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Abstract

Algorithms for Biomagnetic Source Imaging

With Prior Anatomical and Physiological Information

by
Paul William Hughett

Doctor of Philosophy
Engineering—Electrical Engineering and Computer Sciences
University of California at Berkeley

Professor Thomas F. Budinger, Chair

This dissertation derives a new method for estimating current source amplitudes in
the brain and heart from external magnetic field measurements and prior knowledge
about the probable source positions and amplitudes. The minimum mean square
error estimator for the linear inverse problem with statistical prior information
Was derived and is called the optimal constrained linear inverse method (OCLIM).
OCLIM includes as special cases the Shim-Cho weighted pseudoinverse and Wiener
estimators but allows more general priors and thus reduces the reconstruction error.
Efficient algorithms were developed to compute the OCLIM estimate for instanta-
neous or time series data. The method was tested in a simulated neuromagnetic
imaging problem with five simultaneously active sources on a grid of 387 possible
source locations; all five sources were resolved, even though the true sources were
not exactly at the modelled source positions and the true source statistics differed
from the assumed statistics.

The reconstruction quality can be characterized by the error (reconstructed ver-
sus true source distribution), residual (reconstructed versus actual measurements),
and surprise (likelihood of the reconstruction given the priors). The mean and
variance of these quality measures were derived for the case that only the source
and noise covariances are known; the exact distribution was derived for Gaussian

source and noise statistics. Confidence limits for the reconstruction were derived.
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“Misinformative” statistical priors inconsistent with the actual 'source ampli-
tudes, or source models not including the actual source locations, can yield inaccu-
rate or incorrect reconstructions. OCLIM includes a statistical test for this possibility
but it may not work reliably at the low signal-to-noise ratios of biomagnetic imag-
ing. Thus an OCLIM reconstruction may suggest source locations but does not rule
out the existence of sources not included in the model.

An additional contribution was to develop a generalized chi-squared distribution
in which arbitrary means, variances, and covariances are allowed; the same distribu-
tion describes the squared norm of a Gaussian random vector. The mean, variance,
and characteristic function of the generalized chi-squared distribution were found.
A new FFT-based algorithm with error bounds was developed to compute this dis-

tribution, and is applicable to the calculation of other continuous distributions.

Professor Thomas F. Budinger, Chair
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Chapter 1

Introduction

1.1 Background

The depolarization and repolarization of nerve and muscle cells is accompanied
by ion currents through the cell membrane. Since the intercellular medium is
conductive, these “primary currents” generate in turn “volume currents” in the
body [37]. The total current consisting of both the primary and volume currents
generates magnetic fields inside and outside the body. The magnetic fields resulting
from the depolarization of a single neuron or myocyte can be detected in vitro but
are not large enough to be detected outside the body. However, the coordinated
activity of tens or hundreds of thousands of neurons in the brain or a similar volume
of myocardium does produce magnetic fields which can be detected by arrays of
SQUID (Superconducting QUantum Interference Device) detectors placed near the
head or chest. The recording of these fields is known as magnetoencephalography
(MEG) or magnetocardiography (MCG).

The generated magnetic fields are quite small (femtoTesla to picoTesla) in com-
parison to the earth’s magnetic field (about 50 microTesla) and are easily concealed
by naturally and humanly generated magnetic noise. Baule and McFee [6] appear
to have been the first to detect the magnetic field of the heart, using a coil of 2
million turns in an open field to reduce the background magnetic noise. Cohen
and his colleagues [17, 18, 19] introduced the use of magnetically shielded roomé ’
and cryogenically cooled SQUIDs; this is still the only practical method of de- -

tecting and measuring these tiny fields in a laboratory or hospital environment.
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Chapter 1. Introduction

Fagaly [28] is a fairly recent (1990) review of the state of the art in MEG and MCG
instrumentation.

The volume currents also generate electric potential differences through Ohm’s
Law; these can be detected by electrodes placed in the body or on the body surface.
The recording of such potentials from the brain and heart are known as electroen-
cephalography (EEG) and electrocardiography (ECG). The potentials are in the
microvolt to millivolt range; they are not difficult to measure, although some care
is required to obtain good quality signals.

The recording and analysis of these electric and magnetic signals naturally
generated by the brain and heart provides valuable information about the normai
and pathological functioning of these organs and are useful in both clinical and
research settings. The ECG in particular has proven invaluable in the diagnosis of
cardiac arrhythmias. The magnetic and electric signals arise from the same sources
and contain approximately the same information. Since it is easiter to collect the
electric data, it is more often used in practice.

If signals are collected by an array of detectors rather than a single detector,
1t is also possible to reconstruct the location, orientation, and amplitude of current
sources within the body but high quality data is needed for accurate reconstruction.
These techniques are known as magnetic source imaging (MSI) and electric source
imaging (ESI). Magnetic and electric source imaging are complementary, since the
magnetic field at the surface is most strongly determined by current sources di-
rected tangentially to the surface and the electric potentials are determined by
current sources directed perpendicular to the surface. It has not yet, however,
proven practical to simultaneously collect both magnetic and electrical data. MSI
should offer better reconstruction accuracy than ESI, because all body tissues are
magnetically transparent and the magnetic fields propagate to the surface without
distortion, whereas the electric potentials are distorted by conductivity inhomo-
geneities in the body. MSI is, however, more expensive because a shielded room
and cyrogenically cooled detectors are needed to collect good magnetic data.

Because of its ability to locate the current sources, magnetic source imaging is

useful in studies of heart [95] and brain [41] functioning. There are promising clin-
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‘ Chapter 1. Introduction
ical\applications in cardiology and epilepsy. It is possible to non-invasively localize
accessory pathways in Wolff-Parkinson-White syndrome prior to catheter ablation.
MSI is also used in the surgical treatment of intractable epilepsy to locate both the
epileptigenic focus to be resected and the functional areas of the brain to be con-
served during surgery [81, 89, 87, 96]. There are other potential uses in neuroscience
to delineate the spatial and temporal sequence of cognitive processing events in the
brain in response to auditory, visual, and somatosensory stimuli [3, 27, 53, 83].
Biomagnetism also offers a research tool for schizophrenia [80] and for Parkinson
disease; The function of peripheral sensory and motor nerves can be studied [84,
107] as can the prenatal MCG. A major strength of MSI is that it can resolve events
separated by milliseconds, whereas other methods such as functional magnetic reso-
nance imaging (fMRI), magnetic resonance spectroscopy (MRS), positron emission
tomography (PET) and single-photon emission tomography (SPECT) have time
resolutions of seconds to many minutes, depending on the information sought.

The central problem of magnetic source imaging is to reconstruct the current
distribution inside some inaccessible volume from magnetic field measurements
made outside that volume. It is an example of an inverse problem, as opposed |
to the forward problem of determining the mag;hetic field measurements from a
known current distribution.

Magnetic source imaging shares with many other inverse problems two char-
acteristics that make inverse problems generally more difficult to solve than the
corresponding forward problems. First, the given data do not uniquely determine
the solution. That is, there are infinitely many current distributions confined to
the head or chest that generate the same external magnetic fields. Second, inverse
problems are often ill-conditioned in that small changes in the given data can yield
ia.rge Cha.nges in the reconstruction. As a ,result, the reconstruction often has high -
variance and poor resolution.

Both of these problems can be partially ameliorated by the use of prior infor-
mation about the possible or probable solutions. The primary current sources are
confined to certain types of tissue, principally the myocardium and the cortex of

the brain; the location of these tissues in a particular patient can be determined

3



Chapter 1. Introduction

by a preliminary magnetic resonance or computed tomography scan. The source
amplitudes are limited by the physiology of the heart and brain. Since coordinated
activation of many neurons or myocytes is necessary to generate detectable sig-
nals, the source currents are spatially correlated. Requiring that the source current
reconstruction be consistent with both the given data and these anatomical and
physiological priors can be expected to improve the reconstruction accuracy.
Priors used in this way are intended to be “informative,” to provide information
not present in the magnetic field data. It is, however, possible that the priors are
poorly chosen or that a particular data set is abnormal. If so, the assumed priors
may be “misinformative” and lead to a less accurate reconstruction. Thus, the
use of priors potentially carries both benefits and risks: informative priors should
increase the reconstruction accuracy but misinforrnativé priors may decrease it.
The purpose of this dissertation is to develop constrained reconstruction algo-
rithms for magnetic source imaging (or other applications) for computing source.
current reconstructions that are consistent with both the given magnetic field data
and with anatomical and physiological prior knowledge. A second purpose is to

explore the problem of misinformative priors.

1.2 Prior Research

A variety of reconstruction algorithms have been used for the magnetic source
imaging problem; see Sarvas [86] and van Qosterom [100] for reviews on this topic.

One approach is to model the unknown current distribution as one or more
current dipoles with unknown position, orientation, and magnitude and then to find
the unknown parameters by a least squares fit to the observed measurements [50].
This method is computationally expensive because it is nonlinear in the unknowns
and iterative solution is required. Worse, the method is often numerically unstable
for two or more dipoles.

Various other methods have been used for this problem including the method
of alternating projections [65] and beamforming [104, 103].

A more recent approach models the unknown distribution as an array of dipoles

with fixed positions but unknown magnitudes [45, 79, 92, 105, 106]. Then the
4



Chapter 1. Introduction

magnetic field measurements b can be written as a linear function b = Fq + w
of the unknown current distribution q and measurement noise w. The forward
transfer matrix F is determined by solving the forward problem for unit sources.
The inverse problem in this form can be solved directly, without iteration.

There are other medical imaging methods, including transmission tomogra-
phy and magnetic resonance imaging, which provide high resolution on anatomical
structure but which do not provide the same functional information that MSI does.
A major theme of this dissertation is the use of prior information, obtained by
anatomic imaging or other methods, to improve the resolution and accuracy of
magnétic source imaging by constraining the set of possible solutions.

The prior knowledge must define at least the possible spatial locations of the
sources and the locations of the detectors. This provides sufficient information to
solve the forward problem and define the matrix F. Given only this much prior .
information, the natural method for the inverse problem is the least-squares or
minimum-norm least-squares (MNLS) method [105, 106]. This method (also known
as Moore-Penrose inverse or pseudoinverse method) finds the current distribution
that minimizes the squared difference between the measured fields and the fields
generated by the reconstructed current distribution. Ferguson et al. [30] have de-
veloped a preconditioned pseudoinverse using a priori source amplitudes which, in
their tests, gave better results than either truncation or Tikhonov regularization.

If the statistics of the measurement noise are available, maximum-likelihood
(ML) methods are appropriate [90]. These methods maximize the likelihood of
obtaining the measured fields given the reconstructed current distribution; if the
noise is jointly Gaussian, they also minimize the squared difference between the
measured and reconstructed fields, weighted to reflect the a priori noise variance.

If prior anatomical information is available from transmission tomography or
magnetic resonance imaging, then it may be possible to define the a priori source
amplitude as a function of position. Then minimum mean-square error (MMSE)
methods are appropriate; they minimize the mean (average) squared difference
between the true and reconstructed current distributions. Shim and Cho [91] have

developed methods using a weighted pseudoinverse but their methods are optimal
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Chapter 1. Introduction

and useful only when the a priori source variance is constant. Helstrom [42] has
developed and applied an MMSE method for image restoration; Smith et al. [93]
have developed and tested an MMSE method for magnetic source imaging with
general a priori source variances; Franklin [34] has developed an MMSE estimator

in the general context of Hilbert spaces.
1.3 An Approach to the Problem

The inverse problem with prior information can be represented symbolically as
follows. We have some measured magnetic field data b which was generated by
some unknown source current distribution q via some known functional dependence
b = F(q) + w with measurement noise w. We are given in addition some prior
knowledge P and seek an estimator H to compute an estimate § = H(b,P) of q
which satisfies some admissibility conditions .4 and which is maximally consistent
with both the data b and the priors P as measured by some objective function
S(gq,b,P).

Developing an algorithm for constrained reconstruction requires making sevefal
interlocking choices: the form in which the unknown source distribution q is to be
represented; the forward model F to be used; the admissibility conditions A; the
form in which the prior knowledge P is to be represented; the class of functions
from which the estimator H is chosen; and the objective function S for choosing
the “best solution” among those that are at least minimally consistent with the
data and priors.

These choices represent a compromise among several desiderata: First, they
should lead to an analytical or numerical solution method for the inverse problem:;
second, the method should involve an objective ériterion for correctness or opti-
mality; third, the parameters used in the source model should be physically mean-
ingful, so that the user can understand and interpret the reconstruction; fourth,
the required priors should be directly measureable (at least in principle) by some
calibration experiment; fifth, the method should incorporate some test for misin-
formative priors; and sixth, the reconstruction should include statistical confidence

limits.



Chapter 1. Introduction

Several of these desiderata relate to Popper’s demarcation criterion for dis-
tinguishing scientific (or empirical) statements from non-scientific statements [72].
Popper asserts that a statement or hypothesis is scientific only if it is potentially
falsifiable; that is, if there exists some logically possible experimental outcome that
would disprove it. Scientific hypotheses generally involve reproducible experiments,
since a statement about a non-reproducible experiment usually cannot be falsified.
Scientific statements are corroborated to the extent that they have been subjected
to serious attempts at falsification but have not been falsified.” Corroboration does
not guarantee truth but statements that have been corroborated are generally more
trustworthy than uncorroborated statements.

In the contex of the inverse problem, the use of an objective optimality cri-
terion helps to assure that the reconstructions are reproducible between analysts.
Potentially measureable priors can be falsified by the calibration experiment and
are thus scientific. If the reconstruction includes confidence limits, it can also be
tested and perhaps falsified by more definitive (perhaps invasive) tests.

Many of these choices can be viewed as imposing constraints on the reconstruc-
tion. It is useful to distinguish hard and soft constraints. A hard constraint will
never be violated by the reconstruction. For example, the source model is a hard
constraint in that the reconstruction will never yield a source not contained in the
source model. Conversely, a soft constraint may be violated, if the data support
the violation. For example, the reconstruction will tend to assign larger source
amplitudes at locations considered more likely to contain a source than at locations
less likely, unless the data clearly indicate that a less likely source is responsible for
the data.

Although each of the necessary choices will be discussed at length in the fol-

lowing chapters, it is helpful to consider them briefly now.

1.3.1 Source Model

The source model defines the form of the solution and limits the set of possible
solutions. For example, expanding the unknown current distribution in a series

of basis functions limits the possible solutions to the space spanned by that basis.
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Chapter 1. Introduction

Similarly, requiring that the current density be zero outside the body limits the
possible solutions. Choosing an appropriate source model can eliminate physically
or physiologically impossible solutions and reduce the computational effort needed
for reconstruction. An ill-choseﬁ source model, of course, may not admit or even
approximate the true distribution. Increasing the number of free parameters in the
source model will generally increase both the computational cost and the precision
with which the true distribution can be approximated. »

We will see that the magnetic field is a linear function of the current distribution.
That is, the field due to a weighted sum of current sources is equal to the same
weighted sum of the fields due to the individual sources. Thus, it is convenient
to represent the unknown current distribution as a weighted sum of elementary
sources. The sources are chosen in advance to reflect a priori knowledge as to the
location and orientation of the source currents; the weights are to be found by the
inverse computation. If there is some prior information as to the magnitude of
each source, it can be expressed as a probability distribution on the corresponding
weight.

For example, in magnetoencephalography a set of current dipoles may be chosen
as the elementary sources. The position and orientation of these dipoles are chosen
to match the anatomy determined by magnetic resonance imaging. The volume
currents induced by these dipoles may be included or ignored in computing the
magnetic field due to each dipole.

More generally, a detailed eléctromag;netic finite element model [60, 97] of the
brain and head could be used, choosing as the elementary sources a dipole current in
each element that might contribute to the field. The volume currents are computed
with the finite element model, as are the magnetic fields due to the elementary
source and volume currents. _

The source model is a hard constraint, since the reconstructed source distribu-

tion must be contained in the span of the selected elementary sources.

1.3.2 Forward Model

The forward model contains the physics of the problem, specifying exactly how
8
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the measured magnetic fields depend on the current distribution. It is possible,
for example, to choose a simple physical model in which the magnetic field outside
the body is considered to depend on only the primary currents. This model is
valid for certain simple geometries in which the volume currents have no net effect
on the magnetic fields but it is only approximately true for more realistic body
geometries. It does, however, have the advantage of theoretical simplicity and can
be inexpensively computed. This simple model may be satisfactory when only low
accuracy is required.

Another possible choice is to assume a simple spherical or cylindrical geometry
which approximates the true shape of the body but for which it is possible to obtain
explicit analytical solutions for the volume currents and magnetic fields. This has
often been found satisfactory for magnetic source imaging of the brain, where the
head is modelled as three concentric spheres with different conductivities.

A third choice is to use a detailed geometric model of the head or torso, possibly
obtained from magnetic resonance imaging, and to compute the volume currents
by finite element or boundary element methods. This choice is computationally
expensive but produces the most accurate results. A »

The principal tradeoff involved in the choice of forward model is computational
cost versus accuracy.

The choice of forward model generally imposes a hard constraint, often con-
sistency with known physical laws. The requirement of charge conservation is an

obvious example.

1.3.3 Prior Knowledge

The boundaries between prior knowledge and the other parts of the inverse problem
are not always distinct. For example, the prior knowledge that all sources must be
in the cortex or the myocardium may be most conveniently represented as part
of the source model. Similarly, the requirement for charge conservation will be
automatically incorporated in a finite element forward model.

A common form of prior knowledge that does not fall into any of the other cat-

egories is statistical knowledge about the source distribution and the measurement

9
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noise. Statistical prior knowledge is a soft constraint, since it defines a preference for
the more probable solution over the less probable but does not absolutely exclude
any solution.

The imposition of priors into the inverse problem introduces a potential risk,
since it is not guaranteed that the given data will in fact be consistent with the
priors and it is imprudent at best force the reconstruction to be consistent with
the priors when the data are not. This implies that a constrained reconstruction
algorithm should—if possible—include some test to determine whether or not the

given data are consistent with the assumed priors.

1.3.4 Admissibility Conditions

It is appropriate in many applications to impose admissibility conditions on the
solution. For example, the test mentioned in the last section as to whether or not
the data are consistent with the priors is just such an admissibility constraint. For
another, it might be reasonable to require that the fields due to the reconstructed
distribution match the measured fields .to within some prespecified error. Such
admissibility conditions can, of course, be incorporated in the objective function by
adding a term which is zero if the conditions are satisfied and +co if they are not,
but it is often convenient to consider them $eparately. Admissibility conditions are

hard constraints by definition.

1.3.5 Estimator Class

The estimator H may be restricted to a linear function or to a function of some
particular parametric form. The class of allowable estimators is often chosen so that
it is easy to determine the parameters defining the particular estimator or so that
the estimate is easy to compute. As a general rule, the more restricted the class
from which the estimator is drawn, the less good the resulting estimate is. That
is, it 1s often possible to compute a poor estimate quickly, but a good estimate will
require more time either in analysis or computation.

Given a particular class of estimators, there are often many different numeri-

cal algorithms for computing the estimate. For example, a linear estimator may

10
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be defined as a system of linear equations and solved by any of a variety of algo-
rithms, depending on the detailed structure of the linear system. The choice of an
appropriate algorithm may have a major impact on the computational cost, but
all algorithms for a given estimator should compute essentially the same solution,

apart from roundoff and truncation errors.

1.3.6 Objective Function

There are many dimensions along which the quality of the reconstruction can be

- measured. For example, the reconstruction should match the true source distribu-

tion as closely as possible; it should be consistent with the priors assumed for the
problem; and the reconstructed magnetic fields should match the measured fields
as closely as possible. In addition, it may be desireable that the reconstruction be
“smooth” in some defined sense.

It i1s not possible, in general, to achieve the best possible reconstruction on all
dimensions simultaneously. The purpose of the objective function is to reduce all
the conflicting requirements to a single measure of quality so that it is possible to
decide which is the “best” estimator out of the class of all admissible estimators.
Different choices of the objective funcfion will, of course, lead to different “optimal”
estimators and it may be useful to consider the tradeoffs between different objective
functions. The objective function is a soft constraint.

Once the objective function is chosen, it may be of interest to examine how well
the corresponding estimator does on otHer measures of reconstruction quality.

The objective function and admissibility conditions together define the most
desireable estimator within the given class. For example, the “best” estimator
may be the one that matches the true source distribution as closely as possiBle on
average subject to the constraint that it must match the measured fields within a

specified error.
1.4 Overview of the Dissertation

Chapter 2 discusses source modelling and the biomagnetic forward problem of de-

termining the field measurements for a given source current distribution. Several
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forward models are presented, from fast and simple to slow and accurate. Practical
methods for computing the volume currents in realistic body geometries are also
covered.

Chapter 3 discusses the nature and formalization of the prior knowledge, fo-
cussing on statistical prior knowledge of the source and noise amplitudes. Attention
is paid to the physical interpretation of the priors and the way in which they could
possibly be determined by experiment.
| Chapter 4 presents a unified development of the linear inverse problem, per-
haps with prior knowledge, including the MNLS, ML, weighted pseudoinverse,
and MMSE methods and derives the optimal constrainted linear inverse method
(OCLIM) as the most general and most accurate of these methods. It shows fur-
ther that the weighted pseudoinverse, Gaussian maximum likelihood, and MNLS
methods can all be obtained as special cases of OCLIM by an appropriate choice
of priors.

Chapter 5 defines a generalization of the x2 distribution which will be needed
to describe. the statistics of reconstruction quality in the next chapter, and devel-
ops a numerical algorithm for computing it. As it turned out, the generalized x2
distribution is not essential to the use of OCLIM, but it appears to have other uses
in statistics.

Chapter 6 discusses several useful measures of reconstruction quality and de-
velops, for the estimators of Chapter 4, formulas for the mean reconstruction error,
mean residual, a posteriori variance, and confidence limits. Several of these quality
measures are random variables distributed according to the generalized x2 distri-
bution.

Chapter 7 discusses efficient computational methods for OCLIM and shows the
results from a Monte Carlo simulation to verify the theoretical predictions of the
previous chapters and to compare reconstruction quality between methods with and
without statistical priors for the sources. It also demonstrates that misinformative
priors can, in fact, yield less accurate reconstructions than uninformative priors.

Chapter 8 attempts to address the problem of misinformative priors by devel-

oping and demonstrating by simulation a statistical test for misinformative priors
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that detects some but not all data sets inconsistent with the priors. This test,
unfortunately, does not appear to work reliably at the low signal-to-noise ratios
characteristic of magnetic source imaging; furthermore, it appears that this inabil-
ity is characteristic of the magnetic imaging problem rather than the specific test
developed. A |

OCLIM provides an explicit estimate of the reconstruction error for given priors.
Chapter 9 shows how this estimate can be used as an objective function for the
optimal design of magnetometer arrays for MSI. That is, the geometry of the array
can be chosen to provide the most accurate reconstruction for given priors, within
the limits of technology.

OCLIM can be used to reconstruct dynamic sources distributions from time
series of magnetic field measurements but a direct implementation is computa-
tionally expensive. Chapter 10 shows that the computational cost can be reduced
by several orders of magnitude by making some assumptions about the nature of
the spatiotemporal correlations between sources and gives specific coﬁlputational
algorithms. Also shown are some sample reconstructions using these algorithms.

The preceeding chapters investigated the characteristics of OCLIM in simplified
problems. Chapter 11 demonstrates its performance in a realistic neuromagnetic
source imaging problem; it also summarizes what appears to be the best implemen-
tation of OCLIM for the non-time-series case.

Finally, Chapter 12 summarizes the important results and indicates unresolved

questions for future research.
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Chapter 2

Biomagnetic Forward Problem

An inverse problem solver does not itself specify the physics of the problem to be
solved but instead depends on a forward model. That forward model may be as
simple or as detailed as the user feels is appropriate and the inverse problem solver
will produce a solution consistent with the particular forward model used.

The first part of this chapter shows that, under a broad range of assumptions,

the forward model for magnetic source imaging can be written in the linear form
b=Fq+w , (1),

where b is a vector of field measurements, q is a vector of source amplitudes, F is
a forward transfer matrix, and w is a vector of measurment errors or noise.

The forward transfer matrix F will, of course, depend on the particular as-
sumptions made and the reconstructed source distribution for any given data set
will depend on the forward model via the matrix F. If, for example, the forward
model assumes that the sources are current dipoles in an infinite homogeneous
medium, that the volume currents can be ignored, and that the detectors measure
the magnetic field at a point, then F will have one value and the inverse problem
solver will reconstruct the source amplitudes under those assumptions. If, instead,
the forward modei uses the actual torso geometry, includes volume currents, and
models magnetometer coils with finite area, then F will have a different value and
the inverse problem solver will reconstruct the source amplitudes under these dif-
ferent assumptions.

The middle part of this chapter develops several specific forward models and

shows how the forward transfer matrix F may be computed in each case, given a
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forward problem solver for computing the magnetic field for a specified source cur-
rent distribution. The models range in realism from a simple dipole model with no
volume currents and point magnetometers to a sophisticated model with distributed
current sources, volume currents in a realistic body shape, and magnetometer coils
of arbitrary shape (including gradiometer configurations).

In the most sophisticated and a,cclurate forward model considered, the volume
currents and magnetic fields must be computed numerically using a finite element
model (FEM) or boundary element model (BEM); the final part of the chapter

discusses these methods in more detail.

2.1 Previous Research

The forward problem has received considerable attention. The bioelectric forward
problem is to compute potentials and currents within the body and at the sur-
face from the primary current sources and the conductivity distribution within the
body. The biomagnetic forward problem adds to this the problem of computing
the magnetic fields induced by the primary and volume currents. ‘

The general area of electrophysiology is fundamental to the biomagnetic for-
ward has received considerable research attention. Plonsey [71] discusses the gen-
eral theory of bioelectric phenomena. Nunez [64] discusses the theory of electroen-
cephalography in particular. Bayley [8] is a monograph on the theory of vector
electrocardiography, primarily directed toward physicians but including some of
the physics and mathematics.

Foster [32], Karlon [48] and Rush [85] give physiological values for the electrical
conductivity and dielectric constants of tissue.

The following references discuss the formulation of the forward problems in
general terms; methods of solution for specific versions of the problem will be
discussed later.

McFee and Johnston [56, 57, 58] develop a theory of electrocardiography in
terms of lead fields. Brody et al. [12] generalize this to compound leads and a lead

tensor.
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Plonsey [69] discusses applications of the method of images to the problem of
the current flow due to a current dipole in a spherical or cylindrical conductor. In
a companion paper [70], he shows how the Helmholtz reciprocity theorem can be
applied to problems in electrocardiography and relates it to lead field theory.

Geselowitz [36, 35] gives explicit surface integrals for the magnetic field gener-
ated in a piecewise homogeneous volume conductor of arbitrary shape. Baule and

McFee [7] give a similar analysis using lead field theory.
2.2 Source Models

It is convenient to represent the unknown current distribution J (7) as a weighted

sum of N known elementary sources Jy(7) in the form
N
J(F) = an In(7, Pn) (2)
n=1

where ¢n, is a source amplitude and P, is a (possibly empty) vector of other param-
eters describing the elementary source. Each elementary source Jn(7) is a vector-
valued function giving the vector current density at any position 7. The inverse
problem is to estimate the values of the unknown parameters g, and Py,

There are many possibilities for the set of elementary sources jn(F), depending
on the assumptions made about the unknown distribution J (7).

If the unknown distribution is assumed to be well-described by a few localized
sources, then it is reasonable to use a few current dipoles whose positions, mag-
nitudes, and orientations are to be determined [50]; then P, includes the source
positions and orientations. These “moving dipole” methods were the first developed
for magnetic source imaging and yield a conceptually simple distribution containing
only a few discrete sources. They are, however, computationally expensive because
the nonlinear dependence of the measured fields on the source positions generally
requires iterative solution.

The methods described in this report assume positions fixed a priori and are
not directly useful in a moving diple formulation; they could possibly be used to
find optimal source amplitudes at each step of an iterative scheme for improving

the source position estimates.
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The estimation of moving dipoles is expensive because the measured fields de-
pend nonlinearly on the position and iterative solution is required; if only the source
amplitudes are unknown, it becomes possible to solve the problem directly. But if
the source model consists of only a few dipoles, it is not reasonable to assume that
their positions are known a priori; there are too many possible source locations in

the brain or heart.

An alternative is to assume that the unknown distribution is smooth and to
expand it in a set of basis functions at fixed positions; these basis functions are
the elementary current sources. A grid of current dipoles [106] or a finite element
mesh [60, 97] define localized elementary sources; lead fields [106], multipole expan-
sions {101}, or Fourier basis functions define non-localized elementary sources. Then
- the unknown current distribution is completely defined by the weights g1, ¢2,...,9n5

in the summation
N
I =Y adal® (3)
n=1

and can be completely described by a vector q = [q1,99,-..,9 N]T.

The choice of the source model generally involves a tradeoff between accuracy
and computationa.l cost, so it is preferable to use a source model no more com-
plex than is necessary for accuracy. De Munck [25] has compared the potentials
at the surface of the head due to dipoles versus more realistic models of physio-
logical current sources for various conductivity models; he concludes that there is
no significant difference between the realistic sources and dipole sources for EEG.
. Fender [29] reviews various source models used for dipole localization in the head

and discusses their impact on the reconstruction accuracy.

