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ABSTRACT
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field theory. Starling from the known high-level solution of these equations,
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from these cases, we then identify a simple class of irrational processes whose
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1 Introduction

In recent vears we have learned that the generic conformal field theorv has irrational
central charge, even when the theory is unitary. The study of this subject is called
irrational conformal field theorv (1CHT), which properly includes rational conformal field
theory (RCFT) as a small subspace,

ICFT 55 RCFT (1.1

where RCFT is understood here as the affine-Sugawara {1-6] and coset constructions
[1,2,7,8]. A comprehensive review of ICFT is found in Ref.[9].

The foundation of ICFT is affine Lie algebra [10,1] and the general affine-Virasoro
construction [11,12],
T=L"0 2 (1.2)

on the currents J,, a = 1...dimg of the general affine algebra. The construction (1.2)
is summarized by the Virasoro master equation [11,12] for the inverse inertia tensor L,
and the system may be understood as a conformal spinning top.

The solutions of the master equation show a symmetry hierarchy [13] in ICFT,
ICFT DD H-invariant CFTs DD Lie h-invariant CFT's 5D RCFT (1.3)

where the H-invariant. CF'Ts, which are also generically irrational, include all theories
with a symmetry H, where H may be a finite group or a Lie group. In this hierarchy,
the RCFTs are understood as special cases of exceptionally high symmetry, with ever-
increasing symmetry breakdown to the left. ‘The generic ICFT' is completely asvmmetric.

The central computational tools of the subject are the generalized Knizhnik-Zamolod-
chikov (K7) equations of ICF'T [14], which provide a unified description of rational and
irrational conformal field theory, including powerful new tools for RCF'I'. In particular,
the recent solution of these equations for the general coset correlators [15,16,11] appears
to be inaccessible by other methods.

Moreover, the semi-classical or high-level solution of the generalized K7 equations has
been known for some time, providing a uniform and apparently simple description of all
ICHT 5D RCET on simple g. The high-level solution is deceptively simple, however, he-
cause it is expressed in a Lie algebra basis, which is not the block basis in which conformal
hlocks are conventionally expressed, and it is only in solving the general problem.

o Lie algebra basis — block basis

that one confronts the full complexity of the ever-increasing svmmetry hreakdown of
ICET.
In this paper we begin the study of the known high-level solutions. obtaining the

high-level conformal blocks and non-chiral correlators of the simplest and most svinmetric

cases,

In particular, we will first find closed-form expressions for the high-level conformal
blocks and correlators of all the affine-Sugawara and coset constructions. Both results

are npew,

Using intuition gained in this analysis, we then identify what we believe to be the
simplest and most symmetric class of correlators in ICFT, which we call

o the L(g: H)-degenerate processes in the H-invariant CF'T's.

This is the set of correlators each of whose external states has completely degenerate con-
formal weights. 'I'he set includes all the affine-Sugawara correlators, a highly-symmetric
set of coset correlators and a presumably large set of irrational correlators, examples of
which are known. For this class of processes, we are also able to find general expres-
sions for the high-level conformal blocks and non-chiral correlators, and we discuss an
irrational example with octahedral symmetry in some detail.

2 The High-Level Chiral Correlators of ICFT

Our starting point is the set of high-level four-point chiral correlators of ICFT,

Y () = edl4 2L2(T TP Iny + T,' T In(1 — 9))]s° + O(k™%) (2.1a)
b ,)nb .
Loo:ﬁ , ab=1...dimg (2.1b)

on simple® compact G, where G is the Lie group whose algebra is g, and k is the level
of affine g. These correlators were conjectured in Ref.[15], derived in Ref.[16], and were
also obtained as solutions of the generalized Knizhnik-Zamolodchikov (KZ) equations of

ICFT in Ref.|14].

In what follows, we discuss the conventions, notation and concepts involved in the
result (2.1).
A. Logarithms. The variable y in (2.1a) is complex, and the logarithms in (2.1a) are
defined with natural cuts: Iny is defined for |arg(y)| < =, with its cut to the left, and
In(1 — y) is defined for |arg(l — y)| < 7 (or equivalently Jarg(—y)] < #), with its cut to
the right for y > 1.
B. Inverse inertia tensors. The symmetric matrix L2 in (2.1a.b) is the high-level form
L — L, of the inverse inertia tensor of any high-level smooth solution of the Virasoro
master equation. The matrix ’**, which must solve the relation [17,18)

Pyt = pet (2.2)

is the high-level projector of the £, theory and 1, is the Killing metric of g. The high-level
central charge of the theory is of L) ~ rank /I’.

*The chiral correlators (2.1) and the results of this paper also apply to ICFT on semisimple compact

g =4yy withbky =k VI



The chiral correlators {2.1) provide a uniform high-level description of the rational
and irrational conformal field theories on g. including

I);b - 7’ub , 1):/1)’. — l):b _ I)Illlb (.2:;)

for the affine-Sugawara and coset constructions respectively, where 3** is the inverse
Killing metric of g. More generally, the projectors I’ are closely related to the adjacency
matrices of graph theory [19] and generalized graph theory [20] in the partial classification
of ICF'T. For example, one has [19]

Piwt = 0ia(Ga¥oism » 1<1<yj<n , 1<k<i<n (2.1)

in the graph theory ansatz on SO(n). where a = (i7) is the adjoint index and 8(G,,) is the
adjacency matrix of any graph G, of order n. The level-families classified by the graphs
and generalized graphs are generically unitary and irrational on non-negative integer
levels of the affine algebras.

C. Matrix irreps. The matrices

(Tha , aifi=1..dimT |, i=1...1 @5
are irreducible matrix representations (irreps) of g, which satisfy
1T ) =ifaTe , a,be=1...dimg (2.6)

where f,;° are the structure constants of g. The labels @, 3,. .. are composite indices, e.g.
a = (aja2a304), and multiplication of irreps is by tensor product, so that

()8 = 68 = 621682553681 (2.7a)
(THe” = (T))a," 822653821 (2.7h)
(T T)a? = (T)e, " (T ), 2823600 (2.7¢)

D. Broken affine primary fields. The chiral correlators (2.1) may be understood schemat-
ically as the high-level form of the averages

Yi ~ (RE(TYRE(TRP(TRINTY) (2.8)

where R§(T). a = 1...dimT is the broken affine primary field of the L theory cor-
responding to irrep 7 of g. The correlators are written assuming an L-basis [15] for
each T, where the conformal weight matrix of the hroken affine primary field 15 (77) is
diagonal.

(LTT)> = e TWE 0 Aa(TY =0 . (29)

Fig.1 shows our conventions for the s and t-channels of the correlators, and the 13 channel

is the u-channel.

2 ( 3
S
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Fig. 1. The correlators.

In ICFI, broken affine primary states are the only states whose conformal weights
are O(k~'). In the affine-Sugawara constructions, conformal weights of the form integer
plus O(k~!) are integer descendants of affine primary states, but this is not necessarily
true for the coset constructions® and beyond, where we know only that the corresponding
states are broken affine secondary.

E. Global Ward identity. The objects v are arbitrary linear combinations of g-invariant
tensors of 7! @ --- ® T, which satisfy the g-global Ward identity,

ﬁf(zz‘)p":(] , a=1...dimg . (2.10)

F. Hermiticity. The matrix irreps 7, satisfy the hermiticity condition,
T =0T (2.11a)
(T))a® = aet™ (T2)o™" (2.11b)

where star is complex conjugation and nap = 1, is the carrier space metric of irrep 7.
Moreover, we will consider only unitary theories (non-negative integer level of the affine
algebra and L'(m) = L(—m)), for which the inverse inertia tensor satisfies

L = L) (212)
and similarly for L. It follows that all the matrices in (2.1) are hermitean, e.g.
CLATT)) = 2LLT' T (2.13)

with orthonormal, complete sets of eigenvectors and real eigenvalues.
G. SL(2.IR) gauge. The chiral correlators (2.1) are given in the 2-3 symmetric KZ gauge

l’l]v ’

4 -~
vew) = (I1=3)A%z, 5. 23,20) gy = == (2.11a)
i< <1432
M2=n3=0 . = 2;’3,,, B 3 B Au. + A(v; + Agy — A(,‘ (21'“))

"See for example the conformal weights of Ref.[15] under the coset construction (STi(n), x
SU0 ), )/ ST (), ya, when ky = ko = k.

o



V24 = "A(n + Aoz - A(v; + Au. s T = ‘“Aul - Au; + Au] + A(u (QI'C)

where A“(z) are the non-invariant chiral four-point correlators.

H. Limiting behavior. For any conformal field theory in the K7 gauge, the conformal
weights Ag), Aqy and A of the s, u and t-channel intermediate states appear in the
limiting behavior,

yA(l)"Aol (Tl)..Ao?(’]'?) , Yo 0
Yo(y) ~ (1 - y)A(\I)_AO|(T|)"AOJ(T“) , y—1 . (2.15)
1\ Bey+Bay (T =80y (T4 .
) L ¥ oo
Here, we will use these facts in the high-level form
Y021 T=802(T) = | (AL(T) + Auy(TH)) Iny + O(k?) (2.16)

where we have recalled that the conformal weights of the broken affine primary fields are
O(k~h). :

1. High-level OPEs. In Ref.[16,14], it was shown that the high-level chiral correlators
(2.1) have physical singularities in all channels, and that the high-level fusion rules among
the broken affine primaries follow the Clebsch-Gordan coefficients of their corresponding
matrix irreps. In further detail, the high-level OPEs of the broken affine primaries can
be written schematically as

L2, T 4 Ok ) er, (T w)™
2 — w)Ba1 (T)+8ay (T)-8a,(T)

R(T', ) R(T?, w)? = Z[C(T'

(2.17)
+ O(k") - (broken affine secondaries)

where the level-independent tensor C{T", T2, T%) is proportional to the Clebsch-Gordan
coeflicients and the broken affine secondaries enter only at the next order of the high-level
expansion.

Svmmetry hierarchy in [CFT

‘The high-level correlators (2.1) provide a uniform description of all ICFT' on simple
g, which is a bewildering variety [9} of theories and correlators. In this paper we make
the first attempt to identify simpler, more symmetric correlators among these varieties.

‘Towards this end, we remind the reader of the symmetry hierarchy [13] in ICFT,
ICFT DD H-invariant CFI's DD Lie A-invariant CF'I's D> RCFT (2.18)

which organizes the space of ICFTs on (i according to the residual svmmetry group H C
(7 of the theory. As seen in this hierarchy, the generic ICIT has no residunal symmetry
group®, and these generic theories are expected to be the most complex. Consequently,
we focus here on the theories with a svmmetry, which are also generically irrational.

In the graph theory ansatz {19] on SO{n). whose high-level projectors are given in (2.4). this
corresponds to the fact that the generie graph has no symmetry.

6

The set of all ICFT's with a non-trivial symmetry group H (which may be a discrete
subgroup of G or a Lie subgroup) is called the set of H-invariant CF'I's. Among the
H-invariant CF'Ts, the subspace of theories with a Lie symmetry is called the set of Lie
h-invariant CF'l's, where A C g. This subspace includes the affine-Sugawara and coset
constructions as a much smaller subspace. '

When a theory L is an H-invariant CFT', the correlators (2.1) also satisfy the global
H-invariance condition,

1
YaQUH) =Yy , UM eC , QH)" =[] UH, T, (2.19)
=1
where Q(H,T%),,™ is the subgroup H in matrix irrep 7°. When the theory is a Lie
h-invariant CFT, the condition (2.19) reduces to the h-global Ward identity

. .
Yier) 7, =0 , a=1...dimh {2.20)
i=1
which applies for example in the cases of the affine-Sugawara construction (with h = g)
and the g/h coset constructions.

For the affine-Sugawara and g/h coset constructions, it is known {4,15] that the res-
olution of chiral correlators into conformal blocks is a basis change from the Lie algebra
basis to the block basis, using the h-invariant tensors defined by (2.20). More generally,
one expects that the H-invariant tensors defined by (2.19) will play an analogous role in
finding the block bases of the H-invariant CFTs.

3 The Affine-Sugawara Constructions

3.1 The affine-Sugawara blocks

‘F'he simplest and most symmetric conformal field theories are the affine-Sugawara con-
structions {1-6] on G, whose high-level correlators are described by (2.1) with

ab
a ”
Ly, = oF (3.1a)
4
YT/ =0 ., a=1...dimg (3.1b)
=1

’,;"' = 9™ is the inverse Killing metric of g. In this case, the correlators (2.1) are

the high-level solutions of the K7 equations [3,4] for any correlator on simple g.

where [

m

We begin by defining the s-channel block basis of g-invariants v(s. g)" as the solutions

of the simultaneous eigenvalue problem and g-global condition

g L o

(210 7"7;,2)‘."'1'(5,9):;‘ - (Ai’s,)(m) - A-"(T') - A"(TQ))v(s.g)"' (3.2a)



4 ’
SUTH (s, 9)p =0 . a=1...dimg . (3.2)
=1

The g-global condition (3.2b) is compatible with the eigenvalue problem hecause the
generators Yo, 7. commute with LT !T2. Here AYT?), i = 1,2 arc the high-level
forms of the conformal weights of external affine primary states,

_ T _ 1T

Ao TL=t, = AYTY) =220 4 0@ C (3.3a)
x+h €T
= ;2% (3.3h)
g

whete 1, h, 1(T) and « are respectively the highest root and dual Coxeter number of
g, the invariant Casimir of irrep 7 and the invariant level of the affine algebra. 'I'he
high-level form of the relation

RLPTITR = LT} + T, +T2) - (A(T') + A*(T7)8 (3.0)
tells us that the quantities in (3.2a)
Al (m) = AY(T™) (35)

are the high-level conformal weights of an irrep 7™ in 7! ® 72, hence the conformal
weights of affine primary states exchanged in the s-channel. The dual eigenvalue problem
is

#(5,9)m (2L5ie T T7)6% = (s, ) (Afy(m) — A(T') ~ A(T?)) (3.6a)

4
#(s,0)2. 3 (7)) =0 , a=1...dimg (3.6b)

i=1
where #(s, )% = v(3,9)5 77" and fup = [T/=; Na,p, is the product of the carrier space
metrics.

