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Abstract 

Estimation of Hydrologic Properties of Heterogeneous Geologic Media 
with an Inverse Method Based on Iterated Function Systems 

by 

Christine Allison Doughty 

Doctor of Philosophy in Engineering 

University of California, Berkeley 

Professor Paul A. Witherspoon, Chair 
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The hydrologic properties of heterogeneous geologic media are estimated by simultane

ously inverting multiple observations from well-test data. A set of pressure transients observed 

during one or more interference tests is compared to the corresponding values obtained by numer

ically simulating the tests using a mathematical model. The parameters of the mathematical 

model are varied and the simulation repeated until a satisfactory match to the observed pressure 

transients is obtained, at which point the model parameters are accepted as providing a possible 

representation of the hydrologic property distribution. 

Restricting the search to parameters that represent fractal hydrologic property distributions 

can improve the inversion process. Far fewer parameters are needed to describe heterogeneity 

with a fractal geometry, improving the efficiency and robustness of the inversion. Additionally, 

each parameter set produces a hydrologic property distribution with a hierarchical structure, 

which mimics the multiple scales of heterogeneity often seen in natural geological media. 

The fractal hydrologic property distributions are created using iterated function systems 

(IFS's}, which generate a fractal set known as an attractor. The attractor is then mapped to a dis

tribution of transmissivity and storativity in the mathematical model used to simulate the well 

test. During the inversion, the parameters of the IFS are varied, thus enabling different hydrolo

gic property distributions to be tested. In contrast to traditional inverse methods, which search 

for the hydrologic property distribution directly (typically tOO's to 1000's of unknown parame

ters-), the IFS inverse method searches only for the parameters of the IFS (typically to's of 

unknown parameters) . 

Application of the IFS inverse method to synthetic interference-test data shows that the 

method reproduces the synthetic heterogeneity successfully for idealized heterogeneities, for 
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geologically-realistic heterogeneities. and when the pressure data includes noise. Application to 

field data from an interference test conducted in a shallow aquifer within a sand/clay sedimentary 

sequence at Kesterson Reservoir agrees well with an independent analysis using traditional well

test analysis methods. Application to a series of interference tests conducted in a fluvial sedimen

tary formation consisting of several permeable layers at the Gypsy Pilot Site produces a detailed 

·picture of the subsurf~~~. which compares favorably with cross-well seismic imaging studies. 
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wel!'-test data. · 
Pressure transients for one of the inversions of the z = 23 well-test data. 96 
The arrangement of plots on the page mimics the well field layout shown 
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Three transmissivity distributions returned by inversions of the z = 47 97 
well-test data, which used the step map. 
Three transmissivity distributions returned by inversions of the z = 47 98 
well-test data, which used the distributed map. 
Pressure transients for one of the inversions of the z = 47 well-test data. 99 
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Pressure transients for noisy synthetic data, with cr = 0.1. The arrange- 101 
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Pressure transients for noisy synthetic data, with cr = 5. 103 
Pressure transients for noisy synthetic data, with cr = 10. 104 
Pressure transients for noisy synthetic data, with cr = 100. 105 
Attractors returned by the inversions of noisy pressure-transient data for 106 
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The nested TRINET lattice used for the Kesterson inversion. Frame (a) 111 
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Orthophotograph of the main Gypsy outcrop and illustration of the geo
logical. mapping used to analyze it. 
Plan view of the Gypsy outcrop-site borehole array. 
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Gypsy pilot-site well field layout. 121 
Cross-sections through the Gypsy formation at the subsurface pilot site, 123 
showing simplified lithologies as inferred from well logs and core stu-
dies. The dark bands indicate clay or shale and the remainder is sand. 
The horizontal bars mark the upper limit of the logged interval. 
Schematic illustration of the Gypsy pilot-site well tests conducted in 125 
,1989 and 1990, and the screened intervals (shown as black bars) in the 
wells. 
Matrix display summarizing hydrologic tests done at the Gypsy subsur- 127 
face pilot site. Entries grouped by well. 
Matrix display summarizing hydrologic tests done at the Gypsy subsur- 128 
face pilot site. Entries grouped by sand channel. 
Matrix display summarizing hydrologic tests done at the Gypsy subsur- 130 
face pilot site. Entries grouped by sand channel, contradictory entries 
removed. 
The lattice used for the numerical model of the lower sand channel at the 135 
Gypsy subsurface pilot site. The wells are shown as open circles. 
The Gypsy pilot-site well field showing a schematic view of the lower 136 
sand channel· well tests. The shaded lines connect the observation and 
pumping wells for a given test. 
The observed and modeled observation-well drawdowns for test 138 
90/S4/T1. The model consists of a uniform medium with T 0 and and S 0 • .. 

values that minimize the energy for test 90/S4/T1. 
The observed and modeled observation-well drawdowns for test 139 
90/S3/T1. Same uniform-medium model as in Figure 6.11. 
The observed and modeled observation-well drawdowns for test 140 
90/S 1/T1. Same uniform-medium model as in Figure 6.11. 
The observed and modeled observation-well drawdowns for test 141 
89/S2/T2. Same uniform-medium model as in Figure 6.11. 
The observed and modeled observation-well drawdowns for test 142 
89/S1/Tl. Same uniform-medium model as in Figure 6.11. 
The returned transmissivity distribution for test 90/S4/Tl. The upper 144 
frame shows the attractor returned by the inversion. The lower frame 
shows a grey-scale map of transmissivity with darker shades correspond-
ing to higher transmissivity. 
The observed and modeled observation-well drawdowns for test 145 
90/S4/T1, corresponding to the transmissivity distribution shown in Fig-
ure 6.16. 
Grey-scale transmissivity distributions for eight inversions of test 146 
90/S4/Tl. Darker shades correspond to higher transmissivity. 
Energy decrease during the inversion of test 90/S3/Tl. The open circles 148 
mark the points at which background-diffusivity optimizations were 
done. 
The observed and modeled observation-well drawdowns for test 149 
90/S3/T1. 
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The returned transmissivity distribution for test 90/S31T1. The upper 150 
frame shows the attractor returned by the inversion (horizontal dashes 
identify attractor points that decrease transmissivity and vertical dashes 
identify attractor points that increase transmissivity). The lower frame 
shows a grey-scale map of transmissivity with darker shades correspond-
ing to higher transmissivity. 
Transmissivity distributions for four other inversions of test 90/S31T1. 151 
Observed drawdowns for the co-inversion of tests 90/S31T1 and 153 
90/S4/Tl. Calculated drawdowns are reset to zero at 11.5 hours. 
Th~~_aiJ'served and modeled drawdowns for a co-inversion of tests 154 
90/S31T1 and 90/S41Tl using an IFS with k = 4 affine transforms. 
Tra~smissivity distribution returned by a co-inversion of tests 90/S31Tl 155 
and 90/S41Tl using an IFS with k = 4 affine transforms. 
Attractors for a co-inversion of tests 90/S31Tl and 90/S41Tl using an IFS 157 
with k = 6 affine transforms. The upper frame shows an intermediate 
result after allowing limited variability of attractors during the first stage 
of the inversion, and the lower frame shows the final attractor. Horizon-
tal dashes identify attractor points that decrease transmissivity and verti-
cal dashes identify attractor points that increase transmissivity. 

Drawdown versus time plots corresponding to the final attractor shown in 
Figure 6.26. 
Grey-scale plot of the transmissivity distribution corresponding to the 
final attractor shown in Figure 6.26. Darker shades correspond to higher 
transmissivity. 
Transmissivity distributions inferred from additional co-inversions of 
tests 90/S31T1 and 90/S41Tl. Darker shades correspond to higher 
transmissivity. 
Transmissivity distribution inferred from the co-inversion of tests 
90/Sl!T1, 90/S31Tl, and 90/S41Tl. 
A portion of the pressure transients for the co-inversion of tests 
90/S11T1, 90/S31Tl, and 90/S41Tl. 
Conceptual model of the Gypsy pilot site. Each horizontal layer 
represents a sand channel. The lack of communication between the mid
dle and lower sand channels is represented by no elements connecting 
these two layers. The partial hydrologic communication between the 
upper and middle sand channels is represented by some vertical connec
tions. 
Lithologic information on the location of the upper clay layer, and possi
ble inversion schemes. 
Central portion of one layer of the lattice used to model the upper and 
middle sand channels. Each layer of the lattice extends a total of· 2400 
m in the x and y directions, with steadily increasing lattice spacing. 
The Gypsy pilot-site well field showing a schematic view of the upper 
and middle sand channel well tests. The shaded lines connect the obser
vation and pumping wells for a given test. 
Observed and modeled pressure transients for one inversion of test 
90/S11T2. 
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Figure 6.52 

Final attractor for one inversion of test 90/Slff2. Attractor points iden
tify locations of high permeability in the intermediate layer between the 
upper and middle sand channels. 
Permeability distribution corresponding to the attractor shown in Figure 
6.37. 
Series of permeability distributions for the inversions of test 90/S lfT2. 
Observed and modeled pressure transients for an inversion of test 
90/S2ff2 before observed data had been edited. 
Observed and modeled pressure transients for an inversion of test 
90/S2ff2 after observed data had been edited. 
The final attractor for an inversion of test 90/S2ff2. Attractor points 
identify locations of high permeability (gaps in the clay layer) in the 
intermediate layer between the upper and middle sand channels. 
Observed and modeled pressure transients for an inversion of test 
90/S2ff3. 
The final attractor for an inversion of test 90/S2ff3. Attractor points 
identify locations of high permeability (gaps in the clay layer) in the 
intermediate layer between the upper and middle sand channels. 
The observed data for the three-test co-inversion of tests 90/S lff2, 
90/S2ff2, and 90/S3ff2. 
Attractor at the end of each stage of a co-inversion of tests 90/S lff2, 
90/S2ff2, and 90/S3ff2. Attractor points identify locations of high per:. 
meability (gaps in the clay layer) in the intermediate layer between the 
upper and middle sand channels. 
Observed and modeled pressure transients for a co-inversion of tests 
90/Slff2, 90/S2fT2, and 90/S3ff2. Only oqe third of the observed data 
points used in the match are shown, to enable the calculated curves to be 
more visible. 
Permeability distributions for three co-inversions of tests 90/Slff2, 
90/S2ff2, and 90/S3ff2 in which the inversion searched for gaps in the 
upper clay layer. 
Permeability distributions for three co-inversions of tests 90/S lff2, 
90/S2ff2, and 90/S3ff2 in which the inversion searched for the upper 
clay layer. 
Observed and modeled pressure transients for the lowest-energy co
inversion of tests 90/S lff2, 90/S2ff2, and 90/S3ff2. The permeability 
distribution is shown as the left frame in Figure 6.49. Only one third of 
the observed data points used in the match are shown, to enable the cal
culated curves to be more visible. 
Nine possible interpolations of the point lithologic data obtained from 
well-logs. The dark regions represent gaps in the clay layer between the 
upper and middle sand channels. The energy values show the mismatch 
between pressures calculated for each of these models and the observed 
data for tests 90/Slff2, 90/S2ff2, and 90/S3ff2, shown in Figure 6.45. 
The initial attractor, the first 19 accepted attractors, and the correspond
ing energies for a co-inversion of tests 90/S 1fT2, 90/S2ff2, and 
90/S3ff2. Attractor points identify locations of high permeability (gaps 
in the clay layer) in the intermediate layer between the upper and middle 
sand channels. 
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Figure 6.53 Two-dimensional energy surface as a function of the height and width 195 j 

parameters of a triangular gap in the upper clay layer centered on wellS. 
The black line outlines the portion of the energy surface which is con-
sistent with the borehole lithology. The circles show the results of co-
inversions using the direction-set method (black), simulated annealing 
(grey), and simplex annealing (white). To convert from parameter space 
to physical space, multiply height and width parameters by 1600 m. \ ' 

Figure 6.54 Observed and modeled pressure transients for a co-inversion of tests 196 
90/S 1/T2, 90/S2/T2, and 90/S3/T2, using a triangular-gap model with a 
1173-m~w~~e, 240-m-high gap in the upper clay layer (corresponding to 
w = 0.733,"h ·= 0.15 in the parameter space shown in Figure 6.53). 

,J Figure 6.55 
L' 

199 Transmissivity distributions for three co-inversions of tests 90/S 1/T2, 
90/S2/T2, ·. and 90/S3/T2 in which the inversion searched for hetero-
geneities within the middle sand channel. 

Figure 6.56 Observed and modeled pressure transients corresponding to the transmis- 200 
sivity distribution shown in the left frame of Figure 6.55. Only one third 
of the observed data points used in the match are shown, to enable the 

"I calculated curves to be more visible. 
Figure 6.57 Transmissivity distributions for three co-inversions of tests 90/S1/T2, 202 

90/S2/T2, and 90/S3/T2 in which the inversion searched for hetero-
geneities within the upper sand channel. 

Figure 6.58 Observed· and modeled· pressure transients corresponding to the transmis- 203 
sivity distribution shown in the left frame of Figure 6.57. Only one third 
of the observed data points used in the match are shown, to enable the 

.. , 
calculated curves to be more visible. 

Figure 6.59 Schematic lithologic cross-sections of the Gypsy pilot site for well pairs 208 
1 and 5, 1 and 7, and 5 and 7, for which cross-wen seismic surveys were 
conducted by BP. \ I 

Figure 6.60 Seismic velocity distributions for the plane containing wells 5 and 7, 211 
obtained by a computer inversion of first arrival times [Vasco et al., 
1996]. 

Figure 6.61 Common source/multiple receiver gathers for the 0.6-m (two-foot) 213 
cross-well seismic survey between wells 1 and 5; some interpretations 
made in conjunction with the geologic and hydrologic data are noted. 

Figure 6.62 Example of possible guided waves at the depth of the lower sand channel 214 ' I 

at the Gypsy pilot site. 
Figure 6.63 Variograms of log permeability from the Gypsy outcrop site road-cut 216 

(R.C.) and boring (B.) data. I I 
I 

Figure 6.64 V ariogram combining y = 0 m road-cut data and omni-directional boring 217 
data. Grey points are the original points; black points are equally spaced 
points used by CRFGEN. The solid curve is a power law fit to the data, 
used for kriging. 

Figure 6.65 Lower-sand-channel transmissivity distribution generated by kriging. 218 
Figure 6.66 Lower-sand-channel transmissivity distributions generated by the corre- 219 

lated random field generator CRFGEN, using the variogram shown in r Figure 6.64. ~ 

Figure 6.67 Variogram for they = 5 m road-cut data and a power-law curve fit to it. 220 
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Lower-sand-channel transmissivity distribution generated by the corre- 221 
lated random field generator CRFGEN, using a power-law fit to they = 5 
m variogram shown in Figure 6.67. 
Ad hoc variogram constructed from pilot-site pressure buildup data. 222 
Lower-sand-channel transmissivity distributions generated by the corre- 223 
lated random field generator CRFGEN, using the pilot-site variogram 
shown in Figure 6.69. 
Observed and modeled pressure transients for a co-inversion of tests 225 
90/Slffl, 90/S3ffl, and 90/S4ffl, in which all observed data was used. 
Observed and modeled pressure transients for a co-inversion of tests 227 
90/Slffl, 90/S3ff1, and 90/S4ffl, in which all observed data for well5 
was omitted. The open circles showing the observed data for well 5 were 
not used in the inversion, but are shown here to illustrate how well the 
model can predict additional data. 
Transmissivity distribution returned by the co-inversion of tests 
90/S1ff1, 90/S3/T1, and 90/S4ffl, in which all observed data for well 5 
was omitted; 
A comparison of the transmissivity distributions returned by a geostatist
ical model (left frame), a co-inversion omitting well 5 data (middle 
frame), and a co-inversion of all available data (right frame). 
Three-dimensional representation of the subsurface heterogeneity at the 
Gypsy pilot site. 

Extrapolation of a hydrologic characterization using either the assump
tion of stationarity for scales greater than that of the well field, or the 
assumption that fractal geometry applies at scales both larger and smaller 
than the scale of the well field. 
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1. INTRODUCTION 

1.1 MOTIVATION 

The highly heterogeneous nature of most geologic media, coupled with the restricted view 

of the subsurface available through boreholes, makes it difficult to determine the spatial distribu

tion of subsurface hydrologic properties. Without such a description one cannot predict how fluid 

flow or solute transport will occur through permeable geologic media, and these predictions are 

critically needed to address many important environmental problems, including toxic chemical 

spills, leaking underground storage tanks, and long-term radioactive waste isolation. A common 

concern of these problems is the possible existence of 'fast paths', high-permeability pathways 

connecting the problem to the biosphere. An understanding of flow and transport behavior is also 

necessary to optimize energy extraction from petroleum or geothermal reservoirs, where identify

ing low-permeability barriers that compartmentalize reservoirs and hamper efficient resource util

ization is a key problem. 

The present work describes the development and application of a new inverse method for 

determining the spatial distribution of hydrologic properties (permeability and specific storage) in 

heterogeneous geologic media, using pressure transients from interference well tests. The 

method employs fractal concepts to improve efficiency and reliability. It is applicable to any sort 

of heterogeneous geologic medium in which wells communicate with each other, whether it be 

porous, fractured, or a combination thereof. 

The remainder of Chapter 1 considers the differences between the forward and inverse 

approaches to hydrologic characterization, describes the use of forward models within inverse 

methods, reviews some alternate approaches to hydrologic inversion, and then outlines the 

present approach, which is called the Iterated Function System (IFS) inverse method. Chapter 2 

presents the mathematical basis of the IFS, which is used to generate a fractal set, and Chapter 3 

describes how IFS's are incorporated in the hydrologic inverse method (the fractal sets represent 

trial hydrologic property distributions). The IFS inverse method is tested by using it with syn

thetic data (Chapter 4), and is then applied to field data (Chapters 5 and 6). Chapter 7 summar

izes the present work, draws some general conclusions on the strengths and weaknesses of the 

IFS inverse method, and describes possible areas for future research. 
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1.2 ALTERNATIVE APPROACHES FOR DEVELOPING HYDROLOGIC MODELS 

1.2.1 Forward Versus Inverse Models 

,'I . '·.!.: 
With the widespread use of computers over the past twenty years, numerous techniques for 

· '· :characterizing heterogeneous hydrologic property distributions have been developed. These tech-

niques can be broadly divided into two groups, depending on whether they use a forward or 

inverse approach. Formally, these approaches differ as follows: in a forward method, boundary 

conditions and hydrologic properties are specified as input, and drawdowns are the calculated 

output; in an inverse method, boundary conditions and drawdowns are specified as input, and 

hydrologic properties are the calculated output. Whereas drawdowns can be determined uniquely 

in a forward method, hydrologic properties generally cannot be determined uniquely in an inverse 

method. Practically, in the forward approach, the hydrologic model is developed using informa

tion gained from basic studies of the site, including geological observations and geochemical, 

geophysical, petrophysical measurements. In the inverse approach, the general form of the 

hydrologic model is specified a priori, based on information from these basic studies, but the 

details of the model are determined by matching the predictions of the model to observed hydro

logic behavior. Although both methods have advantages, each has drawbacks as well [Yeh, 1986; 

Ouenes et al., 1994]. The present approach attempts to incorporate some of the strengths of a 

geologically-based forward approach within the context of an inverse method. 

The principal advantage of using hydrologic inverse methods is that rather than determining 

the distribution of a parameter such as geological facies, core-scale permeability, or seismic-wave 

velocity and then attempting to relate it to a field-scale map of hydrologic properties, one 

analyzes well-test data, which depends on field-:-scale hydrologic properties explicitly. The 

method inherently emphasizes features that are important for flow and disregards the rest. In 

effect one develops equivalent media that do not have all the details of reality, but produce the 

same hydrologic response. In contrast, there is no guarantee that a flow model constructed by 

kriging core-sample permeability measurements will be able to reproduce the well-test response 

in the wells from which the the core samples were taken. 

The principal disadvantage of using inverse methods for hydrologic characterization is that 

the fluid flow equation .is a diffusion equation, and as such cannot be uniquely inverted to deter

mine model parameters. Several practical means to address non-uniqueness are described in Sec

tion 1.2.4. A further practical disadvantage is that inverse methods tend to be computationally 

intensive. This should not be considered a fundamental limitation of the method, however, as 

;' 

j 
I I 
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rapid developments in both computer hardware and software make more complicated inverse 

problems tractable. 

1.2.2 The Use of a Forward Model in an Inverse Method 

The inversion procedure consists of running a forward model repeatedly, using different 

parameter values, and comparing the results of each simulation to field observations. The result 

of the inversion is a model comprised of the parameter set which gives the best match between 

simulated and observed data. In principle, any forward model that contains adjustable parameters 

can be incorporated into an inverse method. In practice, some forward models are more amen

able to inclusion in an inversion than others, as described in the paragraphs below. 

Analytical Models. Before the widespread use of computers made numerical methods prac

tical for solving subsurface fluid flow and solute transport problems, a vast number of analytical 

solutions were developed and adapted from other disciplines [e.g., Theis, 1935; Hantush and 

Jacob, 1955; Neuman and Witherspoon, 1969; Gringarten, 1971; Cinco-Ley et al., 1978]. With 

only a few parameters and very short times required for calculation, analytical solutions are well 

suited to use in an inversion. However, the heterogeneities that can be treated with analytical 

solutions are limited to geometrically regular features such as linear vertical boundaries, horizon

tally layered media, and equally spaced fractures. Such simple geometries can only represent 

highly idealized models of geological media; to solve problems with heterogeneities that resem

ble the geometric irregularity observed in the field, numerical modeling is needed. 