2.3 Primary Currents and Volume Currents

The source models just described do not distinguish between the primary physio-
logical current sources and the volume currents that they induce. In fact, the total
current distribution consists of two distinct components [41]: a non-ohmic primary

current JP (7) directly related to neural activation and an ohmic volume current
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J Y(7) required by charge conservation. That is, the total current density
J=Jr+J° (4)

is the sum of two components: a primary current JP which is non-ohmic and
generated by physiological processes within the body; and a volume current Jv

which obeys Ohm’s law
JV =oE (5)

and is induced by the primary current sources.
We will see shortly that the volume currents can be computed by analytic,
finite element, or boundary element methods. Suppose that the primary source

distribution is represented as a weighted sum
HGEDIVGES (6)
n
where JE(7) is a convenient set of basis functions for the primary current JP(7). Let
j}{(r"') be the volume current induced by the corresponding primary current source
jﬁ(r"’) Then the elementary sources jn(F) may be defined as the primary sources
plus the corresponding volume currents
Tn(F) = T8F) + TR (7)
The total current due to a primary current distribution JP (7) is then by super-
position
j(F) = Z 4n *—jn(F)
n
=> g JEF + D an ()
n n
= JP(F) + J¥(7) - (8)
and so the primary current alone must be
UOEDIN W AGES (9)
n

That is, given estimates of ¢, by some inverse method, it is possible to reconstruct
either the total or the primary current. This is useful because the primary current

1s more directly related to the physiology of interest.
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2.4 Significance of the Volume Currents

Accounting for the volume currents adds to the computational cost, so this should
be done only if they have a significant effect on the magnetic fields. In fact, previous
workers have found that the volume currents in realistic head [22] and torso [95] ge-
ometries contribute significantly to the total magnetic field and should be included
in the forward model for the best accuracy. Purcell, Stroink, and Horacek [76] have
also investigated the effects of the torso, lung, and blood pool boundaries iﬁ MCG
and ECG. They find that both the isopotential and isofield maps are affected by
the inclusion of tissue boundaries compared to a homogeneous infinite half-space.
Figure 2.1 shows the normal and tangential components of the magnetic field
produced by the volume currents alone on a plane 1 cm above the chest wall for
a 1 pA-m dipole source, which is typical— of cardiac current dipoles; the source
is in the anterior wall of the heart and directed almost tangential to the chest
wall. These fields were computed using a very detailed finite element model with
186 536 elements developed by Eisenberg et al. at Boston University. Each contour
represents 2500 fT, so the maximum field perturbation is about 22500 fT, which
i1s much larger than the measurement noise, typically about 50 fT. That is, the
field perturbation cannot be ignored compared to the measurement noise and so
the volume currents must be included iﬁ the forward model. |
Section 11.2.2 shows that the volume currents can significantly affect the mea-

sured magnetic fields in neuromagnetic imaging.
2.5 Forward Problem

The biomagnetic forward problem is to compute, given any JP, the corresponding
total current J, magnetic field B, and flux vm threading each detector coil.

The frequencies involved in biomagnetic imaging are low (1-1000 Hz) compared
to the times required for a disturbance to propagate through the body and it is suf-
ficiently accurate to treat it as a quasistatic problem. Under quasistatic conditions,
charge conservation requires

vi=0 . (10)
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Figure 2.1 Cardiomagnetic field perturbations due to volume currents. These two
plots show the magnetic fields on a plane 1 cm above the chest wall due to the volume
currents alone for a typical cardiac current dipole of 1uA-m on the anterior wall of the
heart, as shown by the arrow. The upper plot shows the lateral component of the field
(across the chest); the lower plot shows the anterior component (normal to the chest).
The dotted line indicates zero field; the solid line is positive; and the dot-dash line is
negative. The contour interval is 2500 fT and a typical measurement noise level is 50 fT.
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Introducing the scalar potential ¢ defined by

E=-V¢ (11)
and substituting yields
VI =VJP+ V]’ =VJP+V(cE) = VJP - V(cV§) (12)
and therefore .
V(eVe) =VJIP | | (13)

which is Poisson’s equation for the pofentia.l. Barr, Pilkington, et al. [5] give the
appropriate boundary condition, which is that the normal component of V¢ van-
ishes at the surface of the body. Since this is a Neumann boundary condition, the
solution ¢ is unique up to an additive constant. If it is required in addition that
#(7p) = 0 at some fixed point 7, then the solution\ is unique and the mapping
JP — ¢ is linear. '

Once the potential ¢ is known, the total current is simply
J=JP-0oVe . (14)
The flux through a given coil is most easily computed through the vector potential

A(F) = — / ———d°p . 15

=& Joo T 7 19)
It is assumed that the permeability is constant and equal to the permeability of
vacuum pg = 47 x 1077 H/m. The magnetic flux density, if desired, is defined by

B=VxA . (16)

Suppose that the shape of the mth coil is defined by a closed curve Cyy, defining
a surface segment Sy,. Then the magnetic flux threading that coil is '

%@/ §M=f‘lﬁ, (17)
Sm Cm

where Stoke’s law has been used to obtain the last equality. Define % as the column

vector [m].
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Now observe that each of the mappings q — JPs > J— A ¢is
linear and therefore that the composite mapping F : q + % must also be linear.

Furthermore, F' can be represented as a matrix with columns
A (19)

where e, is the vector with 1 in the nth position and O elsewhere. That is, the

nth column of the forward transfer matrix F is computed by solving the forward

problem with the nth source set to unit amplitude and all others set to zero.
Letting the mth measurement be by, =Y, + wy, with noise wy,, the measure-

ment vector can be written in the canonical form
b=Fq+w . (19)

Then, given a method to estimate the source amplitudes ¢, the estimated primary
current distribution is
) =Y T8 (20)
n
The total current distribution, if desired, is similarly

J#® = i Jn® (21)

where J(7) is the total current induced by the primary current J& () and computed

in the forward problem for q = e,
2.6 Forward Models Withou_t Volume Currents

It is possible to obtain a simple forward model by assuming that the volume currents
have no appreciable effect on the field measurements and that the detectors sample
the magnetic field at a point; such models are useful for testing inverse methods but
are not usually accurate enough for real biomagnetic imaging. Then the current
density can be represented as a weighted sum of NV known elementary sources jn(r"')

in the form

N
j(F) = Z dn jn(F) . ' (22)
n=1

22



Chapter 2. Biomagnetic Forward Problem

Using the Biot-Savart law [49, pages 151-153], the magnetic field due to J is

o py [ JB)x(F—B) s
B = — d
"= /R =R ¢ P

| Tn®) X (F=5) 5
= |47 /e IF-B

= Z Qnén(F) (23)

where

s o [ BB)xGF-F) |
B =1 fu 7 >

is the magnetic field at position 7 due to the nth source.

Now suppose that there are M detectors, the mth of which measures the com-
ponent of the field in direction 3y, at position 7y,. Furthermore, the measurement

is contaminated by some noise wy,. Then that measurement by, can be written as

!

bm:

m E(Fm) + wm

= ZQn Sm - én(Fm) + wm

n
Sm - In(B) X (Fm — B .

=Y @ @/ m ngp) E? p)d:sp +wn
~ 4m JRs [Fm — Bl

= Zan gn + wm ' (25)
n .

where
po [ Sm-In(B) X Fm = P) 3- '
Fon = — — — d 26
™= ar ST Fm—BR O T - =

1s the response of the mth detector to the nth source. The forward transfer coeffi-
cient Fip can also be regarded as the lead field [106] of the mth detector integrated

over the current distribution of the nth source.

Rewriting these equations for by, in matrix form yields

b=Fq+w . : (27)
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2.7 Dipole Sources
In the particular case that each source :fn 1s a current dipole with moment ¢ at
position P (and still ignoring the volume currents), the field is

B =
e Ea

and the forward transfer matrix F has entries

Foy = Ko Sm C:I:r} X (7_:m — Pn) . (29)
4m |Fm — Bnll®

A “rotating” dipole of unknown orientation at a given position may be repre-
sented as two or three orthogonal fixed dipoles. The fixed dipoles may be oriented
along the coordinate axes; normal and tangential to the cerebral cortex; or along
the principal axes of the assumed probability density for the rotating dipole. In the
last case, the fixed dipoles will be uncorrelated.

In magnetoencephalography, a dipole source will ordinarily be oriented normal
to the cerebral cortex and the direction of Jyn may be chosen to match. If the
surface is strongly curved, a normal dipole with large expected amplitude and two

tangential dipoles with smaller expected amplitude may be used.

2.8 Forward Models with Volume Currents

The previous models are deficient in two major respects. First, in realistic torso
geometries, the volume currents can significantly affect the measured fields. Second,
practical magnetometer configurations do not sample the field at a point but rather
measure the flux threading some coil of finite area.

As was shown above, the F' matrix can be computed for the general case in

terms of its columns
f, = ¢lq=en , ' (30)

where ey is the vector with 1 in the nth position and 0 elsewhere. That is, the
nth column of the forward transfer matrix F is computed by solving the forward

problem with the nth source set to unit amplitude and all others set to zero.
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One path for that computation follows the sequence ey +— jﬁ — ¢Qp Jn —
An — ®mn. The computation of the total current :fn and vector potential An
from the primary current JP may be done by finite element or boundary element
methods and will be discussed at length in the remainder of this chapter.

The computation of flux ¥mn frém vector potential An may be done simply by

discretizing the defining equation

¢m=f Zi~d7'~‘:j4 EQ/ IB) g5 . g
Crm C |47 Jrs I — Bl

po [ = a | 3.

= — Jp-[]{ = qup

i J 7P T

_H0 [ 3. L &%

R U (31)

where the curve Cy, defines the shape of the coil and L(7) is the vector lead field

corresponding to that coil. If the coil is circular, or a sum of circles, the lead
field reduces to an elliptic integral, or a sum of elliptic integrals. The problem of
effictently computing the flux from the total current will not be considered in this

dissertation.
2.9 Analytic Methods

This section and the tV\;O following it discuss methods for computing the volume
currents in various geometries from simplistic to realistic. This section reviews
analytic results for such simple geometries as an infinite halfspace, sphere and
cylinder.

Wilson and Bayley [108] give exact closed form solutions for the potential in-
duced by current sources in a sphere, as does Frank [33]. Okada [66] gives a solution
for a finite-length circular cylinder. ' |

Sarvas [86] gives the magnetic fields due to a current dipole in a sphere or an
infinite half-space. Cuffin and Cohen [23] give analytic solutions for the magnetic
field due to a current dipole in an infinite half-space, sphere, pro\late spheroid, or
oblate spheroid. They show the effects of the dipole and volume currents separately
and note that the normal component of the magnetic field is usually due entirely

or mostly to the dipole source rather than the volume currents.
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2.10. Finite Element Methods

Finite element methods solve Poisson’s equation (13) for the potential by dividing
the volume of interest into many polyhedral regions and assuming that the potential
is constant within each region or varies according to a simple polynomial function.
Requiring that the potential is continuous across the boundaries of each region
vields a system of linear equations which can be solved by numerical methods.
Given the potential, the total current and magnetic field can be determined directly.

Jin [46] is a monograph on the use of finite element methods for electromagnetics
in various applications but does not specifically discuss biological applications.

Miller [60] is a review of finite element methods for bioelectric phenomena., in-
cluding electrocardiology. Surpﬁsingly, there is no discussion of electroencephalog-
raphy.

Thevenet et al. [97] discuss the use of finite element modelling to obtain the
potential distribﬁtion due to a current dipole in the head. They note that, unlike
the boundary element method, it can model aniotropic conductors.

Yan, Nunez, and Hart [109] describe a three-dimensional finite element model
of the head with a new formulation of dipole current sources. They test the finite
element model by comparing it to analytic results for the three-spheres model of
the head. Results for a more realistic head model are also presented.

Ragan [77, 78] uses a finite element model of the canine torso to estimate the
electric fields and current densities produced by rapidly changing magnetic fields.

Finite element methods have the advantage that they can model anisotropic
conductors such as muscle; but it is often difficult to model point or dipole sources.
Finite element methods also are often more expensive to compute than are boundary

element methods.
2.11 Boundary Element Methods

Boundary element methods are applicable when the conductivity is isotropic and
piecewise constant. Then Poisson’s equation can be transformed to an integral

equation over the boundaries separating the regions of different conductivity. These
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boundaries are divided into triangular patches of constant or linearly varying po-
tential and requiring continuity again yields a system of linear equations.

Barr, Pilkington, et al. [5] have presented a boundary element method for com-
puting the potentials on the surface of a piecewise homogeneous volume due to
current sources within the volume. The surfaces bounding homogenous volumes
are defined by triangular tesselations. They develop a set of linear equations relat-
ing the potentials of the actual geometry to the potentials at the same positions for
an infinite homogeneous medium; these equations are singular but can be solved
iteratively. The coefficients in the linear equations are related to the solid angle sub-
tended by each triangle as seen from each other triangle; van Oosterom [102] gives
an efficient algorithm for computing the necessary solid angles given the triangle
vertices.

Horacek [43] modifies the Barr-Pilkington method to compute the magnetic
fields produced by source and volume currents by introducing fictitious current
layers at the boundaries that modify the currents induced in an infinite homogenous
medium. Some of his results are identical to those of Geselowitz [36, 35], who did
not explicitly show the fictitious layer currents. He handles the singularity of the
linear equations by deflating them using a method due to Lynn and Timlake [51].

Purcell and Stroink [75] show that this linear system need not be solved itera-
tively. They perform a LU decomposition of the matrix, compute its inverse, and
solve the linear system by multiplying by the inverse. This provides a significant
speedup in moving dipole solutions of the inverse ‘problem, where it 1s necessary
to repeatedly solve the forward problem. In fact, it is not necessary to compute
the matrix inverse explicitly; the LU decomposition can be used directly to solve
the linear system at no increase in computational cost. In a later paper, Nenonen,
Purcell, et al. [63] compute the matrix inverse using a singular value decomposition.

Ferguson, Zhang, and Stroink [31] generalize the boundary element method to
provide for a linear variation of the' potential across each triangle. ‘

Meijs et al. [59] recommend several methods for improving the accuracy of
the boundary elenent method in electro- and magnetoencephalography, where the

strong conductivity contrast between the skull and soft tissues degrades the nu-
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merical accurary. He does not address magnetocardiography and it is not known
whether the same numerical problems occur there.

Hamaldinen and Sarvas [40] discuss the problems introduced by the low con-
ductivity of the skull and suggest methods for solving those problems. They also
conclude that for magnetoencephalography it suffices to consider only the compart-
ments inside the skull; the volume currents outside the skull appear to contribute
negligibly to the magnetic fields.

Budiman and Buchanan [13] introduce a variant of the 1t;oundaary element

method, which they call “weighted vertices.”
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Prior Knowlédge

The biomagnetic inverse problem is almost always ill-posed in that there are in-
finitely many current distributions that will yield the observed magnetic field values.
The measured data alone provide no basis for distinguishing among all these possi-
ble solutions. But we usually know more than just the observed field values since we
can draw on a general knowledge of biophysics and physiology as well as previous

in vitro and invasive experiments.

The primary purpose of this dissertation is to develop and test algorithms for
incorporating such anatomical and physiological prior knowledge into biomagnetic
source imaging problems. This offers two advantages: First, the constraints im-
posed by the prior knowledge will restrict the set of possible solutions, possibly
defining a unique solution consistent with both the measured data and the priors.
Second, enforcing these constraints as part of the reconstruction guarantees that
the solution will in fact satisfy these constraints. (Of course, it also means that
the satisfaction of the constraints is no longer evidence for the plausibility of the

reconstruction.)

3.1 Kinds of Prior Knowledge

For eicample, suppose that an experiment is intended to determine the regions of
the brain that are activated in reading and the time history of activation at each
of these locations. (Similar remarks will apply to other experimental and clinical

applications.) Then it is reasonable to assume that:
1. The primary current sources are located within the cortex of the brain.
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2. In fact, the primary sources for this cognitive task are probably located within
the specific regions of the cortex previously implicated as involved in reading.

3. The primary sources are correlated over distances of several millimeters and
over time intervals of tens to hundreds of millisgconds.

4. The amplitudes of the primary currents are consistent with the amplitudes
estimated from a detailed cellular physiological model and with amplitudes observed
‘In previous invasive experiments.

5. The volume currents satisfy Ohm’s law for some determinable conductivity
distribution within the head.

6. The total current satisfies charge conservation and is zero outside the body.

7. The magnetic fields at the detectors are determined by the the total current
distribution via the Biot-Savart law.

8. The measurement noise due to the intrinsic noise of the detectors and due
to external mdgnetic sources is similar to the noise observed in previous calibration
experiments without a subject present.

9. The measurement noise due to current sources in the subject outside the
brain (muscle twitches, eye motions, heart beat, and so on) is consistent from

subject to subject if the experimental conditions are kept constant.
3.2 Reliability of Priors

Note that these various kinds of prior information differ significantly in reliability.
There would seem to be little risk that the Biot-Savart law or Ohm’s law will be
violated. The assumptions about the probable source and noise amplitudes involve
rather more risk; the generélization from previous experiments to the current one
may be plausible but it is also possible that some new phenomena may be waiting to
appear in this new experiment. The assumption that the brain will be active in only
those areas previously implicated in reading is definitely a risky one, especially since
one goal of the current expen'mént is to locate the active regions in this task; refusing
to look outside the expected regions of activation may well blind a reconstruction
algorithm to evidence for other active regions. Chapter 8 will show that this risk

is real and discuss a method for detecting such “misinformative” priors.
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3.3 Sources and Forms of Priors

Many of the priors listed above may conveniently be treated as non-statistical or
hard constraints that must be satisified for a possible solution; others may conve-
niently be treated as soft or statistical constraints that establish preferences between
solutions but do not absolutely rule out any solutions. Furthermore, some of the
priors listed above require some additional information about the specific subject
or a suitable population of similar subjects.

This dissertation does not attempt to solve the problem of estimating apprpriate
priors for any particular experiment. But the following remarks should make it
plausible that it is possible to obtain suitable priors and to represent them in a
form suitable for inclusion in an inverse problem. |

Ohm’s law, the Biot-Savart law, charge conservation, and the other laws of
electromagnetics are incorporated into the forward model.

The anatomy of the head may be determined for the individual subject by
magnetic resonance imaging, giving the spatial locations of the skull, scalp, cere-
brospinal_ﬂuid, grey matter, and white matter. The electrical conductivities of
these various tissues are known and may be combined with the spatial coordinates
to yield the conductivity distribution within the head. The conductivity distribu-
tion may then be used in the forward model to account for the volume currents.

The possible (as opposed to probable) locations of the primary current sources
may be determined from the known location of the cerebral cortex.

The probable amplitudes of the cortical sources and their spatial and temporal
correlations may be represented as a probability distribution. The mean values,
variances, covariances, and other parameters of this distribution mé,y be estimated
from several lines of investigation including detailed bioelectric models of the brain,
invasive measurements made in animals (and when possible, in humans) and anal-
ysis of MEG measurements on.a population of similar subjects.

The probable locations of the cortical regions activated by the reading task
may be determined by locating previously implicated anatomical regions in the

MR image. The relative probability of different possible source regions may be
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represented as differences in the expected source variance (which is proportional
to average source power). If desired, the most likely orientation of these sources
may be set to be normal to the cortical sheet. Alternatively, the regions activated
by the reading task could be indentified by functional MR imaging of blood flow
differences in the brain between task and non-task conditions, or by PET imaging
of metabolic differences.

The statistics of the measurement noise due to intrinstic detector noise and
magnetic sources external to the subject can be estimated by tests of the detector
system without a subject. The statistics of measurement noise due to sources in
the subject but outside the brain may be estimated by testing a suitable population
of subjects under non-task conditions.

Summarizing, the prior knowledge used to constrain the reconstruction may
be expressed as (1) the laws of physics incorporated into the forward problem; (2)
a source model defining a set of elementary current sources which are consistent
with the known anatomy and physiology; (3) a probability distribution for the
source amplitudes; and (4) a probability distribution for the detector noise. The
forward model and source model have already been discussed; the remainder of this
chapter will consider the representation of statistical prior information concerning

the source and noise amplitudes.
3.4 Source and Noise Statistics

As already discussed, the forward problem may be represented in the general form
b=Fq+w (32)

for measurements b, forward transfer matrix F, source amplitudes q, and measure-
ment noise w.

The vector q of source amplitudes g, is assumed to be a random vector with
mean zero and covariance matrix A = E qq? with entries a?j = E g;q;. If the
expected amplitudes are not zero-mean, the shifted vector § = q — E q is zero-
mean and can be used instead. Since A is a covariance matrix, it is symmetric

and positive semidefinite. The diagonal entries o2,, are non-negative and ann is
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Signal Source Signal Strength Frequency Range
(femtoTesla) (Hz)
Cardiogram 50000 0.1-100
Encephalogram (§) 1500 - 0.3-50
Auditory Evoked Response 500 0.2-40
Visual Evoked Response 200 0.1-50
Evoked Cortical Activity 60 0.2-50

Figure 3.1 Some typical values for biomagnetic signals. These data are taken from
Fagaly [28, Figure 1]. For comparison, the earth’s magnetic field is about 50 microTesla.
the root-mean-square (RMS) amplitude of the nth source. The off-diagonal entries
a%j,i # j are the correlations between sources and may be positive, negative, or
zero. Electrical activity in the brain and heart is spatially coherent and sources
separated by less than the coherence length will be correlated; these correlations
correspond to non-zero off-diagonal elements in A...

The noise vector w is assumed to be a random vector with mean zero and
covariance matrix ¥ = E ww? with entries or;?j = E w;w;. Since X is a covariance
matrix, it is symmetric and positive semidefinite. Each diagonal entry O',?nm is the
expected noise power of the mth detector and is non-negative; omm is the RMS
noise amplitude of the mth detector. The off-diagonal entries ai2j,i # 7 are the
noise covariances and may be positive, negative, or zero. If the noise is uncorrelated
between sensors, then X is diagonal.

The cross-covariance between the source and noise amplitude vectors 1s I' =
E qWT with entries ynm = E gnwm. In many applications, there will be no source-
noise correlation and I' will be zero.

Fégaly [28, Figure 1] gives some typical values for signal strength as seen at the
magnetometer; some of these are reproduced in Figure 3.1. In terms of the notation
used in this dissertation, the listed values are typical values for the measured signals
bm. The source amplitudes can be estimated from these values but are less well

constrained.

Fagaly also [pages 26-28] discusses the measurement noise. The SQUID mag-
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Typical RMS noise (fT)
Noise spectral power

(fT/VHz)

Bandwidth =~ 100 10
100 1000 100
50 707 71
10 316 32
5 224 22
1 100 10

Figure 3.2 Some typical RMS noise values for biomagnetic signals. These data are
computed from the data of Figure 3.1.

netometer itself has a spectral noise power of about 10 fT/+/Hz but environmental
noise is often much larger.” An eddy current shielded room can reduce the enviro-
mental noise to less than 200 fT/ VHz; a magnetically shielded room to less than
3 fT/+/Hz, which is less than the intrinsic noise of the detector itself. Figure 3.2

shows the RMS measurement noise for various conbinations of bandwidth and noise

spectral power typical of MEG.
3.5 Measurement Statistics

Given these definitions, the measurement covariance is
B=Ebbl =FAFT 4+ FT4+T7F  + 3 . . (33)

"In the case that T’ = 0, this simplifies to B = FAF? + 3. The expected signal
power at the mth detector is (where ep, is the vector with one in the mth position

and zeros elsewhere)
B = E(bm — wm)* = E(ep,Fq)”
_ T T
=e;,,FAF e, , (34)
which is just the mth diagonal element of FAFT. The total signal power over all

detectorsis ), B2, = Tr(FAFT)_. The total noise power is 3, 02,, = Tr(Z) and
34



Chapter 3. Prior Knowledge

Signal-to-noise ratio (dB)

Noise spectral power

(fT/VHz)

Signal Source 100 10
Cardiogram 34.0 54.0
Encephalogram (6) 6.5 26.5
Auditory Evoked Response  -2.0 18.0
Visual Evoked Response -11.0 9.0
Evoked Cortical Activity -21.4 -1.4

Figure 3.3 Some typical SNR values for biomagnetic signals. These data are com-
puted from the data of Figure 3.1, assuming that the full bandwidth is used and that no
signal averaging is used.

so it is reasonable to define the signal-to-noise (power) ratio as
SNR = Tr(FAFT)/ Tx(®) . | (35)

Dividing the numerator and denominator by the number of detectors M yields the

equivalent definition

(/M) B2 Bavg
/M) S 0%~ g (39)

where Bgvg and Ug,vg are the average expected signal and noise power per detec-

SNR =

tor. Now suppose that the typical spectral noise power is n in fT/vHz and the
measurement bandwidth is B in Hz. Then the rms noise is 0> = Bn? and the SNR

can be written in the form

Bave
SNR=——5 . (37)

The signal-to-noise ratio expressed in decibels (dB) is 10 log;g SNR.

The SNR for a particular system and experiment will depend on the signal
sought (cardiogram, encephalogram, or evoked potential), instrument configura-
tion (magnetometer or gradiometer), ambient magnetic noise, shielding, and signal

averaging. Most practical experiments should fall in the range 0—40 dB.
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Figure 3.3 shows the calculated SNR for the signal types described in Figure 3.1,
for some typical values of noise. These values can be improved by signal averaging

or narrowing the bandwidth.

3.6 Assumption A

We pause here to introduce a technical assumption—to be called assumption A—
that will be useful later. Precisely stated, we will assume hereafter that that none
of the source amplitudes g, or the noise amplitudes wm, is almost surely equal to
a linear combination of the remaining source and noise amplitudes. (Two random
variables are “almost surely” equal if they are equal with probability one.) That
is, every source and noise amplitude has some non-zero residual variance even after
the effect of every other source and noise amplitude has been accounted for.

Assumption A is unlikely to be an issue in practice. About the only way to
violate it is to set some a priori source variance to zero ér to use some field measure-
ment twice; the problem is easily fixed by omitting the source with zero variance
(since it is known a priori), choosing a nonzero variance, or omitting the redundant
measurement.

The value of assumption A is mathematical; it authorizes some algebraic ma-
nipulations that would otherwise be questionable. Specifically, we will use the
following consequences:

1. The covariance matrices A = Eqql, £ = EWWT, and B = Ebb? are
all invertible, symmetric positive definite, and have Cholesky decompositions [38,
péges 141-142] in the forms

A=RRT, =887, and B=LLT (38)

where R, S, and L are lower triangular and invertible. Furthermore, expressions of
the form R™1X, S™1X, or L™1X can be efficiently computed by forward substitu-
tion [38, pages 86-90] without explicitly computing the matrix inverse.

2. The form E ||Db||? is strictly greater than zero for every non-zero matrix D.

The remainder of this section is devoted to proving these consequences.
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Definition: A set of random vectors Xi,...,Xr is linearly dependent if there
exist constant vectors uy,...,uy, not all zero, such that uclrxl + -4 uan =0
almost surely. If the set xi,...,Xn is not linearly dependent, it is linearly indepen-
dent.

Proposition: Assumption A implies that the set {q,w} is linearly indepen-
dent. '

Proof: Suppose that q and w are linearly dependent. Then there exist vectors
u and v, not both zero, such that uTq +viw = Ui + Ej vjw; = 0 almost
surely. But at least one component of u or v is non-zero. Say that component is u;.
Then solving for g; yields an linear expression in the remaining components that is
almost surely equal to g;. Thus assumption A must be false. [ |

Proposition: Suppose that a set of random vectors is linearly dependent.
Then adding any additional random vector to the set yields a linearly dependent
set.

Proof: Set the coefficient of the added vector to zero. B

Corollary: Any subset of a linearly independent set is linearly independent.

Corollary: The vector q is linearly independent. So is w.

Proposition: The measurement vector b = Fq + w is linearly independent.

Proof: Suppose that b is linearly dependent. Then there exists a non-zero
constant u such that u’b = 0 almost surely. But this implies that uTFq+ ul'w =0
almost surely. Thus q and w must be linearly dependent. |

Proposition: Suppose that the random vector x is linearly independent. Then
the correlation matrix Cx = Exx7 is nonsingular. |

Proof: Suppose that Cx is singular. Then there exists a constant u # 0 such
that u'Cxu = 0. But u/'Cxu = uT E(xxT)u = E(uTxxTu) = E |juTx||? which
can be zero only if uZx = 0 almost surely. But this implies that x is linearly
dependent. | |

Corollary: The covariance matrices A = Eqq?, ¥ = E;szT, and B = Ebb”
are all invertible.
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Corollary: Since all covariance matrices are symmetric and positive semidef-
inite, A, ¥, and B are symmetric positive definite and have Cholesky decomposi-

tions in the forms
A=RRT, =887 and B=LLT (39)

where R, S, and L are lower triangular and invertible.

Proposition: If x is linearly independent, then E |[Dx||? > 0 for every matrix
D # 0.

Proof: Suppose that E||Dx||2> = 0. Then, almost surely, |[Dx|| = 0, which
implies that Dx = 0, which implies that x is linearly dependent. [ | |

3.7 Gaussian Priors

Many of the results that will be presented hereafter are independent of the actual
distributions of q and w, provided that the covariances and cross-covariance are
known. Some results, however, depend on the particular form of the distribution.
For these results, it is convenient to assume that q and w are jointly Gaussian.
More explicitly, we assume that the composite vector

;=[q] | (40)

W

is jointly Gaussian with mean 0 and covariance matrix
A T

Given this additional assumption of normality, it is possible and useful to com-
pute the conditional distributions of q and w given any particular b. Suppose that
x and y are zero-mean, jointly Gaussian random vectors with covariance matrices
Cxx and Cyy and cross-covariance Cyy = ng. Then [62, page 88, property 3.3],

for given y, x is normally distributed with mean
#xly = CxyCiyy (42)

and variance
Cyly = Cxx — CxyCyyCyx - (43)
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In this case, it is convenient to compute the mean and covariance of v givén b;
then it is trivial to compute the means, covariances, and cross-covariance of q and

w. Thus,

Cpp, = Ebb? = FAFT + FT 4+ I7FT + 3 (44)
and
C Eqgb” AFT 11
— qb - q = .
Cvb [cwb] [ Ewa} [I‘TFT +3 (45)
Furthermore, : ‘ )
E(v|b) = CbCiib = [ Cqbctfib] (46)
and

Cov(v | b) = Cyv ~ Cy, CiCTy

—1~T —1~T
A; - cqbcbblc ® r-— Cqubble;b an
IT - CypCppCl, = - CupCpiCl,
Thus, for given b, the vectors q and w are jointly Gaussian with means
— -1
E(q | b) = CqpCrib
= (AFT + D)(FAFT + FT + TTFT 4+ )71 | (48)
E(w | b) = Cyp,Cpib
= (PTFT + 2)(FAF? + FT +TTFT + )7 1b (49)
covariances
Var(q | b) = A — CgpCppCly (50)
=A — (AFT + D)YFAFT + FT + TTFT + )Y (FA + TT) |
Var(w | b) = £ — Cyp,Cgi CL (51)

=3 — ([TFT + =)(FAFT + FT + TTFT 4+ )" 1(FT + =)

~

and cross-covariance
Cov(q,w |b) =T - CqpCriCly : (52)
=T — (AFT + T)(FAFT + FT + T7FT + )" 1(FT + %)
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The Linear Inverse Problem
With Prior Knowledge

Given the forward problem ahd priors discussed in the previous chapters, the inverse
problem is to find a “best” estimate q of the unknown source amplitude vector q
from given values for the forward transfer matrix F, the field measurements b, and
perhaps other information such as the noise covariance ¥ and source covariance A.