Because 2L3% T,'T;? is hermitean we know that the eigenvectors are orthonormal and
complete,

(s, 9)mv(s,9)" = 6., v(s,9)70(s,9)0, = (L)5 (3.7

where I, is the projector onto the G-invariant subspace of 7! @ --- & T*. The relation

L TiT 1) =0 , 1<4,j<4 (3.8)

also holds on the G-invariant subspace defined by (3.2). An explicit solution to the
eigenvalue problem and global condition in (3.2) is known [16]

C(S, -q)(l:x = 2 uv_..(r,,{)""""'u:,(r,{’)"-’"“"7,"'"' . m = (7'1676') (}‘)a)

arey

wy(r, €)™ ’3”"'('1',,' + T4 T )30, =0 . a=1...dimg (3.9h)
wy(r, )PP 2L T 0,0, = i ) (AT ) = AYTY) - A™(T?)) (3.9¢)

gt a

where w{r, €)1 are the Clebsch-Gordan coefficients of 7' 4 77 into irrep T7, £ labels
copies of the same irrep 7" and » is the conjugate representation of . Using (3.9), it is
easy to check directly that A’(‘s)(m) = AY(T™) in (3.2a) is the conformal weight of irrep
m under the affine-Sugawara construction.

As an explicit example, one finds for nitiin correlators on SI/(n) that the invariant
tensors (3.9) are

1
(s, SUM)) = v(s, SUR)Y = ~Surabosen (3.10a)

o ep e Y 1 1

(s, SU(n))4 = v(s,S'l/(n))"' = == 1{6‘,,036(.20,‘ - ;6‘.1016(,,‘.,] (3.10b)

where V and A are vacuum and adjoint. This is the original example [4] considered by
Knizhnik and Zamolodchikov, although our Clebsch basis (3.9), (3.10) is slightly different
than theirs (see Appendix B).

From (2.1),(3.1) and the completeness relation (3.7), we use eigenvector expansions
to define the s-channel conformal blocks fg’)(y) of the affine-Sugawara construction

vy = Y d(s)"0(s, 9)5, | (3.11a)

Yo y) = Y d(s)"FEy)m"0(s, ) (3.11b)

FE)u" = #(s, )1+ 2L (T TP Iny + T,' TP In(1 ~ y))]v(s, 9)" + O(+7?) (3.11c)
as the coefficients of the chiral correlators expanded in the block basis. Here, d(s)™ are
a set of undetermined constants.

To study the small y behavior of the s-channel blocks, we rearrange (3.11c) as follows,

FNy)m" = 8(s. )m(1 +2L50 T T2 Ing)[U + 250 T T2 In(1 — y)]u(s, 9)" + O(k~?)

(3.12a)
= [1+ (Aly(m)=AY(T") ~ AY(T?)) Iny]

x (s, g)mll + 2L T T In(1 — y))u(s,g)" + O(k7?)-

(3.12b)
q 9 00 P
= B (m)=as(TH-0%T?) [6,':. — (s, g)m" Y. %] + O(k7?) (3.12¢)
. p=1l .
o(s:9)n" = (s, 9)m2Liee T, Tx(s, 9)" (3.12d)

where we have used the dual eigenvalue problem (3.6a) to obtain (3.12b) and the high-
level relation (2.16) to obtain (3.12¢). We note in particular that the eigenvector resolu-
tion correctly guarantees that each block has a unique leading singularity.

FEy)" 0 P (. )y Bl =80 TH-A5TS O(k™) (3.13a)

‘-\':,)('"') +O) L n=m

3.131
L+OK™) . n#m (3.13b)

Al {m.n} = {

9



1+ Ok? . on=
"_ff’("mr)={ ) Snem (3.13¢)

—c(s, Q)" + Ok |, n#Em
labelled by m and n, which is followed by integer-spaced secondaries from In(1 — y). Ac-
cording to eqs.(2.15) and (3.13), the leading singularities of the n = m blocks correspond
‘to the s-channel exchange of affine primary states, with residue I';(m,m) = O(k"), while
the leading singularities of the n # m blocks are affine secondaries, with I'y(m,n # m) =
QO(k™'). This pattern is in agreement with the general QPE (2.17). Bevond the leading
residues, diagonal blocks begin at O(k®) and off-diagonal blocks begin at O(k~').

If ¢(s,9)m™ = 0 for some n # m, then this block begins at O(k~?), and we obtain no
information bevond this fact in our approximation. Although we are not aware of any
examples of this phenomenon among the affine-Sugawara blocks, examples do occur in
the coset constructions and irrational processes (see Appendix D and Section 6).

We also note that, although we have solved the generalized K% equations through
O(k™1), we are not able to determine the O(k™!) part of the n # m conformal weights
in this approximation. Of course, under the affine-Sugawara constructions all conformal
weights have the form A?(7 )+integer, so we can guess the exact result

Af,,(m,n) (s)(m) +1- , Ymn (3.14)

for the conformal weights of the blocks, which we believe to be correct (see Appendix B).

To define block bases for the other channels, we also introduce the u and t-channel
g-invariants as solutions to their corresponding eigenvalue problems,

2L T MTRu(u, 9)™ = (Ady(m) — AY(T") = AYT))o(u, )" (3.152)
QL‘;f’m’T;?Tb"’v(t,g)"' (A“)(m) — AYT?) - AY(TH)o(t, g)" (3.15h)
(24: THv(u,g)" = (Z THhe(t,g)" =0 , a=1...dimg (3.15¢)

i=1 i=1
9(u, 9)mv(u, )" = U(t, g)mu(t, 9)" = 6, (3.15d)
v(u, 9)"0(u, g)m = v(t,g)"b(t, @) = 1o . (3.15¢)

Here

Al,y(m) =A% T™) (t)('" y= AYT™) (3.16)

are the high-level (affine-primary) conformal weights under the affine-Sugawara construc-
tion of irreps 7™ and T™ in T' % 73 and T2 & T3 respectively. Explicit forms of the
1 and t-channel invariants are obtained formally by a 2 & 3 and a 2 & 4 interchange
respectively in eq.(3.9).

In analogy to the s-channel blocks .'F,f” in eq.(3.11), we define the u-channel blocks
.7{5"’ using the corresponding u-channel invariants.

Yoly) = 3 d(n)" Fy).."vln. g). (3.17a)

m.n

10

FI9 " = vl glull + 2L (T} TP tny + T TP In(1 ~ y))e(u, g)" + O(k?) (3.17b)

= (1= y)Blatm=asT)=8oT) fgn o gy a5 (L 0) . Y1 1 oy (3170)

=1

c(u, g}, = i;(u,g),ﬂL“" 7! 7;, v(u,g)" . (3.17d)

The expansion (3.17¢) is obtained from (3.17h) following steps analogous to those in
(3.12). The limiting behavior of the u-channel blocks

FOy)n® o, T n)(1 = y) Sl =a7TI-82T 4 (k-2 (3.182)
+O(k™?) , n=m
Af _ (u)(m) 3.18b
fy(m,n) { 14Ok , n#Em (3.18b)
1+ O(k-—ﬁ) n=m
(v = ’ 3
§(m,n) {—c(u,y)m" +O() , ngm (318

(followed by integer-spaced secondaries) is easily read from (3.17¢c). As seen above for the
s-channel blocks, the diagonal u-channel blocks show affine primary conformal weights
with residue O(k®), while the off-diagonal blocks show integer descendants of affine pri-
maries, and we are again unable to determine the O(k~!) part of the off-diagonal con-
formal weights.

Analytic blocks

1t is clear from the discussion above that the s and u-channel blocks .7"(’) and f(“) are
hlgh level forms of analytic blocks, but identification of the analytic t- channel blocks is
more subtle. We begin by defining the preliminary t-channel blocks .7-';" as the coefficients
in the t-channel eigenbasis

Yoly) = 3o dO)" FO(y)m 0L, 9)n (3.192)

f(t)(ll)m = (t, g)m[1 +2L AT T Iny + T' T2 In(l — y))e(t, )" + O(k~%) (3.19b)

in parallel with our expansions above for the s and u-channels.

We must next consider continuation of the logarithms to the t-channel, for which we
use the following two rules

In{l —y) =In(—-y)+In (l - 5) . Jarg(—y)l <= (3.20a)

Iny = In(—y) — ixsign(arg(—~y)) (3.20b)

throughout this paper. The left side of (3.20h) is defined for |arg(y)] < 7 (so that Iny
has its cut is to the left). while the right side of (3.20b) is defined for |arg(—y)] < 7 (so
that In(—y) has its cnt to the right).



In the finite-level example of Appendix B, the relation (3.20b) is used in the equivalent
form

y" = (—y) exp|—invsign(arg(—y))) (3.21)

to continue singular s-channel factors to the t-channel. The non-analytic phase in (3.20b)

and (3.21) is therefore associated to operator ordering in the four-point Green function, as

discussed in Rel.[21]. The continuation (3.20a) is also seen in the example of Appendix B

as the high-level limit of well-known continuation formulae for hypergeometric functions.

We must therefore factor the non-analyvtic phase out of the preliminary t-channel
blocks to obtain the analytic t-channel blocks. More precisely, we define

CFOA" = FOWU)" L FO" = FO@R ) (3.22a)

Ug(y)," = v(t, g)pexp|=2miL3% T, T sign(arg(—y))Jv(t, g)" + O(k~?)

(3.22h)
=& —inc(t, g),"sign(arg(—y)) + O(k™%)
(Ugly) ™)™ = B(t, )y exp[2mi L3 T T sign(arg(~y))}o(t, 9)" + O(k~)
(3.22¢)
= &7 + inc(t, g),"sign(arg(—y)) + O(k )
Cl(tag)p" = C(t,y),?L;wa‘l'],?v(t,g)" (3.22d)
Uy™y = Ug(y)™ , Usly) = Up(y)™ (3.22¢)

where f-'g‘)(y) are the analvtic t-channel blocks and l/,(y)»" is the non-analytic unitary
phase matrix of the affine-Sugawara constructions (unitary because the sign function is
real). Then we find the explicit form of the analytic t-channel blocks,

Fy)m™ = 5(t, g)n[l+2L2 (T T + ) In(=y) + T,' T In (1 - ;ll-))]v(t,g)" +O(k™?)
o (3.23a)
3
= 8t )l - CLYLTIT + 3 A%(T") = AT In(-y)]
= (3.23b)

x[1+2L28 T2 In (1 - 5)]v(t,g)" + O(k7?%)

00 P
_ (_y)—A"”(m)—AM’TI)+A.¢(’T‘) [6:‘ _ C(t,g)m" E (%) ;l_)] + 0(,\,—2) (123(,)

p=1

c(t, )" = (L, 9)m2Le T/ TPu(t, 9)" . (3.234)

To obtain (3.23h), we have used the identity

vt g)ml2Lih (T} + TPT + T2 ) = 4,1) = 0 (3.21a)
o = A-"(T‘) - A-”(T') - A-”(Tz) - A-"(T") (3.24h)

which follows from the g-global Ward identity (3.15¢).
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From (3.23¢) we read the limiting hehavior of the analytic t-channel blocks

FINuha" vz, VO, n)(=y) 2l =88 TranTh 4 042 (3.252)
ALY+ Ok |, n=m
AY . — () . : 3.95
w(m.n) { 14+ 0O(k™Y) , n{m (323b)
1+ O(k~?) ., n=m
1 _ : 395
o (m,m) {—c(t,g)m" +O0k7%) , n#£m (3.25¢)

and the remarks below (3.13) apply in this case as well. In particular, one might guess
the exact u and t-channel results

A"('u)(m,n) = A’('u)(m) +1-6un , VYmn (3.26a)
Aft)(m,n) = Aft)(m) +1-64n , Ymn (3.26b)

which are in agreement with the KZ example in Appendix B.

In what follows, we introduce a unified notation p = s, t, u for the three channels and
their corresponding blocks (fy("))m",

W(p,@)mv(p.9)" =85 , v(p,9)nd(p9)% = (1,)2 (3.27a)

Yo(y) = Y dp)"FENp)mo(p,0)n , p=5,tu (3.27b)

FO )" = 6(p, 9)mlll + 2L (T T2 Iny + T T2 In(1 — y))]u(p, 9)" + O(k?) (3.27c)
(FO )" = FOy")a" (3.27d)

where the-last relation follows by unitarity, that is, hermiticity of the basic matrices in
the correlators.

We finally note that the number B, of affine-Sugawara blocks in each of the channels,
B, = (d,)? (3.28)

is equal to the square of the dimension d, of the g-invariants in any channel.

For the special case of the 3333 correlator on SU/(3), Appendix B provides a check of
our high-level blocks against the finite-level blocks obtained by Knizhnik and Zamolod-
chikov [1] in this case.

Crossing relations

Using completeness of the three sets of eigenvectors, one finds that the three sets of
blocks are related by the crossing relations.

FO )" = [Xo(po) + OGP FNy),* ([ Xo(pa) + QR D], (3.202)

= X(po ) FOW), X (p0))" + O(?) . po=situ (3.20b)
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f\'_q(f"f)m" = i’(P,!])mlr‘(”,ﬂ)" (3‘29(‘)
X7 p7)n™ = Xo(0p)n" = (Xo(po)a™ ) (3.204)

where p # o and we call X (po) in (3.29¢) the crossing matrix from channel o to channel
p. The last relation (3.29d)} savs that the crossing matrices X,(ps),," are unitary X} =
Xg" for each p # g, and the crossing matrices explicitly satisfy the consistency relations

Xo(pr) Xo(o7)Xo(1p) = Xo(pT) Xo(r0) X o(op) = ¢ (3.30a)
(1" =6, (3.30b)

which says that we return to the same blocks when we go around an s,t.u cycle.

