]'2 = 1.000 x 10-12, o:~ = 1.000, o:1 = 0.010, SN R = 42.9 db, and 10000 data 
sets: 

1]2 theo 17.366 22.307 22.939 2.417 X 1013 

expr 17.403 ± 0.057 22.313 ± 0.064 22.936 ± 0.065 (2.391 ± 0.021) X 1013 

Ex
2 theo 128.069 125.447 126.082 85.000 

expr 127.872 ± 0.159 125.267 ± 0.158 125.880 ± 0.160 84.797 ± 0.130 

Ep2 theo 15.931 169.524 211.813 8.443 X 1014 

expr 15.905 ± 0.053 168.929 ± 0.697 211.027 ± 0.971 (8.395 ± 0.081) X 1014 

Configuration 1 with (]'2 = 1.000 x 10-8 , o:~ = 1.000, o:1 = 0.010, SN R = 2.9 db, and 10000 data 
sets: 

1]2 theo 24.393 26.655 27.093 2.417 X 1017 

expr 24.404 ± 0.069 26.644 ± 0.072 27.089± 0.073 (2.391 ± 0.021) X 1017 

Ex
2 theo 139.623 138.394 141.165 85.000 

expr 139.386± 0.167 138.158 ± 0.166 140.937 ± 0.170 84.797 ± 0.130 

Ep2 theo 4.377 74.427 88.174 8.443 X 1018 

expr 4.327 ± 0.027 73.841 ± 0.430 87.658± 0.622 (8.395 ± 0.081) X 1018 

Configuration 1 with (]'2 = 1.000 x 10-4 , o:~ = 1.000, o:1 = 0.010, SN R = -37.1 db, and 10000 
data sets: 

1]2 theo 28.333 28.349 28.360 2.417 X 1021 

expr 28.303 ± 0.075 28.320 ± 0.075 28.331 ± 0.075 (2.391 ± 0.02L) x 1021 

Ex
2 theo 143.973 143.973 144.028 85.000 

expr 143.704± 0.170 143.705± 0.170 143.760± 0.170 84.797 ± 0.130 

Ep2 theo 0.027 0.653 0.000 8.443 X 1022 

expr 0.027 ± 0.000 0.649 ± 0.008 0.000 ± 0.000 (8.395 ± 0.081) X 1022 
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Figure 7.4 Reconstruction error (log scale). The reconstruction error ry2 is plotted 
as a function of signal-to-noise ratio for all four reconstruction methods with non-uniform 
priors. The source variance is held constant while the noise variance is changed. MNLS has 
by far the worst reconstruction error; the other three methods are barely distinguishable 
on this plot. Figure 7.5 shows the other three methods in an expanded plot. 

solutions than MNLS. That is, knowing the expected signal and noise amplitudes 

regularizes the pseudoinverse and tames an otherwise ill-conditioned problem. 

In summary, MNLS provides the best mean residual E x2 but does so only by 

allowing an extremely large reconstruction error ry2 . Truncating the pseudoinverse 

reduces the error but increases the residual. For uniform priors, OTPIM, OWPIM, 

and OCLIM all give similar errors and residuals. For non-uniform priors, OCLIM 

has smaller error than any of the other methods, with residuals similar to OTPIM 

and OWPIM. 

For this test configuration, initialization (steps 1.0-1.9) and reconstruction 

(steps 2.1-2.4) for a hundred data sets take about a second on a workstation class 

computer. There are only minor differences in the execution time required for the 

four different reconstruction methods. 
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Figure 7.5 Reconstruction error (linear scale). The reconstruction error ry2 is plotted 
as a function of signal-to-noise ratio under the same conditions as Figure 7.4. The three 
curves shown are for OTPIM (+). OWPIM (x), and OCLIM (o). OTPIM and OWPIM 
provide similar results. OCLIM is better than either, with the difference increasing as the 
SNR increases. · 

Figures 7.7 and 7.8 show some sample reconstructions from the same test con­

figuration, with a~ = 1.0, a1 = 0.1, 0"
2 = 3.16 x 10-10 , and SNR = 19 dB. A 

single source dipole was active with amplitude 8 and all other sources were zero. 

The lefthand plot of each pair was reconstructed with OCLIM; the righthand plot 

with OWPIM. The dipole is at the position indicated by the dot and is pointing 

out of the page. Grey shading indicates areas of current flow into the page. 

Figure 7. 7 shows three reconstructions of sources consistent with the priors (that 

is, sources in region A). The top pair shows a source relatively near the detector 

array. Both reconstructions correctly localize the true source, but the OCLIM 

reconstruction has higher peak amplitude ,and is more narrowly localized in space. 

The artifacts in the OCLIM reconstruction are all less than the a posteriori standard 

errors. 
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Figure 7.6 Mean residual. The mean residual E x2 is plotted as a function of signal­
to-noise ratio under the same conditions as Figure 7.4. All four methods are shown. 
MNLS has the lowest residual, which is independent of SNR. The other three methods 
have similar residuals, which decrease as the SNR increases. 

The middle pair shows a source further from the detectors. Both reconstruc­

tions are displaced toward the detectors. OCLIM is still higher and narrower than 

OWPIM. 

The bottom pair shows a source distant from the source array. Neither method 

gives a good reconstruction. OCLIM appears to localize the source but the am­

plitudes are less than the standard error. OWPIM hardly localizes the source at 

all. 

In additional simulations done at a high SNR (83 dB), both shallow and deep 

sources were accurately localized without any displacement toward the surface. One 

of the reviewers commented that displacements toward the surface have been seen 

by other researchers; it appears that this effect occurs only for certain combinations 

of source depth and signal-to-noise ratio. 
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Figure 7.7 Reconstruction of sources consistent with the prior knowledge. The 
lefthand image of each pair shows the reconstruction using OCLIM with prior information; 
the righthand image shows the reconstruction using OWPIM with uniform priors. The 
true distribution is a single dipole out of the page at the position indicated by the dot. 
Grey shading indicates areas of current flow into the page. The signal-to-noise ratio is 19 
dB. 
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Figure 7.8 shows two reconstructions of sources inconsistent with the priors. 

OCLIM forces the reconstruction to fit the assumed priors and incorrectly localizes 

both shallow and deep sources. OWPIM produces a reasonable reconstruction for 

a shallow source but again hardly localizes a deep source. 

7. 5 Discussion 

If the unknown current distribution is expressed as a linear combination of elemen­

tary current distributions in fixed positions, then the magnetic field measurements 

are linear in the unknown source amplitudes. If, in addition, the cost function to 

be minimized is either the mean square error (reconstructed minus true currents) 

or the square residual (measured minus reconstructed fields), then the unknown 

source amplitudes may be found by solving a linear problem. This offers several 

advantages: The problem is well understood theroretically and software for its so­

lution is readily available. There is only a single, global minimum. Efficient and 

reliable computer codes for linear algebra are readily available. 

The minimum-norm least squares (MNLS) method, also known as the Moore­

Penrose inverse and the generalized inverse, provides a lower· residual than any 

other method but does not exploit prior knowledge. But if the problem is poorly 

conditioned and there is measurement noise, its reconstruction error can be orders 

of magnitude larger than the true current distribution. Magnetic imaging is both 

noisy and poorly conditioned, so MNLS is not generally suitable. Truncating the 

pseudoinverse can yield better results, but it is usually still inferior to the newer 

methods described in this dissertation. 

The weighted pseudoinverse developed by Shim and Cho generalizes MNLS by 

including an arbitrary weight in each term of the outer product or spectral ex­

pansion of the Moore-Penrose inverse; a truncated pseudoinverse is obtained by 

restricting the weights to zero and one. Choosing the weights to minimize the 

mean square error yields an optimally weighted pseudoinverse method ( OWPIM) 

or optimally truncated pseudoinverse method ( OTPIM). The source and noise co­

variance matrices determine the optimum but only the diagonal entries are used; 

that is, no account is taken of spatial correlations between sources. Prior knowledge 
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Figure 7.8 Reconstruction of sources inconsistent with the prior knowledge. The 
lefthand image of each pair shows the reconstruction using OCLIM with prior information; 
the righthand image shows the reconstruction with uniform priors. The true distribution 
is a single dipole out of the page at the position indicated by the dot. Grey shading 
indicates areas of current flow into the page. The signal-to-noise-ratio is 19 dB. 
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of the source and noise covariance is required but non-uniform priors are permitted 

only in special cases. OWPIM and OTPIM generally have mean square error larger 

than OCLIM and residuals larger than MNLS. 

The optimal constrained linear inverse method ( OCLIM) derived in this chapter 

uses prior knowledge to obtain a minimum mean square error estimate of the current 

distribution; OCLIM can be efficiently computed using a Cholesky decomposition. 

Any source and detector configuration is allowed as long as their positions are fixed 

a priori. Any correlations between source and noise amplitudes are permitted, 

including spatial correlations between sources or between detectors. OCLIM locates 

point sources more precisely than OWPIM but is prone to artifacts when the true 

sources are inconsistent with the priors. 

OCLIM reduces to the optimally weighted pseudoinverse method when the 

source amplitudes are independent and identically distributed and to the minimum­

norm least squares estimate in the limit of no measurement noise or no prior knowl­

edge of the source amplitudes. 

All four methods are fast to compute, taking about a second on a workstation 

for a problem with 64 sources and 144 detectors. 

Of these methods, OCLIM appears the best suited to magnetic imaging, since 

it exploits prior information, provides the minimum reconstruction error, and is no 

more expensive to compute than the others. 

The use of prior information, however, can be risky. If the priors are misinfor­

mative, they can distort the solution and lead to inaccurate reconstructions. The 

next chapter will discuss this issue. 
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Chapter 8 
Priors Informative 

And Misinformative 

The existence of misinformative priors in inverse problems, as demonstrated in the 

previous chapter, places the analyst in a unpleasant dilemma. The reconstruction 

accuracy can be improved by informative priors, thereby increasing the useful in­

formation obtained from the given measurements. But the accuracy can also be 

degraded by misinformative priors, leading to false reconstructions. Since the priors 

encode our expectations about the solution, a choice of priors that are inappropri­

ate for the problem may lead directly to a solution which is neat, plausible--and 

wrong! The problem of priors is to somehow sail a middle course between ignorance 

and delusion. Put another way, how much trust should a reasonable person repose 

in an inverse problem solution obtained using prior knowledge? And how should 

the analyst choose the prior knowledge to maximize the trustworthy information 

gained? More specifically, given a set of priors and a set of measured data, is it 

reasonable to reconstruct the given data using the given priors? 

This chapter briefly considers the first two questions and then concentrates on 

the third question in considering a statistical test for consistency between data and 

pnors. 

8.1 Epistemology of Prior Knowledge 

An inverse problem solution is often a surrogate for knowledge that could be ob­

tained by tests that are more definitive but also more expensive, more dangerous, 

or just impractical. The use of MEG rather than invasive electrodes to localize an 
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epileptic focus prior to surgery is a good example. Provided that the MEG recon­

struction is accurate, it reduces the risk to the patient. Similarly, the use of MEG 

to trace the activation sequence in the brain during a reading task is a surrogate 

for invasive electrodes that impose an unacceptable risk in a healthy subject. 

The claim that the inverse method is a useful surrogate is thus the claim that, 

in some particular case, it provides the same results that would be obtained by the 

more definitive but less practical method. This claim may be supported by the 

following three more general claims: 

1. The assumed priors are true for some defined population. 

2. The reconstruction method and assumed priors give solutions consistent with 

the definitive test in this population. 