This dissertation considers only linear inverse methods. That is, the best esti-

mate § is always computed in the form
q=Hb (53)

where H is a linear operator depending on F, A, ¥, and I'.

The simple solution § = F~1b does not work in general for inverse problems;
F is rarely invertible and usually rectangular. The inverse problem is often both
overdetermined in the sense that no solution q exactly solves Fq = b and underde-
termined in that many different values of q provide equally close approximations.

Different criteria for the “best” approximation lead to different inverse methods.
4.1 Minimum-Norm Least Squares Methods -

The least squares (LS) criterion is to minimize the residual
e =|b-Fq* (54)

which is a measure of the discrepancy between the measured and reconstructed
field values. The least squares solution is not necessarily unique; there may be

many different solutions that achieve the minimum £2. The minimum-norm least

40



Chapter). The Linear Inverse Problem with Prior Knowledge

squares (MNLS) criterion chooses from all these minimum-residual solutions the
unique solution with smallest norm [[§]|?>. No prior information is necessary and
the value of £2 can be computed for any given b.

The maximum likelihood (ML) criterion is, assuming that w is jointly Gaussian,

to minimize the weighted residual
x'=({b-FyTs" (b-Fg) , (55)

which is a measure of the discrepancy between the measured and reconstructed field
values, weighted by the a priori noise variance. As with least squares, the solution
is not necessarily unique. Noise statistics are fequired but source statistics are not.

If the noise amplitudes are assumed to be independent and identically dis-
tributed (X = o°I), then the MNLS solution minimizes the x? statistic and is also
the maximum likelihood solution.

The Moore-Penrose generalized inverse (also known as the pseudoinverse) is a
generalization of the matrix inverse to arbitrary rectangular matrices. It was first
reported by Moore [61] in 1920 as the unique matrix satisfying certain algebraic
conditions not relevant here, and rediscovered by Penrose [67] in 1955 using different
but equivalent algebraic conditions. Penrose [68] also showed that the generalized
inverse computes the MNLS solution.

The Moore-Penrose inverse can be computed from the singular value decompo-
sition (SVD) [38, page 243] of the forward transfer matrix F. To fix notation, the
SVD theorem states that the M x N matrix F can be decomposed in the form

. K
F=UAVT =Y Nuyvi (56)
k=1 ‘

where the rank of F is K < K’ = min(M,N); U is an N x N orthogonal matrix
with orthonormal columns uy; V is an M x M orthogonal matrix with orthonormal
columns vj; and A is an M X N diagonal matrix with diagonal entries A\; > A9 >
o 2 A > Agy1 =+ =Agr = 0. The values Ag for k = 1,..., K are the singular
values of F'; the vectors uy and vy, for k£ = 1,..., K are the left and right singular
vectors of F. The additional vectors u;,k = K +1,...,M, span the complement
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of the range space of F'; the additional vectors v, k= K +1,...,NN, span the null
space of F.
The Moore-Penrose inverse of F is then
Ff= Z )\;1 Vk“{ (57)
A0
and is equal to the ordinary matrix inverse if F is non-singular. If F is singular, the
system Fq = b is ill-posed and has infinitely many possible solutions; § = Fib is
“ the particular solution with the smallest norm, or the minimum-norm least squares
(MNLS) solution.

The Moore-Penrose inverse in its pure form is not generally suitable for inverse
problems with measurement noise. Suppose that b = Fq + w and consider the
estimate § = Fib = FIFq + Ffw. The error due to noise is

Fiw = Z A,:l(uZW)vk , (58)
AeA0
which grows without bound as the singular values Aj decrease toward zero. The
error in q is roughly proportional to the reciprocal of the smallest singular value
and can easily swamp the correct answer. |

One simple cure is to drop all singular values less than a threshold ¢, defining
a truncated pseudoinvérse

F¢ = Z A;lvkug . (59)

Ap>€
Wang, Williamson, and Kaufman [105, 106] have used a truncated pseudoinverse for
magnetic source imaging, although they do not state their truncation criterion. The
threshold € must be chosen with care, as is illustrated in Figure 7.3; the weighted

pseudoinverse method discussed below provides one systematic approach.
4.2 Weighted Pseudoinverse Methods

The minimum mean square error (MMSE) or mean square criterion is to minimize

the average reconstruction error
7°=Ee’ =Ella-4|° , (60)
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which is a measure of the discrepancy between the reconstructed and the true
current distributions. The error e = ||q—§||? depends on the true distribution and
cannot be computed for any specific b; only its mean value % can be determined.
The mean square error 772 depends on the source and noise statistics, so both of
these must be known (or assumed) a priori.
To avoid the numerical problems of MNLS, Shim and Cho [91] have defined a
weighted pseudoinverse (which they call the stochastic SVD pseudoinverse)
F¥ = Z ck)\,"c‘l vkuz , (61)
Ae0

where the weights ¢;, are chosen to yield the minimum mean square error. Restrict-
ing the weights to zero and one yields a truncated pseudoinverse. Their derivation
and results unfortunately contain some typographical errors; the following deriva-
tion hopefully corrects those errors without introducing any new ones, and gen-
eralizes their result by allowing correlations between noise and source amplitudes
(T #£0).

Shim and Cho have applied the optimal truncated pseudoinverse method (OT-
PIM) and optimal weighted pseudoinverse method (OWPIM) to PET reconstruc-
tion; Jeffs, Leahy, and Singh [45] have used the optimal truncated pseudoinverse
for magﬁetic source imaging of the brain.

To determine the optimal ¢;,, write the source and noise vectors in terms of the

singular vectors of F' to obtain
N M -
q= Z arvVe and W = Z Spugp . (62)
k=1 k=1

Note that a; = vaq and s, = uZw, so that Ea; = 0 and Es; = 0. Define the

covariances
ot =Ea? =v}Avy , k=1,...,N ; (63a)
a,%=Es% =u}€2uk , k=1,..7.,M ; and (63b)
ve=Eagsp=vITu, , k=1,....K (63¢)

which are the diagonal entries of the rotated covariance matrices VIAV, UTZU,
and VIT'U respectively. The notation here may be a bit confusing; the symbols
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azzj, a%, and +y;; with two subscripts denote the entries of the unrotated covariance
matrices A, 3, and I'.

The optimal estimate of q is § = F¥b with error
e=q—q=q-Fb=q-F¥Fq+w)
=q—-FYFq-F%w

N N M
Z aipvy — FYF Z apvy — FY Z S
. k=1 k=1 k=1
and since Vi 41,...,Vy are in the null space of F and ugj,...,ups are in the

null space of F¥,

N K
Z arpvy — FYF Z apvy — FY Z SpUg
k=1 k=1 k 1

K
—Z[l—ck)ak—_—']v + Z vy - (64)

k=K+1

Then the mean square error is

2= ||e”2 =Eele
e
2 -1 o
=y [(ck _ 1% + cklck — Dk | % kJ n Z ol . (65)

k=1 )\k k=K+1

Finding the minimum by the usual procedure yields the coefficients

oz%)\% + YAk

k=1,....K ' (66)
az/\% + 2vp AL + a,%

CL =

for the optimal weighted pseudoinverse of F'.

Note that the off-diagonal covariances Eapa;, Esgs;, and Eags; with & # [
do not appear in the above expression. In eﬁ'ect,' they are assumed to be zero.
Equivalently, the covariance matrices VTAV, UTxU, and VITU are assumed to
be diagonal. This is called the case of “coaxial” priors and will be discussed later.

If the weights are restricted to ¢ = 0 or ¢ = 1, the weighted pseudoinverse
becomes a truncated pseudoinverse. Thus, any truncated pseudoinverse is a special
case of the weighted pseudoinverse and will, in general, have a larger error than the

optimal weighted pseudoinverse.
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To obtain the optimal truncated pseudoinverse, consider the kth error term

2¢cp (e — 1)y 2o

2 k\CL k

Mk = (e — 1)%af + + Ak
)‘k /\k

2 L — :
B {ak ife,=0 (67)
or]% / /\% ifep=1
The minimum error is achieved when the smaller of the two possible values is taken;
that is, the kth term should be retained if a% oY 7 < ak & A > o /oy, and dropped
otherwise. Thus the optimal truncated pseudoinverse is
Fi= Y Xlvuf . (68)
x>0k /g
The ratio a%)\ / ork can be interpreted as the s1gnal—t0—n01se ratio for the source
vector v, so that the optimal truncated pseudomverse retains exactly those terms
for which the SNR exceeds one. Setting ok/ 2 = a? % in equation (66) yields ¢, = 2,
so rounding ¢ to 0 or 1 in the optimal weighted pseudoinverse yields the optimal
truncated pseudoinverse. Note that the optimally truncated pseudoinverse does not

necessarily comprise the largest singular values.
4.3 Optimal Constrained Linear Inverse Method

The Shim-Cho weighted pseudoinverse is optimal (in the MMSE sense) over all
possible weighted pseudoinverses but is not, in general, optimal over all possible
linear estimators of the form q = Hb.
The optimal constrained linear estimator is given by the matrix H that mini-
mizes
n’ =Ella—§||* =Ellq— Hb|* , (69)
and since b = Fq+ w,
= Ellq — H(Fq + w)|?
— E||(I- HF)q - Hw]? . (70)

Now consider a variation H + € {H where € is a scalar and §H is a matrix to obtain

n? = E||(I — HF — ¢HF)q — Hw — ¢ §Hw||?
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= E||(I — HF)q — Hw — ¢ 6H(Fq + w)||?
= E[|I - HF)q — Hw|?
+ 2¢ E(Fq +w)T 6HT[(I1 - HF)q — Hw]
+ ¢ E||6H(Fq + w)|?
= ¢ + c1€ + co€’ (71)
for scalars ¢, ¢1, and ¢ which depend on §H.

Now H can minimize 772 only if ¢y is zero for any value of §H. To see this, assume
on the contrary that there is some non-zero 6H such that cj is not zero. Assumption
A ensures that cg = E ||§H(Fq + w)||? = E||6Hb||? is positive whenever §H is not
zero. Then n? has a unique minimum at ep;, = —ci/(2c2). But this means that
772 is smaller for H + €p;, 6H than for H. Thus, contrary to our assumption, H is
not the minimum. Therefore, ¢; must be zero for every 6H.

The positivity of co also guarantees that ﬁ2 has a minimum rather than a
maximum. Furthermore, since 172 is quadratic in €, the minimum is unique and
there is no maximum. That is, the optimal H exists and is unique.

Now observe that, for random vectors x and y, the expectation E xT Dy is zero

for all D only if Exy? = 0. (Consider the set of matrices D in which one entry

takes the value one and all the other entries are zero.) Then the scalar ¢; can be

zero for arbitrary 6H only if
0= E[(I - HF)q — Hw](Fq + w)T
= EHFqq  F{ — Eqq?FT + EHwq!F?
+ EHFqw’! — Eqw! + EHww?
= HFAFT — AFT + HTTF? |
+HFT-T+HY | (72)

which can be solved to yield
H = (AFT + T)(FAFT + FT + TTFT + )1 (73)

where assumption A guarantees the existence of the inverse. Franklin [34] has

developed essentially the same formula in the more general context of Hilbert space.
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4.4 Useful Special Cases

There are several special cases in which the OCLIM filter reduces to previously

known inverse methods.

4.4.1 Noise Uncorrelated with Sources

If the noise is uncorrelated with the sources, then I' = 0 and the filter simplifies to
H = AFT(FAFT + &)1 . (74)

This mean square estimator has been previously used by Helstrom [42] for image
restoration and by Smith et al. [93] for magnetic source imaging.
The preconditioned pseudoinverse of Ferguson [30] has the form

H =DLT(LLT)! (75)
where D is a diagonal matrix of the expected source amplitudes and L=FDis
a preconditioned forward transfer matrix. Substituting A = DDT and £ =0 in
equation (74) yields

H = DOTFT)(FD)(DTFT) + 0)~!
=DLELLT)! | (76)
which is exactly the preconditioned pseudoinverse. ‘

The OCLIM filter (74) is also related to the filtered backprojection algorithm
for emission tomography[pages 60-63] [47]. The factor (FAFT + £)~! filters the
projections b, the factor F7 backprojects, and A weights the result according to
the a priori probabilities.

Furthermore, observe that

FT + FTsIFAFT = FT=1FAFT + FT
s (A4 FTe-1P)AFT = FTs~1(FAFT + &)
& AFTEFAFT + )1 = (A1 + FIe- 1R~ 1pTs-1 | (77)

' Thus the optimal filter can also be written in the form

H=A"1+Flz-1p)-1gTs-1 | (78)
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This form represents a variant backprojection algorithm in which filtering is done
after backprojection; Budinger et al. call this the “flter of the backprojection algo-
rithm” [14]. The factor £~! normalizes the noise variance in the projections, FT

backprojects, and (A~! + FTS~1F)~! filters the backprojected image.

4.4.2 Coaxial priors

Suppose that the covariance matrices A, X, and I' all become diagonal when they
are rotated into the U and V coordinates defined by the singular vectors of F.
That is, suppose that the rotated matrices VTAV, UTZU, and VITU are all
diagonal. Then the matrices F, A, 3, and I" can all be written in terms of the
singular vectors u; and v}, defined by the singular value decomposition of F, or

%

F= Z )\kukvg , (79a)
k=1
N

A=> ogvpvi (79b)
k=1

M
Y= Z ozukuz , and (79¢)
k=1
K'/
. I'= Z 'ykvkuz . _ (79d)
k=1

In other words, these matrices all share the same singular axes; this may be called

the case of “coaxial priors.” Since A and X are positive definite, az > 0 for

k=1,...,N,and 02 > 0 for k = 1,...,M. Recall that K = rank(F) < K’ =
min(M, N).
Then the OCLIM filter can be expressed in the same axes as

H = (AF? + D)(FAFT + FT +T7TFT 4 »)~!

K’ 2,2
_ ak’\k+7k/\k -1 T , 80
= 2,2 5 A\ Viup o, ( )
bm1 %6k T 2MAR + o,

which is exactly the optimal weighted pseudoinverse of F. That is, the optimal

welghted pseudoinverse is obtained as a special case of the optimal constrained
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linear filter when the covariance matrices are coaxial with the forward transfer

matrix; it is inferior to OCLIM otherwise.

Except for the special case of uniform priors (discussed below), coaxial priors

seem unlikely to occur in practice.

The truncated pseudoinverse can also be obtained as a special case of coaxial
priors, although the assumptions required are rather perverse: o3, = 0 = ~y; implies

¢ = 1; and either o} = 0o or aj = 0 = «;, implies ¢ = 0.

4.4.3 Stationary Priors

Suppose that the source and noise amplitudes are (spatially) stationary, that there
are the same number of sources and detectors (M = N), and that the forward
transfer function is shift-invariant. Then A, 3, and F are all square and (approx-
imately) circulant. Thus [44, p. 145], they are all diagonalized by the discrete
Fourier transform represented as the unitary matrix

[Wlmn = % emi2mmn/N (81)
That is, A = WAW* is diagonal and the diagonal entries, which we will de-
note FPy(k), constitute the power spectrum of the source amplitudes ¢n. Similarly,
3 = WEXW* is diagonal and its diagonal entries Py (k) constitute the noise power
spectrum. Furthermore, F = WFW* is diagonal and its diagonal entries F(k)
constitute the transfer function in frequency space. Since F is real, FZ = F* and

the optimal filter can be written as H = AF*(FAF* + X)~1, or
fl - WHW" = AF*(FAF" + 5)-1 |

and, since all the matrices are diagonal,

By(k)I™ (k)

= TFROPPR(E) 1 Pa(h) (82)

H(k)

which is the Wiener deconvolution filter [15, pages 209-210].
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4.4.4 Uniform Priors

In the case of “uniform priors,” the approximate amplitude of the elementary
sources is known but there is no basis for believing that any one is more active
than any other; and the same is true of the noise amplitudes. That is, the source
amplitudes are independent and identically distributed; so are the noise ampli-
tudes. Then every source has the same expected activity o and the covariance
matrix A takes the form a2I; the noise covariance ¥ takes the form o2I and the
cross-covariance I' is zero. It follows that A, X, and I' are all coaxial with any

forward transfer matrix F. Then both OCLIM and OWPIM simplify to
H= FT(FFT + (02/a2)1)—1

= Z X507 sl (83)
where we have used the fact that A\; = 0 whenever k > K to reduce the upper limit
from K’ to K. Since FFT is positive semidefinite, the indicated matrix inverse
exists whenever 02/a® > 0. The only prior knowledge required is the ratio a?/o?;
thus this special case is useful for noise-tolerant reconstruction given only rough
estimates of source and noise amplitude.

This form can be regarded as a Marquardt [54, 55] or Tikhonov [99] regular-
ization of the pseudoinverse Fi = FT(FFT)_l. One important difference is that
the value of the regularization parameter is determined by the given value of 02/a?

and need not be determined by experiment.

4.4.5 No Prior Information

The case of “no priors” may be approached by letting a? go to infinity. In this
case, the OCLIM filter goes to the limit

H= Z’\k Vkuk , (84)

which is just the Moore-Penrose inverse or the MNLS estimator. Taking the limit

as the noise goes to zero (02 — 0) yields the same result.
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4.5 Maximum A Posteriori Estimation
The OCLIM estimator can also be obtained as the maximum a posteriori estimator
when q and w are Gaussian but uncorrelated. In maximum a posteriori (MAP)
estimation,v we seek the estimate § which maximizes the a posteriori probability
p(q | b) of q given a set of measurements b.

Now suppose that g and w are uncorrelated zero-mean Gaussian random vectors
with respective covariance matrices A and 3. Given these, the a priori probability

of a given source vector q is

p(a) = (@mN|A)T2 exp(-3qTAlq) . (85)
Similarly, the probability of a given noise vector w is

p(w) = (2m)M|2)) ™2 exp(—$wTE"lw) . (86)

Since w = b — F\q, the probability of a given measurement b given a source vector

q must be
p(b | q) = (MM )72 exp(-3((b ~Fq)T="}b-Fq)) .  (87)

Given these, Bayes’ rule gives the a posteriori distribution of q as

p(q|b) = 3(—'9'?(%3@ . (88)

Since we are seeking the maximum with respect to q and the denominator p(b) is

independent of q, it suffices to maximize the product

p(bla) p(q) = (2M)M ()72 exp(—3(b — Fq)T="!(b — Fq))
x (2m)V|A)) Y2 exp(—3qTA™lq) . (89)

But maximizing this is equivalent to maximizing
log(p(bla)p(a) = ~3(b~Fq)' 57! (b~Fq) ~ja’A™'q  (90)

or minimizing
2 =(b-Fq)' 37 (b—Fq)+q’A"!q . (91)
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The minimum can be determined by a variational analysis. Suppose that q

minimizes 72 and write q=q+6q. Then

22 = (g4 6)TA"L(§ + 6q) + (F§ — b+ F6q)TS"(F§ — b + Féq)

=§TA g+ (Fg—b)T="1(Fq—b) (line 1)
+26q7 A q + 26T FTs~1(Fq - b) (line 2)
+6qT A 16q + 6qTFTx"1Fsq . (line 3)

For q to be a minimum, we must have line 3 non-negative and line 2 zero for
any value of 6q. Since A and X are positive definite, line 3 is positive whenever éq

is non-zero. Line 2 will be zero for any éq provided that
A"lg+FTs~{(Fg—b) =0 . | (92)
Solving for q yields |
g= A1+ FT" P 1Fls~lp | (93)
which is one form of the OCLIM estimator.

4.6 Nuisance Sources

In some applications it happens that many sources are expected but only some
of them are of interest to the experimenter. This section considers whether es-
timating the amplitudes of the uninteresting “nuisance” sources will improve the
estimates for the interesting source amplitudes. Suppose that the source vector q
is partitioned into a vector of N interesting sources q; and N9 nuisance sources

qo arranged as

q= [fg} . (94)

Then we wish to find a linear estimator Hj in the computation §; = H1b that will

minimize the error

9 R .
nt = E|la; — &1/ (95)
in the interesting sources alone.
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The expected mean square error can be rewritten in the .form
n{ = E(q1 — HiFq - Hiw)" (q; - HiFq - Hw) (96)
and introducing a variation Hy + 6H yields
n{ +6nf = E(a1 — HiFa — Hiw)” (q1 - HiFq — Hiw)
— 2E(Fq+ w)T6HT(q) — H;Fq— Hyw)

+ E(Fq+w) 6HT6H(Fq+w) . (97)
(
The existence of an extremum requires that |
E(q1 —-HiFq - Hiw)(Fq+w)' =0 | (98)
which simplifies after some algebra to
H; = (A;FT + 1 )(FAF + FT + T7F7 £ &)1 | (99)
where
— T _ T .
A;=Eqiq and T';=Eqw (100)

consist of the first N] rows of A and I'. In fact, the selective estimator Hj consists
of the first Ny rows of the complete estimator H.

We can further write

A
A =Eqa=[Emal Eaqai]l=[A11 Aj] (101)

and
b=Fq+w=[F; F9 l:g;]—%-w . (102)

Then AjFT 4+ '} = A;F; + Aj9F5 + I’ and the selective estimator becomes -
H; = (A11F] + A19F9 + T1)(FAF + FT + TTFT 4+ 371 (103)
If the interesting and nuisance-sources are uncorrelated, then Ajo = 0 and the

selective estimator is
H; = (A;1F; + T')(FAF + FT + rTFT ) (104)
That is, the nuisance sources must be included in the measurement covariance
B=FAF+Fr+TTFrT 1+ » (105)

but may be ignored thereafter. An experimental determination of the priors thus
requires estimating the measurement covariance B and the covariance matrix A

of the interesting sources only.
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4.7 Estimation Subject to a Linear Constraint

The inverse problem can be generalized by requiring in addition that the solution
q satisfies a linear equality constraint of the form Cq = 0.

For example, charge conservation under quasistatic conditions requires that
V2 = 0; a finite difference discretization leads to a linear constraint of the form
DJ = 0 where J is a vector of current density values at the selected grid points.
Although this approach to imposing charge conservation appears inferior to finite
element or boundary element approaches and was not pursued further, it may be
useful for other applications.

For Cq = CHb = 0 for every b consistent with the priors, it is necessary
and sufficient under Assumpti)on A that CH = 0. Sufficiency is obvious. For
necessity, suppose that CH # 0. Then there exists a b such that CHb # 0. But,
under Assumption A, the measurement covariance B = Ebb7 is nonsingular and
it follows that b is not confined to any subspace. That is, there is always a b
consistent with the priors such that CHb # 0.

Then the method of Lagrange multipliers yields the augmented objective func-
tion

§=Ella—al®+ ) N CHey (106)
k
where each Ay, is a column vector of Lagrange multipliers and ey, is the kth standard

basis vector. Then, since § = Hb = HFq + Hw,

S = E(HFq + Hw — q)"(HFq + Hw —q) + ) _ \f CHe,, . (107)
k

The first variation is

§S = 2E(HFq + Hw — q)7 (SHFq + §Hw) + Y _ \{ CéHey
k

= 2E(HFq + Hw — q) 6H(Fq + w) + Y \] CéHe,, (108)
k

which must equal zero for arbitrary éH when H is optimal. This implies that

1
E(Fq+ w)(HFq + Hw — q)T + 5 Y eMfC=0 . (109)
k

54



Chapter 4. The Linear Inverse Problem with Prior Knowledge

Assuming for convenience that q and w are uncorrelated and absorbing the constant

factor 1/2 into the \j yields

FAFTHT - FA + SHT +) eA[C=0 (110)
k

or, after transposing and extracting common terms,
HFAFT + )~ AFT +cTA=0 |, | (111)

where

A=) Mef (112)
k

is a matrix of Lagrange multipliers. Solving for H yields

H = (AFT — cTA)(FAFT + S)—l . (113)
Now the desired constraint is that CH = 0, or
CAFT — CTA)YFAFT + )" 1=0 . (114)
Since (FAFT + X) is non-singular, this is equivalent to

CAFT —cTA) =0 . (115)

- Now assume without loss of generality that the rows of C are linearly indepen-
dent. Otherwise Cq = 0 contains a redundant constraint that could be removed
without changing the set of admissable §. Then it follows [94, pp. 157-158] that

CCT is nonsingular and so
| A = (cch)y~lcarT . (116)
Finally, substituting into the expression for H yields
H = (I-cT(cc?)"'c)AFT(FAFT + ©)~! . (117)

Note that (I— CT(CCT)~1C) is the projection matrix onto the null space of C and
so the optimal solution subject to the constraint Cq = 0 can be obtained simply by
projecting the unconstrained solution into the null space of the constraint matrix

C.
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Chapter 5

| ‘The Generalized
Chi-squared Distribution

'This chapter defines and develops a generalization of the x2 distribution which will
be necessary later to describe the statistics of various measures of reconstruction
quality. The generalized x2 distribution is the distribution followed by the sum
of the squares of Gaussian random variables with arbitrary means, variances, and
covariances. Alternatively, it is the distribution followed by the squared norm of

an arbitrary Gaussian random vector.

The generalized x2 distribution is important to this dissertation for the follow-
ing reason: The measurement residual r = b — Fq, or the difference between the
actual measurements and the measurements predicted by the reconstruction, gives
an indication of the completeness of the source model used in the reconstruction.
The squared residual x2 = ||r||? reduces the residual to a single number which, if
too large, indicates that the source model is possibly incomplete. It is important to
know the distribution of ||r|? to decide what is meant by “too large.” If reconstruc-
tion is done using a least-squares method, then the squared residual ||r||? follows
the standard X2 distribution. If, however, OCLIM is used for the reconstruction,
then the squared residual follows a generalization of the x? distribution. It is the
purpose of this chapter to define that generalization and to develop an algorithm
for cémputing it. The algorithm developed is applicable to any continuous random

variable meeting certain regularity conditions and may be useful in its own right.
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Chapter 5. The Generalized Chi-squared Distribution

5.1 Some Mathematical Preliminaries

It is useful to collect here some elementary results about random vectors, charac-
teristic functions, and Fourier transforms which will be used later in this chapter.
Proposition: Let p(z) be the probability density of a real-valued random
variable and ¢(t) = E{e?} its characteristic function. Let
O . .
F:f(z) — Fu) = / e2TUT £( 1) d (118)
: —c0

denote the Fourier transform. Then
F{p(z)} = ¢(=2mu)  and  p(z) = F H{e(-2mu)} . (119)

Proof: Substitute ¢ = —27u into the definition of the characteristic function.

Then take the inverse Fourier transform. [ ]
Proposition: Let p(z) be the probability density of a real-valued random
variable and ¢(t) = E{e®*} its characteristic function. Then

z" p(z) = 22;; /_0:0 M (1) e~ %% dt (120)
and

1 (e.@)
a5 [ loP@la (121)

Proof: Differentiating the definition of ¢(¢) n times yields

oM(t) = i /00 " p(z) e d

from which the Fourier integral theorem yields the first result. The second result
then follows immediately by taking the absolute value. [ |

Definition: The Frobenius norm of a general matrix G is defined as
IGIE =2 _d5 - (122)
ij

Given this definition, it is trivial to show the useful fact that ||GH% = Tr(GGT).
Proposition: Let x be a random vector with mean X and variance Cx and
let A be a symmetric positive definite matrix with Cholesky decomposition RRY.
Then
E(xTAx) = To(RTCxR) + 2T A% (123)
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and, in particular,

E [[x]I” = Te(Cx) + lIRI* - | (124)

Proof: Consider first the case that & = 0. Then Ex7x = > Ex? = Tr(Cx).

Then consider

ExTAx = E(x - %+ %) RRT (x — 4 %)
— E(x - x)TRRT(x — %) + E(x - x)TRR %
+ExTRRT(x — %) + ExXTRRT%

Now observe that the random vector R7(x — X) has mean zero and variance
R7CR; then the first equality follows immediately. The second equality follows
from the substitution A = 1. , ]

5.2 Definition

We now consider the problem of computing the distribution of the norm of a Gaus-

sian random vector.

This distribution can be viewed as a generalization of the well-known x2 dis-
tribution. A random variable Y is said to have a x? distribution with v degrees of

freedom if it can be written as
v

Y = Zx? (125)
j=1 ‘

where the z; are independent, identically distributed Gaussian random variables
with mean zero and unit variance. In the generalized X2 distribution, the z; may

have arbitrary means, variances, and covariances.

More concisely, suppose that x is a Gaussian random vector with mean X and
covariance Cx. Then the squared norm ||x||2 = 2 x? will be said to have a gener-
alized x2 distribution with parameters X and Cx. In symbols, ||x]|2 ~ x2(, Cx).

Some previously known distributions are special cases of the generalized X2

distribution and will be discussed later.
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5.2.1 Canonical Form

We begin with a narrower canonical form of the generalized x2 distribution and
show that it defines exactly the same class of distributions as the more general
form above. ,

Definition: Suppose that z;,7 = 1,...,v are independent normal random
variables §vith respective means y; and variances O'JQ- > 0. Let pg be a real constant.
Then the random variable '

Y = ,u% +

J
has a generalized x2 distribution. (Note that the requirement that oj # 0 involves

v
2 (126)

=1

no loss of generality; any such terms can be gathered into the constant term p%)
The central and non-central x2 distributions with v degrees of freedom and

noncentrality parameter 4?2 are obtained as special cases by setting g =0, p; = 4,

p2 = pg = -+ = w = 0 and o; = 1. The Rayleigh distribution with v degrees

of freedom and variance o2

is obtained by setting pp = pj = 0 and 0; = 0. The
computational algorithm described here will be applicable to these special cases
but may or may not be more efficient than algorithms specific to the Rayleigh or

non-central x? distributions (20, 26, 73, 74, 82].

5.2.2 Characteristic Function

There does not appear to be an explicit expression for the probability density
function for the generalized X2 distribution. However, the characteristic function
can be found and provides a method for numerically evaluating the probability
density.

We begin by developing the characteristic function for a single term (v = 1). Let
X be a normal random variable with mean y and variance o2 and define ¥ = X2.