In the special case when T2 ~ T3, the conformal weights exchanged in the u-channel
are the same as in the s-channel. In further detail, we have

L;.b'x*(T;:l 7;73)00 = L;f’oo(']:ll 7;2)(-'[" (311)

in this case, where o' = (ajaiaza4) and similarly for 3. Then we may identify the
g-invariants of the u-channel in terms of those of the s-channel

v(u, ) = v(s, )%, (u,9)% = (s, )5 (3.32)

where m = (r,£,¢') is the same irrep 7" in both channels. It follows from (3.17h), (3.31)
and (3.29¢) that

Xo(su)™' = Xy(su) , Xy (su)P=1 (3.33a)
Xo(us)™' = Xy(us) , X,(us)’=1 {3.33b)
Fn" = FPO =" (3.33¢)

‘T'hen, using (3.33) in (3.29b), one finds that the s-channel affine-Sugawara blocks close
under s-u crossing,

FIAL = )" = [Xplsu) + O ™)n® F(y)," [Xolsu) + Ok, (3.34)

as they should in this case.

In the special case when all four representations are the same, one finds that the
unitary crossing matrices are also idempotent X(ps)2 =1 and hence X(ps) = X{(op) for
all p # o: then, the Yang-Baxter-like relation

Xo(pa)Xo(o1) Xo(p) = Xy(79) Xy(07) X, (po) = 1 (3.35)

follows from the consistency relations (3.30).

Using (3.29h) and (3.22a). we finally write down the crossing relations among all three
sets .7-'_,}"). f,f"). ,7‘:,5" of analvtic affine-Sugawara blocks.

F = [Xylsn) 4 O FEVX () + O] (3.362)

B

FI = [Xy(us) + O(k~)] F X, (ns) + O(k~2)]~! (3.36b)
FI = (X, (st) + O FW [ Xo(st)U; ! + Ok~ (3.36¢)
FI = [X,(ts) + Ok D) FO 1, X, (ts) + O(k~2)) ! (3.36d)
FU = [ Xy(ut) + O™ FO X () + O] (3.36¢)
F = [ Xo(tu) + O] FI U, X (1) + O] (3.36f)

where U/, is the non-analytic unitary phase matrix (3.22b) of the affine-Sugawara con-
structions. It is known [21] that the crossing matrices of analytic blocks involve non-
analytic factors, and we remark that, according to egs. (3.22b) and (3.29c), the phase
matrix provides the entire O(k~') corrections to the full crossing matrices in (3.36).

3.2 Non-chiral WZW correlators

To construct a set of high-level non-chiral WZW correlators from the affine-Sugawara
blocks, we take the diagonal construction in the s-channel blocks (3.11c),

Yoly™ )" = ‘Z (FE ()™ ) D y)," vls, g)7i(s, 9)2 + O(k~?) (3.37a)
=Y v(s, )7 [FO ) FO () 0(s, 9)5 + O(k™?) (3.37b)

which shows trivial monodromy around y = 0. These correlators satisfy the high-level
forms of the holomorphic and. anti-holomorphic KZ equations, and the corresponding
g-global conditions on the left and the right. In the special case of the nafin correla-
tor on Si/(n), they also agree with the diagonal construction studied by Knizhnik and
Zamolodchikov in [4].

To see that these correlators have trivial monodromy around y = 1 and y = oo, one
uses the crossing relations (3.29) of the affine-Sugawara blocks to rewrite the correlator
(3.37) in the two alternate forms

Yoy 9)e” = 37 v(w. 9) [FIu ) F P (y)]m" 6(u, 903 + O(K™?) (3.38a)
= 3 et gt IF ) FI @ #(4, 9)n + O(K?) (3.38b)

m,n

where the u and t-channel blocks are given in (3.17b) and (3.19b).
We can also express the t-channel form (3.38b) in terms of the analytic t-channel

hlocks (3.23),

Y m? = 30 et gl [FO O (Y FO (U ()]" et g) + O(k7?) (3.39a)

m.an

= 3 et @) FO D FO W))W ()] + Ok™)  (3.39h)

m.n



=3 et (EWFER )] ot g)2 + O(k™?) (3.39¢)

"o

where we have used the fact that
(A, B] = O(k7%) when A,B=1+0(k") (3.10)

and the first property in (3.22¢) of the phase matrix l/,.

Using completeness and the form (3.11c) of the affine-Sugawara blocks. we also find
the summed form of the non-chiral WZ\Y correlators

Yoly™. y)a’® {|u+21,"" (T M Iny + TR (1 - g,
(3.41a)
X[+ 2L (T T Iny + T T2 In(1 = 9)))}_© + O(k)

= {14 2L (T T InlyP + T T2 In 1 — y)M, ) + O(k7?) (3.41b)

where 1, is the projector (3.7) onto the G-invariant subspace of 7' ®--- @ T*, and we
have used eq.(3.8) to obtain the second form, which explicitly shows two of the trivial
monodromies. The third trivial monodromy, around y = oo, also follows immediately
because both terms in (3.41b) are proportional to |y| at large y. The correct t-channel
singularities are then obtained by an application of the g-global Ward identity (3.21),
using I, in the form (3.15¢).

Using the g-crossing matrices (3.29¢), Appendix A gives alternate expressions for the
g-blocks (3.27), the analytic t-channel g-blocks (3.23) and the g-correlators (3.37)

4 The Coset Constructions

4.1 The coset blocks

‘The next simplest, and next most symmetric, set of conformal field theories are the g/h
coset constructions {1,2,7,8], whose chiral correlators are defined by (2.1) with

l)a/l;'l
Lineo =55+ P =1y~ 1 (41a)
. ‘
YT =0 |, a=1...dimh (1.1b)
i=1

where h C g. These correlators are the high-level solutions of the general coset equations
of Refs.[15.16,14] on simple g, and the resuits below are the high-level form of the general
coset blocks studied in [22,15.16,14).

We begin by reorganizing the high-level coset correlators (2.1) as,
Youlw) = {e, [0+ 2L (T T2 ny + T T n(1 = y)))

. (1.2)
(U= 28 (TR Iy + TR In(1 = )]} + O(k™?)
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where we have used (1.1a) and moved the terms of the k theory to the right.

"To define the p=s, t and u-channel coset blocks, we nced the g-invariant eigenvec-
tors ©(p, )™, v(p.g)m of Section 3, and also the corresponding h-invariant eigenvectors

wip, h),

2150 T (s, h)M = (AL(M) — A%, (T') = Al (T))i(s. )Y (1.3a)

2L T T )Y = (AL (M) = Dby (T') = Al (T?))i(u, b)Y (1.3b)

2L5t TET(t, h)M = (Af)(M) — AL (T?) = AL (T)e(t, M (1.3¢)

Lt JTITi (o, )™ = Al (T, i), i=1..4 , p=stu (1.3d)
(Z Thi(p, )M =0 , a=1...dimh . p=s,t,u (4.3¢)

whose properties parallel those of the g-invariants. In particular, the eigenvalue problems
(1.3a-¢) are compatible with the diagonalization of the h conformal weights in (4.3d)
because the matrices LT T and L{*T T} commute. The h-global Ward identities
(1.3e) are also compatible with the eigenvalue problems, whose matrices are h-invariant.
It then follows from the high-level form of the relation

UPTIT = LNT] + TIHNT + T) - (LPTIT + LPTIT) , 1<i<j<d (14)

that the quantities Aw(M) in (1.3a-c) are the high-level forms of the broken conformal
weights of h-irreps in the p-channel (that is, the decomposition of 7 & T’ into h-irreps).

The h-invariant eigenvectors also satisfy completeness and orthonormality,
Dl (o, YN = 8%, b, Ao, ) =1, p=s,tu (1.5a)
L hmT’T’,];.]-O , 1<4,5<4 (4.5b)
where [}, is the projection operator onto the A-invariant subspace of 7' @ --- @ 7.

As an explicit example, we give the solution for the {/(1)-invariant s-channel eigen-
vectors of the coset correlator

L . SU(2 )
(T, 7. 7°.T") = (j1.j2, 43, 34)  in l"((l)) (1.6)
In this case we need
Ji ]
5388 :
Line=2p » B= Vi3 (1.7
0 —Ji

where u"g is the SU/(2) root length squared and we have taken the usual magnetic quantum
number basis for the matrices, with o; = M;, JM;] < ji. The solution of the eigenvalue
problem (1.3a) is then

(s )Y = 5"5(2 Mi=0) . M=(M.M. M M) (1.8a)
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M, + Ma)? i M2
AR(M) = (-‘12:—’1?)— , Af;,‘_”(T'):%‘ Li=1.1 (41.8D)

where & = 2k/#? is the invariant level of g = SU/(2). For more general coset correlators
the eigenvectors (s, h) are squares of products of (lebsch-Gordan coefficients times
Clebsch-Gordan coefficients for branching of g-irreps into h-irreps [23).

Using completeness of v(g), #(g) and ¥(h),(h), we have [15,16,14]

i =Y d(p)"i(p, g)5, (1.9a)
an(y) =X d(p)" O\ )mMiip, k)3 (1.9h)
mM

where C;%(y) are the coset blocks. Further use of completeness gives the explicit form
of the high-level coset blocks

CO W™ = FOW)m"elpr /1N (FO) Y . p=s,t,u (1.102)

FOWINM = dh(p, D)1+ 2L (T T Iny + T T2 In(1 - )] (p, )M + O(k~2) (4.10D)

(FO) W = o, h)x[I - 2L (T2 Iny + T T2 In(1 — y))w(p, B)™ + O(k~2)
(4.10¢)
e(p, 9/h)n" = v(p, 9)utp(p, k)Y (4.10d)

where .7-'_5") are the p-channel g-blocks (of the affine-Sugawara construction on g) given
in eq.(3.27), and e(p,g/h) is the embedding matrix of the g-invariants v(g) in the A-
invariants ¥(h). The inverse A-blocks F; ' are the inverse of the h-blocks Fi. In Ref.|15],
the exact coset blocks were written as (Copn)m™ = (Fy)m"(Fi')a™, where (Fi') M =
e(g/M)a" (Fi")xY in the present notation.

The s and u-channel coset blocks in (4.10) are high-level forms of analytic blocks,
as above. To obtain the analytic t-channel coset blocks, we first use the continuation
formulae (3.20) to find the analytic t-channel h-blocks £ and their inverse,

FM = ot b1+ 2L3 (T (TP + T n(=y) + T T 1n (1 - s) Nek(t, b)Y

+ 0(/\'"2)
(4.11a)

(£ ‘(t)(yrl)\" =w(t, h)x[ll —2L ' (TNTE + TP n(=y) + T2 n ( - %))]n"(t,h)""

+ Ok
(1.11h)
AU = FOUy) . FO) = FR0 (1.11¢)
L)y = w0 W)y exp|— Z‘rll,,'," T'T,,zsign(arg(—y))]r.f"(l._/:)‘\‘ + Ok (1.11d)
uly™) = )™ o ! = ™! (1.11e)

whose form closely parallels that of the analytic t-channel blocks f,g‘) in (3.23a). Here
{/1(y) is the non-analytic unitary phase matrix of the h-blocks embedded in g. Then we
may rearrange the t-channel coset blocks as follows,

U (v) = FO)Wo(w)e(t, o/ h)Un(y) " F(y) (4.12a)
= FO()e(t, 9/ hUa(n)Un(y) " FO ()" (1.12b)
= [FO(e(t, o/ ) F ) Ve Un ()] (4.12¢)

where we have used the fact that

_ Ugwn"e(t, g/ )™ = e(t,g/h)n Ugly)P (1.13a)
Ug(y)p™ = (t, h)pexp[—2mil3’ T Tsign(arg(—y))b(t, A) + O(k™%)  (4.13b)

in the second step and the commutation identity (3.40) in the last step.

From (4.12c), we read the form and properties of the analytic t-channel coset blocks

(t)
q/h('/)v
EO\w) = FO(y)e(t, o/ Y FO(y) ! : (4.14a)

W) = CRUaaly) o+ W) = COMWVarn(y)™ (4.14b)
U™ = Uy()ae"(Un(y) " )p™
= (t, h)as exp|~2miLyhy o T, Tsign(arg(—y) (e, ) + O(K~?)
U™ = Ugpn(0)™ 5 Ugn(®)' = Uppn(y)™ (4.14d)

where UJy;(y) is the non-analytic unitary phase matrix of the g/h coset constructions.

(4.14¢)

The limiting behavior of the analytic coset blocks C‘(”/)h, C(") Cﬁ‘/)h follows from their

form in (4.10a) and (4.14a), together with the results above for g and h,

/ i
05’/)':( )mM l‘(/,l("l IW)U o /A (m M)~ A:,:'(Tl)-A:,:(T’)+O(k_2) (’1.15&)
o)™~ T (m, M)(1 ~ ) SBM-BINTY-BINT | k-r) (.15b)
E ™~ 18 (. M)(—y)‘Af"’)“‘“"""Ai“?""*A-’\‘f"’"+ou--"> (1.15¢)
AYMTY = AT = Bh (T, i=1..4 (4.15d)
Ao, M) = Aly(m) = ALY +OGKT?) . e(p,g/h)™ #0 (1.15¢)
L4+ O3 . e(p.g/h)aM =0 (1.15f)
10 (o apy = (P00 + OT2) L elpa/hM A0 (L15g)
" T =g/ N elp g/ MM + O L clpg/h)M =00 (1.15h)
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where the matrices ¢(p, g/h)

(s g/h)wM = i, hIN2L, o T TR0 (s, )Y {1.16a)
clu. g/R)x = eu h)w2Lys, T Tha(u k)Y (1.16h)
ety g/hIn™ = vt R)N2Lyp o T T (t AV (1.16¢)

are defined in analogy to those of the g theory.

The g/h conformal weights in (1.15d) and (1.15¢) for e(p,g/h)m* # 0 are the correct
conformal weights of the external and intermediate coset-broken affine primary fields, and
the intermediate broken affine primary states contribute with residue O(4°), in accord
with the general OPLE (2.17).