Numerical Models. In a numerical model of a geologic medium, space can be discretized 

into irregularly shaped regions with different hydrologic properties. Both the number of parame

ters to be determined and the computational time for each forward simulation of the model 

increases drastically (typically by several orders of magnitude) compared to inversions using 

analytical solutions. Hence, inverse methods based on numerical forward calculations must be 

carefully designed to make use of computer time efficiently. The multiplicity of scales on which 

heterogeneities are observed in the field complicates the discretization, and at some scale hetero

geneities cannot be treated individually but must be modeled as an effective medium. In an 

effective medium approach, a homogeneous region is used to represent a heterogeneous one by 

assigning hydrologic properties that incorporate the effects of the heterogeneities. The appropri

ate level of discretization depends on the nature of the heterogeneity, the number and location of 

observation wells from which data is available, and the ultimate purpose of the characterization. 

In general, a numerical analysis should begin with the simplest model possible (probably a 
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homogeneous medium), and add heterogeneity only as needed to match the observed data. 

Stochastic Models. In contrast to the deterministic treatment of heterogeneities based on 

large-scale geological observations (e.g., clay layer overlying aquifer, permeable fracture zone 

separating intact blocks of low-permeability rock), which form the basis for the analytical and 

numerical f9~ard models described above, geostatistics provides an alternate way to construct a 
,,. •. 

hydrologic model. In geostatistics, the spatial distribution of a hydrologic property is described 
,. ' . 

as a correlated random field. A large number of (usually small-scale) measurements are made to 

determine the statistics (mean, variance, correlation structure) of the probability distribution of 

the property. A hydrologic model is then constructed either by drawing a realization from that 

probability distribution, or by using the correlation structure to interpolate between known values 

of the property (kriging). One way to incorporate geostatistics into a hydrologic inverse method 

is to use inverted hydraulic head data along with permeability measurements to determine the 

statistics of the probability distribution for permeability [Kitanidis and Vomvoris, 1983]. This 

approach to inversion has the advantage that relatively few unknown parameters need to be deter-

. mined. Another way to incorporate a geostatistical model into an inverse method is to create 

many realizations of the random field, all consistent with the statistical properties inferred from 

the small-scale measurements, then use each realization to simulate a well test. The match to the 

well-test data provides the basis for choosing among the realizations. 

Mechanistic Models. Another basis for creating a hydrologic model is to model the 

mechanisms involved in the creation of the geological medium, rather than to merely make obser

vations or measurements of the medium itself. Such mechanistic models are generally very com

putationally intensive [e.g., Koltennanrt and Gorelick, 1992], making them ill-suited to incor

poration in a hydrologic inversion in which the forward model must be run many times. Recently 

however, several investigators have developed computationally efficient mechanistic-based 

models by retaining only the key aspects of the physical mechanisms in a· simple statistical way 

[Webb, 1992; Long et al., 1993; Hestir, et al., 1995]. Such models are amenable to incorporation 

in an inverse method by creating a series of realizations of the physical process, and testing each 

one to see how well it reproduces the hydrologic behavior. An optimization process would there

fore find realizations which both match the hydrologic data and honor the physical process. 

1.2.3 Approaches to Inverse Modeling 

A useful way of categorizing hydrologic inverse methods is by the assumptions they make 

on the structure of heterogeneities. At one extreme, no assumptions are made and the inverse 

-· 
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method searches for the structure of the heterogeneity. At the other extreme, the structure of the 

heterogeneity is specified a priori, and the inverse method searches only for the property values 

within that structure. In between are inverse methods that search for structure and/or properties 

within user-specified constraints. The optimal method to use depends on the nature of the hydro

geologic setting and the amount of existing information on it, the type of observed data available, 

and the ultimate purpose of doing the hydrologic inversions. 

Unstructured Models. The most general form of an unstructured model would use a three

dimensional regular grid to represent the flow system, and the inversion would search for the per

meability value of each node on the grid independently. This approach places no a priori 

assumptions on the permeability distribution (other than ignoring heterogeneity on scales smaller 

than the grid spacing), and typically results in a huge number of unknown parameters to be deter

mined by the inversion. A modest constraint would be to assume that flow is restricted to an 

aquifer layer or planar fracture zone, and look only for heterogeneities within a two-dimensional 

model of the flow system. An example of unstructured hydrologic inversion method that has 

been widely used to characterize fractured flow systems is lattice annealing [Long et al., 1991; 

Mauldon et al., 1993; Datta-Gupta et al., 1994], in which a lattice of one-dimensiomil conductors 

(pipes) of porous medium is used to represent a fracture network. Elements of the lattice are ran

domly turned on and off one at a time, to model different patterns of connectivity within the frac

ture network, in order to match the well-test data. 

Partially-Structured Models. Constraints incorporating geologic understanding about a site 

may be imposed on unstructured inversions, to produce partially-structured models. In one sim

ple extension of the lattice annealing algorithm described above, elements are not turned on and 

off one at a time, but rather the transmissivity of a cluster of elements is assigned a random value 

drawn from a user-specified distribution [Najita and Karasaki, 1995]. The centers of the clusters 

are chosen at random during the inversion, but the extent of the cluster is specified by the user, 

and may be chosen to reflect the conceptual model of the hydrogeology. Another possibility is to 

replace the regular lattice of conductors with a lattice specifically constructed to incorporate geo

logical information. A simple way to achieve this is to orient the grid along the direction of 

major fracture sets or along the paleoflow direction in a fluvial system. A more sophisticated 

approach is embodied in the fracture genesis algorithm [Vail, 1993], in which the lattice is 

created by a stochastic fracture growth process that is based on fracture mechanics principles. 

Random numbers within the growth algorithm are varied in order to match the well-test data.· 

The resulting fracture network honors both the fracture genesis process and the well-test data. In 

of,"• •• 
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general, the number of unknown parameters for which the inversion searches is greatly reduced in 

partially-structured models compared to unstructured models. 

Fixed-Structure Models. A fixed-structure model is one in which the structure of hetero

geneity is specified a priori and the inverse method searches only for properties values within 

that structure. Thi's. method is appropriate if there is information supporting the existence of the 
. '' .~. _ ... , 

structure, so that the locations of key features are known with certainty. It is also appropriate if 

very little is known about a system, in which case a simple structure is used, and only one or a 

few parameters are sought to provide an average picture of the system. In either case, the number 

of unknown parameters for which the inversion searches is drastically reduced compared to 

unstructured or partially structured inverse methods. The inverse method of Carrera and Neu

man [1986a, 1986b, 1986c] is one well-known example of a fixed-structure model. Another, 

perhaps more flexible, inverse model is ITOUGH2 [Finsterle, 1993], which can be used in either 

unstructured or fixed-structured mode and has the powerful feature of including a forward model 

that calculates multi-phase, multi-component fluid and heat flow. 

1.2.4 Addressing Non-Uniqueness 

For unstructured or partially-structured inversions, with many unknown parameters, non

uniqueness is likely to be unavoidable. That is, starting inversions from different initial guesses 

or using different random seeds will result in different values of the unknown parameters. For 

fixed-structure inversions, because more assumptions are made about the structure of hetero

geneity, fewer unknown parameters are needed, and it is more likely that the solution to the 

inverse problem will be unique. However, such a solution may be considered 'locally unique,' 

but not 'globally unique,' because with a different heterogeneity structure imposed, a different 

'locally unique' solution would be obtained. Hence, for all sorts of hydrologic inversion 

methods, non-uniqueness must be acknowledged. 

The following techniques may be used to mitigate the effect of non-uniqueness. Condition

ing the inversion on additional information, such as prior estimates of model parameters [Carrera 

and Neuman, 1986a, 1986b, 1986c] or other geological or geophysical observations can lessen 

non-uniqueness. Another approach is to do multiple inversions and study the statistics of the 

ensemble of results, such as the mean and variance of the returned permeability distributions. 

The reliability of the result of an inversion may be assessed by a technique known as cross

validation, in which rather than using all available data to develop a hydrological model, some of 

the data is not used in the inversion process, and the inferred hydrological model is subsequently 
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used to try to match it. The strengths and weaknesses of an inversion method may also be 

assessed by using the method on synthetic data, for which the underlying property distribution is 

known. 

At a more philosophical level, one can accept the non-uniqueness inherent in hydrologic 

inversion, and use it as a means to assess the information content of well-test data. By doing 

multiple inversions and studying the ensemble of results one can identify portions of the system 

to which the well-test response is sensitive (regions which show consistent features in all inver

sions) and regions to which the well-test response is not sensitive (regions which differ from 

inversion to inversion). This information can be of great use in developing more effective well

test techniques. 

The conventional wisdom on inverse methods is that the number of unknown parameters 

should be minimized. This philosophy is known as the 'parsimonious approach' Carrera and 

Neuman [1986a; 1986c], and favors the fixed-structure approach. Although decreasing the 

number of unknown parameters certainly makes the inverse problem more tractable, and the 

fixed-structure approach may be appropriate under certain circumstances, it is not necessarily 

always the method of choice. As described above, the fixed-structure approach does not guaran

tee true uniqueness. Additionally, the information-content analysis is more difficult to do for 

fixed-structure models, as one must specify the series of structures to examine explicitly. In con

trast, for unstructured or partially-structured inverse approaches, multiple inversions_ can be done 

easily by changing a random seed. 

1.3 OVERVIEW OF THE PRESENT APPROACH 

The present approach to the hydrologic characterization of heterogeneous geologic media 

involves the inversion of well-test data. A significant advantage of this approach compared to 
' 

geological or geophysical investigations is that a well test directly investigates the phenomenon 

of interest: field-scale fluid flow through the system. The observed data to be inverted is typically 

transient pressure data obtained from multiple observation wells during one or more interference 

tests. A numerical model is used to calculate the head distribution and fluid flow in the forward 

problem (simulation of the well test). 

The model parameters that are varied during the inversion specify a deterministic spatial 

distribution of hydrologic properties. Thus each forWard calculation uses a geometric description 

of the hydrologic property distribution, rather than modeling the physical processes leading to its 

formation. The translation of the unknown parameters of the inversion to a heterogeneous 
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hydrologic property distribution (described below) puts only general constraints on the structure 

of heterogeneity, making this a partially structured approach. 

1.3.1 Creation of Trial Hydrologic Property Distributions as Fractals 

During the. inversion process the search for model parameters is restricted to those which 

represent self-sitrlll~ (or hierarchical) hydrologic property distributions, by generating the model 

parameters using im iterated function system (IFS) [Barnsley, 1988]. The IFS's used are com

posed of two to four affine transforms. An affine transform is a function which may rotate, 

reflect, deform, contract, and translate a set of points. When multiple transforms are applied 

iteratively (as is done in an IFS), a set of points with a fractal geometry, known as an attractor, 

results. Chapter 2 describes the mathematical formulation of IFS's in detail, and illustrates the 

creation of attractors. The attractor can be mapped to a distribution oftransmissivity or stora

tivity in a mathematical model. The mathematical model then simulates the well test and the cal

culated drawdowns are compared to those observed during the test. If the match is not satisfac

tory, the parameters of the IFS are varied, a new attractor is generated and mapped to a hydrolo

gic property distribution, and the simulation is repeated. This procedure continues until the IFS 

creates an attractor which yields a hydrologic property distribution that produces a good match to 

observed drawdowns. A variety of optimization algorithms may be used to vary the parameters 

of the IFS during the course of the inversion. Chapter 3 describes each component of the IFS 

inverse method more fully. 

One of the primary strengths of the IFS inversion compared to other inverse methods is that 

far fewer parameters are needed to describe a self-similar medium than a medium with unstruc

tured heterogeneities, making the inversion more efficient and more robust (inverse methods 

which assume other kinds of structured heterogeneities share this advantage). Furthermore, by 

limiting the variation of parameters of the IFS, one can restrict the shape of the trial attractors to 

resemble observed hydrogeological features, or to reflect information gained from geological 

mapping or geophysical imaging work. In addition to these practical (or operational) advantages, 

the IFS inverse method is philosophically pleasing because it produces a hydrologic property dis

tribution with a hierarchical structure, which mimics the multiple scales of heterogeneities often 

seen in natural geological media. 
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1.3.2 Comparison to Other Uses of Fractal Concepts in Subsurface Heterogeneity Characteriza

tion 

Many researchers have used fractal concepts to study the effect of heterogeneity in subsur

face hydrology in the past 5-10 years (see Sahimi and Yortsos [1990] for an early review). These 

works are largely divided into two groups: those which explain general features of observed 

hydrogeological behavior with a fractal model (e.g., scale-dependent dispersion [Neuman, 1990; 

Wheatcraft and Tyler, 1988], soil water properties [Rieu and Sposito, 1991a, 1991b; Tyler and 

Wheatcraft, 1990], well-test responses in fractured media [Barker, 1988]), and those which 

describe fractal interpolation schemes for generating complete hydrologic property distributions 

from sparse data [e.g., Chung, 1992; Molz and Boman, 1993]. The present work has the same 

goals as those in the latter category, but the distinction between the inversion of well-test data and 

the interpolation of point property measurements is very important, as outlined in Section 1.2.1. 
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2. BASICS OF ITERATED FUNCTION SYSTEMS 

2.1 MATHEMATICAL FOUNDATION 

An IFS is a standard way to model self-similar geometrical structures [Barnsley, 1988], 

which was developed for use in computer graphics in order to find efficient means for storing the 

information des~rlbing a complex picture. In this application, one identifies an iterative process 

that creates the picture rather than storing the information for each pixel. The iterative process is 

defined by an IFS which has a relatively small number of parameters. The use of an IFS essen

tially exchanges the use of computer storage for the use of computer time. In our application, it 

is necessary to create a model of a complex heterogeneous geologic system. Instead of trying to 

describe this system 'pixel by pixel,' we look for an IFS that can describe the geometry of the 

system with a small number of parameters. 

To create a picture of a spatially variable hydrologic property distribution using an IFS, one 

starts with an initial set of points and iteratively adds new points to the set by the application of 

multiple affine transforms. After several iterations, the points coalesce towards an 'attractor,' a 

set of points with self-similar geometry. The shape of this attractor depends on the parameters of· 

the affine transforms that make up the IFS, but is independent of the locations of the initial 

points. This procedure is described in detail below, followed by two examples of its use. 

Mathematically, the creation of an attractor can be described as follows. One first specifies 

a function f, which maps sets to sets: 

f(Ao)=At, (2.1) 

where A 0 and A 1 are (compact) subsets of two (or three) dimensional space. The attractor off is 

then defined as the set A oo such that 

An+! = f (An) n = 0, 1 , ... (2.2) 

Aoo= limAn . 
n--too 

Given certain restrictions on the set function f, one can show [Barnsley, 1988] that Aoo exists, is 

independent of the starting set A 0, and generally has a fractional Hausdorff dimension. That is, 

the attractor that f creates is a fractal. If the function f is easily parameterized, then the fractal 

A oo is parameterized as well. This leads to an efficient setup for modeling real-world problems, 

because a small number of parameters can be used to characterize a complex geometry. 
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One important example of an IFS used extensively by Barnsley [1988] is the union of k 

affine transforms: 

f (A) = g I (A) u g 2(A) u ... gk (A ) ' (2.3) 

where each affine transform is given by 

(2.4) 

where B i is a matrix, bi a vector, and x identifies the coordinates of a point in the set A . The 

parameters, P, characterizing f are the entries in the B i 's and' bi 's. The matrix B i may rotate, 

reflect, deform, or contract the set A and the vector bi translates it, as illustrated in Figure 2.1 for 

a two-dimensional set. 

. Figure 2.2 shows an example of the construction of a two-dimensional attractor for a case 

where k, the number of affine transforms, equals three. The affine transforms contract and 

translate, and result in an attractor which is a well-known fractal called Sierpinski's gasket 

[Barnsley, 1988]. The IFS is specified by 

B 1 = B 2 = B 3 = [g:g g:~J = 0.51 , (2.5) 

b, = (0.0, 0.0) ' b2 = (0.5, 0.0) ' b3 = (0.0, 0.5) ' 

where I denotes the identity matrix. To create three-dimensional attractors, 3x3 B matrices and 

three-dimensional b vectors would be used. The initial set of points used in Figure 2.2 form a 

cross, but it is apparent that after only a few iterations the triangular symmetry inherent in Equa

tion (2.5) dominates the picture. 

Figure 2.3 shows the construction of another two-dimensional attractor, this time for an IF'S 

with k = 4, with parameters given by 

B _ [0.66 0.26l b [0.01] B [0.28 -.09l b [0.13l 
1- -.32 0.26j I= 0.35 2= 0.25 0.44j 2= 0.29j 

B3=(g:i~ g:~~J b3=[0~0] B4=[g:i~ g:~~J b4=[g:6~J · 

(2.6) 

The less regular geometric shape and subtler expression of self-similarity of this attractor com

pared to the Sierpinski gasket reflect the greater variability of the parameters of its IFS, and make 

"!, ...... 

• olo·~~:,r·. 

"'"' ··.·"--

. . ;: . 



-12-

Untransformed set Translation 

[
1 Oj ro.4j 

B = 0 Ij b = L0.2j 

Contraction in y Rotation by 30° 

B = [6 o~5J b= [8] B _ ro.87 -.5] b = rol 
- L 0.5 0.87 LOJ 

Reflection and translation Distortion 

Figure 2.1. The effect of various affine transforms on a set of points. 

. I 
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Untransformed set After one iteration 

After two iterations After three iterations 

After four iterations After five iterations 

Figure 2.2. Generation of Sierpinski's gasket using an IPS with k = 3 and a set A 0 forming a 
cross. 
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After one iteration 
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After three iterations 

After five iterations 

Figure 2.3. Generation of an attractor using an IFS with k = 4 and a set A 0 consisting of a single 
point. 
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it more suitable for the representation of natural geologic media than are the 'round numbers' and 

geometric symmetry of the Sierpinski gasket. For example, if the final frame in· Figure 2.3 

represents a plan view of an aquifer, one could imagine that the black attractor points delineate 

low-permeability clay lenses while the surrounding white space represents high-permeability 

sand (details involved in mapping an attractor to a hydrologic property distribution are given in 

Chapter 3, Section 1 ) . 

. In order for an IFS to converge to an attractor, each affine transform must be a contraction 

mapping [Barn.sley, 1988]. By definition, an affine transform is a contraction mapping if the dis

tance between any two transformed points is less than the distance between the two original 

points. One can guarantee that the affine transform g (x) = B x + b is a contraction mapping by 

restricting the entries ofB ~ [!::!~] according In 

I B 11 I + I B 12l < 1 (2.7) 

IB2tl + IB22I < 1. 

There are other means of obtaining contraction mappings, which impose less stringent constraints 

on the B matrices, but they are more complicated to use. For convenience, b is restricted so that 

the attractor is confined to the uni~ square 0 < x < 1, 0 < y < 1. The constraints on b = (b 1,b 2) 

depend on the entries of B , and may be written as 

-min(O, B 11)- min(O, B 12) < b 1 < 1 - max{O, B 11)- max(O, B 12) (2.8) 

-min(O, .8 21)- min(O, B 22) < b 2 < 1- max(O, B21)- max(O, B22). 

Note that under no conditions may the components of b lie outside the range zero to one. 

2.2 VARIATION OF THE ATTRACTOR WITH THE PARAMETERS OF THE IFS 

During an inversion many different values of P, the unknown parameters of the IFS, are 

used in the forward model. When designing or choosing an algorithm to find the optimal values 

of P, it is helpful to understand how. changes in P change the attractor (and hence the hydrologic 

property distribution). Figure 2.4 shows the attractors generated by a sequence of IFS's with 

k = 3. These are f 1, f 2, · · · , f 6, where f 1 is Sierpinski' s. gasket, and for frames m = 2, 6 every 

parameter off m differs from the corresponding parameter off m-1 by a small increment: 

p m = p m-1 + Lll» · (2.9) 

The components of Lll» are random numbers drawn from a uniform distribution between -1 and 1, 
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2 

4 

6 

Figure2.4. A sequence of attractors generated by IFS's with k = 3 whose parameters differ by a 
small amount. For the m th frame, P m = P m-I + .M», where 8P is a vector with random incre
ments and ,I.M» I = 0.2. 
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normalized so that the magnitude of .61', 1.61' I (the square root of the sum of squared components 

of .6.1'), equals 0.2. The continuous small change in P from frame to frame is manifested as a 

continuous gradual change in the attractors. A larger value of 1.61' I would produce a more rapid 

variation in attractors. 

The most general affine transforms that operate in two dimensions have four arbitrary 

entries in each 8 i matrix, and two arbitrary values in each b; vector, which makes P an n = 6k 

dimensional vector for an IPS composed of k affine transforms. By holding some components of 

P fixed or limiting their variation, one can limit the variability of the corresponding attractors so 

that all trial hydrologic property distributions have features in common. As well as making the 

inversion procedure more efficient by reducing the extent of the parameter space to be searched, 

these constraints can be used to make the inversion more robust by conditioning it on known geo

logical conditions, as illustrated below. Formally, Pis defined as the vector composed of all the 

parameters characterizing the IPS, but in practiCe P is used to denote only those parameters that 

are varied during the inversion. 

A simple two-dimensional heterogeneity that can have a large impact on flow is a long thin 

region of high or low permeability in a plane of otherwise uniform permeability. A high

permeability linear feature could represent a segment of a buried stream channel or the trace of a 

permeable fracture through an aquifer, whereas a low-permeability linear feature could represent 

the trace of a mineralized or gouge-filled fracture which blocks flow through an aquifer. Such a 

permeability distribution can be created by using an IPS with k = 2 which has constant matrices 

of the form 

8 1 = 82 = [~:6 g:~] = 0.51 (2.10) 

and variable vectors b1 and b2, which results in a vector P which has only four components. All 

the attractors produced by such an IPS are line segments with endpoints determined by the values 

of b 1 and b2. Six such attractors are illustrated in Figure 2.5a. For the first frame of Figure 2.5a, 

b1 = (0.0, 0.5) and b2 = (0.5, 0.0); for the other frames, b1 and b2 are modified by random 

numbers drawn from a uniform distribution. For Figure 2.5, in contrast to Figure 2.4, the original 

value of P and a different value of .61' are used for each frame: 

(2.11) 

For each frame of Figure 2.5a, the magnitude of the vector of random increments, 1.61' m I , equals 

0.6, a relatively large value, therefore each of frames 2-6 differs significantly from frame 1. 