Then the cumulative distribution function for Y is
Prob(Y < y) = Prob(X? < y) = Prob(—/F < X < +/7)
=prob(‘\/’?‘“ <X-oro ﬂ‘”)
o

o ag
1 Y—4
=
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Differentiating by Leibnitz’ rule yields the density function
_ 1 (/T 1)? (i w?
ply) = 20427y [exp (_ 202 T exp 202

The characteristic function is

$(t) = E{e}
_ [ (Vi-w? (/G +)°
_/0 20+/2my [exp <_ 202 ) +exp ( 202

Substituting y = z2 and simplifying,

(_ 2202t)x —2uT + g

1
= e
ovVaer Jg )
1 o (1-— 2102t)x + 2uzx + u2>
+ e dz
o\ 2 / P (

and applying formula 7.4.2 of Abramothz a.nd Stegun [2],

1 2no2 7 2¢ o
= exp | ————
sovor V1 =202 P\ 1= 1202t

() ()
and since
erfc(z) + erfc(—z) = 1 —erf(z) + 1 — erf(—z)
= 2 — erf(z) + erf(z)
=2

we obtain the result

. 9
P(t) = (1 —i20%t)" /2 exp (1—_1’;—;@> : (127)

The moments of X and Y are conveniently computed via the characteristic

function of X,
bx(t) = explint — o)

yielding
EX =¢%(0)/i =p , (128a)
EY =EX’= o'y (O)/z =o?+4u% (128b)
EX3 = ¢%(0)/i3 = u(30% +4?) , and (128¢)
EY? = EX?* = ¢%(0)/i* =30* + 60212 + 1% . (1284)
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Furthermore, the variance of Y is

Var(Y) = E(Y —EY)2 =EY2 — (EY)? = EX* — (E X?)2
= 202%(c? +2u2) . | (129)

Then for the general case of X;,5 = 1,...,v, independent and normally dis-
tributed with means p; and variances 012-, the random variable

~

: |
Y =u5+) X7 (130)
j=1

must have the characteristic function

2t T o 2.—1/2 i“?t
o(t) = e'Fo H(l - 220'jt) exp m , (131)
j=1 J
the mean 5
EY =pd+ > (67 +43) (132)
J=1
and the variance 5
VarY = Z 2032-(0]2- + 2/1?) . (133)
j=1

Note also that the mimimum possible value of Y is /1(2). If v > 0, there is no upper
bound. '

5.2.3 General Form

The distribution of ||y||? for a Gaussian random vector y can be expressed in terms
of the canonical x?2 distribution developed above. Suppose that y is a Gaussian
random vector with mean ¥ and covariance matrix Cyy. Then the squared vector
magnitude ||y||?> = yTy has a generalizéd x2 distribution. To see this, observe
that the covariance matrix Cyy is positive semidefinite and can be written in the
form Cyy = UDUT where U is orthogonal and D is diagonal with non-negative
elements. Define z = UTy. Then the mean of z is Z = Ez = UT¥ and the va.ria.nce
is ,
Ez-2)(z-2)7 =EUT(y -y)(y -9)TU=UTCy,U=D
61



Chapter 5. The Generalized Chi-squared Distribution
That is, the components zj of z are independent Gaussian random variables with
means p; = [UTy] j and variances 012- =Dj; = [UTCyy U] jj- (Remember that if
any variances 032- are zero, the corresponding u; must be lumped into the constant
u% of the canonical x? distribution.) Then ||z||? = 25 z]2- has a generalized x°
distribution. Furthermore, since U is orthogonal, ||y||> = ||Uz||? = ||z||* has the
same distribution.

The mean and variance of ||y||? can also be written in matrix form as
Elyl* = Tx(Cyy) + 171 (134)
and
2 _ 2 =T S
Var [|y||“ = 2Tr(Cyy ) + 45" Cyy¥ - (135)

The expression for E ||y || holds for any random vector y. To see that the expression

for Var ||y||? is valid, consider

2Tr(CZ,) + 457 Cyyy = 2 Tr(UDUTUDUT) + 45UDUTy
= 2Tr(D?) + 42" Dz

2 2

=2) oj+D 4o
j j

= Var ||z||* = Var |ly|

Now suppose that A is a symmetric positive definite matrix with Cholesky
decomposition A = RR7 and consider the distribution of yT Ay = |RTy/|[2. Since
RTy is a linear combination of Gaussian random variables, it is Gaussian and must
have mean R7y and variance RTnyR. It follows that HyTAyH2 must have a

generalized x2 distribution, or

yT Ay ~ x*(RTy,RTCyyR) . (136)

5.2.4 Asymptotic Behavior

We prove here the asymptotic properties of the characteristic function ¢(t) and
of the density p(z) which are essential to proving the convergence of the numer-
ical algorithm for p(z) proposed later. For convenience, only the case v > 4 is

considered.
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Lemma: For all real values of ¢,

2 - 2

© 7
~ <Rl ——=1]1<0 , 137
o2 = (1 —i202t) B (137)

from which it follows that
- 2

—u2fo? _wt <1 . 138
y = eXP(l—z'202t = (138)

In both inequalities, the upper limit is obtained at ¢ = 0 and the lower limit at
t = too.

Proof: Consider

a2t (12t)(1 + i20%)
Rl ) =R 952 )
1 —1204t (1 —1204t)(1 + 120t)
iu2t — 2u202t2
=R
1+ 404t2
_ —2u202t2
T 144042
The derivative of this last quantity is —402;1225/ (1+ 402u2t2), which is negative for

t positive, zero for ¢t = 0, and positive for ¢ negative. It follows that the maximum

must occur at t = 0 and minima at ¢ = too. Substitution then yields the limiting

values given above. [ |
Lemma: For all real values of ¢,

11— 202|712 < 2027172 (139)

Proof: |1 —i202t|71/2 = |1 + 404?74 < 40?7V = 20%71/2 . W

Proposition: Let ¢(¢) be the characteristic function of a generalized x2 vari-
able as given above. Then, for all real values of ¢,
v
o) < (272 T[ o7t | 1772 (140)

Proof: Consider |

|#(8)] = i - i2o?e V2.

j=1

<(1)- 1‘[ 202 71/2 . (1)
7=1

eiugt

v
— 2—1//2 H o_j—l 't]—ll/Q ) B
=1

4

63



Chapter 5. . The Generalized Chi-squared Distribution

Proposition: The probability density function p(z) for a generalized x? vari-
able exists and is differentiable everywhere for v > 4.

Proof: (1) For the existence of p(z) it suffices to show than ¢(t) is continuous
on the real axis and that it is absolutely integrable. Continuity is obvious. For

absolute integrability consider that

/ e dt < /°°B|t|"’/2dt ,

-0
where B = 2¥/2 II ; 0;-'1 , and that the latter integral exists and is finite whenever

v>2.
(2) For differentiability of p(z) consider its derivative

e o]

()] < 51; /_ N |t $(t)| dt

o0
< / It| B |¢|~¥/2dt

o

—OO
=/ Bt dt
—Oo0

which converges whenever v > 4. [ ]
Remark: The case v < 4 should be accessible to a more sophisticated analysis.
It appears that p(z) exists for all v > 0 and is continuous for v > 2.
To determine the asymptotic behavior of the density p(z) it is convenient to

start with the simple case v = 1, for which the characteristic function is

-2
P(t) =(1- i202t)—1/2 exp (-1-—_1—/;-2—2—22> . (141)

For notational convenience, define the polynomials
f(t)=1-120" and  g(t) =iy’ .  (142)

Proposition: The nth derivative of 1(t) can be written in the form

$(8) = aalg(8)/ F(1)) (F(1)) 712 SO (143)
where gn(s) is the polynomial of degree n or less defined by the recursion
qo(s)=1  and (144)
nt+1(8) = gn(s)(i® +120%8) + gn(s)(ip® — (n + §) +i20%s) .
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Furthermore, suppose that gn(s) = Z?:O Inj sJ. Then

™ (E)] < Qn 1 — 2024712 < Qn 202 V2 (145)
where .
n #2 J
Qn=_ lan;l (ﬁ) - (146)
j=0

Proof: (1) We consider first the claim that (™) (t) can be written in the given
form. The formula gy = 1 follows immediately from the equation ¥(0)(¢) = P(t).

For the general case we proceed by induction. Assume that

$(t) = an(g/f) £ 12 9
Then differentiation yields

O+ = g (62 + 20%(g/f) + an(in® = (0 + b+ i20%(g /)] F7/2 910
= gn1(g/f) f7mFD-1/2 9/

as required, given the definition
Gnt1(s) = an(ip® +120%s + gn(ip® — (n + §) +120%s)
(2) For the first bound, observe that

. 1/2
g@®)| _| et | _ [ / B
f@® 1 —14202t 1+ 4042 = 202

Since |g/f] is bounded and gn(s) is a polynomial, the polynomial gn(g/f) must also
be bounded, with the bound Q, as defined above. Now recall that the factor |eg/f |

is bounded by 1. Then the bound on zb(") follows immediately. The second form
of the bound follows from the previous lemma that |1 —i202t|71/2 < [262%¢|~1/2. @
The first few values for ¢, and Qn, can be easily computed and are:

qo(s) =1 | - (1472)
q1(s) = ip? — % +i202s (147Db)
g2(s) = % —20%u? — p* — 202 + s(—40? — 20242 —i0?) — P40t (147¢)
Qo(u,0) =1 (148a)
Q1,0) = (§ +uH/? + 4t (148b),
Qa(p,0) = [(% —20%u% — %)% + 4u4] R [(202 +p?)? + 211] Y82 4 s
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Proposition: Let ¢(t) be the characteristic function of a generalized x? ran-

dom variable. Then

/()] < (vQamax + (v = D@mar) (1420520 1 (149)

where
Qomax = max Q2(ug, 0k) _ (150a)
Qimax = max Q1 (pg,0k) ,and (150b)
Omin = mlein o - ' (150c)

Proof: The characteristic function can be written in the form

) = J[ue®

k=1

where 0
_ o 2,—1/2 Wyt
t) = (1 —1201t e
Yr(t) = ( kt) XP<1_Z.20£t

Differentiating twice yields
"= e+ Y0k [[vom
k £ k2 m
where k ranges over 1,2,...,v, £ covers the same range but omits &k, and m covers

the same range but omits both k£ and £. Furthermore,

¥l < Z"” | H'WHZZI%WI T ln
SZQ% Ifkl 5/2 Hlfel 12
k ¢
+ 35 Qui Quel £l 732 1573/ I]1fmi™2
k¢ -

where Q1. = Qn(pg,0r) and f = (1 — i2a%t). Now observe that for a < 0,
|fel ™% =1 — 42087 < |1 — 202, ¢~

Then it follows that

|¢"| < VQ?maX Il - mmtl—2_u/2 + V(V - 1)Q1max |1 mmtl —2- U/2
= (vQamax + V(¥ = 1)Qmax) I1 — 2025, 27/2
= (VQQmax + V(V - 1)Q1max) (1 + 4amlnt2)— —v/4 . |
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Proposition: Let p(z) be the probability density for a generalized x2 variable.
Then for all values of z,

0 < p(z) < Az~2 | - (151)
where the real constant A has the value ‘
4/mo?. T(v/4 + 1)

Proof: Since p(z) is a probability density it is necessarily non-negative. For the

upper limit it suffices to show that le p(z)| £ A. Now consider

o0

1 "
e < 52 | 1l

1 ) L
< 5 (Qoma + (v = Qi) [ (1+ syt
-0

1 5 v Tw/a+d)
- g(VQZmax + V(V - I)leax) : 2Ur2nin : P(Z//4 + 1)

_ YQomax +¥(v = )Qf ey Tw/4+3) _

4/rol, T(v/4+1) =
where the integral has been evaluated by formula 615 in Beyer [10]. [ |

5.3 Numerical Algorithm

The preceeding section has developed an explicit form for the characteristic function
of the generalized x? distribution, but there does not appear to be any explicit
form for the density itself. In this section we consider the problem of numerically
computing that density using the fast Fourier transform (FFT).

The problem can be stated in more general form as follows: Supposing that
we know an explicit form for the Fourier transform F(u) of a real continuous-time
function f(z), how can f(z) be computed?

Provided that both F(u) and f(z) are smooth and decay rapidly, it should be
possible to to estimate f(z) by evaluating F(u) at some finite number of points,
taking the inverse FFT to obtain f(z) at some finite number of points, and inter-
polating the result to yield an estimate of f(z). Since F'(u) is evaluated only at a
finite number of discrete points, the estimated f(z) will be distorted by sampling

and truncation errors.
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This approach to computing probability distributions is only sparsely repre-
sented in the literature. Bohman [11] briefly describes an FFT method for proba-
bility density functions but does not address the errors introduced by sampling and
truncation. Belov and Galkin [9] describe a similar method for computing the com-
pound Poisson distribution; they estimate the accuracy in the specific cases that
they compute but do not address the general case. Maindonald [52] and Thisted [98]
mention the FFT only in the context of time series analysis; they do not discuss
any application to the computation of probability distribution functions. Several
other authors have applied the FFT to the calculation of discrete distributions; see,
for example, Abate and Whitt [1], Cavers [16], Daigle [24], and Griibel [39].

The use of the FFT to approximate the continuous Fourier transform is com-
monplace in the practice of digital signal processing but an error analysis is rarely
done. The estimation of a probability density function is equivalent to the problem
of estimating the spectrum of a non-time-limited signal given only a finite number
of samples. Cooley et al. [21] describe the use of the FFT to compute Fourier
integrals and analyze the error as a sum of aliasing (or sampling) and truncation

errors; they do not, however, give explicit error bounds.

5.3.1 CFT/DFT Correspondence

We begin with the following theorem which gives conditions under which the con-
tinuous and discrete Fourier transforms (CFT and DFT) are equivalent. Cooley et
al. [21, Theorem 1] give a different correspondence theorem.
Theorem (CFT/DFT Correspondence): Suppose that F(u) is a spectrum
which has been sampled and truncated so that it can be written in the form
(N/2)-1
Fluy= Y  Fk/T)8u—-k/T) . (153)
k=—(N/2)+1
Then the N —1 values F(—(N/2)+1),...,F((N/2)— 1) suffice to define F(u) and

the corresponding signal (via the continuous Fourier transform) is

(N/2)-1
f@y= > F(k/T)es?mk=/T (154)
k:—(N/2)+l
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Now let 7 = T'/N and define the discrete-time function
fln] = f(n7) forn=0,...,N—-1 |

and the discrete-frequency spectrum

F(k/T) k=0,...,(N/2)—1
F[k]:{O k=N/2
F((k=N)/T) k=(N/2)+1,...,N -1

Then f[n] and F[k] are related through the discrete Fourier transform
N-1 _
k=0

and f(z) and f[n] are related by the band-limited interpolation

sinm(N — 1)(z —nT1)/T
sinm(z —nt)/T

N-1
flz)=Y_ fln]
n=0

Proof: (1) To see the connection between f[n] and F[k], consider

(N/2)-1
finl=ftnr)=| > Fk/T)>™HT
k=—(N/2)+1 z=nT/N
(N/2)—1 :
— Z F(k/T) e]’2‘11'77.&:/]\7
k=—(N/2)+1
N/2-1 -1
= Y F(k/T)e?™m/N 1 N™ F(k/T) S2mk/N
k=0 k=—(N/2)+1

(155)

(156)

(157)

(158)

Substituting k¥’ = k+ N or k =k — N in the last summation yields, after using

the fact that e 92™N/N = 1 for all integer n,

N/2-1 N—1
fil= 3 FG/DS™N 4 S F(( - N)/T) 2RI
k=0 k'=(N/2)+1
and since F[N/2]e2%n(N/2)/N — . ¢52mn(N/2)/N — g
N-1
fln] = Z Flk] 6_7'271'nk./N
k=0
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(2) To see the connection between f(z) and f[n], note first that F[k] is given

by the inverse discrete Fourier transform of f[n], or

N-1 :
Flkl = fln)e2mn/N

n=0
Then consider
(N/2)-1
f(z) = Z Flk] eJ2mkz /T
k=—(N/2)+1
(N/2)-1  [N-1
= Z I:Z f[n] e—j27rkn/N:| ej27rkx/T
k=—(N/2)+1 | n=0
N—1 (N/2)—1
— Z f[n] Z e—j27rkn/N ejQsz/T}
n=0 | k=—(N/2)+1
N-1 (N/2)—-1
=Y fln] ¥ (ej27r(m—nr)/T>k}
n=0 | k=—(N/2)+1
N-1 [ (eJQW(z—nT)/T) (N-1)/2 _ (ej27r(z—n-r)/T)_(N_1)/2
=2 fln . 72, . Zij2
n=0 I (3.7271'(33—717')/T) — (6327r(:c—n7')/T)
_ NZ—I 1) [ sin 7r§N —1)(z — n'r)/T] . "
= | sinw(z —n7)/T

5.3.2 The Algorithm

In the general case, sampling and truncating F'(u) to meet the conditions of this
theorem will introduce errors in the computation of f(z). Truncating F(u) corre-
sponds to lowpass filtering f(z), so provided that both F(u) and f(z) are reasonably
smooth and decay rapidly, it should be possible to use the following algorithm to
estimate f(z).

1. Choose a value T which sets the ra.ngé of  over which f(z) is to be computed
and a value N which sets the number of points at which f(z) is to be computed.
For efficiency, N should be a power of two.

. 2. Compute the N — 1 values F\(k/T) for k = —(N/2) +1,...,(N/2) -1 and
append a zero value to get exactly N values. Note that when f(z) is real, F(u)
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has Hermitian symmetry and that in fact only N/2 distinct values actually must

be computed.

3. Take the inverse FFT of these N values to obtain the N values f(n) for
n=0,...,N—1.

4. These values define the points f(nT/N) of the function f(z). If desired,

interpolate these data to obtain f as a continuous function.

The interesting question now, is whether or not this procedure converges to the
correct answer as N and T increase, and what the error bounds might be for a

specified N and T

5.3.3 Error Bounds

- This section gives error bounds for the algorithm and states conditions under which
the algorithm will converge as IV and T increase toward infinity. Cooley at al. [21]
discuss the sources of error but do not give explicit error bounds. Condition (1)
of the following theorem is imposed because we require an error bound for a non-
negative random variable; it could be replaced by a condition similar to (2) for a
general real random variable. Condition (2) requires that f(z) is “almost” time-
limited in the sense that its tails decay rapidly enough that they can be ignored for
N and T large enough; this allows us to bound the sampling error introduced by
evaluating F'(u) only at discrete points. Condition (3) requires that f(z) is “almost”
band-limited in the sense that the tails of its spectrum F(u) decay rapidly enough
that they can be ignored; this allows us to bound the truncation error introduced

by considering F'(u) over only a finite interval.

Theorem (Error Bounds): Let f(z) be a function and F(u) its Fourier
transform and suppose that there exist constants 4, B, a > 1, and 8 > 1/2 such
that

(1) f(z) =0 for all z < 0; :
- (2) |[f(2)] < Alz|™@ for all z > T; and
(3) |F(uw)| < Blu|™? for all |u| > N/2.
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Let fo(z) be the approximation to f(z) computed by the procedure given above.
Then the approximation error defined by

T 1/2
If = fall = [ /0 f(z) = fale)® de (159)
is bounded by
_ A _a B__onp(_2 \7
If=fl< o g7+ \/5___1_/_2.T + (N—Q) . (160)

Proof: The diagram below summarizes the connections among F'(u), fo(z), and
f(z). The abbreviations are ICFT = inverse continuous Fourier transform; IFS =
inverse Fourier series; IDFT = inverse discrete Fourier transform. To periodify a

signal is to convolve it with an infinite sequence of impulses (the “comb” function).

F(u) =™ Rk e mlE) = R
l ICFT l IFS l IFS l IDFT
f( T ) periodify i (.r) lowpass fo (x) interpolate f [ k]

The claim that fo(z) is is obtained from fs[k] by interpolation is justified by

the correspondence theorem just proven. Now since || - || is a norm, we have that

If = foll < 1If = full + 11 f1 = Fell

and it suffices to evaluate each of the error terms ||f — fi|| and ||f1 — f2I|-
(1) For the first term, consider

T
If = A2 = /0 f@) - A2 de
T o0 :
=/ 1f@) = f(z +€T)P dz
0 =0
B T
[B

> fz +e€T)
=1

2
dz

T[> 2
< /0 LZ:;If(fCMT)I} dz
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2
dz

T o0 .
< Alz +0T|™¢
/0 S Ajo + 07|

| {=1

T o©
sA EQAWW
00 2
> ]

/=1

2
dz

— A2T1_2a

But given that a > 1,
o0

o N
dorr=14> 0
=1 =2
00
<1 —I—/ ™% da
1

o0

e
l—-o 1
[0

and so it follows that

2 2m1-2 a 2
If - Al < a2ri-2e |2
a-—1
That is, the error term || f — f1|| can be reduced below any given value by choosing
T large enough, provided that 1 — 2a < 0, which is always true if o > 1.

(2) For the second error term, consider
2 T 2
15~ foll = [ 151 ol ee

, o0

=T Z |Fi[k] — Fplk]|> by Parseval’s theorem
k=—c0

=T Y |R[k* since Fi[k] = Fyk] for [k| < N/2
|kI>N/2

=T Y |F(k/T)* by definition of Ay
|k|>N/2

<T Y Bk/T™%
|k|>N/2

xX
— 2B2T1+2ﬂ Z k-—?ﬂ ,
k=N/2
where the series converges provided that 8 > 1/2,
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< oB2T1+26 * 2P dk |
(N/2)—1

1 (N-—2\"%
2ﬁ—1( 2 ), ]

1-2
_ 2B% T1+2ﬁ(———N_2, ’ ,
28— 1 2

= 232T1+2/3

which, provided that 8 > 1/2, converges to zero for any fixed T' as N — oo. [ |

Corollory: For any € > 0, choosing

ACYG 2/(20(—1)
and
Be i1/ 2/(26-1)
N>2+42 ———=T1"" 162
>eT (2 -1/ ) (162)
is sufficient to guarantee that
T 1/2 |
IIf ~ foll = {/0 |f(z) = fa(z)|? d-'v] <e . (163)

Proof: It suffices to require that ||f — fi|| < €/2 and\||f1 — f2|| < €/2. Simple
algebra then yields the claimed results. [ |
Proposition: The algorithm given above converges for the generalized x2 dis-
tribution with v > 4. The parameters that appear in the error bound have the

values

_ vQomax + (v = 1)Q% . T(v/4+3) ‘
A= 4\/7_(012nin To/at 1) (164a)
a=2 (164b)
B=2VnV/2 (1_[1 0371) (164c)
J:
B=v/2 (164d)

Proof: The first two results follow immediately substituting the asymptotic
limits for the generalized x2 distribution in the error bounds just derived. For B
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and 3, it is necessary to restate the asymptotic limit of the characteristic function

in terms of the Fourier transform by making the substitution { = —27u to obtain

|F(u)| = [¢(—2mu)]

14
—v/2 -1 —v/2
<2 I l o; |27u|
j=1

_ 2—V7r—1//2 Ha.;l |u| v/2
J=1
or
|[F(u)] < Blul™
for B and (3 defined as above. [ |

Given the generalized x2 distribution, we now have the tools to statistically

characterize the reconstruction quality; this will be the subject of the next chapter.
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Reconstruction Quality

There are various ways in which a reconstruction can be “good.” First, the recon-
structed source distribution can closely match the true source distribution. That is,
the reconstruction error e = q — q can be close to zero. Second, the reconstructed
fields can closely match the measured fields. That is, the measurement residual
r = b — F§ can be close to zero. Third, the reconstructed source distribution can
closely match the assumed priors. That is, the quantity q can be close to zero,
which is the assumed mean of the prior source distribution. Each of these qual-
1ty measures is a vector quantity and may be reduced to a scalar by taking some

appropriate vector norm.

The purpose of this chapter is to characterize the meaning and statistical dis- -
tribution of each of these measures and their norms. In the general case, only the
means and covariances of q and w are known and it is possible to determine only
the means and variances of the quality measures and the means of their norms. But
if q and w are assumed to be jointly Gaussian, then these quality measures follow

a generalized x? distribution.
6.1 Reconstruction Error

The reconstruction error € = q — § measures how closely the reconstructed current
distribution § matches the true current distribution q. Although it is not possible
to compute e in a real reconstruction problem (since it depends on the unknown
true distribution q), it is possible to compute the statistical distribution of e, which

is a useful metric for the quality of a reconstruction algorithm.
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The mean and variance of e may be computed in straightforward fashion from

_its definition. The mean is
Ee=E(q—q)=E(q-H(Fq+w))=0 . (165)
The variance is

Var(e) = E(q — Hb)(q — Hb)T
= Eqq? —Eq(Hb)T —EHbq? + EHbb'H |
and since Eqb? = Eq(Fq+w)T = AFT 4T,
Var(e) = A — (AFT + I'H - HT(AF? + )7
+HFAFT + FT + TTFT + £)HT
= (I-HF)A(I - HF)' + HzHT
—I-HFrH? -Hr71 - ar)’ . (166)

If H is the OCLIM estimator, then the variance simplifies to
Var(e) = A — (AFT + T)(FAF? + FT + TTFT + )71 AFT + )T . (167)
In the common case that I' = 0, the error variance for OCLIM reduces further to

Var(e) = A — AFT(FAFT + ©)"lFA
= A+ FTz- g1 | (168)

The mean squared norm 72 = E ||e||? of the reconstruction error is the quality

metric optimized by both the OCLIM and OWPIM estimators. Its value is simply
n? = Tr(Var(e)) . (169)

For the weighted pseudoinverse with coaxial priors, the mean square error 772 can

also be computed via equation (65).
6.2 Gaussian Priors and Confidence Limits

In the case of Gaussian priors, it is possible to say a little more about the distri-

butions of e and ||e||2. Note first that e = q — HFq — Hw is a linear combination
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of Gaussian random vectors and so e must also be Gaussian with the mean and
variance derived above. Furthermore, the squared norm ||e]|?> must be generalized

x2 with parameters 0 and Var(e), or, in symbols
lell® ~ x*(0, Vax(e)) . (170)

Given the distribution of e, it is also possible to establish confidence limits on
the reconstructed source amplitude q. For a given measurement data set b, the

expected reconstruction error is

E(e | b) =E(q—Hb|b)=E(q|b) —Hb
= (AFT + T)FAFT + FT + TTFT + )b - Hb
= ((AFT + T)(FAFT + FT + I7FT 4+ 3)7" - H) b . (171)
If H is the OCLIM estimator, then E(e | b) = 0. Thus, OCLIM has no systematic

error but all other estimators do (unless they happen to coincide with the OCLIM

estimator).

Now for any given b, § = Hb is a constant and so the variance of the recon-
struction error 1s
~ A ~
A = Var(e | b) = Var(q — § | b) = Var(q | b)
=A — (AFT 4 ) FAFT + FT +TTFT + o)~ Y(FA +TT) |, (172)
which is also the a posteriori variance of q given b. Using the Cholesky decompo-
sition :
(FAFT + FT 4+ TTFT 4 )1 =17 | (173)
we obtain a form which is convenient for computation

A=A— (L—I(FA + rT))T (L'ra + FT)) L (174)

If the noise is uncorrelated with the sources, then I' = 0 and the error variance

becomes
A=A - AFT(FAFT + )7 1FA
=A—(L'FA)T(LIFA) | (175)
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using the Cholesky decomposition
FAFT + > =LLT . (176)

Note that in either case the error variance does not depend on the abtual measure-
ments b and thus can be computed in advance.

Each diagonal entry 62,, of A is the error variance of the corresponding estimate
Gn; hence each gn has a standard (1o) error equal to &np and the 90% confidence

limits are g + 1.645 énp,.
6.3 Measurement Residual

The measurement residual r = b — F§ measures how closely the reconstruction
matches the measured fields. It depends only on known qualities and thus can be
computed in a real reconstruction problem. If the residual is large, there may be
some reason to doubt that the source model and reconstruction are adequate to
explain the meaured fields. This section discusses the statistical distribution of the

residual. The residual can be written in the form
r=(I-FH)b (177)
from which it is obvious that it has mean value
E(r)y=(I-FH)Eb=0 (178)
and variance
Var(r) = (I - FH)Ebb (1 — FH)T
= (I- FH)(FAF? + FT + TTFT + )1 - FH)T . (179)
For the OCLIM estimator with I' = 0 we have
I— FH=1—-FAFT(FAFT + )~ = S(FAFT + )1 (180)
and the variance simplifies to

Var(r) = S(FAFT + £)~1%
=rlpTaly) | (181)
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The appropriate norm for r should account for variations in noise or measure-

ment accuracy between different detectors. The natural choice is

2 = (b—Fe)Ts (b~ Fg)
=b (I1-FH)'S1(I-FH)b (182)

which is also the traditional x? statistic of linear regression.
The mean squared norm E x2 of the residual reveals how closely a reconstruction

matches the given measurements on average and is useful as a figure of merit for a 7

reconstruction filter H. It depends only on the mean and variance of r and can be

computed as

Ex?2=EbT(1-FH)T="1(1-FH)b
=Ebl1-FH)Ts Ts~(I-FH)b
= E[|S7}(1 - FH)b|?
= Tr(S~1(1 - FH)B(I - FH)'s™T)
= Tr((S~1(I - FH)L)(S~}(I- FH)L)T)
=||STII-FH)L|% . (183)

~ For the weighted or truncated pseudoinverse,

M
I-FH=) (1-cuul , - (184)
k=1
which yields the form
M 2
Ex®=|D - up)@lup)T|| (185)

For the OCLIM estimator with I = 0, observe that

I-FH =I-FAF (FAFT + x)~!
= S(FAFT + =)~!
=ssT Tt | ' (186)
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It then follows that
Ex?=ISTL-T)% = IL7's|F . (187)

In the case of Gaussian priors, it is possible to determine also the distribution
of r and x2. Since r is a weighted sum of Gaussian random vectors, it is also a
Gaussian random vector with the mean and variance given above. Furthermore,
X2 = rI®~!r must have a generalized x2 distribution with parameters 0 and
S~ Var(r)S~7. In symbols,

x> = b -FyT=" (b -Fg) ~ x*0, s~ Var(r)s™T) . (188)
For the OCLIM estimator with I' = 0, this simplifies to

& ~ x2(0,(L1S)T(Ls)) (189)

6.4 Surprise

" The solution § = Hb is also a random vector for which the mean and variance can

be computed. The mean is

E(§) = E(Hb) =0 : (190)
and the variance is
Var(§) = Var(Hb) = H(FAF? + FT + T7FT + ©)HT . (191)
For the OCLIM estimator, the variance simplifies to
Var(§) = (AFT + T)(FAFT + FT +TTFT + )" Y AFT + )T | (192)
or, fI’'=0,
Var(§) = AFT(FAFT + £)"1FA = (L-'FA)T(L1FA) . (193)
The natural norm for q is

P=§"A"lg=|R1q% , (194)
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which is weighted to reflect the a priori uncertainty in the source amplitudes and
is thus a measure of the goodness of fit between the reconstucted source distribu-
tion and the a prior current distribution. Since p? increases as the reconstruction
becomes less likely relative to the priors, it will be called the “surprise.” The
mean surprise E p? indicates to what extent the reconstruction filter uses the prior

information rather than the given measurements; it has the value

Ep® = E||[R™"Hb|?
= Tr(RHBHTR7T)
= Tr(R™'HL)(R™'HL)T)
=|[(RTHL)|Z . (195)

For the OCLIM estimator with I' = 0, the mean surprise simplifies to
Ep? = [RTL7T|E = IL7'R7 (196)
For the weighted pseudoinverse, the mean surprise simplifies to

Ep? = |[R7IHL|[%

K 2
= |R™! ch)\zlvkuz L
k=1 F
= 1) e R @ )T : (197)
k=1 F

In the case of Gaussian priors, it is also possible to determine the distributions
of q and p2. Since q is a weighted sum of Gaussian random vectors, it is also a
Gaussian random vector with the mean and variance given above. Furthermore,

p2 = §A 1§ must be distributed as a generalized x? random variable, or
p? ~x*(0,R™! Var(@R™T) . (198)
For the OCLIM estimator with I" = 0, the distribution simplifies further to

o2 ~ x2(0,(LIFR)T(L7IFR)) . (199)
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Inverse Methods Compared

This chapter compares the inverse methods discussed in the previous chapters using

a Monte Carlo simulation.
7.1 Algorithms for Numerical Linear Algebra

Much research effort has been devoted to the efficient computer implementation
of operations in linear algebra. The following three paragraphs briefly summarize
the r\nost useful results for the present purpose; more extensive discussions may be
found in Golub [38] or another textbook on numerical linear algebra. Many of these
algorithms are available in the LAPACK and BLAS libraries (4], which are written
in FORTRAN 77; these two libraries were used to implement OCLIM.