3. This particular case is drawn from that population. 

The first two of these claims may be supported by experimental and statistical 

tests. It is the purpose of this chapter to investigate a statistical test for the third 

claim: that this particular data set is consistent with the assumed priors. In fact, 

the constraints defined by the prior knowledge will be regarded as a hypothesis, to 

be confirmed or refuted by the observed data. 

8.2 Are the Data Consistent with the Prior Knowledge? 

Consider the null hypothesis that the given data are taken from a population in 

which the source amplitudes q and the noise amplitudes w are jointly normal with 

covariances A = E qqT and :E = E wwT and cross-covariance E qwT = 0. That 

is, the null hypothesis is that the data are taken from the population defined by 

the priors and thus that the priors are informative. Given this hypothesis, the 

distribution of the measurement vector b is defined, and it is possible to ask how 

likely ·the observed data are relative to this distribution. If the data lies in some 

critical region which is considered too unlikely, the hypothesis should be rejected; 

that is, the qata do not appear to be from a population with the assumed priors, the 

priors are probably rnisinformative rather than informative, and so a reconstruction 

using those priors is not trustworthy. This critical region is normally chosen to 

include some fraction a of the total probability, where a is the false positive rate, 
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or the probability that a consistent data set will be rejected as inconsistent. Since 

b is a vector, it is convenient to condense it into a scalar test statistic and define 

the critical region by a range of values for the test statistic. 

If the null hypothesis is that the observed data come from the population defined 

by the assumed statistics, then a positive result (of the statistical test) indicates 

that the data do not appear to come from the populated assumed in the priors. 

Thus the more desireable result (from the viewpoint of reconstruction with priors) 

is that the statistical test yield the negative result that the priors appear to be 

consistent with the data. The true negative outcome is that the data actually come 

from the population defined by the priors and the test correctly indicates this; the 

false negative outcome is that the data do not actually come from the population 

defined by the priors but the test incorrectly indicates that they do. Conversely, 

the true positive outcome is that the data set does not actually come from the 

assumed priors and the statistical test correctly claims that they do not; the false 

positive outcome is that the data actually come from the assumed population but 

the test claims that they do not. 

One approach to a test statistic is to observe that, under the assumed prior 

source and noise statistics, the measured data b are distributed as a Gaussian 

random vector with mean zero and variance B = FAFT + :E = LLT where Lis a 

nonsingular lower triangular matrix. Then the probability of a given data set b is 

given by the Gaussian distribution 

(200) 

where JBJ is the determinant of B, and the normalized magnitude 

(201) 

indicates how unlikely the data set b is relative to the assumed priors. If the 7 2 

computed from the data actually observed is too large, then the hypothesis that 

the observed data are consistent with the assumed priors should be rejected, and 

the source distribution should no~ be reconstructed using those priors. Note that 

7
2 is a sufficient statistic for this hypothesis and thus that there can be no more 

effective test for misinformative priors using only the available data set. 
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Now define x = L -lb and observe that Ex= 0 and 

(202) 

andso T 2 = llxJJ 2 is distributed as a x2 random variable with M degrees of freedom, 

where M is the number of detectors, or the number of distinct measurements in b. 

Thus, T
2 has mean M and variance 2M. 

Now suppose that the data set is actually drawn from the assumed population 

and that TZrit is taken as the critical value. That is, the priors will be rejected for 

this data set if the corresponding T2 > TZrit, even though the data were actually 

drawn from the assumed population. That is, the false positive rate must be 

(203) 

where P(x2 J v) is the cumulative distribution function for the standard x2 distri­

bution with v degrees of freedom and M is the number of detectors. In practice, 

an acceptable false positive rate a will be chosen first and rzrit selected to yield the 

desired false positive rate. Figure 8.1 shows the false positive rate a as a function 

of T
2 "t for various values of M; these curves were computed using the algorithm en 

described in section 5.3. 

A second approach is to consider how well the reconstruction fits the observed 

data and the assumed source priors. 

The traditional metric for goodness of fit to the measurements is 

(204) 

which was defined in Section 6.3 and is the squared sum of the measurement resid­

uals r = b- Fq, weighted by the noise covariance ~- If q is computed by the 

minimum-norm least square (MNLS) method [106], then x2 has an ordinary x2 

distribution; but if q is computed by OCLIM, x2 has a generalized x2 distribution 

as was shown in Section 6.3. 

The goodness of fit between the a priori source statistics and the reconstruction 

may be defined by the surprise 
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which was defined in Section 6.4 and is the negative log likelihood of the recon­

structed source distribution relative to the prior source statistics. 

The sum x2 + p2 is a plausible metric for the goodness of fit to the data and 

priors together. Now observe that, for the OCLIM estimator, 

X2 + p2 = (b- Fq)T:E-l(b- Fq) + q_T A -lq_ 

= bT(I- FH)T:E-1(1- FH)b + bTHT A -lHb 

= bT(FAFT + :E)-1:E:E-1:E(FAFT + :E)-1b 

+ bT(FAFT + :E)-1FAA -l AFT(FAFT + :E)-1b 

= bT(FAFT + :E)-1b 

=IlL -lbll2 = 7
2 (206) 

Thus it turns out that this sum is exactly the statistic 7
2 already discussed. That 

is, the test statistic 7 2 can also be viewed as a goodness of fit to the data and the 

priors jointly, expressed as the sum 7 2 = x2 + p2 of a goodness of fit x2 to the data 

and a goodness of fit p2 to the prio~s. Furthermore, 7
2 is (apart from scale), the 

negative logarithm of the joint probability 

p(b, <1) = p(b I <1) p( <l) 

= ((27r)MI:EI)-112 exp( -~((b- Fq)T:E-1(b- Fq)) 

x ((27r)NIAI)-l/2 exp( -~qT A -lq_) (207) 

of the measurements band the reconstructed source amplitudes q. Note, however, 

that even though 7
2 is distributed as a standard x2 random variable, both x2 

and p2 individually are distributed as generalized rather than standard x2 random 

variables. 

8.3 Validation Protocol 

Considering the previous analysis, the following is a suitable protocol for testing 

whether a given data set b is consistent with the assumed priors: 

1. Choose a acceptable false positive rate a; this is the fraction of the data 

sets which are actually consistent with the priors but which will nevertheless be 
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Figure 8.1 False positive rate. These curves show the false positive rate a as a 
function of of the critical value 7Zrit for various values of M, the number of detectors. 
The false positive (or false alarm) rate is the fraction of source distributions that are 
actually consistent with the priors but that are reported as inconsistent. 

r 

classified as inconsistent. Figure 8.1 shows the false positive rate a as a function of 

7~rit for various values of M. 

2. Compute the corresponding critical value 7~rit such that 

(208) 

where P(x2 Jv) is the cumulative distribution function for the x2 distribution with 

v degrees of freedom and M is the number of detectors. 

3. For the given data set, compute 

(209) 

4. If 72 > 72 .t, classify the given data as inconsistent with the priors. Other­en 
wise, classify it as consistent and proceed with the reconstruction. 
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8.4 Detectability of an Unexpected Source 

It is also of interest to know how reliably the T 2 test detects the presence of a 

source inconsistent with the assumed priors. To be specific, suppose that there is 

an extra source Jx(r'), in addition to those sources allowed by the priors. That 

extra source can be observed only through its effect on the measurement vector b. 

Suppose that Jx(r') acting alone gives the measurement vector hx. Then the total 

measurement vector b including the prior sources, extra source, and noise will be 

normally distributed with mean hx and variance B = F AFT + :E = LLT. 

It follows that the test statistic 72 is distributed as a non-central x2 random 

variable with M degrees of freedom and non-centrality parameter 

(210) 

Intuitively, 7; measures the mismatch between the extra field hx and the assumed 

priors. An extra source cannot be detected if its effects are consistent with the 

measurement statistics defined by the priors, no matter how much its source distri­

bution may differ from the expected source distribution. Note also that any source 

distribution in the null space of F has no effect on the measurements and cannot 

be detected. 

Any given values of T; and 7;rit define a false positive probability a that a 

consistent source will be misclassified as inconsistent and a false negative probability 

(3 that an inconsistent source will be misclassified as consistent. Plotting curves of a 

versus the detection probability 1-(3 yields a set of receiver operating characteristic 

(ROC) curves for different values of 7;; these curves define the possible tradeoffs 

between false positive (or false alarm) and false negative errors as a function of 7;. 

The particular curves shown in Figure 8.2 are forM= 144. 

8.5 Simulation Results 

To test the reliability with which the 72 test distinguishes informative and misin­

formative priors, a series of simulations was done using the same test configuration 

as in Section 7.3. The 28 sources in the central region A were assigned a source 
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Figure 8.2 Typical ROC curves. These curves show the possible tradeoffs between 
false positive and false negative errors for various values ofT;. The curves in the bottom 
plot use the same data as the top plot but use a logarithmic scale for the false positive 
probability to improve the visibility of false positive rates below 1%. 
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variance a:~ = 1; sources in this region were considered consistent with the pri­

ors. The remaining sources, in region B, were assigned a different source variance 

a:1 = 0.1; they were considered inconsistent with the priors. 

Noise amplitudes taken from independent normal distributions with mean zero 

and variance a-2 were added to each field measurement and two different noise 

models were considered. In the low-noise model a-2 = w-16 and the signal-to-noise 

ratio is about 167 dB; this is much better than most biomagnetic experiments. In 

the high-noise model a-2 = 10-8 and the signal-to-noise ratio is about 7 dB; this is 

a more typical number for biomagnetic imaging. 

The scatter diagrams in Figures 8.3 and 8.4 show the x2 and p2 values for 

a series of consistent and inconsistent reconstructions, each with a single dipole 

source of magnitude 8. The pluses ( +) correspond to sources in region A, which 

are consistent with the priors. The circles ( o) correspond to sources in region B, 

which are inconsistent with the priors. 

Figure 8.3 uses the low-noise modeL The diagonal line corresponds to the crit­

ical value r 2 = 200 or a: = 0.001, and almost perfectly distinguishes the consistent 

sources from the inconsistent ones. The two exceptions in the lower lefthand cor­

ner are actually inconsistent with the priors but are misclassified as consistent; the 

source locations and reconstructions of these misclassified sources are shown in the 

next section. Both of the corresponding sources are distant from the detector ar­

ray and close to consistent sources; it is possible that the detector array simply 

lacks the resolving power to distinguish these inconsistent sources from the nearby 

consistent sources. 

Figure 8.4 uses the high-noise modeL The diagonal line corresponds to r 2 = 170, 

or a:= 0.1, but does not separate .the consistent and inconsistent sources; thus the 

detector array cannot resolve the different sources at this SNR. 

It is also possible to plot the value of r; as a function of position for an extra 

source of some specified strength. Figure 8.5 shows two such plots for a dipole of 

magnitude 8 in the model problem. These plots indicate the positions at which 

such a source would probably be detected, or not detected. The value r; = 100 

prov~des a false positive rate a:= 0.01 and false negative rate (3 = 0.02 and can be 
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Figure 8.3 Residual and surprise for model problem-low noise. The residual (x2) 
and surprise (p2) are plotted for several sources consistent ( +) and inconsistent ( o) with 
the priors in the model problem with SNR = 167 dB. The diagonal line corresponds to the 
critical value r 2 = 200 or a = 0.001, and almost perfectly distinguishes the consistent 
sources from the inconsistent ones. 

taken to distinguish the detectable extra sources from the undetectable. 

The top plot uses the low-noise model. Most or all of the unexpected sources in 

the upper portions of region B would be detected, and some of those in the lower 

portions of region B. 