The (1 + O(k~")) conformal weights in (4.15f) are broken affine secondaries (with
residue O(k~') in (1.15h)) which are not necessarily integer descendants of broken affine
primaries; see for example the exact conformal blocks

nnin in Sy X SU(n)zy (1.17)

SU(n)zy 42,

obtained in Ref.[15]. All the conformal weights in (1.15d-f) check against the large
xy = T2 = x form of these blocks.

Appendix D studies a coset example on simple ¢

g3 o SUG)

3337 —_——— 4.
3333 O (1.18)
in some detail. This case shows a block which begins at O(k~2).
We finally note that the number By, of coset blocks in €ach of the channels,
By =dg-dy (1.19)

is the product of the dimensions d, and d of the g- and h-invariants in any channel. In
fact dy > d, because h C g, so that the inequality

By 2 B, (1.20)

is obtained for comparison of correlators with fixed external g-irreps, where B, in (3.28)
is the number of affine-Sugawara blocks in each of the channels. The result (1.20) is in
accord with the intuitive expectation that the number of blocks grows with increased
symmetry hreaking.

Crossing relations

Following the development of the previous section we find the crossing relations for
the embedding matrix and the (inverse) h-blocks,

g/ = Xlpo)"ela, g/ X7 (po)a™! {(1.21a)

20

(FO) " = [Xalpa)+ Ok D)) (FO ) P2 (Xl po) + O(A72)) =YY (1.21b)

where X, (po) are the g-crossing matrices (3.29¢) and Xx{po) are the corresponding h-
crossing matrices,

Xulpa)w™ = t(p, R)ai(o. b)Y {1.22a)
X (0o = Xulop)u™ = (Xu(po)x™) (4.22b)

which are also unitary. Using (3. 2%) and (1.21) we obtain the crossing relations of the
coset blocks,

WM = [Xy(po) + O )W €L )™ ([Xnlpo) + O™ (1.23)

which involve, as expected, the crossing matrices X, and X, of ¢ and of h.

The h-crossing matrices satisfy the same consistency relations,
Xu(po) X(a7) Xa(7p) = Xn(pm) Xn(r0) Xa(op) = 1 (1.21a)
(Hu™ = &Y : (1.24b)

which were seen for the g-crossing matrices in (3.30).

When the external g-irreps satisfy 72 ~ T3, we find that X (us)? = 1 and F{*(y) =
.7",(,’)(1 — y), as for the g-blocks. ‘Together with the corresponding relations for the g-
quantities in this case, this implies

e(u,g/h) = e(s,g/h) , CYMy)=CH(1—9) (1.25)
and then,
CO (1= 1) = [Xolsu) + O C(1)a" [Xn(s1) + Ok~ 2)]nY (4.26)

so that the s-channel coset blocks are closed under crossing in this case, as expected.

Using (4.23) and (4.14h), we finally write down the crossing relations among all three
sets C;’,),, C:l/’,),, :}’h of analvtic coset blocks,

i = (Xo(su) + Ok €YY [Xa(su) + O(k~2))" (4.272)
) = [Xq(us) + Ok €L} [Xn(us) + O(k~2)] (4.27b)
B = (Xy(st) + Ok EY, (Xu(st)U ) + Ok~ (4.27¢)
Clh = [Xo(ts) + O, W X(ts) + O(K™)] ! (1.27d)
e = [Xy(ut) + O~ EY, [Xp(ut)is)h + Ok (4.27¢)
EO = [Xu(t) + O CO [y Xo(tu) + O] (1.271)

where U7,y is the non-analytic unitary phase matrix (1.14c) of the g/ h coset constructions.
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As seen above for the affine-Sugawara constructions, the phase matrix provides the entire
Q(k=") corrections to the full coset crossing matrices in (1.27).

Fixed external h representations

The crossing relations (1.23) of the coset blocks mix the internal A-irreps (M) which
arise from different external irreps of h (that is. the h-irreps which arise from the /-
decomposition of the g-irreps T°).

‘I'o obtain blocks characterized by fixed external irreps of h, we introduce a hermitean
projection operator Py, = P(IH Th 1M Th) to select any four external h-irreps of
interest,

B(p )0, Y, = (Pa)” (1.282)
Putt(p, R = v(p, h)M6Y (1.28h)
(L3 TiT , Pa) = (L3 T T Pl =0, 1 <id,5 <1 (1.23¢)

where M runs over the eigenvectors associated to the fixed external set of h-irreps. The
inverse h-blocks are block diagonal under this decomposition

(F) ™
= t{p, M|l - 2L (T T2 Iny + T, T2 In(1 — y)) i (p. h)¥ + O(k™?)
= b{p, h)w[1 = 2L8% (T T2 Iny + T T2 In(1 — y)|Puik(p, h)¥ + O(k2) (1.29)
= (p, )Pl — 2L (T T Iny + T T2 In(l — y))i(p, 1)¥ + O(k™?)
= SHF W e

where we have used the first relation in (1.28¢c). Then the corresponding subset of coset

blocks is
(Comn™ = (Fhmelg/ W)™ (Fi W™ = (F)u"elg/h). ¥ (F V™ . (430)
Similarly, the h-crossing matrices are block diagonal under this decomposition,
X oo )™ = (o, )ri(p, b)Y = (o, R)arPuri(p, )N = 61 X7 (po)y™ . (1.31)
Then, it follows from (1.23) and (4.31) that '
M = X, (p0) + O] CA W)Y ([Xnlpo) + ORI (132)

which shows that the selected subset of coset blocks is closed under crossing

. oy 5

"The selected subset of analvtic coset blocks Cf,}),l(u),,, xt ("("/'z.(r/),,,‘" and C_,(,/),I(y),,,“' i
also closed under crossing. “To see this we need the fact the non-analytic coset phase
matrix {1. 1) is also block diagonal.

Conldar™ = 800, ) o - (1.33a)
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Conha™ = CL Vi)™ CLIAY = COLWIA Wau) ™)™ (1:33h)

which follows from (-{.11¢) and the second relation in (1.28¢c). I'he restricted phase matrix
(.:'_,,/;,(y).\-,‘\' is unitary in each subspace. I'hen, we have for example that

COMWIA™ = Xy "C ) Uan()n Xi (s) 5™ + O(K7?) (1.34a)

= X5 [0 Ugsn(0) ™ X' (500 + O(k~?) (4.31b)
where the last step follows from (1.33a).

The explicit form of these projection operators can be quite complicated in the general
case, but there are some simple, highly symmetric cases where the form of Py is very
simple. As an example, consider the situation when each of the four external g-irreps
branches into a single h-irrep, so that the g/h-broken conformal weights of g-irrep T are
degenerate, : :
(L8 0TI TN = AYNTHSE , i=1...4 . (4.35)

In this case, all the coset-broken components of the g-irrep 7' are on an equal footing,
and one may choose the trivial projector
Pr=1 . (4.36)

This is the situation, e.g., in

T=(T1) in &XIn (1.37)

9z1+x2
examples of which were studied in Ref.[15]). Examples on simple g include

SU(n). _{—U—s’”' . n=3

= ) U@, 1.3
SO(n),; SU{n)s n >4 (1.382)

T=norn in
S50(n)as '

_ . SO(2n);

T=2n in .EO__—(rz), < SO0, (4.38b)
and the case n = 3 of (1.38a) will be considered in detail in Appendix D. In (1.38a) the
n of SU/(n) is the n of SO(n) C SU(n), while in (1.38b) the 2n of SO(2n) is the (n,n) of
(SO(n) x SO(n)) C SO(2n). As we will discuss below. these simple cases are examples
of a more general sitnation in ICFT (see Section 3).

4.2 Non-chiral coset correlators

To construct a set of high-level non-chiral correlators for the coset constructions, we take

the s-channel diagonal constraction.

YVl Pulymon) = Y lc",“,’,. P+ O(k) (1.39)

w AT
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which shows trivial monodromy around y = 0. ‘l'o see that (1.39) has trivial monodromy
around y = 1 and y = oc, one uses the crossing relations (1.32) of the coset blocks to
rewrite the coset correlator (4.39) in the two alternate forms.

You(Puly™y) = 3 1€ @)Y P + O(?) (4.10a)
m\N

= Y 1C @Y+ o) (1.10h)
m M

We can also use (1.33b) to express the t-channel form (1.10b) of the correlator in terms
of the analytic t-channel coset blocks,

- 4 ~ X - st hY -
YouPly™p) = 5 1C0 ™o)1 + O = 3 1E) (1) 1 + O(k7)
m.NN m X
(1.41)
where the last step follows from the unitarity of the restricted coset phase matrix.
Using completeness and the explicit form (4.10) of the coset blocks, the summed form
of these coset correlators is

Yon(Paly™,y) =T {[1 + 2Lgh, o T B2 Iny” + T T2 In(1 = y™ D),

[+ 2L, (T T2 Iny + T2 In(1 = y)Pu} + O(k7?)
(1.12a)
= Tr((1+ 2L355 oo T T Inlyf* + T T2 In {1 — yP)) P4 + Ok %)
(1.42b)
where I, is the projector onto the G-invariant subspace of 7' @ --- @ T* and P, is the
projector onto the desired subset of external h representations. To obtain the second
form, which explicitly shows two of the trivial monodromies, we used the second relation
in (1.28¢). Irivial monodromy around y = co is also easily seen following the discussion
below eq.(3.41).

5 A Simple Class of Correlators in ICFT

5.1 L(g; H)-degenerate states and correlators

In this section, we use the intuition gained in our discussion of the affine-Sugawara and
coset constructions above to identify what we believe to be the simplest, most highly
symmetric processes in [C}]L.

In the first place , we restrict our attention to the ICFTs with a svmmetry, that is,

to the /-invariant CF'l's on g, whose inverse inertia tensors Ly satisfy

wlH)Lyw()™ =Ly . w(ll)e H (5.1)
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where H C (7 is any subgroup of (7, including finite groups and the Lie groups. The
matrix w(/)," is in the adjoint of g. For the H-invariant CF'I's. the conformal weight
matrix of irrep 7 of g and hence the broken conformal weights A(T) ave If-invariant,

UHTILGTT QO (HT)= Ly LT, , UH.TyeH (5.2a)
QN T |ANT) - A (T =0 (5.2b)

where Q(H.T),? is in irrep T and we have used (2.9) to obtain (5.2b).

In the {-invariant CF'l's, we further restrict ourselves to the most symmetric broken
affine primary fields, that is, to the irreps T of g whose L*-broken conformal weights
ANTY=A"(T). a =1...dimT are completely degenerate

(LITT)." = AM(T)8] (5.3)

at all levels. In what follows, such irreps of g are called the L(g: H)-degenerate states
because, in these cases, the irrep of ¢ decomposes into a unique irrep of H. Finally, we
restrict the discussion to the L(g: H)-degenerate processes, which are those correlators
all of whose external states are L{g: H)-degenerate. In this sense, the L(g: H)-degenerate
processes are the most symmetric correlators in ICFT.

Although they are by no means generic, it is easy to find examples of L{g; H)-
degenerate states in the H-invariant CFT's. The simplest cases of L(g: H)-degenerate
states are all the affine primary states of all the affine-Sugawara constructions, which are
in fact L(g; G)-degenerate.

Examples of L(g; h)-degenerate states in the g/k coset constructions include those
mentioned in (4.37) and (1.38). These are RCF'T examples in the Lie h-invariant CF1T's,
and in principle many irrational examples, bevond the coset constructions, can be found
among the Lie A-invariant CFTs.

Irrational examples in the much larger set of H-invariant CFTs, beyond the Lie A-
invariant CFTs, are already known, including the irrational cases [21]

T=nori in (SU(n))Y (5.1a)
T=2n in (SO(2n).)% (5.1b)

where H is a finite subgroup of SO(n) C SU/(n) and (SO(n) x SO(n)) C SO(2n) in
(5.4a) and (5.1b) respectively. The case n = 3 in (5.4a) will be considered in detail in
Section 6.

We should also remark that the L(g: H)-degenerate conformal weights of the coset
examples in (1.38) and the irrational examples in (5.1) all obev the unified conformal
weight formula,

AT = AMT) = = (5.3)

2rn
where x is the invariant level of y and ¢ is the central charge, which is rational for the
coset constrictions and irrational for S'(»"(n)f, and SO(2n)%,. The occurence of
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a) L(g: H)-degenerate states

b) a unified form of the conformal weights

for these rational and irrational families is not totally surprising, since both families
of constructions are contained in the same (maximally-symmetric) ansatz {21] of the
Virasoro master equation.

In what follows, we will find uniform formulae for the high-level conformal blocks and
correlators of all possible L(g: H)-degenerate processes in ICF'T.

5.2 Conformal blocks in ICFT

We study only the class of L(g: H)-degenerate correlators in ICFT. Fig.2 shows these
correlators generically, with one degenerate conformal weight A = A"(T).i=1...1
for each external state.

n n
A3 A;

Al Al
Fig. 2. The L(g: H)-degenerate correlators.

In this case, the chiral correlators (2.1) take the form,

Yi(y) = 69An(y)e” + O(k™?) (5.6a)
An(y) = 14203 [T TP Iny + T/ TP In(1 - y)) - (5.6h)

= 1+ (L3} o T + T + ) - (A] + A1) Iny
+ (L3 ool T+ TOT + T — (A + AT In(L - y) (00
YnQ(H)=Yy , OH)= ﬁﬂ(ll,'f‘) . (5.6d)

Here we have used the high-level forms of the ident..i=t'ics

LT =AM, i=1..1 (5.7a)
URTIT = LT+ TINT + Ty = (A + AN, 1<i<j<d  (5.70)

to obtain the alternate form in (5.6¢). The statement in (5.7a) is the L(g: H)-degeneracy
of each external state. The condition (5.6d), which enforces the f-svmmetry of the
svstem. follows from the H-invariance of the relevant matrices

l\”(l(”” =0 (5.8)
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and the fact that v,. being g-invariant, is also invariant under Q(H).

