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In quantum electrodynamics a classical part of the S-matrix is nor

mally factored out in order to obtain a quantum remainder that can 

be treated perturbatively without the occurrence of infrared divergences. 

However, this separation, as usually performed, introduces spurious large

distance effects that produce an apparent breakdown of the important 

correspondence between stable particles and poles of the S-matrix, and, 

consequently, lead to apparent violations of the correspondence principle 

and to incorrect results for computations in the mesoscopic domain lying 

between the atomic and classical regimes. An improved computational 

technique is described that allows valid results to be obtained in this do

main, and that leads, for the quantum remainder, in the cases studied, to 

a physical-region singularity structure that, as regards the most singuiar 

parts, is the same as the normal physical-region analytic structure in the

ories in which all particles have non-zero mass. The key innovations are 

to define the classical part in coordinate space, rather than in momentum 

space, and to define there a separation of the photon-electron coupling 

into its classical and quantum parts that has the following properties: 1) 

The contributions from the terms containing only classical couplings can 

be summed to all orders to give a unitary operator that generates the 

coherent state that corresponds to the appropriate classical process, and 

2) The quantum remainder can be rigorously shown to exhibit, as regards 

its most singular parts, the normal analytic structure. 

Proceedings of Conference: "New Problems in the general theory of fields and 

particles", Le Sorbonne, Paris, July 25-28, 1994; to appear in Annales de 

L'lnstitut Henri Poincare, 1996. 
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1. Introduction 

The pole-factorization property is the analog in quantum theory of the clas

sical concept of the stable physical particle. This property has been confirmed 

in a variety of rigorous contexts1•2•3 for theories in which the vacuum is the 

only state of zero mass. But calculations4•5•6 have indicated that the property 

fails in quantum electrodynamics, due to complications associated with infrared 

divergences. Specifically, the singularity associated with the propagation of a 

physical electron has been computed to be not a pole. Yet if the mass of the 

physical electron were m and the dominant singularity of a scattering function 

at p2 = m 2 were not a pole then physical electrons would, according to theory, 

not propagate over laboratory distances like stable particles, contrary to the 

empirical evidence. 

This apparent difficulty with quantum electrodynamics has been extensively 

studied7 •8 •9 , but not fully clarified. It is shown here, at least in the context 

of a special case that is treated in detail, that the apparent failure in quan

tum electrodynamics of the classical-type spacetime behaviour of electrons and 

positrons in the macroscopic regime is due to approximations introduced to cope 

with infrared divergences. Those divergences are treated by factoring out a cer

tain classical part, before treating the remaining part perturbatively. It can be 

shown, at least within the context of the case examined in detail, that if an 

accurate classical part of the photonic field is factored out then the required 

correspondence-principle and pole-factorization properties do hold. The appar

ent failure of these latter two properties in references 4 through 7 are artifacts of 

approximations that are not justified in the context of the calculation of macro

scopic spacetime properties: some factors exp ikx are replaced by substitutes 

that introduce large errors for small k but very large x. 

The need to treat the factor exp ikx approximately arises from the fact that 

the calculations are normally carried out in momentum space, where no variable 

x occurs. The present approach is based on going to a mixed representation in 

which both x and k appear. This is possible because the variable k refers to 

photonic degrees of freedom whereas the variable x refers to electronic degrees 

of freedom. 

To have a mathematically well defined starting point we begin with pro

cesses that have no charged particles in the initial or final states: the passage to 
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processes where charged particles are present initially or finally is to be achieved 

by exploiting the pole-factorization property that can be proved in the simpler 

case considered first. To make everything explicit we consider the case where 

a single charged particle runs around a spacetime closed loop: in the Feynman 

coordinate-space picture the loop passes through three spacetime points, x 1 , x 2 , 

and x 3 , associated with, for example, an interaction with a. set of three local

ized external disturbances. Eventually there will be an integration over these 

variables. The three regions are to be far apart, and situated so that a. triangu

lar electron/positron path connecting them is physically possible. To make the 

connection to momentum space, and to the pole-factorization theorem and cor

respondence principle, we must study the asymptotic behaviour of the amplitude 

as the three regions are moved apart. 

