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1 Introduction 

In recent years ll'e have learned that I he generic conformal field theory has irrational 

central charge, even when the theory is unitary. The study of this so1bjed is call~d 

irrational conformal field theory (ICFT), which properly includes rational conformal field 

theory (HCFT) as a small subspace, 

ICFT :::>:::> HCFT ( 1.1) 

where HCFT is understood here as the affine-Sugawara !1-6] and coset construdions 

(1,2,7,8]. A comprehensive review of ICFT is found in Hef.!!l]. 

The foundation of ICFT is affine Lie algebra (10,1] and the general affinl'- Virasoro 

construction (11,12], 
T = J,"b :.J •. h : (1.2) 

on the currf.'nts .1., a= 1 ... dim_q of the general affine algebra. The construction (1.2) 

is summarized by the Virasoro master equation (ll,12] for the inverse inertia tensor L"b, 
and the system may be understood as a conformal spinning top. 

The solutions of the master f.'quation show a symmetry hierarchy {l:l] in ICFT, 

ICFT :::>:::> H-invariant CFTs :::>:::>Lie h-invariant CFTs :::>:::> HCFT ( I.:l) 

where the H-invariant. CFTs, which are also generically irrational, include all thf.'ori<'s 
with a symmetry H, where H may be a finite group or a Lie group. In this hif.'rar<"hy, 

the HCFTs are understood as special cases of exceptionally high symmetry, with ever­

increasing symmetry breakdown to the left. The generic ICFT is completely asymmetric. 

The central computational tools of the subject arf.' the generalized Knizhnik-Zamolod­

chikov (KZ) equations of ICFT (14], which provide a unified description of rational and 

irrational conformal field thf'ory, including powf.'rful new tools for HCFT. In particular. 

thf.' rf.'cent solution of these equi\tions for the general coset correlators (1!i,I6,H] appl'ars 

to be inaccessiblf' by othf'r mf'thods. 

~1orf'OVI'f, thf.' semi-classical or high-level solution of the generalized I< I: equations has 

been known for some time, providing a uniform and apparently simple description of all 

ICFT :::>:::> HCFT on simple _q. The high-level solution is deceptively simple, however, 1)('­
cause it is expressed in a Lif.' algd>ra basis, which is not the block basis in which conformal 

blo<"ks arf' corJVf'ntionally expressf.'d, and it is only in solving thf.' general problem. 

• Lie algl'bra basis --> block basis 

that on" <:onfronts the full .-:omplexity of the evl'r-innl'asing symml'try hr<'ak<lown of 
IC'FT. 

In this 1>.1prr \\"e lw~in tlw study of tlw known hi~h·l~vr.•l solutions. ohtilinin~ tlw 

high-l,vrl conforn1.1l blocks and nou-chiral r:orrrlators oft lw sinrpl,st .1nd most svnruwt ric 
f'aSf-'S. 

'l. 

In particular, w~ will first find clos~d-form ~xpr~ssions for the high-level conformal 

blocks and correlators of all the affine-Sugawara and cosP! constructions. Both results 

arf.' nf.'w. 

Using intuition gained in this analysis, we then id~>ntify what we believe to be the 

simplest and most synunl'tric class of correlators in ICFT, which we call 

• the L(.q; II )-degenerate processes in the /1-invariant CFTs. 

This is the set of correlators each of whose external states has completely degenerate con­

formal weights. The sl'l includes all thl' affine-Sugawara correlators, a highly-symmetric 

set of coset correlators and a prl'sumably large set of irrational correlators, examples of 

which are known. For this class of processes, we are also able to find general expres­

sions for the high·lf.'vel conformal blocks and non-chiral correlators, and we discuss an 

irrational example with octahedral symmetry in some detail. 

2 The High-Level Chiral Correlators of ICFT 

Our starting point is the set of high-level four-point chiral correlators of ICFT, 

YL'(Y) = ti~!JI + 2L-::,(T.1T,2 lny + T.1T,3 ln(1- y)))0 " + O(k-2
) 

L"b- pnb 
""- 2k a,b= l. .. dimq 

(2.la) 

(2.1 b) 

on simplea compact C, where G is the Lie group whose algebra is _q, and k is the level 

of affine g. These correlators were conjectured in Re£.115], derived in Ref.(I6), and were 
also obtained as solutions of the generalized Knizhnik-Zamolodchikov (KZ) equations of 

ICFT in Hef.!J.I]. 

In what follows, we discuss the conventionR, notation and concepts involved in the 

result (2.1 ). 

A. Logarithms. The variable !I in (2.Ia) is complex, and the logarithms in (2.1a) are 

defined with nat ural cuts: In y is defined for larg(y )I < 1r, with its <"Ut to the left, and 

In (I - y) is defined for larg( 1 - y )I < 1r (or equivalently larg( -y ll < 1r ), with its cut to 

the right for y > I. 

B. lnvl'rsf.' inertia tensors. The symmetric matrix L':! in (2.la,b) is the high-level form 

L -+ LOX> of the inverse inl'rtia tensor of any high-level smooth solution of the Virasoro 

mastl'r e(p.ration. Tlw matrix l'"b, whkh must solve the relation !17,18] 

J''1<.'1]nlJJ<lt• = fJnb (2.2) 

is tlw high-l<'vel proj~<"tor of the/, tlworv and 1f.,1, is the Killing metric of q. The high-level 

r·~nt ral char~<' of the t lwor.v is d / .. ,,.) - rank /'. 

"Th,.. rhiral <'Orr~"latnrs (2.1) :uvl t h,~ rt""ults f•f this p;1.p('r ill~o apply to J( ~FT on S('misimpl~ compact 

_q = '''1!11 wilh 1-t = t·.'l I. 

:l 



The chiral correlators (2.1) provide a uniform hi~h-levcl description of tlw rational 

and 'irrational conformal field theories on g. includin~ 

1'~'b = ,,..b 1'~·:,, = 1';b- 1'/,'b (2.:1) 

for the affine-Su~awara and coset constructions respectively, where 1]"b is tlw inverse 

Killing metric of g. Ylore generally, the projectors 1' are closely related to the adjacency 
matrices of graph theory [l!l] and generalized graph theory [20] in the partial classification 

of ICFT. For example, one has [l!l] 

f'i.i.kl = O;k{Qn )6;j,k/ 1 ::; i < j::; 71 1 ::; k <I::; II (2..1) 

in the graph theory ansatz on SO(n ). where a = (ij) is the adjoint index and O(Q.,) is the 

adjacency matrix of any graph Q .. of order n. The level-families classified by the graphs 

and generalized graphs are generically unitary and irrational on non-negative integer 

levels of the affine algebras. 

C. ~1atrix irreps. The matrices 

(7;/)o,IJ, o;,/1; = 1 ... dim7i i = 1 ... -1 (Vi) 

are irreducible matrix representations (irreps) of g, which satisfy 

[T.,1i.]=i/abc'Tc , a,b,c=l. .. dim.Q (2.6) 

where/.{ are the structure constants of g. The labels a, /3, ... are composite indices, e.g. 
o = (o 1o 2o 3o 4), and multiplication of irreps is by tensor product, so that 

(ll)~ = 6~ = 6~:6~~6f.~6f.: 
(T,.1)0 (J =: (T,.1 )o/'6~~6~~6~: 

(7_17.2) .0 = (7_1) ll•(T.2) fh6(J,6(J' 
a b cr n rr1 b 02 03 u 4 

(2.7a) 

(2.7b) 

(2.7c) 

0. Hroken affine primary fields. The chiral correlators (2.1) may he understood schemat­

ically as the high-level form of the averages 

Yl: ~ (H'i' (7 1 )Jr.i'(72 )H'i3(73 )/i'i'(74
)) (2.8) 

when" R[J7), o = 1 ... dim 7 is the broken affine primary field of the L th('ory cor­

responding to irrep 7 of g. The correlators ar(' written assuming an L-basis [l!i] for 
each 7;. where the conformal wei~ht matrix of th(' hrok('n affin(' prim;uy fidd /{i'(7;) is 

dia~onal. 

( C'bT.,71/ ),., 11' = L\,, (T )b;;: C.,.,(7;) "'O(l·- 1) (2.9) 

Fi~.l shows our conw.'ntions for thr s <HHI t-channt·ls of tlw correlators, and tlw 1:1 channel 

is the u-d1<~n1wl. 

·I 

s 
1 t :1 2 

·I 
Fi~. 1. The correlators. 

In ICFT, hroken affine primary states are the only states whose conformal weights 
are O(k-1 ). In the affine-Sugawara constructions, conformal weights of the form integer 

plus 0(~·- 1 ) are integer descendants of affine primary states, hut this is not necessarily 
true for the coset constructions~> and beyond, where we know only that the corresponding 

states are broken affine secondary. 

E. Clohal Ward identity. The ohjects v.~' are arhitrary linear comhinations of g-invariant 

tensors of 7 1 0 · · · (>9 7\ which satisfy the g-glohal \Vard identity, 

4 

v~(L 7;/)o" = 0 a= l. .. dimg 
i=l 

F. Hermitidty. The matrix irreps T. satisfy the hermiticity condition, 

T.' = p. b1i. 

(T,.1)"!l = 1Jap1J'i"(T.).,P" 

(2.10) 

(2.11a) 

(2.llb) 

where star is complex conjugation and "1/"(J = 11:(1 is the carrier space metric of irrep 7. 
~1oreover, we will consider only unitary theories (non-negative integer level of the affine 

algehra and L 1(m) = L(-m)), for which the inverse inertia tensor satisfies 

Lab· = L'd(p-1 )/(p-1 )i (2.12) 

and similarly for L'X>. It follows that all the matrices in (2.1) are hermitean, e.g. 

(2L",!;,T,.IT,2)1 = 2£':!:,7;,17,2 (2.1:1) 

with orthonormal, complet(' sets of eigenvectors and real eigenvalues. 

C. 8/,(2, !H) ~au~e. The chiral correlators (2.1) are given in the 2-:1 symmetric KZ gauge 

[·1], 
4 

}'"(.v) =(IT z;j')A"(z., z2. ZJ, z1 ) , 

i<j 

ZI2ZJ1 
y=--

=~-~=~2 

112""' 11J =- 0 111 =- 2~,.. "/23 = tl.,., + ~"' + c. .. , - c.,., 

(2.1-la) 

(2.Hb) 

"s~~ for example lhr ronform.1l wrights of llrf.!lfll under lh~ coset construction (.'o'l'(n)t, x 

Sfi(ll}>,)/.'ifi(nhd•, whrn (·, = k, = (·. 

!i 



1'21 = -6"' + 6 02 - d 03 + ll.u, 1'31 = -tJ."J - ll.o, + tJ. .. , + ~"' (2.11c) 

where A"(z) are the non-invariant chiral four-point corrclators. 

II. Limiting behavior. For any conformal field theory in the I(Z gauge, the conformal 

weights ll.(•J• ll.(u) and ll.(1J of the s, u and !-channel intermediate states appear in the 
limiting behavior, 

l 
y{j,(o)-ll.a1 (71 )-6a2 (T2 ) 

Y"(y) ,..., ( 1 - y ){;,1•)-t;.O,(T' )-{;.OJ (73
) 

(t)t;,<•>+6a1 (7
1 )-6a4 (7

4
) 

Here, we will use these facts in the high-level form 

'y-->0 
, y _,I 

'y-->oo 

y-t;..,(T'J-6.,(7'1 =I- [t.o,(T•) + t.",(72)Jlny + O(A·-2) 

(2.15) 

(2.16) 

where we have recalled that the conformal weights of the broken affine primary fields are 
O(k- 1 ). 

I. High-level OPEs. In Ref.[16,14J, it was shown that the high-level chiral correlators 
(2.1) have physical singularities in all channels, and that the high-level fusion rules among 
the broken affine primaries follow the Clebsch-Cordan coefficients of their corresponding 
matrix irreps. In further detail, the high-level OPEs of the broken affinf! primaries can 

be written schematically as 

R(T1 , z)"' R(T2 , tv)"' = L[C(T• • 1'
2

, 1';) + O(k-1)]"'"'a,R(T;, w)"• 
i.o, ( Z tu)6 "• (T')+l1a,(T')-6a,(T') 

(2.17) 

+ O(k-1) ·(broken affine secondaries) 

where the level-independent tensor C(71, T 2 , T;) is proportional to the Clebsch-Gordan 
coefficients and the brok<!n affine secondaries enter only at the next order of the high-level 
expansion. 

Symmetry hierarchy in ICFT 

The high-level correlators (2.1) provide a uniform description of all ICFT on simple 
.9, which is a bewildering variety [!!]of theories and correlators. In this paper we make 
the first attempt to identify simpll'r, more symmetric correlators among these varieties. 

Towards this end, we remind the reader of the symmetry hierarchy [13] in ICFT, 

ICFT ::)::) 11-invariant CFTs ::)::) Lie h-invariant CFTs ::)::) llCFT (2.18) 

which organizes the space of ICFTs on G according to the residual symmetry group H c 
(; of the theory. As seen in this hierarchy, the generic ICFT has no residual symmetrv 

group'', and these generic theories are expected to be the most complex. Consf'(tuentlv, 
we focus lwre on the tlwories with a symmetry, which are also g.·nericallv irrational. 

<Jn th~ graph lh~ory ansatz [Hl] ron SO(n). who.,. high-l~v~l prnj~(lors ar~ giv~n in (2.4). this 

<orr~sponds loth~ fact th•l I he genP<i< graph has no symmelry. 

() 

The set of all ICFTs with a non-trivial symmetry gro11p H (which may be a discrete 

subgroup of G or a Lie subgroup) is called the set of H-invariant CFTs. Among the 

J/-invariant OFTs, the subspace of theories with a Lie symmetry is called the set of Lie 

h-iJJVariant CFTs, where h C .9· This subspace includes the affine-Sugawara and coset 
constructions as a much smaller subspace. ' 

When a theory Lis an H-invariant CFT; the correlators (2.1) also satisfy the global 

H -invariance condition, 

1 

Yufl(H) = Yu 0(1/) E G O(H),/ = 11 O(H, T;).,,iJ. (2.1!1) 
i=l 

where O(H, T;)o,iJ, is the subgroup II in matrix irrep 7;. When the theory is a Lie 

h-invariant CFT, the condition (2.1!1) reduces to the h-global Ward identity 

1 

Yueh L'T.i = 0 a=1 ... dimh (2.20) 
i=l 

which applies for example in the cases of the affine-Sugawara construction (with h =g) 

and the .9/ h coset constructions. 

For the affine-Sugawara and g / h coset constructions, it is known [4 ,l.'l] that the res­

olution of chiral correlators into conformal blocks is a basis change from the Lie algebra 
basis to the block basis, using the h-invariant tensors defined by (2.20). More generally, 

one expects that the Jl-invariant tensors defined by (2.1!1) will play an analogous role in 
finding the block bases of the Jl-invariant CFTs. 

3 The Affine-Sugawara Constructions 

3.1 The affine-Sugawara blocks 

The simplest and most symmetric conformal field theories are the affine-Sugawara con­
structions [1-6] on G, whose high-level corrclators are described by (2.1) with 

4 

,,.b 
l .. b -­
'ym- U· 

Y.(y) L 7,/ = 0 a= I ... dim.9 
i=l 

(3.1a) 

(3.lb) 

wlwre l~;·b "''l"b is thf' inverse 1\illing metric of .9· In this case, the correlators (2.1) are 
the hi):\h-level solutions of th(' 1\Z equations [3.-1] for any correlator on simple _q. 

\\'" ht>gin l.ty dellning the s-channel hlock basis of _q-invariants t'(s. _q)"' as the solutions 
of tlw simultaneous ('igenva(ue probkm and !T·global condition 

(2/"1
' 7 17.2

) .. 
1,·(s q)"' ~ (S'' (m)- S''(T 1

)- ~·"(T2 ))••(s q)"' 
".11,01..1 II b U ' ~. d . (~) • • U 

(3.2a) 

7 



·I 

L:(1;/),.!1t·(s,g);;• = 0 a= 1 ... dimg . (:l.2b) 
i:::l 

The _q-global condition (3.2b) is compatible with the eigenvalue problem becausf' th<' 

generators L,~=• 7;,; commute with L;6T.,'Tt?. Here ~-•(TiJ, i = L 2 are the high-level 

forms of the conformal weights of external affine primary states, 

.\ (Till A"( i) /(Ti) /(Ti) ' -2 
L>o, L=L• = u· T = --. = -- + O(x ) 

;r + h ;r. 
{:l.:la) 

2k 
:r = -

2 
(3.:lb) 

tf' 
'9 

where •/•9 , h, J(T) and x are respectively the highest root and dual Coxeter number of 

_q, the invariant Casimir of irrep T and the invariant level of the affine algebra. The 

high· level form of the relation 

2L:bT.'T,2 = L:b(J;,' + 7;,2)(7,' + 7,2) _ (~"(Tt) + ~·(T2))ll (3.-1) 

tells us that the quantities in (3.2a) 

~(.,(m) = ~9 (Tno) (3.5) 

are the high-level conformal weights of an irrep Tm in 7 1 ® 7 2 , hence the conformal 

weights of affine primary states exchanged in the s-channel. The dual eigenvalue prohl<>m 

is 

t:(s,_q)!(2L:~ooT.1 T,2 )r/' = u(s,_q)::,(il(.,(m)- il9(T 1
)- il9 (T2

)) (3.6a) 

4 

v(s,.q)! L(T.;)p" = 0 a= 1 ... dim_q (3.6b) 
i=l 

where v(s,_q)::, = v(s,g)iJ"q{J" and 'lnfJ = m=t'lo,{J, is the product of the carrier space 

metrics. 