To find p = s, t and n-channel block bases for the conformal blocks, we introduce the
H-invariant eigenvectors v*(p, /) of the p-channel,

2Ly (AT, H)M = (Af(M) — A - A yi(s, H)Y (5.9a)
2Ly T, '731/-(“,11)- = (A (M) = A = Al yp(u, H)M (5.9b)
2L} TITb(, H)Y = (AG(M) — A — AYyi(t, H)M (5.9¢)
t(p, H)wilp, HYY = 65, (o, )Mo, H)yy = (1)) (5.94)

O (HYilo, KV = o, M, o, IuUH) = b(p, KDy (5.9€)

where (17)? is the projector onto the H-invariant subspace of 7' @ --- ® T*. According
to the identity (5.7b), the quantities AM(M) are the L**-broken lugh level conformal
weights of the broken affine primary states in the p-channel.

We remind the reader that the correlators (5.6) include all the correlators in H-
invariant CFT's with L(g; H)-degenerate external states. This includes in particular all
the correlators of all the affine-Sugawara constructions, in which case the eigenvectors
¥(p, H) may be taken as the g-invariants v(p, g) of Section 3, and all the coset correlators
whose external states are L(g; h)-degenerate, in which case the eigenvectors y)(p, H) may
be identified as the h-invariants 4(p, h) of Section 4.

‘The p = s, t and u-channel conformal blocks B(") are then obtained by inserting
completeness sums in (5.6), according to

A= Auly = Ao, HM (o, H)M , Vo . (5.10)

In this way, we obtain the three expansions,

Y5 = 3 d(s)™BY (y)mMii(s, H)3 (5.11a)
m M

= Y d(u) B (y)nM i, H)3y (5.11b)
m,.w

= Y A" B ()Mt H)S (5.11c)
m, "

where the p-channel hlocks B(")(l/) are
B = v(p. ghnAur(y)i(o, HY + O(2) (5.12a)

= elp. W) (p. MInAn()vlp. HYY + O(k7%) . p=s,t,u (5.12b)
Al = 04208 (T T Iy 4+ T) T2 In(1 — ) (5.12¢)
elp. NN = v(p.g)ui(p IV (5.12d)
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Here e(p. H) is the embedding matrix of the g-invariants in the H-invariants.

The s and u-channel blocks BY} and BY" are analytic blocks, as ahove. and the analvtic
t
t-channel blocks B},

BRP)n™ = v(t, 9)mAuy)it, )M + O (5.13a)
= €(t, H)n it D) An(y)i(t, H)M + O(h~2) (5.13b)

An(y) = 14208 (THT? + T In(=y) + T T2 In (1 - %)) (5.13¢)
Bi(v) = BPw)Unly) . BPw) = BRn(y) (5.13d)

Un()m™ = é(t )y exp|=27i L3 T T2sign(arg(—y)i(t, HYY + O(k7%)  (5.13¢)
Un(y) =Un(y)™ . Un(y) = Un(y)™ (5.13f)

are also obtained by now-familiar steps, including the continuation rules (3.20). 'The
quantity Uy(y) in (5.13e) is the non-analytic unitary phase matrix of the L(g: H)-
degenerate correlators in ICFT.

The expressions (3.12a,b) and (5.13a,b) for the high-level analytic blocks B}, BY}),
Bm of the L(g: H)-degenerate correlators in ICF'I' are among the central results of this

paper.
To study the limiting behavior of the analytic blocks, we use the eigenvalue problems
(5.9) to rearrange the blocks in each of the channels as follows,

B W)n™ = e(s, H)w Vs, H)w[14+2L55 T T2 In(1 — y)}ir(s, H)™

x 1+ (A (M) = A = Al Iny}+ O(k7?)
(5.14a)

= e(s, H)n® [ M (s, H)N"Z"' ] MUD-a1-87 L O(k?)  (5.1b)

s, H)NM = (s, H)N2L,,°° “T3u(s, H)M (5.14¢)
Lt —u)P
B ()™ = e(u, H)m™ [6:’ — {u, H)MY (-l—p—")— (1 = y)2lotM-87-83 | (k-2
p=1
(5.14d)
e(n, HY)x™ = (u, H)n2L3 T T b(u, H)M (5.14e)
BR()n™ = v(t, g)m{14+2L50 T (T2 + ) In(~y))
x (1+2L5 T In ( - %)]m(z,m“ +O(k™?)
' (5.14f)
1
= e(t 1), Vot H)x|l + 213 T, T,ﬂn( .,)]
’ {(5.t1g)

3
x (1= QLTI + 3o A - Al In(=p)lit. 1YY + O(k?)
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o 14
= e(t, H).,~ [6;{! — e, MY (s) ,1)] (—y)"dON-AFHAE L o f-2)

p=t
(5.11h)
elt, H)xM = w(t, H)x2 L’,';'%T T2t HYM . (5.14i)

To obtain the form (5.14g) of the analytic t-channel blocks we also used the g-global
Ward identity on the g-invariants ¢(p, ¢)m.

oo @) RUSHTIT + TR + T2T) = ] =0 (5-152)
w =AY - Al - A - AY (5.13b)

applied here at high level for the case p=t.

Using the expressions in (3.11); we find the limiting behavior of the conformal blocks

B”)(y)m'" o (’)(m M)y alymM)-afl-af + O(k™?) (5.16a)
B ()" ~ 1} D, M (1 — y)Solm-81-88 4 o4-3) (5.16b)
('-)(y) Mo, 1(‘)(,""\,1)( ¥)~ Al (mM)-af+al + O(k™?) (5.16¢)

A")(M)+O(k ., elp, H)M ;é 0 (5.16d)
14 Ok~ , e(p, H)M = (5.16e)
(P)(m M) = { e(p, H)oM + O(k~?) ’ C(Pt H)m 76 0
—e(p, H)nVe(p, HINY + O(K™%) , elp, H)n™
followed by integer-spaced secondaries. The blocks with e(p, H), ¥ # 0 begm at O(k°)
and exhibit leading singularities (with O(k°) residues) whose high-level conformal weights
A")(M) in (5.9} are those of the correct broken affine-primary states in each of the three
channels. 'I'he remaining blocks, which begin at O(k~!), show leading singularities which
are broken affine secondaries. As noted for the affine-Sugawara and coset constructions

Afy(m, M) = {

(5.16f)

in Sections 3 and 4, this pattern is in agreement with the general OPE in (2.17).

Further discussion of these conformal weights follows that given for the coset con-

“structions below (4.16). In particular, as noted for the cosets, the (1+ O(k~")) p-channel

conformal weights in (5.16e) are broken affine secondaries which need not be integer de-
scendants of broken affine primary states. ldentification of these states is therefore an
important open problem in 1CFT.

Number of blocks

We finally note that, for an L(g: H)-degenerate process, the number By of blocks in
cach of the channels

By =d, - dy (5.17)
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is the product of the dimension d, of g-invariants and the dimension dy; of H-invariants
in any channel. We know that dyy > dy > d, when H is a finite subgroup of the Lie

group generated by kA C g, and hence we obtain the double inequality
By 2 Byn 2 By (5.18)

for comparison of correlators with fixed external g-irreps, where B, and B, in (1.19)
and (3.28) are the number of coset and affine-Sugawara blocks respectively in any chan-
nel. This double inequality summarizes the symmetry hierarchy within the L(g: H)-
degenerate processes, and is in accord with the expectation that the number of blocks
increases with increased symmetry breakdown in ICFT.

In Appendices B and D and Section 6, we study the L(g: H)-degenerate correlator
3333 under the three constructions,

o the affine-Sugawara construction on SU/(3)

o the coset construction SU(3)/SU(2)ier

o the irrational construction S{/(3)%

to illustrate the double inequality (5.18). As discussed below, the symmetry hierarchy
for these three constructions is SU(3) D SU/(2)ir D O, where SU(2);, is the irregular
embedding of SU/(2) in St/(3) and Q is the octahedral group svmmetry of the irrational
construction.

5.3 Crossing relations
Using the completeness relations (3.27a) and (5.9d) of the g-invariant and H-invariant

eigenvectors respectively, we verify the crossing relations among the blocks,

B (y)n™ = [Xo(po) + O™ B ()™ (1 Xn(po) + O, )™M (5.19a)
Xi(pa)u™ = vi(p, H)sib(or, H)Y (5.19b)
Xi'(po)u™ = Xnlop)u™ = (Xn(po)n™) (5.19¢)

where X,(po) is the affine-Sugawara crossing matrix defined in (3.29) and Xy (pe) in
(5.19h) is another set of unitary crossing matrices, called the H-crossing matrices, from
the g-channel to the p-channel.

The If-crossing matrices satisfy the same consistency relations
Xilpo ) Xy(an) Xy(7p) = Xp(pr) Xpr{r0) Xy (op) = 1 {5.20a)
(' =8y (3.20h)
found for g and h in (3.30) and (1.24).
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When the external g-irreps satisfy 72 ~ T3, we may take

ol Y = (s, YL i, H)Sp = (s, H)y (3.21)
and then one finds that,
An(y)o” = Ap(l = y),° (5.22a)
By) = B - y) (5.22b)
Xn(su) = Xj3'(su) = Xp(us) (5.22¢)

where a’ = (ajazazay4). 1t follows that the set of s-channel blocks is closed under crossing,
BP( = y)n™ = (Xo(u5) + Ok )" BN [Xurlus) + ORI (5.23)

as it should be in this case. Similar relations hold when any two external states are the
same.

Using (5.19a) and (5.13d), we finally write down the crossing relations of the three
sets B(’) ;}'), BY of analytic blocks,

= [X,(su) + O(k™2)] B (X (su) + O(k~))™! (5.24a)

= [Xq(us) + Ok )] B [Xn(us) + O(k2)) ™! (5.24b)
(” = (Xo(st) + Ok~ B [(Xu(st)Uj! + O(k~2))! (5.24¢)
= [Xo(ts) + O™} B [Un Xnr(ts) + O(k~2)] ! (5.24d)
‘"’ = [X,(ut) + O(k~2) B [Xn(ut)U;' + O(k~2))! (5.24e)
= [Xy(tu) + O~ B [Un Xy (tu) + Ok~ (5.2410)

where Uy is the non-analytic unitary phase matrix (5.13¢) of the L(g: H)-degenerate
correlators. As seen above for the affine-Sugawara and coset constructions, the phase
matrix provides the entire O(k~!) corrections to the full crossing matrices in (5.21).

For the special case of the L(g: h)-degenerate coset correlators (with Ly = Ly and
w{H) = i(h)) the general high-level blocks (5.12), (5.13) reduce precisely to the L(g: H)-
degenerate subset of high-level coset blocks computed in (1.10), (4.14). In the same way,
the crossing relations (5.24) reduce in this case to the coset crossing relations in (1.27).

5.4 Non-chiral correlators in ICFT

For the general L(g: 1)-degenerate process, we construct a set of high-level non-chiral
correlators using the diagonal construction in the s-channel blocks (5.12).,

Yl y) = 3185 0N+ O?) (5.29)
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which shows trivial monodromy around y = 0. Using the crossing relations (5.19) we can
also express this correlator in terms of u or t-channel blocks

Yi(y™y) = L 1B ()" + O(k?) (3.26)
m,M R
= Y 1B M1 + O(k™?) (3.26b)
mM

which show trivial monodromy around y = 1 and y = oo respectively.

The non-chiral correlator can also be expressed in terms of the analvtic t-channel
blocks (5.13a),

Yuly) = 3 1BR@aNUn(NYE +O(k™?) = T [BR ().~ + O(k™?) (5.27)
) N m,N

mNM

where the last step uses the unitarity (5.13f) of the phase matrix U/y.

Using completeness and the explicit form of the conformal blocks, we also obtain the
summed form of the non-chiral correlators
Yu(y™,y) =Tr{[Il + 2L7 (T T Iny™ + T/ T In(1 ~ y")) ],
(5.28a)
x [1+2L% (T}T2ny + T'T2 In(1 — y))]} + O(k™?)

I
= Tel(142L38 (T2 77 In [y P+ T TR In [L-y ), ]+ O(k~?) (5.28b)

where I, is the projector onto the G-invariant subspace of T' @ --- & T*. The last form
explicitly shows two of the trivial monodromies, and trivial monodromy around y = oo is
easily seen following the discussion below eq.(3.41). One also sees the expected crossing
symmetry

Yu(1-y",1-y) =Yu(y",y) (5.29)

when 72 ~ T3, We finally note that the general L(g; H)-degenerate correlators (5.28)
correctly include the L(g:h)-degenerate coset correlators obtained from (4.42) when
Py = 1.

Using the embedding matrices (5.12d) and the H-crossing matrices (5.19b), Appendix
A gives alternate expressions for the blocks and correlators of the L(g; H)-degenerate
processes in ICFT.

6 Blocks and Correlators in SU(3)#,

As an explicit example in irrational conformal field theory, we work out here the high-level
conformal blocks and non-chiral correlators for a particnlar L(g: I)-degenerate process
in the unitary irrational level-family (24}

(S1:3).0% (6.1)
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where « is the invariant level of SU/(3). For simplicity below, this construction is often
called S, The construction is included in the larger maximally-symmetric ansatz
for all simply-laced ¢, which was in fact the first set of ICFTs found in the Virasoro
master equation. ‘I'he closely related coset construction SU(3),/Sl/(2)4z, which also
resides in the maximally-symmetric ansatz, is studied in Appendix D.

The exact forms of the central charge and the conformal weights of the 3 and 3
representations under (.9'(/(3)1.)?\#,, are

2z 22— 8z + 17

c[(SU(3 :#, = 2~
[(SU@):)) x+3 VAzt — 2823 + 1722 + 160z — 128

(6.2a)

AT = ATiy) = (62h)

where the 3-fold degenerate conformal weights in (6.2b) strongly suggest that the 3 and
3 are L(g: H)-degenerate representations.

As discussed further in Appendix C, the level-family (SU/(3).)¥% has a finite group
symmetry

H(SU(3)%) =0 C SU(2)ine (6.3)

where O is the octahedral group and SU/(2);,, is the irregularly embedded SU/(2) C SU(3).
The degeneracy of the 3 and 3 is due to the octahedral symmetry of the construc-
tion, which mixes all three components of each representation. Thus the 3 and 3 are
L(SU/(3): O)-degenerate representations in (51/(3).)%, as desired.