\, 
}'1\'t 
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a) k = 2 I ~Pm 1 = 0.6 b's only vary 
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Figure 2.5. The variation in attractor as parameters of the IPS change. For the m th frame in each 
series, P m = P 1 + LlP m, where LlP m is a vector with random increments. 
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e) k=4 1-LlPm I = 0.6 
: : : : : : : : : : : : : : .( 2 3 

................ 

4 5 6 

Figure 2.5. continued. 

For greater variety in the population of trial hydrologic property distributions, an IPS in 

which both the 8 'sand b'~ are allowed to vary may be used. Fork = 2, curvilinear attractors are 

formed, as shown in Figures 2.5b and 2.5c. For the small value of I M m I = 0.2 used in Figure 

2.5b, all the attractors look similar to the original one. This would be a useful constraint if the 

attractor represented a region of enhanced permeability whose orientation was known a priori, 

such as a fracture that is part of a regional fracture set or a buried stream channel in a region 

where the overall paleoftow direction is known. In Figure 2.5c, the variation in parameters is 

larger, I M m I = 0.6, and the attractors differ greatly, which would be useful for an inversion in 

which no prior information on permeability directionality is available. 

Despite the large variability between the attractors, they all share the characteristic of being 

rather 'stringy', that is, they do not fill up the plane very well. This characteristic is quantified by 

a measure known as the fractal dimension. A straight line has a fractal dimension of one, 

whereas a curve that doubles back on itself so much that it covers the entire plane has a fractal 

dimension of two. Figures 2.5d and 2.5e show attractors created by IPS's with k = 3 and k = 4, 

and large variations in parameters ~I M m I = 0.6). Although there is a large variability amongst 

the attractors, they tend to be more 'blocky' and less stringy ask increases, that is, fractal dimen

sion tends to increase with k . Regional geologic mapping can be used to estimate the fractal 
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dimension of features likely to be important for fluid flow (e.g., fractures, clay lenses), thus pro

viding guidelines for choosing the value of k to use in an IFS inversion. 

As an alternative to considering each B i as composed of four independent entries, one can 

construct B i as a rotation matrix 

(2.12) 

where ci is a contractivity factor (0 < ci < 1) and ei is a rotation angle. This formulation 

reduces the dimension of P from six to four per affine transformation, but still allows a great 

variety of attractors, illustrated in Figure 2.6, frame (a). By holding some components of P con

stant, the effect of C, e, and b can be demonstrated, as shown in frames (b) through (d). By 

allowing changes in e and b while holding C fixed, a wide variety of attractor shapes can be 

created (frame (e)), with a further reduction in the dimension of P from four to three per affine 

transform. 

There are two advantages to constructing the B matrices as rotation matrices. First, it 

decreases the number of unknown parameters, making the inversion more efficient. Second, it 

makes it easier to incorporate geological information by constraining the variation of some 

parameters, because the effect of each parameter is readily identified in the attractors, as illus

trated in Figure 2.6. 
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Figure 2.6. The variation in attractor as parameters of the IFS change, using the rotation-matrix 
form for B , Equation (2.12). For the m th frame P m = P 1 + LlP m, where LlP m is a vector with ran
dom increments and I LlP m I = 0.4. 
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3. USINGS IFS'S IN A HYDROLOGIC INVERSION 

3.1 MAPPING THE ATTRACTOR TO A HYDROLOGIC PROPERTY DISTRIBUTION 

To use the IFS attractors in a hydrologic inversion one needs to prescribe exactly how the 

attractor determines the spatial distribution of hydrologic properties in the mathematical model 

used to simulate the. well test, a procedure called mapping the attractor to a hydrologic property 

distribution. The numerical model TRINET [Karasaki, 1987] is used to solve the forward prob

lem (i.e., model the well test) within the IFS inversion. TRINET is a finite element model which 

calculates fluid flow in a lattice of one-dimensional finite elements (i.e., pipes) of porous or frac

tured medium. Although TRINET was originally developed to study fracture networks [Long et 

al., 1991], its lattice structure is completely equivalent to a block model, as shown in Figure 3.1, 

and TRINET can also model porous media, as described in Appendix A. TRINET is well suited 

for use in a hydrologic inversion for several reasons: 

• the one-dimensional finite element formulation is efficient computationally, enabling many 

forward calculations to be done, 

• the lattice structure can be used effectively to represent highly channeled flow typical of 

fractured or strongly heterogeneous porous media, as well as to represent a homogeneous 

porous medium, 

• forward calculations for a wide variety of hydrologic settings can be done without changing 

the underlying lattice, by modifying the lattice properties in accordance with the attractor 

mappings described below. 

Although TRINET is convenient to use in IFS inversions, other forms of numerical models 

could be used as well, including finite-difference network models and finite-difference or finite

element continuum models composed of blocks of porous or fractured medium. All that is 

required is that space be discretized into flow domains, each with its own value of hydrologic 

properties and with a unique spatial location specified by a global.coordinate system. 

According to Equation (2.2) an attractor is formed by an infinite number of iterations, so it 

contains an infinite number of points. In practice a computer can only treat a finite number of 

points, so an attractor is created by a finite number of iterations I of Equation (2.2). If the start

ing set A 0 contains just one point, then the number of attractor points is M 0 = e. For typical 

applications M 0 = 1000 is large enough to resolve attractors adequately, implying that fork = 4, 

I = 5 is a sufficient number of iterations. 
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Figure 3.1. The equivalence between the TRINET lattice and a block model. The black lines 
show the one-dimensional finite elements comprising the TRINET lattice; head is calculated at 
the nodal points (black dots). The dashed lines show block boundaries in the equivalent block 
model, in which block center locations correspond to TRINET nodal points. 

The attractor is defined on the unit square: 0 < x < 1, 0 < y < 1, and the first step 

required to map the attractor to a hydrologic property distribution is to choose a scale factor 

to map the unit square to the spatial domain where hydrologic-property variations affect the 

well-test response, that is, the region near the wells. The attractor is then superimposed on 

the lattice and the T and Ss values of the lattice elements adjacent to each attractor point are 

modified, according to one of two algorithms. With the 'step map,' illustrated in Figure 

3.2, the properties of the single element whose midpoint is closest to a given attractor point 

are modified. Alternatively, with the 'distributed map' the ·hydrologic properties of allele

ments near an attractor point are modified, with the magnitude of the change decreasing as 

distance from the attractor point grows. Figure 3.3 illustrates the step and distributed maps 
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for a simple linear attractor and a uniform lattice. , The choice of step or distributed map 

should reflect the geologic setting represented by the model. For example, the step map 

would be more appropriate for a fractured medium where contrasts in hydraulic conduc

tivity are sharp, whereas the distributed map would be better for lenses that grade from sand 

to gravel. 

•• 
• 

.,. 11 
I 

Figure 3.2. Schematic diagram of the mapping from attractor points to lattice element hy
drologic properties. In the frame at the right, element thickness is proportional to transmis
sivity. 

3.1.1 The Step Map 

The transmissivity and storativity that are unaffected by any attractor points are 

referred to as the base values T 0 and S 0, whereas the transmissivity and storativity values 

that include the effect of the attractor points are denoted T and S . The effect of attractor 

points can be additive or multiplicative. If M attractor points are closest to a given lattice 

element, the step map using the additive algorithm gives 

T = T 0 + M !lT S = So+ M !lS , (3.1) 

and the multiplicative algorithm gives 

(3.2) 

where !lT and !lS are the contribution for each attractor point. With the additive algorithm, 

choosing a positive value of !lT or !lS means that the attractor points increase T or S, 

whereas choosing a negative value means that attractor points decrease T or S. With the 

multiplicative algorithm, a value of !lT or !lS greater than one increases T or S, and a value 

less than one decreases T or S. The choice of additive or multiplicative algorithm and the 

sign and magnitude of !lT and !lS are arbitrary, but may be used to incorporate features of 



-28-
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Figure 3.3. Example of the mapping from attractor points to transmissivity distribution: a) 
the attractor superposed on the lattice; b) the transmissivity distribution for the step map, c) 
and d) the transmissivity distribution for the distributed map with s = 0.025 and s = 0.05, 
respectively. In frames b-d, element thickness is proportional to TIT 0. The solid circles 
mark the well locations for synthetic problem 1. 
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the geological setting in the mathematical model. For example, for a fractured rock T and 

S generally increase or decrease together, along with fracture aperture. In contrast, for a 

sand/clay aquifer system, increases in S are accompanied by decreases in T, as clay content 

increases. Furthermore, using the multiplicative algorithm for a parameter is equivalent to 

using the additive algorithm for the log of the parameter, making the additive algorithm for 

S and the multiplicative algorithm for T a natural choice for typical geologic media in 

which the variability of T is greater than the variability of S . 

Note that the value of M for each lattice element is proportional to M 0, the total 

number of points in the attractor, so one way to allow bigger contrasts in hydrologic proper

ties is to increase M 0, or equivalently, I, the number of iterations of Equation (2.2), since 

M 0 - e. However, it is preferable to increase !1T and !1S rather than M 0 because the map-

. ping of attractor points to lattice elements is computationally intensive. As illustrated in 

Figure 2.3, "increasing I provides a more refined image of an attractor. Because mapping 

the attractor to the lattice smears out details on scales less than the length of a lattice ele

ment, the value M 0 must only be large enough to allow sufficient resolution of the attractor 

on the lattice. 

For a variable-density lattice, the contribution of an attractor point to the overall 

hydrologic property distribution tends to be greater in coarse regions of the lattice than in 

fine regions. Thus, a given attractor will not produce the same hydrologic property distribu

tiqn for two different lattices. This does not cause a problem in the inversion because only 

one lattice is used, but it means that a picture of the attractor provides only a qualitative 

representation of the hydrologic property distribution and a quantitative measure must come 

from the TorS distribution itself, such as is shown in Figure 3.3b. 

3.1.2 The Distributed Map 

For the distributed map, an attractor point at Xa modifies the properties of a lattice ele

ment with its midpoint at Xe according to 

(3.3) 

for the additive algorithm. The expressions for the multiplicative algorithm are identical 

except multiplication replaces addition: 

Xe -Xa 

[ [ ]
2] 

T = T o/1Texp- Xoaj s (3.4) 
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The factor s controls the extent of the contribution of an attractor point. The inclusion of 

the scale factor X 0 in the exponent means that s does not depend on the size of the lattice, 

but rather relates to the unit square. The lattice nesting term aj (see Appendix A; for a uni

form lattice, aj = 1) is included for consistency with the step map, so that attractor points 

overlying coarser regions of the lattice (where I Xe - Xa I is likely to be larger) contribute as 

much as points ·overlying finer regions. 

Figures 3.3c and 3.3d show transmissivity distributions for s = 0.025 and s = 0.05, 

respectively, and illustrate how increasing s yields a more diffuse transmissivity distribu

tion for a given attractor. The formulation could be simply extended from the scalar s used 

above to a vectors = (sx ,sy) to account for an anisotropic medium. 

3.1.3 The Plus-Minus Algorithm 

An extension of the mapping algorithm has been developed in which some attractor 

points increase hydrologic properties, while other points decrease them, in contrast to the 

algorithms described by Equations (3.1) through (3.4) in which all attractor points act in the 

same manner. This approach, called the plus-minus algorithm, has the advantage that the 

base values T 0 and S 0 can represent average values of transmissivity and storativity, while 

the attractor points create fluctuations around the average. The plus-minus mapping algo

rithm is based on ideas from Bamsley [1988, chap. 9] which provides a method for con

structing a measure on an IPS attract or. First, each of the affine transforms which comprise 

. the IPS is labeled either positive or negative. A point on the IPS attractor is then labeled 

positive or negative according to which affine transform was. used last in its generation. If 

the attractor point is labeled positive, then Equation (3.1), (3.2), (3.3), or (3.4) is used as 

written to modify T and S; if it is labeled negative, then Equations (3.1) and (3.3) use -ll.T 

and -ll.S, and Equations (3.2) and (3.4) use ll.T-1 and ll.S-1• For an IPS composed of k 

affine transforms, the plus-minus algorithm tends to produce k discrete regions of high or 

low transmissivity and storativity. Several attractors produced by this procedure are illus

trated in the application section of the paper. 

3.1.4 Other Possible Mappings 

An alternative approach for enabling both increased and decreased hydrologic proper

ties would be to use two completely independent attractors, one with points that increase 

properties and the other with points that decrease properties. Although this approach would 

double the number of parameters needed, it could greatly increase the applicability of the 
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inversion method to different geological settings. A natural extension would be to use 

independent attractors to represent transmissivity and storativity distributions, if the geolog

ical model did not provide any information on the relation between these properties. 

3.2 THE OBJECTIVE FUNCTION 

The objective function quantifies the mismatch between the calculated and observed 

drawdowns for a given value of P. That is, it measures how well a model with a hydrologic 

property distribution mapped from an attractor generated by an IF'S with parameters P 

matches the observed data. 

3.2.I Constructing the Objective Function to be Sensitive to Heterogeneities 

The value of the objective function is known as the energy E, and is defined as 

(3.5) 

where he and h0 are calculated and observed drawdowns, respectively, N is the number of 

observations available, and N 0 is a constant introduced to make the energy a convenient 

magnitude (usually taken to be 100). The sum from 1 toN in Equation (3.5) runs over all 

observation wells (including the pumping well if drawdown is measured there) and all 

observation times for a transient well test. For a steady-state well test, there is just one 

observation per well and all dependence on storativity drops out, leaving the transmissivity 

distribution as the only unknown to be determined by the inversion. Following the tradi- · 

tiona! practice of well-test analysis using type-curve matching, log drawdown is included in 

E rather than drawdown itself, which has the effect of placing relatively greater emphasis 

on small drawdowns and less on large drawdowns. Small early-time drawdowns generally 

reflect near well-field hydrologic properties, whereas large late-time drawdowns also 

include the effect of hydrologic properties far from the well field. This objective function 

form therefore makes the inversion more sensitive to well-field scale heterogeneities, which 

have a chance of being resolved using multiple observation wells, than to regional-scale 

heterogeneities, which probably could be sensed, but not effectively located, by an interfer-

ence test. 

In typical analyses of transient well tests, the observed drawdowns that are included in 

the energy for each well are uniformly distributed in log time, but the form of Equation 

(3.5) makes it easy to account for a variety of special conditions. For example, if early-time 

drawdowns are thought to be controlled by well-bore effects or late-time drawdowns by 
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distant boundaries not included in the model, they can simply be eliminated from the sum. 

If some observed data points .are deemed more reliable than others due to differences in 

instrumentation, the energy can be weighted in their favor by including only a fraction of 

the less reli~ble points. Similarly, if certain responses are presumed to illustrate a key sys

tem feature, the inversion can be encouraged to find it by increasing the number of such 

observation points. 

One potential difficulty with formulating the objective function in terms of In h, rather 

than h itself, arises when the drawdown response for one or more wells is very srna~l (which 

could occur if the observation well were separated from the pumping well by a low

permeability region). Taking the log of a near-zero drawdown results in a large negative 

number, so even if both calculated and observed data show essentially no response, the con

tribution to the energy could be very large. In practice, this difficulty can usually be over

come by not including any non-responses or near non-responses in the observed data. Thus 

the earliest-time data included in the sum in Equation (3.5) will vary from well to well, with 

the earliest data included for the quickest responders. There is also an option in the IF'S 

inverse method to formulate the objective in terms of h rather than ln h, if it is desirable to 

include non-responses for a particular application, which can be critical for certain applica

tions such as waste isolation. 

The sum in Equation (3.5) can include drawdowns from multiple steady-state or tran

sient well tests, a procedure called co-inversion. Multiple transient tests are treated as 

though they were one long test, with variable flow rates at the pumping well or wells. Co

inverting multiple well tests which use different pumping wells requires that the returned 

transmissivity distribution yields the proper pressure response at observation wells under of 

a variety of flow conditions, which greatly enhances the reliability of the inversion results. 

Additionally, as the observed data becomes sensitive to a greater portion of the flow system, 

by sampling properties along additional flow paths, the inversion has a chance to provide 

information on a greater portion of the system as well. The primary practical limitation to 

the number of well tests included in a co-inversion is that the forward calculation becomes 

more computationally intensive with the addition of each test. However, there may be little 

information content gained in including multiple tests involving the same pumping and 

observation wells. Chapter 6 shows two examples of choosing among multiple well tests 

for a combination to create an efficient co-inversion. 
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Mathematically, if one assumes independent identically distributed Gaussian random 

errors in the term (In he - In h0 ), which is known as the residual, E is directly proportional 

to the log likelihood of the well response. Hence minimization of E corresponds to the sta

tistical procedure of maximum likelihood estimation. Although it is reasonable to expect 

· that errors in measured drawdowns are purely random errors and are thus likely to be nor

mally distributed and uncorrelated, this is probably not a good assumption for the residual 

as a whole, as an error in the model will tend to produce highly correlated residuals (e.g., 

ignoring leakage into an aquifer from an overlying layer will cause the model to systemati

cally overpredict late-time drawdowns). See Carrera and Neuman [1986a and 1986b] for a 

discussion of these ideas and a more general formulation of E as a quadratic form based on 

the correlation structure of the residual errors. 

3.2.2 Determining Base Values of Hydrologic Properties by Curve Shifting 

One advantage of formulating E as a function of In h rather than h itself is that if the 

flow rate is held constant at the pumping well, determining the base values of transmissivity 

T 0 and storativity S 0 in the lattice can be done easily within the matching procedure by 

curve shifting, in much the same way as transmissivity and storativity for a uniform. 

medium can be determined by shifting observed In h versus In t curves until they overlie a 

Theis type curve. During curve-matching, the drawdown versus time curves, plotted on 

log-log scales, are shifted along the In t and In h axes until the mismatch between the 

observed and calculated values is minimized. As described below, a shift along the In h 

axis determines T 0, and a shift along the In t axis determines the base value of diffusivity 

(T ciS 0). Thus the inversion can search for heterogeneities in transmissivity and storativity 

without needing to know the actual base values. 

In the calculation of the energy E, the drawdown curves calculated with trial values of 

T 0 and S 0 (and the contribution from the attractor) are shifted along the In t axis by an 

amount il1 and along the In h axis by an amount il2, with il1 and il2 chosen to minimize E. 

Then multiplying the trial value of T 0 by et:J.2 yields the best-fit base transmissivity, and 

multiplying the trial value of T ciS 0 by et:J.1 yields the best-fit value of that ratio. Finally, 

multiplying the trial value of S 0 by et:J.z-t:J.1 yields the best-fit base value of storativity. For 

steady-state drawdowns arising from a constant-flow test, a shift of the In h values may be 

used to determine T 0. 
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3.2.3 Determining Base Value of Diffusivity by Optimization 

When variable flow-rate boundary conditions are imposed during a well test, such as 

during a pulse' test in which flow is turned on and off in a single well, or during a co

inversion of multiple tests, in which flow is turned on and off in different wells, it is not 

possible to 'shift along the In t axis to determine the base value of diffusivity. This is 

because shifting in In t is equivalent to stretching or shrinking the time scale of a well test, 

and for a variable-rate test, the actual time schedule of the flow-rate changes fixes the time 

scale. Thus if shifting along the In h axis is done, a shift in transmissivity must be accom

panied by a corresponding shift in storativity so that diffusivity remains unchanged. How

ever, it is highly desirable not to be limited to a single value of base diffusivity during an 

inversion, but to have the IFS inversion code search for the optimal base value of diffusivity 

in addition to looking for transmissivity and storativity heterogeneities. Unlike the optimi

zation for the parameters determining heterogeneities, which is a multi-dimensional minim

ization which usually takes thousands of forward calculations and· great care in the choice of 

optimization algorithm (see Section 3.3), the determination of the base value of diffusivity 

is a one-dimensional minimization which typically takes only about ten forward calcula

tions, and uses a standard one-dimensional minimization routine known as Brent's Method 

[Press et al., 1986]. 

The key question is when (i.e., how often) to do the diffusivity optimization during 

the search for parameters of the IPS. In general, changes in base .values of properties 

(transmissivity, storativity, or diffusivity) affect all the drawdown curves in a consistent 

manner (e.g., a lower base value of transmissivity will increase all drawdowns), whereas 

heterogeneities (as specified by the parameters of the IFS) determine more localized 

features (e.g., a high-permeability channel between a pumping well and observation well 

will produce a larger pressure response in that observation well only). Thus it makes sense 

to do the diffusivity optimization less frequently than the IFS parameter optimization. Usu

ally one diffusivity optimization is done for a uniform medium (no attractor), and another 

for the initial attractor tried during the inversion. Thereafter, diffusivity optimizations are 

only done every so often during the IFS parameter inversion, with the exact frequency 

depending on the optimization algorithm chosen. This procedure seems to work well, and 

typically base diffusivity does not change much after the early stages of the inversion. 

I 

I 

I 
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3.3 THE OPTIMIZATION ALGORITHM 

The optimization algorithm determines how new trial values of the n -dimensional 

vector P are chosen during the IFS inversion. Four optimization algorithms from standard 

numerical libraries are included in the IFS inverse method. For all the optimization algo

rithms, the inversion is halted when the energy E drops below a specified value E min· 

Theoretically, the choice of E min could be made to reflect the precision of drawdown meas

urements, but in practice, oversimplification of the conceptual and numerical models usu

ally contributes greatly to the discrepancy between modeled and observed drawdowns. 

Hence E min is generally chosen rather heuristically, by requiring that the corresponding 

match between model and observed drawdowns is deemed 'good enough' by the user. 

