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We computed relativistic bound and continuum wave func
tions for a T lepton in the Coulomb field of an extended nu
cleus. The solution of the bound state problem provides a 
gross description of tauonic atoms. The primary purpose of 
this work is to provide wave functions which will be needed 
for a computation of electromagnetic r+ - T- pair produc
tion cross sections. Due to the heavy mass of the T relati
vistic effects are found to be small for the determination of 
the lower bound state energy eigenvalues. We obtained prac
tically identical energy eigenvalues using a Fermi distribution 
or a homogeneously charged sphere as a model for the nuclear 
charge. However, we found slightly different momentum dis
tributions in the wave functions obtained with either charge 
distribution. The bound state spectra show the uncommon 
behaviour, that the binding energy within a given shell in
creases with increasing angular momentum. 

I. INTRODUCTION 

It has been predicted that at relativistic heavy ion col
liders the electromagnetic production of pairs of heavjr 
leptons, such as the p and r, can take place [1-3). It 
has further been speculated that in non-grazing collisions 
with small impact parameters the produced negative lep
ton has a finite probability to end up bound to one of 
the bare ions. This latter process is potentially a new 
and unique way to produce exotic atoms of short lived 
species such as "tauonic" atoms. Traditionally, exotic 
atoms are produced through slowing down of negative 
particles (p-, 1r- or K-) in matter where they are first 
captured into high orbits of the atomic target. and then 
cascade down into lower states by emitting Auger elec
trons or X-rays. However, the time of production, trans
port, slowing down and capture of the negative particles 
into atomic states is of the order of one to a few nanosec
onds. As a consequence, this method is not suited ·for 
the production of hitherto unobserved exotic atoms with 
the very short lived r-lepton whose life time amounts to 
typically 0.3 ps. 

The observation of electron-positron pair production 
with the electron emerging from the collision bound to 
a heavy ion projectile was already reported in the lit
erature [4,5). This process termed "capture from pair 
production" or "bound-free pair production" has been 
the subject of numerous theoretical papers [6]. 

In case of heavier leptons, a calculation of mtionic 
bound-free pair production cross sections has been per-
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formed in first order perturbation theory using relati
vistic wave functions for the potential of an extended 
nucleus, which has shown a strong suppression of this 
process due to the finite nuclear size [7]. Other perturba
tion theory calculations for the T and fL lepton have been 
carried out using point-like wave functions [2]. fl pair 
production with capture to a bound state of a colliding 
ion has also been a subject of intense non-perturbative 
studies by Wells et al. [8] who solved this problem fully 
numerically, in principle taking all orders of the interac
tion into account. 

For the heaviest leptons, the earliest estimate for the 
number of produced r pairs at rune has been given by 
Gould [1), who assumes a rune design of counterrotat
ing beams of fully stripped uranium at 100 GeV /n. His 
estimate yields a number of 1 r pair per second, assuming 
a luminosity of 1027cm-2s-1 , which is undoubtly an up
per limit, since finite size effects of the nuclei have been 
ignored. Taking into account the finite nuclear size will 
clearly be most important for the r, as we will elaborate 
in this paper. In the picture of equivalent photon meth
ods the finite nuclear size (which limits the minimum 
impact parameter) translates into a severe suppression 
in the equivalent photon spectrum of photon energies of 
the order or larger than twice the r rest mass. These 
high energies are of course necessary to produce heavy 
lepton pairs. 

An alternate and probably more efficient production 
of tauonic atoms would be to use real photons impinging 
on a fixed target. The photons can convert into a pair 
of r leptons with the negative partner being created di
rectly in a bound state of the high-Z atomic target. Very 
intense high energy photon beams (up to 109- 10 pho
tons/second) oould be obtained through Bremsstrahlung 
of very intense electron and/or positron beams available 
at accelerators such as SLAC. Thick high-Z targets could 
be used to get acceptable rates of production. 

A necessary step for the calculation of the cross section 
for the process of r pair production with the negative r 
created in bound atomic states of the high-Z target is to 
study the r states themselves. 