For the high-level computations in (.9(/(3),)#, below, we need only the high-level
forms of the inverse inertia tensor (in the Gell-Mann basis) and the degenerate conformal
weights,

1 1 a=1,46
Le, = ——0.6 , O, = " )
Oe = Zypa o0et {n a=382517 (6.42)
c=3+0(z") (6.4b)
1
A%(T) = A%(Ty) = 5ot O(z7%) (6.4¢c)

which identifies /** = 6,8, as the high-level projector of .9'(/(3)#,. Moreover, we will
consider only the L(SU/(3): Q)-degenerate process 3333 in SU(3)¥,

T'=T"=Ty , T*=T"=1Ty (6.5)

shown schematically in Fig.3. The matrix irrep of the 3 and 3 in the Gell-Mann basis
are given by,

T =574 » Tog="75"M (6.6a)

X a=381,16
,\,,:~,\,,T={ a=3.8118 (6.6b)

Ao a=231

where A,, a == 1...8 are the Gell-Mann matrices.
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Fig. 3. An L(Sl/(3): O)-degenerate correlator in S‘U(J)f,.

To compute the high-level blocks in the s-channel, we need to solve the eigenvalue
problem (5.9a) for the s-channel O-invariant eigenvectors #)(s, ), which reads in this

case,
[——I 2 A (.+ “]n ¥(s, 00" = AG)(M)b(s. 0N} (6.7a)
a=1416
1
[T(@av(s.0) = (s, 004, 1=1,2 (6.7b)
izt
0 10
wy =exp(irdgy/2) =] -1 0 0 (6.7¢)
0 01
0 -1 0
wy = exp(imAs/2)exp(iniz/2)=| 0 0 1 . (6.7d)
-1 0 0

The matrices wy and w; which appear in the O-invariance condition (6.7b) may be taken
as the generators of O.

After some algebra, one finds the following orthonormal set of s-channel eigenvectors
(s, 0)M and their eigenvalues Ag)(M),

500!, = = Foercbose 1 AL =0 (6.82)

W5 0N, = 3 \/-I«S(..(., 200 F Boreibores = Wayarbosoiboros] - AY(2) = % (6.8b)
#(s. 0), = gfléo,(.zﬁu,u. Sl L JSPSY SR JOPRN I Ag,(:x) = i (6.8¢)

(s, Q) = \/-["u.u, wror = Saraibazas] 5 AL = (6.8d)

#(s. 0)5y = (0(s. OV )y = (5. O)Y (6.8¢)

where the last relation savs that the left and right eigenverctors coincide in this case.

In 1CET, the high-level fusion rales {16,114} of the broken affine primaries follow the
Clebsch-Gordan coefficients of their corresponding matrix irveps. so the s-channel should

Ko

show the exchange of broken affine primary states corresponding to the vacnum and the
adjoint representation,

393=1a8+0(") . 6.9)

Indeed, the first conformal weight in (6.8a) is the conformal weight of the vacuum, and
the other three high-level conformal weights in (6.8h-d) are precisely the high-level form
of the three degenerate subsets of hroken conformal weights of the adjoint (see Appendix

Q). A

Similarly, we can solve for the u and t-channel eigenvectors, which are given by

!['(llv O)‘u = '.‘:'(Su 0)“"2»*3 ¥ A(ou)(l‘d) (s)(lw) (6103)
b, O = (5,00 fhes ,  AZ(M) = = — AQ(M) (6.10b)

where 2 & 3 and 2 « 4 mean respectively oy & a3 and a; & a4 in the explicit
expressions of the s-channel eigenvectors (6.8). The result in (6.10a) is in accord with
(5.21) since T2 ~ T2, so that the u-channel conformal weights are identical to the ones
in the s-channel. The conformal weights found in the t-channel,

3

Af(M) = ( o 21 21,) (6.11)

are also in agreement with the conformal weights of broken affine primaries in the known
high-level fusion rule

3R3I=633+0(k7") . (6.12)
In particular, the last value in (6.11) is the completely degenerate conformal weight of
the 3 and the first three coincide with the three degenerate subsets (C.11b) of the 6,
according to the high-level form (C.13a).

Using eq.(5.19b), the high-level s-u and s-t O-crossing matrices are computed from
the eigenvectors as

2 2V3 -2v2 23
1} 2v3 3 V6 -3

B% N Muts. OV = = Bk
Xo(us)ym {u, 0)Y" (s, 0) il -2vz G 1 N (6.13a)
23 -3 V6 3
2 2v3 —2v2 -2V3
- N Mo N o 1 2\/5 3 \/6 3
.\()(ls),\, = i{t,0)" (s, 0)" = 6 _2\/‘2 \/6 1 ——\/6 (6.13b)

-2v3 3 -6 3
which are orthogonal and idempotent matrices in this case. ‘The third O-crossing matrix
Nofut) = Nofus)No(ts) (6.11)
follows from the consistency relation (3.20).
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For the crossing of the blocks one also needs the high-level affine-Sugawara crossing
matrices (3.29¢) for ¢ = S{/(3). The p-channel SU/(3)-invariant eigenvectors and the
corresponding crossing matrices are

v(s, SUR))y = (.,(.,6(.3,.. (6.15a)
1 -
( ql ("))I1 2\/“[601«; (FL:7 0 5611,(”6(-31-4] (6.[-‘)!))
v(u, SU(3)) = v(s, SU(3))zes {6.15¢)
o(t, SUBNE = E%['Sé + burasboron] (6.15d)

o(t, SU(3))2 = — Boyabnzens) (6.15¢)

1
- /= 6«.0; azar
2\/5( 6 3

Xsu(us)n" = v(u, SU(3))"v(s, SU(3))" = % (2\1/5 2_\/12) (6.15f)
Keu(ts)a® = vlt, SUG)"o(s, SUG)" = 5 ( ﬁ _‘(}5) (6.15g)

where the labels V, A stand for vacuum and adjoint irrep, and 6,3 for symmetric and
antisymmetric irrep. The third g-crossing matrix is given by Xsy)(ut) = Xsu:(a)(us)
X5o@(ts):

Finally, we write down the 8 high-level s-channel conformal blocks (5.12) of the 3333
correlator in S'l,('l)\,,

BE (y)m™ = (s, O),,."[1+(A(,)—-— l)lnu+(Q(,u,—— 1)In(1 - y)jx™ + O(z™?) (6.16)

where (1)x¥ = §¥ and

M __ . m M _ l 0 0 0
e(s,0)." = v(s, SU(I)) (s, 0) _<0 %\/6 _% %\/5) (6.17a)
1 3 3
(AWM = G ALM) = AYM) = (0,5-,5m,50)  (6.17h)

12 -3 0 0
1 | -4v3 9 V6 -3

o\ M _ LAO M_ L
(Q(su))N = XL: XO(US),\ A(u)(l‘)xo(us)b 12z 0 \/g 12 3\/6
' 0 -3 6 9
(6.17¢)

Here we have used the alternate expression (A.9) for the L(g: H)-degencrate blocks in
Appendix A. The u and t-channel blocks can be computed from the s-channel blocks

36

above using the crossing relation (3.19) and the explicit forms of the crossing matri-

ces Xgspr(us), Xsi(ts) in (6.13), and Xo(us), Xo(ts) in (6.13). Moreover, using the

explicit form of the non-analytic phase matrix (35.13e) for this process,

olulu™ = ¥ Xo(ts)* exp (-milAQ(L) ~ “Jsign(arg(~y) Xo(ts):™ + O(=~)
. L -

(6.18)
the analytic t-channel blocks follow from the crossing relation (5.24f)

Using (3.16a,d-f) we obtain the following limiting behavior as y — 0 for the 8 s-
channel blocks (6.16) of this correlator,

B (). ~01‘3’(m,M)y“«‘b""""’-"’+O(z—z) , m=V,A , M=1231
—

(6.19)

MYV =040G™) , AY(A2=-+0ET)  (619h)
AQ)(A,3) = 1 4O, A% (AM) = 1 +0(z?) (6.19¢)
AQ(V,2) =14+ 0(™) , AY(A,1)=1+0() (6.19d)
AGV,3) =0(°) , A (V,4) = O(=°) (6.1%)

‘ 1 iv3 0 o _
1},’(17;,,\4):(#/2_‘3%\/6 ! Ng)wy(z ) . (6.191)

The explicit form of these residues was obtained using (5.16d), the embedding matrix
(6.17a) and the relation c(s,0) = Q@,, — 1

The four conformal weights in (6.19b,c) are the broken affine primary states in (6.9),
whose residues are O(2°) in accord with the general OPE in (2.17). The two conformal
weights in (6.19d) are broken affine secondary states {with residues which are O(z~!))
which are not necessarily integer descendants of broken affine primary states. The con-
formal weights in (6.19¢) cannot be determined through this order because their residues
1‘8’ are zero through O(z~!), and indeed these entire blocks begin at order O(z~?),

Bo(y)v® , Bo(yw* = O(z7%) (6.20)

a phenomenon also encountered in the coset example of Appendix D. To see (6.20) directly
from (6.16) note that, for these blocks, e(s, 0}, ¥ = 0 and ﬁ(s,())mN(qu))NM =0. In
the u-channel we also find two blocks which begin at O(z~?), while in the t-channel there
is one such block.

In agreement with (5.17), the number of blocks for this L{S/(3): O)-degenerate pro-
cess is

Bo=2-1=8 . » (6.21)

Becanse of the increasing symmetry hreakdown.

0O C SU@)in C SU3) (6.22)

37



the number (6.21) is larger than the number of blocks
Bsua)=2-2=4 , Bsppysue=2-3=56 (6.23)

for the same correlator under the affine-Sugawara construction (see Appendix B) and
the closely related coset construction studied in Appendix D. Taken together, (6.21) and
(6.23) are an illustration of the double inequality (5.18).

Using eqs.(A.13), (A.14) we also find the following expression for the high-level non-
chiral correlators of SU(3)%,

1 1
Yo(y™,y)=)_ E(s, 0)u™[1 + (AL - =-1)in lWl* + (AF) - —1lnft- 2 m™ + O(x7?)
M e

(6.2a)
10 0 0
, ' 0 3 ..l\/ﬁ 3
E(s, 0™ = Y (e(5,0) M) e(5,0),. " = 8 8 8 (6.24b)
m 0 _%\/é % "% 6
0 3 e 3

where we have used Xo(us)E(s,0)Xo(us) = E(s,0) and the diagonal s-channel con-
formal weight matrix Ag) is given in (6.17b). 'This result explicitly shows the crossing
symmetry (5.29), as it should since 72 ~ 73 in this case.

We finally remark that the high-level blocks and correlators of the K-conjugate theory
SU@/SUBY, . L=Leya -1 (6.25)

can be easily obtained from the results above, by substituting everywhere the K-conjugate
conformal weights A(7') = AY(T) —~ A(T) for the conformal weights A(T). Moreover.
the results above can easily be extended to the L(g; H)-degenerate correlators nsirin in
the larger family of ICF'I's called SU/(n)¥ [24); in this case, the number of H-invariant
tensors stays the same, with closelv analogous forms for all the more general results.

7 Conclusions

The generalized KZ equations of ICFT provide a uniform description of the chiral corre-
lators of rational and irrational conformal field theory, and the solution of these equations
is known at high level on simple g. The apparent simplicity of this result is deceptive,
however, because the solution describes a vast variety of generically irrational conformal
field theories ranging from the most symmetric (the RCE'L's) to totally asyminetric (the
generic 1CFT).

In this paper, we have hegun the resolution of the high-level chiral correlators into
high-level conformal blocks and non-chiral correlators, heginning with the simplest and
most symmetric classes.

In particular. we hegan by working out the high-level blocks and correlators of all the

IR

¢ affine-Sugawara constructions on simple ¢

e coset constructions on simple g.

Both results are new, and the results for the cosets are apparently inaccessible by other
methods.

Based on this analysis, we then identified what we believe to be the simplest and
most symmetric class of correlators in ICFT. These are the

o L(g: H)-degenerate processes in H-invariant CF'I's on simple ¢

which are those correlators whose external states have entirely degenerate conformal
weights A, = A. This class of correlators includes all the affine-Sugawara correlators,
a highly-symmetric subset of coset correlators and a presumably large set of irrational
correlators, examples of which are known.

For this simple class of correlators we were able to find the general expression for the
high-level blocks and non-chiral correlators, and we worked out an irrational example
with octahedral symmetry on SU/(3).

Our results emphasize that the L(g: H)-degenerate correlators are a very special class
of correlators indeed, since they have a finite number of conformal blocks (at least in
the semi-classical approximation), whereas the generic correlator in ICFT is expected to
involve an infinite number of blocks. We are intrigued to find that ICFT resembles RCFT
in this simple domain, and we are optimistic that the simplicity of the L(g; H)-degenerate
correlators can provide a foothold for further exploration.

Additional information is needed, however, to go beyond the leading orders of the
L(g:H)-degenerate processes in ICFT. The central question here is whether the number
of conformal blocks remains finite, as we found in the semi-classical approximation, or
increases with the order of £~'." At finite values of the level, one will also need to consider
the roles of the affine cutoff [4,15] and fixed-point resolution [25).

The more immediate open direction is to find the high-level conformal! blocks of
irrational correlators beyond the set of L(g: H )-degenerate processes. An ever-increasing
number of blocks is expected here as one confronts the progressively larger symmetry
breakdown of 1CFT, signalled by the L™-broken conformal weights A,.