3.3.1 Optimization Algorithms Considered 

The downhill-simplex and direction-set methods [Press et al., 1986] both choose new 

values of P by interpolating or extrapolating toward lower values of E. In the downhill

simplex method an (n + 1 )-sided 'amoeba' flows across the n -dimensional parameter space 

until it finds a minimum value of E (P). In the direction-set method a set of n orthogonal 

directions that span the n -dimensional parameter space is chosen randomly, then successive 

one-dimensional minimizations are done along each direction. For both these methods, 

computation time increases dramatically as the the number of unknown parameters n 

increases. 

In contrast to the above methods, which make 'intelligent' choices for the values of P 

to try, simulated annealing [Metropolis et al., 1953] tries new values of P randomly. The 

energy E' obtained using parameters P' = P + .M», where .tlP is a random vector, is com

pared to the energy E obtained with the original P. If E' < E, then P' replaces Pas the 

current best set of parameters, another random .tlP is chosen and the procedure is repeated. 

If E' > E, the P' might replace P, with the probability of replacement given by 

e(E -E')It, (3.6) 

where 't is a parameter known as the temperature, which determines how difficult it is to 

accept an increase in energy. Both I .tlP I and 't start large and decrease during the course of 

the inversion. Thus early in the inversion, highly varied attractors are tested and it is easy 

to get out of local minima of the energy function~ Later, when E is smaller, subtle changes 

in attractors are tested, and minima are not escaped easily. 

tt: • I 
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Simulated annealing seems to work well for hydrologic inversions [e.g., Long et al., 

1991; Datta-Gupta et al., 1994], and it has an advantage over the previously described 

methods in that computation time does not directly increase with dimension n. However, 

as energy E decreases, more and more unaccepted values of P are tried, making the method 

inefficient. An approach known as simplex annealing [Press and Teukolsky, 1991] com

bines features of the downhill-simplex method and simulated annealing, in an effort to 

improve efficiency by making more intelligent choices for new values of P while at the 

same time including a random component to maintain the ability . to jump out of local 

minima. This method appears very promising. 

To ensure that an IFS converges to a finite attractor all of whose points lie within the 

unit square, the restrictions on the components of P given in Equations (2.7) and (2.8) are 

imposed. This is easily done when simulated annealing is used, by simply rejecting any 

trial P' that does not satisfy Equations (2.7) and (2.8) and using a different random LW to 

create another trial P'. This rejection algorithm cannot be so easily accommodated in the 

other optimization algorithms because trial values of P are chosen intelligently rather than 

randomly. Instead of rejecting a trial value of P entirely, the components of P violating 

Equations (2.7) or (2.8) are set to the bounding values. This approach has not been totally 

satisfactory, because the optimization algorithm tends to get stuck in corners of parameter 

space (especially for artificially simple synthetic problems). Further work to improve this 

procedure would be useful, because the addition of intelligence to the choices of P is a 

highly desirable feature. 

The incorporation of the diffusivity optimization depends on the optimization algo

rithm chosen. Using Simulated Annealing or Simplex Annealing, in which the value of E 

generally decreases as the inversion progresses, but can also increase in the short term, a 

diffusivity optimization is done each time the value of E reaches a new low. For the 

direction-set method, a diffusivity optimization is done after each one-dimensional optimi

zation along a given direction is completed. 

3.3.2 Assessing Optimization Algorithms with Synthetic Energy Surfaces 

In order to study how various optimization algorithms work, it is useful to construct 

an objective function that is related to the unknown parameters P in a very simple way. 

Then forward calculations are very quick and the entire optimization process takes only a 

few minutes, enabling many optimizations to be done under different conditions, and the 
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results compared. 

A very simple well-test could be designed, which would require only a coarse discreti

zation of space and a few time steps to simulate, making each forward calculation fast, but 

an even simpler approach is to eliminate any numerical simulation and create an objective 

function which is an analytical expression of the unknown parameters. One convenient 

method is to define the objective function as a polynomial function of the vector P . For a 

two-dimensional P, the value of the objective function for a range of P ' s forms a two

dimensional energy surface, which may be plotted as a contour map, as shown in Figure 3.4 

for the objective function given by (D. Vasco, personal communication, 1993) 

E (x ,y) = 4x 2 - 2.Ix4 + 0.333x6 + .xy - 4y 2 + 4y 4 . (3.7) 

With such an energy surface, the progress of the optimization can be directly observed by 

tracking the trial values of P on the surface. The energy surface given by Equation (3 .7) has 

a minimum value of E < -1 , which occurs in two places, four local minima (E = -0.3 and 

E = 2), and two local maxima, providing several interesting features for the optimization 

algorithms to deal with. If the stopping criterion for the inversion is chosen as Emin = -1, a 

successful optimization will converge to one of the two global minima, rather than getting 

stuck in one of the local minima. An efficient optimization will find the global minimum 

without a great number of wasted steps. 

Figures 3.5 through 3.8 illustrate the behavior of the four optimization algorithms 

available in the IFS inverse method as they search for the minimum of the energy surface 

defined by Equation (3 .7). For each algorithm several different starting points (shown as 

grey dots) and random seeds have been used. In each frame, the white dots show all the 

trial values of parameters picked during the inversion, the dots which are connected by line 

segments show the trial values which are accepted during the inversion, and the black dot 

identifies the final parameter values returned by the inversion. 

Figure 3.5 illustrates the direction-set method, which works very simply for two

dimensional minimizations. It picks a direction at random, and does a one-dimensional 

minimization along that direction. From the point which yields the minimum energy, it 

then does a one-dimensional minimization in the orthogonal direction. From the new 

minimum energy point, it does a one-dimensional minimization in the original direction. 

This procedure continues until a point is found which yields the minimum energy along 

both directions. The first frame of Figure 3.5 shows an inversion starting (and remaining 
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Figure 3.4. Energy surface for a two-dimensional polynomial objective function. 

stuck) in a deep local minimum. None of the trial parameter values in either direction yield 

a lower energy than the initial parameters do, so none are accepted. Several other inver

sions were done starting from this deep local minimum, using different random seeds to 

determine the direction along which to minimize, but all failed to escape the minimum. 

The second through fourth frames show inversions that start in the same shallow local 

minimum, but use different random seeds. The second and third frames show successful 

inversions, which end when values of E < E min are found. The final frame shows an inver

sion which gets stuck in a deep local minimum. It is apparent that the direction-set method 

is not a reliable optimization technique for energy surfaces with relatively deep local 

minima, as a successful inversion requires not starting in a deep local minimum, and pick

ing a good direction in which to minimize, neither of which can be guaranteed without hav

ing detailed knowledge of the energy surface. 

Figure 3.6 illustrates the downhill-simplex method. In this method, a two

dimensional inversion starts with a set of three points, known as a simplex, shown in grey. 

The user picks one initial point and a scale factor describing how far apart the points of the 
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Figure 3.5 . The search for a minimum of the objective function using the direction set 
method. The grey point is the starting point for the search and the black point is the final 
point. Points connected by lines are accepted points. 
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Figure 3.5. continued. 
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simplex should be, then the remaining points of the simplex are chosen at random. In some 

frames of Figure 3.6, all three points of the simplex do not fall within the range of the plot. 

During the optimization, the simplex is extended, contracted, and reflected, in search of 

lower energy values. The constraint of always moving in orthogonal directions, which 

seemed to hinder the direction-set method, is removed here, but the simplex still tends to 

get stuck in local minima, as shown in the second and fourth frames. It is important to 

specify the initial size of the simplex as bigger than the extent of local minima features , but 

without knowledge of the characteristic length scales on the energy surface, this is difficult 

to do. 

Figure 3.7 illustrates simulated annealing. All of the frames show inversions that con

verge, and in general, one of the major strengths of simulated annealing is its ability to 

escape local minima, making the starting point of the inversion nearly irrelevant. The 

number of trials tends to be much larger than for either the direction-set or downhill

simplex method, although there is a great deal of variability in the number trials required. 

In the first frame, convergence is quite rapid, but it is clear that the parameter space has not 

been thoroughly sampled, and rapid convergence has been a. matter of luck. The second 

frame shows an inversion with reasonable coverage in the central portion of the parameter 

space, and relatively rapid convergence. The third and fourth frames show more typical 

simulated annealing results, involving many trials, and accepted parameter values for ener

gies well outside the local minima. The third frame shows an inversion which starts in the 

upper right shallow local minimum, takes big steps over much of the parameter space early 

on, spends a lot of time in the deep local minimum in the upper right, then .finally reaches 

the upper global minimum. In the fourth frame the inversion starts at the local maximum in 

the lower left quadrant, meanders over most of the low-energy region, then hones in on the 

lower global maximum. In both cases, the steps between accepted trial values are large 

early in the inversions, and steadily become smaller as the inversion proceeds. This shor

tening of steps is a consequence of the decreasing temperature 't in Equation (3.6), and 

smaller parameter increments I M I tried at the later stages of the inversion. The initial 

values and rates at which 't and I M I decrease can therefore determine how successful the 

inversion will be. Overly large values of these parameters lead to highly inefficient inver

sions in which almost every trial is accepted (if 't is too big) or a region with low energy is 

abandoned (if I M I is too big). Overly small values of 't or I M I (or values that decrease 

too rapidly) minimize the random character of simulated annealing, and may lead to getting 



-42-

Energy: 3.0 

1.0 

0.5 

y 0.0 

-0.5 

-1.0 

X 

Energy: 

1.0 

0.5 

y 0.0 

-0.5 

-1.0 

-2 -1 0 2 

X 

Figure 3.6. The search for a minimum of the objective function using the downhill simplex 
method. The grey points are the starting points for the search and the black point is the final 
point. Points connected by lines are accepted points. 
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Figure 3.6. continued. 



-44-

stuck in local minima. 

Figure 3.8 illustrates simplex annealing, which is designed to combine the intelligence 

of the downhill simplex method with the random features of simulated annealing that make 

it more robust. From the examples shown in Figure 3.8 it is apparent that simplex anneal

ing is reasonably successful in meeting these goals. The first frame shows an inversion 

which nearly gets stuck in the upper left deep local minimum, but manages to escape and 

find the nearby giobal minimum. The inversion shown in the second frame samples much 

of the low-energy region of parameter space, before converging at the lower global 

minimum. Again, a large number of trials are clustered near a local minimum (this time in 

the lower right comer) before the global minimum is found. Both the third and fourth 

frames shows inversions in which only a portion of the parameter space is sampled 

(y > 0.4 ), but within that region the inversion proceeds efficiently. As in simulated anneal

ing, simplex annealing requires a reasonable temperature schedule to work well. 

In conclusion, the simple two-dimensional energy surface studies have shown that 

there are strengths and weaknesses inherent in all the optimization algorithms considered. 

The random methods (simulated annealing in particular) tend to require far more trials, but 

are more robust in that they don't get stuck as easily. It is important to remember that typi

cally very little is known about the structure of the energy surface (or hyper-surface for 

higher dimensional inversion problems), making it difficult (and perhaps even counter

productive) to use optimization algorithms that rely on special features of the energy sur

face, such a the absence of deep local minima. 
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Figure 3.7. The search for a minimum of the objective function using simulated annealing. 
The grey point is the starting point for the search and the black point is the final point. 
Points connected by lines are accepted points. 
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Figure 3.8. The search for a minimum of the objective function using simplex annealing. 
The grey points are the starting points for the search and the black point is the final point. 
Points connected by lines are accepted points. 
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3.3.3 Visualization of the Energy Surface for a Simple Heterogeneity 

While the polynomial objective function described in the previous section provides an 

efficient means of illustrating the behavior of optimization algorithms, it is reasonable to 

ask if the energy surface shown in Figure 3.4 has any resemblance to an energy surface for 

an IFS-based hydrologic inversion. In order to investigate this issue, an extremely 

simplified inversion can be constructed for the heterogeneity shown in Figure 3.3a, by 

assuming that the location of one end of the linear high-transmissivity feature is known. 

The optimization searches for the location of the other end, which is specified by its x and y 

coordinates, forming a two-dimensional vector P . Synthetic well-test data is created by 

numerically simulating a well test in which water is pumped from the central point in Fig

ure 3.3a and drawdowns are calculated at the four surrounding points. The objective func

tion is then given by Equation (3.5), where the drawdowns h0 are calculated using the 

high-transmissivity feature as shown in Figure 3.3a, and the drawdowns he are calculated 

using a trial location for one end of the high-transmissivity feature, as shown in Figure 3.9. 

Figure 3.10 shows the energy surface created by varying the location of the end of the 

high-transmissivity feature over the entire well field. The strong minimum in the region 

near the actual location is a good indication that this simple inversion problem is relatively 

well posed. However, the striking reflection of the well field in the energy surface as a 

series of localized maxima is a vivid reminder of the limited, even distorted, picture of the 

subsurface provided by the observations available during a well test. 

3.4 INTERPRETATION OF RESULTS 

3.4.I Alternate Displays of Hydrologic Property Distributions 

There are several ways to display the transmissivity distribution returned by the IFS 

inversion method, as shown in Figure 3.11. The upper frame shows the attractor, whose 

shape is controlled by the parameters which are optimized by the inversion. To create a 

heterogeneous transmissivity distribution for the simulation of a well test, the attractor is 

superimposed on the lattice used to discretize space, and the points in the attractor either 

increase or decrease the transmissivity of the lattice element nearest them, as described in 

Section 3.1. The middle frame shows ~he resulting lattice, in which the transmissivity of 

each element is proportional to the thickness of the element. The lower frarrie shows the 

transmissivity distribution of the numerical model as a color-coded image, with bluer 

shades corresponding to higher transmissivities. 
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• 

Figure 3.9. Several of the trial transmissivity distributions for an n = 2 dimensional inver
sion (solid line segments), and the correct transmissivity distribution (dashed line segment). 
The black dots show the well locations. The (x ,y ) coordinates of the moving end of the line 
segment are determined by the two unknown parameters of the inversion. 

The attractor itself is the fundamental result of the inversion, but is the least useful 

display in terms of understanding the hydrology of the system. The lattice representation 

gives a direct view of the flow problem being solved by the numerical model, but the 

color-coded image provides a clearer representation of how the numerical model represents 

a heterogeneous porous medium. 

The algorithm for creating a color-coded or grey-scale image from the lattice distribu

tion of transmissivities is quite simple, and is illustrated in Figure 3.12. A diamond is 

drawn centered on each lattice element, with the diagonal length of the diamond equal to 

the length of the element. The diamond is filled in with a grey-scale intensity proportional 

to element transmissivity. The upper frame of Figure 3.12 shows part of a lattice, with just 

a few of the diamonds drawn, to illustrate the technique. As shown in the lower frame of 

Figure 3.12, this algorithm fills up space with shaded diamonds wherever the lattice spacing 
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Figure 3.10. The energy surface created by varying the loc~tion of one end of the high
transmissivity feature over the entire region shown in Figure 3.9. The white dots show the 
locations in parameter space where the end point of the high-transmissivity feature coin
cides with a well. The black dot shows the location in parameter space which produces the 
correct transmissivity distribution (the dashed line in Figure 3.9). 

is uniform, but in regions where lattice spacing increases, the algorithm leaves gaps. The 

gaps are filled in by averaging transmissivity values of adjacent elements. The user can 

choose either arithmetic, harmonic, or geometric averaging. For color displays, color hue 

can easily replace grey-scale intensity, as illustrated in Figure 3 .11. 

3.4.2 Analyzing an Ensemble of Solutions 

In contrast to the energy surface shown in Figure 3.10, which has a well-defined 

minimum, a typical hydrologic inversion with more unknown parameters will have an 
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low high 

Figure 3.11. Various ways to represent the results of an inversion. a) the attractor itself, a 
set of points (in this image blue points increase transmissivity and red points decrease 
transmissivity); b) TRINET lattice with element thickness proportional to transmissivity; 
and c) color-coded plot of transmissivity distribution . 
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Figure 3.12. Illustration of the algorithm used to construct the grey-scale image of 
transmissivity distribution. a) a lattice with just a few diamonds drawn; b) a lattice with all 
the diamonds representing elements drawn, the remaining gaps will be filled in by averag
ing adjacent transmissivity values. 



.. ,. ... 
' ' 

-54-

energy surface with more than one minimum, implying that the inverse problem does not 

have a unique solution. One way to address this problem is to solve the inverse problem 

several times, using different starting points, different optimization algorithms, or different 

random seeds, then compare the ensemble of solutions. Variations in transmissivity which 

are shared by all members of the ensemble are likely to represent real features of the sys

tem, which have a strong impact on the pressure transients. In contrast, variations which 

appear in only one or a few solutions are likely to be spurious, and identify regions where 

there is insufficient data to resolve heterogeneity. The ensemble analysis can be simply a 

visual inspection of the different transmissivity distributions or it can be a more formal sta

tistical process. 

One simple statistical technique is to create the mean or median transmissivity distri

bution from the ensemble of transmissivity distributions. The mean transmissivity distribu

tion is generated by calculating the mean transmissivity Tj of the j th lattice element over 

the ensemble of inversions, then displaying all the Tj values on one lattice. For an ensem

ble of n inversions, the mean transmissivity of the j th element is given by 

- 1 n 
T- =-~T-k 

1 n "'-' 1· 
k=1 

(3.8) 

where Tj .k is the transmissivity of the j th element in the k th member of the ensemble. The 

median transmissivity distribution is generated by determining the median transmissivity ij 
of the jth lattice element for the ensemble.of inversions, then.displaying all the ii values 

on one lattice. For an ensemble of n inversions, the median transmissivity of the jth ele

ment is determined by ordering the n values of Tj from smallest to largest, then taking the 

mid-ranked value to be ij. Features which are common to most members of the ensemble 

of solutions will be. emphasized in the mean or median distributions, whereas features 

which only appear in a few solutions will be damped out. 

The variance of the transmissivity distribution also provides information on the relia

bility of the results of an inversion. For an ensemble of n inversions, the variance of the j th 

element is defined as Ti 2 - ~ 2, where ~ is defined in Equation (3.8) and the mean square

transmissivity Ti 2 is given by 

- 1 n 
T-2=-~T-k2 

1 n "'-' 1· 
- k=l 

(3.9) 

The square root ofthe variance, the standard deviation, for each element is then plotted on 
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one lattice. In general, regions of high standard deviation identify regions to which the 

well-test data is not sensitive, and may be used to guide the design of future well tests or the 

drilling of additional wells. 

An example of the ensemble analysis is given in Section 4.1. One of the surprising 

outcomes is how much better visual inspection works to identify common features of multi

ple inversions than do the formal statistical methods. This suggests that more formal 

pattern-recognition algorithms might prove worthwhile to investigate. 

3.5 CONSTRAINING THE INVERSION WITH GEOLOGICAL OR OTHER INFORMA

TION 

It is apparent from the preceding sections that to use the IPS inversion method one 

must specify a number of parameters that are not modified during the course of the inver

sion, but rather control the way the inversion operates. These parameters, known as control 

parameters, include such choices as the design of the lattice, the scale factor to map the 

attractor to the lattice, the number of affine transforms k, which components of the affine 

transforms may vary, the parameters of the map from attractor to property distribution, and 

the total number of attractor points M 0. Choosing the control parameters provides an 

opportunity to condition the inversion on geological or other additional information, so that 

it will produce a model that is consistent with all known information about the system,. as 

well as matching the hydrologic response. 

Lattice design. The overall hydrogeological conceptual model of a site provides the 

primary constraints on the lattice design, including the far-field boundary conditions 

(closed, constant pressure, or far enough away to not be felt) and the number of layers and 

lateral resolution required to represent the suspected type of heterogeneity. If a preferred 

flow direction is known (e.g., direction of a regional fracture set, paleoflow direction in a 

fluvial system) lattice elements may be aligned along it. 

Scale factor. The portion of the lattiCe to which the attractor is mapped is determined 

by the scale factor. The most common situation is to make the scale factor large enough to 

encompass the well field, on the grounds that this is the only part of the system where well

test data provides enough information to resolve heterogeneities. · However, if a particular 

sub-region of the well field were suspected to contain unique features (e.g., based on 

wellbore lithological information), a smaller scale factor could be used to limit the attractor 

points to that region. 
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Affine transforms. As described in Chapter 2, the fractal dimension of the attractor 

tends to increase with k, the number of affine transforms composing the IFS. Even without 

, a formal determination of the fractal dimension of the features of a site, one often has an 
'' 
,iJtuitive notion of the sort of heterogeneities to be expected that can be associated qualita-

j f.• 

·;' .'ti\jely with fractal dimension, leading to a reasonable choice for k. Furthermore, with the ., ... _, 

· :·tori.struction of the affine transform matrices as rotation matrices, one can choose a small 

value of I M» I to limit the variability of the rotation angle e, so the near-linear features of 

low-k attractors can have preferred orientations. 

The Mapping Algorithm. The mapping algorithm provides a key way to condition 

the inversion with hydrological information. As described in Section 3.1. the step map and 

distributed map may create very different property distributions for a given attractor, with 

the step map generally providing sharper property variations, as shown in Figure 3.2. While 

a diffuse property variation can be achieved with the step map, by an uneven distribution of 

attractor points, a sharp property distribution cannot be achieved by the distributed map, 

unless the value of s is very small, making the step map the practical choice for situations 

in which the user· does not want to impose any bias on the nature of the heterogeneity 

returned by the inversion. By choosingthe sign (for the additive algorithm) or magnitude 

(for the multiplicative algorithm) of the transmissivity increment !:iT, one controls whether 

the inversion looks for permeability barriers or fast paths. If it is not known which feature 

is more important for a given problem, inversions may be done both ways. Which method 

performs better may provide valuable insight into the hydrological behavior of the system. 