The operations of computing the product of a matrix and a vector, the product
of two matrices, the sum or difference of two matrices or vectors, and the product of
a scalar and a vector or matrix can all be implemented in the obvious fashion from
their definitions. A product of the form y = ATx can be directly implemented
as y; = Zj Aj;z; without explicitly computing the transpose; similarly, products
such as XX and AFT can be done directly.

The operation of solving the linear system Ay = x for given A and x benefits
from a less direct approach. If A is symmetric and positive definite (which holds
for all the linear systems considered in this dissertation), it has a Cholesky decom-
position A = RRT where R is lower triangular. Efficient algorithms for computing
the Cholesky decomposition are known and may be found in any textbook on nu-

merical linear algebra. Furthermore, there are efficient algorithms, known as back
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substitution and forward substitution, for cofnputing expressions of the form A~ 1x,
R~!x, and RS once the Cholesky decomposition is known.

The operations of computing the norm of a vector and the Frobenius norm of
a matrix can also be implemented in the obvious fashion from their definitions and
are included in BLAS. Computing the trace of a matrix is not included but can be

done trivially from the definition.
7.2 Computational Algorithms for OCLIM

The implementation of OCLIM breaks into two parts: a setup or initialization
which is independent of the measured values b and can be done in advance, and
the computation of the estimate q for one or more measurement vectors b. Only
the case I' = 0 is considered here; that is, the noise is assumed to be uncorrelated
with the sources. This section describes the computational algorithm actually used

for these simulations; Section 11.1 describes an improved algorithm.

7.2.1 Initialization

Initialization includes the following steps. The values of F, A, and ¥ are required
as inputs. Operation counts are given only for the more expensive steps; a flop is a
floating point operation such as the addition or multiplication of two floating point
numbers.

1.0 Compute the matrix F using equation (26) or (29) in O(MN) flops. Al-
ternatively, compute the elements of F via equation (30) using a detailed finite
element model as discussed in Chapter 2; this approach incorporates realistic body
geometry and volume currents but is not used in this chapter.

1.1 Compute and save the product FA for later use. This requires O(MN 2)
fops.

1.2 Compute the matrix B = FAFT + % by direct matrix multiplication and
addition in O(MN?) flops. Compute and save Tr(FAFT).

1.3 Compute the Cholesky decomposition LLT of B in O(M3) flops.

1.4 Compute X = L™1FA by back substitution in O(M?3) flops.
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1.5 Compute A = A — XTX directly in O(N3) flops. The diagonal entries &2,
of A are the squares of the standard errors for the corresponding estimates gn.

1.6 Compute the mean reconstruction error 2 = Tr(A).

1.7 Compute the Cholesky decomposition SS7 of the matrix ¥ in O(M?3) flops.

1.8 Compute E x? = HL~"18|I% in O(M3) flops.

1.9 Compute the signal-to-noise power ratio SNR = Tr(FAFT)/ Tr(X).

The values of F, L, S, and FA must be saved for use In inverting particular
data sets. The values of A, 772, E x2, and SNR provide information ﬁo help the user
interpret the reconstruction results. The total cost is O(M3) + O(N?) flops; some

minor improvements are possible if A and ¥ are diagonal.

7.2.2 Reconstruction

Computing the estimate for each input b includes:

2.1 Compute p = L~TL~1b by back substitution in oM 2) flops.

2.2 Compute the solution § = (FA)Tp in O(MN) flops.

2.3 Compute the residual r = b — F§ in O(MN) flops.

2.4 Compute x? = ||S™1r||? in O(M?) flops.

The value of q is the desired reconstruction. The values of r and X2 are. in-
tended to provide insight into the quality of the reconstruction. The total cost per
reconstruction is O(M?2) + O(MN) flops.

7.3 Methods

The four reconstruction methods discussed in Chapter 4 have been implemented in
FORTRAN 77 for noise uncorrelated with sources (I' = 0) and independent priors
(A and ¥ diagonal). The LAPACK and BLAS libraries [4] were used for linear
algebra computations. All computations were done in double precision.

More specifically, the methods implemented were the minimum-norm least
squares method (MNLS) as defined by equation (59), with the threshold set to 10710
times the largest singular value; the optimally truncated pseudoinverse method
(OTPIM) defined by equation (68); the optimally weighted pseudoinverse method
(OWPIM) defined by equation (61) and using the weights defined by equation (66);
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and the optimal constrained linear inverse method (OCLIM) defined by equation
(74).

This computer implementation was used in a Monte Carlo simulation to verify
the theoretical results of Chapter 4. Three different geometrical configurations
were tested, each at five different signal-to-noise ratios. All sources were modelled
as current dipoles.

Figure 7.1 shows one of the test configurations. The sources are arranged in a 4
X 4 cm? planar array perpendicular to the detector plane, and centered below that
plane with its nearest edge 1 cm away. The source plane contains an 8 x 8 array of
current dipoles directed perpendicular to the plane. For non-uniform priors, the 28
sources in the central cruciform region are assigned a source variance a?q = 1.0; the
remaining sources are assigned a different source variance O‘2B = 0.01. For uniform
priors, all 64 sources are assigned the same source variance o = 1.

Figure 7.2 shows the detector array, which has a 12 x 12 cm? planar array of
144 detectors arranged in a 12 x 12 grid. Each detector measures the magnetic
field perpendicular to the plane of the array. Noise amplitudes taken from indepen-
dent normal distributions with mean zero and variance o2 are added to each field
measurement.

This test configuration does not accurately model any real magnetometer or
clinical application; it is intended to provide a fair comparison of the methods but

not to demonstrate the results possible in any particular appliéation.
7.4 Simulation Results

As was mentioned in Section 4.1, the choice of threshold in the truncated pseu-
doinverse can have a dramatic effect on the reconstruction error. Figure 7.3 shows
the reconstruction error 72 with uniform priors for a truncated pseudoinverse as a
function of the signal-to-noise ratio and smallest singular value retained (denoted
Amin)- Curves are shown for SNR = 127 dB (leftmost), 87 dB, 47 dB, and 7 dB
(rightmost); the corresponding noise variances are o2 = 10720, 10716, 10~12, and
10~8. The error rises sharply as A is decreased below the optimal value o/a;

thus it is generally better to retain too few terms than too many.
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12 cm

Source plane
Detector plane

4 cm

@

4 cm

w

Source plane

Figure 7.1 A simple test configuration. The source plane is perpendicular to the
detector plane and contains 64 dipoles perpendicular to the source plane. In the case
of uniform priors, all dipoles have the same expected power. In the case of non-uniform
priors, the dipoles in region A have higher expected power.

Table 1 shows the theoretical and experimental results for the test configuration
with uniform priors (a% = a2B) as the SNR varies from 128 to —32 dB. Note that
the theoretical and experimental values all agree within 2 standard errors.

As predicted, OCLIM and OWPIM show identical results for uniform priors.
OTPIM typically has slightly larger values of n%, E X2, and E 0 than either. MNLS
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12cm

12cm

Figure 7.2 Detector grid. The detector grid contains a 12 by 12 array of sensors
that sample the field perpendicular to the array. All sensors have the same prior noise
variance.
has better Ex2 values than any of the other methods but its error is orders of
magnitude worse. The mean error 772 and mean residual E x2 both increase as the
noise increases; the mean surprise E p2 decreases.

Table 2 shows the theoretical and experimental results for the test configuration
with non-uniform priors (a?4 # aQB) as the SNR varies from —37 dB to 123 dB (and
noise variance o2 from 10~20 to 10~%). The theoretical and experimental values
again agree within 2 standard errors. Most of the other observations on Table 1
remain true. The big change is that OCLIM now has a smaller mean error n? than
any of the other methods. The difference is largest when the noise is small and
decreases to insignificance when the noise is large enough.

Figure 7.4 shows the reconstruction error from Table 2. The MNLS method
is much worse than the other three, with reconstruction error orders of magnitude
larger than the true solution.

Figure 7.5 shows the reconstruction error for OTPIM, OWPIM, and OCLIM

only. The optimally truncated and weighted pseudoinverses give similar results,
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SNR =

Reconstruction error
b=y
T

2
10°F A priori error

1 0 i 1 I} - 1
10 10 10" 10® 10° 10 107
. Smallest singular value retained

Figure 7.3 Reconstruction error for a truncated pseudoinverse. The reconstruction
error n? is plotted as a function of the smallest singular value A, retained in the
truncated pseudoinverse, for the test configuration with uniform priors. The four curves
are for SNR = 127 dB (leftmost), 87 dB, 47 dB, and 7 dB (rightmost), with corresponding
noise variances o2 = 10"20, 10~16, 10‘12, and 10~8. The source variance is o? = 1.0
for all sources and all curves. The horizontal dashed line shows the a priori error 3" a2,
which is the error obtained by setting all source estimates to zero.
with OWPIM slightly better. OCLIM is definitely better than either, with the
difference increasing as the SNR increases.

Figure 7.6 shows the mean residual E 2 for all four methods under the same
conditions. MNLS has the smallest residual, which is independent of the SNR. The
other three methods have a moderately larger residual which decreases as the SNR
increases; differences among OTPIM, OWPIM, and OCLIM are slight.

Uniform priors give similar results, except that OCLIM and OWPIM become
identical in this case.

Note that the knowledge of approximate source and noise amplitudes provided

by the priors has allowed OCLIM, OWPIM, and OTPIM to generate much better
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Table 1. This table shows how the reconstruction quality varies with noise level when the four
different methods are used on the test configuration with uniform priors.

OCLIM OWPIM OTPIM MNLS

Configuration 1 with ¢? = 1.000 x 10~2°, ¢% = 1.000, o} = 1.000, SNR = 127.5 db, and 10000
data sets:

n? theo 18.193 18.194 19.543 2.417 x 10°

expr 18.157+0.059  18.157+£0.059  19.533+0.062  (2.391+0.021) x 10°
Ex? theo 98.187 98.191 99.144 84.999

expr 98.012+0.140  98.006+0.140  98.9864 0.143  84.797+0.130
Ep? theo 45.807 45.806 . 47.543 2.417 x 10°

expr 45.919+0.094 45918+ 0.094  47.636=% 0.099 (2.391 £0.021) x 10°

Configuration 1 with o = 1.000 x 10718, a% = 1.000, a% = 1.000, SNR = 87.5 db, and 10000 data
sets:

n? theo  30.762 30.762 31.860 - 2.417 x 10°

expr  30.729+0.077  30.72940.077 = 31.862+0.079  (2.391+0.021) x 10°
Ex? theo 110.762 110.762 - 112.324 85.000

expr 110.66640.148 110.66640.148 112.254+0.151 84.797+ 0.130
Ep? theo 33.238 33.238 33.860 2.417 x 10°

expr 33.352+0.080  33.352+0.080  33.983+0.083  (2.391+0.021) x 10°

Configuration 1 with 2 = 1.000 x 107*2, o2 = 1.000, o4 = 1.000, SNR = 47.5 db, and 10000 data
sets:

n? theo  43.890 43.890 45.452 2.417 x 1013

expr 43.918+£0.092  43.9184+0.092  45.503+0.094  (2.391£0.021) x 1013
Ex? theo 123.890 123.890 125.658 85.000

expr 123.730+0.157 123.730+0.157 125476+ 0.160 84.797+0.130
Ep? theo 20.110 20.110 21.452 2.417 x 103

expr 20.135+ 0.061 20.135+ 0.061 21.454 £ 0.069 (2.391 £0.021) x 103

Configuration 1 with o2 = 1.000 x 1073, &4 = 1.000, a4 = 1.000, SNR = 7.5 db, and 10000 data
sets: ’

7’ theo  56.880 56.880 57.803 2.417 x 1017

expr 56.878+0.105 56.878+0.105  57.824+0.107  (2.391 4 0.021) x 10'7
Ex? theo 136.880 - 136.880 137.989 85.000

expr 136.667+0.165 136.667+0.165 137.73940.167 84.797+0.130
Ep? theo 7.120 7.120 7.803 2.417 x 1017

expr 7.161+0.035 7.161+0.035 7.883 £0.043 (2.391 +£0.021) x 1017

Configuration 1 with 62 = 1.000 x 1074, o2 = 1.000, a4 = 1.000, SNR = —32'5 db, and 10000
data sets:

n? theo  63.923 63.923 64.000 2.417 x 10%

expr 63.995+0.113 63.995+ 0.113 64.068 + 0.113 (2.391 +0.021) x 10%
Ex? theo 143.923 143.923 144.080 85.000

expr 143.6561+0.170 143.651+0.170 143.806+0.170 84.797+0.130
Ep? theo 0.077 0.077 0.000 2417 x 10%

expr 0.076 +£0.001 0.076 + 0.001 0.000 £ 0.000 (2.391 +0.021) x 10%
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Table 2. This table shows how the reconstruction quality varies with noise level when the four
different methods are used on the test configuration with non-uniform priors.

OCLIM OWPIM OTPIM MNLS

Configuration 1 with 62 = 1.000 x 10~2°, % = 1.000, a4 = 0.010, SNR = 122.9 db, and 10000
data sets: :

n? theo  4.486 10.727 11.419 2.417 x 10°

expr  4.456 +0.025 10.70940.041  11.40040.043  (2.391+0.021) x 10°
Ex? theo 101.352 98.999 100.316 84.999

expr 101.17240.141 98.809+0.140  100.117+0.143  84.797+ 0.130
Ep?® theo 42651 231.248 256.449 8.441 x 106

expr 42.763+ 0.090 232.1594+0.821 257.4594+0.943  (8.395£0.081) x 106

Configuration 1 with o2 = 1.000 x 1071¢, a% = 1.000, o = 0.010, SNR = 82.9 db, and 10000 data
sets:

7? theo  10.209 17.039 17.519 2.417 x 10°

expr 10.205+£0.041  17.002+0.054  17.492+0.055  (2.39140.021) x 10°
Ex? theo 114.253 111.774 111.585 85.000

expr 114.16140.150 111.688+0.149 111.483+0.150 84.797 4 0.130
Ep? theo 29.747 225.663 257.338 8.443 x 101°

expr 29.747+0.075  225.201£0.775 257.600%0.927 (8.395+ 0.081) x 101°

Configuration 1 with 02 = 1.000 x 10712, &% =1.000, o4 = 0.010, SN R = 42.9 db, and 10000 data
sets:

n? theo 17.366 22.307 22.939 2.417 x 1013

expr 17.403 £ 0.057 22.313+£0.064  22.936 £ 0.065 (2.391 £0.021) x 10'3
Ex? theo 128.069 125.447 126.082 85.000

expr 127.872+0.159 125.267+0.158 125.880+0.160 84.797+0.130
Ep? theo 15.931 169.524 211.813 8.443 x 104

expr 15.905+ 0.053 168.929+0.697 211.027+0.971  (8.395+ 0.081) x 1014

Configuration 1 with ¢2 = 1.000 x 1073, o4 = 1.000, % = 0.010, SNR = 2.9 db, and 10000 data
sets: :

n? theo  24.393 26.655 27.093 2.417 x 10%7

expr 24.404+0.069  26.64440.072  27.089+0.073  (2.391+0.021) x 10'7
Ex? theo 139.623 138.394 141.165 85.000

expr 139.386+0.167 138.158+0.166 140.937+0.170 84.797+ 0.130
Ep? theo 4.377 74.427 88.174 8.443 x 1013

expr 4.327£0.027 73.841+0.430  87.658+ 0.622 (8.395 £ 0.081) x 103

Configuration 1 with o2 = 1.000 x 107%, % = 1.000, o4 = 0.010, SNR = —37.1 db, and 10000
data sets:

n? theo 28.333 28.349 28.360 2.417 x 10%

expr 28.303+£0.075  28.320+0.075  28.331+£0.075 (2.391 £ 0.021) x 10%*
Ex? theo 143.973 143.973 144.028 85.000

expr 143.704+0.170 143.705+0.170 143.760+0.170 84.797+0.130
Ep? theo 0.027 0.653 0.000 8.443 x 10?2

expr 0.027 4+ 0.000 0.649 £ 0.008 0.000 £ 0.000 (8.39540.081) x 1022
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Figure 7.4 Reconstruction error (log scale). The reconstruction error 72 is plotted
as a function of signal-to-noise ratio for all four reconstruction methods with non-uniform
priors. The source variance is held constant while the noise variance is changed. MNLS has
by far the worst reconstruction error; the other three methods are barely distinguishable
on this plot. Figure 7.5 shows the other three methods in an expanded plot.
solutions than MNLS. That is, knowing the expected signal and noise amplitudes
regularizes the pseudoinverse and tames an otherwise ill-conditioned problem:.

In summary, MNLS provides the best mean residual E x2 but does so only by
allowing an extremely large reconstruction error n2. Truncating the pseudoinverse
reduces the error but increases the residual. For uniform priors, OTPIM, OWPIM,
and OCLIM all give similar errors and residuals. For non-uniform priors, OCLIM
has smaller error than any of the other methods, with residuals similar to OTPIM
and OWPIM.

For this test configuration, initialization (steps 1.0-1.9) and reconstruction
(steps 2.1-2.4) for a hundred data sets take about a second on a workstation class

computer. There are only minor differences in the execution time required for the

four different reconstruction methods.
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Figure 7.5 Reconstruction error (linear scale). The reconstruction error ? is plotted
as a function of signal-to-noise ratio under the same conditions as Figure 7.4. The three

curves shown are for OTPIM (+), OWPIM (x), and OCLIM (o). OTPIM and OWPIM
provide similar results. OCLIM is better than either, with the difference increasing as the
SNR increases.

Figures 7.7 and 7.8 show some sample reconstructions from the same test con-
figuration, with o4 = 1.0, % = 0.1, 02 = 3.16 x 10710, and SNR = 19 dB. A
single source dipole was active with amplitude 8 and all other sources were zero.
The lefthand plot of each pair was reconstructed with OCLIM; the righthand ‘plot
with OWPIM. The dipole is at the position indicated by the dot and is pointing

out of the page. Grey shading indicates areas of current flow into the page.
Figure 7.7 shows three reconstructions of sources consistent with the priors (that
is, sources in region A). The top pair shows a source relatively near the detector
array. Both reconstructions correctly localize the true source, but the OCLIM
reconstruction has higher peak amplitude and is more narrowly localized in space.
The artifacts in the OCLIM reconstruction are all less than the a posteriori standard

€ITors.
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Figure 7.6 Mean residual. The mean residual E 2 is plotted as a function of signal-
to-noise ratio under the same conditions as Figure 7.4. All four methods are shown.
MNLS has the lowest residual, which is independent of SNR. The other three methods
have similar residuals, which decrease as the SNR increases.

The middle pair shows a source further from the detectors. Both reconstruc-
tions are displaced toward the detectors. OCLIM is still higher and narrower than
OWPIM.

The bottom pair shows a source distant from the source array. Neither method
gives a good reconstruction. OCLIM appears to localize the source but the am-
plitudes are less than the standard error. OWPIM hardly localizes the source at
all.

In additional simulations done at a high SNR (83 dB), both shallow and deep
sources were accurately localized without any displacement toward the surface. One
of the reviewers commented that displacements toward the surface have been seen
by other researchers; it appears that this effect occurs only for certain combinations

of source depth and signal-to-noise ratio.
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e

Figure 7.7 Reconstruction of sources consistent with the prior knowledge. The
lefthand image of each pair shows the reconstruction using OCLIM with prior information;
the righthand image shows the reconstruction using OWPIM with uniform priors. The
true distribution is a single dipole out of the page at the position indicated by the dot.
Grey shading indicates areas of current flow into the page. The signal-to-noise ratio is 19

dB.
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Figure 7.8 shows two reconstructions of sources inconsistent with the priors.
OCLIM forces the reconstruction to fit the assumed priors and incorrectly localizes
both shallow and deep sources. OWPIM produces a reasonable reconstruction for

a shallow source but again hardly localizes a deep source.
7.5 Discussion

If the unknown current distribution is expressed as a linear combination of elemen-
tary current distributions in fixed positions, then the magnetic field measurements
~are linear in the unknown source amplitudes. If, in addition, the cost function to
be minimized is either the mean square error (reconstructed minus true currents)
or the square residual (measured minus reconstructed fields), then the unknown
source amplitudes may be found by solving a linear problem. This offers several
advantages: The problem is well understood theroretically and software for its so-
lution is readily available. There is only a single, global minimum. Efficient and
reliable computer codes for linear algebra are readily available.

The minimum-norm least squares (MNLS) method, also known as the Moore-
Penrose inverse and the generalized inverse, provides a lower residual than any
other method but does not exploit prior knowledge. But if the problem is poorly
conditioned and there is measurement noise, its reconstruction error can be orders
of magnitude larger than the true current distribution. Magnetic imaging is both
noisy and poorly conditioned, so MNLS is not generally suitable. Truncating the
pseudoinverse can yield better results, but it is usually still inferior to the newer
methods described in this dissertation.

The weighted pseudoinverse developed by Shim and Cho generalizes MNLS by
including an arbitrary weight in each term of the outer product or spectral ex-
pansion of the Moore-Penrose inverse; a truncated pseudoinverse is obtained by
restricting the weights to zero and one. Choosing the weights to minimize the
mean square error yields an optimally weighted pseudoinverse method (OWPIM)
or optimally truncated pseudoinverse method (OTPIM). The source and noise co-
variance matrices determine the optimum but only the diagonal entries are used;

that is, no account is taken of spatial correlations between sources. Prior knowledge
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N

Figure 7.8 Reconstruction of sources inconsistent with the prior knowledge. The
lefthand image of each pair shows the reconstruction using OCLIM with prior information;
the righthand image shows the reconstruction with uniform priors. The true distribution
is a single dipole out of the page at the position indicated by the dot. Grey shading
indicates areas of current flow into the page. The signal-to-noise-ratio is 19 dB.
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of the source and noise covariance is required but non-uniform priors are permitted
only in special cases. OWPIM and OTPIM generally have mean square error larger
than OCLIM and residuals larger than MNLS.

The optimal constrained linear inverse method (OCLIM) derived in this chapter
uses prior knowledge to obtain a minimum mean square error estimate of the current
distribution; OCLIM can be efficiently computed using a Cholesky decompoéition.
Any source and detector configuration is allowed as long as their positions are fixed
a priori. Any correlations between source and noise amplitudes are permitted,
including spatial correlations between sources or between detectors. OCLIM locates
point sources more precisely than OWPIM but is prone to a,rfifacts when the true
sources are inconsistent with the priors.

OCLIM reduces to the optimally weighted pseudoinverse method when the
source amplitudes are independent and identically distributed and to the minimum-
norm lgast squares estimate in the limit of no measurement noise or no prior knowl-
edge of the source amplitudes.

All four methods are fast to compute, taking about a second on a workstation
for a problem with 64 sources and 144 detectors.

Of these methods, OCLIM appears the best suited to magnetic imaging, since
it exploits prior information, provides the minimum reconstruction error, and is no
more expensive to compute than the others.

The use of prior information, however, can be risky. If the priors are misinfor-
mative, they can distort the solution and lead to inaccurate reconstructions. The

next chapter will discuss this issue.
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Chapter 8

Priors Informative
And Misinformative

The existenc.e of misinformative priors in inverse problems, as demonstrated in the
previous chapter, places the analyst in a unpleasant dilemma. The reconstruction
accuracy can be improved by informative priors, thereby increasing the useful in-
formation obtained from the given measurements. But the accuracy can also be
degraded by misinformative priors, leading to false reconstructions. Since the priors
encode our expectations about the solution, a choice of priors that are inappropri-
ate for the problem may lead directly to a solution which is neat, plausible—and
wrong! The problem of priors is to somehow sail a middle course between ignorance
and delusion. Put another way, how much trust should a reasonable person repose
in an inverse problem solution obtained using prior knowledge? And how should
the analyst choose the prior knowledge to maximize the trustworthy information
gained? More specifically, given a set of priors and a set of measured data, is it

reasonable to reconstruct the given data using the given priors?

This chapter briefly considers the first two questions and then concentrates on
the third question in considering a statistical test for consistency between data and

priors.
8.1 Epistemology of Prior Knowledge

An inverse problem solution is often a surrogate for knowledge that could be ob-
tained by tests that are more definitive but also more expensive, more dangerous,

or just impractical. The use of MEG rather than invasive electrodes to localize an
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epileptic focus prior to surgery is a good example. Provided that the MEG recon-
struction is accurate, it reduces the risk to the patient. Similarly, the use of MEG
to trace the activation sequence in the brain during a reading task is a surrogate
for invasive electrodes that impose an unacceptable risk in a healthy subject.

The claim that the inverse method is a useful surrogate is thus the claim that,
in some particular case, it provides the same results that would be obtained by the
more definitive but less practical method. This claim may be supported by the
following three more general claims:

1. The assumed priors are true for some defined population.

2. The reconstruction method and assumed priors give solutions consistent with
the definitive test in this population.

3. This particular case is drawn from that population.

The first two of these claims may be supported by experimental and statistical
tests. It is the p@ose of this chapter to investigate a statistical test for the third
claim: that this particular data set is consistent with the assumed priors. In fact,
the constraints defined by the prior knowledge will be regarded as a hypothesus, to
be confirmed or refuted by the observed data.

8.2 Are the Data Corisistent with the Prior Knowledge?

Consider the null hypothesis that the given data are taken from a population in
which the source amplitudes q and the noise amplitudes w are jointly normal with
covariances A = Eqq? and £ = Eww? and cross-covariance Eqw? = 0. That
is, the null hypothesis is that the data are taken from the population defined by
the priors and thus that the priors are informative. Given this hypothesis, the
distribution of the measurement vector b is defined, and it is possible to ask how
likely "the observed data are relative to this distribution. If the data lies in some
critical region which is considered too unlikely, the hypothesis should be rejected;
that is, the data do not appear to be from a population with the assumed priors, the
priors are probably misinformative rather than informative, and so a reconstruction
using those priors is not trustworthy. This critical region is normally chosen to

include some fraction « of the total probability, where « is the false positive rate,
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or the probability that a consistent data set will be rejected as inconsistent. Since
b is a vector, it is convenient to condense it into a scalar test statistic and define
the critical region by a range of values for the test statistic.

If the null hypothesis is that the observed data come from the population defined
by the assumed statistics, then a positive result (of the statistical test) indicates
that the data do not appear to come from the populated assumed in the priors.
Thus the more desireable result (from the viewpoint of reconstruction with priors)
is that the statistical test yield the negative result that the priors appear to be
consistent with the data. The true negative outcome is that the data actually come
from the population defined by the priors and the test correctly indicates this; the
false negative outcome is that the data do not actually come from the population

| defined by the priors but the test incorrectly indicates that they do. Conversely,
the true positive outcome is that the data set does not actually come from the
assumed priors and the statistical test correctly claims that they do not; the false
positive outcome is that the data actually come from the assumed population but
the test claims that they do not.

One approach to a test statistic is to observe that, under the assumed prior
source and noise statistics, the measured data b are distributed as a Gaussian
random vector with mean zero and variance B = FAFT + ¥ = LLT where L is a
nonsingular lower triangular matrix. Then the probability of a given data set b is
given by the Gaussian distribution

p(b) = (2mM[B))™"/? exp(~4bTB'b) (200)
where |B| is the determinant of B, and the normalized magnitude
72=b B~ b = |[L7 b (201)

indicates how unlikely the data set b is relative to the assumed priors. If the 72
computed from the data actually observed is too large, then the hypothesis that
the observed data are consistent with the assumed priors should be rejected, and
the source distribution should not be reconstructed using those priors. Note that
72 is a sufficient statistic for this hypothesis and thus that there can be no more

effective test for misinformative priors using only the available data set.
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Now define x = L~!b and observe that Ex = 0 and
Exx! =ELb)bILT)=L"1BL T =1 (202)

and so 72 = ||x||? is distributed as a x? random variable with M degrees of freedom,
where M is the number of detectors, or the number of distinct measurements in b.
Thus, 72 has mean M and variance 2M.

Now suppose that the data set is actually drawn from the assumed population
and that T(?rit is taken as the critical value. That is, the priors will be rejected for
this data set if the corresponding 2 > Tgrit, even though the data were actually

drawn from the assumed population. That is, the false positive rate must be

a=1-P(r2. | M) (203)

iy

where P(x2 | v) is the cumulative distribution function for the standard x? distri-
bution with v degrees of freedom and M is the number of detectors. In practice,
an acceptable false positive rate a will be chosen first and Tfrit selected to yield the
desired false positive rate. Figure 8.1 shows the false positive rate a as a function
of Tgrit for various values of M; these curves were computed using the algorithm
described in section 5.3.