In this direction, we remind the reader of the known singularities of the invariant flat
connections W which govern the exact (finite level) correlators of ICFT. For example, it
is known that (9]

uw

A (T ) 484y (T?)-2 4, (T -85, (T?) (9 [abT VT 2) B
Wi, u),® = (t_‘) , ) I ! @0 T de (7.1a)
Gt \ 1t u
CLSETN L O(k2)  (high k) (7.10)
=9y LT TN’ .
A e gl (L{g: H)-degenerate) (7.1¢)

39



where u and @ are the variables of the theory and its K-conjugate theory respectively.
The result (7.1a) shows the apparently non-Fuchsian a. 3 dependent shielding factor.
which is hidden in the high-level limit (7.1h), and which simplifies to unity at all levels.
shown in (7.1¢), for the L(g: H)-degenerate processes. We believe that this phenomenon
underlies the simplicity of the class of L{g: H)-degenerate processes in 1CET, and it
may be necessary to consider this factor in the physical interpretation of the high-level
logarithmic singularities of correlators bevond the simple class we have considered here.
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Appendix A: Alternate expressions for blocks and correlators

In this appendix, we use the relevant crossing matrices to give alternate expressions for
the conformal blocks and correlators of any set of external states in the affine-Sugawara
constructions (see Section 3) and: of any L(g; H)-degenerate process in the more general
H-invariant CF1's (see Section 5).

Affine-Sugawara constructions

We begin with the p-channel affine-Sugawara blocks in (3.27),
FO)m" = #(p. g)m[1 + 2L (T} T Iny + T T2 In(1 — y))v(p, 9)" + O(K7%) . (A1)

Using the definitions (3.2), (3.15) of the g-invariant p-channel eigenvectors v(p. g) and
the g-crossing matrices X, in (3.29¢). we have the g-crossing relations,

v(p.g)m = Xylpo)n"v(o.g)n . v(p.g)" = v(5.9)" Xy(op)™ . (A.2)
Using these relations, we obtain the alternate form of the affine-Sugawara blocks,

FOy) ™ = (14 (QF, — (AT ) + AY(T?) - ny
) (A%)
Qg — (AT + AYT?)) - 1) In(1 = y)]" + O(k™2)

10

where

(A?,.))mn = A'(q,.)(”l)&h . p=0

"

(D" =&n Q)" = { , .
(e2) Zl ’.\y(/'q)mlAf,,)([)/\y(”p)l" s P # a

(A1)

and A'}",)(m) are the p-channel affine-Sugawara conformal weights in (3.2) and (3.15).

We also give the corresponding alternate form of the analytiﬁ t-channel affine-Sugawara
blocks (3.23a),

FOW" = (14 Q) + Qfuy — QAUT") + AUT) + AYT?)) - 1) In(~y)

| (A.3a)
+ (@ = (@ 4 5T 1 (1= ) 4 0000
= 1 = (@ + (A%(T) = A(T) - 1) In(—y)
(A.3b)

+(Qfy — (AT + A”(IT“)) “1ln (1 - z—i)lm" +O(k7%)

where wa), o = s,t,u is given in (A.1). Here, the second form (A.5b) follows from
(A.5a) using the p=t form of the conformal weight sum rule,

:

1
By + Koo B Xolod) + XelpmIBE Xolro) = (S AT) 1 L p# 0 do
' ) (A6)
which is itself a direct consequence of the g-global Ward identity (3.21).

Substitution of the alternate forms (A.3) of the affine-Sugawara blocks in the ex-
pression (3.37) for the affine-Sugawara correlators then gives the corresponding alternate
form for the non-chiral correlators,

Yly" 9)® = Y11+ (@1 — (AYT*) + A%T?)) - 1) Iny?
(@ — (AAT") + A(T) - 1) In[1 =yl v(p, 9)76(p, 9)2 + O(k?)
(A7)

which explicitly shows the trivial monodromies around y = 0, 1 and ooc.

L(g; H)-degenerate processes

Following the development for the affine-Sugawara constructions above, we may find
similar alternate forms for the blocks and correlators of the general L(g: H)-degenerate
process.

Using the definitions (3.9) of the H-invariant eigenvectors i*(p, H) and the H-crossing
matrices Xy in (5.19), we have the H-crossing relations.

a(p My = Xplpa)u™Ni(a. )y . (o Y = (o YN Xp(op)a™ . (A8)
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Using these relations in the expressions (5.12b) for the blocks, we obtain tho following
alternate form of the L(g: H)-degenerate blocks.

(p)(y)m M= (P H)MN[I + (Q(ps) (A{, + Ay) ’ 1)‘" y

(A.9)
+(Qwy — (AT + AF) - D In(1 - WM + Ok
where e(p, H) are the p-channel embedding matrices (5.12d) and
A = AL (MY6H , =g
(1)\4 - h , (Q(M)) N { ( (p))w " (‘-)( ) M P
YL Xn(po)u® A oL Xnlap %(UA )
10

with A(‘,)(M) the p-channel conformal weights in (5.9). I'hese results include all the
correlators of the affine-Sugawara constructions and all the L(g; h)-degenerate processes
of the g/h coset constructions.

We also give the corresponding alternate form for the analytic t-channel blocks
(5.13a),

BR W)™ = e(t. H) M1 +(Qly + QL) = AT + A + A - 1) In(—y)

(A.1la)
+(Qfy — (A +4Y) - 1)In (1 - ;})]NM + O(k™?)

= e(t, H)n"[1 = (Q(ly + (&1 = AY) - D) In(~y)

+ (@l ~ A+ a) 11 (1= D+ 00670
' (A.11b)
where Q! | o = s,t,u is given in {A.10). Here, the second form (A.11b) follows from
(to)

(A.11a) using the p =t form of the conformal weight sum rule in L(g: H)-degenerate
processes,

e(p, DAL+ Xu(po) AL X (ap) + Xu(pr) A Xn(7p))

i ; (A.12)
e(p,H)ZA. . pFEaFTEp

i=1
which is itself a direct consequence of the g-global Ward identity (5.15).

Finally, we give the corresponding alternate form of the non-chiral correlators (5.23),
using the expression (A.9) for the blocks,

Y(y.y) = Y E(p. H)u™ (1 +(QLy — (AT + AY)- )n |yl
MN
+(Q) — (AT + AN 1 In |1 = yPa™ + O
(A13)
where
Ep. )™ =Y (ep. 41, yelp )N (A1)

"

42

This form of the correlator explicitly shows the trivial monodromies around y = 0, 1 and
00.

Appendix B: Comparison with the blocks of Knizhnik and Zamolodchikov

In this appendix, we check our high-level affine-Sugawara blocks (3.12), (3.17) and
(3.23) against the exact blocks obtained in Ref.[4] for the 3333 correlator on SU(3).

" o find the explicit form of our high-level blocks in this case, we need first the high-
level form of the affine-Sugawara construction on g = SU/(3),

1
ab
Ly, = 1:1/)76“6 (B.1)
where 1), is the highest root of S{/(3), z is the invariant level of affine SU/(3) and we
have used the Gell-Mann basis. ‘I'he matrix irreps of the 3 and 3 are given in (6:6) and
the corresponding high-level conformal weights are

8Y(Tiy) = A T) = -+ O . (B2)

Using the p-channel invariants in (6.15a-¢) in the eigenvalue problems (3.2a) and (3.15a,b),
we also obtain the high-level intermediate p-channel affine-primary conformal weights,

A(Ty) =04+ 0(™) , m=V

Biglm) = {A”(T(s)) =24+0(z?) , m=A4 ' p=S (B.3a)

(m) = A (T)) = 2 + O(x~?) , m=6
1) = -
A =\ av(Ty) = L40(?) , m=3

where m = (V, A) labels the vacuum and adjoint representations in the s and u-channels

(B.3b)

and m = (6,3) labels the symmetric and antisymmetric representations in the t-channel.

Finally, we use the corresponding crossing matrices (6.15f,g) to compute the matrices
c(p,g) in (3.12d), (3.17d) and (3.23d),

c(s,9) = ¢{u,g) = ‘m)[A(“) 3 l]X (us) = ( 20\/_ —3\7/2_) (B.4a)

=5 3‘/5) (B.4b)

e{t, g) = Xo(tu)[Afy — 5 1 Xo(ut) = o= (,‘\/- _2

where 1 and A:“) are defined in (A.Al). With these data we obtain the explicit form of
our high-level blocks for the 3333 correlator,

i 0 1 (-8 0 1 0 -2/2
(%) no_ - -2
F () »-_(0 l)+»'—_3;r< 0 l)lnl/-l— ( o0/F -7 )ln(l y) + O(x™%)
(B.5a)

FIh" = FPAL = y)a" (B.3b)
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R 10 1 /10 0 1/ -5 32 1

(1) n_ . - - _ 2 A =2

P = (0 1) 37 ( 0 ,x) n(=y)+ 37 (3\/-2 9 )l" (l y) + O
(B.5¢)

where m = (V, A) in (B.5a,b) and m = (6,3) in (B.53c). The relation (B.5b) is in accord

with (3.33c), since 7% ~ T2 in this case.

We wish to check our high-level blocks (B.5) against the exact results obtained by
KZ, who, however, use a different basis for the S{/(3)-invariant tensors,

vl(z(q) = 6('1026('3('4 k) v;(Z(.q) = 6(1](!36020‘ . (Bﬁ) !

Comparing these invariants with our Clebsch basis (6.13a-e) of SU/(3)-invariants. we learn
that the basis transformation of our p-channel blocks (B.3) to the K% basis is,

1 4 0
dmf_,s")(y)m" = f;”)(y)m"lzn" , Lt = T (—\/f 1\/2.) , m=V,A ., p=s,u
(B.7a)

%(2\/\/6? _;/\G/q) , m=63 (B.7b)

where p = 1,2 labels thev K7 invariants, the normalization constants d,, are arbitrary
and the blocks F*¥(y)*, F{)(y)m* are the KZ blocks. More explicitly, our prediction
for the high-level analytic KZ blocks is then,

FNy)m# = (l _01) +§1; ("8 0 )ln,.,+31—I (1 _3) In(1—y) +O(z~?) (B.8a)

dvnfgt)(y)m“ = j:jt)(y)m"‘wnu ) 1‘4,.“ =

1 1 -3 1 21

f;u)(y)mu = f}s)(l - Y)n" (B.8h)

. 1 1 1 {10 10 1 /1 -11 1

(t) B . — — — - 2

F(Y)m (1 _1) 31(4 _4)In( y)+.,h_'(1 5 )ln(l y)+O(T )
(B.8c)

where we have chosen the particular values of the normalization constants

1 1 1 1

dvy== , dpy=——= , do=— , dyj=—= B.9
v 3 A 6\/§ 6 2\/6 3 2\/§ ( )

with some pedagogical foresight.

‘I'o check that these blocks are precisely the high-level limit of the KZ blocks on S/(3),
we recall the exact form of the s-channel K% blocks F{* (y).* on St:(3) [1],

FO )" = y 280 Tm(1 — 0382 (), -7, 1 - 3Niy) (B.103)

1 L] L 9 .
FUp = =y 21— )TN (401 = 4,2 -3Ny) (B.10b)

FEy)a" =y~ 028 T () )ATA-28%T) f(2) AN, 1+ BMiy) (1B.10c)
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]_-Jn)(‘,/):‘z — —3_,/“‘°(-“)”'2“°"’“J)(l _ y)A°(A)—ZA"(Tm)[,‘(Q,\_..|,\7 3hy) (B.10d)

1 3 1
—_— _— . A= —— .
Ax +3) T+3 T +3 (B.10c)
where m = V, A label the vacuum and adjoint blocks, A?(7(y)) is the conformal weight
of the 3, AY(A) is the conformal weight of the adjoint representation and F(a.b,c1y) is

the hypergeometric function. Using the high-level expansions,

A(Tiy) = AY(A) = A(Ti) =

a b c ab
F{—— . N =1 — — -2 .
(.F+d".l7+f.‘:t+f y) cm|n(l y)+0(z™) (B.11a)
o b - © N4 B
z4+d x+¢ z+f’y =1+0(z™) (B.11b) ‘
a ‘7 ¢ a
l“- . . — . _ .-2
(I+dll+m+€,l+m+j.y) 1 Iln(l y)+0(;r ) (B.llc)
' “ b c Y_ _In(1-y) - /
P(1+$+da1+7£+‘5,2+Mf,y)— ” + Ofz™") (B.11d)

one finds that the high-level limit of (B.10) agrees precisely with the predicted form
in (B.8a). For the u-channel the check follows the same steps, with the replacement
y — 1 — y everywhere.

To continue the s-channel KZ blocks (B.10) to the t-channel, one uses the standard
continuation formula [26]
I'(e)l'(b - a)
I'(6)'(¢c — a)

P(e)'(a - b)
T(@)l(c=0)

F(a,bciy) = (-y)™"F(a,1 —c+a,l -b+a;%)

(—y)"’l"(b, l~c+bl—a+b: %) ,' Jarg(—y)| < =

(B.12)
According to the expansions (B.11), the high-level limit of this formula in the cases of
all four blocks in (B.10) is )

In(1-y)=In(—y)+In (l - %) , larg(—y)l <= (B.13)

and this limit is identical to the first continuation rule (3.20a) used in the text. To
continue the factors in front of the hypergeometric functions, we use the relations

1=y =(-y) (l - %) (B.14a)

y" = (=y)" exp|—in Asign(arg(~y))] (B.14b)

which are equivalent. finite forms of the continuation rules (3.20a.h).
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Factoring out the non-analvtic phases generated by (B.11b) (which then appear in the
crossing matrices to the t-channel), we find the finite-level form of the analvtic t-channel
KZ blocks,

I)A’(:‘)-?A'(Tm)

j'!fl)(y)sl - (_y)—A"(Tm) (1 ~ -

FANAT 42X 5 (B.15a)
y y

A%(A)=~24°(T5y)
. =A9
-7:9(‘)(-'/)62 =(-y) A9(Tg)) (1 - ;)

FOAMT+ M1 +2) 5) (B.15h)

FEA A1 -2 0 (B.15¢)
y ' y

i 1\ A7 (N)-28%(T;5))
3005 = o 1)
’ ¥y
10 e  Ag _ 4 _ 1
Arrd) A(T‘i")‘A(T‘”)“a(Ha) ey
The high-level forms of these blocks agree precisely with our prediction (B.5¢).