Number of attractor points. The total number of attractor points M 0 determines the 

number of generations used to construct the attractor (Equation (2.2), which in combination 

with the scale factor, determines the resolution of heterogeneity. If a low-resolution picture 

is desired (which would be appropriate if there are only a few observation wells, or broad 

regions with different permeabilities are suspected), a low value of M 0 may be specified, 

along with the distributed map and a large value of s , to create a heterogeneity composed of 

a few broad regions of increased or decreased permeability. 
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4. INVERSION OF SYNTHETIC DATA 

The only direct way to check if a hydrologic inverse method works is to generate synthetic 

well-test data from a known model and see if the inversion recovers the hydrologic property dis

tribution of the model. In the first two sections of this chapter, models containing very simple 

heterogeneities are used, to clearly illustrate how the inversion works. To more fully test the 

method, more realistic synthetic data is considered in the final two sections, first by using models 

that represent geologically realistic heterogeneities, then by including noise in the pressure

transient data. 

4.1 LINEAR HIGH-TRANSMISSIVITY FEATURE 

The first synthetic problem is a well test conducted· in an aquifer with a single highly 

permeable linear feature, which might represent a buried stream channel or the trace of a conduc

tive fault. The transmissivity of the linear feature is about 500 times greater than the background 

value and its storativity is unchanged from the background value. The transmissivity distribution 

and the lattice used to create the synthetic well-test data are shown in Figure 3.3b. 

As described in the Section 2.2.1, a linear heterogeneity can be described by an IFS with 

k = 2 of the form 

f (A ) = g 1 (A ) u g 2(A ) , (4.1) 

where 

(4.2) 

This IFS has only four parameters, the components of b 1 and b2, which determine the length and 

orientation of the line segment. The attractor shown in Figure 3.3a was created using an IFS with 

P given by Equation (4.2) with b 1 = (0.35,0.45) and b2 = (0.19,0.19), and a total of M 0 = 1024 

attractor points. Using the additive algorithm with t!.T = 10T0 produces the transmissivity distri

bution .shown in Figure 3.3b. During the well test, a central well was pumped at a constant rate 

and transient drawdowns were calculated for four surrounding observation wells. The head was. 

held constant at the outer boundary of the lattice. Well locations are marked by solid circles in 

Figure 3.3. Figure 4.1 shows the transient drawdowns calculated for this transmissivity distribu

tion (the synthetic data), and the drawdowns that would occur for a uniform medium, for com

parison. The effect of the high-transmissivity feature is clearly seen in the earlier, larger response 

of the upper well in Figure 4.1. 
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Figure 4.1. Transient drawdowns at the four observation wells for synthetic problem 1. The ar
rangement of the plots on the page follows the locations of the observation wells in the well field. 
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4.1.1 Inversions with Four Unknown Parameters 

Because the synthetic hydrologic data was created using an IPS, it is straightforward to 

specify a very 'easy' problem for the IPS inversion: use the same values of the control parameters 

(T 0, S 0, !:!.T, !:!.S, M 0, k, etc.) as were used to create the data, then, if the inversion can find the 

correct values of P, the resulting model will be identical to that used to create the synthetic data, 

and the energy E will be identically zero. For inversions with k = 2 affine transforms in which 

only the components of the vectors b vary, there are n = 4 unknown parameters, and all the trial 

attractors are line segments, as shown in Figure 2.5a. Table 4.1 summarizes the results of six 

such inversions done using simulated annealing with different random seeds; the attractors found 

for the six cases are shown in Figure 4.2. 

Table 4.1. Synthetic problem 1 inversions with k = 2, b's only varying, and Emin = 3.6. 

Number of Number of p 

Case Forward Accepted (hi, bz) E 
Calculations Attractors 

1A 184 21 (0.29,0.47), (0.27,0.25) 3.2 
1B 169 43 (0.20,0.20), (0.36,0.46) 2.8 
1C 449 67 (0.36,0.46), (0.19,0.20) 0.3 
1D 387 50 (0.21,0.21), (0.33,0.41) 1.5 
1E 244 35 (0.19,0.18), (0.34,0.45) 1.7 
1F 316 47 (0.28,0.26), (0.17 ,0.42) 3.4 

Meant 292 44 (0.22,0.22), (0.31,0.45) 2.2 
Standard (0.04,0.03), (0.07,0.02) 
deviationt 

CorrectP (0.35,0.45), (0.19,0.19) 10-10 

(0.19,0.19), (0.35,0.45) 1.1 

Uniform 46 
medium 

CPU time per iteration is 10 sec on a Sol bourne 500 series workstation· 
torder of b 1 and b2 interchanged for Cases A and C before mean or standard deviation calculated 

In all cases, the initial annealing temperature was 't = 3.6, the initial random increment in parame

ters had I !:!.PI = 0.6, 't and I !:!.PI were decreased 1% each time a trial attractor was accepted, and 

the inversion was halted when E ~ E min = 3.6. For comparison, the energy for a uniform medium 

with no attractor is E = 46 and the energy for the first attractor tried, a horizontal line segment 

through the center well, is E = 860. Figure 4.3 shows the energy variation over the course of the 

inversion for Case 1E. The energy decline for accepted iterations is far from monotonic, 
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1A 

1F 
lB-1 E 

0 0 

0 

Figure 4.2. The final attractors for six inversions of synthetic problem 1, using IPS's with k = 2 
with only the b terms of the affine transforms varying. Well locations are marked with open cir
cles. 

reflecting the relatively large value of 't being used. Figure 4.1 shows the calculated drawdowns 

versus time for the final iteration of Case 1E, which yields an energy E = 1.7. The drawdowns 

returned by the inversion are deemed to match the key features of the synthetic data adequately, 

in effect justifying the choice of E min a posteriori. Four of the six attractors shown in Figure 4.2 

closely match the input attractor (Figure 3.3a), whereas IA and IF differ somewhat, illustrating 

the variability in transmissivity distribution that yields essentially the. same well-test response. 

When interpreting the standard deviation values given in Table 4.1, note that for the present 

affine transforms, varying the value of a component of b from 0.0 to 0.5 moves the end of the 

attractor all the way across the unit square (which moves the end of the high-transmissivity 

feature all the way across the region shown in Figure 4.2). Hence, a standard deviation of 0.05 
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Figure 4.3. Energy variation during the inversion for Case lE. The minimum energy so far is 
shown as a dotted ·line in both frames. 
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represents an uncertainty of 10% in the location of that end of the high-transmissivity feature. 

Of the attractors shown in Figure 4.2, the two that least resemble the correct transmissivity 

distribution (1A and 1F) are in fact the two with the highest energy, suggesting that specifying a 

smaller value of E min would yield a more unique attractor. While this is true in the present case 

(the four inversions which yield E < 3 return P's with· a standard deviation of only 

(0.01,0.01),(0.01,0.02)), using an overly small a value of Emin can be problematical. For real

world problems, in which the mathematical model is generally an extremely simplified represen

tation of reality and well-test data contains noise, using a relatively large value of E min ensures 

that effort spent during the inversion is used to match the main features of the drawdown curves, 

rather than small variations in observed data which may not reflect the overall hydrologic 

behavior of the system, or small variations in calculated data which are due to the discretization 

of the problem into finite elements. For synthetic data, instrument noise and conceptual-model 

errors can be eliminated, but computer round-off error cannot, so even in this case an overly 

small. value · of Emin can be counterproductive. For example, · an attractor · given by 

P = (0.19,0.19), (0.35,0.45), which is mathematically identical to the correct attractor 

P = (0.35,0.45), (0.19,0.19), yields an energy E = 1.1, because a few attractor points located 

nearly midway between lattice elements are mapped to different elements. Hence, specifying a 

value of E min < 1.1 would require that effort be spent during the inversion to reproduce round-off 

errors rather than hydrologic behavior. 

4.1.2 Inversions with Twelve Unknown Parameters 

For a less constrained inversion, all entries of the affine transforms are allowed to vary, 

increasing the dimension of the parameter space from n = 4 to n = 12. As shown in Figures 2.5b 

and 2.5c, the trial attractors are no longer constrained to be line segments. As befo~e, six inver

sions were done using simulated annealing with Emin = 3.6, using different random seeds. The 

range of computer times used was about the same as before; the final attractors are shown in Fig

ure 4.4. In contrast to the previous case (Figure 4.2), there is now significant variability among 

the attractors. All the attractors succeed in identifying a high-transmissivity channel between the 

middle and upper wells, but most show fictitious high-transmissivity channels elsewhere as well. 

A careful examination of Figure 4.4 indicates that none of the spurious high-transmissivity chan

nels are located along pathways connecting the pumping well and the observation wells. The 

model can include these spurious high-transmissivity channels and still yield a low energy 

because the observation-well drawdowns are not very sensitive to these regions of the model. 
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Figure 4.4. The final attractors for six inversions of synthetic problem 1, using IFS's with k = 2 
with all parameters of the affine transforms varying. 

This insensitivity is a common problem when analyzing well tests involving a single pumping 

well and a limited number of observation wells, and doing multiple inversions is a powerful tech

nique for identifying regions for which the well test provides no information. Rather than indi

cating a failure of the inversion method, non-uniqueness illustrates the limited nature of the infor

mation contained in the well-test response. The concept of assessing the information content of 

well-test (and tracer-test) data has been formalized by Vasco et al., [1995], who use a sensitivity 

matrix to identify regions to which the observed data is most sensitive. 

Figure 4.4 suggests that the response at an observation well is most sensitive to the region 

directly between the pumping well and observation well. This observation has been demon

strated mathematically by Oliver [1993] for heterogeneous media in which variability in lnT or S 

is small, using Frechet derivatives. Therefore, a straightforward way to create well-test data that 

is sensitive to larger areas of the aquifer is to use more observation wells. Unfortunately, drilling 

many wells may be economically or physically impossible. An alternate approach is to do a 

series of flow tests using. different wells as the pumping well, as shown schematically in Figure 
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4.5, and then combine all the drawdown responses in the objective function. 

'l' ···' 
Single tests with few observation we!!s 

Single test with many wells 

• Observation well 
0 Pumping well 

Multiple tests with few wells 
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.! 

Figure·4.5. A schematic diagram showing the regions of an aquifer in which heterogeneities tend 
to have the most affect on well-test results; these are the regions directly between pumping wells 
and observation wells. 

By visually filtering out those features not common to all the attractors in Figure 4.4, one 

can obtain a reasonable representation of the actual high-transmissivity feature. This visual filter

ing operation can be formalized by looking at the mean of the transmissivity distributions 

returned by multiple inversions. For the simple relationship between parameters P and attractors 
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for the case in which only the b's vary (i.e., the b's determine the end points of the line-segment 

attractors), the mean of the b's themselves was calculated (Table 4.1). With more general affine 

transforms, this approach is impractical, and it is preferable to take the mean of the returned 

transmissivity fields directly. Figure 4.6 shows the transmissivity distributions for each of the six 

inversions, corresponding to the attractors shown in Figure 4.4. Figure 4.7 shows the mean 

transmissivity distribution, formed by calculating the mean transmissivity T of each lattice ele

ment over the six inversions. The mean transmissivity distribution compares favorably with the 

actual distribution (Figure 3.3b), although the spurious high-transmissivity channels are still 

apparent. If the spurious channels represent random errors, averaging over more inversions 

should minimize their effect. The mean transmissivity distribution for 30 inversions, also shown 

in Figure 4.7, better replicates the synthetic data, supporting this hypothesis. The standard devia

tion distributions for 6 and 30 inversions are also shown in Figure 4.7. The standard deviation of 

each lattice element is given by (T2 - f 2) 112 where f and T2 are the mean transmissivity and 

mean square-transmissivity, respectively, of that lattice element. Regions of high standard devia

tion are concentrated both around the high-transmissivity channel and in the regions shown 

unshaded in the upper left frame of Figure 4.5. The high standard deviations around the channel 

arise because different inversions put the channel in slightly different locations. The remaining 

regions of high standard deviation indicate the regions to which the well-test data are not sensi

tive. In general, all regions of high standard deviation identify beneficial locations for placing 

additional wells for future well tests. 
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Figure 4.6. The transmissivity distributions for the six inversions of synthetic problem 1 which 
used twelve unknown parameters. Element thickness is proportional to T /F 0. 
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• 

• 

Figure 4. 7. The mean and standard deviation of the transmissivity distribution for the six distri
butions shown in Figure 4.6, and for 30 inversions all using the same parameters, but different 
random seeds. Element thickness is proportional to T n 0. 
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4.2 SQUARE ZONE OF CONTRASTING TRANSMISSIVITY AND STORATIVITY 

The sec,ond synthetic problem considers an aquifer with a central square region whose 

transmissivity .. and storativity are either 100 times greater ('high anomaly') or 100 times less 

('low anoinaJy') than the values of the surrounding area. Six wells surround the anomaly, as 

shown in Figure4.8. 

Figure 4.8. Model for synthetic problem 2, showing the lattice, well locations (solid circles), and 
the central square anomaly, which may have transmissivity and storativity either 100 times 
greater or 100 times less than the background values. The pumping well is the middle well on the 
left. 

One well is pumped and transient drawdowQs are measured in the other five. Head is held fixed 

at the outer boundary of the lattice. Figure 4.9 shows the transient drawdowns at the observation 

well locations for the high and low anomalies, and for a uniform medium. Compared to the uni

form medium response, the high anomaly strongly affects the drawdown curves at all observation 
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wells, whereas the low anomaly primarily affects the wells across the anomaly from the pumping 

well. 
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Figure 4.9. Synthetic data at the five observation wells for synthetic problem 2, compared to the 
response for a uniform medium. The arrangement of the plots on the page follows the locations 
of the observation wells in the well field. 
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4.2.1 HighT and S Anomaly 

Table 4.2 summarizes the results of three inversions with k = 3 done for the high anomaly, 

using simulated annealing with different random seeds. In each case, the additive algorithm was 

used with !:J.T = 1 OT 0 and !:J.S = 1 OS 0, and E min = 1.6. The energy for a uniform medium with no 

attractor is E = 92, the energy for the first attractor tried, the Sierpinski Gasket shown in Figure 

4.10, is E = 85. The Sierpinski gasket is not expected to provide a good description of the square 

zone of contrasting properties (or for that matter of any geological heterogeneity), it is merely 

used as a convenient starting point for the inversion. In fact, when inverting synthetic data it is 

preferable not to use too good a guess for an initial attractor, to assure a rigorous test of the 

inverse method. (In contrast, for real data a good initial guess is generally desirable, and can pro

vide a means of conditioning the inversion on additional information. Under some conditions it 

may be preferable n.ot to impose any preconceived notion on the inversion, and either a randomly 

chosen or uniform initial attractor may be used.) The drawdowns for Case 2A are shown in Fig

ure 4J 1; the agreement with the synthetic data is very good. The attractors for each case, sh~wn 

in Figure 4.12, all succeed in concentrating points within the anomaly. 

Table 4.2. Synthetic problem 2 (high anomaly) inversions with k = 3, attractor points that in
crease pro{>erties, and E min = 1.6. 

Number of Number of 
Case Forward Accepted E 

Calculations Attractors 
2A 795 71 1.4 
2B 87 20 1.6 
2C 2,606 181 1.2 

Uniform 92 
medium 

CPU time per iteration is 17 sec on a Solbourne 500 series workstation 

Three inversions with k = 3 were also done for the high anomaly using attractors that 

decrease transmissivity and storativity. For this case an ideal attractor would have points uni

formly distributed around the outside of the anomaly. Although the energies for these inversions 

(E = 47 to 58) are only about a factor of two lower than the energy for a uniform medium, the 

attractors, shown in Figure 4.13, all succeed in concentrating points outside the anomaly. 
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Figure 4.1 0. The initial attractor for the k = 3 inversions of synthetic problem 2. 
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Figure 4.11. Transient drawdowns for synthetic problem 2 with the high anomaly when attractor 
points increase properties. 
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Figure 4.12. The final attractors for three k = 3 inversions of synthetic problem 2 with the high 
anomaly, when attractor points increase properties. 
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Figure 4.13. The final attractors for three k = 3 inversions of synthetic problem 2 with the high 
anomaly, when attractor points decrease properties. 
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An attractor generated by an IFS composed of k affine transforms tends to have k 'extreme' 

or comer-like points. These are the points created by repeated application of just one of the k 

affine transforms that .make up the IFS. For example, the lower left comer point of the Sierpinski 

Gasket shown in Figure 4.10 results from repeated application of g = 0.51 + (0,0), the upper right 

comer from g = 0.51 + (0.5,0.5), and the upper left comer from g = 0.51 + (0,0.5). (All the 

points along. the lines connecting these comer points arise from application of just two of the 

three affine transforms, while interior points arise from application of all three of the affine 

transforms). The k comer points may be thought of as pinning down the attractor's extreme 

values, while the rest of the attractor flows between them. This k -fold pinning is consistent with 

the increase in attractor fractal dimension with k observed in Figure 2.5, and implies that the 

attractors tend to contain k-fold features (i.e., fork = 2, attractors tend to be composed of line 

segments; fork = 3, triangular shapes abound, etc.). This implies that higher values of k should 

be used to mimic more complicated structures. In particular, it is natural to try to outline a square 

anomaly using an IFS with k = 4. The attractors for two such inversions using the multiplicative 

algorithm with l!T = !lS = 0.5 are shown in Figure 4.14. 
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Figure 4.14. The final attractors for two k = 4 inversions of synthetic problem 2 with the high 
anomaly, when attractor points decrease properties. · 

Despite the appealing shape of the attractors, the energies are still rather high (E = 38 for both 

cases) reflecting only a qualitative match to the drawdowns, as shown in Figure 4.15. 
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Figure 4.15. Transient drawdowns for synthetic problem 2 with the high anomaly when attractor 
points decrease properties. 
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Several inversions using the plus-minus algorithm were also done for the high anomaly, 

using an IF'S with k = 4. Not surprisingly, the returned energies (E = 6-20) were better than for 

the inversions in which properties were only decreased, but worse than for the inversions in 

which properties were only increased. The attractors tend to concentrate the points which 

increase T and S ·within the anomaly, while putting points which decrease T and S outside it, as 

is illustrated in Figure 4.16. 

• • 

Figure 4.16. The final attractor for a k = 4 inversion of synthetic problem 2 with the high anoma
ly, using the plus-minus algorithm. Attractor points which increase transmissivity and storativity 
are shown as pluses and points which decrease properties are shown as open circles. Only one 
quarter of the attractor points used are plotted (256 out of 1024), in order for the symbols to be 
more readily distinguishable. 
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4.2.2 Low T and S Anomaly 

Table 4.3 summarizes the results of three inversions with k = 3 for the low anomaly, with 

attractor points that decrease properties. The multiplicative algorithm was used, with 

I:!.T = I1S = 0.5. Although the energies (E = 4-8) are not as low as for the high-anomaly inver

sions with. increased properties (Table 4.2), the drawdowns, shown in Figure 4.17 for Case 2L, 

reproduce the main features of the synthetic data reasonably well. 

Table 4.3. Synthetic problem 2 (low anomaly) inversions with k = 3, attractor points that de
crease properties, and Ernin = 1.6. 

Number of Forward Total Number Lowest E After 
Case Calculations when of Forward E 3000 Forward 

Best Energy Found Calculations Calculations 

2K 2,929 3,497 8.4 8.4 
2L 10,929 13,562 5.6 9.0 
2M 5,271 26,164 3.9 4.9 

Uniform 91 
medium 

Because the energies never reached the specified value of Emin = 1.6, an alternate stopping cri

terion was used, in which an inversion was halted when E did not decrease after many (usually 

several thousand) iterations. The attractors, shown in Figure 4.18, all succeed in concentrating 

the points within the anomaly. 
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Figure 4.17. Transient drawdowns for synthetic problem 2 with the low anomaly when attractor 
points decrease properties. 
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Figure 4.18. The final attractors for three k = 3 inversions of synthetic problem 2 with the low 
anomaly, when attractor points decrease properties. 

4.2.3 Alternate Well Locations 

In order to investigate the sensitivity of the inversion process to well location, inversions 

with k = 3 were done considering wells located inside and outside the anomaly, in both regular 

and irregular patterns, as shown in Figure 4.19. Table 4.4 summarizes the results of the inver

sions and indicates that in all cases the IFS inversion method matches the hydrologic response. 

The high-anomaly inversions use an attractor which increases properties using the additive algo

rithm and fl.T = 1 OT 0 and dS = 1 OS 0. The low-anomaly inversions use an attractor which 

decreases properties using the multiplicative algorithm and fl.T = dS = 0.5. 

Table 4.4. Synthetic problem 2 inversions for various well locations. Three k = 3 inversions 
were done for·each problem, using different random seeds. In all cases E min = 1.6. 

Well Number of 
Locations Anomaly Forward E 

Calculationst 
Outer High 1,900-2,900 1.3-1.5 

Low 6,000-13,200 0.8-1.4 
Inner High 700-2,600 1.2-1.6 

Low 6,100-12,400 1.3-1.6 
Random High 1,100-2,100 0.9-1.6 

Random:j: High 500-1,100 1.0-1.6 

tRounded to nearest hundred 
:j:Alternate pumping well, location shown in Figure 4.19. 
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The attractors (not shown) successfully concentrate points within the anomaly. Intuitively, one 

would expect that if an anomaly produces a small signal in the drawdown curves (for example, 

because it has similar properties tQ the surrounding area, or is of very small or very large spatial 

extent compared to the dimensions of the well field), the IFS inversion method would have less 

success identifying it. 