The bottom plot uses the high-noise model. Only unexpected sources near the 

top comers of the source plane are likely to be detected; deeper unexpected sources 

are not distinguishable from the expected ones. 

8.6 Sample Reconstructions 

Figures 8.6 through 8.8 show some sample reconstructions usmg the low-noise 

model. In each reconstruction, the true source distribution consists of a single 

source dipole pointing out of the page with amplitude 8 at the location marked 
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Figure 8.4 Residual and surprise for model problem-high noise. The residual (x2) 

and surprise (p2) are plotted for several sources consistent ( +) and inconsistent ( o) with 
the priors in the model problem with SNR = 7 dB. The diagonal line corresponds to 
r 2 = 170, or a: = 0.1, but does not separate the consistent and inconsistent sources; 
thus the detector array cannot resolve the different sources at this SNR. 

with the black dot. Grey shading indicates areas of current flow into the page. Fig­

ure 8.6 shows two examples of consistent sources correctly classified as consistent; 

figure 8. 7 shows two inconsistent sources correctly classified as inconsistent;-and 

figure 8.8 shows two consistent sotirces incorrectly classified as inconsistent. Note 

that in both of the misclassified cases, the unexpected source is both far from the 

detectors (which means a poor SNR) and close to one of the expected sources; a 

possible interpretation of this result is that the magnetometer array simply lacks 

the resolving power to distinguish the expected and unexpected sources. 

8. 7 Conclusions 

The p'receeding results have not provided a completely satisfactory solution to the 

problem of misinformative priors in biomagnetic source imaging. We have seen that 
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Figure 8.5 Source detectability as a function of position. Both these plots show the 
value of T; as a function of position for an unexpected dipole source of magnitude 8. 
The top plot is for the low-noise model and the bottom plot is for the high-noise model. 
If T; > 100 at some position, then an unexpected dipole source of magnitude 8 at that 
position can be detected with better than 98% probability and no more than 1% false 
positives. 
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Figure 8.6 Examples of sources correctly classified as consistent. 

Figure 8.7 Examples of sources correctly classified as inconsistent. 

Figure 8.8 Examples of sources incorrectly cJassified as consistent. 
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true source distributions inconsistent with the assumed priors can generate artifac­

tual reconstructions. Under favorable conditions of low noise and good separation 

between the unexpected and assumed source locations, the r 2 test will often detect 

misinformative priors. Under unfavorable conditions, the r 2 test does not reliably 

distinguish informative and misinformative priors. 

According to Figure 3.3, the SNR in biomagnetic imaging can range from -21 

dB to 54 dB, depending on the signal source, noise level, and bandwidth. More work 

is needed to determine whether or not the r 2 test reliably discriminates between 

informative and misinformative priors in realistic biomagnetic imaging problems. 

Since the source model used in the chapter was too simplified to be realistic, it is 

also necessary to study the r 2 test in realistic source models. 

In the worst case, the r 2 test will not reliably detect misinformative priors. 

The best SNR predicted in Figure 3.3 for the visual evoked response and evoked 

cortical activity is only 9 dB, so it is likely that the r 2 test will in fact fail for these 

signal sources, although more work is needed to confirm this. In this case, the 

inability to detect misinformative priors, combined with the non-uniqueness of the 

biomagnetic inverse problem, means that while biomagnetic source reconstructions 

may be used to suggest source locations to be tested by other means, they cannot 

be used by themselves to prove the existence of a source, since there may be another 

reconstruction which fits the given data equally well but which does not include 

that source. Similarly, the absense of a source at some location in a biomagnetic 

source reconstruction does not prove that no such source is present. 

An altemative possibility is to use prior information more assertively. Suppose 

that by fMRI or PET imaging we find that cerebral metabolic activity during a 

cognitive task is elevated in only a few regions. Then the hypothesis that activity 

is restricted to these regions becomes a hypothesis that can be tested using the r 2 

test on MEG data collected for the same task. The fact that only a few sources 

are allowed in the source model should improve the power of the r 2 test even if the 

SNR remains poor. 
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Chapter 9 
Optimal Magnetometer Design 

As was noted in Chapter 6, the mean reconstruction error ry 2 = E llq- 411 2 and 

the a posteriori source variances &~n do not depend on the actual field measure­

ments b but only on the source and detector configuration and on the assumed 

source and noise priors. Thus the 'mean reconstruction error ry2 can be computed 

directly from the given values of the forward transfer matrix F, the source covari­

ance A, and the noise covariance :E. This direct calculation of the reconstruction 

error is much faster than Monte Carlo simulation and can be done on a worksta­

tion class computer in a few minutes. The facts that ry2 depends on the detector 

configuration (and other priors), that it relates directly to the reconstruction ac­

curacy, that it does not depend on the actual measured data, and that it can be 

computed inexpensively suggest that the reconstruction error ry2 will be useful as a 

cost function in the optimal design of magnetometer arrays. 

This chapter demonstrates the use of the reconstruction error to select the 

optimal array width in a model problem and investigates the effects of number of 

detectors and source-to-detector distance on the reconstruction accuracy. 

9.1 An Example Source /Detector Configuration 

We will analyze the example source and magnetometer configuration shown in Fig­

ure 9.1. The source volume is 12 x 12 x 12 cm3 and contains a 4 x 4 x 4 cubical 

grid of horizontal dipole pairs; all sources have the same RMS source amplitude 

o: = 1 t-tA-m. Each horizontal plane in the source volume contains a 4 x 4 array of 

in-plane dipole pairs as shown in Figure 9.2; the use of two orthogonal dipoles al­

lows the representation of a dipole with arbitrary orientation and magnitude within 
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the plane. The detector plane contains a 12 x 12 grid of detectors sampling the 

vertical component of the field; all detectors have the same expected RMS noise 

amplitude a= 30 IT. The nominal array width is 23 em; the nominal source depth, 

or distance from the detector array to the top of the source volume, is 2 em. 

The following sections will explore the effects of varying the array width, the 

source depth, and the number of detectors used. 

9.2 Error versus Array Width and Source Depth 

The reconstruction error r-,2 is the sum over all sources of the expected value of the 

squared reconstruction error for that source. That is, 

(211) 

where &~n = E( qn - iJn) 2 is the expected squared error for the nth source. It is 

convenient to divide by the a priori source variance a 2 and consider the relative 

error ry2 I a 2. 

Figure 9.3 shows how the total relative reconstruction error ry2 I a 2 varies as a 

function of the array width and the source depth. For every source depth consid­

ered, there is an optimal array width and that width increases as the source depth 

increases. The particular optimal widths found here apply only to the particular 

number of detectors, source variance, and noise variance used to compute them. 

9.3 Standard Error for Each Source 

The standard error &nn is the RMS value of the reconstruction error for the nth 

source; it shows how the total error ry2 is distributed over the various sources. 

Figure 9.4 shows the standard error &nn for each source, using the nominal 

values for array width, source depth, and number of detectors. The a priori standard 

deviation ann is shown as the dotted line across the top of the figure. For this 

configuration, the reconstruction errors for the sources in the top plane are about 

5% of their a prior uncertainties. For the next lower plane, the errors are about 40-

80% of the a priori uncertainties; for the bottom two planes, the errors are hardly 
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Array width 

------ -..., 
,. "' 1 Source 

Source 
volume 

12 em 

,. "' 1 Depth 

Figure 9.1 Example source and detector configuration. The source volume contains 
a 4 x 4 x 4 cubical array of horizontal dipoles sources, each represented as a pair of 
orthogonal components. The detector plane is square with a nominal width of 23 em and 
contains a nominal 12 x 12 array of magnetometers, each of which measures the vertical 
component of the field. The nominal source depth, or distance from the detector plane 
to the top plane of sources, is 2 em. The array width, number of detectors, and source 
depth will be varied from their nominal values to examine the effects. 

LLLL 
LLLL 
LLLL 
LLLL 

Figure 9.2 Typical source plane. Typical horizontal plane of sources in the source 
volume. Each source position contains a horizontal current dipole represented by two 
orthogonal components. 
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Figure 9.3 Total reconstruction error. Total reconstruction error versus array width 
and source depth for a 12 x 12 array of detectors. The source depth is the distance from 
the detector array to the top plane of sources. 

less than the a priori uncertainties. That is, this detector array (for the assumed 

priors) gives good reconstructions for the topmost plane of sources, mediocre results 

for the second plane, and poor results for the bottom two planes. 

9.4 Error vs Width and Number of Detectors 

Figure 9.5 shows the total relative reconstruction error versus array width for five 

different numbers of detectors ranging from an 8 x 8 square grid to a 16 x 16 square 

grid. There is an optimal array width for each size of grid; that width increases as 

the number of detectors increases. 

Note, however, that both the 8 x 8 and 10 x 10 curves display a bimodal charac­

teristic. This is due to the accidental alignment of source and detector positions as 

shown in the plan views of Figure 9.6. The plus signs mark detector positions; the 

open circles mark source positions. The lefthand plot corresponds to the minimum 
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40 60 80 100 120 
Source number 

Figure 9.4 Standard error of each source. Standard error for each source using the 
nominal detector configuration and priors. Sources 1-32 are in the top plane, 33-64 in the 
next plane down, 65-96 in the third plane down, and 97-128 in the bottom plane. (Each 
source position includes two orthogonal components, each of which carries a distinct 
source number in this figure.) Sources near the detector plane have smaller error, as do 
source near the boundaries of the source cube. 

error (at width 19 em) for an 8 x 8 array; the sources generally fall between the 

detectors. The righthand plot corresponds to the local maximum at 23 em; the 

sources fall almost directly under the detector positions. 

Since dipole sources are used only for convenience in approximating a contin­

uous unknown current distribution, this variation in reconstruction error must be 

considered an artifact of the simple dipole source model. The use of point detectors 

also contributes to the problem. More work is needed to create source and detector 

models that are immune to these accidental variations. 

Figure 9.7 shows the optimal 8 x 8 and 16 x 16 arrays. The optimal width 

increases as the number of detectors increases but less than proportionally to the 

number of detectors per side; the optimal detector spacing decreases. 
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Figure 9.5 Total reconstruction error versus array width and number of detectors .. 
The optimal array width increases as the number of detectors increases. The bimodal 
characteristic of the 8 x 8 and 10 x 10 curves is due to accidental alignments between 
the source and detector locations. See Figure 9.6. 

9.5 Discussion 

The reconstruction error is potentially useful as a quality metric for magnetometer 

array design. Arbitrary source and detector positions are allowed. Correlated noise 

can be used; this allows modelling the effects of external magnetic interference. The 

method should generalize to distributed (non-dipole) current sources and arbitrary 

detector coil shapes. 

Accidental alignments between dipole current sources and point detectors can 

distort the computed reconstruction error. 

The optimal width increases as the array-to-source distance mcreases. The 

optimal width of a planar magnetometer array is subproportional to the number of 

detectors used per side. 
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Figure 9.6 Source and detector alignments. The lefthand plot shows the source 
( o) and detector ( +) locations in plan view for the minimum-error width in the 8 x 8 
configuration. The sources fall between the detector locations. The righthand plot shows 
the source and detector locations for a configuration with local maximum error. The 
sources fall directly below the detector locations. 
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Figure 9.7 Optimal array width versus number of detectors. The lefthand plot shows 
the optimal 8 x 8 array; the righthand plot the optimal 16 x 16 array. The optimal width 
increases less than proportionally to the number of detectors per side and the optimal 
detector spacing decreases. 
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Chapter 10 
Dynamic Reconstruction 

The previous chapters have developed and demonstrated the OCLIM algorithm for 

the instantaneous biomagnetic source imaging problem. The general case, however, 

is that the source currents and generated magnetic fields vary with time. 