A first discussion of r wave functions motivated by 
the thought of r pair production at RHie has been pre
sented by Weiss [9], who computed bound state solutions 
of the SchrOdinger equation for the potential of a homo
geneously charged sphere. 

In this paper, we present a relativistic calculation of 
tauonic bound and continuum wave functions by solv-



ing the radial Dirac equation. Due to its mass of 1784.2 
MeV, the orbit of a r lepton on an inner-shell state will 
be embedded almost totally inside the nuclear charge. 
Therefore, we have to consider the Coulomb potential of 
an extended nucleus. The solution of the bound state 
eigenvalue problem provides us with a gross description 
of tauonic atoms. We neglect all further corrections that 
are standard in the theory of muonic atoms, such as cor
rections for the reduced mass and QED effects. 

As a model for the nuclear charge distribution, we are 
using a 2-parameter Fermi-distribution and will compare 
this to a simple homogeneously charged sphere. We are 
going to solve the problem relativistically, i. e. we are 
dealing with the Dirac equation. 

In the following section, we will briefly describe the 
methods to solve the bound state eigenvalue problem and 
to calculate the continuum states. These methods are 
standard and can be found in the theory of muonic atoms 
[10] and heavy-ion collisions (II]. In section 3, we will 
present result for the bound and continuum states. 

II. NUMERICAL PROCEDURE 

In the standard representation of the Dirac spinor 
in a spherical symmetric field (12], the radial functions 
g(r), f(r) obey the radial Dirac equation (h = m = c = 
1) 

dG K. - = --G+(E+1- V) F 
dr r 
dF IC - = -(E- 1- V) G + -F 
d r r 

(2.1) 

where F is rf(r) and G is rg(r). V(r) is the radial 
dependence of the central potential. We will use two 
kinds of potentials for the calculations presented in this 
paper. The first is the potential of the homogeneously 
charged sphere, which is given analytically as follows: 

{ 
-i~ (3- r2/~) for r $ Ro, 

V(r) = . . 
_ze2 for r > Ro 

r 

(2.2) 

The second is the potential generated by a Fermi charge 
distribution and has to be computed numerically. We are 
using a 2-parameter Fermi distribution which is given by 

N N 
p( r) - - --~--:-----::-~ 

- 1 +exp(4ln3 (r- c)ft)- 1 +exp(n(r/c-1)) 

(2.3) 

where c is the half-density radius and t is the skin 
thickness parameter, which is defined as the distance 
over which the charge density drops from 90% to 10% 
of its maximum value. c and t are related to n by 
t = (4c/n) In 3. The Coulomb potential connected to 
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this charge distribution has to be computed numerically 
according to the following expression: 

V(r) = -47re2 [~for p(r')r'2dr' + 100 

p(r')r'dr'] (2.4) 

Making use of the normalization condition 

(2.5) 

the normalization factor N can be expressed through c 
and t [10]: 

N-' 3Z I 
- 47r c3 + (2L)2c 

4ln3 

(2.6) 

The procedure to solve the bound states eigenvalue 
problem has been developed in the context of self
consistent field methods [13] and has also been applied 
in the field of heavy-ion collisions (II] and muonic atoms 
[10]. The range of integration from Tmin ~ 0 to some 
large value Tmar is split into an inner and an outer re
gion at the matching radius Tmateh, which is somewhat 
arbitrarily chosen to be the classical turning point given 
by 

(2.7) 

where E8 tart is a first guess for the energy eigenvalue. Un
der the assumption that the charge distribution around 
Tmin is practically constant, the starting values at Tmin 

can be taken from a series expansion given by Rose [12]. 
At Tmaz the starting values are taken from the asymp
totic behaviour of the solutions for g and f in the pure 
Coulomb field: 

F = -y'(1- E)/(1 +E) ; G = 1 (2.8) 

The inward integration is performed from Tmin to rmateh 

and the outward integration from rmaz to rmateh· The 
mismatch at rmateh is determined to estimate a correc
tion for E6 tart· Following (13], this correction is assumed 
to be 