Edge Wells Outer Wells 

• • 

0 • 

• • 

Inner Wells Random Wells 

• 

• 

91 High or Low Anomaly 

• Observation Well 

o Pumping Well 

• Alternate Pumping Well 

• 
• 
• 

Figure 4.19. The well locations used for the inversions of synthetic problem 2 that are summar-
ized in Table 4.4. -
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4.3 GEOLOGICALLY REALISTIC HETEROGENEITIES 

4.3.1 Introduction 

Sections 4.1 and 4.2 illustrated the application of the IFS inversion method to synthetic data 

from highly idealized geologic settings. Use of more realistic synthetic data, although more 

expensive computationally, and less illustrative of special features of the inversion process, pro

vides a more stringent test of the method. It is generally difficult to create realistic synthetic 

well-test data for the very reason it is difficult to characterize subsurface heterogeneity: variabil

ity is large, it occurs on many scales, and sampling is sparse. However, an unusual opportunity to 

create realistic synthetic well-test data exists at the Gypsy outcrop site in northeastern Oklahoma, 

where a detailed geological analysis of a highly heterogeneous fluvial sand and shale sequence 

known as the Gypsy formation has been done [Doyle and Sweet, 1992]. The geological analysis 

makes use of a road cut which extensively exposes the Gypsy formation and a suite of boreholes 

drilled behind the road cut. Using the results of this analysis, a detailed mathematical model of 

the subsurface hydrology has been created, and used to generate synthetic well-test data. 

At the outcrop site, the Gypsy formation is above the water table, precluding the possibility 

of doing real well tests there, however at the pilot site, about 32 km (20 miles) away, the Gypsy 

formation lies at depths below the water table. Chapter 6 describes the analysis of a series of 

interference test done at the pilot site, and provides more information on the geological setting of 

the Gypsy formation. 

4.3.2 Creation of Realistic Synthetic Data 

The starting point for the creation of synthetic well-test data is a channel model of the 

outcrop site, developed by BP Exploration [Doyle and Sweet, 1992]. In the channel model the 

outcrop site is discretized into 40 X 70 X 32 blocks of dimension 20 X 20 X 2 feett, each of 

which is assigned a code number to act as a channel identifier. Figure 4.20 shows a perspective 

view of the channel model, including the 25 boreholes drilled behind the road cut, and four 

cross-section lines. Figure 4.21 shows vertical cross-sections through the channel model at the 

locations of the lines shown in Figure 4.20. Cross-section line 1 coincides with the road cut. Si_x 

sand channels "Yere mapped at the outcrop site. In addition, the model contains much lower per

meability flood-plain siltstones and mudstones, and flood-plain sands and crevasse complexes of 

intermediate permeability. 

tThe channel model was originally developed using feet as the unit of length; no conversions to meters will 
be done at this point. 



Figure 4.20. Perspective view of the original Gypsy outcrop-site channel model. The channels 
and other lithofacies are identified by color. I 
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ProfIles 

Line 1 

C B 

Line 3 

Line 4 

• Flood-plain • Flood-plain Flood-plain • Flood-plain Crevasse 
mud/silt mud/silt sand sand splay Sand channel 1 

Sand channel 2 • Sand channel 2.5 • Sand channel 3 • Sand channel 4 • Sand channel 6 

Figure 4.21. Vertical cross-sections through the original Gypsy outcrop-site channel modeL The 
vertical to horizontal scale ratio is 2: 1. The vertical bars on the upper cross-section identify the 
locations at which core measurements of permeability were made. From bottom to top, the bars 
correspond toy = 0, 5, and 32 m (0, 16, and 105 feet) , where y is the distance perpendicular to 
the cross-section. 
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The original channel model shown in Figures 4.20 and 4.21 is composed of 40 X 70 X 32 = 
89,600 blocks, each of which is 20 X 20 feet in planar area and 2 feet thick. Figure 4.21 shows 

that most variability occurs on larger scales than 20 feet in horizontal directions and 2 feet in the 

vertical direction . Therefore, a new lower-resolution channel model was created by lumping 

together sets of eight adjacent blocks (that is, blocks taken two at a time in each direction). The 

resulting blocks are 40 X 40 feet in planar area and 4 feet thick. The new channel model is com

posed of 20 X 35 X 16 = 11 ,200 blocks. The code number (the channel or other facies identifier) 

of each new block is taken to be the code number that occurred most often among the original 

eight blocks making up the new block. In 73% of the blocks in the new model, the eight 

corresponding blocks of the original model all had the same code number, indicating that for 

these blocks no resolution is lost in using the new model. Figure 4.22 shows four cross-sections 

through the new model, and illustrates that overall, the character of the heterogeneity is main

tained by the new lower-resolution channel model. The new model, with eight times fewer 

blocks, can be much more readily converted to a numerical model for doing flow calculations 

than the original channel model could have been. 

Before the channel model can do flow calculations, it must be converted into a hydrological 

model, in which each block is assigned a permeability and specific storage value. Doyle [1989] 

has tabulated the mean and standard deviation of log-permeability for six ·lithofacies identified 

within the Gypsy formation, using measurements from 876 core samples taken at the outcrop site 

(Table 4.5). Some components of the channel model are identified by lithofacies (the flood-plain 

deposits and crevasse complexes), however the sand channels themselves are all comprised of 

multiple lithofacies. Doyle and Sweet [1992] identified the proportion of the various lithofacies 

within each of the six sand channels, as shown in Figure 4.23. 

For the present exercise, only one layer of the channel model is used at a time, to create 

two-dimensional hydrological models. To minimize the effect of too-close boundary conditions, 

each layer was extended by adding 15 'dummy' blocks in the narrow (20 block) direction, mak

ing the model a 35 X 35 block square. Figure 4.24 shows two such layers through the channel 

model. The layer at z = 47 feet shows a single channel (channel 6) surrounded by flood-plain 

mudstones and siltstones and a crevasse splay. The layer at z = 23 feet shows four meandering 

channels (channels 1, 2, 2.5, and 3) along with a small amount of flood-plain deposits. The code 

numbers for the blocks at the edges of the original model (shown by vertical lines in Figure 4.24) 

were assigned to the dummy blocks outside the original model. 
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Prof Hss 1 2 4 5 6 

C B 

4 a 15 

Line 4 

Flood-plain • Flood-plain • Flood-plain • Flood-plain • Crevasse 
mud/silt mud/silt sand san\1 splay Sand channel1 

Sand channel 2 • Sand channel 2.5 • Sand channel 3 • Sand channel4 • Sand channel 6 

Figure 4.22. Vertical cross-sections through the new lower-resolution Gypsy outcrop-site chan
nel model. The vertical to horizontal scale ratio is 2:1. The atTows identify the elevations of the 
two single-layer models used to create synthetic well-test data. 
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Table 4.5 . Mean and standard deviation of log-permeability for various lithofacies at the Gypsy 
Outcrop site (permeability in millidarcies). Taken from Doyle [1989] except as noted. 

Lithofacies Lithofacies Mean Standard 
IDNumber Description Log-Permeability Deviation 

1 Cross bed 6.38 1.27 
2 Soft sediment deformation 4.65 1.74 
3 Ripple lamination 4.03 1.55 
4 Plane bed 5.96 1.42 
5 Mudstone/Siltstone -3 .79 2.D9 
6 Mud clast 2.40 2.70 
7 Flood-plain sandstonet -1 1 
8 Crevasse complext 0 1 

tNumerical value not quoted in Doyle [1989] ; values here estimated based on qualitative descrip
tions. 

CHANNEL I CHANNEL 2 CHANNEL 2.5 

XBED XBED XBED 

SSED SSED SSED 

RIPPLE RIPPLE RIPPLE 

PLANAR PLANAR PLANAR 

MUD/SIL MUD/SIL 

MCLST MCLST MCLST 

CHANNEL 3 CHANNEL 4 CHANNEL 6 

XBED XBED XBED 

SSED SSED SSED 

RIPPLE RIPPLE RIPPLE 

PLANAR PLANAR PLANAR 

MUD/SIL MUD/SIL MUD/SIL 

MCLST MCLST MCLST 

. Figure 4.23. Lithofacies proportions of channel fill deposits at the Gypsy outcrop site, calculated 
from core descriptions and road-cut profiles [after Doyle and Sweet, 1992]. See Table 4.5 for the 
meaning of the abbreviated lithofacies names given here. 
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z = 23 

1111111112222222221111118888188888888 
2222222122222222422111111888188888888 
2222222122222224444111111118188888888 
lllllllll22222444444444llllllllllllll 
8888888l822224444444444llllllllllllll 
3333333l3222244444444444lllllll111111 
3333333133224444444444444111111111111 
3333333133224444444444444411111111111 
3333333133334444444444444411111111111 
3333333133334444444444444441111111111 
3333333133332444444444444441111111111 
3333333133333444444444444441111111111 
3333333133333444444444444441111111111 
3333333133333244444444444444144444444 
3333333133333244444444224441111111111 
3333333133333224444444222448188888888 
3333333133333222444444222248188888888 
3333333133333322444444222248188888888 
8888888J83333332244444224418I88888888 
8888888183333333224424444418188888888 
8888888183333333322224444111111111111 
8888888183333333332224444111111111111 
2222222123333333332244441111111111111 
22222221223333333324444411111~1111111 
2222222122333333322444441111111111111 
2222222122333333322444411111111111111 
2222222122333333322444411411111111111 
2222222122333333222444444411111111111 
2222222122333333322444444411111111111 
2222222123323333322444444411111111111 
2222222123323333222444414411111111111 
3333333133333332222444444411111111111 
3333333132233332222444444111111111111 
2222222122223232228844411111111111111 
2222222122222222228841111111111111111 

I Symbol Description 
1-----------------------------
1 1 Sand channel 1 
I 2 Sand channel 2 
I 3 Sand channel 2.5 
I 4 Sand channel 3 
I 5 Sand channel 4 
I 6 Sand channel 6 -
I 7 Flood-plain mud/silt 
I 8 Flood-plain mud/silt 
I 9 Flood-plain sand 
I 0 Flood-plain sand 
I * Crevasse splay 

Figure 4.24. Channel models for z = 47 feet and z = 23 feet. The vertical bars separate the real 
blocks from the added dummy blocks. 
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Each block in the channel model layer is then assigned a lithofacies based on its code 

number. For blocks representing a sand channel (numbers 1-6 in Figure 4.24), a lithofacies is 

assigned at random, according to the proportions shown in Figure 4.23. Although there is some 

suggestion of spatial correlation among the lithofacies making up a sand channel (J. Doyle, per

sonal communication, 1992), it has not been quantified well enough to be incorporated in the 

present model-building procedure. For blocks representing flood-plain deposits or crevasse com

plex (symbols 7, 8, 9, 0, and * in Figure 4.24) the code number uniquely identifies a lithofacies. 

Figure 4.25 shows the lithofacies distribution for layers at z = 47 feet and z = 23 feet. Next a 

log-permeability value is drawn from a Gaussian distribution using the mean and standard devia

tion for the appropriate lithofacies. Because the model is two-dimensional, permeability is con

verted to transmissivity, assuming unit thickness for each layer. A uniform value of storativity is 

assigned to all blocks. The dummy blocks are assigned lithofacies and permeability values in the 

same manner as are the real blocks. 

The final step is to convert the block model to a lattice that can be used by TRINET. The 

block center points are used to define the nodal points of the lattice. Thus each nodal point has 

associated with it the transmissivity of a particular block. Nearest neighbor nodal points are con

nected by elements whose transmissivity is calculated as the harmonic mean of the values associ

ated with the nodes at either end of the element. Figure 4.26 shows the transmissivity distribu

tion for the hydrologic models at z = 47 feet and z = 23 feet. The character of the heterogeneity 

for the two models differs greatly. The z = 47 model shows a single continuous high

permeability feature, in some ways similar to the first idealized synthetic case described in Sec

tion 4.1. In contrast, the z = 23 model shows a low-contrast short-range variability in permeabil

ity over the well field. 

Note that TRINET expects spatial dimensions given in meters, whereas the channel model 

dimensions are given in feet. Rather than converting the round integer values of the channel 

model to their messy metric equivalents, values that really represent feet are simply taken to be 

meters, thus effectively enlarging the size of the channel model by a factor of 3.28. Furthermore, 

the conversion given in Appendix A between the transmissivity T 0 of TRINET elements of 

length L and the effective transmissivity f of a rectangular lattice of such elements, T 0 = fL, 

was not applied, thus giving the model an effective transmissivity value L ( =40) times smaller 

than it should be. Recall that the goal is to study the performance of the IFS inverse method in a 

realistic hydrogeologic setting, rather than creating an exact representation of the Gypsy Outcrop 

site. The above simplifications will not detract from that purpose. 
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z . = 23 

4566146166111661116666665555155555555 
6411166116116661166136616555155555555 
4111651161161161311666611335 55555555 
1165166114646611124141516656 36615136 
5555555151616313611114246334 66336636 
4334441166116134412141116166 61634316 
4344341144441414411111311153 16666665 
1443344 43111111241411111511 65666156 
4444433 44141141151245443444 66661615 
4444414 61441614441412411216 11166666 
5411143 44111444114111113443 61364116 
4113433 44413113111334344216 66646165 
4443333 34344111441331111161 66166365 
4313431 36131113314431311414 52131451 
1144111 44141616311616611246 56666536 
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6111111 66344164411141131166156366116 
1616116 65423111416241411146155161361 
4166446 13414434411444413166165661155 
6461141 61363414416132331166146363646 
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6611116 16161511615513216665115113615 
6661211 61412666615564566616166366646 

Symbol Lithofacies I 
------------------------------1 

1 Cross bed I 
2 Soft sediment I 
3 Ripple lamination I 
4 Planar bed I 
5 Mudstone / siltstone I 
6 Mudc1ast I 
7 Flood~plain sandstone I 
8 Crevasse splay I 

Figure 4.25. Lithofacies models for z = 47 feet and z = 23 feet, derived from the channel models 
shown in Figure 4.24. The vertical bars separate the real blocks from the added dummy blocks. 
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Gypsy Outcrop z=47 Gypsy Outcrop z 23 

-27 In T - 10 

Figure 4.26. Transmissivity distributions for z = 47 feet and z = 23 feet, derived from the lithofa
cies models shown in Figure 4.25 . This range of lnT (forT in m2/s) corresponds to lnk between 
-8.6 and +8.4, fork in millidarcies. 



, ., 

-91-

4.3.3 Inversion of Realistic Synthetic Data 

A synthetic well test was conducted for each layer, using the central well shown in Figure 

4.26 as the pumping well and the four surrounding wells as observation wells. A constant pres

sure boundary condition was applied at the outermost nodes of the lattice. Figure 4.27 shows the 

pressure transients for the synthetic well tests, along with the pressure transients obtained using a 

uniform-medium model. The pressure transients for the z = 47 model show much greater varia

tion between wells than do those for the z = 23 model, which is reflected in a higher energy for 

the uniform-medium model of the z = 47 well test. This difference is hardly surprising, consider-

ing the very different characters of the two transmissivity distributions. However, in both cases, 

high permeability paths between pumping and observation wells are reflected by earlier, larger 

pressure responses. 

Three inversions of the z = 23 well test were done, using the same control parameters but 

different random seeds. The inversions used k = 4 affine transforms of the rotation matrix form, 

in which 8 and b were allowed to vary, for a total of 12 unknown parameters. The step map was 

used with the multiplicative algorithm, and a value of t::.T = 1.5. Hence the attractor identifies 

· locations of high transmissivity. Figure 4.28 shows the three resulting transmissivity distribu

tions, and Figure 4.29 shows one of the pressure-transient matches. The low energies returned by 

all the inversions indicate a good match to the main features of the pressure transients. A com

parison of the returned transmissivity distributions (Figure 4.28) with the z = 23 transmissivity 

distribution (Figure 4.26) shows that high-transmissivity channels between the central well and 

two of the four observations wells have been correctly identified by the inversion. None of the 

transmissivity variations beyond the well field have been found, indicating that they do not 

significantly affect the pressure responses at the observation wells. 

Six inversions of the z = 47 well test were done, three using the step map and three using 

the distributed map. The two types of inversions yielded comparable final energies, but transmis

sivity distributions of a rather different character, as shown in Figures 4.30 and 4.31. The 

distributed-map inversions used large values of s, the parameter which controls the extent of the 

effect of each attractor point, leading to smoother transmissivity distributions. A typical 

pressure-transient match is shown in Figure 4.32. The higher energies of the z = 47 inversions 

compared to the z = 23 inversions, which arise from the poorer pressure-transient matches, are 

due to the far greater transmissivity contrasts present in the z ;, 47 model. Despite the imperfect 

matches, the returned transmissivity distributions all successfully identify a high-transmissivity 



channel cutting through the right side of the well field. 

4.3.4 Conclusions from Realistic Synthetic Data Inversion 
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Two very different sorts of synthetic heterogeneities are represented by the z = 23 and 

z = 47 models. The fact that well-test data from both models can be successfully inverted lends 

significant credibility to the IFS inverse method. 

The z = 23 model contains multiple irregularly-shaped zones with slightly different 

transmissivities, making it look like an uncorrelated random field . The inverse method singles 

out the features that have an impact on the well-test response, which are difficult to identify a 

priori by looking at Figure 4.26. Because the transmissivity contrasts are small, the pressure 

transients are only subtly different from those which would occur for a uniform medium, making 

it relatively easy to obtain a low value of energy E . Despite the small contrasts in transmissivity, 

multiple inversions produce similar results, indicating that these subtle variations do have a 

noticeable effect on pressure transients. 

In contrast, the z = 47 model contains transmissivity contrasts of a factor of 107
, much 

. larger than used in previous synthetic examples. With these large contrasts, it is difficult to get 

good matches to the pressure transients. However, even with relatively high values of E, the 

inversion is still successful in identifying the heterogeneity. The fact that multiple inversions 

return consistent pictures of heterogeneity for relatively large energy values (i .e., for imperfect 

fits) is an important, and necessary, result for application of the method to real data. When 

analyzing real data, it is likely that use of an oversimplified conceptual model will preclude a per

fect fit to observations. Results of the z = 47 model support the use of the IFS inverse method 

under such conditions. 
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Figure 4.27. Synthetic well-test data created using the models shown in Figure 4.26. (dots) and a 
uniform-medium model (lines). The arrangement of plots on the page mimics the well field lay
out shown in Figure 4.26. 
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Figure 4.28. Three transmissivity distributions returned by inversions of the z = 23 well-test 
data. 
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Figure 4.29. Pressure transients for one of the inversions of the z = 23 well-test data. The ar
rangement of plots on the page mimics the well field layout shown in Figure 4.26. 
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Figure 4.30. Three transmissivity distributions returned by inversions of the z = 47 well-test 
data, which used the step map. 
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Figure 4.31. Three transmissivity distributions returned by inversions of the z = 47 well-test 
data, which used the distributed map. 
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Figure 4.32. Pres~ure transients for one of the inversions of the z = 47 well-test data. The ar
rangement of plots on the page mimics the well field layout shown in Figure 4.26. 
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4.4 NOISY SYNTHETIC DATA 

The first idealized synthetic case, the linear high-transmissivity feature, is again examined 

here, but noise is added to the synthetic pressure transients before trying to match them. If the 

inverse method is not robust enough to match noisy data, it will be of little use in real-world 

applications, where noise arising from instrumentation and oversimplified conceptual models is 

unavoidable. Additionally, understanding the impact of different kinds of noise on the inversion 

process will enable more effective treatment real-world, noisy data. 

4.4.1 Random Noise 

To simulate the random noise arising from instrument error, normally-distributed random 

numbers with a mean of zero and a standard deviation of cr are added to each point of the pressure 

transients which serve as observed data. Figure 4.33 to 4.37 show the noisy pressure transients 

for five values of cr (0.1, 1, 5, 10, and 100), and the energy obtained for the correct transmissivity 

·distribution (which would be zero for cr = 0). For cr = 0.1, the noise is barely visible, whereas for 

cr = 100, the signal is barely discernible. For the cr = 5 case, two different noisy pressure data sets 

were created, to compare the effects of different realizations of noise of the same overall magni

tude. 

Note that by plotting the pressure transients on a log scale, noise is much more noticeable 

for early-time data, where pressure changes are small. Because the calculation of the objective 

function also uses the log of pressure change, rather than pressure change itself, if the addition of 

noise makes the pressure change at a particular time negative, that point must be thrown out. 

Inversions were done for cr = 1, 5, and 10, using k = 2 affine transforms in which only the 

b 's vary, and the same control parameters used in the noise-free inversions described in Section 

4.1.1. Six inversions were done for each case, using simulated annealing with different random 

seeds. In each case, the value of E min was chosen to be slightly larger than the value of E 

obtained for the correct P. Table 4.6 summarizes the calculations, including the mean and stan

dard deviation of P for each case. Figure 4.38 shows the attractors returned by the individual 

inver~ions, and illustrates how a large variation between the returned attractors for a given case 

corresponds to a large standard deviation of P. 
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Figure 4.33. Pressure transients for noisy synthetic data, withcr = 0.1. The arrangement of plots 
on the page follows the locations of observations wells in the well field. 
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Figure 4.34. Pressure transients for noisy synthetic data, with o = 1. 
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Figure 4.35. Pressure transients for noisy synthetic data, with cr = 5. 
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Figure 4.36. Pressure transients for noisy synthetic data, with cr = 10. 
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Figure 4.38. Attractors returned by the inversions of noisy pressure-transient data for the linear 
high-transmissivity feature. The mean attractor for each case is shown as a dashed line. 
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The effect of the choice of E min is illustrated for the a = 1 case. While the mean values of P 

do not differ too much for the two values of E min• the standard deviation is notably larger for the 
'\ 

larger value of E min• suggesting less certainty in the correctness of the returned transmissivity dis-

tribution. However, the average number of forward calculations required for E min = 17 is only 

one-third the number required for Emin = 15. Hence, instead of doing just a few slow inversions. 

with a small value of E min• for comparable computational effort, one can do many inversions with 

a somewhat larger value of E min• and have the benefit of comparing the multiple returned 

transmissivity distributions. 

The impact of different noisy data sets is shown for the a = 5 case. A few early-time points 

in the first realization of a= 5 noise strongly influence the pressure matching, leading to a rather 

different cluster of attractors than obtained for the other cases (Figure 4.38). The corresponding 

standard deviation of P is also larger, suggesting that the inferred transmissivity distribution 

should be viewed cautiously. 