If the current distribution changes with time, then a sequence of field mea­

surements must be inverted to yield a sequence of current distributions. OCLIM 

generalizes easily in principle to this dynamic problem but requires large data sets 

to describe the priors and long computations to reconstruct the dynamic current 

distribution. 

The purpose of this chapter is to discuss methods for simplifying the dynamic 

reconstruction problem by assuming and exploiting special structure in the priors 

and sometimes by approximating the optimal reconstruction filter. 

We will be making heavy use of the Cholesky decomposition and so it is con­

venient to introduce the following notation rather than to introduce a new symbol 

each time we take the Cholesky decomosition of some matrix. Let A be a symmet­

. ric positive definite matrix. Then A C will denote its Cholesky factor; that is, A C 

is the unique lower triangular matrix such that A= A C (A C)T. 

10.1 Dynamic Imaging of Magnetic Sources 

Suppose that we have a sequence of field measurements on multiple detectors and 

wish to reconstruct a sequence of source amplitudes at multiple source locations. 

The field measurements can be represented by concatenating the instantaneous 

measurement vectors into a long column vector b; a long source vector q and a 

long noise vector w are defined similarly. The spatiotemporal source covariance is 
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defined by A E qqT and the noise covariance by ::E = E wwT, where E denotes 

the expectation. Assuming that the instantaneous forward transfer matrix F is 

constant in time and that propagation delays are negligible, the forward equation 

becomes 

(212) 

where 0 is the Kronecker product. This has the same form as the instantailteous 

forward problem, and OCLIM yields the minimum mean square error estimator 

(213) 

the optimal estimate 

(214) 

and the test statistic for misinformative priors 

(215) 

For a reasonably sized problem-100 sources, 100 detectors, and 100 time 

instants-the prior covariance matrices A and ::E alone require 400 MB of memory 

and the direct computation uses about 0.3 trillion floating point operations. In 

addition, the covariance matrices A and ::E must be determined experimentally and 

it will be quite difficult to experimentally determine so many distinct parameters. 

The standard errors of the reconstructed source amplitudes are computed from 

the diagonal of the a posteriori covariance matrix 

A direct computation of A requires an additional 1.3 trillion floating point opera­

tions. 

Making some assumptions about the form of the priors can reduce the compu­

tational and storage cases significantly and the purpose of this chapter is to develop 

possible ways of doing so. The following cases are considered. 

1. The source and noise amplitudes are statiomtry and uncorrelated in time. 
( . 

121 



Chapter 10. Dynamic Reconstruction 

2. The spatiotemporal source and noise covariances are separable into the 

products of spatial and temporal covariances. 

3. The source and noise covariances are separable and stationary. 

4. The source statistics are stationary; the noise statistics are stationary, un­

correlated between detectors, and uniform across detectors. 

10.2 Stochastic Estimation of Errors 

The cost of computing the standard errors may be reduced by using Monte Carlo 

simulation. Consider first the instantaneous case. Let z1 and z2 be independent 

standard normal random vectors and define 

and y=Hx . (217) 

Then 

Ex =0 and ExxT = FAFT + :E (218) 

and so x has exactly the assumed statistics of the measurement vector b and y has 

exactly the statistics of the solution q. Thus the mean square residual 

(219) 

can be estimated by generating some number R of realizations of Zl and z2, com­

puting the corresponding realizations Xr and Yr, and computing the estimate 

(220) 

Furthermore, it is possible to estimate the standard errors from the same set of 

realizations. Consider 

A- EyyT =A- H(ExxT)HT 

=A- AFT(FAFT + :E)-1(FAFT + :E)(FAFT + :E)-1FA 

=A- AFT(FAFT + :E)-1FA 

=A 
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That is, the a posteriori covariance A may be estimated by computing 

~ 1'"' T A,.....,A- R6YrYr (222) 
r 

In many cases only the diagonal elements &~n of A are required; they can be 

computed even more simply by 

(223) 

where a~n is the nth diagonal element of A and Yrn is the nth element of the rth 

realization of y. Since high accuracy is not needed for the standard errors, a few 

realizations should suffice. 

The extension to the time series case involves only extending the vectors z1, z2, 

x, and y to the appropriate length and computing 

X= (I 0 F)A CZl + ijCZ2 

y=Hx 

Ex2 = ~ L(x- (I 0 F)y)T:E-1(x- (I 0 F)y) 
r 

~ - 1'"' T A=A- R6YrYr 
r . 

(224a) 

(224b) 

(224c) 

(224d) 

The form of A and :E should, of course, be chosen to facilit~te computation of their 

Cholesky factors. Under assumptions to be discussed later, it is sufficient to take 

the time average of a single realization. 

10.3 Instantaneous Reconstructions 

One simple model for the priors is to assume that the source and noise covariances 

are constant over time and that there are no correlations among source (or noise) 

amplitudes at different times. Then the spatiotemporal covariances can be written 

in the simpler forms 

A=I0A and (225) 
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where A is the instantaneous source covariance matrix and~ is the instantaneous 

noise covariance matrix. The optimal spatiotemporal reconstruction filter simplifies 

to 

(226) 

which means simply that an instantaneous OCLIM reconstruction is to be done 

independently at each time instant. The test statistic is 

(227) 

which is simply a summation of the test statistics for each instant. The a posteriori 
. . 

covariance IS 

A =I 0 [A- AFT (FAFT + ~)-1 FA] (228) 

which is the instantaneous a posteriori convariance repeated at each time instant. 

This approach is fast but inaccurate, since biomagnetic sources are ordinarily 

correlated both in time and in space. Sources in the heart and brain often remain 

active for tens or hundreds of milliseconds; ignoring these correlations reduces the 

accuracy of the reconstruction. 

10.4 Priors Separable in Time and Space 

A less drastic simplification is to assume that the spatiotemporal source covariance 

is separable into the product of a spatial covariance and a temporal covariance. 

That is, 

A(x,x1 ,t,t1
) = Eq(x,t)q(x',t') = A(x,x') · S(t,t') (229) 

A (simplified) physical interpretation is that the shape of the temporal power spec­

trum is the same for all sources, although the magnitude may vary. Similarly, 

suppose that the spatiotemporal noise covariance is separable. Then the priors can 

be written as 

and (230) 

where A is an instantaneous source correlation matrix (between sources) which 

is independent of time, ~ is an instantaneous noise correlation matrix (between 

detectors) which is independent of time, S is a temporal correlation matrix which 
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is the same for all sources, and N is a temporal correlation matrix which is the 

same for all detectors. Then the optimal source estimate becomes 

(231) 

The test statistic is 

(232) 

and the a posteriori covariance is 

(233) 

Using the stochastic estimation method for the a posteriori covariance and 

arranging the computations to exploit repeated expressions yields the steps 

p= [S0FAFT +N0:E)-1b 

7 2 = f,Tp 

q= (S0AFT)p 

x = (Sc 0 FA c)z1 + (Nc 0 :Ec)z2 

y = (S 0 AFT)[S 0 FAFT + N 0 :E)-1x 
A T 
A=S0A-Eyy , 

where p is an intermediate variable of no physical significance. 

(234a) 

(234b) 

(234c) 

(234d) 

(234e) 

(234f) 

The values of 

p and y should, in principle, be efficiently computable by some iterative method. 

Unfortunately, however, none of the iterative methods tried so far converges reliably. 

10.5 Stationary Priors 

The stronger assumption that the priors are also constant in time may be appro­

priate in some applications. Then the spatiotemporal correlation can be written in 

the form 

A(x, x1
, t, t1

) = A(x, x1
) • S(t- t') (235) 

and the source and noise covaraince matrices in the form 

A=S0A and (236) 
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where the temporal covariance matrices S and N are Toeplitz and approximately 

circulant. But if S and N are circulant, they can be diagonalized by the Fourier 

transform, or 

and (237) 

where the matrices D s and D N are diagonal and W is the matrix corresponding 

to the fast Fourier transform, as given in equation (81). 

Then the optimal source estimate and test statistic can be computed via the 

FFTas 

and 

These last two equations do not obviously lend themselves to a fast computational 

algorithm, though they might be computable by an iterative approach. 

More importantly, the a posteriori covariance becomes block circulant and the 

standard errors can now be estimated from the time average of a single realization. 

To see this, manipulate the a posterior covariance for separable priors 

A= S ®A- (S 0 AFT)[S 0 FAFT + N 0 :E]-1(S ®FA) 

= (WH ®I) [ns ®A- (Ds ®AFT)· 

[Ds®FAFT +DN®:E]-1(Ds®FA)] (W01) (240) 

Now observe that the expression inside the outer square brackets consists only of 

sums, products, and inverses of block diagonal matrices. It follows that A must 

be block circulant. Then all the blocks on the diagonal are identical and the a 

posteriori covariances do not depend on time. Furthermore, the standard errors 

given by the diagonal of the diagonal block are also independent of time and can be 

estimated by averaging over time in a single realization. That is, the instantaneous 

a posteriori covariance can be estimated as 

A 2 1"" T A ::::::: s A - T ~ YtYt 
t 

(241) 
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where s2 is the common diagonal element of S, Tis the number of time instants, 

and Yt is the tth instant of the vector y. If only the standard errors are necessary, 

they can be estimated as 

~2 I"V 2 2 1 ""' 2 
Gnn = S ann - T ~ Ytn 

t 
(242) 

where Ytn is the nth element of the tth instant of y and a;n is the nth diagonal 

element of A. 

10.6 Sequential Time and Space Reconstructions 

The optimal reconstruction filter for separable priors is 

which can be rewritten as 

H = (S 0 AFT)[(S + N) 0 (FAFT +:E)- S 0 :E-N 0 FAFT)-1 

= (S 0 AFT)[(S + N) 0 (FAFT + :E)r1· 

[I- S(S + N)-1 0 :E(FAFT + :E)-1 

- N(S + N)-1 0 FAFT (FAFT + :E)-1] -
1 

If the terms 

and 

(243) 

are small compared to I, the reconstruction filter can be approximated by the 

Kronecker product 

(244) 

which is equivalent to an instantaneous reconstruction at each instant, followed by 

a temporal filter applied independently to each source. 
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Assuming in addition that the priors are stationary yields the approximation 

:H"' [wH Ds(Ds + D N )-1 W] 0 [AFT (FAFT + :E)-1] (245) 

The corresponding algorithm first does an instantaneous OCLIM reconstruction 

applied independently at each instant in time, followed by a temporal filter using the 

FFT applied independently to each source. Altematively, a temporal filter may be 

applied first to each detector independently, followed ·by an instantaneous OCLIM 

reconstruction at each instant independently. A disadvantage of this approach is 

that the approximation introduces an unknown error into the computed values of 

7
2 and A. 

The order of the Kronecker factors may be reversed, in which case the temporal 

filter is applied first to the sequence of measured field values independently for 

each detector, followed by an instantaneous OCLIM reconstruction independently 

at each instant. 