Because 2L;~00J;,1 T,2 is hermit~an we know that the eigenvectors are orthonormal and 

complete, 

v(s,_q)mv(s,_qt = 6;:. v(s,_q);:'ii(s,_q)! = (19 )~ (3.7) 

where / 9 is the projector onto the C-invariant subspace of 7 1 ® · · · 7) 7 1
. The relation 

[L:~ooT.iT/,10] = 0 , I~ i,j ~ 1 (3.8) 

also holds on the G-invariant subspace defined by (3.2). An explicit solution to the 

eigenvaluf' problem and global condition in (3.2) is known [16] 

v(s q)" = ""' w (•· l)"'"'"'w (•· t')"·'"'"'ll 
.'!. '" ~ "· !(, !!J. ,(.., Ur<rr 

m = (1·,~,() (:l.!Ja) 
nr<tr 

w.(,·,0°'"''3•('1;: + 7.,2 + T.,'lJ,a,a,"'"'"' = 0 a~ l ... dimf! (:l.!Jb) 

w,(rJ)'1"1'"'(2L~~ ... );,1T,,2 ]o,q,"'"' =-= w,(,·,O"'"'"'I~''(T')- S'(T 1
)- S'(T2

)] (:l.!Jc) 

R 

where w.(•·, 0"'"'"' are the Clebsch-Cordan coefficients of Ti tr:- Ti into irrep T', ~ labels 
copies of the same irrep T' and ,. is the conjugate representation of 1·. Using (3.9), it is 

easy to check directly that ~(.,(m) = ~-"(T'") in (3.2a) is the conformal weight of irrep 
Ill under the affine-Sugawara cons! ruction. 

As an explicit example, one finds for ni1iin correlators on 8f!(n) that the invariant 
tensors (3.9) are 

t•(s, S'//(n))'V = v(s, 8U(n))~ = .!_6"'"'6 .. 3 .. , n 

[,(s,SU(n))~j = v(s,SU(n));~ = ~(6,., .. ,6,., .. ,- .!..6.,, .. ,6.,,.,,] 
vn2 - 1 n 

(3.10a) 

(3.10b) 

wh<>re \1 and A are vacuum and adjoint. This is the original example [1] considered by 

Knizhnik and Zamolodchikov, although our Clebsch basis (3.9), (3. tO) is slightly different 

than thf'irs (see Appendix H). 

From (2.1),(3.1) and the completeness relation (3.7), we use eigenvector expansions 

to define the s-channd conformal blocks .r:J•>(y) of the affine-Sugawara construction 

v; = L:d<sJmv(s,_q)~. (3.11a) 

Y."(y) = Ld(s)m,r:~•)(Y)m"u(s,_q)~ (3.11 b) 
1n,n 

.r:J•>(y )no" = v(s, _q )m[D + 2L:~oo(T.1 T,2 ln y + 7;,1 7,3 In( 1 - y ))]v(s, .9 t + 0( k-2
) (3.11c) 

as the coefficients of the chiral correlators expanded in the block basis. Here, d( s )"' are 

a set of undetermined constants. 

To study the small y behavior of the s-channel blocks, we rearrange (3.11c) as follows, 

.r!•>(y )m" = t;(s, _q )no [ ll + 2L:6oo T.,1T,2 ln y)[ll + 2L:~oo 7;,1 7,3 ln(1 - y )}tl(s, _q)" + O(k-2) 

(3.12a) 

= [I + (~(.,(m)-il9(T 1 )- il9(T2
)) In y] 

X iJ(s,_q)m(D + 2L:~oo 7;,17,3 ln(I - y)]v(s, gt + O(k-2
) · 

(3.12b) 

li• (no)-6•(7
1
)-6•(7

2
) ['" ( ) n ~ yP] + 0('·-2) = y (o) om - c s,_q no LJ - If 

p=l p . 
(3.12c) 

c(s,_q)no" = iJ(s,_q)m2L:~ooT.1 T,3v(s,_q)" (3.12d) 

where we have used the dual f'igenvalue problem (3.fia) to obtain (3.12b) and the high­

level relation (2.1fi) to obtain (:l.l2r). \Ve note in particular that the eigenvector resolu­

tion corrf'ctlv guarantf'f'S that f'ach block has a unique leading singularity. 

,rl•)(y) " ~ ('(•)( ) t.~, 1(m ... )-t.•(T 1
)-li•(T

2
) + 0(~·-2) 

_q • "' .11-0 .fl HJ.. U .'/ 

.3(.,,(m.ll) co { tlf,,(m) + ou-2
) 

I +O(k-t) 

!J 

ll=lll 

nfm 

(:U:la) 

(:l.l:lb) 



·(.) { l + 0(~·- 2 ) 11 = m 
I (111.11) = 

" · -c(s,.q)m"+0(~·-2 ) , 11of1!1· 
(:l.t:k) 

labelled by m and 11, which is followed by integer-spaced S!"condaril"s from In( I - y ). Ac­

cording to eqs.(2.15) and (3.1:1), the kading singularities of the 11 = m blocks corr!"spond 

.to the s-channel exchange of affine primary states, with residue 1'.0 (m, m)"" O(k0
), while 

the ll"ading singularities of the 11 of. m blocks are affine secondaries, with r.(m, 11 of. m)'"" 
0(~·- 1 ). This pattern is in agreement with the gen!"ral 01'1:: (2.17). Beyond the ll"ading 

residues, diagonal blocks begin at O(k0 ) and off-diagonal blocks begin at 0(~·- 1 ). 

If c(s, g)m" = 0 for some n of. m, then this block begins at O(k-2
), and we obtain no 

information beyond this fact in our approximation. Although we are not awart~ of any 

examples of this phenoml"non among the affine-Sugawara blocks, examples do occur in 

the coset constructions and irrational processes (see Appendix D and Section 6). 

We also note that, although we have solved the generalized KZ equations through 
O(k-1), we are not able to determine the O(k-1) part of then f m conformal Wl"ights 
in this approximation. Of course, under the affin!"-Sugawara constructions all conformal 

weights hav!" the form D.9 (T)+integer, so we can gu!"ss thl" exact result 

D.(.,(m, n) = D.(.,(m) + 1 - 6m,n , V m, 11 (:1.11) 

for the conformal weights of the blocks, which we believe to be correct (see Appendix H). 

To define block bases for the other channels, we also introduce the u and t-chanrwl 
_q-invariants as solutions to their corresponding eigenvalue problems, 

Here 

n:~,T,!T,3u(u,g)m = (D.(u)(m)- 6,9(71)- 6,9(73))u(u,g)m 

2L:~007,2 7i,3u(t,q)"' = (6.(1)(111)- 6.9 (72
)- Do 0(73 ))u(t,g)m 

1 1 

c~=T,i)v(u,g)"' = (L:T..i)v(t,g)m = 0 a= 1 ... dimg 
i=l i=l 

ii(u,g)mu(u,g)" = ii(t,g)mt:(l,g)" = 6::, 
u(u,g)"'ii(u,g)m = u(t,g)"'v(t,g),. = /9 

D.(u)(m) =' Do 0 (7"') , 6.(1,(m')::: 6. 0 (7"'') 

(3.1.'la) 

(:l.L'ib) 

(:l.1.'k) 

(:l.l!id) 

(:1. L'ie) 

(:l.Hi) 

are the high-level (affine-primar.Y) confnrmal weights under thl" affine-Sugawara construc­

tion of irreps 7"' and 7"'' in 7 1 0 I 3 and 7 2 0 7 3 respectively. Explicit forms of the 
1.1 and !-channel invariants are obtained formally hy a 2 H :l and a 2 <-+ ·I interchange 
respectively in err-(:1.9). 

In analogv to the s-rhannel I> locks F.!"' in e<(.(:l. I l ), we drfinr the u-channrl blocks 
F,j"' nsing tlw conr·spoudiug u-rhannd invariants. 

L,lv)"' L,:d(u)'"F,~">(y),.,"dn.q),. (:l.l7i1) 
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F!"'(y),." = t'(u. g) ... IU + 2L;~,.,(T}T,2 In y + T,1T,;1 1n(1 - y))]v(u,g)" + O(k-2
) (:l.17b) 

= (1- y)~i.,tm)-t.•(T')-~•(T') [6::, ~ c(u,g)m" E (1 - y)·'] + O(k-2 ) (:l.l7c) 
p=l p 

c(u,g)'"" = i:(u,q), .. 2L:~00 T,1 T,2u(u,g)" ; (:l.l7d) 

Tlw expansion (:l.17c) is obtained from (3.17b) following steps analogous to those in 
(3.12). The limiting behavior of the u-channel blocks 

F!"'(Y)m n .:I r~"'(m, II)( 1 - y )~:.)(m,n)-~•(T' )-~·(T') + 0( k-2) 

D.(u)(m,n) = { D.(u)(m) + O(k-2) 
1+ O(k-1) 

, n=m 

, n fm 

, tl =m 
l•(u)( ) _ { 1 + O(k-

2
) 

m,11-
9 -c(u,q)m" + O(k-2

) , 11 of. m 

(:l.18a) 

(3.18b) 

(3.18c) 

(followed by integer-spaced secondaries) is easily read from (3.17c). As seen above for the 

s-channel blocks, the diagonal u-channel blocks show affine primary conformal weights 

with residue O(k0
), while the off-diagonal blocks show integer descendants of affine pri­

maries, and we are again unable to determine the O(k-1) part of the off-diagonal con­
formal weights. 

Analytic blocks 

It is clear from the discussion above that the s and u-channel blocks .rJ•> and FJ"' are 

high-level forms of analytic blocks, but identification of the analytic t-channel blocks is 
more subtle. We b!"gin by d!"fining thl" preliminary t-channel blocks .FJ1> as the coefficients 
in the t-channel eigenbasis 

Yo(Y) = L,:d(t)"'F!1'(Y)m"ii(t,g). (3.19a) 
m,n 

.FJ1>(y lm n = v(l,q lm IU + 2L;~oo(T..1 T,2 ln y + 7,17,3 In( 1 - y) )]v(t,q )" + 0( k-2
) (3.19b) 

in parallel with our expansions above for the s and u-channels. 

We must nl"xt c.onsider continuation of the logarithms to thl" !-channel, for which we 
use the following two rules 

In(!- y) = ln(-y) +In (1-;) larg( -y ll < 11' (3.20a) 

In 11 =In( -y)- ,:rrsign(arg( -y)) (3.20b) 

throughont this pilprr. The left sidr of (:1.20h) is d<:'finl"d for larg(y)l < 11' (so that lny 
hns its cut is to tlw left). whilr thr right sidr of (:l.20b) is drfinl'd for larg( -!Ill< 11' (so 

thilt In( -y) has its CJit to tlw ri~ht ). 

II 



In the finite-level example of Appendix l:l, the relation (:1.20b) is us<:'d in I he equivalent 

form 
y'' = (-y)"exp!-i7rl'sign(arg(-y))] (:1.21) 

to continue singulars-channel factors to the t-channel. The non-analytic phasP in (:1.20b) 
and (:1.21) is therefore associated to operator ordering in the four-point Creen function, as 

discussed in Re£.121]. The continuation (:l.20a) is also seen in the example of Appendix l:J 
as the high-level limit of well-known continuation formulae for hypergeometric functions. 

We must therefore factor the non-analytic phase out of the preliminary t-channel 

blocks to obtain the analytic !-channel blocks. More precisely, we define 

:Fl'l(y) n = j-(1)(,.) P(i (y) n :fi:'l(y) " = :Fl')(") P((J (,.)-1) " 
9 ,m 9 ,..,m _q.p .II .m ,q .'1m g:t p 

U9 (y)p" = t•(t,_q)pexpl-27riL;~,",'T,/7,?sign(arg( -y))]v(t,_q)" + O(k- 2
) 

= .s;- i7re'(t,_q)p"sign(arg(-y)) + O(k-2
) 

(U9 (y)- 1
)/ = i·(t,_q)pexp!27riL:~oo'T.1 'Jb2sign(arg(-y))]v(t,_q)" + O(k-2

) 

= .s; + i7re'(t,_q)p"sign(arg( ~y)) + O(k-2
) 

c'(t,_q)p" = v(t,_q)p2L:~oo'T.1 '162 v(t,_q)" 

Ug(y") = Ug(Yt 1 
, U0(y)1 = U0 (y)- 1 

(:l.22a) 

(1.22b) 

(:1.22c) 

(1.22d) 

(1.22e) 

where FJ'l(y) are the analytic t-channel blocks and fJ9 (y)m" is the non-analytic unitary 

phase matrix of the affine-Sugawara constructions (unitary because the sign function is 

real). Then we find the explicit form of the analytic t-channel blocks, 

j~l)(.ll)m n = v(t,glmiD+2L:~oo('T.1 1~ +'163 ]ln( -y)+'T.1'Jb3 ln (t -D )]v(t,g)" + O(A·-2
) 

(3.21a) 
3 

= t:(t, g),..lll- (2L~~oc 7.2'163 + L Ll9(7i) -Ll9{71
)) In( -y)J 

i=l 

x!n + n:~oo'T.1 'Jb3 ln (t- ;)lv(t,_q)" + ou·-2
) 

= ( -yrt>?,,tm)-t.•(71 
)+ll•(T'J [.s::. - c(t,_q)m n f: (~)p ~] + O(A·-2) 

p~l y p 

c(t,_q),." = v(t,_q).,2L:~oo'T.1 'Jb3v(t,_q)" 

To obtain (:l.23b), we haw used the identity 

t:(t,_q).,.!2L:;~,.._(T., 1 'Jb2 + 7;,2 7,} + 7}7,,')- ; 0 0] = 0 

'to= ~''(71 )- S''(T 1
) -Ll''(72

)- S'(73
) 

which follows from tlw g-global Ward identity (:J.[,ic). 

12 

(1.21b) 

(3.21c.) 

(1.23d) 

(3.2·1a) 

(3.2lh) 

From (:l.2:lc) 11·e read the limiting belwvior of I he analytic !-channel blocks 

-i-(t)( ) " ~ I'l'l( )(- )-ll1
9
01 (m ... J-u 9 (7

1
)+u•(71

) + 0('--2) 
.r!1 !I"' Y-coc.l !J 1n:n !I 1\ 

~(,,(m, 11) = { Ll(q(m) + o_ (A--
2

) 

t + ou·-ll 

1'~'!( 111 , 11 ) = { I+ O(A·-2) 
-c(t,_q)m" + ou--2) 

11=m 

, 11 f. m 

11=m 

,11f,m 

(1.2,ia) 

(3.2-ib) 

(:l.2.'Jc) 

and the remarks below (:1.13) apply in this casl" as well. In particular, one might guess 
the exact u and t -channel results 

Ll"(u)(m, n) = Ll"(u)(m) +I- .S,..,. , V m, 11 

Ll(q(m, 11) = Ll(,,(m) + 1- .S,..,. , V m, 11 

which are in agrel"ment with the KZ example in Appendix H. 

(1.26a) 

(3.26b) 

In what follows, we introduce a unified notation p = s, t, u for the three channels and 
their corresponding blocks (:FJ•l)m", 

v(p,_q)mv(p,g)" = .s::. v(p,g):;'v(p,_q)! = (/9 )~ 

Y0 (y)=Ld(p)m:FJ•l(y)m"ii(p,g). , p=s,t,u 
m,n 

(1.27a) 

(3.27b) 

:F~•l(y ),.. " = v(p,_q)mlll + 2L:~oo('T.1 'Jb2 ln y + 'T.1'Jb3 ln(1 - y) )]v(p, g)" + 0( l·-2
) (3.27c) 

(:FJ•l(y)m ")" = :FJ•l(y")n m (3.27d) 

where the last relation follows by unitarily, that is, hermiticity of the basic matrices in 
the correlators. 

We finally note that the number Bq of affine-Sugawara blocks in each of the channels, 

B9 = (d9 )
2 (3.28) 

is equal to the square of the dimension d9 of the _q-invariants in any channel. 

For the special case of the 1333 correlator on SU(1), Appendix H provides a check of 

our high-levd blocks against the finite-level blocks obtained by Knizhnik and Zamolod­
chikov !-1] in this case. 

Crossing re!_<ltions 

llsing completeness of tht' three sets of eigenvectors, one finds that the three sets of 

blocks are related by the crossing r<'lations. 

:F,!''l(y)..," ,.,.!X,,(pu) + O(k-2
)).,/ :F,!"l(y)p" (!X#(pu) + O(k-2 W1lq" 

"'X,,(pu).,,":Fjnl(y),.'X,; 1(pu)0 " + O(k- 2
) p.a = s,t,u 
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(3.2!la) 

(3.2!lb) 



x.(pa) .. ." = i'(fl,.Q).,.v(a,q)" 

xy- 1(pa).,." = x .• (ap) .. ." = (Xy(pa) .. "')" 

(:l.2!k) 

(:l.2!ld) 

where p f. a and ll'e ('all x .• (pa) in (:l.2!lc) the crossing matrix from channel a to ('hannel 

p. The last relation (3.2!ld) says that the crossing matrices X,,(pa).,." are unitary XJ "" 

X;;' for each p f. a, and the crossing matrices explicitly satisfy the consistency relations 

Xy{pa)X9 (ar)X0 (rp) == Xy(pr)X0(ra)X0 (ap) =I (:l.:lOa) 

(1).,." = 6~ (:l.:lOb) 

which says that we return to the same blocks when we go around an s,t.u cycle. 

In the special case when 7 2 ""T3 , the conformal weights exchanged in the u-channel 

are the same as in the s-channel. In further detail, we have 

L:~<'<'(T,1 T,3 )o 0 == L:~00 (7,1 T,2 )o•{J' (3.31) 

in this case, where o' = (o 1o3o2o4) and similarly for {3'. Then we may identify the 
g-invariants of the u-channel in terms of those of the s-channel 

v(u,g);;' = v(s,g)~ v(u,_q):;, = v(s,q);;; (3.32) 

where m = (r,~,eJ is the same irrep T' in both channels. It follows from (3.17h), (3.31) 
and (:l.2!lc) that 

X9 (su)- 1 == X9 (su) 

Xy(usf 1 == X9 (us) 

X 9 (su)2 == 1 

X9 (us)2 = I 

.Fj"l(y )m n == .FJ"l(l _ Y )m n • 

(3.33a) 

(U3b) 

(3.3:lc) 

Then, using (3.:l:l) in (3.2!lb), one finds that the s-channel affine-Sugawara blocks close 
under s-u crossing, 

~·l(l- Y)m" = [X0(su) + O(k-2 )lmp .Fj"l(y)p0 [X.(su) + 0(~·-2 )1." (3.:1·1) 

as they should in this case. 