"-.E = ~!!.~ G(rmateh)[F(rmateh +e)- F(rmateh- e)] 
.r;::;.:c~a [F2 + G2]dr + J:=clt [F2 + G2]dr 

(2.9) 

This correction is added to the first guess of the eige~r 
value and the procedure is continued· until the change 
in the eigenvalue is negligible. Additionally, the solu
tion has to be checked for the presence of the correct 
number of nodes. In case of electronic states, the first 
guess E11tart usually can be taken from Sommerfeld's fine 
structure formula. In case of p. and T leptons, this for
mula is too far off, so that a proper starting value has 
to be searched for. For the homogeneous charge distri
bution, this search can be automatized by systematically 



increasing the nuclear radius from 0 to its actual value. 
Finally, the solutions have to be normalized numerically, 
which is being done by Gauss-Legendre quadrature. 

Since in case of continuum states we do not have to deal 
with an eigenvalue problem, the numerical procedure is 
much more straightforward. The numerical integration 
of the radial equations 2.1 is performed from rstart to 
any arbitrary value of r, using the unnormalized starting 
values from Rose's [12] series expansion. In order to as
sure proper normalization of the wave function according 
to 

100 

r2dr [fE(r)fE•(r) + 9E(r)gE•(r)] = ~(E- E') 

(2.10) 

two different methods can be found in the literature: 
i) the radial wave functions are integrated up to the 
asymptotic region and the normalization can be obtained 
by comparison to the known expressions of the normal
ized, asymptotic functions. This method is very simple, 
however, the accuracy of the normalization is limited to 
about 1% [14,15]. · 
ii) the normalization is obtained at a single point which is 
sufficiently far outside the charge distribution that devia
tion from a pure Coulomb potential can be neglected. For 
a pure Coulomb, the expressions for the normalized wave 
functions are known analytically and can be evaluated to 
determine the normalization factor. With this more so
phisticated method, an accuracy better than 10-10 can 
be achieved [14,16]. For tauonic wave functions however, 
the latter method becomes rather delicate, so that we 
have been using the first method for the results presented 
here.· 

III. RESULTS FOR TAUONIC LEAD 

Although the original RHIC design assumes uranium 
ions, we present results for a nucleus of lead 208Pb, for 
which the assumption of a spherical symmetric charge 
distribution is more realistic. For the Fermi distribution 
of a lead nucleus we used the parameters c = 6.74fm 
and t = 2.0 fm, which have determined from muonic 
atom X-ray data [10]. For the homogeneously charged 
sphere, we defined the radius according to Ro = ro A 113 • 

The parameter ro has been set to 1.195788 /m, which 
results in a radius Ro = 7.085 fm . . With this choice 
of r0 , the homogeneously charged sphere and the Fer:mi 
distribution both yield the same root mean square radius 
for the charge distribution < r 2 >112= 411' J0

00 
p(r)r4dr, 

namely 5.48 fm. Therefore, this radius of a homage-· 
neously charged sphere is called the "equivalence radius" 
of the Fermi distribution. Unless otherwise stated, we 
are using natural units (h = m = c = 1), which means 
energies are measured in units of the rest mass mc2 of the 
r of 1784.2 MeV and the unit length is the r's reduced 
Compton wavelength of>. = 0.1106 fm. 
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A. Inner shell states 

In table I the eigenenergies of tauonic lead are dis
played for the K-, L-, M-shell and the 4s, 5s and 6s states. 
The results for the Fermi distribution are compared to 
the homogeneously charged sphere and to Sommerfeld's 
fine structure formula (point nucleus). The eigenenergies 
obtained with the homogeneously charged sphere and the 
Fermi distribution are very close. In comparison to the 
point nucleus data, they are strongly reduced. For the 
Is-state, we find a reduction by about a factor of 1/17. 
With increasing primary quantum number n this effect 
is getting less pronounced. E. g., the 4s-state is reduced 
only by a factor of about 1/3. 