Our procedure is based on the separation defined in reference 11 of the 

electromagnetic interaction operator into its "classical" and "quantum" parts. 

This separation is made in the following way. Suppose we first make a. conven

tional energy-momentum-space separation of the (real and virtual photons) into 

"hard" and "soft" photons, with hard and soft photons connected at "hard" 

and "soft" vertices, respectively. The soft photons can have small energies and 

momenta on the scale of the electron mass, but we shall not drop any "small" 

terms. Suppose a charged-particle line runs from a hard vertex x- to a hard 

vertex x+. Let soft photon j be coupled into this line at point x j, and let the 

coordinate variable xi be converted by Fourier transformation to the associated 

momentum variable kj. Then the interaction operator -ielJ.Li is separated into 

its "classical" and "quantum" parts by means of the formula 

where 

and z = x+ - x-. 

Zw 
CJ.Li = -ie--1

- feh z. k· J 

(1.1) 

(1.2) 

This separation of the interaction allows a. corresponding separation of soft 

photons into "classical" and "quantum" photons: a "quantum" photon has a. 

quantum coupling on at least one end.; all other photons are called "classical" 

photons. 
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The full contribution from all classical photons is represented in an ex

tremely neat and useful way. Specialized to our case of a single charged-particle 

loop L(xt, x2 , x3 ) the key formula reads 

(1.3) 

Here Fop(L(xt, x2 , x3 )) is the Feynman operator corresponding to the sum of con

tributions from all photons coupled into the charged-particle loop L(x1 , x2 , x3 ), 

and F~p(L(xt, x2 , x3 )) is the analogous operator if all contributions from classical 

photons are excluded. The operators Fop and F~P are both normal ordered oper

ators: i.e., they are operators in the asymptotic-photon Hilbert space, and the 

destruction operators of the incoming photons stand to the right of the creation 

operators of outgoing photons. On the right-hand side of (1.3) all of the contri

butions corresponding to classical photons are included in the unitary-operator 

factor U(L) defined as follows: 

U(L) = e<a•·J(L)> e-t<J•(L)·J(L)> e-<J•(L)·a> ei~(L). (1.4) 

Here, for any a and b, the symbol <a· b > is an abbreviation for the integral 

(1.5) 

and J(L, k) is formed by integrating expikx around the loop L: 

JJ.L(L, k) = [ dxJ.Leikx. (1.6) 

This classical current JJ.L(L) is conserved: 

(1.7) 

The a* and a in (1.4) are photon creation and destruction operators, respectively, 

and <I>(L) is the classical action associated with the motion of a charged classical 

particle along the loop L: 

<J>(L) = ( -ie)
2 

{ dx' g~-tv { dx" b((x'- x") 2 ) 
81r }L J.L }L v 

(1.8) 

The operator U(L) is pseudo unitary if it is written in explicitly covariant form, 

but it can be reduced to a strictly unitary operator using by (1. 7) to eliminate 

all but the two transverse components of aJ.L(k), a:(k), JJ.L(k), and J;(k). 
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The colons in (1.3) indicate that the creation-operator parts of the normal

ordered operator F~P are to be placed on the left of U ( L). 

The unitary operator U(L) has the following property: 

U(L)ivac >= IC(L) >. (1.9) 

Here ivac > is the photon vacuum, and IC(L) > represents the normalized 

coherent state corresponding to the classical electromagnetic field radiated by 

a charged classical point particle moving along the closed spacetime loop L, in 

the Feynman sense. 