In the special case when all four representations are the same, one finds that the 

unitary crossing matrices are also idempotent X(pa) 2 = 1 and hence X(pa) = X(ap) for 

all p f. a: then, the Yang-Uaxter-like relation 

X.,(pa)X,(ar)X0 (rp) = Xy(rp)Xy(ar)X0 (pa) =I (:l.:l:'i) 

follows from the consistency rrlations (3.30). 

Psing (:l.2!lh) and (:l.22a). 1\'<·lin<~lly write down the crossing wlations among all thrrr 
srfs J";l•l . .F.l"l. f.l') of analvti<· affine-St.IRiiWilra l.tlorks. 

.F.~·l"" [.\',(sn) + 0(~·- 1 )1.1';~") [.\',,(sn) + 0(~·- 2 W 1 (:l.:lfia) 

II 

.F,~"l ~[X,,( us)+ 0(~·-2 )1.F,~·l [X.,( us)+ 0(~·- 2W 1 

.F.~·l = [X.(st) + O(k-2 )lij•l [X.(st)u;• + 0(~·- 2 Jr 1 

f!•l = IX.(ts) + 0(~·-2 li.F!•l lf/.Xy(ts) + 0(~·-2 W' 

.Fj"l = !X.(ut) + O(k-2 )1 f!•l !Xy(ut)u;• + O(k-2Jr 1 

fj•l = [X0(tu) + O(k-2 )I.Fj"l [ffyX9 (tu) + O(A--2 ~-• 

(:l.:lfib) 

(Ufic) 

p.:llld) 

(:l.36e) 

(3.36f) 

where fJ9 is the non-analytic unitary phase matrix (3.22b) of the affine-Sugawara con­

structions. It is known 1211 that the crossing matrices of analytic blocks involve non­

analytic factors, and we remark that, according to eqs. (3.22h) and (3.2!k), the phase 

matrix provides the entire O(k- 1
) corrections to the full crossing matrices in (3.36). 

3.2 Non-chiral WZW correlators 

To construct a set of high-level non-chiral WZW correlators from the affine-Sugawara 
blocks, we take the diagonal construction in the s-channel blocks (3.llc), 

Y0 (y", y)c/1 = L (.FJ•l(!/)p m )" .FJ•l(y)p" v(s,g);:'ii(s,,q)~ + O(k-2 ) (3.37a) 
m,n,p 

= L v(s, q);:' [.FJ"l(y").FJ•l(y)lm "ii(s,q)~ + O(k-2
) (3.37b) 

ru,n 

which shows trivial monodromy around y = 0. These correlators satisfy the high-level 

forms of the holomorphic and anti-holomorphic KZ equations, and the corresponding 
_q-global conditions on the left and the right. In the special case of the niiiin correla­

tor on SfJ(n), they also agree with the diagonal construction studied by Knizhnik and 
Zamolodchikov in [•li-

To see that these c.orrelators have trivial monodromy around y = 1 and y = oo, one 

uses the crossing relations (3.2!'1) of the affine-Sugawara blocks to rewrite the correlator 

(3.:17) in the two alternate forms 

Y.(y"' YV = L v(u, g):' I.FJ"l(y").Fj"l(y)lm n v( u,g)~ + O(k-2
) (3.38a) 

m,n 

= L t'(L_ql;:· [.Fjq(y").Fj1l(y)J .. " v(t,g)~ + O(k-2
) (3.38b) 

rn,'l 

where the u and !-channel blocks are given in (3.17b) and (3.1!lb). 

WI' ('an also express tlw t-('hannel form (3.38b) in terms of the analytic t-('hannel 
blocks (:l.2:l), 

}';,(y".y),/1 = L t·(t._ql;:• [f.~l)(y")f!,,(.lf")f!I)(!/)U.(y)] ... " v(t.q)~ + 0(~·- 2 ) (:l.:l!la) 
. . 

""'L: t·(t.ql;:· !i.~l)(y)t:,,(y·w.(yli.~•l(y)J .. ," t·(t.qJ;~ + o(~·- 2 ) p.:lnb) 

(,j 



= L u(t,_q);;• lf!''(.r()fjtl(y)),." I'(L_q)?, + 0(~·- 2 ) p.:l!k) 

'"·" 
where we have used the fact that 

IA,H}=O(k-2 ) when ll,H=ll+0(~·- 1 ) (:UO) 

and the first property in (:J.22e) of the phase matrix u •. 
llsing completeness and the form (:l.llc) of the affine-Sugawara blocks. Wf' also find 

the summed form of the non-chiral W~\V correlators 

l'~(y", Y )" 0 = {Ill + 2L;~00 (7,/7;.2 1n y" + 7;.17;.3 In( I - y") )}/ • 

xlll + 2L:~,,j7;,1 7;.2 1ny + 7;.17;.3 In( I- y))J}., ·0 + O(k-2
) 

(:!Ala) 

= {In+ 2L:~oo(T..1 7;.2 1n lvl2 + 7;.17;.3 In II- YI 2)]I.}oiJ + 0(~·-2 ) (3Aib) 

where / 9 is the projector (3.7) onto the G-invariant subspace of 7 1 0 · · · 0 7\ and we 

have used eq.(3.R) to obtain the second form, which explicitly shows two of the trivial 

monodromies. The third trivial monodromy, around y = oo, also follows immediat.ely 

because both terms in (3A1b) are proportional to lvl at large y. The correct t-channd 
singularities are then obtained by an application of the g-global Ward identity (:!.2·1 ), 

using Jq in the form (3.1-'ie). 

Using the g-crossing matrices (3.2!Jc), Appendix A gives alternate expressions for the 

g-blocks (3.27), the analytic t-channel _q-blocks (3.23) and the _q-correlators (3.:H) 

4 The Coset Constructions 

4.1 The coset blocks 

The next simplest, and next most symmetric, set of conformal field theories are the _qfh 
coset constructions IL2,7,R], whose chiral correlators are defined by (2.1) with 

pab 

Lab _ ...EJ.!!. J> _ J> J> 
.qfh,oo - 2k •fh - g - h (·l.la) 

4 

Y•th(Y)LT..; =-0 a= 1 ... dimh (.Uh) 
i=l 

where h C _q. These correlators are the high-level solutions of the general coset <"<IUations 

of Hefs.p.'i,16,l1] on simple g, and the rf'sults helow arf' tlw high-level form of tlw gf'neral 

cosf't blocks studied in l22,1-'l,I6,H}. 

\V" lwgin b_y rf'organizing the high-level coset corrf'lators (2.1) as, 

l';,'idul = { v,, [ ll + 2L:;~.,._ (7;,' T,,21n y + 7;, 1 7;.~ In( I - y))j 

xlll- n;:b,__(7;,'T,,21ny + 7;,1T,;1 1n(l- y))J}" + 0(~·- 2 ) 
( 1.2) 

!() 

where \\'e haw· used (-!.Ia) and moved the terms of the h tiHO>ory to the right. 

To define the p=s, t and u-channel cosf'l blocks, we nf'ed tllf' g-invariant eigenvec­

tors ''((I, g)"', v(p,,q),. of Section :J, and also the corrt'sponding h-invariant eigf'nvectors 
•i•(p, h), 

2L"b 7 1T.2•i•(s. h)'11 = (t;,.h (M)- t;,.h (7 1
)- t:.1' (72))•f•(s. h)M 1!,0<.1 a b . . (s) ,\11 .\/2 · · 

2L~~oo'T./7;.3•i•(u,h).\f = (t:.tu)(Af)- /':,.~1,(7 1 )- /':,.~\,3 (7'1 )}1/•(u,h)"" 
2L'i,~""' 7;,27;.3•/'(t, h )·'1 = (t:.t,,(M) - 1),~1, (72

) - t;,.~\r., (T1 ) )rf.( t, h )M 

Li.~oo T.,;T,;•f•(p, h)"" = t:.~.,, (7;)1/•(p, h )M , i = 1 ... ·I , p = s, t, u 

·I 

<E T.i>•i'(p, ")·" = o a=1 ... dimh p = s, t,u 
•=• 

(Ua) 

(Ub) 

(.t.:Jc) 

( -t.:ld) 

(4.3e) 

whose properties parallel those of the g-invariants. In particular, the eigenvalue p~oblems 

(-1.3a-c) are com1Jatible with the diagonalization of the h conformal weights in (-t.3d) 
because the matrices L/,bT.,iT,i and L't.bT..iT,i commute. The h-global Ward identities 

(4.3e) are also compatible with the eigenvalue problems, whose matrices are h-invariant. 
It then follows from the high-level form of the relation 

2LJ.bT.,iT,i = LJ.b(T.,; + 7j)(T,; + 7;.1)- (Li.67;.;7;.; + Lj.b7jT,;) , I S i < j S 4 (-lA) 

that the quantities t:.t,)(M) in (·1.3a-c) are the high-level forms of the broken conformal 

weights of h-irreps in the p-channel (that is, the decomposition of 7 0 T' into h-irreps). 

The h-invariant eigenvectors also satisfy completeness and orthonormality, 

ri•(p, h )Mtf•(p, h)"' = .S~ rb(p, h )M 1f•(p, h )M = h p = s,t,u 

ILi.~c'QT..jT,j,h]=O 1 lSi,jS-J 

(1.5a) 

(-1.5b) 

where h is the projection operator onto the h-invariant subspace of 7 1 0 · · · ® 7 1 . 

As an explicit example, we give the solution for the U(l)-invariant s-channel eigen­

vectors of the cosf't correlator 

(71,72,73,71) = (jl.h,iJ.i1) in 

In this case we need 

.53.5~ 
L(f(l),oo = 2f' 7-i= r;j;2 3 v ~-g 

(

j; 

0 

SU(2) 

/J( I) 

] 

(-1.6) 

(-1.7) 

where •!·~ is the SU(2) root length squared and we have taken the usual magnetic <luantum 

number basis for the matricf's, with n;"" M;, IMd :S: };. The solution of the eigenvalue 
prohlf'm (·I. :Ia) is t lwn 

l 

:,( 1'(1)).\J- <·'1 '("" ·\·/·- fl) r: _s. · . u . - uu o ~: I -- M = (JJ,.Ml.Jh.M1) (-U!a) 
1=1 
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~:~:~>(M) = (MI + 1'1-12)2 

X 
~~t>(T;) = Ml 

;r 
(·I.Rh) i = 1 ... ·1 

where x = 2~·N·.~ is the invariant level of g = Sfl(2). For more gen('ral coset corrdators 

the eigenvectors rj•(s, h) ar(' squares of products of Clebsch-Cordan coefficients times 
Clebsch-Cordan co('fficients for branching of g-irreps into h-irr('ps [23). 

Using compldenessof t{q),ii(_q) and rJ.(h),,f•(h}, we have [15,16,1-1) 

ti~' = L d(p }m i•(p, _q ):;, (·I.!Ja) 
m 

Y:ih(Y) = L d(p)"'C!/~(Y)m.\fli•(p,h)M (·1.!Jb) 
m,1\f 

where C!i~(y) are the coset blocks. Further use of completeness gives the explicit form 
of the high-level coset blocks 

C!/~(Y)m M = .r:J•l(y)m "e(p, gf h)nN (Jt1(y)-l ),/'1 
, p = s, t, U (UOa) 

F!P1(y )s-" = ,J;(p, h )s[ll + 2LI.~oo(7.1 762 ln y + 7,1763 In( I- y) ))•/,(p, h )M + 0( k- 2
) ( UOb) 

(F!"1(y)- 1 h.\f = rl•(p, h )s[ll- 2L/,~00 (T,1 762 ln y + 7,1763 In(! - y)))t/•(p, h )M + 0(~·-2 ) 
( 1.10c) 

e.(p,gfh)nN = v(p,g)nt/1(p,h)N (1.10d) 

where F!P) are the p-channel g-blocks (of the affine-Sugawara construction on g) giv('n 
in eq.(3.27), and e.(p,_qfh) is the embedding matrix of the _q-invariants v(.q) in the h­
invariants rb(h). The inverse h-blocks F;; 1 are th(' inverse of the h-blocks :Fh- In Hef.!I-11, 
the exact coset blocks were written as (Cg/h)mM = (F.)mn(:Fh- 1)nM, where (:Fh- 1)nM = 
e(gfh)nN(F;; 1)s''1 in the present notation. 

The s and u-channel coset blocks in (1.10) are high-level forms of analytic blocks, 
as above. To obtain the analytic t-channel coset blocks, we first use the continuation 
formulae (:!.20) to find the analytic t-channel h-blocks f1~' 1 and their inverse, 

f~'1 (y)s·\f = r/J(t,h)s[ll +2LI.~.,,(T.,1 [762 +763)ln(-y) + T,1763 ln (1- ~)))rJ.(t,h)·'' 

+ O(k- 2
) 

(Uia) 

(f1~ 11 (y )- 1 h''1 
:-= t!•( t, h )s[ U - 2L/:~00 (T., 1 [762 + 7b1 ]ln( -y) + 'T,176"1 ln ( 1 - D )j>f•( t, h)'" 

+ 0(~--2) 

:Ff,l)(rt)'"" f,~l)(y)ff,,(y) , j~l)(y) =-= F1~l)(y)f/1,(y)- 1 

IJ,, ( 'll.\1''' ~ d l. h l.H <:>xpl-2rri L/:'~., 7,,1 7,/sign( ar~(- !I) )j.!•(Ur )·'' + 0( ~--2 ) 

1/,(_1()-= //,(y)- 1 ' f/,(y) 1 ~ f!,(y)- 1 

IR 

(·1.11 h) 

(·1.11<') 

(·f.llrl) 

(-1.111") 

whose form closely parallels that of the analytic t-channel blocks f!') in (:J.2:Ja). Here 
fh(y) is the non-analytic unitary phase matrix of the h-blocks embedded in _q. Then we 
may rearrange the t-channel coset blocks as follows, 

c!~~.(y) = i!1>(y)fi.(y)e(t,_q/h)fh(y)- 1i!'1(yt 1 

= f!1>(y )e(t, gf h )fl9(y )fh(y t 1 f!11(y t 1 

= [i!11(y )f( t, _qf h )i!11(y )-1 I [fl.(y )flh(Y )-I I 

where we have used the fact that 

flq(!l)mPe.(t,gfh)p M = e(t,_qfh),/'f!g(!I)P.\f 

u.(y)pM = '*· h )pexp[-27riL;~ooT.1 762sign(arg( -y))JI/I(t, h)M + O(k-2
) 

in the second step and the commutation identity {:1.10) in the last step. 

( 1.12a) 

(U2b) 

(1.12c) 

(1.13a) 

(U3b) 

From (•1.12c), we read the form and properties of the analytic t-channel coset blocks 
"(I) 

cg,h(y), 

c!~~(y) = i!1l(y)e(t,g/h)i111(yt 1 

C(IJ < l c"ll> < ) ( ) c"ll> < ell> ) )-1 gfh Y = gfh Y Ug/h Y ' gfh Y) = gfh(y flgfh(Y 

u.,h(Y)MN = Ug(Y)Mp(Uh(Yt 1)pN 

(4.14a) 

(4.14b) 

(1.14c) 
= J•(t, h )M exp[ -211'iL:~h.oo 7;,1 762sign(arg( -y )))t/•(t, h )N + O(k-2

) 

ffg/h(y") = Uqfh(Yt 1 
, U9th(Y)1 = lf9th(Yt 1 (U-id) 

where lfgfh(Y) is the non-analytic unitary phase matrix of the gfh coset constructions. 

The limiting behavior of the analytic coset blocks c!1h• C!/L c!jh follows from their 
form in (·1.10a) and (·l.l·la), together with the results above for _q and h, 

ct•> (y) M ,..., rl•l (m M)yll:!,•(m,M)-A~~:(7 1 )-A1~:(P) + O(k-2) 
gfh , m •-o gfh ' , 

C!/~(Y)mM ;:1 r~~~(m, M)(1- y)llr!~(m,M)-A1~~(T')-Il1~;(T3) + 0(~·-2) 

(;!~~(y),.,-'' y_:'..., r~j,,(m. M)(-y)-ilr!tlm.M)-A1I:IT1 )+A11:1T') + O(k-2) 

~1~~(7;) ~ N(T;)- ~~1,(T;) , i = 1 ... ·I 

~·1"(m. M) = { ~(,.)(m)- ~:·,pn + O(k-
2

) 

(r) · I + (l(_~--1) 

rlrl ( ·\-f)_ { £(p,yfh).,,-'
1 + O(Vl) "I" m.. --. -<(p.q/h).,,-'"c(f'·9/hJs·" + 0(~--2) 

l!l 

e(p,gfh)..,.\f f 0 

e(p,gfh)..,,\( = 0 

e(('.q/h),.,·" f 0 

. <(f'.qflr).,.·" = 0 

(1.1Sa) 

(U.'lb) 

(-l.lSc) 

(USd) 

(USe) 

(-1.15£) 

(U.'lg) 

(·l.l!ih) 



where the matrin?s c(p,,qfh) 

c(s,,qfhh'11 = rfo(s,h)s2L~~ 1,,.,._.7,, 1 T,3 ri•(s,h).ll 

c(u.gfh)s·" = .:.(u. h)s2L~k-x·T./T,}•i·(n, 11)'11 

c(t,,qfh).v'\1 = ri•(t. h)x2L:;~1,,«,7,1 T,3rfo(t, 1!)'11 

are defined in analogy to those of the g theory. 

( l.lfi<l) 

(-I.Hib) 

(I. Hie) 

The gfh conformal weights in (·l.l.'id) and (-1.15e) for e(p,gfh).,·" -:f 0 are the wrred 

conformal weights of the external and intermediate wset-hroken affine primary fields, and 
the internwdiate broken affine primary states contrihute with residue O(k0

), in accord 

with the general OPE (2.17). 

The ( 1 + 0( ~·- 1 )) conformal weights in (-l.l.'if) are broken affine secondaries (with 
residue 0(~·- 1 ) in (·l.l5h)) which are not necessarily integer descendants of broken affine 

primaries: see for example the exact conformal blocks 

nniin in 
8/i(n)r, X SU(n)x2 

.'iU(n) .. ,+x, 
{-1.17) 

obtained in Hd.[l5]. All the conformal weights in (·l.l5d-f) check against the large 

x 1 = x 2 = x form of these blocks. 

Appendix D studies a coset example on simple .Q 

333:l Ill 
S//(3) 

S/i(2);rr 

in some detail. This case shows a block which begins at O(A·-2
). 