We find that within a given shell (same principal quan
tum number) the binding energy increases with the an
gular momentum. This quite uncommon behaviour can 
be demonstrated more clearly for higher shells, which of
fer a wider range of !-values. Therefore, we display in 
figure 1 the binding energies of the subshells for n = 7 
and n = 8 for a homogeneously charged sphere in com
parison to a point nucleus. While the binding energy 
increases with increasing angular momentum in case of 
the extended nucleus, it is the opposite for a point-like 
nucleus. This leads to an interesting overlap between the 
energy levels of both shells, e.g. the 8d, 8/, etc ... states 
are more tightly bound than the 7 s state. The other in
teresting aspect of the extended nucleus is that within a 
given shell the difference in energy En,l - En.l+1 is. al
most /-independent for the low angular momenta. We 
find also that d = En,l - En+l,l+l does not dependent 
on n, I quantum numbers. In other words, it behaves 
like a 3-dimensional harmonic oscillator. We observe also 
that within a given shell the largest difference between a 
point-like model and a homogeneous sphere model is seen 
for the s-states (I = 0). That difference decreases with 
increasing angular momentum. The two models predict 
the same binding energy for angular momenta equal or 
larger than I = 8. In contrast the difference between the 
s-states of the two models remains quite large even for 
relatively large principal quantum numbers (over 20% for 
n = 20). This is because the r-lepton in as-state is still 
spending a sizable fraction of its -time inside the nucleus. 

We observe a spin-orbit splitting (fine-structure effect) 
between the p112 and the 1'3/2 states of the order of 10-4 

of the binding energy, which is to be compared to a value 
of. about 10-1 in case of the point nucleus. This is a 
further indication that relativistic effects are quite small 
due to the large r mass. 

In table 2 we compare the binding energi~ obtained 
for the homogeneous sph~re model using the Dirac equa
tion and the SchrOdinger equation [9]. In this table we 
have set the value of r 0 to 1.1/m, following Weiss in ref
erence [9] to allow for a better comparison with his non
relativistic data. Everywhere else in this paper we used 
the value of 1.195788/m given earlier in this paper. We 
find an excellent agreement between the non:..relativistic 



and the relativistic treatments confirming that relativis
tic effects are quite small and a good treatment of the 
binding energies of the tauonic atom can be achieved 
within the framework of the Schrodinger equation. A 
further extension of the comparison between the relati
vistic and the non-relativistic wave functions wouHi have 
been very interesting. Unfortunately, these latter wave 
functions are presently not available. 

Figure 2 shows the variation of K-shell binding energy 
for electronic, muonic, and tauonic atoms as a function 
of the atomic number, starting at Z = 1 {although we 
are aware that our model is clearly not realistic for small 
numbers of Z, since the reduced mass effect has been ig
nored). The binding energies have been divided by Z and 
are given in units of the relativistic rest mass mc2 of the 
·electron, J.L, or r, respectively. As expected, the K-shell 
binding energy for the electron increases as Z 2 for the low 
and medium Z atomic numbers and then slightly faster 
than Z 2 for the high atomic numbers (Z > 50). The 
tauonic curve follows the electronic curve until Z = 4- 5 
above which a much slower dependence than Z 2 is ob
served. A broad maximum seen around Z = 20 trans
lates into a linear dependence while the decrease seen at 
higher Z values translates into a very slow increase with 
increasing Z. A consequence of such a weak dependence 
of the binding energy on the atomic number is that the 
cross section of bound-free pair production will probably 
vary less dramatically with the atomic number for the r 
than it does for the electron [4,5). 

Figure 3 displays the radial components G(r) and F(r) 
of a r lepton in the K-shell state for an extended nucleus 
in comparison to the corresponding wave function in the 
field of a point charge. We observe that the point nu
cleus wave function is peaked around 0.15 fm and that 
its "small" component carries a substantial weight for 
the density. The corresponding wave function for the ex
tended nucleus shows a very broad distribution with a 
maximum around 3 fm and the small component carries 
only a weight of 5.7 x I0-4 to the norm square, which 
confirms that a treatment within the SchrOdinger frame
work (9) seems to be adequate. About 99% of the density 
are localized within the equivalence radius of 7.085 fm. 