In general, as a gets bigger, the value of E min also increases, leading to easier inversions 

(fewer forward calculations required), with less confidence in the correctness of the returned 

attractors (larger standard deviation). Although the standard deviation can be used as a guideline 

to judge the reliability of a set of transmissivity distributions returned by multiple inversions, it is 

not a foolproof indicator; noise can mimic the effect of a heterogeneity in pressure data, leading 

to a set of consistently erroneous attractors, with a small standard deviation. 

The need to eliminate negative values of pressure change tends to bias noisy early-time 

· pressure data to large values of pressure change, which could lead to erroneously identified high

permeability pathways. It is tempting, therefore, to simply throw out all early-time data which 

shows a large scatter. However, several recent studies [Oliver, 1993; Butler and Liu, 1993] have 

shown that early-time pressure-transient data contain most of the information on near-well-field 

heterogeneities, so it is important to keep as much early-time data as possible. One potential 

remedy to this problem, which is not addressed in the present work, would be to curve-fit the 

noisy observed pressure data, constraining the curve fitting procedure to produce results which 

are physically possible for the diffusion of a pressure signal between wells (e.g., for a constant 

flow rate test, pressure response must be monotonically increasing). 
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Table 4.6. Inversions of noisy synthetic data. Six inversions were done for each case. 

cr Ecorrect Emin Mean£ MeanPt Std. Dev. P Mean No. 
Fwd. Cales. 

1 13.7 15 14.5 (0.34,0.42), (0.16,0.15) (0.02,0.03), (0.03,0.05) 12,830 
1 13.7 17 15.8 (0.30,0.43), (0.19,0.18) (0.05,0.04), (0.06,0.06) 4,210 

5 25.5 26 25.4 (0.19 ,0.45), (0.32,0.15) (0.12,0.02), (0.08,0.05) 1,018 
5* 44.8 45 43.9 (0:31,0.41), (0.13,0.17) (0.03,0.02), (0.02,0.03) 984 

10 37.9 38 35.8 (0.22,0.43), (0.23,0.11) (0.05,0.02), (0.08,0.06) 178 

tCorrect value ofP is (0.35,0.45), (0.19,0.19) 
*Different noisy data 

4.4.2 Systematic Noise 

Using the wrong conceptual model often has the effect of introducing systematic errors into 

the calculated pressure transients. For example, if a leaky aquifer is modeled with impermeable 

upper and lower boundaries, late-time pressure changes will be consistently overpredjcted. The 

inversion may then erroneously identify a high-permeability zone beyond the well field, in order 

to produce smaller late-time pressure changes. The best way to avoid such errors is to carefully 

construct ·the conceptual model, using all available information about the system. Conversely, if 

information on hydrologic setting is incomplete, careful comparison of calculated and observed 

pressure transients can provide insights into important features of the system. Thus the process of 

conceptual model development and hydrologic inversion need not be separate, but can proceed 

iteratively. 

4.5 CONCLUSIONS OF SYNTHETIC-DATA ANALYSIS 

In this chapter, the use of the IFS inverse method has been demonstrated by applying it to 

synthetic well-test data. The method has been shown to work well, in that it reproduces the main 

features of artificial heterogeneities, even in the presence of noise in the pressure-transient data. 

One key shortcoming of the model has been identified: it is dangerous to do just one inversion, 

because it is likely that not all features of the returned permeability distribution play a role in 

matching the pressure-transient data. This shortcoming can be overcome by doing multiple 

inversions, and identifying the features which are common to all the returned permeability distri

butions. Furthermore, the locations of spurious features may be used to identify the regions to 

which the pressure-transient data is not very sensitive. Knowledge of which parts of the system 

have not been probed by the characterization effort is a very important result in itself. 
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5. INVERSION OF KESTERSON DATA 

5.1 INTRODUCTION TO THE INVERSION OF REAL DATA 

The previous chapter described the use of synthetic data to test the IFS inverse method. 

One limitation of this approach is that the ability to successfully invert synthetic data is a neces

sary but not sufficient condition to ensure successful inversion of real data, because one cannot 

systematically examine how the method will work under all real-world conditions. At best, one 

can use experience with real-world problems to design synthetic cases that will expose the model 

to potential difficulties encountered in analyzing real data. The application to real data, described 

in this chapter and the following one, is therefore a necessary step in the development and testing 

of the method. 

The key difference between inverting synthetic data and real data, is that when inverting 

real data there is often no real way of knowing how well the method has worked. Of course, a 

failure to match the pressure transients indicates a failure of the method, but a successful match 

does not guarantee that the corresponding permeability distribution is correct. In fact, it is 

overwhelmingly likely to be incorrect in the sense that it is a great over-simplification of reality. 

The more relevant question is whether the returned permeability distribution is correct in the 

sense that it will be of value in predicting the future behavior of the system. For this reason, it is 

useful to test the inverse method by applying it to a site where there is some means of checking 

the results of the inversion. This could be the existence of independent characterizations of the 

site, perhaps using other methods than well-test analysis, or enough well-test data so that some of 

it can be omitted from the inversion process, and used to test the resulting model. 

5.2 THE KESTERSON RESERVOIR SITE 

A variety of well tests have been conducted on a shallow aquifer system composed of inter

bedded sands, silts, and clays at Kesterson Reservoir, located in the San Joaquin Valley in central 

California [Yates, 1988]. Both steady-state and transient single-well tests and multi-well pulse 

tests have also been conducted at the site, as well as cross-well seismic imaging. The hydrologic 

properties of the aquifer/aquitard system are needed in order to study the transport of various 

forms of selenium and other salts between surface waters and underlying aquifers. The original 

plan for applying the IFS inverse method was to develop a model of the system using one 

interference test, then use the model to predict the responses to other well tests and assess the 

model. This plan could not be carried out, however, due to a termination of funding for the pro

ject. Instead, the results of the inversion of one interference test are compared to the results of an 
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independent analysis of the same interference test. 

5.3 QUASI-THREE-DIMENSIONAL ANALYSIS OF AN INTERFERENCE TEST 

The aquifer being studied is about 18 m thick, and is underlain by an impermeable clay 

layer and overlain by a leaky aquitard. A multi-well interference test was analyzed to infer the 

spatial distribution of transmissivity in the aquifer. In the test under consideration, a central well 

was pumped at a constant rate of 6x10-:-3 m3/s and transient drawdowns were measured at eight 

observation wells located 15 to 107m away from the pumping well. All the wells were screened 

over the middle third of the aquifer thickness. The test lasted 5 hours, with the first observations 

made about 5 seconds after pumping commenced. 

Initial studies used the two-dimensional nested lattice shown in Figure 5.1 to represent the 

aquifer. The well-field is shown by the solid circles, with the pumping well at the center 

(x = 0, y = 0). The nested lattice design is practical for modeling flow in porous media, where 

fine resolution is needed to represent flow near wells adequately, but the lattice must extend far 

beyond the well field to realistically implement pressure boundary conditions. Fine resolution is 

undesirable beyond the well field, because it greatly increases the size of the calculation without 

improving the ability of the model to predict flow or pressure at the well field. At the outer boun

dary· of the lattice the head was held constant, with the extent of the lattice chosen so that the 

cone of depression would not reach the boundary during the duration of the well test. 

Use of a two-dimensional lattice requires that the wells be modeled as fully penetrating and 

that the upper and lower confining layers be considered impermeable. The late-time slopes of the 

drawdown versus time curves calculated by this model were consistently steeper than observed 

slopes. Because geological information and other hydrologic inversion studies [Yates, 1988] sug

gested that leakage occurred through the upper confining layer, it was decided to use a quasi

three-dimensional model in which leakage from an overlying aquitard could be included in an 

approximate way, as described in Appendix A, which required the addition of approximately 700 

nodes and elements to the lattice shown in Figure 5.1. The ratio of the aquitard vertical permea

bility to the base value of the aquifer horizontal permeability was estimated to be w-3 by match

ing the slopes of the late-time portion of the drawdown curves to observed values. The specific 

storage of the aquitard was assumed to correspond to the base value of storativity of the aquifer. 

These parameters did not vary during the inversion (i.e., they were unaffected by the location of 

attractor points). Vertical flow within the aquifer itself was not included in this model, so partial 

penetration effects were not accounted for. 
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Figure 5.1. The nested TRINET lattice used for the Kesterson inversion. Frame (a) shows the 
central portion of the lattice; the pumping well is at x = 0, y = 0, the locations of the observation 
wells are shown as solid circles. Frame (b) shows the entire lattice; head is held constant at 
X = ±600, y = ±600. 
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Figure 5.2 shows the observed drawdown versus time curves and those calculated assuming 

a medium with uniform transmissivity and storativity (no attractor)~ The energy of the uniform

medium solution is E = 25. Note from Figure 5.1a that the observation wells are divided into 

two groups: four 'inner' wells are located between 14 and 16m away from the pumping well, and 

four 'outer' wells are located between 60 and 107m away. Figure 5.2 shows that the worst match 

between the uniform medium calculation and the observed data is for the outer well on the left, 

and among the inner wells the worst match is again found for the well on the left. These qualita

tive observations suggest that the attractor might show some special characteristics on the left 

side. 

The attractor was scaled to lie in the region of the lattice given by -150 <x <+150m and 

-150 < y <+150m. Geological information and previous well-test analysis [Yates, 1988] indi

cate that storativity is far less variable than transmissivity in the Kesterson setting, so attractor 

points represent changes in transmissivity only. Table 5.1 summarizes the results of three inver

sions with k = 4 using attractors that decrease transmissivity. The multiplicative algorithm was 

used, with l!T = 0.5. Case K1 used simplex annealing with n = 12 parameters (the rotation form 

of the B matrix given by Equation (2.12), with only S's and b's variable) for most of the inver

sion. The inversion stopped atE= 1.7 and was restarted with all parameters variable (n = 16). 

Cases K2 and K3 used simulated annealing with n = 12 and n = 16, respectively. The draw

downs calculated for Case K3 are shown in Figure 5.2, the agreement with the observed draw

downs is very good. 

Table 5.1. Summary of Kesterson Reservoir inversions with k = 4 and attractor points that de-
crease transmissivity. 

Number of Number of 
Case Forward Accepted E 

Calculations Attractors 
K1 10,579 1.6 
K2 14,993 349 2.1 
K3 7,600 354 1.7 

Uniform 25 
medium 

CPU time per iteration is 77 sec on a Solbourne 500 series workstation 
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Figure 5.2. Observed and calculated transient drawdowns for Kesterson. The arrangement of the 
plots on the page follows the locations of the observation wells in the well field. 



-114-

Figure 5.3 illustrates the attractors for Cases Kl, K2, and K3. Although they by no means 

produce a unique picture of the transmissivity distribution, they do show a number of features in 

common. The attractors are all relatively compact structures overlying the inner observation 

wells. In each case there is a point-free region between the pumping well and the inner left obser

vation well, providing a high-permeability path between them, which accounts for the.large, early 

response ofi~~t observation well. Additionally, each case shows a strong concentration of points 

between the inner and outer wells on the left side, which accounts for the small, late response of 

the outer left observation well. 

Because of the nested nature of the lattice used for the calculations the attractors themselves 

provide only a qualitative picture of the transmissivity distributions. Two quantitative represen

tations are shown in Figure 5.3. The first displays the central portion of the lattice with the thick

ness of each element proportional to the transmissivity of that element. This is a straightforward 

representation of the transmissivity distribution used for the flow calculation, but the increase in 

element transmissivity that occurs as the lattice gets coarser tends to overshadow the variations in 

transmissivity caused by the attractor points, making the pictures cumbersome to interpret. The 

final display in Figure 5.3 attempts to alleviate this problem, by eliminating the lattice from the 

picture and plotting the effective transmissivity of the aquifer that the lattice represents. For each 

element in the lattice, transmissivity T is divided by element length L to give effective transmis

sivity f, as described in Appendix A. Then a square centered on the element is filled with a dot 

pattern whose density is proportional to f. 

It turns out that for the mapping algorithm used, attractor points have a greater effect on 

transmissivity in the coarser regions of the lattice than in the finer central region around the inner 

wells. Thus each of the attractors shown in the top row of Figure 5.3 yields a transmissivity dis

tribution with an annular low transmissivity region between the inner and outer observation 

wells. Some inversions using attractors that increased transmissivity were also done. These 

yielded higher energies than the decreased-transmissivity inversions for comparable numbers of 

forward calculations, suggesting that a geological model consisting of local low-permeability 

features (e.g., clay lenses) embedded in a high-permeability background may be more appropriate 

than local high-permeability features (e.g., _gravel bars) embedded in a low-permeability back

ground. Figure 5.4 shows the three attractors that yielded the lowest energies (E :::: 9) of the 

increased-transmissivity inversions. For the most part, attractor point locations are complemen

tary to those for the decreased-transmissivity inversions, yielding a consistent picture of the 

aquifer transmissivi_ty distribution, with a low-permeability region just beyond the inner 

\ J 
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K1 K2 K3 

0 

0 0 

Figure 5.3. Results of three -decreased-transmissivity inversions for Kesterson: top row- the final 
attractor for each case; middle row - the TRINET lattice plotted with element thickness propor
tional to transmissivity; bottom row- a grey-scale plot of effective aquifer transmissivity f. The 
minimum transmissivity level shown is T <(100, although several elements have even lower T 
values. 
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observation wells, and a high-permeability region further away. 

K4 KS K6 

•• • $· 
0 -~+ 0 ' 0 

~-·:. \ 

~0 0~ 0 0 0 
0 ooo 

) 0 

~J~A I 

~· 0 

, 
I 0 

{ 

Figure 5.4. The final attractors for the increased-transmissivity inversions for Kesterson. 

5.4 COMPARISON WITH PREVIOUS ANALYSIS 

Yates [1988] used a two-dimensional axisymmetric porous medium model to analyze the 

interference test considered here. Her model differed from the present one by accounting for well 

partial penetration, allowing vertical variations in permeability in the aquifer, and requiring hor

izontal permeability variations to be radially symmetric and centered at the pumping well. She 

did not use a formal optimization algorithm, but ran repeated forward simulations of the interfer

ence test with different permeability distributions chosen by hand, using results of a series of 

single-well tests to guide the choices. Her best match to the observed drawdown curves is com

parable to that shown in Figure 5.2, and was obtained using a composite aquifer model with a 

high-permeability zone in the vicinity of the inner wells, with a permeability about ten times that 

of the rest of the aquifer. The present results are consistent with this model in the vicinity of the 

inner wells. Yates used a ratio of aquitard vertical permeability to inner-zone-aquifer horizontal 

permeability of about 2xlo-3, twice as large as that used for the present study. The additional 

leakage provided by the higher permeability of the aquitard may eliminate the need for the high

permeability outer zone found in the present study. 

5.5 POTENTIAL FURTHER STUDIES AT KESTERSON 

The Kesterson Reservoir site provides several opportunities for further development and 

testing of the IFS inversion method. To rigorously analyze the present interference test, a fully 

three-dimensional model should be used, with the transmissivities of both the aquifer and leaky 

~ 
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aquitard allowed to vary. The IFS inversion method could be applied to three-dimensional prob

lems with only minor modifications, but the computational effort of an inversion would be 

greatly increased. Not only will the forward calculations require far more computational time 

due to a larger lattice, but a three-dimensional attractor has 12 parameters for each affine transfor

mation, compared to 6 for a two-dimensional attractor, doubling the dimension of the parameter 

space that must be searched by the inversion. One possibility would be to use a three

dimensional lattice to properly account for vertical flows arising ftom well partial penetration, but 

to limit the attractor and corresponding transmissivity variations to two-dimensional structures 

within the aquifer to minimize the number of parameters. Before embarking on three

dimensional inversions, all aspects of the IFS inversion code need to be streamlined. 

It would be very interesting to condition the inversion of the interference test by the results 

of the single-well tests, as was done by Yates [1988]. Such conditioning could be done in a 

straightforward way by co-inverting all the available well tests, however, this would be computa

tionally intensive as each forward calculation would have to include the interference test and all 

the single-well tests. A more efficient approach might be to simulate just the interference test but 

to add a penalty term to the objective function if the transmissivity in the neighborhood of a well 

contradicted the value inferred from that well's individual well test. 

One of the appealing features of a fractal model for a hydrologic property distribution is its 

ability to scale up the model from a relatively small-scale well test to a large-scale regional 

model, which arises naturally from the self-similar nature of fractals. A second interference test 

was done at Kesterson, studying the same aquifer/aquitard system at a nearby well field. It could 

be worthwhile to invert this second test independently of the present work, and then co-invert 

them both, using a larger lattice encompassing both well fields, to determine whether a fractal 

model of the transmissivity distribution is appropriate at this larger scale. 
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6 INVERSION OF GYPSY PILOT-SITE DATA 

6.1 INTRODUCTION 

In contrast to the analysis of the Kesterson data described in the previous chapter, in which 

a single interference test was inverted to determine the properties of a single aquifer, here a 

multi-layered system is analyzed using a large number of interference tests. The tests are 

inverted individ~ally. and in combination, and some are omitted from the inversion process, and 

subsequently used to assess the models developed through inversion. Results of the IFS inverse 

method are compared to results of cross-well seismic imaging, and to a more traditional geosta

tistical analysis. 

6.1.1 Gypsy Sites and Data 

The Gypsy formation is a Pennsylvanian age fluvial sandstone and shale sequence located 

in northeast Oklahoma, which was deposited as a mixed-load meander belt system [Doyle, 1989]. 

The Gypsy site was originally developed by British Petroleum (BP) as a test site at which to 

develop and assess reservoir characterization methods [Doyle, 1989; Doyle and Sweet, 1992], and 

is currently under the care of the University of Oklahoma (OU). The Gypsy site is being used by 

LBL to study the characterization of heterogeneous reservoirs using a combination of geophysical 
,. 

methods (cross-well seismic surveys) and hydrologic analyses (interference tests). 

The Gypsy site consists of two suites of boreholes and several outcrops. The main Gypsy 

outcrop is a 300-m (1000 ft) long, 15-m (50ft) high road cut which reveals six fluvial channels. 

Over 1,100 permeability and porosity measurements have been made at the outcrop, along with 

detailed geologic mapping, as is illustrated in Figure 6.1. Three-dimensional information has 

been obtained by drilling 25 shallow boreholes near the outcrop, above the water table (Figure 

6.2). At the subsurface pilot site, located about 32 km (20 miles) away, six wells have been 

drilled into the Gypsy formation, which lies between 275 and 300m (900 and 1000 feet) deep, 

and is saturated with brackish water. Figure 6.3 shows the pilot-site well field layout. The pilot

site data set includes an extensive set of well logs, core·information; pressure-transient well tests 

(interference, buildup, and vertical tests), 3-D surface seismic, VSP, and cross-well seismic. 

The detailed geologic mapping done at the outcrop site was used to develop a numerical 

model of the Gypsy formation, which was then used to create synthetic well-test data, as 

described in Section 4.3. In this chapter, the inversion of the real data from the pilot-site well 

tests is described. 
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Figure 6.2. Plan view of the Gypsy outcrop-site borehole array. 
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Figure 6.3. Gypsy pilot-site well field layout. 
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6.1.2 Pilot-Site Well Log Interpretation 

A conceptual geological model of the pilot site was developed by BP based on well-log and 

core data from three wells [Dowdle et aL, 1990]. The model is comprised of three sand channels 

(denoted the lower, middle, and upper channel) separated vertically by clay layers. The lower 

clay layer (the dense red clay) appears in all three wells and is inferred to be continuous while the 

. upper clay layer only appears in two of the three wells. The Gypsy formation is underlain by a 

marine layer known as the Tallant formation. 

In the present work, the well-log analysis was extended to consider all six pilot-site wells 

and three nearby wells. Neutron-density and gamma-ray logs were used to identify sand and clay 

(or mudstone, siltstone, or other fine-grained material) layers. The well-log study led to the fol

lowing conclusions: 

1. The base-of-Gypsyffallant contact looks like a continuous clay layer ranging from 2 to 8 m 

(6 to 25 ft) thick. 

2. Some contacts between sand and silt are gradational rather than sharp. 

3. The dense red clay layer appears in all wells, separating the lower and middle sand chan

nels. 

4. The clay layer separating the upper and middle sand channels appears in some wells, but is 

missing in wells 5 and 8. Hence the sand channel above the dense red clay layer is referred 

to as upper/middle (U/M) for these wells. 

Figure 6.4 shows east-west and north-south cross-sections based on the well-log study. The 

various lithofacies have been grouped into two categories which are expected to have distinct 

hydrologic properties, low-permeability clays and shales and high-permeability sands. 

6.1.3 Pilot-Site Well Tests 

Two series of well tests were conducted at the Gypsy pilot site in 1989 and 1990 as part of 

BP's integrated reservoir description effort. The 1989 tests used just three of the wells (wells 1, 

5, and 7) whereas the 1990 tests used all six wells. Figure 6.5 shows the wells used for each test 

in plan view. Each of the wells was screened over two or three sand intervals and the various 

intervals were isolated by packers for the well tests, as shown in Figure 6.5. Three types of well

tests were conducted: interference tests, in which one packed-off interval of a well was flowed 

and pressures were monitored in surrounding wells; buildup tests, in which one packed-off inter

val of a well was flowed, then shut in and pressure was monitored in that interval; and vertical 
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Figure 6.4. Cross-sections through the Gypsy formation at the subsurface pilot site, showing 
simplified lithologies as inferred from well logs and core studies. The dark bands indicate clay or 
shale and the remainder is sand. The horizontal bars mark the upper limit of the logged interval. 
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tests, in which one packed-off interval of a well was flowed and pressures were monitored in 

other intervals of that well. The interference tests are of primary interest for characterizing reser

voir heterogeneity. Each consisted of three or four short constant flow-rate pulses, followed by a 

longer pulse and recovery period. Each test lasted about 12 hours altogether. Table 6.1 summar

izes the well-tests done, which are identified by year, sequence number (which groups together 

the tests in which the same well was pumped), and test number. 