We finally note that the number B9th of coset blocks in each of the channels, 

B.th = d• · d,, 

(·1.18) 

(1.1!1) 

is the product of the diml?nsions dg and dh of the g- and h-invariants in any channel. In 

fact dh ~ dg because h C g, so that the inequality 

B•l'• ~ Bg (·1.20) 

is obtained for comparison of correlators with fixed extl?rnal.q-irreps, where B. in (:l.28) 
is the number of affine-Sugawara blocks in each of the channels. The result (·1.20) is in 
accord with the intuitive expectation that the number of blocks grows with incwased 

symmetry breaking. 

Crossing relations 

Following thf' df'velopnwnl of tlw previous Sf'dion \\'f' lind tlw crossing rf'liltions ror 

the emb,dding matrix and tlw (inn·rs") h-biO<:ks, 

dp, .'1/ lr ).,.'11 
"" X.( pa)m"da, _qf lr ).,·'· X1~ 1 (pa)s·11 (·1.2la) 

20 

(:F,!'''(.'I)- 1 ).~~x = [X,.(pa) + O(k- 2 lbt, ( :F,!"'(y)-1 )rQ qx,,(pa)+ 0( k-2 W1 )q·'· (·1.2Ib) 

whl?re Xg(pa) are the .Q·crossing matrices (:l.2CJc) and Xh(pa) ilrl? the corresponding h-
crossing mat rices, 

x,,(pah/' = •l•(p, h).ll•l•(a, h)"' 

X1;
1(pab/' = Xh(ap),,/' = (X,.(pa)s'~1 )" 

(.J.22a) 

(·1.22b) 

which are also unitary. Using (:l.2!Jb) and (·1.21) we obtain the crossing relations of the 

coset blocks, 

</1,(y).,'11 = [X.(pa) + O(k-2 )J.,"c!//.(y)/" ([Xh(pa) + 0(~·-2W 1 h'11 

which involve, as expected, the crossing matrices X9 and X,, of g and of h. 

The h-crossing matrices satisfy the same consistency relations, 

X,.(pa)X,(aT)Xh(Tp) = Xh(PT)Xh(Ta)X,,(ap) = 1 

(1)MN = b~ 

which were seen for the g-crossing matrices in (:1.30). 

(U:l) 

(·1.2•la) 

(·1.2·1b) 

When the external.q-irreps satisfy 7 2 ~ 7 3 , we find that Xh(us)2 = 1 and :F!u)(y) = 

:F~"1 (l - y), as for the g-blocks. Together with the corresponding relations for the g­

quantities in this case, this implies 

e(u,gfh) = e(~gfh) , c!u) (y) = c<·> (1 - y) 
gfh . ,qfh (4.25) 

and then, 

C!j,.(1- y),/1 = [X.(su) + O(k-2 )]m "C!i~(Y)nN [Xh(su) + O(k-2)]NM (4.26) 

so that the S·channel coset blocks are closed under crossing in this case, as expected. 

Using (4.23) and {-l.l·lb), we finally write down the crossing relations among all three 

C!•l c<ul c'!tl f I . II k sets .Q/I•, •lh, ·.o/h o ana yt1c coset J oc s, 

C!i'1, "'[X.(su) + O(k-2 )JC!/! [Xh(su) + O(k-2 W1 

C!//, = [Xg(us) + O(k-2 )JC!jh [Xh(us) + O(k-2W1 

c<•> =[X (st) + O(k-2 )]C!tl [X (st)IJ- 1 + O(V2 )]- 1 
9/lo .0 gfh lo .Q/h 

('!~'h = [X.(ts) + 0(~·- 2 )]C~i'h [tJ.1hX,,(ts) + 0(~·-2 W' 

C,~~~."' IX.(ut) + 0(~·- 2 lJC!~',,IX~o(ut)U./l. + O(k- 2 W1 

( ;(t) - [ ~' (l ) + (1(k-2)j('(u) [/' \' (t ) + C'>(~·-2)]-1 ,1flt -·- ~·\.'1 II . '.•J/It yflt" 1, U · 

(U7a) 

( 4.27b) 

(1.27c). 

(·1.27d) 

(·1.27e) 

(-1.27f) 

whf'l'e I ,·,,11, is t lw non·analyt ic unitary phase matrix (-l.l·lc) oft lw .'1/ h coset constructions. 
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As seen above for the affine-Sugawara constructions, the phase mal rix provides I he en! ire 

O(k- 1 ) corrections to the full coset crossing matrices in (-1.27). 

Fixed external h represent at ions 

The crossing relations (·1.2:l) of the coset blocks mix the internal h-irreps (M) which 

arise from different external irreps of h (that is, the h-irreps which arise from I he h­
decomposition of the _q-irreps Ti). 

To obtain blocks characterized by fixed external irreps of h, we introduce a hermitean 

projection operator Ph = P('J'h 1, Th2 , 1'"3, 1'h1) to select any four external h-irreps of 

interest, 

lf.( "· h )~1 tl•(p h )13- = (ph) ·0 
. ,. . a . ·' .\f u 

ph •b(p, h ),II = tb(p, h )'11 6.~ 

[L •b T.;T.j p 1 _ [L"b 7.i7.i p 1 - o 
lt,oo a b ' h - .11/lt,t:x: a b ' h - ' 1 ~ i,j ~·I 

(·1.2Ra) 

(·1.2Rb) 

(·1.2Rc) 

where i1 runs over the eigenvectors associated to the fixed external set of h-irreps. The 

inverse h-blocks are block diagonal under this decomposition 

(F~'1 (.1J)- 1 l.w"' 

= •l·(p, h ),~~[II- 2L/:~00 (7;,1 T,2 1n y + 7;.1'Jb3 ln(l - y))ll/•(p, h)';;;+ 0(~·- 2 ) 

= •i·(p, h ),~~[11 - 2L/:~,_.,(7;,1 T,2 ln y + 7;,17,,3 In( I - y))}Ph•/•(p, h )ti: + 0( k-2
) (·1.2!1) 

== dp, h )MPh[ II- 2L/:~00 (7;,1 T,2 ln y + 7;,1T,3 ln(l - y))}•/•(p, h )N + O(k-2
) 

= 6:~~(F~'l(y)-l).wti: 

where we have used the first relation in ('1.2Rc). Then the corresponding subset of coset 

blocks is 

(Co/h)m'11 = (Fo)m"e.(.q/h)n''.(Fh 1)s'W = (:F.,)m"e.(gfh)n';;;(Fi: 1
),;;,:

11 (.J.:lO) 

Similarly, the h-crossing matrices are block diagonal under this decomposition, 

x;: 1 (pa),~~·'· == •h(a,h),~~•i•(p,h)';;; = •Na,h).~~P,,•i·(p,lr)ti: = 6:~Jx;: 1 (pah:/' . (Ut) 

Then. it follows from (·1.2:l) and (·l.:ll) that 

C(•)r) .li_["( )+0('·-2)] nc(")( )·''!["( )+0('--2)1-ll .il fJ/11 !/ m -- A!J .f1t1 1\ m ·_q/h Y , . AI, (117 1\ ,\.; (U2) 

which shows that the sf?i,.cted subset of coset hlorks is closed 11nder crossing 

'I' I I ·1 I f I . II k c!•l ( ) it ('(") ( ) it I c·(q ( ) li · If? sf:' rcl('< su >set o ana yt1c cosrt ., oc s .!lilt y 111 ' ~ ._,111, !I "'· anc -_,111, !I '" · 1s 

also closed l.llltl<·r nossing. To Sf'f? I his we ne<'d the fMt I he non-anal_,., k coset ph a"' 

matrix 1·1.1·1<-) is also block <li<~gonal. 

I • ( ) .\' eft/' ( ) _\; 
',II• !I .II 07 ".II ·'·•fl• !I .It 11.:1:1a) 

'2'l 

c('l(•l .lt_(;(q! l ,.;,· 1! I•J-·w 
·~1/lr .1 m - ·_,1JI! Y m · !dlr .1 ,\" ,;(•) ( ) .11 C(') ( ) ,\'(/' ( )-1) .1i (I .,.,b) 

"!Ill• .II m = _q/h Y m iqfh .II ,\' ' ··•·• 

which follows from (·l.l·k) and the second relation in (·1.2Rc). The restricted phase matrix 

Uoth!!l),\t_;; is unitary in each subspace. Then, we have for example that 

(,(•) ( ) ,;, - ,. ( I) "C"(') ( ) n(' ( ) ti:x-1( ) ,1; 0('·-1) 
'•t/h ,1/ "' ... A_q S m gf/o ,1/ n 'gfh ,1/ fl h St ,"; + ~ (U1a) 

= X.(st ),,'' [ C~11,(y), Iii U9th(Y)n''. X/. 1 (st ),;;;·w + 0(.{·-2
) ( 1.3·1b) 

where the last step follows from (·1.33a). 

The explicit form of these projection operators can be quite complicated in the general 
case, but there are some simple, highly symmetric cases where the form of Ph is very 

simple. As an example, consider the situation when each of the four external _q-irreps 

branches into a single h-irrep, so that the gfh-broken conformal weights of _q-irrep Ti are 

degenerate, 

(/.:koo T.;T,t/ = N 1h(T; )6~ i = 1 ... -1 . ( 1.35) 

In this case, all the coset-broken components of the _q-irrep Ti are on an equal footing, 

and one may choose the trivial projector 

Ph= II 

This is the situation, e.g., in 

T = (7j, l) in 
9r, X .Qr, 

9r1+r2 

examples of which were studied in Ref.[l!i). Examples on simple g include 

T = 11 or 11 Ill 
SU(n) { SU(J). 
--~r _ - SU(2)., 
SO(n hr - SU(n). 

SO(n)l, 

T = 211 in 
S0(211)r 

S0(11), x S0(11)r 

11=3 

II ~·I 

(-1.36) 

( 1.37) 

(·1.3Ra) 

(1.3Rb) 

and the case 11 = :l of (·l.:lRa) will be considered in detail in Appendix D. In (·1.3Ra) the 

11 of SU(n) is the 11 of SO(n) C Sl!(n ), while in (-l.:lRb) the 2n of S0(2n) is the (n, 11) of 

(80(n) x SO(n)) C S0(2n). As we will discuss below. these simple cases are exam1>les 

of a more general situation in ICFT (see Section 5). 

4.2 Non-chiral coset corrclators 

To conslr11d a s<'l of high-levelnon-chiral correlators for tllf' cosf't constructions, we take 

I he s-rhannel diagonal ronst rurl ion. 

)' ('f.' I • ) "' I ,(s) ( ) \tl·l '1 I -1) '''" ., !I ·!I ..., L.. c.,,,, !I ... · + ( (·· (·1.3!1) 
..... it 
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which shows I rivialmonodromy around y = 0. To see t lwt (-t.:liJ) has I rivial monodromy 

around y = I and !I = oc, one uses the crossing relations (·t.:l2) of the coset blocks to 

rewrite the coset correlator (-l.:liJ) in the two alternate forms. 

Yq/h('P,,Iy·,y) = L IC,~/),(y) ... ·11
1
2 + O(l·-2

) (-I.·IOa) 
m,.ft 

= L IC~jdy)./1 1 2 + O(V2
) (-I ..lOb) 

m,.ft 

We can also use (-l.:l:lb) to express the !-channel form (-I..!Ob) of the correlator in terms 

of the analytic !-channel coset blocks, 

Y.,,,('P,.I,I(.y) = L IC!~lh(Ylms·,,g/h(Y)_v'\112 + 0(~·- 2 ) = L IC!~~.(y) .. ·'"l2 + 0(~·-2 ) 
m,,\;,,\i m,:'i; 

(·I..! I) 

where the last step follows from the unitarily of the restricted coset phase matrix. 

Using completeness and the explicit form (·1.10) of the coset blocks, the sumnwd form 

of these coset correlators is 

Yo!h ('Phi.r(, .11) =Tr { [U + n:k:-oCT./T,,21n y· + 'T.1'T,3 1n( I - y·) )]1. 

x[U + n:~h,cxo(T.1 'T,2 1n y + '7;;1'T,3 ln(l- y))]'Ph} + 0(~·-2 ) 
(.f..t2a) 

= Tr[(U + n:~h.oo('T.1 7i.2 1n IYI
2 + 7;;17;;1 

In [1- YI2 ))1.'Ph] + 0(~--2 ) 
(·IA2h) 

where 10 is the projector onto the c:invariant subspace of 7 1 0 · · · 0 7 1 and 'Ph is the 

projector onto the desired subset of external h representations. To obtain the second 

form, which explicitly shows two of the trivial monodromies, we used the second relation 

in (·1.28c). Trivial monodromy around y = oo is also easily seen following the discussion 

below eq.(:lAI). 

5 A Simple Class of Correlators in ICFT 

5.1 L(g; H)-degenerate states and correlators 

In this section, we use the intuition gained in our discussion of the affine-Sugawara and 

coset constructions above to i<lenlify what we believe to be the simplest, most highly 

symmetric processes in ICFT. 

In the first place, we restrict our attention to the ICFTs with a symmetry, that rs. 

to the 1/-in,·ariant CFTs on q, whose invf'I'Sf' inf'rtia tensors /,11 satisfy 

wiH )Lu w( II )- 1 
"" Ln "-'(II) E II (.i.l) 

2·1 

where II C (; is any subgroup of r:, including finite groups and the Lie groups. The 

matrix w(ll)..'' is in the adjoint of q. For the 1/-invariant CFTs. the conformal weight 

matrix of irrep T of q and hence the broken conformal weights ~[.1 (T) are II -invariant, 

0.( II, T)L'it 7;, 7i, n-'(H, T) = L'jt T. 7i, 0.(/J, T) E 1/ (.i.2a) 

0.(11, T),ll[~:!(T)- ~~(T)] = 0 (:J.2b) 

where O.(H. 7),.0 is in irrep T and we have used (2.1J) to obtain (.'J.2b). 

In the 11-invariant CFTs, we further restrict ourselves to the most symmetric broken 

affinf" primary fields, that is, to the irreps T of g whose L"6-broken conformal weights 

~!!(T) = ~11 (7). o = l ... dimT are completely degenerate 

(L/tT.7b)o 0 = ~11(T)b~ (-'i.3) 

at all levels. In what follows, such im~ps of _q are called the L(.q; H)-degenerate states 

because, in these cases, the irrep of q decomposes into a unique irrep of JJ. Finally, we 

restrict the discussion to the L(g; H)-degenerate processes, which are those correlators 

all of whose external states are L(g; H)-degenerate. In this sense, the L(g; H)-degenerate 

processes are the most symmetric correlators in ICFT. 

Although they are by no means generic, it is easy to find examples of L(g; H)­
degenerate states in the //-invariant CFTs. The simplest cases of L(g; H)-degenerate 

slates are all the affine primary states of all the affine-Sugawara constructions, which are 

in fact L(g; G)-degenerate. 

Examples of L(.q; h)-degenerate slates in the g/ h coset constructions include those 

mentioned in (•1.37) and (·1.38). These are RCFT examples in the Lie h-invariant CFTs, 

and in principle many irrational examples, beyond the coset constructions, can .be found 

among the Lie h-invariant CFTs. 

Irrational examples in the much larger set of //-invariant CFTs, beyond the Lie h­
invariant CFTs, are already known, including the irrational cases [2·1] 

T = n or ii in (SU(n)r)f, 

T = 211 in (S0(2n),)f, 

(5..ta) 

(,'iAb) 

where II is a finite subgroup of SO(n) C Sl!(n) and (S'O(n) x SO(n)) C S'0(2n) in 

(!i.·la) and (!i..tb) respectively. The case 11 = 3 in (:)..ta) '''ill be considered in detail in 
Section 6. 

We should also remark that the L(.q; H)-degenerate conformal weights of the coset 

f'Xamples in (·1.38) and the irrational examples in (:>..t) all obey the unified conformal 

weight formula, 
.:~/'(T) = ~1/(T) = __:.__ 

" 2rn 
(:) . .i) 

where :r is the invariant l<'vf'l of 'I and cis the central chargf'. which is rational for the 

l·osd constr11ctions and irrat.ional for S/i(n lf1 and S'0(2n lf1. Tlw occurence of 
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a) L(.q; 11)-degeneralf.' states 

b) a unified form of the conformal weights 

for these rational and irrational families is not totally surprising, since both families 

of constructions are contained in the same (maximally-symmetric) ansatz [2·11 of tlw 

Virasoro master equation. 

In what follows, we will find uniform formulae for the high-level conformal blocks and 

correlators of all possible L(.q; H)-degenerate processes in ICFT. 

5.2 Conformal blocks in ICFT 

We study only the class of L(q; H)-degenerate correlators in ICFT. Fig.2 shows these 

correlators generically, with one degenerate conformal weight I), [I = 1), 11 (TiJ. i = I ... ·I 
for each external state. 

I), II 
2 

I), II 
I 

I), II 
3 

I), II 
4 

Fig. 2. The L(.q; H)-degenerate correlators. 

In this case, the chiral cor relators (2.1) take the form, 

Y/i(Y) = ti~Au(Y)o" + 0(~·-2 ) 

:\u(y) = ll + 2Li;,oo!T,1 T,2 1n y + 7,1 7,3 In( I - y )] 

= ll + [Li7.oofT.1 + T,2 )('T,1 + 'T,2)- (1),!
1 + !),~1 )ll]ln y 

+ !Li7,oo(T.1 + T,3 )('T,1 + 'T,3 )- (!),!' + 1),~1 )11] In( I- y) 

1 

Yufi(H) = Yu , fi(H) = fl f!(H, 7;) 
i=f 

Hen~ we have 1.1sed the high-level forms of the identities 

Li7T..;1i.; = I), [In , i = 1.. .1 

2L1~T./7i/ = LINT./+ 7./)('T,; + T,/)- (1),[
1 + !),~1 )n , I ~ i < .i ~·I 

(5.6a) 

(5.6h) 

(!i.fic) 

('i.fid) 

(:i.7a) 

('i.7h) 

to obtain the alternate form in ('i.fic). The statement in ('l.7a) is the L(q; H)-degr1wran· 

nf each external state. The condition (.-~.fid), whic.h rnfor<·es the 1/-s.vmmrtr~· of tlw 

svsl•·m. follows frorn the II -invariance of I he rrlevant mat rices 

j.\lf. f!( //)j,... 0 r~~.x) 

26 

anrl the fact that ''"· being _q-invariant, is also invariant under f!(H ). 