Figure 4 shows G(r) and F(r) of a r lepton in the 
4sl/rstate, again for an extended nucleus in comparison 
to a point charge. The slightly reduced influence of the 
extension of the nucleus as compared to the ls-state is 
reflected in the fact, that the small component of the 4s
state contributes about 1.28 x 10-3 to the norm square. 
Here, about 24% of the density are contained within the 
equivalence radius. 

For figure 3 and 4 the Fermi distribution for the nu
clear charge has been used. The use of a homogeneously 
charged sphere results only in very minor changes of the 
wave functions, which would not be visible in these fig
ures. 

It is interesting to note that the finite nuclear size 
leads to a considerable suppression of the high momen
tum components contained in the inner-shell wave func-
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tion. In figure 5 we display the momentum distribution 
of the Is-state, corresponding to -a Fermi distribution, a 
homogeneously charged sphere and a point nucleus. The 
momentum distribution has been computed by direct nu
merical Fourier transformation from the coordinate space 
wave functions [11). Although we cannot guarantee much 
accuracy of the momentum space density for k ~ 1.5 due 
to its small value, there is little doubt that the finite 
nuclear size suppresses the momentum space density by 
about 8 orders of magnitude or more for k ~ 1. 

While differences in the wave functions obtained with 
the Fermi distribution and with the homogeneously 
charged sphere have not been visible in coordinate space, 
it is obvious that the suppression of the high momentum 
components is less pronounced by about I-2 orders of 
magnitude in case of the Fermi distribution. Therefore, 
in the computation of cross sections the more realistic 
Fermi distribution ought to be employed. 

In case of bound-free pair production in relativis
tic heavy ion collisions with a r lepton being created 
in the Is-state, the transition amplitudes can be writ
ten as an integral over the momentum variable k from 
k = E 18 +I~ 1.99 to k = oo [I7). It is to be expected, 
that the suppression of the high momentum components 
we encountered here will be reflected in a corresponding 
suppression of the transition amplitudes as compared to 
the transition amplitudes computed with point nucleus 
wave functions. Bearing in mind that the estimates of 
cross sections for r pair production obtained with the 
point nucleus wave functions are already very small, this 
additional suppression gives little hope that bound-free 
T pair production in relativistic heavy ion collisions will 
be observable. This leaves us with the pair production 
in highly energetic photon-ion collisions with the only 
production mechanism that may be worth further elabo
ration. 

B. Continuum states 

In figure 6 we display the radial wave functions for a 
lead nucleus (Fermi distribution) in comparison with the 
point nucleus wave function. The energy has been cho
sen to be E = -l.04mc2 and the angular momentum 
is zero (11: = -1). For a continuum state with negative 
energy, the "large" component G(r) (dotted curve) has 
a smaller amplitude than the "small" component F(r) 
(solid curve). Wave functions out of the negative conti
nuum are typically suppressed in the vicinity of the nu
cleus, which reflects the repulsion of the positive lepton . 
by the nuclear charge. We observe that this suppression 
is less pronounced for the wave function corresponding to 
the extended nucleus as compared to the point-like wave 
function, which is due to the cut-off of the Coulomb sin
gularity. In other words, the extended nucleus acts "less 
repellent" than the point-like nucleus. In addition, conti
nuum wave functions with higher angular momentum are 



even more suppressed around the origin due to the an
gular momentum term in the radial Dirac equation ("an
gular momentum barrier"). On the other hand, increas
ing the kinetic energy of the positive r counteracts this 
suppression effect, such that we will observe convergence 
towards the point-like functions for high kinetic energies 
of the positive r, irrespective of the angular momentum. 

In spite of this suppression effect, the wave functions 
out of the negative continuum are reaching their asymp
totic behaviour still within the nuclear charge distribu
tion, so that they are quite insensitive to the particular 
parameter settings of the Fermi-distribution. 