The simplicity of (1.3) is worth emphasizing: it says that the complete 

effect of all classical photons is contained in a simple unitary operator that is 

independent of the quantum-photon contributions: this factor is a well-defined 

unitary operator that depends only on the (three) hard vertices xb x 2 , and 

x3 . It is independent of the remaining details of F~P(L(x1 ,x2 ,c3)), even though 

the classical couplings are originally interspersed in all possibly ways among 

the quantum couplings that appear in F~P(L(xb x2, x3 )). The operator U(L) 
supplies the classical bremsstrahlung-radiation photons associated with the de

flections of the charged particles that occur at the three vertices, x 1 , x2 , and 

X3· 

Block and N ordsieck12 have already emphasized that the· infrared diver

gences arise from the classical aspects of the elecromagnetic field. This classical 

component is exactly supplied by the factor U(L). One may therefore expect 

the remainder F~p(L(x1 , x2 , x3)) to be free of infrared problems: if we trans

form F~p(L(x 1 ,x2 ,x3)) into momentum space, then it should satisfy the usual 

pole-factorization property. A primary goal of this work is to show that this 

pole-factorization property indeed holds. To recover the physics one transforms 

F~P to coordinate space, and then incorporates the real and virtual classical 

photons by using 1.3 and 1.4. 

The plan of the paper is as follows. In the following section 2 rules are 

established for writing down the functions of interest directly in momentum 

space. These rules are expressed in terms of operators that act on momentum

space Feynman functions and yield momentum-space functions, with classical 

or quantum interactions inserted into the charged-particle lines in any specified 

desired order. 
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It is advantageous always to sum together the contributions corresponding 

to all ways in which a photon can couple with C-type coupling into each indi

vidual side of the triangle graph G. This sum can be expressed as a sum of just 

two terms. In one term the photon is coupled at one endpoint, x+, of this side 

of G, and in the other term the photon is coupled into the other end point, x-, 

of this side of G. Thus all C-type couplings become converted into couplings at 

the hard-photon vertices of the original graph G. 

This conversion introduces an important property. The charge-conservation 

(or gauge) condition kJ.L JJ.L = 0 normally does not hold in quantum electrody

namics for individual graphs: one must sum over all ways in which the photon 

can be inserted into the graph. But in the form we use, with each quantum 

vertex Q coupled into the interior of a line of G, but each classical vertex C 
placed at a hard-photon vertex of G, the charge-conservation equation (gauge 

in variance) holds for each vertex separately: kJ.L JJ.L = 0 for each vertex. 

In section 3 the modification of the charged-particle propagator caused by 

inserting a single quantum vertex Q J.L into a charged-particle line is studied in 

detail. The resulting (double) propagator is re-expressed as a sum of three 

terms. The first two are "meromorphic" terms having poles at p2 = m 2 and 

p2 = m 2 - 2pk - k2
, respectively, in the variable p2

• Because of the special form 

of the quantum coupling Q J.L each residue is of first order in k, relative to what 

would have been obtained with the usual coupling lw This extra power of k 

will lead to the infrared convergence of the residues of the pole singularities. 

Our proof that this convergence property holds can be regarded as a sys

tematization and confirmation of the argument for infrared convergence given 

by Grammer and Yennie13
. 

The third term is a nonmeromorphic contribution. It is a difference of 

two logarithms. This difference has a power of k that renders the contribution 

infrared finite. 

2. Basic Momentum-Space Formulas 

The separation of the soft-photon interaction into its quantum and classical 

parts is defined in Eq. ( 1.1). This separation is defined in a mixed representation 

in which hard photons are represented in coordinate space and soft photons 

are represented in momentum space. In this representation one can consider a 
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"generalized propagator". It propagates a charged particle from a hard-photon 

vertex y to a hard-photon vertex x with, however, the insertion of soft-photon 

interactions. 

Suppose, for example, one inserts the interactions with two soft photons 

of momenta k1 and k2 and vector indices J.li and J.t2 . Then the generalized 

propagator is 

PJ.L1,M (x, y; k1, k2) 

= J d4
p e-ipx+i(p+k1+k2)Y 

(27r )4 
. . . 
2 2 2 

x P .0 ,1-Ll P # .0 1J.L2 P # # .0 . (2.1) · -m+2 + 1-m+2 + 1+ 2-m+2 

The generalization of this formula to the case of an arbitrary number of inserted 

soft photons is straightforward. The soft-photon interaction 1 J.L. is separated 
. J 

into its parts QJ.L1 and CJ.L1 by means of (1.1), with the x and y defined as in 

(1.2). 