A second approach is to consider how well the reconstruction fits the observed
data and the assumed source priors.

The traditional metric for goodness of fit to the measurements is
x*=(b-F§T="(b-Fy) , (204)

which was defined in Section 6.3 and is the squared sum of the measurement resid-
uals r = b — Fq, weighted by the noise covariance ¥. If q is computed by the
minimum-norm least square (MNLS) méthod [106], then x? has an ordinary x2
distribution; but if § is computed by OCLIM, x? has a generalized x? distribution
as was shown in Section 6.3.

The goodness of fit between the a priori source statistics and the reconstruction

may be defined by the surprise

: (205)
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which was defined in Section 6.4 and is the negative log likelihood of the recon-
structed source distribution relative to the prior source statistics.

The sum x2 + p? is a plausible metric for the goodness of fit to the data and
priors together. Now observe that, for the OCLIM estimator,

X’ +p°=(b-Fa)’ = (b-Fa) +a"A7'4
=bl(I1- FH)'S"{(1-FH)b+ b ’HTA~1Hb
= bl (FAFT + ©)" 122~ 12(FAFT + )~ !b
+bT(FAF? + )" 'FAATAFT(FAFT + )~ 1b
=bT(FAFT + £)"'b
=|L b2 =72 ! ~ (206)

Thus it turns out that this sum is exactly the statistic 72 already discussed. That
is, the test statistic 72 can also be viewed as a goodness of fit to the data and the
priors jointly, expressed as the sum 2= x2 + p2 of a goodness of fit X2 to the data
and a goodness of fit p2 to the priors. Furthermore, 72 is (apart from scale), the

negative logarithm of the joint probability

p(b,d) = p(b | @) p(Q)
= (2mM|2))71? exp(—}((b - F®)TS1(b ~ F§))
x (2m)V]A)TY? exp(—LaTA1q) . (207)

of the measurements b and the reconstructed source amplitudes q. Note, however,
that even though 72 is distributed as a standard x? random variable, both x?2
and p? individually are distributed as generalized rather than standard x2 random

variables.
8.3 Validation Protocol

Considering the previous analysis, the following is a suitable protocol for testing
whether a given data set b is consistent with the assumed priors:
1. Choose a acceptable false positive rate «; this is the fraction of the data

sets which are actually consistent with the priofs but which will nevertheless be
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Figure 8.1 False positive rate. These curves show the false positive rate o as a
function of of the critical value 7'c2rit for various values of M, the number of detectors.
The false positive (or false alarm) rate is the fraction of source distributions that are
actually consistent with the priors but that are reported as inconsistent.

classified as inconsistent. Figure 8.1 shows the false positive rate o as a function of
Tgri + for various values of M.

2. Compute the corresponding critical value Tgrit such that
CP(rEy I M) =1-« (208)

where P(x? | v) is the cumulative distribution function for the x2 distribution with
v degrees of freedom and M is the number of detectors.

3. For the given data set, compute
=Ll =X+ . (209)

4. Ifr2> Tgﬁt, classify the given data as inconsistent with the priors. Other-

wise, classify it as consistent and proceed with the reconstruction.
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8.4 Detectability of an Unexpected Source

It is also of interest to know how reliably the 72 test detects the presence of a
source inconsistent with the assumed priors. To be specific, suppose that there is
an extra source Jx(7), in addition to those sources allowed by the priors. That
extra source can be observed only through its effect on the measurement vector b.
Suppose that :fx(F') acting alone gives the measurement vector byx. Then the total
measurement vector b including the prior sources, extra source, and noise will be
normally distributed with mean by and variance B = FAFT + ¥ = LLT.

It follows that the test statistic 72 is distributed as a non-central x2 random

variable with M degrees of freedom and non-centrality parameter
2 =L by . (210)

Intuitively, 'r,? measures the mismatch between the extra field bx and the assumed
priors. An extra source cannot be detected if its effects are consistent with the
measurement statistics defined by the priors, no matter how much its source distri-
bution may differ from the expected source distribution. Note also that any source
distribution in the null space of F has no effect on the measurements and cannot
be detected.

Any given values of 'r)% and Tzrit define a false positive probability « that a
consistent source will be misclassified as inconsistent and a false negative probability
B that an inconsistent source will be misclassified as consistent. Plotting curves of o
versus the detection probability 1 — yields a set of receiver operating characteristic
(ROC) curves for different values of 72; these curves define the possible tradeoffs
between false positive (or false alarm) and false negative errors as a function of 72.

The particular curves shown in Figure 8.2 are for M = 144.

8.5 Simulation Results

To test the reliability with which the 72 test distinguishes informative and misin-
formative priors, a series of simulations was done using the same test configuration

as in Section 7.3. The 28 sources in the central region A were assigned a source
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Figure 8.2 Typical ROC curves. These curves show the possible tradeoffs between
false positive and false negative errors for various values of 72. The curves in the bottom
plot use the same data as the top plot but use a logarithmic scale for the false positive
probability to improve the visibility of false positive rates below 1%.
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variance ai = 1; sources in this region were considered consistent with the pri-
ors. The remaining sources, in region B, were assigned a different source variance
aQB = 0.1; they were considered inconsistent with the priors.

Noise amplitudes taken from independent normal distributions with mean zero
and variance o2 were added to each field measurement and two different noise
models were considered. In the low-noise model o2 = 10716 and the signal-to-noise
ratio is about 167 dB; this is much better than most biomagnetic experiments. In
the high-noise model o2 = 1078 and the signal-to-noise ratio is about 7 dB; this is
a more typical number for biomagnetic imaging. -

The scatter diagrams in Figures 8.3 and 8.4 show the x2 and p? values for
a series of consistent and inconsistent reconstructions, each with a single dipole
source of magnitude 8. The pluses (+) correspond to sources in region A, which
are consistent with the priors. The circles (o) correspond to sources in region B,
which are inconsistent with the priors.

Figure 8.3 uses the low-noise model. The diagonal line corresponds to the crit-
ical value 72 = 200 or a = 0.001, and almost perfectly distinguishes the consistent
sources from the inconsistent ones. The two exceptions in the lower lefthand cor-
ner are actually inconsistent with the priors but are misclassified as consistent; the
source locations and reconstructions of these misclassified sources are shown in the
next section. Both of the corresponding sources are distant from the detector ar-
ray and close to consistent sources; it is possible that the detector array simply
lacks the resolving power to distinguish these inconsistent sources from the nearby
consistent sources.

Figure 8.4 uses the high-noise model. The diagonal line corresponds to 72 =170,
or a= 0.1, but does not separate the consistent and inconsistent sources; thus the
detector array cannot resolve the different sources at this SNR.

It is also possible to plot the value of 72 as a function of position for an extra,
source of some specified strength. Figure 8.5 shows two such plots for a dipole of
magnitude 8 in the model problem. These plots indicate the positions at which
such a source would probably be detected, or not detected. The value 72 = 100

provides a false positive rate o = 0.01 and false negative rate 8 = 0.02 and can be
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Figure 8.3 Residual and surprise for model problem—Ilow noise. The residual (X2)
and surprise (p?) are plotted for several sources consistent (+) and inconsistent (o) with
the priors in the model problem with SNR = 167 dB. The diagonal line corresponds to the
critical value 72 = 200 or o = 0.001, and almost perfectly distinguishes the consistent
sources from the inconsistent ones.

taken to distinguish the detectable extra sources from the undetectable.

The top plot uses the low-noise model. Most or all of the unexpected sources in
the upper portions of region B would be detected, and some of those in the lower
portions of region B.

The bottom plot uses the high-noise model.. Only unexpected sources near the
top corners of the source plane are likely to be detected; deeper unexpected sources

are not distinguishable from the expected ones.

8.6 Sample Reconstructions

Figures 8.6 through 8.8 show some sample reconstructions using the low-noise
model. In each reconstruction, the true source distribution consists of a single

source dipole pointing out of the page with amplitude 8 at the location marked
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Figure 8.4 Residual and surprise for model problem—high noise. The residual (x2)
and surprise (p?) are plotted for several sources consistent (+) and inconsistent (o) with
the priors in the model problem with SNR = 7 dB. The diagonal line corresponds to
2 = 170, or @ = 0.1, but does not separate the consistent and inconsistent sources;
thus the detector array cannot resolve the different sources at this SNR.

with the black dot. Grey shading indicates areas of current flow into the page. Fig-
ure 8.6 shows two examples of consistent sources correctly classified as consistent;
figure 8.7 shows two inconsistent sources correctly classified as inconsistent; and
figure 8.8 shows two consistent sources incorrectly classified as inconsistent. Note
that in both of the misclassified cases, the unexpected source is both far from the
detectors (which means a poor SNR) and close to one of the expected sources; a
possible interpretation of this result is that the magnetometer array simply lacks

the resolving power to distinguish the expected and unexpected sources.

8.7 Conclusions

The preceeding results have not provided a completely satisfactory solution to the

problem of misinformative priors in biomagnetic source imaging. We have seen that
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Figure 8.5 Source detectability as a function of position. Both these plots show the
value of 72 as a function of position for an unexpected dipole source of magnitude 8.
The top plot is for the low-noise model and the bottom plot is for the high-noise model.
If 'r)% > 100 at some position, then an unexpected dipole source of magnitude 8 at that
position can be detected with better than 98% probability and no more than 1% false

positives.
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Figure 8.6 Examples of sources correctly classified as consistent.

Figure 8.7 Examples of sources correctly classified as inconsistent.

Figure 8.8 Examples of sources incorrectly classified as consistent.
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true source distributions inconsistent with the assumed priors can generate artifac-
tual reconstructions. Under favorable conditions of low noise and good separation
between the unexpected and assumed source locations, the 72 test will often detect
misinformative priors. Under unfavorable conditions, the 72 test does not reliably
distinguish informative and misinformative priors. '

According to Figure 3.3, the SNR in biomagnetic imaging can range from —21
dB to 54 dB, depending on the signal source, noise level, and bandwidth. More work
is needed to determine whether or not the 72 test reliably discriminates between
informative and misinformative priors in realistic biomagnetic imaging problems.
Since the source model used in the chapter was too simplified to be realistic, it is
also necessary to study the 72 test in realistic source models.

In the worst case, the 72 test will not reliably detect misinformative priors.
The best SNR predicted in Figure 3.3 for the visual evoked response and evoked
“cortical activity is only 9 dB, so it is likely that the 72 test will in fact fail for these
signal sources, although more work is needed to confirm this. In this case, the
inability to detect misinformative priors, combined with the non-uniqueness of vthe
biomagnetic inverse problem, means that while biomagnetic source reconstructions
may be used to suggest source locations to be tested by other means, they cannot
be used by themselves to prove the existence of a source, since there may be another
reconstruction which fits the given data equally well but which does not include
that source. Similarly, the absense of a source at some location in a biomagnetic
source reconstruction does not prove that no such source is present.

An alternative possibility is to use prior information more assertively. Suppose
that by fMRI or PET imaging we find that cerebral metabolic activity during a
cognitive task is elevated in only a few regions. Then the hypothesis that activity
is restricted to these regions becomes a hypothesis that can be tested using the 2
test on MEG data collected for the same task. The fact that only a few sources
are allowed in the source model should improve the power of the 72 test even if the

SNR remains poor.
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Optimal Magnetometer Design

As was noted in Chapter 6, the mean reconstruction error 2 = E ||q — §||? and
the a posteriori source variances &2, do not depend on the actual field measure-
ments b but only on the source and detector configuration and on the assumed
source and noise priors. Thus the 'mean reconstruction error n? can be computed
directly from the given values of the forward transfer matrix F, the source covari-
ance A, and the noise covariance ¥. This direct calculation of the reconstruction
error is much faster than Monte Carlo simulation and can be done on a worksta-
tion class computer in a few minutes. The facts that 772 depends on the detector
configuration (and other priors), that it relates directly to the reconstruction ac-
curacy, that it does not depend on the actual measured data, and that it can be
computed inexpensively suggest that the reconstruction error n2 will be useful as a
cost function in the optimal design of magnetometer arrays.

This chapter demonstrates the use of the reconstruction error to select the
optimal array width in a model problem and investigates the effects of number of

detectors and source-to-detector distance on the reconstruction accuracy.
9.1 An Example Source/Detector Configuration

We will analyze the example source and magnetometer configuration shown in Fig-
ure 9.1. The source volume is 12 x 12 x 12 cm® and contains a 4 x 4 x 4 cubical
grid of horizontal dipole pairs; all sources have the same RMS source amplitude
a =1 pA-m. Each horizontal plane in the source volume contains a 4 x 4 array of
in-plane dipole pairs as shown in Figure 9.2; the use of two orthogonal dipoles al-

lows the representation of a dipole with arbitrary orientation and magnitude within
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the plane. The detector plane contains a 12 x 12 grid of detectors sampling the
vertical component of the field; all detectors have the same expected RMS noise
amplitude o = 30 fT. The nominal array width is 23 cm; the nominal source depth,
or distance from the detector array to the top of the source volume, is 2 cm.

The following sections will explore the effects of varying the array width, the

source depth, and the number of detectors used.
9.2 Error versus Array Width and Source Depth

The reconstruction error n? is the sum over all sources of the expected value of the

squared reconstruction error for that source. That is,
N
2 ~2
n= Z Ann (211)
n=1

where &2,, = E(gn — 4n)? is the expected squared error for the nth source. It is

2

convenient to divide by the a priori source variance «“ and consider the relative

error n%/a?.

Figure 9.3 shows how the total relative reconstruction error n? / o2 varies as a
function of the array width and the source depth. For every source depth consid-
ered, there is an optimal array width and that width increases as the source depth |
increases. The particular optimal widths found here apply only to the particular

number of detectors, source variance, and noise variance used to compute them.
9.3 Standard Error for Each Source

The standard error é&nn is the RMS value of .the reconstruction error for the nth
source; it shows how the total error 2 is distributed over the various sources.
Figure 9.4 shows the standard error &nn for each source, using the nominal
values for array width, source depth, and number of detectors. The a priori standard
deviation oy, is shown as the dotted line across the top of the figure. For this
configuration, the reconstruction errors for the sources in the top plane are about
5% of their a prior uncertainties. For the next lower plane, the errors are about 40—

80% of the a priori uncertainties; for the bottom two planes, the errors are hardly
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Figure 9.1 Example source and detector configuration. The source volume contains
a 4 X 4 x 4 cubical array of horizontal dipoles sources, each represented as a pair of
orthogonal components. The detector plane is square with a nominal width of 23 cm and
contains a nominal 12 x 12 array of magnetometers, each of which measures the vertical
component of the field. The nominal source depth, or distance from the detector plane
to the top plane of sources, is 2 cm. The array width, number of detectors, and source
depth will be varied from their nominal values to examine the effects.
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Figure 9.2 Typical source plane. Typical horizontal plane of sources in the source
volume. Each source position contains a horizontal current dipole represented by two
orthogonal components.
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Figure 9.3 Total reconstruction error. Total reconstruction error versus array width
and source depth for a 12 x 12 array of detectors. The source depth is the distance from
the detector array to the top plane of sources.
less than the a priori uncertainties. That is, this detector array (for the assumed
priors) gives good reconstructions for the topmost plane of sources, mediocre results

for the second plane, and poor results for the bottom two planes.
9.4 Error vs Width and Number of Detectors

Figure 9.5 shows the total relative reconstruction error versus array width for five
different numbers of detectors ranging from an 8 x 8 square grid to a 16 x 16 square
grid. There is an optimal array width for each size of grid; that width increases as
the number of detectors increases. '
Note, however, that both the 8 x 8 and 10 x 10 curves display a bimodal charac-
teristic. This is due to the accidental alignment of source and detector positions as
shown in the plan views of Figure 9.6. The plus signs mark detector positions; the

open circles mark source positions. The lefthand plot corresponds to the minimum
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Figure 9.4 Standard error of each source. Standard error for each source using the
nominal detector configuration and priors. Sources 1-32 are in the top plane, 3364 in the
next plane down, 65-96 in the third plane down, and 97-128 in the bottom plane. (Each
source position includes two orthogonal components, each of which carries a distinct
source number in this figure.) Sources near the detector plane have smaller error, as do
source near the boundaries of the source cube. '

error (at width 19 cm) for an 8 x 8 array; the sources generally fall between the
detectors. The righthand plot corresponds to the local maximum at 23 cm; the
sources fall almost directly under the detector positions.

Since dipole sources are used only for convenience in approximating a contin-
uous unknown current distribution, this variation in reconstruction error must be
considered an artifact of the simple dipole source model. The use of point detectors
also contributes to the problem. More work is needed to create source and detector
models that are immune to these accidental variations.

Figure 9.7 shows the optimal 8 x 8 and 16 x 16 arrays. The optimal width
increases as the number of detectors increases but less than proportionally to the

number of detectors per side; the optimal detector spacing decreases.
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Figure 9.5 Total reconstruction error versus array width and number of detectors..
The optimal array width increases as the number of detectors increases. The bimodal
characteristic of the 8 x 8 and 10 x 10 curves is due to accidental ahgnments between
the source and detector locations. See Figure 9.6.

9.5 Discussion

The reconstruction error is potentially useful as a quality metric for magnetometer
array design. Arbitrary source and detector positions are allowed. Correlated noise
can be used; this allows modelling the effects of external magnetic interference. The
method should generalize to distributed (non-dipole) current sources and arbitrary
detector coil shapes. ,

Accidental alignments between dipole current sources and point detectors can
distort the computed reconstruction error.

The optimal width increases as the array-to-source distance increases. The
optimal width of a planar magnetometer array is subproportional to the number of

detectors used per side.
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Figure 9.6 Source and detector alignments. The lefthand plot shows the source
(o) and detector (+) locations in plan view for the minimum-error width in the 8 x 8
configuration. The sources fall between the detector locations. The righthand plot shows
the source and detector locations for a configuration with local maximum error. The
sources fall directly below the detector locations.
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Figure 9.7 Optimal array width versus number of detectors. The lefthand plot shows
the optimal 8 x 8 array; the righthand plot the optimal 16 x 16 array. The optimal width
increases less than proportionally to the number of detectors per side and the optimal
detector spacing decreases.
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Chapter 10

Dynamic Reconstruction

The previous chapters have developed and demonstrated the OCLIM algorithm for
the instantaneous biomagnetic source imaging problem. The general case, however,
is that the source currents and generated magnetic fields vary with time.

If the current distribution changes with time, then a sequence of field mea-
surements must be inverted to yield a sequence of current distributions. OCLIM
generalizes easily in principle to this dynamic problem but requires large data sets
to describe the priors and long computations to reconstruct the dynamic current
distribution.

The purpose of this chapter is to discuss methods for simplifying the dynamic
reconstruction problem by assuming and exploit{ing special structure in the priors
and sometimes by approximating the optimal reconstruction filter.

We will be making heavy use of the Cholesky decomposition and so it is con-
venient to introduce the following notation rather than to introduce a new symbol
each time we take the Cholesky decomosition of some matrix. Let A be a symmet-

'ric positive definite matrix. Then A€ will denote its Cholesky factor; that is, AC

is the unique lower triangular matrix such that A = AC(AC)T.

10.1 Dynamic Imaging of Magnetic Sources

Suppose that we have a sequence of field measurements on multiple detectors and
wish to reconstruct a sequence of source amplitudes at multiple source locations.
The field measurements can be represented by concatenating the instantaneous

measurement vectors into a long column vector b; a long source vector q and a

long noise vector W are defined similarly. The spatiotemporal source covariance is
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defined by A = E GG? and the noise covariance by $ = EwwZ, where E denotes
the expectation. Assuming that the instantaneous forward transfer matrix F is
constant in time and that propagation delays are negligible, the forward equation

becomes

b=I0F)§g+Ww |, | (212)

where ® is the Kronecker product. This has the same form as the instantanteous

forward problem, and OCLIM yields the minimum mean square error estimator

H=AIF) [(IeMAIeF)T +57 | (213)

the optimal estimate

g=Hb=A(IF)[IeFAIF)T +£71b |, (214)
" and the test statistic for misinformative Priors
2=bl[IePAIsF) +3]71b . (215)

For a reasonably sized problem—100 sources, 100 detectors, and 100 time
instants—the prior covariance matrices A and 3 alone require 400 MB of memory
and the direct computation uses about 0.3 trillion floating point operations. In
addition, the covariance matrices A and £ must be determined experimentally and
it will be quite difficult to experimentally determine so many distinct parameters.

The standard errors of the reconstructed source amplitudes are computed from

the diagonal of the a posteriori covariance matrix
A=A-AIePT[IeMAIF) + "1 IoFA . (216)

A direct computation of A requires an additional 1.3 trillion floating point opera-
tions.

Making some assumptions about the form of the priors can reduce the compu-
tational and storage cases significantly and the purpose of this chapter is to develop
possible ways of doing so. The following cases are considered.

1; The source and noise amplitudes are stationary and uncorrelated in time.
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2. The spatiotemporal source and noise covariances are separable into the
products of spatial and temporal covariances.
3. The source and noise covariances are separable and stationary.

4. The source statistics are stationary; the noise statistics are stationary, un-

correlated between detectors, and uniform across detectors.

10.2 Stochastic Estimation of Errors

The cost of computing the standard errors may be reduced by using Monte Carlo
simulation. Consider first the instantaneous case. Let z; and zo be independent

standard normal random vectors and define
x =FA%z + 20z, and y=Hx . (217)

Then
Ex=0 and Exx! =FAF'+3X (218)

and so x has exactly the assumed statistics of the measurement vector b and y has

exactly the statistics of the solution §q. Thus the mean square residual
Ex?=Eb-F§Is 1(b-Fq) (219)

can be estimated by generating some number R of realizations of z; and zs9, com-

puting the corresponding realizations xr and y,, and computing the estimate
1 —
Ex? 2 7 Z(x - Fy)TE 1(x —Fy) (220)
T

Furthermore, it is possible to estimate the standard errors from the same set of

realizations. Consider

A -Eyyl = A - H(ExxD)HT
= A — AFT(FAFT + )" (FAFT + =)(FAFT + ©)"'FA
= A — AFT(FAFT + =)~ 1FA
=A . (221)
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That is, the a posteriori covariance A may be estimated by computing

IR

- 1 T '
Az=a- Zr:yryr : (222)
In many cases only the diagonal elements &?m of A are required; they can be

computed even more simply by
22 N2 L 2
¥ = %n T Z Yrn (223)
r

where o2, is the nth diagonal element of A and yrp, is the nth element of the rth
réalization of y. Since high accuracy is not needed for the standard errors, a few
realizations should suffice.

The extension to the time series case involves only extending the vectors zy, z9,

x, and y to the appropriate length and computing

x=(1I® F)ACzl + ECZ2 (224a)

y = Hx (224b)
Ex? = .]% ;(x ~(1eF)y) S (x— (I8 F)y) (224c)

- ~ 1 '

A=A- I Z?’ryz . (224d)

The form of A and 3 should, of course, be chosen to facilitate computation of their
Cholesky factors. Under assumptionsvto be discussed later, it is sufficient to take

the time average of a single realization.

10.3 Instantaneous Reconstructions

One simple model for the priors is to assume that the source and noise covariances
are constant over time and that there are no correlations among source (or noise)

-amplitudes at different times. Then the spatiotemporal covariances can be written

in the simpler forms

A=I®QA and E£=18% (225)
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where A is the instantaneous source covariance matrix and X is the instantaneous
noise covariance matrix. The optimal spatiotemporal reconstruction filter simplifies
to

H=1¢AF (FAFT + )71 | (226)
which means simply that an instantaneous OCLIM reconstruction is to be done

independently at each time instant. The test statistic is
2 =b 1@ (FAFT + =) 1]b (227)

which is simply a summation of the test statistics for each instant. The a posteriori

covariance is
A=10[A—-AFT(FAFT + =)"1FA] | (228)

which is the instantaneous a posteriori convariance repeated at each time instant.

This approach is fast but inaccurate, since biomagnetic sources are ordinarily
correlated both in time and in space. Sources in the heart and brain often remain
active for tens or hundreds of milliseconds; ignoring these correlations reduces the

accuracy of the reconstruction.
10.4 Priors Separable in Time and Space

A less drastic simplification is to assume thé,t the spatiotemporal source covariance
is separable .into the product of a spatial covariance and a temporal covariance.
That 1s,

A(z,z’ t,t') = Eq(z,t) q(z',t') = A(z,2') - S(t,¢) . (229)
A (simplified) physical interpretation is that the shape of the temporal power spec-
trum is the same for all sources, although the magnitude may vary. Similarly,

suppose that the spatiotemporal noise covariance is separable. Then the priors can

be written as

A=S®A and I=NQ®I , (230)

where A is an instantaneous source correlation matrix (between sources) which
is independent of time, ¥ 1s an instantaneous noise correlation matrix (between

detectors) which is independent of time, S is a temporal correlation matrix which
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is the same for all sources, and N is a temporal correlation matrix which is the

same for all detectors. Then the optimal source estimate becomes
d=(S®AFT)S®FAFT + N =] !'b . (231)
The test statistic is
2 =bl[(S®Q FAFT + N =]"'b (232)
and the a posteriori covariance is |
A=S®A-(SQAFT)SQFAFT + N@X]"}(S®FA) . (233)

Using the stochastic estimation method for the a posteriori covariance and

arranging the computations to exploit repeated expressions yields the steps

p=[SQFAFT + N x|~ !b (234a)
2 =blp (234b)
q=(S®AF)p (234c)
x = (S¢ @ FA)z; + (N¢ @ =C)z, (234d)

= (S® AFT)[S @ FAF? + N g =] (234e)
A=S®A—Eyy : (234f)

where p is an intermediate variable of no physical significance. The values of
p and y should, in principle, be efficiently computable by some iterative method.

Unfortunately, however, none of the iterative methods tried so far converges reliably.
10.5 Stationary Priors

The stronger assumption that the priors are also constant in time may be appro-
priate in some applications. Then the spatiotemporal correlation can be written in

the form
A(z,2' t,t') = A(z,2') - St —t) (235)

and the source and noise covaraince matrices in the form

A=S®A and =N®X , (236)
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where the temporal covariance matrices S and N are Toeplitz and approximately

circulant. But if S and N are circulant, they can be diagonalized by the Fourier

transform, or
S=WIDsW and N=WIDyw (237)

where the matrices Dg and Dy are diagonal and W is the matrix corresponding
to the fast Fourier transform, as given in equation (81).
Then the optimal source estimate and test statistic can be coi'nputed via the

FFT as

4= (WHEDs® AFT)[Dg @ FAFT + Dy @ )"/ (W I)b (238)

72 = (W eDb)[(D 5 QFAFT + Dy {(We Db . (239)

These last two equations do not obviously lend themselves to a fast computational
algorithm, though they rhight be computable by an iterative approach.

More importantly, the a posteriori covariance becomes block circulant and the
standard errors can now be estimated from the time average of a single realization.

To see this, manipulate the a posterior covariance for separable priors

A=S®A - (S®AFT)[S@FAF! + No X" (S®@ FA)
= (WHgI) [Ds @ A — (Ds © AFT),
. [Ds®FAFT 1Dy oS }(Dso FA)} (WoI) . (240)

Now observe that the expression inside the outer square brackets consists only of
sums, products, and inverses of block diagonal matrices. It follows that A must
be block circulant. Then all the blocks on the diagonal are identical and the a
posteriori covariances do not depend on time. Furthermore, the standard errors
given by the diagonal of the diagonal block are also independent of time and can be
estimated by averaging over time in a single realization. That is, the instantaneous

a posteriori covariance can be estimated as

1

. 1 S
Axs?A- T > vyt ; (241)
t
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where s? is the common diagonal element of S, T is the number of time instants,
and yt is the tth instant of the vector y. If only the standard errors are necessary,

they can be estimated as
2 o~ 22 1 2
0‘12'm =S8 Qpp — T Z Ytn (242)
i

where y,,, is the nth element of the tth instant of y and a2, is the nth diagonal

element of A.

10.6 Sequential Time and Space Reconstructions

The optimal reconstruction filter for separable priors is
H=(S®AFT)[S®FAFT + Ng x|} (243)

which can be rewritten as

H=(S®AFD)[(S+N)® (FAFT +£)-S® E - N@FAFT]!
= (S® AFT)[(S + N) ® (FAFT + x)71.
[I _S(S+ Nl @ S(FAFT 4+ 3)~!
~ N8 +N)~! @ FAFT(FAFT + 5)7! | -

If the terms
S(S + N)~! @ S(FAFT + x)~!

and

N(S + N)~! @ FAFT(FAFT + x)~!
are small compared to I, the reconstruction filter can be approximated by the
Kronecker product | /

H=[S(S+N) 1] o [AFT(FAFT + 3)71] | (244)

which is equivalent to an instantaneous reconstruction at each instant, followed by

a temporal filter applied independently to each source.
127



Chapter 10. Dynamic Reconstruction

Assuming in addition that the priors are stationary yields the approximation

~

H= W DgDg +D NI W] @ [AFT(FAFT +3)71] . (245)

The corresponding algorithm first does an instantaneous OCLIM reconstruction
applied independently at each instant in time, followed by a temporal filter using the
FFT applied independently to each source. Alternatively, a temporal filter may be
applied first to each detector independently, followed -by an instantaneous OCLIM
reconstruction at each instant independently. A disadvantage of this approach is
that the approximation introduces an unknown error into the computed values of
72 and A. '

The order of the Kronecker factors may be reversed, in which case the temporal
filter is applied first to the sequence of measured field values independently for
each detector, followed by an instantaneous OCLIM reconstruction independently
at each instant.

One suitable set of computations is as follows

c=(WgI)b (246a)

= [(Ds +Dy) ® (FAFT + )7 lc (246b)

2 =cfp B (246¢)
q = (WH Ds® AF )p . (246d)

x = (DY *W @ FAC)z; + (DY/*W ©5C)2, (246e)

y = [WHDg(Dg + Dy)~! © AFT(FAFT + 3) 11x (246f)
8 = 5”0ty ~ szm : (246g)

10.7 Spatial SVD Reconstruction

Another implementation is obtained if we assume that, in addition to separabil-
ity and stationarity, that the noise statistics are the same for all. detectors and
uncorrelated between detectors. Then the noise covariance can be written in the
form
$=Ng (%) (247)
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where o2 is a positive scalar constant. Since FAFT is symmetric, it has a singular

value decomposition

- FAFT =up,UT (248)

where U is orthogonal and D4 is diagonal. But then 621 = ¢2UU7 and the

optimal estimate becomes
d=WHIDg @ AFTU)Dg®D4+Dy @20\ (WeoUD)b  (249)

which can be efficiently computed since the matrix being inverted is diagonal.