One suitable set of computations is as follows 

c = (W01)b 

P = [(Ds + DN) 0 (FAFT + :E)r1c 

72 = CHp 

q= (WHDs0AFT)p 

x = (D}'
2w 0 FA c)z1 + (D~2w 0 :Ec)z2 

Y = [WHDs(Ds + D N )-1 0 AFT (FAFT + :E)-1 ]x 

A2 2 2 1 "'""' 2 ann = s ann - T ~ Ytn 
t 

10.7 Spatial SVD Reconstruction 

(246a) 

(246b) 

(246c) 

(246d) 

(246e) 

(246f) 

(246g) 

Another implementation is obtained if we assume that, in addition to separabil­

ity and stationarity, that the noise statistics are the same for all detectors and 

uncorrelated between detectors. Then the noise covariance can be written in the 

form 

(247) 
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where o-2 is a positive scalar constant. Since FAFT is symmetric, it has a singular 

value decomposition 

FAFT =VDAVT (248) 

where U is orthogonal and D A is diagonal. But then o-21 = o-2uuT and the 

optimal estimate becomes 

which can be efficiently computed since the matrix being inverted is diagonal. 

The required calculations can thus be done in the steps 

c = (W®UT)b 

P = [Ds 0 DA + DN 0 o-21r1c 

T2 = cHp 

q = (WHDs 0 AFTU)p 

x = (D;f
2w 0 FA C)z1 + (D~2W 0 o-l)z2 

y = (WHDs 0 AFTV)[Ds 0 D A+ DN 0 o-21]-1(1 0 UT)x 

A2 2 2 1 "'""' 2 
ann = s ann - T ~ Ytn 

t 

10.8 A Model Problem 

(250a) 

(250b) 

(250c) 

(250d) 

(250e) 

(250£) 

(250g) 

These methods were tested by computer simulation on the same test configuration 

used in Chapter 7. The 28 sources in the central region A were assigned a source 

variance a~ = 1; the remaining sources were assigned a different source variance 

a~ = 0.1. There were no correlations between sources. Noise amplitudes taken from 

independent normal distributions with mean zero and variance o-2 = 3.16 x w-16 

were added to each field measurement. 

Figure 10.1 shows the assumed prior source and noise power spectra (Ds and 

D N) for the model problem, in arbitrary units. The source power was assumed to 

be concentrated at low frequencies and the noise was assumed to be white. 
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Source and Noise Power Spectra 

Noise 

0~----~~--~~------~------~------~------~----~ 
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Figure 10.1 Assumed source and noise temporal power spectra. The source power 
was assumed to be concentrated at low frequencies and the noise was assumed to be 
white. The units are arbitrary. 

10.9 Time-Space and Space-Time Plots 

Both the true and reconstructed source distributions are difficult to display since 

they involve two (or three) space dimensions, one time dimension, and one ampli­

tude dimension. The time-space plot illustrated at the top of Figure 10.2 is one 

useful way to display these data and consists of an 8 by 8 array of subplots corre­

sponding to the 8 by 8 array of sources on the source plane. Each subplot shows 

how the amplitude of that source varies with time. For reconstructed data, two 

curves will be shown in each subplot; they indicate the upper and lower 1a limits 

of the reconstructed amplitude. In this example, the source in row 5 and column 3 

exhibits a sinusoidal variation with time. All the other sources have zero amplitude. 

The space-time plot illustrated at the bottom of Figure 10.2 is an alternative 

representation of the same data. In this plot there are 64 images arranged left-to-
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--f\;-----

Figure 10.2 Time-space and space-time plots for reconstructed data. Both plots 
show a source distribution consisting of a single active source with a sinusoidal amplitude 
variation in time. The top "time-space plot" shows, for each source location, the ampli­
tude variation in time. The bottom "space-time plot" shows, at each instant of time, the 
amplitude at each position with red representing positive and blue negative amplitudes. 
The source configuration used in these plots is shown in Figure 7.1. 
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right and top-to-bottom. (The fact that they form an 8 by 8 array is coincidental.) 

Each image corresponds to one instant of time and shows the amplitude of all 64 

sources at that instant. Each image is an 8 by 8 array of pixels corresponding 

to the 8 by 8 array of sources and the color of the pixel denotes the amplitude 

of the source. Grey means zero amplitude, blue is current flow toward the viewer 

(positive), red is away from the viewer (negative), and the color saturation indicates 

the amplitude. Both red and blue become a dark grey in a grey scale reproduction. 

This example shows the same source distribution used above. 

10.10 Simulation Results 

Figure 10.3 shows a true source distribution to be reconstructed by the methods 

discussed in this paper. A moving source originates at row 7 and column 5 and 

moves along a curvilinear path to row 2 and column 5. Figure 10.4 shows the 

detector measurements (including noise) generated by this source distribution. 

Figure 10.5 shows the results obtained by the method of instantaneous recon­

struction on the model problem. The time-space plot at the top shows the upper 

and lower 1o- error limits on the amplitude. Figure 10.6 shows the results obtained 

by the method of sequential reconstruction on the model problem. Figure 10.7 

shows the results obtained by the method of spatial SVD reconstruction on the 

model problem. 

10.11 Discussion and Conclusions 

All. of the reconstruction methods track the apparent movement of the active source 

from bottom to top, although there is a substantial loss of spatial resolution, espe­

cially for source locations near the ·bottom. The instantaneous reconstruction has 

more high frequency noise than the others, since it has no temporal filtering. The 

sequential and SVD methods give similar results, though the SVD method appears 

to give slightly better spatial and temporal resolution; this improvement, however, 

seems to depend on the choice of problem and the criteria used for evaluation. All 

three of the methods tested here are quite fast, taking no more than a few minutes 
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J 

Figure 10.3 True source distribution for the model problem. A current source orig­
inates at row 7 and column 5 and moves along a curvilinear path to row 2 and column 
5. 
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Figure 10.4 Detector measurements for the model problem. This plot shows, for 
each detector location, the measured field, including noise, as a function of time. The 
detector configuration is shown in Figures 7.1 and 7.2. 

to compute; the direct computation is 100 to 1000 times slower and has not been 

implemented or tested. Instantaneous reconstruction is the fastest, sequential next, 

and SVD slowest. Since it appears to have the best resolution, the SVD method 

may be best for any problem that satisfies its conditions on the form of the priors. 

The sequential method has less restrictive conditions and is a good second choice. 

All. of these methods restrict the form of the priors to obtain computational 

efficiency. Whether the restrictions are sufficiently loose to permit the solution of 

real biomagnetic imaging problems is a question for future research. 

The availability of standard errors for the reconstruction and a means for testing 

for violations of the priors provides a necessary statistical check of the validity and 

significance of the reconstructions obtained. 
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Figure 10.5 Results of instantaneous reconstruction. Reconstructing independently 
at each instant of time yields the source distribution shown above. The upper and lower 
curves in the upper plot indicate the upper and lower lo- confidence limits. 
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Figure 10.6 Results of sequential reconstruction. Reconstructing sequentially in time 
and space yields the source distribution shown above. The reconstruction is less noisy 
and slightly sharper than obtained by instantaneous reconstruction. 
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Figure 10.7 Results of spatial SVD reconstruction. Reconstruction using the SVD 
method yields the current distribution shown above. This reconstruction is the sharpest 
and least noisy but makes the strongest assumptions on the form of the spatiotemporal 
covanance. 
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Chapter 11 
Simulations Using 

A Spherical Head Model 

The previous chapters of this dissertation have developed an inverse method us­

ing prior information and explored various aspects of its performance in simplified 

MEG problems. It appears from these simulations that prior information about 

the location and amplitude of the primary current sources can be used to improve 

the reconstruction. The results of the previous chapters, however, were obtained 

using simplified magnetic source models that are unrealistic in that: The SNR used 

in many of the previous simulations is higher than is usually available in magne­

toencephalography. Real sources in the head do not lie exactly on the modelled 

source locations. There are usually only a few relatively strong focal sources rather 

than many weaker sources with independent Gaussian amplitudes. And densely 

sampling the possible source volume to achieve high spatial resolution will usually 

generate more possible sources than there are detectors. 

The primary purpose of this chapter is to present the results of a more realistic 

MEG reconstruction problem and to demonstrate that these differences between 

theory and reality do not prevent OCLIM from providing useful reconstructions. A 

secon~ purpose is to demonstate that the inclusion of volume currents in the forward 

problem improves source localization when vector magnetometers are used. 

11.1 An Improved Algorithm for OCLIM 

The algorithm presented in Section 7.2 can be speeded up by using some new 

identities connecting the values to be computed and perhaps by using Monte Carlo 
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estimation for the confidence limits. We consider the case of sources uncorrelated 

with noise (r = 0), which is the most common in practice. Then the measurement 

residual is 

r = b- Fq =(I- FAFT(FAFT + :E)-1)b 

- = :E(FAFT + :E)-1b = :Ep , (251) 

where p = (FAFT + :E)-1 b is already computed as an intermediate result. Fur­

thermore, consider 

pT r = pT:Ep = bT(FAFT + :E)-1:E(FAFT + :E)-1b 

= bT[:E-1 _ :E-1 F(FT:E-1 F +A -1 )-1 FT:E-1 ]:E:E-1 :E 

[:E-1 _ :E-1 F(FT:E-1 F +A -1 )-1 FT:E-1 ]b 

= bT[I _ :E-1F(FT:E-1F +A -1 )-1FT]:E-1 

[I- F(FT:E-1F +A -1)-1FT:E-1]b 

= (b- Fq)T:E-1(b- Fq) 

= x2 (25_2) 

where the second line was obtained by using the well-known ABCD lemma [44, p. 

24] 

(A- BCD)-1 =A - 1 +A - 1B(c-1 - DA - 1s)-1DA - 1 (253) 

Similarly, notice that 

(254) 

Finally, the surprise may be computed using the identity 7
2 = x2 + p2, or p2 = 

7
2 - x2 ; the expected value of the surprise is E p2 = E 7 2 - E x2 = M - E x2 . 

11.1.1 Initialization 

Initialization includes those computational steps that are independent of the actual 

data and which can be done in advance of data collection. The required inputs are 

the forward transfer matrix F, the source covariance matrix A, the noise covariance 

matrix :E, and the number of detectors M. 

139 



Chapter 11. Simulations Using a Spherical Head Model 

1. Compute and save the product FA for later use. This requires O(MN2 ) 

flops. 

2. Compute the matrix B = FAFT + :E by direct matrix multiplication and 
-, 

addition in O(MN2 ) flops. Compute and save Tr(FAFT). 

3. If desired, compute the signal-to-noise ratio SNR = Tr(FAFT)/ Tr(:E), using 

the intermediate value FAFT computed in the last step. 

4. Compute and save the Cholesky decomposition LLT of B in 0( M3) flops. 

5. Choose a acceptable false positive rate a; this is the fraction of the data 

sets which are actually consistent with the priors but which will nevertheless be 

classified as inconsistent. Figure 8.1 shows the false positive rate a as a function of 

72 .t for various values of M. Compute the corresponding critical value 72 .t such en en 

that P( 7;rit I M) = 1 - a where P(x2 I M) is the cumulative distribution function 

for the x2 distribution with M degrees of freedom. 

The values of L, FA, and 7;rit must be saved for use in inverting particular data 

sets. The value of SNR gives some indication of the reconstruction quality that can 

be expected. The total cost is O(M3) + O(MN2) flops; some minor improvements 

are possible if A or :E are diagonal. 

11.1.2 Confidence Limits: Direct Method 

The direct computation of the confidence limits is exact (to within roundoff error) 

but may be slower than the Monte Carlo method when N > M. In either case, the 

computation may be done prior to data collection. The computational steps are: 

1. Compute the Cholesky decomposition ssT of the matrix :E in O(M3) flops 

if :E is dense and O(M) flops if it is diagonal. 

2. Compute E x2 = IlL -lSII} in O(M3) flops if sis dense and O(M2 ) if sis 

diagonal. 