This separation of the soft-photon interaction into its quantum and classical 

parts can be expressed also directly in momentum space. Using (1.1) and (1.2), 

and the familiar identities 
1 1 

p-m JC p+ JC-m 
1 1 

(2.2) p-m p+ JC-m' 
and 

1 1 
.,( lJ.L .,( ' y-m y-m 

(2.3) 

one obtains for the (generalized) propagation from y to x, with a single 'classical 

interaction inserted, the expression (with the symbol m standing henceforth for 

m- iO) 

PJ.L(x,y;C,k)=j(d4p) (Pi JCP; ) kzJ.L e-ipz+iky 
21r 4 - m + - m z + io 

= j ~e-ipz+iky {
1 

d). (-i~) ( i ) 
(27r)4 lo 8pJ.L p+>.JC-m 

(2.4) 

The derivation of this result is given in reference 14. Comparison of the 

result (2.4) to (2.1) shows that the result in momentum space of inserting a 
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- single quantum vertex j into a propagator i( p- m t 1 is produced by the action 

of the operator 

(2.5) 

upon the propagator i( jJ - m )-1 that was present before the insertion of the 

vertex j. One must, of course, also increase by kj the momentum entering the 

vertex at y. The operator O(p-+ p + Ajkj) replaces p by p + Ajkj. 

This result generalizes to an arbitrary number of inserted classical photons, 

and also to an arbitrary generalized propagator: the momentum-space result of 

inserting in all orders into any generalized propagator PJ.L1 ,. •• ,J.Ln(p; kt, · · ·, kn) a 

set of N classically interacting photons with j = n + 1, · · ·, n + N is 

(2.6) 

where a = An+lkn+l + · · · + An+Nkn+N· The operations are commutative, and 

one can keep each Aj = 0 until the integration on Aj is performed. 

One may not wish to combine the results of making insertions in all orders. 

The result of inserting the classical interaction at just one place, identified by 

the subscript j €{ 1, · · · , n}, into a (generalized) propagator PJ.L1 ···J.Ln (p; kt, · · · , kn), 

abbreviated now by PJ.Lj, is produced by the action of 

l oo d>. ·O(p· -+ p· + >. ·k·) (-_!__) ) t t ) ) j:l H' o up~] 
(2.7) 

upon kj' PO'j" 

There is a form analogous to (2. 7) for the Q interaction: the momentum

space result produced by the insertion of a Q coupling into PJ.L1 ···J.Ln (p; k1 , • • · kJ.L) = 

PJ.Lj at the vertex identified by J.Lj is given by the action of 

(2.8) 
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An analogous operator can be applied for each quantum interaction. Thus 

the generalized momentum-space propagator represented by a line L of a graph 

G into which n quantum interactions are inserted in a fixed order is 

(2.9) 

where 

(2.10) 

If some of the inserted interactions are classical interactions then the cor

responding factors (8~jkJi - 8~jkji) are replaced by (8~jkji). 

These basic momentum-space formulas provide the starting point for our 

examination of the analyticity properties in momentum space, and the closely 

related question of infrared convergence. 

One point is worth mentioning here. It concerns the conservation of charge 

condition kJL JJL( k) = 0. In standard Feynman quantum electrodynamic this 

condition is not satisfied by the individual photon-interaction vertex, but is 

obtained only by summing over all the different positions where the photon 

interaction can be coupled into a graph. This feature is the root of many of the 

difficulties that arise in quantum electrodynamics. 

Equation (2.9) shows that the conservation - law property holds for the 

individual quantum vertex: there is no need to sum over different positions. 

The classical interaction, on the other hand, has a form that allows one easily 

to sum over all possible locations along a generalized propagator, even before 

multiplication by kJL. This summation converts the classical interaction to a 

sum of two interactions, one located at each end of the line associated with the 

generalized propagator. (See, for example, Eq. (4.1) below). We always perform 

this summation. Then the classical parts of the interaction are shifted to the 

hard-photon interaction points, at which kJL JJL( k) = 0 holds. 
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3. Residues of Poles in Generalized Propagators . 