To find I' = s, t and u-channel block basi's for tlw conformal blocks, we introduce the 

H -invariant eigenvectors tb(p, II) of tllf.' {'-channel, 

2L"b T 1T.2•'•(s 11)·'1 = (1), 11 ( W)- 1), 11 - !),11 )''•(s H)..., lim a b 1 
• (s) 1 I 2 • • 

2Li7,.,.,T,17i/•b(u, 11).\1 = (t),[~)(M)- 1),!
1

- 1),~1 )•/!(u, H).\1 

2/"6 T2T.3t'•(t 1/).\1 =(I), II (M) _ 1),11 _ t),u).t!(t H)M 
Jllm " b ! • (l) 2 3 ~· • 

rfo(p, H)Mrf:(p, H)"'= 6z; , tf!(p, H);';•i•(p, H)~= (/u)~ 

W 1(H)"If•(p,H)M = •/•(p,H)M , tMp,H)Mf!(H) = tb(p,H)M 

(.'i.9a) 

(-'i.9b) 

(.1.9c) 

(-'i.9d) 

(5.9e) 

where (/u )~ is the projector onto the H -invariant subspace of 7 1 ~ ·- · ~ 7 4 • According 

to the identity (5.7b), the quantities /),[!)(M) are the L"6-broken high-level conformal 

weights of the broken affine primary states in the p-channel. 

We remind the reader that the correlators (5.6) include all the correlators in H­
invariant CFTs with L(.q; H)-degenerate external states. This includes in particular all 

the correlators of all the affine-Sugawara constructions, in which case the eigenvectors 

tJ!(p, II) may be taken as the q-invariants v(p, g) of Section 3, and all the coset correlators 

whose external states are L(.q; h)-degenerate, in which case the eigenvectors 1/!(p, H) may 

be identified as the h-invariants t/•(p, h) of Section •1. 

The p = s, t and u-channel conformal blocks BW are then obtained by inserting 

completeness sums in (5.6), according to 

Au= Aulu = Aul/•(p,H)M,Mp,H)M , V p . 

In this way, we obtain the three expansions, 

Y/i(y) = L d(s)mBW(Y)mMtl•(s,lf):\1 
m,,\1 

= L d(u)mB}~')(Y)mM,j,(u, H)M 
m,,\l 

= L d(t}m8}:>(Y)m.\f1Jo{t, H}M 
m •• w 

where the p-chan.nd blocks BW(y) are 

Bj~>(y )., ·'1 = l'(f', q ).,..\u(Y )rf.(p, 11).\1 + 0( ~--2 ) 

(5.10) 

(.'J.lla) 

(5.llb) 

(.'i.llc} 

(;i.l2a) 

~ c(f'.ll),:"•i·(p. 1/).....Au(Y)•i•(p, H)-"+ 0(~·- 2 ) , p = s, t, u (5.12b) 

.\ u(Y) = U + 21:;t.., ... ['7;,1 7,,1 In y + 7,,' 7i? In( I - y )j (oi.12c) 

d(l.//),,·11 "' 1'(1'-1'/),,ri•(f'./1)'11 (:i.l2d) 
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Here f.{p, H) is thf' embedding matrix of the ,q-invariants in the //-invariants. 

The sand u-channel blocks Bl;> and Bl~') are analytic blocks, as above. and the analytic 
!-channel blocks L1l~>. 

BW(.v)n."\1 = 1·(t, _q),..Au(Y)•i•(t, H)·"'+ O(k-2
) 

= e(L //),/''•l•(t, H)sAu(Y)t/•(t, H)M + 0(~·- 2 ) 

Au(Y) = n + 2L/t,.,._.(T..'I162 + 163 ]ln( -y) + 7,,1163 ln (I - ;) ) 

BW(y) = dl~>(y)Uu(Y) , 8W(y) = BW(y)f.!u(y)- 1 

Uu(y),.,·'· = li•(t.H l.u expl-27riL/t,T..'162sign(arg( -y))]•i•(t, II)·'·+ O(k-2
) 

f.!u(y") = Uu(Yt' , liu(y)1 = Uu(Y)-' 

(.i.l:la) 

(;i.l1b) 

{.'l.l:lc) 

(.'l.I:Jd) 

(5.1:11') 

(.1.13f) 

are also obtained by now-familiar steps, including the continuation rules (3.20). The 
quantity 1/u(Y) in (.'l.l:Je) is the non-analytic unitary phase matrix of the L(_q: H)­
degenerate correlators in ICFT. 

The expressions (.'i.I2a,b) and (5.I3a,b) for the high-level analytic blocks BW, Bl~>, 
.BW of the L(.q: H)-degenerate correlators in ICFT are among the central results of this 
paper. 

To study the limiting behavior of the analytic blocks, we use the eigenvalue problems 

(-'i.9) to rearrange the blocks in each of the channels as follows, 

Bl;>(y),..lf = e{s, H)mN•b(s, ll).vlll+2L/~.ooT..'163 ln(I- y))•Jo(s, H).lf 

x II+ (Ll[!,Pn- Ll{1 - Ll~1 ) In y) + O(k-2
) 

( .'i.l•la) 

= e(s, H)m"' [l!;':J - c(s, ll).v"" f: r_] y6~>(.1f)-t;.fl -t;.r + O(k-2 ) 

p=1 p 
(:i.Hh) 

c(s,H)NM = tfo(s,H)N2L/~.00 7,.1 163 •b(s,11)'11 (5.I1c) 

Bl~>(y),.·11 = e(u, li),.N [l!f/- c(u, H)Nwf (1 - y)P] (I - y)6<'!,1MJ-!;.fl-t;.~ + O(k-2 ) 

p=l p 
(5.Hd) 

c( u, ll).v.lf = •f•( u, H )N2L/~.oo 7,.1162
•/,( u, 11 )·11 (.'i.I·Ie) 

riW(y),..lf = dt,_q),.lll+2L/~.""T..'I162 + 163Jin(-y)J 

X Ill + 2L'i},.,.., 7..'163 ln (I -; ) J•il(t, H )M + O(k-2
) 

(;i.I-1 f) 

= e(t,ll),.,'"•i•(t, 11)....-IU + n'it.~T..'T,,3 In (I -D I 

1 
(.'l.Hg) 

x Ill - (2L" 1
' T 2T.·1 + "D. 11

- D. 11
) In( -y )]•;.(t. II )'11 + O(V2

) II,?'~ (I IJ '-..J I 1 . . 
i=l 

2il 

=f(t,H).,,'' [,~!-c(t,/J)s·11 L- - (-y) (II' -u,+u, +0(~·-2) . [ .,.._. (I) p 1] -t;.H (If) _, H ·' H 

p=l y p 
(.'l.Hh) 

c(t, /1):.;11 = rfo(t, //),,·2L/t.,J.'T,;\fo(t, H)·11 
. (.:U·Ii) 

To obtain the form (:'i.Hg) of the analytic !-channel blocks we also used the _q-global 
\Vard id('ntity on the _q-invarianls dfl, _q) • ., 

v(p,_q) ... IU/t(T,,1162 + 7,.27,;1 + 7,.3161
)- lull]= 0 (-'i.l-'1a) 

/II = Ll!f - Ll {I - Ll~f - Ll~f (.'l.l.ib) 

applied here at high level for the case p=t. 

Using the expressions in (-i. H); we find the limiting behavior of the conformal blocks 

BW(y),.,\1 ~ rW(m, M).v6<~1(m,.\f)-/;.fl-t;.f + O(k-2 ) 
y-o . 

Bl~>(y),..lf y':r rl~>(m,M)(I-y)6~>1m .. lfJ-6fl-6~ +O(k-2) 

8W(Y)m.lf ~ l'l~>(m, M)( -yf6/:,lm.MJ-t;.fl+t;.!' + O(k-2) 

·-"" 
Llu (m M) = { Ll[!,(M) + O(k-2

). , e(p,H),.M # 0 
(P) ' 1+0(~·- 1 ) , e(p,H)m""=O 

(.'1.I6a) 

(5.16h) 

(.'U6c) 

(.'i.16d) 

(5.16e) 

•(P) { e(p, H),.-~1 + O(k-2
) , e(p, H),.M 'I 0 • 

lu(m,M)= -e.(p,ll)m"'c(p,H):vM+O(k-2) ' e(p,H),..If=O (·1.I6f) 

followed by integer-spaced secondaries. The blocks with e(p, H),. M 'I 0 begin at 0(1;0 ) 

and exhibit leading singularities (with O(k0
) residues) whose high-level conformal weights 

Ll[!,(Af) in (5.9) are those of the correct broken affine-primary states in each of the three 

channels. The remaining blocks, which begin at 0( k- 1 ), show leading singularities which 
are broken affine secondaries. As noted for the affine-Sugawara and coset constructions 

in Sections 3 and ·1, this pattern is in agreement with the general OPE in (2.I7). 

Furl her discussion of these conformal weights follows that given for the coset con-
. structions below (·1.16). In particular, as noted for the cosets, the (I+ O(k-1 )) p-channel 

conformal weights in (.'i.l6e) are broken affine secondaries which need not be integer de­
scendants of broken affine primary states. Identification of these states is therefore an 

important open problem in ICFT. 

Number of blocks 

We finally note that, for an L(q: /1)-degen<'rate process, the number Hu of blocks in 
('ach of the cha llllf'ls 

/Ju "'d. · du ('i.l7) 
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is the product of th<:> dimension a. of q-invariants and th<:> dinwnsion du of //-invariants 

in any chamwl. We know that au 2: d,, 2: a. when 11 is a finitf.' suh~roi.IJl of t lw Lit:> 

~roup ~<:>neratf.'d hy h C q, and h<:>nce II'<:> obtain the double ine<t•·•ality 

llu 2: Both 2: ll9 (.'i.IR) 

for comparison of correlators with fixed external _q-irreps, where H011, and /Jg in (·1.1!!) 

and (:J.2R) are the number of coset and affine-Sugawara blocks respectively in any chan­

nel. This double inequality summarizes the symmetry hierarchy within tlw /{q; /1 )­
degenerate processes, and is in accord with the expectation that the numlwr of blocks 

increases with increased symmetry breakdown in ICFT. 

In Appendices B and U and Section 6, we study the L(.q; 1/)-degen<:>rate corr<:>lator 

ttl:! under the three cons! ructions, 

• the affine-Sugawara construction on S'U(3) 

• the coset construction S'U(:!)/Sl!(2);rr 

• the irrational construction SU(3)~1 

to illustrate the double inequality (5.18). As discussed below, the symmetry hierarchy 

for these three constructions is Sl/(3) J Sf/(2);rr J 0, wher<:> SU(2);rr is the irregular 

embedding of SU(2) in SU(:J) and 0 is the octahedral group symmetry of the irrational 

cons! ruction. 

5.3 Crossing relations 

!Jsin~ the completeness relations (3.27a) and (!i.!Jd) of the _q-invariant and If-invariant 

eigenvectors respectively, we verify the crossing relations among the bloc:ks, 

Bj:l(Y)m'11 = [Xg(pa) + O(k-2
)]"'" Bj;l(y)/'' ([Xu(po-) + 0(~·- 2 Jr 1 )s'11 

Xu(pa)M"" = •i•(p, /I)M•/•(a, H)"'; 

Xii'(po-).~,-" = Xu(ap)M"' = (Xu(po-JN'"'t 

(;'U!la) 

(;i.l!Jb) 

(5.1!lc) 

where X,,(pa) is the affine-Sugawara crossing matrix defined in (:!.2!!) and Xu(po-) in 

(.i.l%) is a not her set of unitary nossing matric('s, called t hf" H -crossin~ mat rices, from 

tlw a-channel to the p-dwnnel. 

The 11 -crossing mat rices satisfy the same consistency relations 

Xu(pa)Xu(nr)Xu(rp) "'Xu(pr)Xu(ra)Xu(ap) =I (.i.2fla) 

(I ).11 -"-., k~ n.:Wio) 

found for q ;urrl h irr (:l.:JO) and (·1.:1·1 ). 

:10 

\Vhen tlw f.'xt<:>mal q-irrrps satisfy T 2 ~ 7 3
• II'<:> may tak<:> 

,;.( u. II );~1 = •i·( s, II);~! •i•(u, H)~1 "'•i•(s, HJ:i; 

and tlwn on<:> finds that, 

Au(Y )o•'1' = Au( I - Y loa 

B~~l(.'l) = B~;l(l - y) 

Xu(su) = Xji1(su) = Xu(us) 

(.'i.2l) 

(;i.22a) 

(.'i.22b) 

(.'i.22c) 

where o' = (o,o3o 2o 1 ). It follows that the set of s-channel blocks is closed under crossin~ 

B~;)(1- Y)mM = (X9(us) + 0(~·- 2 ))m" BW(y)/'' (Xu( us)+ O(k-2 )).-:.11 (.'i.23) 

as it sho1.1ld be in this case. Similar relations hold when any two external states are the 

same. 

Using (5.19a) and (5.!3d), we finally write down the crossing relations of the three 

sets B~;l, B~~l, 8W of analytic blocks, 

B};J = (X0(su) + 0(~·-2 )] B~~) (X11 (su) + O(k-2 Jr1 

B~~l = (X.(us) + O(A·-2
)] B~;l (X11 (us) + O(k-2

)]-
1 

BW = (X9 (st) + O(k-2
)] 8W [Xu(st)Uji 1 + O(k-2 Jr 1 

· 8W = (X.(ts) + O(k-2
)] BW [UuXu(ts) + 0(~·-2 )t' 

Bj~l = (X9 (ut) + 0(~--2 )] 8W [Xu(ut)Uji 1 + O(k-2Jr 1 

Bj~l = (X9 (tu) + O(V2 )]B~~l[UuXu(tu) + O(k-2Jr1 

(.'l.2·1a) 

(5.2·1b) 

(.'l.2·1c) 

(5.24d) 

(.5.2-le) 

(5.2·1£) 

wher<:> Uu is the non-analytic unitary phase matrix (5.13e) of the L(g; ~)-degenerate 
correlators. As seen above for the affine-Sugawara and coset constructions, the phase 

matrix provid<:>s the entire O(k-1) corrections to the full crossing matrices in (5.2·1). 

For the special case of the L(g; h)-degenerate coset correlators (with Lu = L.th and 

•io(/1) = •i•( h)) t hf.' general high-level blocks (;i.l2), (.'i.l3) reduce precisely to the L(g; H)­

degenerate subset of high-level coset blocks computed in (•1.10), (·1.1-1). In the same way, 

the crossing relations (.'i.2·1) reduce in this case to the coset crossing relations in (·1.27). 

5.4 Non-chiral correlators in ICFT 

For t lw grnNal t(g; /1)-degerwrate proce~s. we construct a set of high-level non-chiral 

correlators orsing the dia~onal construction in the s-channel blocks (5.12), 

Vu(!(. y),..., L I B)/ll•/)..,·11 12 + Cl(~·- 2 ) (.'i.2,i) 
111.,\/ 
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which shows trivial monodromy around .IJ = 0. Using til(' crossing relations (:i.l9) \\'('can 

also express this corrdator in terms of u or !-channel blocks 

}iT(y",y)= L IB}~)(Y)m.\112 +0(~·-2 ) (:i.2fia) 
m,.\1 

= L I BW(Y)m.lfl2 + 0(~·- 2 ) (:i.2fib) 
m,.'vl 

which show trivialmonodromy around y = 1 and y = oo respectively. 

The non-chiral correlator can also be expressed in terms of the anal.vtic !-channel 

blocks (5.13a), 

Yu(y",y)= L JBW(Y)m"'lfu(Y)N.\1]2 +0(~·-2 )= 2::JBW(Y)m"'l2 +0(k-2) (5.27) 
m,.\·,,\1 m,.v 

where the last step uses the unitarily (5.13f) of the phase matrix l!u. 

Using completeness and the explicit form of the conformal blocks, we also obtain the 

summed form of the non-chiral correlators 

Yu(y", y) =Tr{[ll + 2L/t,oo(T.,IT,2 ln y" + T.,1T,3 In( 1 - y"))]/9 
(-'l.28a) 

x [D + 2L'itm(T.,1T,2ln y + T.,1T,3 ln(I - y)))} + 0(~·-2 ) 

= Tr[( D+2L'i1,.,.,(T.,1 T,2 ln jy]2 + T.,1T,3 ln]I-yj2
))/9]+0( ~,- 2 ) (5.28b) 

where 10 is the projector onto the C-invariant subspace of 7 1 0 · · · 1)-) 7 1
. The last form 

explicitly shows two of the trivial monodromies, and trivial monodromy around y = oo is 
easily seen following the discussion below eq.(3.41 ). One also sees the expected crossing 

symmetry 
Yu(1- y·, 1- y) = Yu(y",y) (5.2!1) 

when 7 2 ~ 7 3 • We finally note that the general L(g; H)-degenerate correlators (.1.28) 

correctly include the L(g; h)-degenerate coset correlators obtained from (•1..12) when 

ph= 1. 

Using the embedding mat rices (.'i.12d) and the 11-crossing matrices (S.l!lb ), Appendix 

A gives alternate expressions for the blocks and correlators of the L(.q; H)-degenerate 

processes in !CFT. 

6 Blocks and Correlators in SU{3)~ 

As an explicit exam pit> in irrational conformal field theory, we work out here the high-l..,vel 
conformal hlocks anrl non-chiral corrt>lators for a particular L(9; II )-(kgerwrat I? proc..,ss 

in the unitary irration;tl level-family [2·1] 

(Sf/(3),.)~1 (fi.l) 

12 

where :r is the invariant level of Sf/(:1). For simplicity hdow, this construction is oft('n 

called 8/.!(:l)r,. The construction is included in the larger maximally-symmetric ansatz 
for all simply-laced .Q, which was in fact the first set of ICFTs found in the Virasoro 
master equation. The dosely related coset construction SU(3),.fS/J(2)1r, which also 

resides in the maximally-symmetric ansatz, is studied in Appendix U. 