The required calculations can thus be done in the steps

c=(WeoUDb (250a)
p=[Ds®Dy+Dy R e (250Db)
2=cHp (250¢)
4= (WIDge AFTU)p (2504)

x = (DY’W @ FAC)z; + (D}’W ® oT)z2 (250¢)
y=(WIDg @ AFTU)Ds®@ D4+ Dy 021 a1 UT)x  (250f)
R R S 31" (250g)

t .

10.8 A Model Problem

These methods were tested by computer simulation on the same test configuration
used in Chapter 7. The 28 sources in the central region A were assigned a source
variance a% = 1; the remaining sources were assigned a different source variance
qu = 0.1. There were no correlations between sources. Noise amplitudes taken from
independent normal distributions with mean zero and variance o2 = 3.16 x 10~16

were added to each field measurement.
Figure 10.1 shows the assumed prior source and noise power spectra (Dg and
Dy) for the model problem, in arbitrary units. The source power was assumed to

be concentrated at low frequencies and the noise was assumed to be white.
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Figure 10.1 Assumed source and noise temporal power spectra. The source power
was assumed to be concentrated at low frequencies and the noise was assumed to be
white. The units are arbitrary.

10.9 Time-Space and Space-Time Plots

Both the true and reconstructed source distributions are difficult to display since
they involve two (or three) spéce dimensions, one time dimension, and one ampli-
tude dimension. The time-space plot illustrated at the top of Figure 10.2 is one
useful way to display these data and consists of an 8 by 8 array of subplots corre-
sponding to the 8 by 8 array of sources on the source plane. Each subplot shows
how the amplitude of that source varies with time. For reconstructed data, two
curves will be shown in each subplot; they indicate the upper and lower 1o limits
of the reconstructed amplitude. In this example, the source in row 5 and column 3

exhibits a sinusoidal variation with time. All the other sources have zero amplitude.

The space-time plot illustrated at the bottom of Figure 10.2 is an alternative

representation of the same data. In this plot there are 64 images arranged left-to-
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Figure 10.2 Time-space and space-time plots for reconstructed data. Both plots
show a source distribution consisting of a single active source with a sinusoidal amplitude
variation in time. The top “time-space plot” shows, for each source location, the ampli-
tude variation in time. The bottom “space-time plot” shows, at each instant of time, the
amplitude at each position with red representing positive and blue negative amplitudes.
The source configuration used in these plots is shown in Figure 7.1.
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right and top-to-bottom. (The fact that they form an 8 by 8 array is coincidental.)
Each image corresponds to one instant of time and shows the amplitude of all 64
sources at that instant. Each image is an 8 by 8 array of pixels corresponding
to the 8 by 8 array of sources and the color of the pixel denotes the amplitude
of the source. Grey means zero amplitude, blue is current flow toward the viewer
(positive), red is away from the viewer (negative), and the color saturation indicates
the amplitude. Both red and blue become a dark grey in a grey scale reproduction.

This example shows the same source distribution used above.

10.10 Simulation Results

Figure 10.3 shows a true source distribution to be reconstructed by the methods
discussed in this paper. A moving source originates at row 7 and column 5 and
moves along a curvilinear path to row 2 and column 5. Figure 10.4 shows the

detector measurements (including noise) generated by this source distribution.

Figure 10.5 shows the results obtained by the method of instantaneous recon-
struction on the model problem. The time-space plot at the top shows the upper
and lower lo error limits on the amplitude. Figure 10.6 shows the results obtained
by the method of sequential reconstruction on the model problem. Figure 10.7
shows the results obtained by the method of spatial SVD reconstruction on the

model problem.
10.11 Discussion and Conclusions

All of the reconstruction methods track the apparent movement of the active source
from bottom to top, although there is a substantial loss of spatial resolution, espe-
cially for source locations near the bottom. The instantaneous reconstruction has
more high frequency noise than the others, since it has no temporal filtering. The
sequential and SVD methods give similar results, though the SVD method appears
to give slightly better spatial and temporal resolution; this improvement, however,
seems to depend on the choice of problem and the criteria used for evaluation. All

three of the methods tested here are quite fast, taking no more than a few minutes
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vty sttt -

e -

Figure 10.3 True source distribution for the model problem. A current source orig-
inates at row 7 and column 5 and moves along a curvilinear path to row 2 and column
5.
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Figure 10.4 Detector measurements for the model problem. This plot shows, for
each detector location, the measured field, including noise, as a function of time. The
detector configuration is shown in Figures 7.1 and 7.2. :

to compute; the direct computation is 100 to 1000 times slower and has not been
implemented or tested. Instantaneous reconstruction is the fastest, sequential next,
and SVD slowest. Since it appears to have the best resolution, the SVD method
may be best for any problem that satisfies its conditions on the form of the priors.
The sequential method has less restrictive conditions and is a good second choice.

All of these methods restrict the form of the priors to obtain computational
efficiency. Whether the restrictions are sufficiently loose to permit the solution of
real biomagnetic imaging problems is a question for future research.

The availability of standard errors for the reconstruction and a means for testing
for violations of the priors provides a necessary statistical check of the validity and

significance of the reconstructions obtained.
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Figure 10.5 Results of instantaneous reconstruction. Reconstructing independently
at each instant of time yields the source distribution shown above. The upper and lower
curves in the upper plot indicate the upper and lower 1o confidence limits.
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Figure 10.6 Results of sequential reconstruction. Reconstructing sequentially in time
and space yields the source distribution shown above. The reconstruction is less noisy
and slightly sharper than obtained by instantaneous reconstruction.
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Figure 10.7 Results of spatial SVD reconstruction. Reconstruction using the SVD
method yields the current distribution shown above. This reconstruction is the sharpest
and least noisy but makes the strongest assumptions on the form of the spatiotemporal
covariance.
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Chapter 11

Simulations Using
A Spherical Head Model

The previous chapters of this dissertation have developed an inverse method us-
ing prior information and explored various aspects of its performance in simplified
MEG problems. It appea;fs from these éimulations that prior information about
the location and amplitude of the primary current sources can be used to improve
the reconstruction. The results of the previous chapters, however, were obtained
using simplified magnetic source models that are unrealistic in that: The SNR used
in many of the previous simulations is higher than is usually available in magne-
toencephalography. Real sources in the head do not lie exactly on the modelled
source locations. There are usually only a few relatively strong focal sources rather
than many weaker sources with independent Gaussian amplitudes. And densely
sampling the possible source volume to achieve high spatial resolution will usually

generate more possible sources than there are detectors.

The primary purpose of this chapter is to 'I:»)resent the results of a more realistic
MEG reconstruction problem and to demonstrate that these differences between
theory and reality do not prevent OCLIM from providing useful reconstructions. A
second purpose is to demonstate that the inclusion of volume currents in the forward

problem improves source localization when vector magnetometers are used.

11.1  An Improved Algorithm for OCLIM

The algorithm presented in Section 7.2 can be speeded up by using some new

identities connecting the values to be computed and perhaps by using Monte Carlo
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estimation for the confidence limits. We consider the case of sources uncorrelated
with noise (I' = 0), which is the most common in practice. Then the measurement

residual is

r=b—F§=(-FAFT(FAFT + =) b
=S(FAFT + )" lb=3p , (251)

where p = (FAFT + E)flb is already computed as an intermediate result. Fur-

thermore, consider

p’r = p’Sp = b  (FAFT + )" I2(FAFT + =)~ 1b
=bl[zl - -lFFTe-1F + A" )" IF s Izs-1n
= -7 lFETS IR+ A D) I F s )b
=bl[I- S IFEFIZ-IF + A~ IFTz]
[1-FETZIF+ A-HIF s 1
= (b-Fy ="' (b-Fg)
=x* , (252)

where the second line was obtained by using the well-known ABCD lemma [44, p.
24)

(A-BCD) !=A"l4+A-IB(C!-DA-IB) DA™ . (253)
Similarly, notice that

2 =bT (FAFT + )" b =bTp . (254)

Finally, the surprise may be computed using the identity r2 = 2+ p2, or p2 =
72 — x2; the expected value of the surprise is E P =Er2—Ex?2=M—-Ex2

11.1.1 Imtialization

Initialization includes those computational steps that are independent of the actual
data and which can be done in advance of data collection. The required inputs are
the forward transfer matrix F', the source covariance matrix A, the noise covariance

matrix X, and the number of detectors M.
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1. Compute and save the product FA for later use. This requires O(MN?)
flops.

2. Compute the matrix B = FAFT + % by direct matrix multiplication and
addition in O(MN?) flops. dompute and save Tr(FAFT).

3. If desired, compute the signal-to-noise ratio SNR = Tr(FAFT)/ Tr(X), using
the intermediate value FAFT computed in the last step.

4. Compute and save the Cholesky decomposition LLT of B in O(M3) flops.

5. Choose a acceptable false positive rate a; this is the fraction of the data
sets which are actually consistent with the priors but which will nevertheless be
classified as inconsistent. Figure 8.1 shows the false positive rate « as a function of
72 .. for various values of M. Compute the corresponding critical value 72

cri crit

that P(Tgrit | M) = 1 — o where P(x? | M) is the cumulative distribution function

for the x? distribution with M degrees of freedom.

such

The values of L, FA, and Tgrit must be saved for use in inverting particular data.
sets. The value of SNR gives some indication of the reconstruction quality that can
be expected. The total cost is O(M3) + O(MN2) flops; some minor improvements

are possible if A or ¥ are diagonal.

11.1.2 Confidence Limits: Direct Method

The direct computation of the confidence limits is exact (to within roundoff error)
but may be slower than the Monte Carlo method When N > M. In either case, the
computation may be done prior to data collection. The computational steps are:

1. Compute the Cholesky decomposition SST of the matrix ¥ in O(M 3) flops
if 3 1s dense and O(M) flops if it is di'agonal.

2. Compute Ex? = ||L—IS||% in O(M3) flops if S is dense and O(M?) if S is
diagonal.

3. Compute the mean surprise by Ep? = M — E x2.

4. Compute X = L™IFA by back substitution in O(M3) flops. This can be
reduced to O(M?) flops if A is diagonal.

5. Compute A = A — XTX directly in O(N3) flops. The diagonal entries a2,
of A are the squares of the standard errors for the corresponding estimates ¢n,.
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6. Compute the mean reconstruction error n2 = Tr(A).

The values of A, n2, E x2, and E p? provide information to help the user interpret
the reconstruction results. The total computational cost is O(M 3) + O(N3) flops
if A is dense or O(M?) + O(N3) flops if A is diagonal.

11.1.3 Confidence Limits: Monte Carlo Method

Computing the confidence limits by the Monte Carlo method may be advantageous
if A and ¥ are diagonal, if only low accuracy is required, or if N > M. This
version assumes that the a posteriori covariances &?j for m # n are not required
but only the a posteriori variances &2,,,,.

1. Compute the Cholesky decomposition RR7T of the source covariance matrix
A. This takes O(N) flops if A is diagonal and O(N3) flops if dense.

2. Compute the Cholesky decomposition SST of the noise covariance matrix
Y. This takes O(M) flops if X is diagonal and O(M3) flops if dense.

3. Repeat steps 4-6 R times, where the number of realizations R is chosen to
yield sufficient accuracy. |

4. Genefate two independent standard normal random vectors z1 and z9, where
z] has length N and z9 has length M. This takes O(M + N) flops per realization.

5. Compute a sample measurement vector x = FRz] + Szs. This takes
O(MN) + O(N?) flops per realization.

6. Compute the intermediate value p = L™!x and the corresponding recon-
struction y = (FA)TL~Tp. This takes O(M?2) + O(MN) flops per realization.

7. Compute the approximate mean square residual E x2 = —}? >or pI'Sp,. This
requires O(RM?) flops if ¥ is dense but only O(RM) flops if it is diagonal.

8. Compute the approximate a posteriori variances &%n = a?m — 11—% >or ygn
where yrn 1s the nth element of the rth realization of y. This requires O(RN)
flops.

The total computational cost is O(RM?) + O(RN?) provided that both A and
¥ are diagonal or are sparse enough that their Cholesky decompositions can be

computed in not more than O(M?) and O(N?) flops.
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11.1.4 Reconstruction

Computing the estimate for each input b requires the values of FA, L, and Tgri ¢
computed during initialization. The compuational steps are:

‘1. Compute p = L~TL~1b by back substitution in O(M?) flops.

2. Compute 2 = pr. Ifr2> Tgrit’ classify the given data as inconsistent
with the priors; this means that the data set b does not appear to be taken from
the statistical population defined by the priors and should not be reconstructed
using those priors. Otherwise, classify it as consistent and proceed with the recon-
struction. |

3. Compute the solution § = (FA)Tp in O(MN) flops.

4. Compute the residual r = Xp in O(MN) flops if ¥ is dense and O(M) if X
is diagonal.

5. Compute x2 = pZr in O(M) flops.

6. Compute p? = 2 — 2.

The value of § is the desired reconstruction. The values of r, x2, 72, and p? are
intended to provide insight into the quality of the reconstruction. The total cost

per reconstruction is O(M?) + O(MN) flops.

11.2 Methods

The following MEG model problem was used in individual reconstructions and in

Monte Carlo simulations to investigate the performance of the OCLIM algorithm

under realistic conditions.

11.2.1 Detector Configuration

The detector configuration used in the model problem is intended to model a generic
next-generation whole-head MEG system but does not exactly model any partic-
ular system. The detector array consists of 82 vector magnetometers more or less
uniformly distributed on a spherical shell of radius 13 cm and extending 105° from
the top of the head, thus covering slightly more than a hemisphere. Each vector

magnetometer measures the three components of the field normal and tangential
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to the head, giving a total of 246 measurements. Each measurement has zero-mean
Gaussian noise of 50 fT' RMS amplitude and the noise is uncorrelated between

measurements.

11.2.2 Assumed Source Models

The head was modeled as a spherical conductor of radius 10.5 cm at the inside
boundary of the skull. Since the skull has very low conductivity relative to the
brain and cerebrospinal fluid, currents flowing in the skull and scalp have a neglible
effect on the measured magnetic fields and were not simulated. The brain was taken
as the upper hemisphere of radius 9 cm and the cortex as the upper hemispherical
shell of inner radius 7 cm and outer radius 9 cm. The primary current distribution
was modelled as a rectangular grid of three-component current dipoles at a 1.8 cm
spacing.

Note that in this geometry, radially oriented current dipoles produce no external
magnetic field and thus cannot be detected at all. In addition, the volume currents
produce only magnetic fields tangent to the surface of the sphere and have no effect

on radial field measurements.

Two different source configurations were simulated. In the whole brain (CP-)
source model, all sources were assumed to lie within the brain but not necessarily
in the cortex; there were 277 distinct sites and 831 distinct source amplitudes to
be reconstructed, as shown in Figure 11.1. In the cortical priors model (CP+), all
sources were assumed to lie within the cortex only; there were 129 sites and 387

independent source amplitudes, as shown in Figure 11.2.

In both source models, each independent source amplitude was assumed to be
Gaussian with mean zero and standard deviation 2.5 nA-m. This source variance
was chosen to yield an RMS signal amplitude at the nearest detector of about 200
fT, which is typical of visual evoked field measurements.

The cortical priors model was chosen to facilitate comparison with the whole
brain model. If the purpose was to obtain the best reconstructions rather than

to compare the effects of the source models, it would probably be appropriate
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Figure 11.1 Source and detector configuration without priors (CP—). The detectors
are vector magnetometers more or less uniformly distributed over a spherical cap; the large
black triads show their location and orientation. The sources were placed on a rectangular
grid throughout the entire brain and are shown by the smaller gray triads.

to increase the number of sources, use only tangential sources, and space them

uniformly over the surface of several hemispherical shells.

FEach of these models was used both with and without volume currents. In
the no volume current (VC—) case, the magnetic field at the detctors is assumed
to depend only on the primary current. In the volume current (VC+) case, the
magnetic field at the detectors is computed using the formulae given by Sarvas [86]
for dipole sources in a spherical conductor. This yields four distinct models to be

compared, as summarized in Figure 11.3.

Figure 11.4 shows the RMS signal amplitude at each detector for all four of the

source models; the detectors are numbered to place all the radial detectors first,
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Figure 11.2  Source and detector configuration with priors (CP+). The detector
configuration is identical to the previous figure, but the sources were restricted to the
cortex.

SM0O CP- VC— No priors, no volume currents;

SM1 CP+ VC-  Cortical priors, no volume currénts;

SM2 CP- VC+ No priors, volume currents included; and

SM3 CP+ VC+ Both cortical priors and volume currents included.

Figure 11.3 Source models to be tested.

followed by the tangential detectors. Note that the signal ranges between 100-200
fT for the radial detectors, which is typical of visual evoked field imaging. Including
the volume currents for this spherical head model reduces the tangential fields by
about two-thirds but has no effect on the radial fields; thus we expect that including
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Figure 11.4 RMS signal amplitude for model problem. This plot shows the RMS
signal amplitude for each detector for all four of the source models; the models are, from
top to bottom, CP—-VC—, CP+VC~, CP—-VC+, and CP+VC+. Detectors 1-82 measure
the radial component of field, detectors 83-164 the eastward component, and detectors
165-246 the northern component. The inclusion of volume currents has no effect on
the radial field, but reduces the tangential fields by about two-thirds. The radial field in
the CP+VC+ source model ranges from 100-180 fT, which is typical for visual evoked
response measurements.
the volume currents with significantly improve the reconstruction accuracy when
tangential field measurements are used. The signal-to-noise ratios for the CP—VC+

and CP+VC+ source models are 8.01 dB and 6.89 dB.

11.2.3 True Source Model

The assumed source model is that all of the modelled source locations are active
simultaneously but each with a relatively low amplitude. A more realistic model

of the human brain is that only a few sources are active at any given time but
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have higher, amplitudes; furthermore, the positions of these sources will not exactly
match any of the assumed source locations. _

One of the purposes of this simulation is to explore whether this simplified
.Gaussian model is adequate to allow reconstruction of realistic source distributions.
Thus the statistical model actually used to generate source distributions in this
simulation is as follows: Choose at random 5 locations within the cortex as defined
above (without regard to whether or not they fall on the modelled source locations).
At each of these random locations, choose a direction randomly chosen over the
surface of a sphere and assign a current dipole moment of magnitude 20 nA-m at
that location and in that direction.

To compare this to the assumed source distribution, suppose that we have
the 129 sites of the CP+ model, of which a randomly chosen 5 are active. The
expected variance at a random site is then (5/129) - (20 nA-m)? which divides
equally over the three components to yield a variance of (1/3)-(5/129)-(20 nA-m)?
or a standard deviation of 2.27 nA-m for each component, which approximately

matches the assumed value of 2.5 nA-m.

11.2.4 Energy Concentration

A common measure of the localization accuracy of a reconstruction algorithm is
the full-width half-maximum (FWHM) of its point spread function; that is, the di-
ameter of the circle or sphere which connects the points at which the point spread
function has half its maximum value. This is not appropriate in the present prob-
lem, since the point spread function is asymmetric and since the reconstruction
grid is rather sparse. An alternative is to compute how much of the reconstructed
source energy appears within a specified radius oq of the true source position. Given
the 'sparse grids used here, however, it is not appropriate simply to count all the
reconstructed source energy within the specified radius, since this sum will change
discontinuously as the true source location moves relative to the modelled source
locations. A better approach is to weight this sum by some smooth decreasing
function of distance. A Gaussian is a reasonable choice, although some investi-

gation of alteratives might be useful. Since the reconstructed amplitudes may be
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either positive or negative, they are squared to yield energy, which is then weighted
and summed. The actual value of the energy is probably less meaningful than the
fraction of energy near the true source location relative to the total energy of the

reconstruction. Thus, the energy concentration may be formally defined by

> ne1 3 ’

where N is the total number of modelled sources, g, is the reconstructed amplitude

Energy concentration =

of the nth modelled source, P is the true position of the source, py is the position of
the nth modelled source, and o is the standard deviation of the Gaussian selected.

The choice of radius o should be related to the resolution of the reconstruction
or to the spacing betv;;en the modelled sources. One convenient choice is set it to
the maximum possible distance between the true source location and the nearest
modelled source location. This is achieved when the true source is located at the
center of a cube formed by eight modelled source locations; the distance is then
op = %\/5 - 1.8 ctn = 1.559 em. Fortunately, the precise value chosen for og does

not seem to affect the relative performance of the source models.
11.3 Simulation Results and Discussion

The following specific hypotheses were investigated by computer simulation of the
model problem:

1. The inclusion of volume currents and prior information on possible source
locations decreases the width of the point spread function, presumably improving
resolution.

2. It is possible to distinguish true sources of moment 20 nA-m from background
noise in the reconstruction. .

3. OCLIM will provide useful reconstructions even if there are only a few active
sources which do not lie exactly on the modelled source locations and there are more
modelled source locations than field measurements.

4. OCLIM can resolve several simultaneously active sources within the brain.

In all of these simulations, volume currents were included in computing the

measured fields, regardless of the assumed source model.
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11.3.1 Source Models Compared

The Monte Carlo simnulation was done to test Hypothesis 1 by comparing the source
energy localization performance of the four source models. Fifty realizations were
computed, each of which has a single tangential source of moment 20 nA-m at
a random location in the cortex. Each of the source models was then used to
reconstruct the source location and the energy localization computed; the results
were plotted to yield Figure 11.5, where + denotes CP—VC— vs CP+VC+, x
denotes CP+VC— vs CP+VC+, and o denotes CP—VC+ vs CP4+VC+. If a point is
above the diagonal line, it means that CP+VC+ provides better energy localization

than the alternative model. All these simulations included measurement noise.

Note in Figure 11.5 that almost all of the sample points are above the diagonal,
indicating the that CP+VC+ model has better source localization than any of the
other three source models. CP—VC+ is slightly worse than CP+VC+ but consis-
tently so, indicating that priors do provide an improvement in source localization.
Both CP—VC— and CP+VC— are usually worse than CP—VC4+ and CP+VC+,
indicating that the inclusion of volume currents in the forward model improves the
source localization; note that the difference between either CP—VC— or CP+VC—
and CP+VC+ is quite variable, so that neglecting volume currents will both in-

crease the reconstruction error and add its variance.

11.3.2 True Sources versus Background Noise

Hypothesis 2 claims that true sources can be distinguished from background noise
in the reconstruction. To estimate the background levels of the energy concen-
tration when no source is present, the previous simulation was repeated with the
dipole moment set to zero; the resulting mean and standard deviation of the en-
ergy concentration are shown in Figure 11.6. Note that almost all of the realizations
plotted in Figure 11.5 exceed the upper 20 threshold for the zero-signal energy con-
centration; thus it appears that either this or perhaps a 30 threshold would reliably

distinguish sources of 20 nA-m moment or higher from reconstruction noise.
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Figure 11.5 Energy concentration compared for source models. Fifty realizations of
a source location in the cortex were generated and reconstructed with each of the four
source models. This scatter plot compares the energy concentration for the four source
models, where 4+ denotes CP—VC— vs CP+VC+, x denotes CP+VC— vs CP+VC+,
and o denotes CP—VC+ vs CP+VC+. If a point is above the diagonal line, it means
that CP+VC+ provides better energy localization than the alternative model indicated
by the symbol.

11.3.3 Sample Point Spread Functions

Hypothesis 3 claims that OCLIM is robust to certain discrepancies between the
assumed and actual source models. The simulations in this section verify that claim
by showing samples of the point spread functions for sources at various positions;
they also supplement the quantitative measures of localization by giving a visual

picture of the point spread function.

Figures 11.7 through 11.11 show a series of reconstructions in which a single
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Model Mean +S.D. Mean + 2 S.D.
CP-VC— 0.0266+0.0114  0.04%4
CP+VC— 0.0279 +£0.0115 0.0509
CP-VC+ 0.0297 £0.0148 0.0593 ~
CP+VC+ 0.0302 £ 0.0150 0.0602

Figure 11.6 Zero-signal energy concentration versus source model. The mean and
standard deviation of energy concentration when no source is present are shown for each
source model. The upper 20 deviation could be taken to distinguish true signals from
background noise in the reconstruction.

true source is active and there is no measurement noise. Thus they show the point
spread function of the reconstruction algorithm for several possible source ldcations.
The first column shows the true location of the source; the next four columns show
the reconstructions obtained using the four source models, all at the same intensity
scale. Each row of images represents one transverse slice through the head. The
solid circle is the inner surface of the skull (and thus the boundary of the spherical
conductor); the two dotted circles indicate the inner and outer boundaries of the
cortex. The capital letters in the top left image denote Anterior, Posterior, Right,‘
and Left. Successive rows present successive slices through the head from top to

bottom.

These reconstructions confirm the quantitative results on energy concentration
shown in the last section. The CP+VC+ source model generally provides a higher
peak intensity than the other source models and there is less energy outside the
peak. The width of the point spread function varies depending on the location of
the source, but usually has most of its energy within 1-2 pixels or 1.8-3.6 cm of the
peak. In Figures 11.7 through 11.9 the reconstructed peak is at the same location as
the true source; in Figures 11.10 and 11.11 it is displaced by one pixel. Comparing
the models does not show any clear pattern as to whether priors or volume currents

provide a larger improvement.

Another set of simulations was done for the same sources but including mea-

surement noise. The patterns observed are much the same except that there is
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Figure 11.8 Sample point spread function #2.
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Figure 11.10 Sample point spread function #4.
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Inferior

CP+ VC+

Figure 11.11 Sample point spread function #5.

noticeably more background noise in the reconstructions. The sources, however,

remain clearly distinguishable from the background.

11.34 Reconstruction of Multiple Sources

Hypothesis 4 claims that OCLIM can resolve several simultaneously active sources
in the brain.

Figure 11.12 shows the reconstruction for 5 simultaneously active sources in
the cortex, generally tangential with dipole moments ranging from 18 to 25 nA-m.
These sources were not placed directly over the modelled source locations. Two
of the sources, in slices 3 and 5 counting from the top, are clearly visible in the
reconstruction. The sources in slices 2 and 4 are marginally visible but appear
to have been displaced to slice 3. The source in slice 1 is visible as a blurred
reconstruction in the same slice; it is perhaps arguable that a source is present but

it is not clearly localized.
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Figure 11.13 Reconstruction of multiple sources—low noise. Signal averaging has
been used to reduce the measurement noise by a factor of five.
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Figure 11.13 shows the reconstruction for the same five sources, except that the
noise has been reduced by a factor of 5 to simulate repeating the experiment 25
times ard averging the results; the assumed noise level has not been changed. In this"
case all five of the sources are found in the reconstruction, although not all of them
are well localized. The fact that reducing the noise improves the reconstruction
only slightly indicates that the primary contribution to the reconstruction error is
the width of the point spread function rather than measurement noise.

The source locations used in these simulations were well separated but were
still not always sharply localized. It is likely that sources closer together would not

be clearly resolved.
11.4 Conclusions

An OCLIM reconstruction will provide useful results even when the true source
locations do not exactly match the modelled source locations, when there are more
modelled sources than detectors, and when there are only a few true sources of
large amplitude rather than many small sources.

If the true sources are strong and not too close together, the OCLIM reconstruc-
tion will often resolve several simultaneous true sources, although this appears to
require a somewhat better SN R that is available in the model problem. The ability
to detect multiple simultaneous sources is a useful improvement over moving dipole
methods.

The point spread functions of the true sources are generally rather broad, with
a FWHM of perhaps 1-3 cm; thus it is not possible to resolve sources placed any
closer together. ’

The inclusion of volume currents in the forward problem provides a definite
improvement in the energy concentration in the reconstruction of a dipole source,
and restricting the source model to the cortex provides a small but consistent
improvement. Thus including volume currents and source priors can be expected
to provide better source localization. Note, however, that if radial magnetometers
are used with a spherical conductor head model, that the volume currents have no

effect on the reconstructions.
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Summary and Conclusions

This final chapter summarizes the contributions made by this dissertation, offers
some conclusions as to their value in biomagnetic imaging, indicates some unre-

solved problems, and presents some recommendations for further research.

12.1 Contributions

This dissertation makes the following contributions to the solution of the linear
inverse problem with statistical priors, including the biomagnetic source imaging
problem:

e A proof that, under the usual assumptions for the biomagnetic forward
problem, ﬁxing'the position of the sources makes the measured flux values linear
functions of the unknown source amplitudes. The usual assumptions are that it
is quasistatic (propagation delays and displacement currents can be ignored) and
that Ohm’s law holds for biological tissues (current is proportional to electric field).
In consequence, the biomagnetic inverse problem becomes a linear inverse problem
and it is possible to compute the forward transfer matrix for any physical model
by solving the forward problem for unit sources. Furthermore, it is possible to
reconstruct the primary current sources alone rather than the total current.

- @ The derivation of the optimal constrained linear inverse method (OCLIM),
which is the minimum-mean square error estimator for the linear inverse problem
with statistical prior information.

e The demonstration that the OCLIM estimator contains as special cases
the minimum-norm least squares (MNLS), optimally truncated pseudoinverse (OT-

PIM), optimally weighted pseudoinverse (OWPIM), first-order Tikhonov regular-
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ized pseudoinverse, and the Wiener estimator for certain classes of priors and that

it provides smaller reconstruction error in the general case. Furthermore, the op-

timal truncation, weighting, or regularization parameter is directly related to the
signal-to-noise ratio. The maximum a posterior estimator is also a special case

under the assumption of Gaussian statistics.

e  The definition of a new measure of reconstruction quality, called the surprise,
which is the log likelihood of the reconstructed source distribution relative to the
assumed priors; the surprise indicates how implausible the reconstruction is relative
to the priors.

e The statistical characterization of the surprise, the reconstruction error (re-
construction versus truth), and the residual (reconstructed versus actual measure-
ments) for both the general and Gaussian cases.

e The derivation of confidence limits for the reconstructed source amplitudes
under the assumption of Gaussian priors and the discovery that in many cases it
is more efficient to estimate the confidence limits by Monte Carlo methods than to
compute them directly.

e The development of efficient algorithms for the numerical coniputation of
the OCLIM estimate and its quality estimates for both instantaneous and time
series data. The identification of assumptions on the spatiotemporal structure of
the source and noise priors which allow the computation to be speeded up by several
orders of magnitude.

e A demonstration that the OCLIM reconstrﬁction yields useful results in a
realistic neuromagnetic source imaging problem, even when the true sources do
not fall exactly on the modelled sources and when the true source statistics do
not exactly match the assumed statistics. Furthermore, OCLIM can often resolve
multiple simultaneously active sources in the brain.

e The discovery that misinformative priors can yield less accurate reconstruc-
tions than uninformative priors, and the development of a statistical test that can
sometimes detect misinformative priors. This test, however, may not appear to
-~ work reliably at the low signal-to-noise ratios characteristic of biomagnetic imag-

ing. If the test is not reliable, one important consequence is that an OCLIM

158



Chapter 12. Summary end Conclusions

reconstruction cannot be taken to rule out the existence of sources not included in
the model. That is, the reconstruction may be taken to suggest source locations

but should not be used to prove the existence or non-existence of a source.