3. Compute the mean surprise by Ep2 = M- Ex2 . 

4. Compute X = L -l FA by back substitution in O(M3) flops. This can be 

reduced to O(M2) flops if A is diagonal. 

5. Compute A= A- xTx directly in O(N3) flops. The diagonal entries a~n 

of A are the squares of the standard errors for the corresponding estimates qn. 
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6. Compute the mean reconstruction error 'T}2 = Tr(A). 

The values of A, 'T}2 , E x2 , and E p2 provide information to help the user interpret 

the reconstruction results. The total computational cost is O(M3) + O(N3) flops 

if A is dense or O(M2) + O(N3) flops if A is diagonal. 

11.1.3 Confidence Limits: Monte Carlo Method 

Computing the confidence limits by the Monte Carlo method may be advantageous 

if A and ~ are diagonal, if only low accuracy is required, or if N ~ M. This 

version assumes that the a posteriori covariances &rj for m =/= n are not required 

but only the a posteriori variances &~m. 

1. Compute the Cholesky decomposition RR T of the source covariance matrix 

A. This takes O(N) flops if A is diagonal and O(N3) flops if dense. 

2. Compute the Cholesky decomposition ssT of the noise covariance matrix 

~. This takes 0( M) flops if ~ is diagonal and 0( M 3) flops if dense. 

3. Repeat steps 4-6 R times, where the number of realizations R is chosen to 

yield sufficient accuracy. 

4. Generate two independent standard normal random vectors Zl and z2, where 

Zl has length Nand Z2 has length M. This takes O(M + N) flops per realization. 

5. Compute a sample measurement vector x = FRz1 + Sz2. This takes 

O(MN) + O(N2 ) flops per realization. 

6. Compute the intermediate value p = L -lx and the corresponding recon­

struction y = (FA)TL -T p. This takes O(M2 ) + O(MN) flops per realization. 

7. Compute the approximate mean square residual E x2 = ~ Lr p;Epr. This 

requires O(RM2 ) flops if~ is dense but only O(RM) flops if it is diagonal. 

8. Compute the approximate a posteriori variances &~n '""' o:~n - 1 Lr Y?:n 

where Yrn. is the nth element of the rth realization of y. This requires 0( RN) 

flops. 

The total computational cost is 0( RM2 ) + 0( RN2 ) provided that both A and 

~ are diagonal or are sparse enough that their Cholesky decompositions can be 

computed in not more than O(M2 ) and O(N2 ) flops. 
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11.1.4 Reconstruction 

Computing the estimate for each input b requires the values of FA, L, and 7;rit 

computed during initialization. The compuational steps are: 

1. Compute p = L -TL -lb by back substitution in O(M2) flops. 

2. Compute 72 = pTb. If 72 > 7;rit, classify the given data as inconsistent 

with the priors; this means that the data set b does not appear to be taken from 

the statistical population defined by the priors and should not be reconstructed 

using those priors. Otherwise, classify it as consistent and proceed with the recon­

struction. 

3. Compute the solution q = (FA)T pin O(MN) flops. 

4. Compute the residual r = :Ep in O(MN) flops if :E is dense and O(M) if :E 

is diagonal. 

5. Compute x2 = pT r in O(M) flops. 

6. Compute p2 = 72 - x2. 

The value of q is the desired reconstruction. The values of r, x 2, 72, and p2 are 

intended to provide insight into the quality of the reconstruction. The total cost 

per reconstruction is O(M2 ) + O(MN) flops. 

11.2 Methods 

The following J:viEG model problem was used in individual reconstructions and in 

Monte Carlo simulations to investigate the performance of the OCLIM algorithm 

under realistic conditions. 

11.2.1 Detector Configuration 

The detector configuration used in the model problem is intended to model a generic 

next-generation whole-head MEG system but does not exactly model any partic­

ular system. The detector array consists of 82 vector magnetometers more or less 

uniformly distributed on a spherical shell of radius 13 em and extending 105° from 

the top of the head, thus covering slightly more than a hemisphere. Each vector 

magnetometer measures the three components of the field normal and tangential 
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to the head, giving a total of 246 measurements. Each measurement has zero-mean 

Gaussian noise of 50 IT RMS amplitude and the noise is uncorrelated between 

measurements. 

11.2.2 Assumed Source Models 

The head was modeled as a spherical conductor of radius 10.5 em at the inside 

boundary of the skull. Since the skull has very low conductivity relative to the 

brain and cerebrospinal fluid, currents flowing in the skull and scalp have a neglible 

effect on the measured magnetic fields and were not simulated. The brain was taken 

as the upper hemisphere of radius 9 em and the cortex as the upper hemispherical 

shell of inner radius 7 em and outer radius 9 em. The primary current distribution 

was modelled as a rectangular grid of three-component current dipoles at a 1.8 em 

spacmg. 

Note that in this geometry, radially oriented current dipoles produce no external 

magnetic field and thus cannot be detected at all. In addition, the volume currents 

produce only magnetic fields tangent to the surface of the sphere and have no effect 

on radial field measurements. 

Two different source configurations were simulated. In the whole brain ( CP-) 

source model, all sources were assumed to lie within the brain but not necessarily 

in the cortex; there were 277 distinct sites and 831 distinct source amplitudes to 

be reconstructed, as shown in Figure 11.1. In the cortical priors model (CP+ ), all 

sources were assumed to lie within the cortex only; there were 129 sites and 387 

independent source amplitudes, as shown in Figure 11.2. 

In both source models, each independent source amplitude was assumed to be 

Gaussian with mean zero and standard deviation 2.5 nA-m. This source variance 

was chosen to yield an RMS signal amplitude at the nearest detector of about 200 

IT, which is typical of visual evoked field measurements. 

The cortical priors model was chosen to facilitate comparison with the whole 

brain model. If the purpose was to obtain the best reconstructions rather than 

to compare the effects of the source models, it would probably be appropriate 
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Figure 11.1 Source and detector configuration without priors (CP-). The detectors 
are vector magnetometers more or less uniformly distributed over a spherical cap; the large 
black triads show their location and orientation. The sources were placed on a rectangular 
grid throughout the entire brain and are shown by the smaller gray triads. 

to increase the number of sources, use only tangential sources, and space them 

uniformly over the surface of several hemispherical shells. 

Each of these models was used both with and without volume currents. In 

the no volume current (VC-) case, the magnetic field at the detctors is assumed 

to depend only on the primary current. In the volume current (VC+) case, the 

magnetic field at the detectors is computed using the formulae given by Sarvas (86] 

for dipole sources in a spherical conductor. This yields four distinct models to be 

compared, as summarized in Figure 11.3. 

Figure 11.4 shows the RMS signal amplitude at each detector for all four of the 

source models; the detectors are numbered to place all the radial detectors first,. 
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Figure 11.2 Source and detector configuration with priors (CP+ ). The detector 
configuration is identical to the previous figure, but the sources were restricted to the 
cortex. 

SMO CP- VC- No priors, no volume currents; 

SM1 CP+ VC- Cortical priors, no volume currents; 

SM2 CP- VC+ No priors, volume currents included; and 

SM3 CP+ VC+ Both cortical priors and volume currents included. 

Figure 11.3 Source models to be tested. 

followed by the tangential detectors. Note that the signal ranges between 100-200 

fT for the radial detectors, which is typical of visual evoked field imaging. Including 

the volume currents for this spherical head model reduces the tangential fields by 

about two-thirds but has no effect on the radial fields; thus we expect that including 
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Figure 11.4 RMS signal amplitude for model problem. This plot shows the RMS 
signal amplitude for each detector for all four of the source models; the models are, from 
top to bottom, CP-VC-, CP+VC-, CP-VC+, and CP+VC+. Detectors 1-82 measure 
the radial component of .field, detectors 83-164 the eastward component, and detectors 
165-246 the northern component. The inclusion of volume currents has no effect on 
the radial field, but reduces the tangential fields by about two-thirds. The radial field in 
the CP+VC+ source model ranges from 10Q-180 fT, which is typical for visual evoked 
response measurements. 

the volume currents with significantly improve the reconstruction accuracy when 

tangential field measurements are used. The signal-to-noise ratios for the CP-VC+ 

and CP+ VC+ source models are 8.01 dB and 6.89 dB. 

11.2.3 True Source Model 

The assumed source model is that all of the modelled source locations are active 

simultaneously but each with a relatively low amplitude. A more realistic model 

of the human brain is that only a few sources are active at any given time but 
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have higher, amplitudes; furthermore, the positions of these sources will not exactly 

match any of the assumed source locations. 

One of the purposes of this simulation is to explore whether this simplified 

. Gaussian model is adequate to allow reconstruction of realistic source distributions. 

Thus the statistical model actually used to generate source distributions in this 

simulation is as follows: Choose at random 5 locations within the cortex as defined 

above (without regard to whether or not they fall on the modelled source locations). 

At each of these random locations, choose a direction randomly chosen over the 

surface of a sphere and assign a current dipole moment of magnitude 20 nA-m at 

that location and in that direction. 

To compare this to the assumed source distribution, suppose that we have 

the 129 sites of the CP+ model, of which a randomly chosen 5 are active. The 

expected variance at a random site is then (5/129) · (20 nA-m)2 which divides 

equally over the three components to yield a variance of (1/3) · (5/129) · (20 nA-m)2 

or a standard deviation of 2.27 nA-m for each component, which approximately 

matches the assumed value of 2.5 nA-m. 

11.2.4 Energy Concentration 

A common measure of the localization accuracy of a reconstruction algorithm is 

the full-width half-maximum (FWHM) of its point spread function; that is, the di­

ameter of the circle or sphere which connects the points at which the point spread 

function has half its maximum value. This is not appropriate in the present prob­

lem, since the point spread function is asymmetric and since the reconstruction 

grid is rather sparse. An alternative is to compute how much of the reconstructed 

source energy appears within a specified radius ao of the true source position. Given 

the ·sparse grids used here, however, it is not appropriate simply to count all the 

reconstructed source energy within the specified radius, since this sum will change 

discontinuously as the true source location moves relative to the modelled source 

locations. A better approach is to weight this sum by some smooth decreasing 

function of distance. A Gaussian is a reasonable choice, although some investi­

gation of alteratives might be useful. Since the reconstructed amplitudes may be 

147 



Chapter 11. Simulations Using a Spherical Head Model 

either positive or negative, they are squared to yield energy, which is then weighted 

and summed. The actual value of the energy is probably less meaningful than the 

fraction of energy near the true source location relative to the total energy of the 

reconstruction. Thus, the energy concentration may be formally defined by 

E t t
. L~=l q~ · exp( -II.P- Pnll 2 /2aff) 

nergy concen ra Ion = ~N A

2 L..m=l qn 
(255) 

where N is the total number of modelled sources, qn is the reconstructed amplitude 

of the nth modelled source, pis the true position of the source, Pn is the position of 

the nth modelled source, and ao is the standard deviation of the Gaussian selected. 

The choice of radius ao should be related to the resolution of the reconstruction 
l'r 

or to the spacing between the modelled sources. One convenient choice is set it to 

the maximum possible distance between the true source location and the nearest 

modelled source location. This is achieved when the true source is located at the 

center of a cube formed by eight modelled source locations; the distance is then 

ao = 1v'3 · 1.8 em = 1.559 em. Fortunately, the precise value chosen for ao does 

not seem to affect the relative performance of the source models. 