The exact forms of the central charge and the conformal weights of the 3 and 3 
representations under (S/J(3)x )r, are 

2x [ x
2 

- 8x + 17 ] 
c[(SU(3)r)r,J = x + 3 2- \f.lx1 _ 28x3 + 17x2 + 1fi0x 128 (fi.2a) 

c 
~(7jJ)) = ~(7i3J) = fix (6.2b) 

where the 3-fold degenerate conformal weights in (6.2b) strongly suggest that the 3 and 
3 are L(g; II )-degenerate representations. 

As discussed further in Appendix C, the level-family (S/J(3)r)t has a finite group 

symmetry 

IJ(SU(3)~,) = 0 c SU(2);n (6.3) 

where 0 is the octahedral group and S/J(2);,, is the irregularly embedded SU(2) C SU(3). 

The degeneracy of the 3 and 3 is due to the octahedral symmetry of the construc­
t.ion, which mixes all three components of each representation. Thus the 3 and 3 are 

L(SU(3); 0)-degenerate representations in (S/J(3)r)ft, as desired. 

For the high-level computations in (Sf!(3)r)ft below, we need only the high-level 
forms of the inverse inertia tensor (in the Geii-Mann basis) and the degenerate conformal 

weights, 

L(j"" = ~0.6.b 
' Xlf. 

9 
e.= { ~ 

c = 3 + O(x- 1
) 

a= 1,4,6 

a= 3,8,2,5,7 

0( 0 ) 1 -2 ~ 1{JJ) = ~ (7j3) = 
2

x + O(x ) 

(6.4a) 

(6..tb) 

(6..tc) 

which identifies J>•b = 0.6.b as the high-level projector of SU(3)t. Moreover, we will 

c~nsider only the L(S/J(3); D)-degenerate process 3333 in S/J(3)f,, 

7' = 71 = 1(~) ' 72 = 73 = 7j3J (fiJi) 

shown schematically in Fig.3. The matrix irrep of the 3 and 3 in the Geii-Mann basis 

are given by, 
G 

7i3J = v_~~-~ \ 2 , fl 

,\,, = -,\T..., { -,\., 
II -· 

\. 

~ ~(JJ=~A 2 • 

a= 3.8,1,~.fi 

a= 2.~.7 

where A,, a"' I ... 8 ar(' the (;..,11-:\lann matrices. 

:!3 

(6.6a) 

(fi.6h) 



:l 1 

1 :l 

l:'i~. :l. An L(Sf/(:1): 0)-de~enerate correlator in SIJ(:I)f1. 

To compute the high-level blocks in the s-channel, we need t~ solve the eigenvalue 

problem (-'l.!la) for the s-channd 0-invariant eigenvectors •l•(s, 0), which reads in this 

case, 

!-;}- L ..\!..\~ + ~ll],i31/,(s,0);~1 = ~f.,(M)•b(s,O);~' 
X o=1.1.6 X 

1 n(wi) ·0·•1o(s O)M = •{•(s O)M I= 1 2 I o, "t ! .0 . , o ' ' 
i=l 

( 
0 1 0) 

w1 = exp(i?r ..\2/2) = -1 0 0 

0 0 1 

w2 = exp(i7r..\5 /2)exp(i11'..\7/2) = ( ~ 
-1 

-1 0) 0 I 

0 0 

(6.7a) 

(6.7b) 

(6.7c) 

(6.7d) 

The matrices w1 and w2 which appear in the 0-invariance condition (6.7h) may he taken 

as the generators of 0. 

After some al~ehra, one finds the following orthonormal set of s-channel ei~envectors 

t/•(s, 0).\1 and their ei~envalues ~g,(M), 

t/>(s, 0)~. ~ ~6"'"'6">"• ~f.,(ll = 0 

•f•(s, (})~, = 2~[6"'"·'6,,,,,, + Do 1u4 D,.,,., - 2D0102 D0304 Dn 1o3 ] 

tf•(s. 0)?, = :J~[hu,,.,.S"'"' - .16o 1n26,...,.,6,. 1u.,] 

1 
of,,(2) = 2:r 

1 
~Rlll ~ :x,~ 

ri•(s, OJ;: = 2 ~[.S,.,,.,602u 4 - 6,.104 602,.3 ] 

:l 
~f.ll),.., 2;r 

•i·(s. Ol:;, -:- ( •l•(s, OJY )"11'1" = ds. 0);~1 

(6.1la) 

(6.1lb) 

(6.1k) 

(6.Rd) 

(6.R<·) 

wlwr<" the last r<'lation says tllill tlw left and right <'i~<'nv"'·tors <:nincid<' in this rase. 

In WI·T. tlw hi~h-l<'vel f•1sion rul,.s [16.1-1] of th,. hrok~n afr.n,. primari,.s follow tlw 

( 'l<'hsch-C:ordan <:ot:>fr.<:i<·nts oft heir t·orrespondin~ matrix irrr-ps. sn I he s-di<IIIIH'I sho11ld 

:1·1 

show t IJ,. t:>xchan~,. of hroh·n affint:> primary states correspond in~ to thf' vacuum and the 

adjoint l't:'(Hf'sentation, 

10:l=ltr>R+O(k-1) • (6.9) 

lnd.,,.d, thf' first conformal wei~ht in (6.Ra) is thf' conformal wei~ht of the vacuum, and 

the other three high-level conformal Wf>ights in (6.1lb-d) are precisely the hi~h-level form 

of the three de~enerate subsets of broken conformal weights of the adjoint (see Appendix 

C). ' 

Similarly, we can solve for the u and !-channel eigenvectors, which are ~iven by 

•f.(u,O)M = ti'(s,0).\1] 2~3 , ~fu,(M) = ~f.,(M) (6.10a) 

2 
•b(t,0).\1 = 1/>(s,O)Mb~1 , ~"l(M) = :-- ~f.p1J 

.r. 
(6.10b) 

where 2 ,.... :l and 2 ,.... 1 mean respectively a 2 ,.... 0'3 and 02 ,.... a 1 in the explicit 

expressions of the s-channel ei~envectors (6.1!). The result in (6.10a) is in accord with 

(.'i.21) since T 2 "'T3
, so that the u-channel conformal weights are identical to the ones 

in the s-channel. The conformal wei~hts found in the t-channel, 

2 3 _!_ _!_) 
~f.,(M) = (;:, 2x' 2x' 2x (6.11) 

are also in agreement with the conformal weights of broken affine primaries in the known 

high-level fusion rule 

3(>1)3=643+0(k-1
). (6.12) 

In particular, the last value in (6.11) is the completely degenerate conformal weight of 

the :land the first three coincide with the three degenerate subsets (C.llb) of the 6, 

according to the high-level form (C.13a). 

!Jsin~ eq.(5.1!lb), the high-level s-u and s-t 0-crossing matrices are computed from 

the eigenvl'ctors as 

Xo(us)M"' = •/•(u,0)'111b(s,O)·'· = ~ ( 2~ 
6 -2../2 

2/:i 

2/:i -2../2 2v'3) 
3 J6 -3 

J6 ·I J6 
-3 J6 3 

( 

2 2v'3 -2v'2 -2v'3) 
. I 2v'3 3 J6 :l 

Xo(ts).lf"' = tb(t,0)'
11

ti•(s,0)'' = f, _
2

../2 J6 ·I -Jfi 

-2v'3 1 -Jfi 3 

(6.13a) 

(6.13b) 

which are ortho~onal and idempotent matrices in this rase. The third 0-crossing matrix 

.\'n(ul)- .\'ol•ts).\'o(ls) (6.1·1) 

follows from I h~ <'onsisll'ncv rl'lat ion (."1.20). 

:J.-, 



For the crossing of the blocks one also needs the high-level affine-Sugawara nossing 

matrices (3.2!lc) for _q = Sl.!(:l). The p-dmnnel 81/(:l)-invariant eigenvectors and tlw 

corresponding crossing matrices are 

. , " I ' v(s, S/t(3)),. = 36o1o2 Vo3o4 

I 1 
t•(s, Sl/(:1));~ = 

2
V2[6o1o36o,o4 - 36"'"'6"3",] 

t'(u,S/J(3)) = v(s,SI/(3))h~J 

!>(t, 81/(1))~ = 2 ~[fJn 1 n,6<>3<>t + 6,.1036,.,,.,] 

v(t, 8f!(3));, = 2 ~[6"'"'6"3"' - 6"'"36,.,,.,] 

I ( 1 2V'2) Xsup)(us)m" = t'( u, 81J(1))'"v(s, S'IJ(3))" = 3 
2

v-2 _
1 

'(Vii v':l) Xsup)(ts),." = v(t,SU(3))"'v(s,S/J(3))" = 3 J:l -/6 

(6.l:ia) 

(6.1:1b) 

(6.l!lc) 

(6.1:id) 

(6.I.'ie) 

(6.I.'if) 

(6.I5g) 

where the labels V, A stand for vacuum and adjoint irrep, and 11,3 for symmetric and 

antisymmetric irrep. The third _q-crossing matrix is given by Xsli(J)(ut) = Xsr:p)(us) 

X5J(31(ts). 

Finally, we write down the 8 high-levels-channel conformal blocks (5.12) of the 3:i:i3 

correlator in SIJ(1lft, 

B~1(Y)m.\l = e(s, O)m N[l +(~f.)-.!_ ·1 )In y+ (Qf.u)- .!_ ·1) ln(1- y)).v.lf + O(x-2
) (6.16) 

X X 

where (l)N.\1 = 6.~ and 

. (I 0 
e(s, 0),..\1 = v(s, Sl!(1))m1{J(s, 0)·\1 = 

0 
~v'6 0 0 ) 

-~ ~v'fi 
(11.17a) 

0 1 1 3 ) (~f.1 ),v'\f = ~f.p1)6;~ , ~f.)(M) = ~(u)(M) = (O, 2x' 2x' 2:r (6.17b) 

( 

12 -·lv':l () 
1 -·lv':l !J Vii 

(Qf.uJ)N.\1 = :L:Xo(us)sL~f..1 (L)Xo(lls)L.\I = 
12

x 0 Vfi 12 

L () -1 1v'fi 
,~] 
n 

(6.17c) 

Here we have used the alternate expression (A.!J) for the L(_q; H)-degenerate ),locks in 

Appendix A. The 1.1 and !-channel blocks can be computed from tlw s-channel blocks 

:!6 

above using the crossing relation (:i.l~J) and the explicit forms of the nossing matri­

ces Xsr:p)(usJ,XsFpJ(ts) in ((i.l!l), anti Xo(us),Xo(ts) in (6.11). ;vtoreover, using the 

explicit form of the non-analytic phase matrix (;i. t:le) for this process, 

llo(Y).\Is = ~ Xa(ts).,/' exp ( -rri[~?,1 ( L)- ~Jsign(arg( -y))) Xo(ts)Ls + O(x-2
) 

(6.18) 

the analytic t-channel blocks follow from the crossing relation (-1.2·1f) 

llsing (!l.l6a,d-f) we obtain the following limiting behavior as y --+ 0 for the 8 s­

channel blocks (6.111) of this correlator, 

8(•1( ) .\1 ~ l'(•l( M) "f!>(m,.\1)-1/r + 0( -2) 
0 J.l m y-O 0 Ul, l y X , m= V,A , 

~f.1 (V, I)= 0 + O(;r-2
) ~f.1(A, 2) = 2~ + O(x-2

) 

;\.1 = 1,2,3,•1 

(6.1!la) 

(11.I%) 

0 3 -2 0 3 -2 
~(•)(A,1) = 

2
x + O(x ) , ~(•)(A,4) = 

2
x + O(x ) (11.19c) 

(6.I!ld) 

(6.19e) 

~f.1 (V, 2) = 1 + O(x- 1
) , ~f.1 (A, I)= 1 + O(x-1

) 

~f.1(V,3) = O(x0
) , ~f.1(V,4) = O(x0

) 

·(•) ( I ~ J:l 0 0 ) -2 I o (m, M) = 1 rn 1 IE 1 1 IE + O(x ) 
-v2 -v6 -- -v6 1x · 1 2 1 

(6.Inf) 

The explicit form of these residues was obtained using (.'i.II1d), the embedding matrix 

(6.I7a) and the relation c(s,O) = Qf.u)·- ~ ·l. 

The four conformal weights in (6.19b,c) are the broken affine primary states in (6.!1), 

whose residues are O(:r0
) in accord with the general OPE in (2.17). The two conformal 

weights in (6.I!ld) are broken affine secondary states (with residues which are O(x- 1
)) 

which are not necessarily integer descendants of broken affine primary states.· The con­

formal weights in (6.I!Je) cannot be determined through this order because their residues 

1'~1 are zero through O(x- 1 ), aud indeed these entire blocks begin at order O(:r-2 ), 

Bo(y)i-3 
, Bo(Y)v 4 = O(x-2

) (6.20) 

a phenomenon also encountered in the coset example of Appendix D. To see (11.20) directly 

from (6.16) note that, for these blocks, f(s,0),...\1 = 0 and e(s,O)m,v(Qf,u))N.\1 = 0. In 
the u-channel we also find two blocks which begin at O(:r-2 ), while in the !-channel there 

is one such hlock. 

In agreement with (.1.17), the number of blocks for this L(SU(3); G)-degenerate pro­

cess 1s 

/Jo :o 2 ··I= 8 (6.21) 

ll«:'callse of I he inneasing symmel r:v breakdown. 

0 c S/!(2);, c Sll(:l) (6.22) 

:17 



the number (6.21) is larger than the number of blocks 

Bsup) = 2 · 2 = ·I BsF(J)/Sl'(2) = 2 · 3 = 6 (6.23) 

for the same correlator under the affine-Sugawara construction (see Appendix H) and 

the closely related coset construction studied in Appendix 0. Taken together, (6.21) and 

(6.23) are an illustration of the double inequality (5.18). 

Using eqs.(A.l3), (A.l1) we also find the following expression for the high-level non­

chiral correlators of 8U(3)~1 , 

1 1 
Yo(y", y)=L E(s, 0),\/'11 +(~f.)--· I) In IYI2 + (~f.J-- · 1) In II- yj 2].w.lf + O(:r-2

) 
M X X 

(6.2·1a) 

''(•,O)M" ~ D•(•,Oi. M)"•(•,Ol-" ~ (: 

0 0 0 

) 3 -~v'fi 3 
8 8 (6.2-tb) 

-~v'fi I -~v'fi "' ;j 

0 ;! -kv'fi 3 
8 8 

where we have used Xo(us)E(s,O)Xo(us) = E(s,O) and the diagonals-channel con­
formal weight matrix ~f.) is given in (6.17b). This result explicitly shows the crossing 
symmetry (5.29), as it should since 7 2 ~ 7 3 in this case. 

We finally remark that the high-level blocks and correlators of the K-conjugate theory 

SIJ(3)/SU(3)ft L = Lsu(3J- L (6.2!l) 

can be easily obtained from the results above, by substituting everywhere the K-conjugate 
conformal weights A(T) = ~V(T)- ~(7) for the conformal weights ~(T). Moreover. 
the results above can easily be extended to the L(.q; H)-degenerate correlators mi1in in 
the larger family of ICFTs called S'U(n)ft [21]; in this case, the number of H-invariant 

tensors stays the same, with closely analogous forms for all the more general results. 

7 Conclusions 

The generalized I<Z equations of ICFT provide a uniform description of the chiral corre­

lators of rational and irrational conformal field theory, and the solution of these equations 
is known at high level on simple _q. The apparent simplicity of this result is deceptive, 
however, because tlw solution describes a vast variety of generically irral ional conformal 
field theories ranging from the most symmetric (the HCF'l's) to totally asymmetric (the 
generic ICFT). 

In this papf'r. we havt? lwg11n the rt:>sol11tion of the high-lt:>vt:>l chiral corrPiators into 
high-lt:>vel conformal blocks and non-chiral correlators, IJ~?ginning with I hP simplt:>st and 
most symmetric dasses. 

In particular. WI? lwgan loy working o11l tht:> high-lt:>v<•l hlocks and COITPiators of all tlw 

:lR 

• affine-Sugawara construdions on simple _q 

• coset constructions on simple _q. 

Hoth results are new, and the results for the cosets are apparently inaccessible by other 

methods. 

Hased on this analysis, we then identified what we believe to be the sinlplest and 

most symmetric class of correlators in ICFT. These are the 

• L(.q; H)-degenerate processes in 11-invariant CFTs on simple _q 

which are those correlators whose external states have entirely degenerate conformal 

weights ~" = ~- This cla.~s of correlators includes all the affine-Sugawara correlators, 
a highly-symmetric subset of coset correlators and a presumably large set of irrational 

correlators, examples of which are known. 

For this simple class of correlators we were able to find the general expression for the 

high-level blocks and non-chiral correlators, and we worked out an irrational example 
with octahedral symmetry on S'ff(3). 

Our results emphasize that the L(_q; H)-degenerate correlators are a very special class 

of correlators indeed, since they have a finite number of conformal blocks (at least in 
the semi-classical approximation), whereas the generic correlator in ICFT is expected to 
involve an infinite number of blocks. We are intrigued to find that ICFT resembles RCFT 

in this simple domain, and we are optimistic that the simplicity of the L(.q; H)-degenerate 
corrt'lators can provide a foothold for further exploration. 

Additional information is net'ded, however, to go beyond the leading orders of the 
L(_q;IJ)-dt'generate processt's in ICFT. The central question here is whether the number 
of conformal blocks remains finite, as we found in the semi-classical approximation, or 

increases with the order of ~.:-•. ·At finite values of the level, one will also need to consider 

the roles of the affine cutoff [•I,L'i] and fixed-point resolution [25]. 

The more immediate open direction is to find the high-level conformal blocks of 
irrational correlators beyond tht' set of L(.q; H)-degenerate processes. An ever-increasing 

mimher of blocks is expected here as one confronts the progressively larger symmetry 
breakdown of ICFT, signalled by the L"b·broken conformal weights~ ... 