Finally, it should be pointed out. that - in spite of the 
minor relevance of relativistic effects for the bound state 
problem - a fully relativistic treatment of both bound 
and continuum wave functions is desirable for the com
putation of cross sections of bound-free transitions, since 
the use of wave functions which are not exact eigenstates 
to the same hamiltonian could cause spurious contribu
tions to the computed matrix elements, inducing hardly 
controllable errors. 
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bound State a) Fermi distribution b) hom ogene sphere c) point nucleus 

1sl/2 0.0117865297 0.0117119944 0.198789599 

2sl/2 0.0087450166 0.0087602565 0.050997786 

2Pl/2 0.0102658819 0.0102191747 0.050997786 

2P3/2 0.0102641478 0.0102175026 0.045806871 

3sl/2 0.0062261916 0.0062262795 0.022063559 

3pl/2 0.0073815096 0.0073765012 0.022063559 

3p3/2 0.0073801245 0.0073750478 0.020516180 
3d3/2 0.0087449013 0.0087402579 . 0.020516180 

3ds/2 0.0087420161 0.0087375284 0.020094216 

4slt2 0.0045430498 0.0045474602 0.012164743 
5sl/2 0.0034276768 0.0034305167 0.007677200 

6s112 0.0026603798 0.0026619506 0.005277669 

TABLE I. E1genenerg~es for a T lepton m an Inner shell state of a lead nucleus. The table shows results for 3 different 
charge distributions, namely a) a 2-parameter Fermi distribution, b) a homogeneously charged sphere and c) a point charge 
(Sommerfeld's fine structure formula). All energies are given in units of mc2 = 1784.2 MeV. 

I 

I 
I 

state a) Dirac (nlj) b) Schroedinger ·( nl) state a) Dirac (nlj) b) Schroedinger ( nl) I 
ls112 0.012668 0.012684 6s112 0.002740 0.002830 
2slJ2 0.009319 0.009431 6p1/2 0.003071 0.003170 

2Pl/2 0.010969 0.011037 6P3/2 0.003071 
2P3/2 0.010967 6d3/2 0.003440 0.003548 
3sl/2 0.006523 0.006662 6dsn 0.003438 
3pl/2 0.007771 0.007908 7P1/2 0.002411 0.002494 

3P3/2 0.007769 7P3/2 0.002411 

3d3/2 0.009290 0.009405 7d3/2 0.002662 0.002754 
3dst2 0.009287 7d5/2 0.002661 
4s1/2 0.004721 0.004848 8d3/2 0.002119 0.002196 

4Pl/2 0.005484 0.005617 8dst2 0.002119 
4P3/2 0.005483 9d3/2 0.001726 0.001791 
4d3/2 0.006399 0.006548 9ds/2 0.001726 
4ds/2 0.006396 
Ss112 0.003539 0.003646 

SPI/2 0.004029 0.004145 

5P3/2 0.004028 
Sd3/2 0.004597 0.004729 -

Sds12 0.004596 
.. 

TABLE II. E1genenerg~es for a T lepton m an mner shell state of a lead nucleus. The table shows our results for relatiVIStic 
states with quantum numbers (n,lj) (a) in comparison to the corresponding non-relativistic data for states ~th quantum 
numbers (n,I) (b) given by Weiss. The charge distribution is a homogeneously charged sphere with parameter r0 = 1.1/m. All 
energies are given in units of mc2 = 1784.2 MeV. 

6 

I 



[1] H. Gould: "Atomic Physics Aspects of a Relativis
tic Heavy Ion Collider", Lawrence Berkeley Laboratory 
Technical Information, LBL 18593 UC-28, 1984. 

[2] C. A. Bertulani and G. Baur, Phys. Rep. 163, 299 
(1988). 

[3] M. Fatyga, M. J. Rhoades-Brown, M. J. Tannenbaum, 
workshop on: "Can RHIC be used to test QED?", April 
20-21 1990, BNL 52247 Formal Report. 