11.3 Simulation Results and Discussion 

The following specific hypotheses were investigated by computer simulation of the 

model problem: 

1. The inclusion of volume currents and prior information on possible source 

locations decreases the width of the point spread function, presumably improving 

resolution. 

2. It is possible to distinguish true sources of moment 20 nA-m from background 

noise in the reconstruction. 

3. OCLIM will provide useful reconstructions even if there are only a few active 

sources which do not lie exactly on the modelled source locations and there are more 

modelled source locations than field measurements. 

4. OCLIM can resolve several simultaneously active sources within the brain. 

In all of these simulations, volume currents were included in computing the 

measured fields, regardless of the assumed source model. 
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11.3.1 Source Models Compared 

The Monte Carlo simulation was done to test Hypothesis 1 by comparing the source 

energy localization performance of the four source models. Fifty realizations were 

computed, each of which has a single tangential source of moment 20 nA-m at 

a random location in the cortex. Each of the source models was then used to 

reconstruct the source location and the energy localization computed; the results 

were plotted to yield Figure 11.5, where+ denotes CP-VC- vs CP+VC+, x 

denotes CP+ VC- VS CP+ VC+, and 0 denotes CP-VC+ vs CP+ VC+. If a point is 

above the diagonal line, it means that CP+ VC+ provides better energy localization 

than the alternative model. All these simulations included measurement noise. 

Note in Figure 11.5 that almost all of the sample points are above the diagonal, 

indicating the that CP+ VC+ model has better source localization than any of the 
. 

other three source models. CP-VC+ is slightly worse than CP+ VC+ but consis-

tently so, indicating that priors do provide an improvement in source localization. 

Both CP-VC- and CP+VC- are usually worse than CP-VC+ and CP+VC+, 

indicating that the inclusion of volume currents in the forward model improves the 

source localization; note that the difference between either CP-VC- or CP+ VC­

and CP+ VC+ is quite variable, so that neglecting volume currents will both in­

crease the reconstruction error and add its variance. 

11.3.2 True Sources versus Background Noise 

Hypothesis 2 claims that true sources can be distinguished from background noise 

in the reconstruction. To estimate the background levels of the energy concen­

tration when no source is present, the previous simulation was repeated with the 

dipole moment set to zero; the resulting mean and standard deviation of the en­

ergy concentration are shown in Figure 11.6. Note that almost all of the realizations 

plotted in Figure 11.5 exceed the upper 2o- threshold for the zero-signal energy con­

centration; thus it appears that either this or perhaps a 3o- threshold would reliably 

distinguish sources of 20 nA-m moment or higher from reconstruction noise. 
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Figure 11.5 Energy concentration compared for source models. Fifty realizations of 
a source location in the cortex were generated and reconstructed with each of the four 
source models. This scatter plot compares the energy concentration for the four source 
models, where + denotes CP-VC- vs CP+VC+, x denotes CP+VC- vs CP+VC+, 
and o denotes CP-VC+ vs CP+VC+. If a point is above the diagonal line, it means 
that CP+VC+ provides better energy localization than the alternative model indicated 
by the symbol. 

11.3.3 Sample Point Spread Functions 

Hypothesis 3 claims that OCLIM is robust to certain discrepancies between the 

assumed and actual source models. The simulations in this section verify that claim 

by showing samples of the point spread functions for sources at various positions; 

they also supplement the quantitative measures of localization by giving a visual 

picture of the point spread function. 

Figures 11.7 through 11.11 show a series of reconstructions in which a single 
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Model Mean± S.D. Mean+ 2 S.D. 

CP-VC- 0.0266 ± 0.0114 

CP+VC- 0.0279 ± 0.0115 

CP-VC+ 0.0297 ± 0.0148 

CP+ VC+ 0.0302 ± 0.0150 

0.0494 

0.0509 

0.0593 

0.0602 

Figure 11.6 Zero-signal energy concentration versus source model. The mean and 
standard deviation of energy concentration when no source is present are shown for each 
source model. The upper 2o- deviation could be taken to distinguish true signals from 
background noise in the reconstruction. 

true source is active and there is no measurement noise. Thus they show the point 

spread function of the reconstruction algorithm for several possible source locations. 

The first column shows the true location of the source; the next four columns show 

the reconstructions obtained using the four source models, all at the same intensity 

scale. Each row of images represents one transverse slice through the head. The 

solid circle is the inner surface of the skull (and thus the boundary of the spherical 

conductor); the two dotted circles indicate the inner and outer boundaries of the 

cortex. The capital letters in the top left image denote Anterior, Posterior, Right, 

and Left. Successive rows present successive slices through the head from top to 

bottom. 

These reconstructions confirm the quantitative results on energy concentration 

shown in the last section. The CP+ VC+ source model generally provides a higher 

peak intensity than the other source models and there is less energy outside the 

peak. The width of the point spread function varies depending on the location of 

the source, but usually has most of its energy within 1-2 pixels or 1.8-3.6 em of the 

peak. In Figures 11.7 through 11.9 the reconstructed peak is at the same location as 

the true source; in Figures 11.10 and 11.11 it is displaced by one pixel. Comparing 

the models does not show any clear pattern as to whether priors or volume currents 

provide a larger improvement. 

Another set of simulations was done for the same sources but including mea­

surement noise. The patterns observed are much the same except that there is 
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CP- VC- CP+ VC- CP-VC+ 

Figure 11.7 Sample point spread function #1. 

CP- VC- CP+ VC- CP- VC+ 

Figure 11.8 Sample point spread function #2. 
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Truth CP- VC- CP+ VC- CP- VC+ 

Figure 11.9 Sample point spread function #3. 

Truth CP- VC- CP+ VC- CP- VC+ 

Figure 11.10 Sample point spread function #4. 
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Truth CP- VC- CP+ VC- CP- VC+ CP+ VC+ 

Figure 11.11 Sample point spread function #5. 

noticeably more background noise in the reconstructions. The sources, however, 

remain clearly distinguishable from the background. 

11.3.4 Reconstruction of Multiple Sources 

Hypothesis 4 claims that OCLIM can resolve several simultaneously active sources 

in the brain. 

Figure 11.12 shows the reconstruction for 5 simultaneously active sources in 

the cortex, generally tangential with dipole moments ranging from 18 to 25 nA-m. 

These sources were not placed directly over the modelled source locations. Two 

of the sources, in slices 3 and 5 counting from the top, are clearly visible in the 

reconstruction. The sources in slices 2 and 4 are marginally visible but appear 

to have been displaced to slice 3. The source in slice 1 is visible as a blurred 

reconstruction in the same slice; it is perhaps arguable that a source is present but 

it is not clearly localized. 
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Truth CP- VC- CP+ VC- CP- VC+ CP+VC+ 

Figure 11.12 Reconstruction of multiple sources-high noise . 

Truth cP- vc- CP+ VC- CP- VC+ CP+ VC+ 

Figure 11.13 Reconstruction of multiple sources-low noise. Signal averaging has 
been used to reduce the measurement noise by a factor of five. 
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Figure 11.13 shows the reconstruction for the same five sources, except that the 

noise has been reduced by a factor of 5 to simulate repeating the experiment 25 

times ard averging the results; the assumed noise level has not been changed. In this · 

case all five of the sources are found in the reconstruction, although not all of them 

are well localized. The fact that reducing the noise improves the reconstruction 

only slightly indicates that the primary contribution to the reconstruction error is 

the width of the point spread function rather than measurement noise. 

The source locations used in these simulations were well separated but were 

still not always sharply localized. It is likely that sources closer together would not 

be clearly resolved. 

11.4 Conclusions 

An OCLIM reconstruction will provide useful results even when the true source 

locations do not exactly match the modelled source locations, when there are more 

modelled sources than detectors, and when there are only a few true sources of 

large amplitude rather than many small sources. 

If the true sources are strong and not too close together, the OCLIM reconstruc­

tion will often resolve several simultaneous true sources, although this appears to 

require a somewhat better SNR that is available in the model problem. The ability 

to detect multiple simultaneous sources is a useful improvement over moving dipole 

methods. 

The point spread functions of the true sources are generally rather broad, with 

a FWHM of perhaps 1-3 em; thus it is not possible to resolve sources placed any 

closer together. 

The inclusion of volume currents in the forward problem provides a definite 

improvement in the energy concentration in the reconstruction of a dipole source, 

and restricting the source model to the cortex provides a small but consistent 

improvement. Thus including volume currents and source priors can be expected 

to provide better source localization. Note, however, that if radial magnetometers 

are used with a spherical conductor head model, that the volume currents have no 

effect on the· reconstructions. 
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Chapter 12 
Summary and Conclusions 

This final chapter summarizes the contributions made by this dissertation, offers 

some conclusions as to their value in biomagnetic imaging, indicates some unre­

solved problems, and presents some recommendations for further research. 

12.1 Contributions 

This dissertation makes the following contributions to the solution of the linear 

inverse problem with statistical priors, including the biomagnetic source imaging 

problem: 

• A proof that, under the usual assumptions for the biomagnetic forward 

problem, fixing the position of the sources makes the measured flux values linear 

functions of the unknown source amplitudes. The usual assumptions are that it 

is quasistatic (propagation delays and displacement currents can be ignored) and 

that Ohm's law holds for biological tissues (current is proportional to electric field). 

In consequence, the biomagnetic inverse problem becomes a linear inverse problem 

and it is possible to compute the forward transfer matrix for any physical model 

by solving the forward problem for unit sources. Furthermore, it is possible to 

reconstruct the primary current sources alone rather than the total current. 

• The derivation of the optimal constrained linear inverse method ( OCLIM), 

which is the minimum-mean square error estimator for the linear inverse problem 

with statistical prior information. 

• The demonstration, that the OCLIM estimator contains as special cases 

the minimum-norm least squares (MNLS), optimally truncated pseudoinverse (OT­

PIM), optimally weighted pseudoinverse (OWPIM), first-order Tikhonov regular-
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ized pseudoinverse, and the Wiener estimator for certain classes of priors and that 

it provides smaller reconstruction error in the general case. Furthermore, the op­

timal truncation, weighting, or regularization para:rrleter is directly related to the . 

signal-to-noise ratio. The maximum a posterior estimator is also a special case 

under the assumption of Gaussian statistics. 

• The definition of a new measure of reconstruction quality, called the surprise, 

which is the log likelihood of the reconstructed source distribution relative to the 

assumed priors; the surprise indicates how implausible the reconstruction is relative 

to the priors. 

• The statistical characterization of the surprise, the reconstruction error ( re­

construction versus truth), and the residual (reconstructed versus actual measure­

ments) for both the general and Gaussian cases. 

• The derivation of confidence limits for the reconstructed source amplitudes 

under the assumption of Gaussian priors and the discovery that in many cases it 

is more efficient to estimate the confidence limits by Monte Carlo methods than to 

compute them directly. 

• The development of efficient algorithms for the numerical computation of 

the OCLIM estimate and its quality estimates for both instantaneous and time 

series data. The identification of assumptions on the spatiotemporal structure of 

the source and noise priors which allow the computation to be speeded up by several 

orders of magnitude. 

• A demonstration that the OCLIM reconstruction yields useful results in a 

realistic neuromagnetic source imaging problem, even when the true sources do 

not fall exactly on the modelled sources and when the true source statistics do 

not exactly match the assumed statistics. Furthermore, OCLIM can often resolve 

multiple simultaneously active sources in the brain. 