The problem of statistically characterizing the reconstruction quality has led to

two other contributions which may be more widely applicable.

e The deﬁnitiqn of a generalized x2 distribution in which arbitrary means,
variances, and covariances are allowed, and the derivation of the mean, variance,
and characteristic function of that distribution. The same distribution suffices to
describe the distribution of X7 Ax or ||x||? for any Gaussian random vector x and

symmetric positive semidefinite matrix A.

e The development of an FFT-based algorithm to compute the probability
density function of a general continuous non-negative univariate random variable
given its characteristic function. The derivation of an Ly error bound for this
algorithm and the demonstration that the algorithm converges provided that the

characteristic function and the density function decay sufficiently rapidly.
Some less important contributions include:

e A demonstration that including volume currents in the forward problem

yields better reconstructions.

e A precise physical interpretation of the common assumption that the co-

variance matrix of a random vector is nonsingular.

e A proof that estimating the amplitudes of uninteresting “nuisance” sources
will not improve the estimates of the desired sources, provided that the nuisance

sources are taken into account in computing the measurement covariance.

e A proof that the optimal estimate subject to a linear constraint can be
obtained by projecting the unconstrained optimal estimate into the null space of

the constraint matrix.

e A demonstration that the estimates of reconstruction quality provided by

OCLIM can be used to evaluate and compare possible magnetometer array designs.
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12.2 Unresolved Problems

The main thrust of this dissertation has been to develop the mathematical theor\y
needed to incorporate statistical prior information in the linear inverse problem
and, to a lesser extent, to develop efficient computational algorithms for this prob-
lem. Except for Chapter 11, the various simulations serve primarily to validate the
mathematical theory. The simulations of Chapter 11 are best regarded as a pilot
experiment to determine whether or not the use of OCLIM and prior information
is sufficiently promising to justify further development. It appears that they are,
but there still remain some serious practical and theoretical difficulties in the way

of clinical or research application.

12.2.1 Estimating the Priors

This dissertation has focused on the use of prior information to improve recon-
struction accuracy, given the appropriate prior information, but it does not address
the problem of obtaining the necessary prior information. Obviously, any practical
application of the methods developed here will require the development of methods
for actually estimating the source and noise statistics. Given that misinformative
priors can yield an erroneous reconstruction, it will be important to be able to
demonstrate that the priors are in fact correct for some defined population. It is

necessary in addition to explore the effects of slight errors in the priors.

12.2.2 Misinformative Priors

The use of prior information, carefully estimated or not, carries with it the risk that
the actual data set is not drawn from the population defined by the priors. If so,
then any reconstruction using such misinformative priors is apt to be misleading,
if not outright wrong. Under favorable conditions, such as a high signal-to-noise
ratio, strong unexpected sources well separated from the modelled sources, and a
restrictive source model, the 72 test often detects the presence of the unexpected
sources and warns against trusting the reconstruction with priors. It is not yet clear

whether or not magnetoencephalography offers sufficiently favorable conditions that
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1t is possible to consistently detect unexpected sources. Given that an unexpected
source might not be detected (and the non-uniqueness of the solution), source
reconstructions from MEG data cannot be regarded as definitive in showing the
existence or non-existence of a source at some specified location. That is, they may
be used to suggest a source hypothesis to be tested by other methods but cannot,

at least in their present form, be used to cﬁtica.lly test a source hypothesis.

12.2.3 Hypothesis Testing

The biomagnetic source imaging problem is essentially singular in that there are
many different source distributions consistent with the data. Using prior informa-
tion to choose one of these possible distributions as “the” solution does not provide
a satisfactory means of testing a hypothesis that there is or is not an active source
at a specified location. This inability to prove or disprove the existence of a partic-
ular source limits the applicability of biomagnetic source imaging in medicine and

cognitive research.

12.2.4 Computational Cost

The computation effort required té initialize an OCLIM reconstruction grows as
the ninth power of the desired resolution, since the number of possible sources in a
given volume is proportional to the inverse cube of the source spacing, and the cost
of the Cholesky decomposition used in OCLIM grows as the cube of the number of
sources. Thus it becomes very expensive to do high-resolution reconstructions. It
is also necessary to solve the forward problem for each possible source; if a finite
element or boundary element model is used and there are many sources, this may

also add substantially to the computational cost.

12.3 Conclusions

OCLIM is potentially valuable in biomagnetic imaging, since it allows the recon-
struction of multiple simultaneously active sources under realistic conditions; it
still needs to be demonstrated with real experimental data rather than purely by

simulation. The inclusion of volume currents in the forward model and of prior
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knowledge as to the possible location and amplitude of the sources improves the
resolution and accuracy of the reconstruction.

A disadvantage of prior information, however, is that it can introduce recon-
struction errors if the assumed priors do not truly represent the population from
which the data set is taken or the actual data set is an outlier in this popula-
tion. This dissertation develops a statistical test for this possibility but it does
not detect all such cases. Until this problem of misinformative priors is better un-
derstood, OCLIM and prior information should be used conservatively, to suggest
source hypotheses ‘but not to critically test them. The fact that many different
source distributions can yield the same external field measurements also suggests
than any magnetic source reconstruction should be used conservatively.

An alternative approach to the use of prior information might be applicable
in cognitive research. Other functional imaging methods such as PET and fMRI
can localize regions of elevated metabolism in the brain, which are preéumed to be
the regions involved in processing stimuli, but cannot resolve the temporal course
of activation. If the source model used in OCLIM includes only the relatively few
regions that appear to be active, then OCLIM can be used to test the hypothesis
that only these regions are active and determine the time course of activity. This
approach has not be explored in this dissertation but might prove effective.

The mathematical approach taken in OCLIM is quite general and can per-

haps be extended to other inverse problems in medical imaging including positron

emission tomography (PET) and single photon emission computed tomography

(SPECT).

162



[1]

[2]

[6]

[7]

[8].

References

Abate, J. and W. Whitt. Numerical inversion of probability generating
functions. Operations Research Letters, 12(4):245-251, October 1992.

Abramowitz, M. and I. A. Stegun, editors. Handbook of Mathematical
Functions, with Formulas, Graphs, and Mathematical Tables, volume 55 of

Applied Mathematics Series. National Bureau of Standards, 1964.

Aine, C. J., I. Bodis-Wollner, and J. S. George. Generators of visually evoked
neuromagnetic responses: Spatial-frequency segregation and evidence for

multiple sources. In Sato [88], pages 141-155.

Anderson, E., Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and

D. Sorenson. LAPACK Users’ Guide. Society for Industrial and Applied
Mathematics, Philadelphia, 1992.

Barr, R. C., T. C. Pilkington, J. P. Boineau, and M. S. Spach. Deter-
mining surface potentials from current dipoles, with application to
electrocardiography. IEEE Trans. Biomed. Eng., BME-13(2):88-92, April
1966.

Baule, G. and R. McFee. Detection of the magnetic field of the heart. Am.
Heart J., 66(1):95-96, July 1963.

Baule, G. and R. McFee. Theory of magnetic detection of the heart’s
electrical activity. J. Appl. Physics, 36(6):2066—73, June 1965.

Bayley, R. H. Buophysical Principles of Electrocardiolography, volume I of
Electrocardiographic Analysis. Paul Hoeber, Inc., New York, 1958.

163



[9]

[14]

[15]

[16]
[17]
[18]

[19]

References

Belov, A. G. and V. Y. Galkin. Algoritmy vychisleniya funktsii veroyatnostei
obobshchennogo puassonovskogo raspedeleniya [Algorithms for computing
the probability function of the generalized Poisson distribution]. In
Tikhonov, A. N. and A. A. Samarskii, editors, Aktual’nye Voprosy Prikladnot
Matematik:, pages 18-28. Izdatel’stvo Moskovskogo Universiteta, 1989.

Beyer, W. H. CRC Standard Mathematical Tables. CRC Press, 1981.

Bohman, H. Numerical Fourier inversion. In Kahn, P. M., editor,

Computational Probability, pages 257-260. Academic Press, Inc., 1980.

Brody, D. A., J. C. Bradshaw, and J. W. Evans. A theoretical basis for
determining heart-lead relationships of the equivalent cardiac multipole. IRE
Trans. Biomed. Eng., BME-8(2):139-143, April 1961.

Budiman, J. and D. S. Buchanan. An alternative to the biomagnetic forward
problem in a realistically shaped head model, the “weighted vertices”. IEEE
Trans. Biomed. Eng., 40(10):1048-1053, October 1993.

Budinger, T. F., G. T. Gullberg, and R. H. Huesman. Emission computed
tomography. In Herman, G. T., editor, Image Reconstruction from
Projections, volume 32 of Topics in Applied Physics, chapter 5, pages
147-246. Springer-Verlag, 1979.

Castleman, K. R. Digital Image Processing. Prentice-Hall, Inc., 1979.

Cavers, J. K. On the fast Fourier transform inversion of probability

generating functions. J. Inst. Math. Appl., 22:275-282, 1978.

Cohen, D. Magnetoencephalography: Evidence of magnetic fields produced
by alpha-rhythm currents. Science, 161:784, 1968.

Cohen, D. Magnetoencephalography: Detection of the brain’s electrical
activity with a superconducting magnetometer. Science, 175:664, 1972.

Cohen, D., E. A. Edelsack, and J. E. Zimmerman. Magnetocardiograms taken
inside a shielded room with a superconducting point-contact magnetometer.

Appl. Phys. Lett., 16:278, 1970.
164

~



References

[20] Cohen, J. D. Noncentral chi-square: Some observations on recurrence. The

American Statistician, 42:120-122, 1988.

[21] Cooley, J. W., P. A. W. Lewis, and P. D. Welch. Application of the fast
Fourier transform to computation of Fourier integrals, Fourier series, and
convolution integrals. IEEE Trans. Audio Electroacoustics, 15(2):79-84,
June 1967.

[22] Cuffin, B. N. Effects of head shape on EEG’s and MEG’s. IEEE Trans.
Biomed. Eng., 37(1):44-52, Jan 1990.

[23] Cuffin, B. N. and D. Cohen. Magnetic fields of a dipole in special volume
conductor shapes. IEEE Trans. Biomed. Eng., BME-24:372-381, July 1977.

[24] Daigle, J. N. Queque length distributions from probability geherating
functions via discrete Fourier transforms. Operations Research Letters,

8(4):229-236, August 1989.

[25] De Munck, J. C., B. W. van Dijk, and H. Spekreijse. Mathematical dipoles
are adequate to describe realistic generators of human brain activity. IEEFE

Trans. Biomed. Eng., 35(11):960-966, November 1988.

[26] Ding, C. G. Computing the non-central x? distribution function. Applied
Statistics, 41(2):478—482, 1992.

[27] Erné, S. N. and M. Hoke. Short-latency evoked magnetic fields from the
human auditory brainstem. In Sato [88], pages 167-176.

[28] Fagaly, R. L. Neuromagnetic instrumentation. In Sato [88], pages 11-32.

[29] Fender, D. H. Models of the human brain and the surrounding media:
Their influence on the reliability of source localization. Journal of Clinical

Neurophysiology, 8(4):381-90, October 1991.

[30] Ferguson, A. S., D. Vardy, R. Hren, and G. Stroink. A regularized minimum
norm method for calculating distributions of source currents on epicardial

surfaces. Poster presentation at the 9th International Conference on

165



References

Biomagnetism, Vienna, August 1993. Expected to be published by Elsevier

Science Publishers, Amsterdam, in 1994.

[31] Ferguson, A. S., X. Zhang, and G. Stroink. A complete linear discretization
for calculating the magnetic field using the boundary element method. IEEE
Trans. Biomed. Eng., 41(5):455-460, May 1994.

[32] Foster, K. R. and H. P. Schwan. Dielectric properties of tissues and biological
materials: A critical review. CRC Crit. Rev. Biomed. Eng., 17:25-104, 1989.

[33] Frank, F. Electric potential produced by two point sources in a homogeneous
conducting sphere. J. Appl. Phys., 23:1225-1228, November 1952.

[34] Franklin, J. N. Well-posed extensions of ill-posed linear problems. J. Math.
Anal. Appl., 31:682-716, 1970.

[35] Geselowitz, D. B. On the magnetic field generated outside an inhomogeneous
volume conductor by internal current sources. IEEE Trans. Magn.,

MAG-6(2):346-347, 1970.

[36] Geselowitz, D. B. On bioelectric potentials in an inhomogenous volume

conductor. Biophys. J., 7(1):1-11, January 1967.

[37] Gloor, P. Neuronal generators and the problem of localization in electro-
encephalography: Applicaﬁon of volume conductor theory to electroen-

cephalography. J. Clin. Neurophysiol., 2(4):327-354, 1985.

[38] Golub, G. H. and C. F. Van Loan. Matriz Computations. Johns Hopkins

University Press, second edition, 1989.

[39] Griibel, R. The fast Fourier transform algorithm in applied probability
theory. Nieuw Archief voor Wiskunde— Vierde Serie, 7(3):289-300, November
1989. '

[40] Hamaldinen, M. S. and J. Sarvas. Realistic conductivity geometry model
of the human head for interpretation of neuromagnetic data. IEEE Trans.
Biomed. Eng., 36(2):165-171, February 1989.

166



References

[41] Hari, R. and R. J. llmoniemi. Cerebral magnetic fields. CRC Crit. Rev.
Biomed. Eng., 14(2):93-126, 1986.

[42] Helstrom, C. W. Image restoration by the method of least squares. J. Opt.
Soc. Am., 57(3):207-303, 1967.

[43] Horacek, B. M. Digital model for studies in magnetocardiography. IEEE
Trans. Magn., MAG-9(3):440-444, September 1973.

[44] Jain, A. K. Fundamentals of Digital Image Processing. Prentice-Hall, Inc.,
1989.

[45] Jefs, B., R. Leahy, and M. Singh. An evaluation of methods for neuromagnetic
image reconstruction. IEEE Trans. Biomed. Eng., BME-34(9):713-723,
September 1987.

[46] Jin, J. The Finite Element Method in Electromagnetics. John Wiley & Sons,
1993. '

[47] Kak, A. C. and M. Slaney. Principles of Computerized Tomographic Imaging.
IEEE Press, 1988.

[48] Karlon, W. J. Defibrillation current density distributions: A three-
dimensional finite element model of the canine thorax. Master’s thesis,

Boston University, 1991.

[49] Kraus, J. D. Eiectromagnetics. McGraw-Hill Book Company, Inc., third
edition, 1984.

[50] Litkenhoner, B., K. Lehnertz, M. Hoke, and C. Pantev. On the biomagnetic
inverse problem in the case of multiple dipoles. Acta Oto-Laryngologica,

Suppl 491:94-105, 1991.

[51] Lynn, M. S. and W. P. Timlake. The use of multiple deflations in the
numerical solution of singular systems of equations with applications to

potential theory. SIAM J. Numer. Anal., 5(2):303-322, 1968.

[52] Maindonald, J. M. Statistical Computation. John Wiley & Sons, 1984.
" 167



References

[53] Makels, J. and R. Hari. Long-latency auditory evoked magnetic fields. In
Sato [88], pages 177-191.

[54] Marquardt, D. W. An algorithm for least-squares estimation of nonlinear
parameters. J. Soc. Indust. Appl. Math., 11(2):431-441, June 1963.

[65] Marquardt, D. W. Generalized inverses, ridge regression, biased linear
estimation, and nonlinear estimation. Technometrics, 12(3):591-612, August

1970.

[56] McFee, R. and F. D. Johnston. Electrocardiographic leads, I. Circulation,
8:554-568, October 1953.

[57] McFee, R. and F. D. Johnston. Electrocardiographic leads, II. Circulation,
9:255-266, February 1954.

[58] McFee, R. and F. D. Johnston. Electrocardiographic leads, III. Circulation,
9:868-880, June 1954.

[59] Meijs, J. W., O. W. Weier, M. J. Peters, and A. van Oosterom. On the
numerical accuracy of the boundary element method. IEEE Trans. Biomed.

Eng., 36(10):1038—49, October 1989.

[60] Miller, C. E. and C. S. Henriquez. Finite element analysis of bioelectric
phenomena. CRC Crit. Rev. Biomed. Eng., 18(3):207-33, 1990.

[61] Moore, E. H. On the reciprocal of the general algebraic matrix. Bull. Am.
Math. Soc., 26:389 and 394-395, 1920.

[62] Morrison, D. F. Multivariate Statistical Methods. McGraw-Hill Book
Company, Inc., 1967.

[63] Nenonen, J., C. J. Purcell, B. M. Horacek, G. Stroink, and T. Katila.
Magnetocardiographic functional localization using a current dipole in a
realistic torso. IEEE Trans. Biomed. Eng., 38(7):658-664, July 1991.

[64] Nunez, P. L. Electric Fields of the Brain: The Ne’drophysics of Electro-
encephalography. Oxford University Press, New York, 1981.

168



[65)

[72]

73]

[74]

[75]

References

Oh, S., C. Ramon, R. J. Marks II, A. C. Nelson, and M. G. Meyer.
Resolution enhancement of biomagnetic images using the method of
alternating projections. IEEE Trans. Biomed. Eng., BME-40(4):323-328,
April 1993.

Okada, R. H. Potentials produced by an eccentric current dipole in a finite-
length circular conducting cylinder. IRE Trans. on Medical Electronics,
ME-7:14-19, December 1956.

Penrose, R. A generalized inverse for matrices. Proc. Cambridge Philos.

Soc., 51:406—413, 1955.

Penrose, R. On best approximate solutions of linear matrix equations. Proc.

Cambridge Philos. Soc., 52(1):17-19, 1956.

Plonsey, R. Current dipole images and reference potentials. IEEE Trans.
Biomed. Eng., BME-10(1):3-8, January 1963.

Plonsey, R. Reciprocity applied to volume conductors and the ECG. IEEFE
Trans. Biomed. Eng., BME-10(1):9-12, January 1963.

Plonsey, R. and D. G. Fleming. Bioelectric Phenomena. McGraw-Hill Book
Company, Inc., 1969.

Popper, K. R. The Logic of Scientific Discovery. Harper & Row, second
edition, 1968. |

Posten, H. O. Computer algorithms for the classical distribution functions. In
Grey, D. R., P. Holmes, V. Barnett, and G. M. Constable, editors, Proceedings
of the First International Conference on the Teaching of Statistics, volume 1,

pages 313-330, Sheffield, U. K., 1982. University of Sheffield Printing Unit.

Posten, H. O. An effective algorithm for the noncentral chi-squared
distribution function. American Statistician, 43(4):261-263, November 1989.

Purcell, C. J. and G. Stroink. Moving dipole inverse solutions using realistic

torso models. IEEE Trans. Biomed. Eng., 38(1):82-84, January 1991.
169



References

[76] Pﬁrcell, C. J., G. Stroink, and B. M. Horacek. Effect of torso boundaries on
electric potential and magnetic field of a dipole. IEEE Trans. Biomed. Eng.,
35(9):671-8, September 1988.

[77] Ragan, P. Magnetically induced electric fields and current densities in the .
canine heart: A finite element study. Master’s thesis, Boston University,

1994.

[78] Ragan, P. M., W. Wang, and S. R. Eisenberg. Magnetically induced currents
in the canine heart: A finite element study, 1994. Preprint.

[79] Ramon, C., M. G. Meyer, A. C. Nelson, F. A. Spelman, and J. Lamping.
Simulation studies of biomagnetic computed tomography. IEEE Trans.
Biomed. Eng., BME—40(4):317-322, April 1993.

[80] Reite, M. Magnetoencephalography in the study of mental illness. In Sato
[88], pages 207-222.

[81] Ricci, G. B. Italian contributions the magnetoencephalograhic studies of the
epilepsies. In Sato [88], pages 247-260.

[82] Robertson, G. H. Computation of the noncentral chi-square distribution.
Bell System Technical Journal, 48:201-207, 1969.

[83] Rossini, P. M. and R. Traversa. Somatosensory evoked fields in magne-
toencephalography: Basic principles and applications. In Sato [88], pages
157-166.

[84] Roth, B. J. Biomagnetic studies of peripheral nerves and skeletal muscle. In
Sato [88], pages 101-117.

[85] Rush, S., J. Abildskov, and R. McFee. Resistivity of body tissues at low
frequencies. Circulation Research, 12:40-50, 1963. *

[86] Sarvas, J. Basic mathematical and electromagnetic concepts of the

biomagnetic inverse problem. Phys. Med. Biol., 32(1):11-22, 1987.

[87] Sato, S. Epilepsy research: NIH experience. In Sato [88], pages 223-230.
170 |



o4

e

®

[88]

[89)]

[90]

[91]

[92]

[93]

[99]

References

Sato, S., editor. Magnetoencephalography, volume 54 of Advances in
Neurology. Raven Press, New York, 1990.

Sato, S., M. Balish, and R. Muratore. Principles of magnetoéncephalography.
J. Clin. Neurophystol., 8(2):144-156, April 1991.
Shepp, L. A.'and Y. Vardi. Maximum likelihood reconstruction for emission

tomography. IEEE Trans. Med. Imaging, MI-1(2):113-122, October 1982.

Shim, Y. S. and Z. H. Cho. SVD pseudoinversion image reconstruction.

IEEE Trans. ASSP, ASSP-29(4):904-909, August 1981.

Singh, M., D. Doria, V. W. Henderson, G. C. Huth, and J. Beatty.
Reconstruction of images from neuro-magnetic fields. IEEE Trans. Nuclear

Sci., NS-31(1):585-589, 1984.

Smith, W. E., W. J. Dallas, W. H. Kullman, and H. A. Schlitt. Linear
estimation theory applied to the reconstruction of a 3-D vector current

distribution. Appl. Opt., 29(5):658-667, February 1990.

Strang, G. Linear Algebra and Its Applications. Harcourt Brace Jovanovich,

1988.

Stroink, G. Cardiomagnetic imaging. In Zaret, B. L., L. Kaufman, A. S.
Berson, and R. A. Dunn, editors, Frontiers in Cardiovascular Imaging,

chapter 11, pages 161-177. Raven Press, New York, 1993.

Sutherling, W. W. and D. S. Barth. Magnetoencephalography in clinical
epilepsy studies: The UCLA experience. In Sato [88], pages 231-245.

Thevenet, M., O. Bertrand, F. Perrin, T. Dumont, and J. Pernier. The
finite element method for a realistic head model of electrical brain activities:

Preliminary results. Clin. Phys. Physiol. Meas., 12(Suppl! A):89-94, 1991.

Thisted, R. A. Elements of Statistical Computation: Numerical Computation.
Chapman & Hall, 1988.

Tikhonov, A. N. and V. Y. Arsenin. Solutions of Ill-posed Problems. Halsted
Press, 1977.

171



[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

References

van Qosterom, A. History and evolution of methods for solving the inverse

problem. J. Clin. Neurophysiol., 8(4):371-380, October 1991.

van Qosterom, A. Mathematical aspects of source modeling. Acta

Oté-Laryngologica, Suppl 491:70-79, 1991.

van Qosterom, A. and J. Strackee. The solid angle of a plane triangle. IEEE
Trans. Biomed. Eng., BME-30(2):125-126, February 1983. |

Van Veen, B., J. Joseph, and K. Hecox. Localization of intra-cerebral
sources of electrical activity via linearly constrained‘ minimum variance
spatial filtering. In IEEE Swth SP Workshop on Statistical Signal and Array
Processing Conference Proceedings, pages 526-529, </ictoria, BC, Canada,
1992. IEEE Press.

Van Veen, B. D. and K. M. Buckley. Beamforming: A versatile approach to
spatial filtering. IEEE ASSP Magazine, pages 4-24, April 1988.

Wang, J.-Z. Minimum-norm least-squares estimation: Magnetic source images
for a spherical model head. IEEE Trans. Biomed. Eng., BME—40(4):387-396,
April 1993.

Wang, J.-Z., S. J. Williamson, and L. Kaufman. Magnetic source images
determined by a lead-field analysis: The unique minimum-norm least-squares

estimation. JEEE Trans. Biomed. Eng., BME-39(7):665-675, July 1992.

Weinberg, H., D. Cheyne, and D. Crisp. Electroencephalographic and
magnetoencephalographic studies of motor function. In Sato [88], pages
193-205.

Wilson, F. N. and R. H. Bayley. The electric field of an eccentric dipole in
a homogeneous spherical conductirig medium. Circulation, 1:84-92, January

1950.

Yan, Y., P. L. Nunez, and R. T. Hart. Finite-element model of the
human head: scalp potentials due to dipole sources. Medical and Biological
Engineering and Computing, 29(5):475—481, September 1991.

172



o

List of Symbols

Here are listed and defined the mathematical symbols used repeatedly in this

dissertation. Nonce symbols used only briefly are omitted. The symbols are listed

in alphabetical order, with Greek letters listed as if spelled out.

A

= Eqq?. The a priori covariance matrix of the source amplitudes.
= Var(q | b). The a posteriori covariance matrix of the source amplitudes.

The magnetic vector potential as a function of position 7.

= vaq. The component of q in the direction of the kth right singular

vector of F.

= Eg;q;. The a priori cross-covariance of source amplitudes ¢; and g;.

The (7,7)th entry of A.

= Eg;q;. The a posteriori cross-covariance of the estimated source ampli-

tudes ¢; and g;. The (7, j)th entry of A.

= Ea% =E ||vgq||2. The variance of ay.

False positive rate.

Magnetic field as a function of position.

Magnetic field due to the nth source.

Magnetic field measurement (including noise) at the mth detector.

The vector of field measurements by,.
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List of Symbols

= Ebb? = FAFT + FT +T7FT + 3. The covariance of the measurement

vector b.
= E(bm — wm)2. The variance of the signal at the mth detector.
False negative rate.

The covariance matrix of the (zero-mean) random vectors x and y, defined

as Exy”.
The kth weighting coefficient in the weighted pseudoinverse.

The Cholesky factor of the symmetric positive definite matrix A. That
is, the unique lower triangular matrix R such that A = RR7.

= (b—F§)T=~1(b—F§). The residual difference between the measured

and reconstructed magnetic fields.

Expectation of a random variable or a random vector.
Electric field as a function of position 7.

= q — G. The measurement error, defined as the difference between the

true and reconstructed current distributions.

The nth standard basis vector, which contains 1 in position n and 0 ev-

erywhere else.

= |le|?> = ||a — &||>. The reconstruction error, defined as the squared

difference between the true and reconstructed current distributions.
= E|le||> = E||q — §||>. The mean reconstruction error.

= Ob;n/9qn. Coefficient relating the field measurement by, to the source
amplitude qp,.
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lAllF

Yij

Yk

List of Symbols

The forward transfer matrix with entries Finn = Obp,/Ogn relating the

field measurement vector b to the source amplitude vector q.
The Moore-Penrose inverse of F.
The Frobenius norm of the matrix A, defined as (3_,,, A2, /2,

The cross-covariance of the source amplitude vector q and noise amplitude

vector w. Its entries are Yij = Eqiwj.

= Eq;w;. The covariance of the source amplitude ¢; and the noise ampli-

tude w;.

= Eaysy. The covariance of a and sj,.

A matrix representingv a linear estimator of q.

The complex conjugate (or Hermitian) transpose of the matrix A.

Current density as a function of position. Equals the sum of a primary

—

current JP(7) and a volume current J v(F)

Current density contributed by the nth source. Equals the sum of a pri-

mary current J5(7) and a volume current JZ(7).

Rank of F.

The lesser of M and N; the maximum possible rank of F.
Index over the singular vectors of F.

LLT is the Cholesky decomposition of B.

The kth singular value of F.

Total number of detectors used.
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List of Symbols

m Index over detectofs.

) Magnetic permeability of vacuum. Equal to 4m X 107 H/m.

N Total nﬁmber of current sources in model.

N The temporal noise covariance matrix in time series reconstruction.
n Index over the current sources.

vNumbewof degrees of freedom in an ordinary or generalized x2 distribution.

D Position.
Pn Position of the nth current source.
() Probability density function of a random variable.

o(7) Electric potential as a function of position 7.

#(t) The characteristic function of a random variable.

UYm The magnetic flux threading the mth detector coil.
an - Amplitude of the nth source.

q The vector of source amplitudes gn,.

q = Hb. An estimate of the source amplitude vector q.

p(7) Resistivity as a function of position.

02 The surprise, or negative log likelihood of the reconstruction relative to

the assumed priors. Defined as §7 A~1§.
7 Position.

™m Position of the mth detector.
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Sk

Wm

List of Symbols

The measurement residual b - Fq.
RRY7 is the Cholesky decomposition of A.

Unit vector in direction of the field component sampled by the mth de-

tector.
SST is the Cholesky decomposition of 3.
The temporal source covariance matrix in time series reconstruction.

= ugw. The component of w in the direction of the kth left singular

vector of F'.
= Eww’. The covariance matrix of the noise amplitude vector w.

= Ew;w;. The covariance of noise amplitudes w; and w;. The (7,7)th

entry of X.
= Es%. The variance of sj.
Electrical conductivity as a function of position 7.

The negative log likelihood of a given data set b relative to the assumed

priors.

Transpose of the matrix A.
Trace of the matrix A.

The kth left singular vector of F.
The kth right sigular vector of F.

The unitary matrix representing the discrete Fourier transform and de-

fined by [W]mn = ﬁ e—i2mmn/N
Noise amplitude in the mth detector.

The vector [wm] of noise amplitudes.
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