[4] A. Belkacem, H. Gould, B. Feinberg, R. Bossingham, and 
W. E. Meyerhof, Phys. Rev. Lett. 71, 1514 (1993). 

(5] A. Belkacem, H. Gould, B. Feinberg, R. Bossingham, and 
W. E. Meyerhof, Phys. Rev. Lett. 73, 2432 (1994). 

[6] see, e. g., D. C. Ionescu, Phys. Rev. A 49, 3188 (1994) 
and references therein. 

[7] K. Momberger, N. Griin, W. Scheid, U. Becker and 
G. Soff, J. Phys. B: At. MoL Phys. 20, L281 (1987). 

[8] J. C. Wells, V. E. Oberacker, A. S. Umar, C. Bottcher, 
M. R. Strayer, J. S. Wu, G. Plunien, Phys. Rev. A 45, 
6296 (1992). 

[9] Morton S. Weiss: "Tau Electron Atoms at RHIC", 
Lawrence Livermore National Laboratory, Preprint 
UCRL-93603, 1985. 

[10] Y.N. Kim "Mesic Atoms and Nuclear Structure", North
Holland Publishing Company (1971). 

[11] H. J. Bar, G. Soff, Physica 128 C, 225 (1985). 
[12] M. E. Rose, "Relativistic Electron Theory" (Wiley, New 

York, 1961). 
[13] S. Cohen, Phys. Rev 118, 489 {1960). 
[14] G. Soff, W. Greiner, W. Betz, B. MUller, Phys. Rev. A 

20, 169, (1979). 
[15] G. Mehler, T. de Reus, U. MUller, R. Reinhardt, 

B. MUller and W. Greiner, Nucl. Inst. and Meth. A 20, 
559 (1985). 

[16] B. Mueller, J. Rafelski and W. Greiner, Nuovo Cimento 
A 18, 551 (1973). 

[17] U. Becker, J. Phys. B: At. MoL Phys. 20, 6563 (1987). 

FIG. 1. Binding energies of tauonic lead in units of mc2 

= 1784.2 MeV for the potential of a homogeneously charged 
sphere with radius Ro = 1.195788/m x A 113 = 7.085fm. Dis
played are the subshells n = 7, 8 with the angular momentum 
l ranging from 0 to n - 1. These binding energies are com
pared to the point nucleus results as given by Sommerfeld's 
fine structure formula. 

FIG. 2. Binding energies for electronic, muonic, and 
tauonic atoms as a function of the atomic charge number Z 
in units of the lepton rest mass mc2 divided by Z. For the 
muonic and tauonic states, the homogeneous charge distribu
tion has been used with the same parameter settings as in 
figure 1. The solid curve displays the (SchrOdinger-like) Z 2 

dependence. 

7 

FIG. 3. Radial wave functions G(r), F(r) in tauonic lead 
for the K-shell state. The solid curves show the radial func
tions for the extended nucleus, obtained with a Fermi charge 
distribution with the same parameter settings as in table 1. 
The dotted curves show the corresponding point nucleus wave 
function. Natural units have been employed, i.e. length is 
given in units of A = 0.1106/m. The equivalence radius of 
the charge distribution amounts to 64.06 x >.. 

FIG. 4. Same as figure 3, but for the 4s-state in tauonic 
lead. 

FIG. 5. Momentum distribution for the Is-state in tauonic 
lead, obtained with a) a Fermi distribution, b) a homoge
neously charged sphere, and c) a point nucleus. This demon
strates the suppression of the high momentum components 
contained in the inner shell state in case of an extended nu
cleus. Natural units are employed, i.e. momentum is given in 
units of n/ A. 

FIG. 6. Radial wave functions for tauonic lead (Fermi dis
tribution) in comparison with the point nucleus wave func
tion. The energy is E = -1.04mc2 and the angular momen
tum is Zero(~~:= -1). For a negative energy state, the "large" 
component G( r) {dotted curve) has a smaller amplitude than 
the "small" component F(r) (solid curve). 
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