• The discovery that misinformative priors can yield less accurate reconstruc­

tions than uninformative priors, and the development of a statistical test that can 

sometimes detect misinformative priors. This test, however, may not appear to 

work reliably at the low signal-to-noise ratios characteristic of biomagnetic imag­

mg. If the test is not reliable, one important consequence is that an OCLIM 
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reconstruction cannot be taken to rule out the existence of sources not included in 

the model. That is, the reconstruction may be taken to suggest source locations 

but should not be used to prove the existence or non-existence of a source. 

The problem of statistically characterizing the reconstruction quality has led to 

two other contributions which may be more widely applicable. 

• The definition of a generalized x2 distribution in which arbitrary means, 

variances, and covariances are allowed, and the derivation of the mean, variance, 

and characteristic function of that distribution. The same distribution suffices to 

describe the distribution of xT Ax or llxll2 for any Gaussian random vector x and 

symmetric positive semidefinite matrix A. 

• The development of an FFT-based algorithm to compute the probability 

density function of a general continuous non-negative univariate random variable 

given its characteristic function. The derivation of an L2 error bound for this 

algorithm and the demonstration that the algorithm converges provided that the 

characteristic function and the density function decay sufficiently rapidly. 

Some less important contributions include: 

• A demonstration that including volume currents in the forward problem 

yields better reconstructions. 

• A precise physical interpretation of the common assumption that the co­

variance matrix of a random vector is nonsingular. 

• A proof that estimating the amplitudes of uninteresting "nuisance" sources 

will not improve the estimates of the desired sources, provided that the nuisance 

sources are taken into account in computing the measurement covariance. 

• A proof that the optimal estimate subject to a linear constraint can be 

obtained by projecting the unconstrained optimal estimate into the null space of 

the constraint matrix. 

• A demonstration that the estimates of reconstruction quality provided by 

OCLIM can be used to evaluate and compare possible magnetometer array designs. 
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12.2 Unresolved Problems 

The main thrust of this dissertation has been to develop the mathematical theory 

needed to incorporate statistical prior information in the linear inverse problem 

and, to a lesser extent, to develop efficient computational algorithms for this prob­

lem. Except for Chapter 11, the various simulations serve primarily to validate the 

mathematical theory. The simulations of Chapter 11 are best regarded as a pilot 

experiment to determine whether or not the use of OCLIM and prior information 

is sufficiently promising to justify further development. It appears that they are, 

but there still remain some serious practical and theoretical difficulties in the way 

of clinical or research application. 

12.2.1 Estimating the Priors 

This dissertation has focused on the use of prior information to improve recon­

struction accuracy, given the appropriate prior information, but it does not address 

the problem of obtaining the necessary prior information. Obviously, any practical 

application of the methods developed here will require the development of methods 

for actually estimating the source and noise statistics. Given that misinformative 

priors can yield an erroneous reconstruction, it will be important to be able to 

demonstrate that the priors are in fact correct for some defined population. It is 

necessary in addition to explore the effects of slight errors in the priors. 

12.2.2 Misinformative Priors 

The use of prior information, carefully estimated or not, carries with it the risk that 

the actual data set is not drawn from the population defined by the priors. If so, 

then any reconstruction using such misinformative priors is apt to be misleading, 

if not outright wrong. Under favorable conditions, such as a high signal-to-noise 

ratio, strong unexpected sources well separated from the modelled sources, and a 

restrictive source model, the T 2 test often detects the presence of the unexpected 

sources and warns against trusting the reconstruction with priors. It is not yet clear 

whether or not magnetoencephalography offers sufficiently favorable conditions that 
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it is possible to consistently detect unexpected sources. Given that an unexpected 

source might not be detected (and the non-uniqueness of the solution), source 

reconstructions from MEG data cannot be regarded as definitive in showing the 

existence or non-existence of a source at some specified location. That is, they may 

be used to suggest a source hypothesis to be tested by other methods but cannot, 

at least in their present form, be used to critically test a source hypothesis. 

12.2.3 Hypothesis Testing 

The biomagnetic source imaging problem is essentially singular in that. there are 

many different source distributions consistent with the data. Using prior informa­

tion to choose one of these possible distributions as "the" solution does not provide 

a satisfactory means of testing a hypothesis that there is or is not an active source 

at a specified location. This inability to prove or disprove the existence of a partic­

ular source limits the applicability of biomagnetic source imaging in medicine and 

cognitive research. 

12.2.4 Computational Cost 

The computation effort required to initialize an OCLIM reconstruction grows as 

the ninth power of the desired resolution, since the number of possible sources in a 

given volume is proportional to the inverse cube of the source spacing, and the cost 

of the Cholesky decomposition used in OCLIM grows as the cube of the number of 

sources. Thus it becomes very expensive to do high-resolution reconstructions. It 

is also necessary to solve the forward problem for each possible source; if a finite 

element or boundary element model is used and there are many sources, this may 

also add substantially to the computational cost . 

12.3 Conclusions 

OCLIM is potentially valuable in biomagnetic imaging, since it allows the recon­

struction of multiple simultaneously active sources under realistic conditions; it 

still needs to be demonstrated with real experimental data rather than purely by 

simulation. The inclusion of volume currents in the forward model and of prior 
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knowledge as to the possible location and amplitude of the sources improves the 

resolution and accuracy of the reconstruction. 

A disadvantage of prior information, however, is that it can introduce recon­

struction errors if the assumed priors do not truly represent the populati~n from 

which the data set is taken or the actual data set is an outlier in this popula­

tion. This dissertation develops a statistical test for this possibility but it does 

not detect all such cases. Until this problem of misinformative priors is better un­

derstood, OCLIM and prior information should be used conservatively, to suggest 

source hypotheses but not to critically test them. The fact that many different 

source distributions can yield the same external field measurements also suggests 

than any magnetic source reconstruction should be used conservatively. 

An alternative approach to the use of prior information might be applicable 

in cognitive research. Other functional imaging methods such as PET and fMRI 

can localize regions of elevated metabolism in the brain, which are presumed to be 

the regions involved in processing stimuli, but cannot resolve the temporal course 

of activation. If the source model used in OCLIM includes only the relatively few 

regions that appear to be active, then OCLIM can be used to test the hypothesis 

that only these regions are active and determine the time course of activity. This 

approach has not be explored in this dissertation but might prove effective. 

The mathematical approach taken in OCLIM is quite general and can per­

haps be extended to other inverse problems in medical imaging including positron 

emission tomography (PET) and single photon emission computed tomography 

(SPECT). 
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List of Symbols 

Here are listed and defined the mathematical symbols used repeatedly in this 

dissertation. Nonce symbols used only briefly are omitted. The symbols are listed 

in alphabetical order, with Greek letters listed as if spelled out. 

A = EqqT. The a priori covariance matrix of the source amplitudes. 

A = Var( q I b). The a posteriori covariance matrix of the source amplitudes. 

A(r) The magnetic vector potential as a function of position r. 

ak = vf q. The component of q in the direction of the kth right singular 

vector of F. 

aJj = E qiqj. The a priori cross-covariance of source amplitudes qi and qj. 

The (i,j)th entry of A. 

&.Jj = E qiqj. The a posteriori cross-covariance of the estimated source ampli­

tudes qi and qj. The (i,j)th entry of A. 

False positive rate. 

B(2) Magnetic field as a function of position. 

Bn(r) Magnetic field due to the nth source. 

bm Magnetic field measurement (including noise) at the mth detector. 

b The vector of field measurements bm. 
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List of Symbols 

B = E bbT = FAFT + Fr + rTpT + ~- The covariance of the measurement 

vector b. 

,8~ = E(bm- wm)2 . The variance of the signal at the mth detector. 

,B False negative rate. 

Cxy The covariance matrix of the (zero-mean) random vectors x and y, defined 

as ExyT. 

ck The kth weighting coefficient in the weighted pseudoinverse. 

A C The Cholesky factor of the symmetric positive definite matrix A. That 

is, the unique lower triangular matrix R such that A= RRT. 

x2 = (b- F4)T~-l (b- F4). The residual difference between the measured 

and reconstructed magnetic fields. 

E Expectation of a random variable or a random vector. 

E(r) Electric field as a function of position r. 

e = q - 4. The measurement error, defined as the difference between the 

true and reconstructed current distributions. 

en The nth standard basis vector, which contains 1 in position n and 0 ev­

erywhere else. 

e2 = llell2 = llq- 411 2 . The reconstruction error, defined as the squared 

difference between the true and reconstructed current distributions. 

ry2 = E llell2 = E llq- 411 2 . The mean reconstruction error. 

Fmn = 8bm/Bqn. Coefficient relating the field measurement bm to the source 

amplitude qn. 
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List of Symbols 

F The forward transfer matrix with entries Fmn = 8bmf8qn relating the 

field measurement vector b to the source amplitude vector q. 

Ft The Moore-Penrose inverse of F. 

IIAIIF The Frobenius norm of the matrix A, defined as CLmn A~n) 112 . 

r The cross-covariance of the source amplitude vector q and noise amplitude 

vector w. Its entries are rij = E qiw j. 

/ij = EqiWj. The covariance of the source amplitude qi and the noise ampli­

tude Wj· 

rk 

H 

]( 

K' 

A matrix representing a linear estimator of q. 

The complex conjugate (or Hermitian) transpose of the matrix A. 

Current density as a function of position. Equals the sum of a primary 

current ]P(r) and a volume current Jv(r). 

Current density contributed by the nth source. Equals the St11ll of a pri­

mary current J~(r) and a volume current J~(r). 

Rank ofF. 

The lesser of M and N; the maximum possible rank of F. 

k Index over the singular vectors of F. 

L LLT is the Cholesky decomposition of B. 

Ak The kth singular value of F. 

M Total number of detectors used. 
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m Index over detectors. 

f-LO Magnetic permeability of vacuum. Equal to 47r x 10-7 H/m. 

N Total number of current sources in model. 

N The temporal noise covariance matrix in time series reconstruction. 

n Index over the current sources. 

v N umbe10f degrees of freedom in an ordinary or generalized x2 distribution. 

p Position. 

Pn Position of the nth current source. 

p( x) Probability density function of a random variable. 

</>(r) Electric potential as a function of position r. 

</>( t) The characteristic function of a random variable. 

'1/Jm The magnetic flux threading the mth detector coil. 

qn Amplitude of the nth source. 

q The vector of source amplitudes qn. 

q = Hb. An estimate of the source amplitude vector q. 

p(r') Resistivity as a function of position. 

The surprise, or negative log likelihood of the reconstruction relative to 

the assumed priors. Defined as q_T A - 1q_. 

r Position. 

rm Position of the mth detector. 
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r The measurement resid~al b - Fq. 

R RRT is the Cholesky decomposition of A. 

Unit vector in direction of the field component sampled by the mth de-

s 

s 

tector. 

ssT is the Cholesky decomposition of :E. 

The temporal source covariance matrix in time series reconstruction. 

uf w. The component of w in the direction of the kth left singular 

vector of F. 

:E = E wwT. The covariance matrix of the noise amplitude vector w. 

f7Jj = EwiWj· The covariance of noise amplitudes Wi and Wj· The (i,j)th 

entry of :E. 

f7f = E s~. The variance of s k. 

f7(r) Electrical conductivity as a function of position r. 

T 2 The negative log likelihood of a given data set b relative to the assumed 

pnors. 

AT Transpose of the matrix A. 

Tr(A) Trace of the matrix A. 

Uk The kth left singular vector of F. 

vk The kth right sigular vector of F. 

w The unitary matrix representing the discrete Fourier transform and de­

fined by [W]mn = }JJ e- j27rmnj N. 

Wm Noise amplitude in the mth detector. 

w The vector [wm] of noise amplitudes .. 
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