In this direction, we remind the reader of the known singularities of the invariant flat 
connections W which govern tlw exact (finite level) correlators of ICFT. For example, it 

is known that [!l] 

(
11 )A.1 tT 1 )+Ao1 ('T 2 )-A"1 (T 1)-As1 (7') (2£•bT_I7?) {J 

IF(ti, tt),/ _ = -:- ---" b <> 
u,u-0 ft U 

{ 
(!~-;t!:.~!r.' t·~~ + (') ( k -I ) 

= (21/"~o.fn1 ·T,/ )., '1 

u 

(high~-) 

( L(.q: II )-d('gt:>nt:>rate) 

3!1 

(7.la) 

(7.1 b) 

(7.1c) 



wh<'r<' 11 and it ar<' th<' vari<~bles of the theory <~nd its 1\-wnjug<~tf.' theor.v rf'spectivdv. 

Th<' result (7.1<~) shows the apparf'ntly non- Fuchsian n. ;1 depf'ndf'nl shif'lding f<~ctor. 

which is hidden in the high-levd limit (7.Ib), and which simplifies to unity <1t all l<'vPis. 

shown in (7.1c), for the L(.q; H)-deg<'nerate processes. \\'(' believp tlwt this phpnom<'non 

underlies the simplicity of the class of L(.q; H)-degenerate processes in ICFT, <~nd it 

may b<' necessary to consider this factor in the physical interpretation of tlw high-l,..n·l 
logarithmic singularities of cor relators beyond ih<' simple class W<' have wnsidered here. 
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Appendix A: Alternate expressions for blocks and correlators 

In this appendix, we use the relevant crossing matrices to give alternate expressions for 

the conformal blocks and correlators of any set of external states in the affine-Sugawara 
constructions (see Section 3) and of any L(.q; H)-degenerate process in the more general 

1/-invariant CFTs (see Section 5). 

Affine-Sugawara constructions 

We begin with the p-channel affine-Sugawara blocks in (3.27), 

.F!'>(y)m" = v(p, g)m[D + 2L;~00 (7jT,2 ln 11 + 7,;17i,3 1n(l - !l)))v(p, g)"+ O(k-2
) • (A.!) 

Using the definitions (1.2), {1.l.'i) of the q-invariant p-channel eigenvectors v(p,g) and 

the _q-crossing matrices x. in (1.2!lc), we have the q-crossing relations, 

t•(p,g)m = x.(pu),. "v(a,q)n , v(p,q)"' = v(a,qJ"X .• (ap),.'" . (:\.2) 

Using these relations, we obtain the alternate form of the affine-Sugawara hlocks . 

.F,~"l(y) .. .",., [I+ (CJ(_.J- (~"(7 1 ) + ,:l'1(72
)) • l)lny 

( :\ .:l) 

+ (q(,.u)- (~"(7 1 ) + ~·(73 )) ·I) In( I - !1)1.,." + 0(~·- 2 ) 

·10 

wlwre 

( 1 ),/' == h;;, { 
( f1('p) ),.. n = f1(r)( 111 )6;;, 

(Q(,.~>l"'" "' I:, x.(pa),.'f1(~>(/)X.{ap)," 
p=t7 

p-ja 
(A.·I) 

and u(,)(m) ar<' the p-channd affine-Sugawara conformal weights in (1.2) and (1.J.'i). 

We also give the corresponding alternate form of the analytic !-channel affine-Sugawara 
blocks (1.2:\a), 

f!tJ(.v) .. " =[I+ (0(,.) + O(tu)- (M"(7 1
) + f1"(72

) + f1•(73
)) • l)ln(-y) 

+ (%uJ- (f19 (71
) + f1•(7 3

)) • 1) In (I-; )1m"+ O(k-2
) 

=[I- ((J(,,J + (D-"(7 1
)- f19(71

)) ·1)ln(-y) 

(A.iia) 

. ( I) (A .. 'ib) 
+ (Q(tuJ- (f1"(7 1

) + f1•(73
)) ·I) In 1 - y )m" + O(k-2

) 

wherf> Q(,~J• t7 = s, t, u is given in (AA). Here, the second form (A.5b) follows from 
(A .. 'la) using the p=t form of the conformal weight sum rul~>, 

~~.> + X9(pu)~( .. >X.(up) + X9(pr)~(.JX.(rp) = (t. ~·(7i)). 1 , p -1 a -1 r -1 p 

(A.6) 
which is itself a direct consequence of the g-global Ward identity (3.2·1). 

Substitution of the alternate forms (A.3) of the affine-Sugawara blocks in the ex­
pression (3.37) for the affine-Sugawara correlators then gives the corresponding alternate 

form for the non-chiral correlators, 

Y.(y",y) .. 0 = LII + ((J(_.J- (N(7 1
) + ~9(72 )) ·1)ln IYI2 

,,,n 

+ ((J(ru)- (~9(7 1 ) + ~9(73 )) • 1) In II - yl 2)m n t·(p, g);:'v(p,g)~ + O(k-2
) 

(A.7) 
which t'Xplicitly shows tht' trivial monodromies around y = 0, 1 and oo. 

L(.q; H)-degenerate processes 

Following tht' development for the affine-Sugawara constructions above, we may find 

similar altern<~te forms for the blocks and correlators of the gent'ral L(.q; H)-degenerate 

process. 

I' sing the definitions (:i.!l) of the If-invariant t'igenvt'clors ri•(p, 1/) and the H-crossing 
matric<'s Xn in (:"r.l!l), wc have thf" 1/-crossing relations. 

ri•(p, /1).11 = Xn(pa).\1-'"ri•(a./l)s . ri•(p.J/)·11 = ri•(a.II)-'"Xn(ap)s'11 (:\.8) 

.fl 



Using these relations in the expressions (5.12b) for the bloc.ks, we obtain the following 
alternate form of the L(_q; H)-degenerate blocks. 

B(Pl(,) .If= e.(p.H) /11[1 + (Q11 - (IJ, 11 + 1),11 ) ·I) In" II ·' m . m (ps) I 2 ,, 

+ (Q[!u)- (IJ,fl + IJ,~f,) ·1)ln(1- y)]NM + 0(~·-2 ) 
(A.!J) 

where e.(p,H) are the p-channel embedding matrices (5.12d) and 

N N (ll,\.f = fJM , 
11 N- { (IJ,f!J)MN = 1J,f!)(M)6Z 

(Q(I'<'))M - LL Xll(po-) ... /'/),[~)(L)XII(o-p)LN 
' p = 0' 

' p # 0' 
(A.IO) 

with IJ,f!J(M) the p-channel conformal weights in (5.!J). These results include all the 
cor relators of the affine-Sugawara constructions and all the L(g; h)-degenerate processes 
of the _qfh coset constructions. 

We also give the corresponding alternate form for the analytic t-channel blocks 
(5.13a), 

B~~)(y).,M = e(t, H),..N(1 + (Q:~.) + Q:~u)- (M~1 + /),~1 + /),~1 ) • 1) In( -y) 

( 
1) (A.lla) 

+ (Q[{u)- (IJ,f1 + /),~1 ) ·!)In 1- y ]NM + O(k-2
) 

= e(t,H)m"'(1- (Q[{1) + (1J,{1
- /),!1

) ·1)ln(-y) 

+ (Q[{u)- (IJ,{1 + /),~1 ) ·1)ln (1- ;)JNM + O(k-2
) 

(A.llb) 

where Q[{a)• o- = s, t, u is given in (A.lO). Here, the second form (A.Ilb) follows from 
(A.lla) using the p =I form of the conformal weight sum rule in L(.q; H)-degenerate 
processes, 

e.(p, H)(IJ,[!)+Xu(po-)IJ,[~)Xu(o-p) + Xu(pr)IJ,:!)Xu(rp)] 

1 

= e.(p, H) E IJ,[I 
(A.12) 

P#f1#r#p 
i=l 

which is itself a direct consequence of the _q-global Ward identity (5.1.'i). 

Finally, we give the corresponding alternate form of the non-chiral cor relators (.'i.2'i ), 
using the exprf"ssion (A.fl) for the blocks, 

Y(y", y) = L J<,'(p, H)..._,·"[l + (Q[!.)- (IJ,{1 + /),~1 ) · I) In (y(2 

.11,,\' 

+ (Q[!uJ- (6fl + 6~1 ) · l)ln(l- ul2
].,··

11 + O(k-·2 ) 

(:\. J:l) 

whrr<? 

1-:(p.ll)...,-" = 'Eldp.l/)..,'11 )"dp, //).,. ..... (:\.H) 

·12 

This form of the corrclator explicitly shows the trivial monodromies around y = 0, I and 
00. 

Appendix B: Comparison with the blocks of Knizhnik and Zamolodchikov 

In this appendix, we check our high-level affine-Sugawara blocks (:!.12), (3.17) and 

(:l.2:l) against the exact blocks obtained in Ref.(4] for the :!~33 correlator on SU(:l). 

To find the explicit form of our high-level blocks in this case, we need first the high­

level form of the affine-Sugawara construction on .Q = SU(:l), 

L"b - -
1-6 

,q,oo - XtjJ2 ab 
9 

(H.l) 

where V'.• is the highest root of SU(3), x is the invariant level of affine 81/(:l) and we 
have used the Geii-Mann basis. The matrix irreps of the 3 and 3 are given in (6:6) and 
the ~orresponding high-level conformal weights are 

4 2 
IJ,Y(1(JJ) = IJ,9(1(a)) = -3 + O(x- ) 

.x 
(8.2) 

Using the p-channel invariants in (6.l.'Ja-e) in the eigenvalue problems (:l.2a) and (3.15a,b), 
we also obtain the high-level intermediate p-channel affine-primary conformal weights, 

{ 
/),9(1( 1)) = 0 + O(x-2) 

IJ,(P)(m) = IJ,9(1(s)) = ~ + O(x-2) 
m=V 
m=A 

1),9 I - { IJ,•(1(G)) = ~ + O(x-2) 
(t)(n)- /),9(1(3)) = -1; + O(x-2) 

' p = s,u 

m=6 

' m=3 

(8.3a) 

(8.3b) 

where m = (V,A) labels the vacuum and adjoint representations in the sand u-channels 
and m = (6, 3) labels the symmetric and antisymmetric representations in the t-channel. 

Finally, we use the corresponding crossing matrices (6.15f,g) to compute the matrices 
c(p,_q) in (3.12d), (:l.17d) and (:l.23d), 

8 1 ( 0 -2v'2) 
c(s,_q) = c(u,_q) = Xg(su)[IJ,(uJ- :lx ·l]Xg{us) = 3x -:2v'2 -7 (BAa) 

8 1 ( -S :JJ2) 
c(t,_q) = Xg{tu)[IJ,(u)- 3;r ·l]Xg(ut) = 3x ~J2 -2 (HAb) 

where I and IJ,(u) arc defined in (A.-1). \\'ith these data we obtain the explicit form of 
our high-l<>vel blocks for the :tl:l:J corr<>lator, 

(I 0) I ( -R 0) 1 ( 0 
.F!">(y).,.""" o 1 + :~;r n 1 lny + :tr -2v'2 -2J2) ln(1- y) + O(x-2) 

-7 (H.!ia) 

.F,\")(!1 ). .. " = .F,\')(1 - y).,." (U.'ib) 

.J:I 



. (1 0) 1 (10 0) 1 ( -.'i :lv'2) ( I) FJ1>(y).,"= -- ln(-y)+- . . In 1-- +O(;r-2
) 

· 0 1 3x 0 ·I :tr 3v'2 -2 y 
(IUc) 

where m =(\I, A) in (H.5a,b) and m = (6,3) in (H.'ic). The relation (B.:ib) is in accord 

with (3.33c), since 7 2 "' 7 3 in this case. 

We wish to check our high-level blocks (B.5) against the exact results obtained by 

KZ, who, however, use a different basis for the SU(3)-invariant tensors, 

i'~Z(g) = !J(, 1o 2 {Jo304 ' V~Z(g) = {JOIOJ{,0204 (H.fi) 

Comparing these invariants with our Clebsch basis (fi.15a-e) of S'l/(3)-invariants. we learn 

that the basis transformation of our p-channel blocks (B .. i) to the l<Z basis is, 

d,..F!Pl(y)m~ = .FJPl(y),. "Ln~ , 1 ·( ·I 0 ) 
Ln~ = 12 -J2 3J2 

d j:l1l(y) ~ = j:l1l(y) n 1\1 ~ m_q.m g.m n 
1(v'6 v'6) Mn~ = 12 2J3 -2J3 

m= V,A 

, m=6,:l 

p = s,u 

(B. 7a) 

(B. 7b) 

where I' = 1, 2 labels the KZ invariants, the normalization constants d ... are arbitrary 
and the blocks F!•,ul(y) ... ~. f:!1l(y),." are the KZ blocks. More explicitly, our prediction 

for the high-level analytic KZ blocks is then, 

( 
1 0 ) 1 ( -R 0 ) 1 ( 1 -3 ) FJ"'(Y)m" = +;;- lny+;;- ln(1-y)+O(x-2) (H.Ra) 
1 -3 olX 1 -3 •>X 1 21 

F!"1 (y)m~ = F!"1(1- Y)m~ (B.Rb) 

f:Jtl(y)m~ = ( ~ 1 ) 1 ( 10 10 ) 1 ( 1 -11) ( 1) 2 -- ln(-y) +- In I-- + O(x-) 
-1 3x 1 -1 3x 1 5 y 

(U.Rc) 

where we have chosen the particular values of the normalization constants 

I 1 1 I 
dv = ~ , dA = -

6
v'2 , d6 = 

2
J6 , d:i = 

2
,fl (B.!l) 

with some pedagogical foresight. 

To check that these blocks are precisely the high-level limit of the KZ blocks on .'i'li(3), 

WI" recall the exact form of thl' s-channd KZ blocks F!•l(y)m~ on SIJ(3) !-1], 

F!"'(y)v• = y-26•(1;, 1)(1 -y)6•(A)-26•(7(11 lF(.\, -.\,I_ 3-\:y) 

F!"'(.IJ)v2 = ~!/l-26•p;,,J(l- y)-"•f..IJ-2u•(7(,;lF(l +-\,I- .\,2- 3.\:y) 
. X 

.r!•l(y)..ll = !16•(.-IJ-26•(1(,;)(1 - y).:.•(..l)-26•(7.") F(2,\, ·lA, I+ :l.\: y) 

'"' 

(I.UOa) 

(B.IOh) 

(lUCk) 

F!''(!l ) .. 12 == -:ly.:.•(..IJ-2u•(1(,Jl( I - y ).:.•( .. IJ-2u•(1(,,J F(2,\, -L\, 3.\:11) (H. Hid) 

1 3 I 
.:l"(7(~,l = "(· + ") , S''(A) = .:l"(7{8J) = -+ ., .\ = -+, ., .r ,, .r ·• .r ,, 

(B. toe) 

where m = V, A label the vac.uum and adjoint blocks, flY(7( 3)) is the conformal weight 

of the 3, flY(A) is the conformal weight of the adjoint representation and F(a, b, c: y) is 
the hypergeometric function. !Ising the high-level expansions, 

F( a b c ) b .r + d' ;r + f' ;r + / y = 1- ;,r ln(1 - y) + O(x-2) (B.11a) 

. ( a b c ) _2 1· --d, --,1 + --,;y = 1 + O(x ) 
x+ x+t x+ 

(H.llb) 

·( a b c ) a 1· --d, 1 + --,1 + --
1

:11 = 1- -ln(1- y) + O(x-2) 
x+ x+f x+ x 

(B.llc) 

F (1 +_a_ 1 + _b_ 2 + _c_. ) = _ln(1- y) + O(x-•) 
X + d' X + e 

1 
X + J' .1J .1J 

(B. lid) 

one finds that the high-level limit of (B.10) agrees precisely with the predicted form 

in (B.Ra). For the u-channel the check follows the same steps, with the replacement 
y -+ 1 - y everywhere. 

To continue the s-channel KZ blocks (B.10) to the t-channel, one uses the standard 

continuation formula [26) 

F(a, b, c; y) 
1 l'(c)J'(b- a)(-y)-"F(a, 1 _ c+ a, 1- b+ a;-) 

l'(b)l'(c- a) y 

1 l'(c)l'(a- b) ( -y tb F(b, 1 _ c + b, 1 -<I+ b;-) , 
+ l'(a)l'(c- b) · y 

larg( -y )I < 1r 

(B.12) 
According to the expansions ( H.ll ), the high-level limit of this formula in the cases of 
all four blocks in (B.10) is 

In( 1 - y) = In( -y) + In ( 1 - ~) larg( -y )I < 1r (B.13) 

and this limit is identical to the first continuation rule (3.20a) used in the text. To 

continue the factors in front of the hypergeometric functions, we use the relations 

( 1 - y )" = ( -y )" ( 1 - ; ) " (IJ.l.la) 

y11
"' ( -y)0 exp[-irrf1sign(arg( -y))j (H. l-Ib) 

.which arl' equival<>nt. finitt· forms of th<> continuation rules (3.20a.b). 

·l!'i 



Factoring out the non-analytic phases generated by (B.Hb) (which then appear in the 

crossing matrices to the !-channel),\\'(' lind the finite-level form of the analytic t-channel 

KZ blocks, 

F.~<l(y)6 1 =(-y)-6'(7i•,) I-! F(·IL\,1+2.\;!) ( ) 

6 4 (..1)-26'(1(,,) 

. y y 
(B.I!la) 

j~ 1>(y)62 = ( -yt6 '17i•>> I- - F(•l.\, l + .\, l + 2.\;!) (

, I) 6'(A)-26'(1( 31 ) 

y y 
( l:l.l.'lb) 

i~1'Cvh 1 = ( -ytt.<17i,,> l-! F(2.\, -.\, 1 - 2.\:!) ( ) 

6'(.-1)-26'(1(,,) 

. y . y (B.1!lc) 

j-~ 1>(y)J 2 = -( -y)-6 '(1(,,> 1 -! F(2.\, 1 - .\, 1 - 2,\;!) 
( )

6'(A)-26'(1( 31 ) 

. y y 
(U.l!id) 

10 1 1 
£\"(7(6)) = :l(.~ + :l) ' N(7(J)) = N(7(j)) = :l(x + 3) ' ,\ = x + :l (U.1!ie) 

The high-level forms of these blocks agree precisely with our prediction (B.!Jc). 