Consider a generalized propagator that has only quantum-interaction in

sertions. Its general form is, according to (2.9), 

. . . 
z z z 

( p+ ¢ - m /ul p+ ¢+ #1 - m /u2 p+ ¢+ #1 + #2 - m 

z ) •.• X I 
un p+ ¢+ #1 · · · + #n - m 

(3.1) 

where 

(3.2) 

The singularities of (3.1) that arise from the multiple end-point .\1 = .\2 = 
· · · An = 0 lie on the surfaces 

(3.3) 

where 

(3.4) 

At a point lying on only one of these surfaces the strongest of these singularities 

is a pole. 

The Feynman function appearing in (3.1) can be decomposed into a sum of 

poles times residues. At the point a = 0 this gives 

i(p + m)t~t1 i(p+ #1 + m)t~t2 • • "t~tni(p + · · · + #n + m) 
(p2 _ m2)((p + k1)2 _ m2)((p + ... + kn)2 _ m2) 

= t N1i i(pi + m) N2i 
. D1· p~ - m 2 D2 ·' ~=0 ~ ~ ~ 

(3.5) 

where for each i the numerator occurring on the right-hand side of this equation 

is identical to the numerator occurring on the left-hand side. The denominator 

factors are 

and 

D1; = Il(2pikij + (k;j? + iO), 
j<i 

D2; = Il(2p;k;j + (kii? + iO), 
j>i 

10 
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where 

(3.7) 

The sign (jij =±in (3.7) is specified in reference 14, where it is also shown 

that that the dominant singularity on PT - m2 = 0 is the function obtained by 

simply making the replacement 

fooo a>.j (- a!Pj) (O(p--+ p+ >.jkj))--+ PiPj(Pikj)-1
. (3.8) 

Each value of j can be treated in this way. Thus the dominant singularity of 

the generalized propagator (3.1) on PT- m 2 = 0 is 
n 

II [(8~~k?- 8~~k?) PiPj(pikjt
1

] 
j=l 

N1ii(·A + m)N2i 
X 2 . 

Dii(Pi - m2)D2i 

The numerator in (3.9) has, in general, a factor 

= i(pi- /ti + m)iu;i(('Pi + m)i(2Pio-;+1 + /o-;+1 /ti+l) 

+ i(pi- /ti + m)iu;/o-;+1 (PT- m
2

) 

= i(2Piu;- /ti/u; )i( p + m )i(2Piui+1 + /o-;+ 1 /ti+l) 

+ i(p7 - m
2 )/u; (2Pio-;+1 + l<7i+1 /ti+l) 

+ i('Pi- /ti + m)iu;/o-;+1 (P7- m 2
) 

(3.9) 

(3.10) 

The last two terms in the last line of this equation have factors PT - m 2 • 

Consequently, they do not contribute to the residue of the pole at PT- m 2 = 0. 

The terms in (3.10) with a factor 2Piu;+1 , taken in conjunction with the factor 

in (3.9) coming from j = i + 1, give a dependence 2pipj2Piui. This dependence 

upon the indices Pi and (j'j is symmetric under interchange of these two indices. 

But the other factor in (3.9) is antisymmetric. Thus this contribution drops out. 

The contribution proportional to Piu; drops out for similar reasons. 

Omitting these terms that do not contribute to the residue of the pole at 

PT- m 2 one obtains in place of (3.10) the factor 

(3.11) 
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which is first-order in both ~i and ~i+I· That these "convergence factors" 

actually lead to infrared convergence is shown in references 14 and 15. 

4. Inclusion of the Classical Interactions 

The arguments of the preceeding section dealt with processes containing 

only Q-type interactions. In that analysis the order in which these Q-type 

interactions were inserted on the line L of G was held fixed: each such ordering 

was considered separately. 

In this section the effects of adding C -type interaction are considered. Each 

C-type interactions introduces a coupling ku/u = fo. Consequently, the Ward 

identities, illustrated in (2.2), can be used to simplify the calculation, but only 

if the contributions from all orders of its insertion aretreated together. This we 

shall do. Thus for C-type interactions it is the operator C defined in (2.5) that 

is to be used rather than the operator C defined in (2.7). 