1) &7 -28%(Ts)
7 -~A?
}'}l)(y)j' = (-y) A% (Tiy) (1 _ _)

F(20,1 =21 — 2\ %) (B.15d)

A(Te) = (B.15¢)

For completeness, we finally give the finite-level forms of the s-channel blocks f}’)(y),,."
in our Clebsch basis,

fq(’)(.'l)vv - y-m.v('r(,))(1 = y)Av(A)—-ZA"(‘);J))F(/\,_,\’ _3/\”’) ‘ (B.16a)
Fyw = 3—(21{5;\A)y'"’“(7‘”’(1 — y)AT A28 Ta) f(] 4 A1 — A2 -3 y) (B.16b)
FO(y)ah =yt N-28°Ta) (1 y)8%A-28°(Tia)) jo(20, 4N, 3X; y) (B.16c)
FoyaY = %’1{_\_)_’/1+A’(A)—2A°(Tm)(l — )32 (] 2,1 4+ 40,2 + Fhiy)
(B.16d)

MTo) = g+ M=M= 2 L A=y (B

which are easily obtained from the s-channel KZ blocks (B.10} and the hasis transforma-
tion (B.7a). The basis transformation gives two of these blocks as linear combinations of
two hypergeometric functions, which we have then combined into a single hypergeometric
function using Gauss' contiguous relations.

The exact blocks (B.16) also show quite explicitly the high-level pattern discussed in
the text for the general affine-Sugawara blocks in our Clebsch basis:. the diagonal blocks
begin at order Q(A®) with leading singularities which are affine primary states, while the
off-diagonal blocks begin at O(k~') with leading singularities which are affine secondary
states. Morecover, one sees that the conjectured result (3.14) for the exact conformal
weights of the general blocks is indeed correct in this case.

Appendix C: The level-families SU(S):,‘ and SU(3)/SU{(2);,
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In this appendix we review |24.17} various results for the unitary irrational level-family
(SUE)E (c.1)

and the closely-related level-family of the coset construction

SU@)  SU@).
SU2iee ~ SU2e

(C.2)

both of which occur in the maximally-symmetric ansatz on SU/(3). S1/(2)i;, denotes the
irregularly embedded S1/(2) subgroup of S{/(3) generated by J,57. The results given
here are used in Section 6 and Appendix D.

In the (Cartesian) Gell-Mann basis (6.6), the maximally-symmetric construction
(SU(3).)% has the form [24]

| (. a=38
L = ﬁe,s,,,, , la={8t a=12,57 (C.3a)
"o 6 a=11,6
I T .
1= 7 e+ Iy + G+ S+ ID+ (S + 2+ D) (C.3b)
c=x(26. + 3¢, +3¢,) (C.3¢c)

where T is the stress tensor, ¢, is the highest root of SU/(3), z is the affine level and
¢ is the central charge. The exact form of ¢ is given in (6.2a), but we refer to [24] for
the exact? forms of the coefficients £.4,. The construction above includes the coset

_ construction SU/(3)/S1/(2)i, as a special case when the further symmetry relation

(-'c =( = ("y/’l (C.’l)

is obeyed.

SU(3)%, is an H-invariant CF'I' with symmetry group [17)
H(SU(3)E) = 0 = octahedral group C SU(2)ir (€C.5)

where O is the octahedral group (rotational symmetry group of the cube, with order
24) and SU(2);,, is the itregular embedding of SU/(2) in S/(3). The octahedral group
includes the elements

n m

Q) = expli—shs(0)) . sy = explimsde(0)) . Dy = expl(i——.
@ P‘(])(I\/'?‘.Z »{()) () exp(z\/ﬁ? «(0)) ) exp(:\/Elz

where J,(0) are the zero modes of the currents J,, and in particular we may take the two

1(0)) (C6)

clements w; and w;,.

wh Q(-l) oWy = Q(g,)Q(;) (C7)

YThe relation to the notation of Ref{24) is £, = 3A. & = (L — Ly )/2and f, = (L_ + Ly)}/2.
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which satisfy
w=1 . &= (€C.8a)

w.w.fw, =Wy . Wiuhwy = w-;w'fw; {C.8h)
as the generators of the octahedral group.

The coset construction SI/(3)/ S/ (2)i, has the larger Lie group symmetry
H(SUR)Y/SU(2)ie) = SU(2)ire (C.9)

because of the symmetry relation (C.1).

‘The 3 and 3 are L{g: H)-degenerate irreps of Sl/(.’l)f, and SU7(3)/SU(2)ir with com-
pletely degenerate conformal weights,
¢ N
AlT) = DTg) = = () (¢.10)
where the number in parentheses denotes the degeneracy.
For (SU/ (3),)#, one also finds the L®-broken conformal weights of the 8 (adjoint) and

6 (symmetric),
L+ +¢) 3)

ATg) =] 3b+t) (2) (C.11a)
o lestw+in) @
2(2¢, +3¢,) (1)
MTie) = A(Tig) = { Sc+3l+6)  (3) . (C.11b)

1. +1386+¢6) (2

These forms show that the 8 and the 6 each split into three subsets of degenerate weights,
in agreement with the block analysis of Section 6.

For SU(3)./SU/(2)4, the splitting is reduced to two subsets,

208 + o) (5)

(T ={ C.12a)
on(Tigy) Len+56m)  (3) (
to
Slosh () :
Au(Tie)) = Aapn(Tiey) = {“h :_ ”li[ ; ) (C.12b)
2 6 "u/h '

according to (C.4) and (C.11). These forms are in agreement with the coset block analysis
of Appendix D).

For the computations of Section 6 and Appendix D, we need the high-level forms of
the two constructions.

(SE@LE f =L 402 | h=b =0 . e=340(7) (C.13)
x

S1A(3),

l o’ - 4 '- - e - A .
Sy T HOET) L =0T e =54 06T (CA3h)
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which can be used with (C.10). (C.11) and (C.12) to obtain the high-level forms of all
the quantities discussed in this appendix.

Appendix D: Blocks and correlators in SU(3)/SU(2);,,

As an explicit example in rational conformal field theory, we work out in this appendix
the higl-level conformal blocks and correlators of a particular L(g: )-degenerate process
in the level-family of the cosetl construction

g _ SU@3). SU@3)

b SU@n - SU@m (>

which is included in the family of coset examples (1.38a).

This level-family has the Lie symmetry SU(2)iyy, and the 3 and 3 representations are

L(SU(3); SU(2)irr)-degenerate.

For the high-level computations in S{/(3)/SU(2)in below, we need the high-level
form of the inverse inertia tensor (in the Gell-Mann basis) and the degenerate conformal
weights, :

1 1 a=3,81,4,6
Lab _ —0060 . 00 - 10y 24978, i
9/ h.oo .‘121_11"3 b {0 a= 2’57 7 (D 23)
; 5
AN Tz) = A"M(Tiy) = o=+ O(z™?) (D.2b)

and we will consider here the same process, that is 3333, which we studied for the
affine-Sugawara construction and the irrational construction St/(3)¥% in Appendix B and
Section 6 respectively.

‘T'o compute the high-level blocks in the s-channel, we need to determine the s-channel
eigenvectors (s, SU/(2)) from the eigenvalue problem (5.9), which reads in this case,

[-51; IO+ _%u](.-" (s, SU(2)Y = AN M)b(s, SU@2)Y (D.3a)
To=%% ‘.
4
Y0NS, SU@NY =0, a=2,57 . (D.3b)
=1

Here we have used the properties (6.6b) of the Gell-Mann matrices, and the global con-
dition (1).3b) enforces the SU/(2)i-invariance of the coset construction.

After some algebra, the following orthonormal set of s-channel eigenvectors is found
. v gt ] T
B SN, = Z8uebuser - A1) =0 (D.1a)

I 2 P
'2\/516(”(']6"}"‘ -+ ‘S(l"l“s(!;(lg — 56("")603("] . A:s) (2) = :2; (D"“‘)

(s, ST =



1
'.'"'(5: 'q”(z));‘. = '—_"[6¢v|(va‘s(v)¢va - 6:v|1106(~2(v.1] . ;’e/)h(") “)'C)

3
23 2
(s, ST = (4. SU@NF) ™ = w(s, SU(2))) (D.1d)
where the last relation says that the left and right eigenvectors coincide in this case.

The results (D.1) are in agreement with the high-level fusion rule (6.9): in particular,
the conformal weight in (D.1a) corresponds to the vacuum, while the remaining two
weights in (D.1b.c) are the high-level form of the two degenerate subsets of the coset-
broken conformal weights of the adjoint (sec eqs.(C.12a) and (C.13b)).

Similarly, we can solve for the u and t-channel eigenvectors, which are given by

@, SU@NY = (s, SURNMhams . ATN(M) = ALY (M) (1.5a)
(b, SURNM = (s, SUE@) M hoer :.’)“(W)———A:,’,“(M) ~(D.3h)

where 2 & 3 and 2 & 1 mean a; « a3 and ay & a4 in the explicit expressions (1).1)
for the s-channel eigenvectors. Since 7% ~ T3, the result in (D.5a) is a special case of
(5.21) and the u-channel conformal weights are identical to those in the s-channel. The
conformal weights of the t-channel,

10 1t 5
3¢’ 6z 6z

are also in agreement with the coset-broken conformal weights of the high-level fusion
rule (6.12). In particular, the last value is the completely degenerate conformal weight
of the 3 and the first two coincide with the two degenerate subsets (C.12h) of the 6,
according to the high-level form (C.13b).

AINM) = (=, = =) (D.6)

Using (5.19b), the S/(2)-crossing matrices are computed from the eigenvectors as

| 2 25 2v3
x.ﬂ.-(z,(l.s),\,”:u"(u,.S'l,f(2))"'1,/-(s,su(z))N,—46 WG 1 Vi3 (D.7a)
2v3 ~VIi 3

| 2 /A -2V3
Xsvi(ts)u™ = w(t, SU(@2) (s, SU(2)Y = g 25 1 Vi5 (D.7h)
-2v3 V15 3

which are orthogonal and idempotent matrices in this case. The third crossing matrix
Xs:y(ut) = Xsirzy(us) Xsi:a)(ts) follows from the consistency relations (5.20).

Finally, we nse the SU(3) eigenvectors {6.13) and the alternate expression (A.9) for
the general L(g: 1 )-degenerate blocks to write down the 6 s-channel coset blocks of the
3333 correlator in SE(3)/.S1(2)iy.

"',",,(:/),, = ¢(s. r//lx),, [l +(A'/" - —) Dny Jr-((}",/" — —‘L 1) In(l — _r/)],\"" + (7Y
: R

Ir {su}

(D.R)

30

where (1)xY = 8 and
1
e(s- g/ = v(s, SU@)™i(s, SU(2)Y = (0

: ' 3
QY = AUINSY . AUNM) = AU = (0, .5

: , i =
Q™ =3 Xsea(us)x A (L) Xsu@us) ™ = o -G 13 -3V
L . 0 :
(D.9c)

The u and t-channel blocks can be computed from the s-channel blocks above using
the crossing relation (5.19a) and the explicit forms of the crossing matrices Xsy(sy(us),
Xsuts) in (6.13) and Xsp(z)(us), Xsg:z){ts) in (D.7). Moreover, using the explicit form
of the non-analytic phase matrix (5.13¢) for this process,

Ugnn™ =3 Xsuay(ts)a” exp (““(Af,l)h(“ - g]Slgn(arg(—y))) Xsuia(ts),™
— 3z

(D.10)
+0(=™)

the analytic t-channel blocks follow from the crossing relation (5.24f)

Using (5.16a,d) we obtain the following limiting behavior as y — 0 for the 6 s-channel
blocks (D.8) of this correlator,

aln
COWIn™ ~ T8 (m, MYyB0 L 02 m=V,A . M=1,23
Y )

(D.11a)
ol _ o /h _ 3 _ m _ 5 2
AR (VD =040 AGNA2) = -+ 0=, AY(A3) = o~ +O(x™)
(D.11b)
ANV =140, ANAD =140 (D.11¢c)
AMHV,3) = O(«°) (D.11d)
) L&V 0 -
Comn(m, M) = 2.3 1\/“ !\/" +0(=7%) . (D.11e)
12r

The explicit form of the residues was ol)tade using (5.16d), the embedding matrix

(1.9a) and the relation c(s.qfh) = Q;’,/‘f') 2

The three conformal weights in {(D.11b) are broken affine primary states and the two in
(D.t1c) are broken affine secondary states which are not necessarily integer descendants
of broken affine primary states. The conformal weight in (1).11d) cannot be determined
through this order becanse the residue of the corresponding block Cypn(y)v?, and the block
itself. is zero throngh order Q(x="). so this block begins at O(c~2). To see this directly
from {1).8) note that for this Mock e{s.g/h),* = 0 and r(s.g/h),,,'\'(Q"/h)\v“' =0. We

(su)/+
also find one block which hegins at O(e=2} in the u-channel and in the t-channel.
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In accord with (1.19). the number of blocks in this process is
BSU(T))/S(-‘(‘Z) =2.3=6 (D.12)

while the same process under the affine-Sugawara construction on S{/(3) and the irra-
tional construction .‘5'("'(3)‘?, showed 1 and 8 blocks respectively. This is in accord with the
double inequality (5.18) and the increasing symmetry breakdown Q C SU(2);,, C SU(3)
of the three constructions.

Using eqs.(A.13), (A.141), we also find the following expression for the high-level non-
chiral correlators of SL(3)/SU(2)icr

. . 5 5 :
Yon(y™.9) =3 E(s, g/h)w™ 1 HAL} - #J)ln lyP+(AY*— 1y In 1=y P)ar™ +O(x7?)
M i

: ® "3z
(D.13a)
1 0 0~
E(s.g/M)a™ = Y (e(s,9/h)m)e(s,g/0)n™ = |0 & LVIF (D.13h)
" 0 % ]5 ) %

where we have used Xspa)(us)E(s, g/h) Xsp(2)(us) = E(s,g/h) and where the diagonal
s-channel conformal weight matrix A':s) is given in (D.9b). This result explicitly shows
the crossing symmetry (5.29), as it should since 72 ~ 73 in this case.
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