For completeness, we finally give the finite-level forms of the s-channel blocks Fj•l(y )., " 
in our Clebsch basis, 

.rJ•l(y )v v = ,~~-26'(7(3>>( 1 _ Y )6'(A)-26'(7i3>) F( .\, -.\, _ 3,\; Y) (B.lfia) 

..-h)( ) ,\ = 2v'2.\ yl-2l>'(1(,,)(1 - y)6'(A)-26 '(1(,,) F(l + ,\ 1 - ,\ 2- 3.\: y) (I:U6b) 
.r;, y v :J( 1 _ :J,\) . ' ' 

_r~•l(y)A'\ = y6'(A)-26'(1(31)(1- y)6'(A)-26 9(1(,,)F(2.\,·I.\,:J.\;y) (ll.loc) 

-r(•)( ) v = 2v'2.\ 1+6'(A)-26'(1(,,)(1- y)6'(.1)-26 9 (7(,,) F(1 + 2.\, 1 +.f.\, 2 + 1.\: y) 
.r• y A 3(1 + 3,\)y 

1 
£\•(7(.J)) = 3(x + 3) ' 

3 
f.\•(A)=6•(7(s))= x+:J ' ,\ = _1 

x+:J 

(B.16d) 

(B.16e) 

which are easily obtained from the s-channel KZ blocks (B.lO) and the basis transforma­

tion (B.7a). The basis transformation gives two of these blocks as linear combinations of 

two hypergeomf'tric functions, which we have then combined into a single hypergeometric 

function using Gauss' contiguous relations. 

The exact blocks (B.16) also show quite explicitly the high-level pattern discussed in 

the text for tho> general affino>-Sugawara blocks in our Clf'bsch basis: the diagonal blocks 

begin at order O(k0 ) with leading singularities which are affine primary states, while the 

off-diagonal blo~:ks begin at O(k-1) with leading singularitif's which arf' affine secondarv 

slates. :'vloreovrr, one sees that tllf' conjeclmf'd result p.H) for the exact wnformal 

weights of the generall,locks is indeed correct in this case. 

Appendix C: The level-families SU(3)t and SU(3)/Sll(2); 1r 

·lfi 

In I his appendix WP rPview I2·Ll7! various results for the unitary irral ionallevel-family 

(8/J(:J)r)~l 

and the closely-related levd-family of thf' coset construction 

SI!(:J) 8/J(:J).., 

S'l/(2);rr = SIJ(2)1x 

(C.1) 

(C.2) 

both of which occur in lhf' maximally-symmetric ansatz on Sf!(:J). Sf/(2);" denotes the 

irregularly embedded SfJ(2) subgroup of Sf!(:J) generated by -h.5.7 . The results given 

here are used in Section 6 and Appendix D. 

In the (Cartesian) Geii-Mann basis (6.6), the maximally-symmetric construction 

( 8/J(:J)x )~1 has the form 12·1! 

nb l f r L = ""72 aOab ' 
1/.',q l

ee a=:J,R 
e. = fh a = 2, 5, 7 

C, a= 1,·1,6 

1' = ~ :lfc<.!~ + .1:) + eh(J~ + .1~ + .m + q.1~ + .11 + .1;)1 : 
1/'g 

c= x(2ec + 3fh + 3e,) 

(C.3a) 

(C.3b) 

(C.3c) 

where T is the stress tensor, ~·9 is the highest root of SU(3), x is the affine level and 

c is the central charge. The exact form of c is given in (6.2a), but we refer to 124) for 

the exactd forms of the coefficients fc,h,r· The construction above includes the coset 

construction 8f!(:l)/Sf/(2);rr as a special case when the further symmetry relation 

fc = r, = fgfh (CA) 

is obeyed. 

S/l(:J)~r is an H -invariant CFT with symmetry group 117) 

H(Sf/(3)~1 ) = 0 = octahedral group C Sf!(2);rr (C.5) 

where 0 is the octahedral group (rotational symmetry group of the cube, with order 

24) and SfJ(2);rr is the irregular embedding of SU(2) in Sf!(3). The octahedral group 

includes the elements 

11(2) = exp(i ~ . .11(0)) . 11(~) ""exp(i ~.15 (0)) , 11(7) = exp(i ~./7(0)) (C.6) 
v~ v~ v~ 

wlwre .1.,(0) are the zero modes of the ('llfl'f'nls ./,,and in parti('l1lar we may take the two 

elemf'nls w1 and "-'2· 

"-'1 ~ nP> . "-'2 = n,~>nF> (C.7) 

rlTiw rdation tn thr no1.1linn nf l!o-L(2·1j is r, = ~.\. (h = (L_- l.d/2 and r, = (l._ + L+)/2. 
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which satisfy 

wl
1 =I i.<!~ =I 

WJ\.4..'i\.4.'1 == (A..'2 WJ\.4..'2\.4-'J = i.A..'-zW:\.1.,'2 

as the generators of the octahedral group. 

The coset constrndion Sf.!(:l)/SU(2);,, has the larger Lie group symmetry 

J/(Sf/(3)/SU(2);,,) = Sf.!(2); .. 

because of the symmetry relation (CA). 

(C.ll<~) 

(C.Rh) 

(C.!!) 

The 3 and 3 are L(q: H)-degenerate irreps of Sf/(3)f1 and SfJ(:J){Sf!(2); .. with com-

pletely degenerate conformal weights, ' 

c 
~(?(Jj) = t.(?(j)) = 6;r (:J) (C.IO) 

where the number in parentheses denotes the degeneracy. 

For (SU('J)z )f1 one also finds the L•b-broken conformal weights of the 8 (adjoint) and 

6 (symmetric), 

l 
fc + ~('Jfh + f,) (3) 

t.(?(s))= ~(;h+f,) (2) (C.11a) 

fc+2(fh+3f,) (3) 

l 
~(2fc + :Jf,) 

t.(?(&)) = t.(7(6)) = ~ec + wh + l',) 
~ec + weh + l',) 

(I) 

(:J) 

(2) 

(C.l1b) 

These forms show that the Rand the 6 each split into three subsets of degenerate weights, 

in agreement with the block analysis of Section 6. 

For SU(:!)r/Sfi(2)4 .. the splitting is reduced to two subsets, 

{ 
wh + e.,h) 

t..1~.(7(s,) = ~(eh + se.
1
h) 

(:i) 

(:J) 

{ 

~l'qfl· 
t..1,,(1(s)) = t..,~.(?(.;,) = ~fh + !J;e.,,, 

(I) 

(.'i) 

(C.l2a) 

(C.12b) 

according to (CA) and ( C.l1 ). These forms are in agreement with the coset block analysis 

of Appendix D. 

For the compul<~tions of Section 6 and Appendix U, WI" need the high-l<'v<'l forms of 

the two constructions. 

( "1'(1) )# · 1· - I 0(· - 2 ) I' - f· - "J(: - 2 ) -'I 0( - 1) .-. .. • J' .\1 . , -· + .r ,. . . 1. - 1.. .r . . c . . + .r 
;r 

( C'. I:lil) 

Sf.!(:JL. 1 
C.,'f!('') : 1.,,, = :- + O(;r-2) 1',; = O(.r-2) . ,. ~ .j + O(.;r-1) 
• · L. ·tJ· .r 

(<'.l:Jh) 

·IR 

which c<~n be u~ed with (C.!O). (C.! I) and (C.I2) to obt<~in the high-level forms of all 
the qu<~ntities discussed in this appendix. 

Appendix D: Blocks and correlators in SU(3)/SU(2);,T 

As an explicit example in rational conformal field theory, we work out in this appendix 

the high-level conformal blocks and c01·relators of a particular L(.q: h)-degenerate process 
in the level-family of the coset construction 

.Q SfJ(3)x 
h = S'fi(2)4r 

SU(:J) 
SU(2); .. 

which is included in the family of coset examples (•I.:JRa). 

(D.1) 

This level-family has the Lie symmetry SU(2);11 , and the 3 and 3 representations are 
L(SU(:J); .'il/(2); .. )-degenerate. 

For the high-level computations in SfJ(3)/SfJ(2); .. below, we need the high-level 
form of the inverse inertia tensor (in the Geii-Mann basis) and the degenerate conformal 

weights, 
ab 1 {1 a=3,R,1,·1,6 

Lq/h 00 = ----;-;;Oa6ab , 00 = 
. ' Xl1!q 0 a = 2, .5, 7 

(U.2a) 

l h. /h 5 2 
t.• (7(.11) = t,Y (7(3)) = 

6
x + O(x- ) (U.2b) 

and we will consider here the same process, that is 3333, which we studied for the 

affine-Sugawara construction and the irrational construction SU('J)f1 in Appendix Hand 

Section 6 respectively. 

To wmpute the high-level blocks in the s-channel, we need to determine the s-channel 

eigenvectors •b(s, S'U(2)) from the eigenvalue problen't (.'l.!J), which reads in this case, 

[-_!_ "' ..\ 1 ..\2 + .'i llj '1 li•(s ~f!(2))M = t.•lh(M)tb(s ~ff(2))M 
2:r L...:s " a :lr n '' ,. {1 (s) . ' ' n 

n= 1,4.6 

(U.3a) 

4 

I:(..\:,),,J\i•(s,SU(2))~::::o, a=2,5,1. (U.3b) 

•=• 
Here we have usl"d the properties (6.6b) of thl" Cell-Mann matrices, and the global con­
dition (D.:lb) enforces lh<' Sf/(2); .. -invari<~nce of the coset construction. 

Aflf'r somf' algehril, I he following orthonormal set of s-channel eigenvectors is found 

I 
ri•(s. Sf!(2)),', .,., ~.S.,,.,,6.,,., 4 s~f;"(l l = o (D..Ia) 

I ., 
1i'(S! ,C,'f!(2))~ = 2 ~{h,.,<. 1 1iu 1n 4 + bup•th<t 1n,1 - i6n,<t 1t\t3u4 ] ·"''' . 3 ~( 1 (:2) = - (D.·lh) 

• 2;r 

-1!1 



oi•(s, Sf.!(2))], = 2 ~!6,.,,.,6,.,"' - 6.,,.,,6.,,.,,] c."'\1) =- _2_ 
(s) 2;r (I He) 

oJ.(s, S'f!(2ll~i1 = (•!·(s, SU(2));~'l"•I,J" = •i•(s, Sl/(2));~' (U.td) 

where the last relation says that the l~ft and right eigenvectors coincide in this case. 

The results (UA) are in agreement with th~ high-l~vel fusion rule (fl.!J); in particular, 

the conformal weight in (U.·la) corresponds to the vacuum, while the r~maining two 

weights in (U.·Ib,c) are the high-level form of th~ two degenerati.• sul.osds of tlw cosl't­

broken conformal weights of the adjoint (see eqs.(C.!2a) and (C.I:lb)). 

Similarly, we can solve for the u and t-chanrwl eigenvectors. which are givl'n by 

!}•(u, S'U(2)).11 = rfo(s, 81!(2))"'12-~ , !).j(.~(M) = C.(!tU•J) (I).!) a) 

of,(t, SU(2))M = t/•(s, SU(2))Mh~1 , !).~!h(M) = ~ _ /),~/h(·\1) 
(I) 3x (•) ' (!Lib) 

where 2 +--> 3 and 2 +--> ·I mean o 2 +--> o 3 and o 2 .._. n 1 in the explicit expressions (DA) 

for the s-channel eigenvectors. Since 7 2 "' 7 1, the result in (U . .'ia) is a sp<:'cial cas<:' of 

(:i.21) and the u-channel conformal weights are identical to those in the s-channel. The 

conformal weights of the t-channel, 

10 11 ..:!__) 
!).j[)hU•I) = ( 3x' 6x' 6x ( U.6) 

are also in agreement with the coset-broken conformal weights of the high-lf'vd fusion 

rule (6.12). In particular, the last value is tlrf' completely degenerate conformal weight 

of the ~ and the first two coincide with the two degenerate subsets (C.I2b) of the 6, 
according to the high-level form (C.l:1b). 

(Ising (.'U9h), the SIJ(2)-crossing matrices are computed from the eigenv<:'clors as 

( 

2 2v'S 

XsF(2J(us).lf''. = •i>(u, SU(2))'11rl•(s, S/i(2)).v = ~ 2-fi" I • 

2vf:l -v'IK 

21/'3 ) -v'IK 
:1 

Xsq2)(ts).11''. = ri•(t, Sf.!(2))'11 r/•(s, .'W(2))''. == ~ ( 2~ 
-21/'3 

20\ -2~) 
I /l.'i 

v'iK :1 

(D.7a) 

(D.7b) 

which are orthogonal and idf'mpotent matrices in this case. Th~ third crossing matrix 

Xst:( 2 )(ut) = XsF(2)(us)Xsr:( 2)(ts) follows from th~ consistency relations ('i.20). 

Finally, we us~ tlw .'i/!(:1) eigenvectors (6.1,i) and the alternat<' <:'X(H<'ssion ( :\.9) for 

the g<'n<:'ral L(q; II )-rl~g~nerate blocks to writ<' down th~ () s-channel cos<'( hlod;s oft hi' 

:1.1:1.1 correlalor in ,C,'I/(:I)f.'i/!(2);,,. 

<;~.(!f).,, ·11 = r(8. rtf h).,, ·'·p + (~l'!t - .
1
-i · I) In !I+ ICJ(!.:•l- .

1
'i · I) In( I - !1 )]s'11 + O(.r-l) 

.. r .. r 
( D.X) 

,j() 

wh~re (I )s·11 -= t.:~! and 

(
I 0 0 ) 

r(s._qfh).,,·'''"" v(s,S/i(1))"'o!•(s,Sf.!(2))'11 = 
0 

~v'IO ~Jfi · 

(C._qfh) .·" = !).·qf''(M)6·'! . S''h(,VJ) = b,:qfh(M) = (0 .2__ .'i) 
(•) .'\ (•) ·' · (•) (u) '2;r · 2r 

( 

20 --t./5 
(CJ(!,:'))s.ll = ~ X.sF(2)(us).,/!).(!,;'(L)Xsq2)(us}L.u = l~x -·1./5 1:1 

' 0 -3Vi5 

(U.!Ja) 

(U.!Jb) 

-:1~). 
15 
(U.9c) 

The u and t-channel blocks can be computed from the s-channel blocks above using 

the crossing relation (5.1!Ja) and the explicit forms of the crossing matrices Xsu(J)(us), 

X.sq3)(ts) in (6.1-1) and Xsq2J(us),Xsu(2J(ts) in (U.7) . .Moreover, using the explicit form 

of the non-analytic phas(' matrix (-1.13e) for this process, 

l!qfh(.IJ) ... /' = L Xsu(2J(ts)A/ exp (-7ri!S(!)h(L)- ~i ]sign(arg( -y))) Xsu(2J(ts)/.-
L ,,;r. 

(0.10) 
+O(x-2

) 

the analytic !-channel blocks follow from the crossing relation (5.21£) 

lJsing (;'l.l6a,d) we obtain the following limiting behavior as y --+ 0 for the 6 s-channel 

blocks (U.S) of this correlator, 

C(~) ( ) M ~ r<•J ( ~~) t>7!t(m,M)-5/3r + "'( -2) 
9/lo .If '" y-O .o/h m, I y V X ' m= V,A , ll.,f = 1,2,3 

(U.lla) 

C.(flh( \',I) = 0 + O(x-2
) , 9/h ) - :1 "'( -2) /),(•) (A. 2 -· 2,r + v x 

gfh 5 -2 
!).<•> (A,3) = -

2 
+ O(;r ) 

X 

(D.llb) 

S(!tW-2)=1+0(r- 1
) , !).(ft(A,1)=1+0(x-') (U.llc) 

C.(!tw 3) = O(;r0
) (U.lld) 

I·(•) ( 'f) ( 1 -1;./5 0 ) "'( -2) 
.•flo 111,1• = 5 r;:; I rin I IE +v X 

12r v2 ~v 10 1v6 
(D. lie) 

The explicit form of the residues was obtained using (;i.i6d), the embedding matrix 

(D.!Ja) and the relation c(s,qfh) = CJ(!.~)- i- I. 

The thr<:'e conformal weights in ( U.ll b) are hrok<:'n affine primary states and the two in 
(D. lie) are broken affin~ secondarv states which are not necessarily integer descendants 

of brokPn affirw primary states. The conformal W<:'ight in (D. lid) cannot he determined 

( hrough this ordPr hecaOIS(' f (J(' WsidU(' of the corr<:'sponding block Cqfh(.'lh' 3
, and the block 

its<'lf. is zt•ro through ord~r O(.r- 1 ). so this hlork hegins at O(.r-2 ). To see this directly 

from (lUll note that for lhis hlock c(•-!7/h)..,-11 ~ 0 and r(s.<J/h).,·'·(q~~~~lh·11 = 0. We 
also lind on<' hind; which lwgins at O(.r-l) in th~ u-chann<'l and in tlw !-channel. 

,jl 



In accord with (-1.1!1). the number of blocks in this process is 

Hsr:p)/SF(2) = 2 · :l = 6 (1).12) 

while the same process under the affine-Sugawara wnstruction on Sl/(:l) and the ina· 
tiona! wnstruction Sf!(:l)r, showed ·I and 8 blocks respectively. This is in acwrd with the 

double ine<JUality CU8) and the increasing symmetry breakdown 0 c 8fJ(2)irr c S'f.'(:l) 

of the three constructions. 

Using eqs.(A.l3), (A.l-1), we also find the following expression for the high-level non· 

chiral correlators of SU(:I)fSU(2); • ., 

. " 
Y. ( • ) """'·'( /h) \J[ ("q/h 'l )I I 12 ( y/h . .J )I I 121 If -2 q/h y ,y =Ttr, s,_q .1-t' 1+ u·(•) -

3
x-1 n y + ~-(•) -

3
x·1 n 1-y .If· +O(:r ) 

(0.13a) 

(

I o o~ ) 
t.:(s,_qfh).\f·'· = 2Je(s,_qfh)m.\1)"e(s,_qfh)m''" = 0 ~ ~y'i5 

"' 0 ~v'I3 . ~ 
(0.13b) 

where we have used Xsr:(21(us)E(s,_q/h)Xsq2)(us) = E(s,_qfh) and where the diagonal 
s-channel conformal weight matrix ~(!1h is given in (0.%). This result explicitly shows 
the crossing symmetry (5.29), as it should since 7 2 ""73 in this case. 
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