Consider, then, the generalized propagator obtained by inserting on some 

line L of G a set of n interactions of Q-type, placed in some definite order, and 

a set of N C-type interactions, inserted in all orders. The meromorphic part of 

the function obtained after the action of the n operators Qi is given by (3.9). 

The action upon this of the N operators Cj of (2.5) is obtained by arguments 

similar to those that gave (3.9), but differing by the fact that (2.5) acts upon 

the propagator present before the ac.tion of Cj, and the fact that now both limits 

of integration contribute, thus giving for each Ci two terms on the right-hand 

side rather than one. Thus the action of N such Ci 's gives 2N terms: 

"" "" II ZPiJ.L. 
2N n n+N ( · e ) 

= L.,; s gn( e) L.,; ~ k)· 
e=I i=O j=n+l P~ J 

x N~ i ( Pr + m) N~ 
D e ( e)2 2 ne' Ii Pi - m 2i 

( 4.1) 

where 

12 



·' 

ej = +1 or 0, 

(4.2) 

and the superscript eon theN's and D's means that the argument Pi appearing 

in (3.5) and (3.6) is replaced by p~. Note that even though the action of Cj and 

Qj involve integrations over A and differentiations, the meromorphic parts of 

the resulting generalized propagators are expressed by ( 4.1) in relatively simple 

closed form. These meromorphic parts turn out to give the dominant contribu

tions in the mesoscopic regime. 

The essential simplification obtained by summing over all orders of the C
type insertions is that after this summation each C-type interaction gives just 

two terms. The first term is just. the function before the action of Cj multiplied 

by ipif.L1(pikjt 1 ; the second is minus the same thing with Pi replaced by Pi+ kj. 

Thus, apart from this simple factor, and, for one term, the overall shift in Pi, 

the function is just the same as it was before the action of Cj. Consequently, 

the power-counting arguments used for Q-type couplings go through essentially 

unchanged. Details can be found in references 14 and 15. 

5. Comparison to Other Recent Works 

The problem of formulating quantum electrodynamics in an axiomatic field

theoretic framework has been examined by Frohlich, Morchio, and Strocchi8 and 

by D. Buchholz9
, with special attention to the non-local aspects arising from 

Gauss' law. Their main conclusion, as it relates to the present work, is that the 

energy-momentum spectrum of the full system can be separated into two parts, 

the first being the photonic asymptotic free-field part, the second being a remain-· 

der that: 1) is tied to charged particles, 2) is nonlocal relative to the photonic 

part, and 3) can have a discrete part corresponding to the electron/positron 

mass. This separation is concordant with the structure of the QED Hamilto

nian, which has a photonic free-field part and an electron/positron part that 

incorporates the interaction term eAJ.L JJ.L, but no added term corresponding to 

the non-free part of the electromagnetic field. It is also in line with the separa-
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tion of the classical electromagnetic field, as derived from the Lienard-Wiechert 

potentials, into a "velocity" part that is attached (along the light cone) to the 

moving source particle, and an "acceleration" part that is radiated away. It is 

the "velocity" part, which is tied to the source particle, and which falls off only 

as r- 1 , that is the origin of the "nonlocal" infraparticle structure that intro

duces peculiar features into quantum electrodynamics, as compared to simple 

local field theories. 

In the present approach, the quantum analog of this entire classical struc

ture is incorporated into the formula for the scattering operator by the unitary 

factor U(L). It was shown in ref. 11, Appendix C, that the non-free "velocity" 

part of the electromagnetic field generated by U(L) contributes in the correct 

way to the mass of the electrons and positrons. It gives also the "Coulomb" or 

"velocity" part of the interaction between different charged particles, which is the 

part of the electromagnetic field that gives the main part of Gauss' law asymptot

ically. Thus our formulas supply in a computationally clean way these "velocity 

field" contributions that seem so strange when viewed from other points of view. 

Comparisons to the works in references 17 through 22 can be found in 

reference 14. 
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