Table 6.1. Well tests conducted at the Gypsy pilot site in 1989 and 1990. 

Year Sequence Pumped Well Test Pumped Interval Comments 
1989 

so 1 
TO lower and upper 

Sl 7 
TO lower data unreliable 
T1 lower repeat of S lifO 

S2 5 
T2 lower 
T3 upper/middle 
T4 upper/middle 

1990 
Sl 11 

T1 lower 
T2 middle 
T3 upper data unreadable 

S2 9 
T1 lower 
T2 middle 
T3 upper 

S3 8 
Tl lower 
T2 upper/middle 

S4 1 
Tl lower 
T2 middle 

6.2 REVIEW AND ASSESSMENT OF WELL-TEST DATA 

6.2.1 Matrix Display of Well-Test Results 

A matrix display of well-test results provides a concise way to assess the consistency, preci

sion, and coverage of a large number of well tests. Each entry in the matrix describes the 

response between a pair of pumping and observation well intervals. Diagonal elements of the 

matrix represent buildup tests or in-zone vertical tests. Based on the principle of reciprocity 
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Figure 6.5. Schematic illustration of the Gypsy pilot-site well tests conducted in 1989 and 1990, 
and the screened intervals (shown as black bars) in the wells. 
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[Barker, 1991], the response at Well A during a test in which Well B is pumped should be the 

same as the response at Well B during a test in which Well A is pumped, if the same pumping 

rates are used in both tests.. This relationship even holds when different flow rates are used, if 

each drawdown response is normalized by the flow rate used. Asymmetric matrix entries identify 

contradictory well-test responses, which suggest some sort of instrument failure (e.g., packer 

failure, packer placed at the wrong depth, electrical power outage). The matrix may also be used 

to identify gaps in coverage, that is, combinations of wells which have not been tested together, 

which would be useful locations for future well tests. 

A matrix of well-test responses is shown in Figure 6.6, with rows specifying observation 

well interval and columns specifying pumping well interval. If there was a pressure response, the 

kH value calculated by BP using the program PIE is shown (PIE determines the kH value by 

fitting each pressure-transient individually to an analytical model which considers a uniform 

aquifer, with the possible inclusion of a lateral boundary [Dowdle et al., 1990; Papadopulos et 

al., 1991].) Where contradictory responses exist (e.g., row 1M, column 9L and row 9L, column 

1M) it must be decided which response is more likely to be correct. This can be done more 

readily by re-ordering the matrix entries as shown in Figure 6.7, so that instead of being grouped 

by well, the intervals are grouped according to upper, middle, and lower sand channels. Figure 

6. 7 suggests· a model in which all lower sand channel intervals are in communication and all 

upper and middle sand channels are in communication, but no lower sand channel interval com

municates with any upper or middle channel interval. All of the entries which contradict this 

model either violate reciprocity directly, or represent observations made during a test with other 

problems. Each such entry is listed in Table 6.2, along with a justification for eliminating it from 

the matrix. Thus all reliable tests support the model. A complete list of the production and 

observation intervals used to create the matrices is given in Doughty and Thompson [1993]. 

Figure 6.8 shows the final matrix, which includes only internally consistent responses. It 

clearly illustrates the lack of communication across the dense red clay layer above the lower sand 

channel, and the good communication between the upper and middle sand channels. Within each 

sand channel the PIE responses show a wide range of values for the permeability-thickness (kH) 

product, as would be expected when applyin_g a homogeneous-medium model to a heterogeneous 

medium, but overall the lower sand channel consistently gives greater kH values than do the 

upper and middle sand channels. 
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Figure 6.6. Matrix display summarizing hydrologic tests done at the Gypsy subsurface pilot site. 
Entries grouped by well. 
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Figure 6.7. Matrix display summarizing hydrologic tests done at the Gypsy subsurface pilot site. 
Entries grouped by sand channel. 
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Table 6.2. Gypsy well-test data eliminated from consideration due to inconsistencies or prob
lems. 

Data Eliminated 

All observation intervals for test 
90/S2ff1 

All well 9 observation intervals 
for test 90/S4/T2 

Lower Well 1 observation inter
val for test 89/S 1rr0 

All observation intervals for test 
89/S1ff0 

All observation intervals for test 
89/sorro 

All middle and lower observa
tion intervals for test 89/S2ff4 

Some observation intervals for 
tests 89/S 1ff0, 89/S2ff3, 
89/S2ff4, 90/S 1ffl , 90/S lff3, 
90/S3ffl, 90/S3ff2 

Comments 

Pump from well 9 lower interval, all intervals of all 
wells respond. One test (S3ff2) directly contradicts the 
response via reciprocity. All other well tests show no 
communication across the dense red clay layer. The 
reservoir engineer running the well tests cited experi
mental evidence for packer failure in materials recovered 
from the well after the test, and an anomalously high 
storage value calculated for the test that would be con
sistent with an unpacked hole (Ed Payne, personal com
munication, 1992). Infer packer failure. 

Pump from well 1 middle interval, no response from any 
well 9 interval. Reciprocal tests (S2ff2 and S2ff3) 
show a response in upper and middle layers. Infer in
strument failure in well 9. 

Pump from well 7 lower interval, no response from well 
1 lower interval. Reciprocal tests (89/S 1ff1 and 
90/S4ffl) show a response. Infer instrument failure in 
well1. 

Data unreliable due to poor experimental control. 

Multiple intervals were used for pumping, not analyz
able with 2-D model. 

Multiple intervals were used for observation, not analyz
able with 2-D model. 

Data missing or garbled. 

Additionally, Figure 6.8 shows five pairs of matrix entries with responses which are the 

transpose of each other; these potentially may be used test the principle of reciprocity . The tests 

in question are listed in Table 6.3, along with the kH values obtained from PIE [Dowdle et al., 

1990; Papadopulos et al., 1991]. One way to quantify the comparison between two test's kH 

values is to compute their ratio. If the kH ratio is very different from one, it may mean that the 

pressure transients do not show reciprocity, but it could also indicate that the uniform medium 

model assumed by PIE is simply inadequate to match the pressure transients and the returned kH 
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Figure 6.8 . Matrix display summarizing hydrologic tests done at the Gypsy subsurface pilot site. 
Entries grouped by sand channel, contradictory entries removed. 
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values are not meaningful. Only the first two pairs of tests in Table 6.3 give kH ratios close 

enough to one to suggest reciprocity on this basis. 

Comparing the pressure transients of two tests directly, without trying to match them with 

any particular model, provides a straightforward check on reciprocity. For two tests with dif

ferent flow rates, the pressure response must be divided by the flow rate to make the comparison. 

This reciprocity test is difficult to apply to the Gypsy data because different pulse durations were 

used for the various well tests, different flow rates were used for pulses within a given well test, 

and the observed pressure record is incomplete. A rigorous comparison can be made if the 

observed response to the first pulse is available for both tests, by normalizing pressure by the 

first-pulse flow rate. An approximate comparison can be made by comparing the responses for 

later pulses, by normalizing by an average flow rate for previous pulses. 

Checking for reciprocity is done by plotting the pressure transients on a log scale and shift

ing the curves vertically until they match, then checking that the amount shifted, .1InP •. 

corresponds to the log of the flow rate ratio between the two tests. Because pressure response is 

directly proportional to flow rate and inversely proportional to some effective kH value, .1lnP 

and the flow-rate ratio can be combined to determine a ratio of the kH values for the two tests: 

t.lnP =lnPA -lnP8 =In[~:] (6.1) 

Rearranging to isolate kHA/kH8 gives: 

(6.2) 

Using this technique, the third pair in Table 6.3 shows good reciprocity, while the second 

pair .is not too bad (flow rate variations make it very difficult to determine the appropriate flow 

rate by which to normalize). The fourth and fifth pairs show a definite lack of reciprocity. The 

fourth pair match considers only very early-time data, which may be masked by wellbore effects 

or early-time instrumentation instabilities. In contrast, the fifth pair match considers the long 

pulse, which should provide a reliable comparison. The large discrepancy suggests that either the 

flow rates or pressure response or both were incorrectly recorded for one of the tests. Since test 

90/S4ff2 occurs in both pairs, it is most suspicious. 
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Table 6.3. Reciprocity checks for Gypsy Pilot-site well-test data. 

PIE Comparison Pressure Transient Comparison 

Pair TestA TestB kHA kHs 
kHA 

~InP 
In[::] 

kHA 
Comments -- --

kHs kHs 
No. (pumping (pumping (md) (md) 

interval) interval) 

I 90/S4!fl 89/S2/T2 40,000 44,000 0.9 Not enough data. 
(I lower) (Slower) 

2 90/S4!fi 89/SI!fl 39,000 37,000 l.1 0.36 0.39 to 1.03 to 3rd and 4th pulses, 
(I lower) (7lower) 0.56t 1.22 possible reciprocity 

3 90/S4!fl 90/Sl!fl 40,000 29,000 1.4 -0.16 -0.15 1.01 2nd and 3rd pulses, 
(I lower) (II lower) good reciprocity 

-0.56 -0.51 1.05 Long pulse, 
good reciprocity 

4 90/S4!f2 89/S2/T3 5,400 7,000 0.8 -1.50 -1.16 1.4 lst pulse, 
(1 middle) (5 middle) no reciprocity 

5 90/S4/T2 90/Sl!f2 4,800 7,100 0.7 0.16 -0.92 0.3 lst pulse, 
no reciprocity 

(I middle) (ll middle) -0.38 -0.86 0.6 Long pulse, 
no reciprocity 

tRange of values depending on which flow rates averaged together 

The matrix display of well-test responses shown in Figure 6.8 also identifies the following 

gaps in coverage, which are are possible locations for future well tests. 

• No tests were done between wells 1 and 8. 

• Only two cross-zone vertical tests (sarne well, different intervals) were done. 

• No well 7 buildup tests were done for the middle or upper layers. 

• There is little well 9 lower level information due to the packer failure. 

• Only partial information is available for wells 1 and 11 upper layers. 

6.2.2 Assessment of Existing Data and Analyses 

Based on our evaluation of the data, we find that the well-test data as a whole supports the 

conceptual geological model of the pilot site presented in Dowdle et al. [1990]. This model is 

comprised of three sand channels (denoted the lower, middle, and upper channels) separated vert

ically by two clay layers. The lower clay layer (the dense red clay) is inferred to be continuous 

while the upper clay layer is discontinuous. 

Plotting the pressure transients and studying the matrix displays of the well-test responses 

indicates that a total of 90 pressure transients from 12 tests are directly usable, out of a total of 
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130 pressure transients from 16 tests. The remaining 40 pressure transients fall into one of five 

categories: 

• twelve pressure transients which qualitatively satisfy the reciprocity principle or involve 

duplicate tests. Of these, five show a response while seven show no response; the five 

responders are useful for checking the consistency of the data. 

• four pressure transients which qualitatively contradict the reciprocity principle; these have 

been used to identify three occurrences of instrument failure. 

• twelve pressure transients which were measured during one of the tests with instrument 

failure. 

• eight pressure transients for which the da~ was missing or garbled. 

• four pressure transients from tests that were designed in such a way as to make the results 

uninterpreta~le with our inverse method. 

Overall, 102 out of 130 pressure transients are usable, either directly in the inversions, or 

indirectly to check the precision of the data. 

6.2.3 Strategy for Inversion 

The following strategy was used for doing the hydrological inversions. 

1. Initially, just the lower sand channel was modeled, using a two-dimensional areal model. 

There are 17 pressure transients between lower-layer intervals. Of these, two are from vert

ical tests, five are from buildup tests, and ten are from interference tests. The interference 

tests are most amenable to use in the inversion. 

2. After assessment of the results of the two-dimensional inversion, three-dimensional effects 

such as leakage through the dense red clay layer were considered, as was done in the Kes

terson analysis. It was found. that inclusion of such effects was umiecessary because the 

late-time pressure response was adequately matched by a model in which the dense red clay 

layer was impermeable. 

3. Next, the feasibility of combining the upper and middle sana channels into a single layer in 

a two-dimensional model was considered and eliminated, because the two sand channels 

showed distinct pressure responses. Therefore, the upper and middle sand channels were 

each modeled as a separate layer within a three-dimensional model. The inversion looks for 

the location and extent of the upper clay layer, which partially separates the middle and 

upper sand channels. 
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4. Finally, because the results indicated that there was little leakage across the dense red clay 

layer, it was concluded that a three-dimensional model including all three sand channels 

and intervening clay layers was not needed. 

Sections 6.3 and 6.4 describe the analyses of the lower sand channel, and the upper/middle 

sand channels, respectively. The results of the hydrologic analyses are then compared with 

cross-well seismic imaging (Section 6.5) and a traditional geostatistical analysis (Section 6.6). 

6.3 LOWER SAND CHANNEL ANALYSES 

6.3.1 Conceptual and Numerical Model 

The two-dimensional nested lattice shown in Figure 6.9 is used to represent the lower sand 

channel. The central region of the lattice, which covers the area of the well field, is finely discre

tized, with a lattice spacing of 10 meters, to enable adequate resolution of heterogeneities. The 

lattice extends far beyond the well field so that spurious boundary conditions are not imposed on 

the flow calculation. The extent of the lattice (about 1000 m from the center of the well field in 

all directions) was chosen so that the outer boundary would not be felt during the course of the 

longest well tests (about 12 hours). Beyond the well field, the lattice spacing steadily increases, 
' 

as fine resolution is not necessary there. Because the model is two-dimensional, no vertical varia-

tions in flow or hydrologic properties can be modeled, making transmissivity and storativity, 

which represent depth-integrated properties, the appropriate variables to use. In fact, the thick

ness of the lower sand channel inferred from cores and well logs varies from about 3 m to about 

11 m, implying that variations in transmissivity might reflect a combination of thickness and per

meability changes. 

6.3.2 Homogeneous-Medium Simulations 

Five of the lower-channel well tests conducted by BP yield consistent drawdown data (a 

sixth test produced anomalous results which suggested packer failure; none of that data is 

included in the analysis). The data available for the five tests are summarized in Table 6.4, and 

shown schematically on a well-field diagram in Figure 6.1 0. 
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Figure 6.9. The lattice used for the numerical model of the lower sand channel at the Gypsy sub
surface pilot site. The wells are shown as open circles. 
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Table 6.4. Production and observation wells for the Gypsy lower sand channel well tests. 

Test Well 

1 5 7 8 9 11 

90/S4ffl Pump Observe Observe Observe Observe 

90/S3ffl Observe Observe Pump Observe 

90/Slffl Observet Observe Pump 
89/S2ff2 Observet Pump Observe 

89/Slffl Observet Pump 

tlimited data available 

/ 
/ 

9 • • • 7 

90.Sl.trl Ol!l!O~=· =· ~-

90/S3.ffl 
90,54.ffl -
89.Sl.trl WR RmmiW 

89 _,52.ff2 • • • • 

lOOm 

Figure 6.10. The Gypsy pilot-site well field showing a schematic view of the lower sand channel 
well tests. The shaded lines connect the observation and pumping wells for a given test. 
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Before any inversions searching for heterogeneities are done, it makes sense to first simu

late the well tests assuming a uniform medium. If a uniform-medium model adequately matches 

the drawdowns, then no information on heterogeneities is available from the hydrologic data and 

any hydrologic inversion which searches for heterogeneities is doomed to failure. The results of 

a forward calculation of each well test (drawdown as a function of time at the observation wells) 

using transmissivity T = 9.7x1o-s m2/s · (equivalent to kH = 32,000 md-ft) and storativity 

S = 9.3xl0-6 (2.1xl0-5 ft/psi) are shown in Figures 6.11-6.15, along with the observed draw

downs. The values of T and S used in the model fall within the range reported by Papadopulos 

et al. [1991] (27,000 < kH < 44,000 md-ft, 0.3x1o-s < S < 3.2x1o-s ft/psi), and were chosen to 

minimize the energy for test 90/S4ff1, the test for which the most observed data is available. 

Curve-shifting was disabled for these calculations, to force the model to use the same uniform 
' 

values of transmissivity and storativity for each well-test simulation. After some experimentation 

with the design of the lattice shown in Figure 6.9, it was decided not to include the drawdown 

response at the pumping well in the objective function for any inversion, because the numerical 

model is too coarse to accurately predict near-wellbore flows. 

Figure 6.11 shows that a uniform model does a good job matching the drawdowns from 

wells 5, 7, and 9 (except for very early times) when well 1 is pumped (test 90/S4ff1), but that 

drawdowns at well 11 are consistently underpredicted. This suggests that the lower sand channel 

may be relatively homogeneous between wells 1, 5, 7, and 9, but include some heterogeneity 

between wells 1 and 11. Figure 6.12 shows that the match becomes steadily worse from well 7 to 

well 5 to well 9 when well 8 is pumped (test 90/S3ffl), suggesting that hydrologic properties 

may gradually change from east to west in the region between wells 5, 7, 8, and 9. Figure 6.13 

(test 90/S1ffl) shows small mismatches comparable to those of Figure 6.11. Figures 6.14 and 

6.15 show that the data from the 1989 tests (89/S2ff2 and 89/S1ff1) are either of limited dura

tion (the well1 drawdowns for both tests) or show anomalous behavior (the 'flattened responses' 

of well 7 drawdowns for test 89/S2ff2), therefore these data cannot be used as the basis of 

independent inversions, but could be used in co-inversions with other data. Overall, the 

uniform-medium forward calculations indicate that there are heterogeneities in the lower sand 

channel that have an effect on hydrological behavior. 
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Figure 6.11. The observed and modeled observation-well drawdowns for test 90/S4ffl. The 
model consists of a uniform medium with T 0 and and S 0 values that minimize the energy for test 
90/S4ff1. 
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Figure 6.12. The observed and modeled observation-well drawdowns for test 90/S3ffl. Same 
uniform-medium model as in Figure 6.11. 
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Figure 6.13. The observed and modeled observation-well drawdowns for test 90/Slffl. Same 
uniform-medium model as in Figure 6.11. 
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Figure 6.14. The observed and modeled observation-well drawdowns for test 89/S2ff2. Same 
uniform-medium model as in Figure 6.11. 
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Figure 6.15. The observed and modeled observation-well drawdowns for test 89/S1trl. Same 
uniform-medium model as in Figure 6.11. 
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6.3.3 Single-Test Inversions of Test 90/S4ffl 

In general, for inversions of lower sand channel well tests, in which rather subtle property 

variations between sand lithofacies are expected, relatively small values of !1T and !1S are 

appropriate. Additionally, !1T and !1S are chosen so that transmissivity and storativity vary 

together (i.e., a transmissivity increase accompanies a storativity increase and vice versa), as for 

sand facies it is expected that an increase in porosity (which contributes to an increase in stora

tivity) will be associated with an increase in permeability. This variation is accomplished by 

making !1T and !1S the same sign for the additive algorithm, and both greater than one or both 

less than one for the multiplicative algorithm. 

In test 90/S4ffl, well 1 was pumped and drawdowns were observed in wells 5, 7, 9, and 11, 

as illustrated schematically in Figure 6.1 0. The first inversion of test 90/S4ff1 used an IFS with 

k = 4 affine transforms, the step map with the additive algorithm, !1T = -0.1 T 0, and !1S = -O.lS 0. 

Figure 6.16 shows the final attractor and the transmissivity distribution returned by the inversion 

(the storati:vity distribution shows the same pattern since !1Tff0 = !1S/S0), and Figure 6.17 shows 

the observed and modeled drawdowns. Although the uniform-medium match was quite good for 

this test, the inversion yields a modest decrease in energy (E = 3.5 -7 E = 2.09). The introduc

tion of several regions with low T and S enhances the communication between wells 1 and 11, 

and slightly decreases communication between well 1 and wells 5, 7, and 9, leading to better 

matches for the early-time drawdowns in wells 5, 7, and 9 and the entire response in well 11. 

Figure 6.18 shows the returned transmissivity distributions and energies for eight inversions 

of test 90/S4ff1, which use different mapping parameters or different random seeds, as summar

ized in Table 6.5. 

Table 6.5. Summary of parameters used for eight inversions of test 90/S4ff1. 

Energy T Mapping !1T S Mapping !1S !lz 
Algorithm Algorithm 

2.09 Additive -0.1 T 0 Additive -0.1 S 0 Ot 
2.11 Multiplicative ±1.6 Additive ±0.2S0 -4.E-4 
2.12 Multiplicative ±1.2 Multiplicative ±1.2 0.017 
2.13 Multiplicative ±1.2 Multiplicative ±1.2 0.026 
2.27 Multiplicative ±1.6 Multiplicative ±1.6 -0.27 
2.32 Multiplicative ±1.2 Multiplicative ±1.2 0.035 
2.94 Multiplicative +1.6 Multiplicative +1.6 -0.53 
3.18 Additive +0.1 T0 Additive 0.1 S 0 Ot 

tCurve-shifting disabled 
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90/S4rf1 

Figure 6.16. The returned transmissivity distribution for test 90/S4/Tl. The upper frame shows 
the attractor returned by the inversion. The lower frame shows a grey-scale map of transmissivity 
with darker shades corresponding to higher transmissivity. 

Curve-shifting along the lnh axis was enabled for most of the inversions, but because of the vari

able flow rate, curve-shifting along the lnt axis was not. The six inversions with final energies 

below E = 2.4 provide a consistent picture of the northern half of the well field (the region 

between wells 1, 5, 7, 9, and 11), in which there is higher transmissivity between wells 1 and 11, 

and lower transmissivity between wells 11 and 7. The inversions do not return consistent 

transmissivity distributions for the region beyond these five wells, indicating that the well-test 

data is less sensitive to transmissivity values there. This finding is consistent with the notion 
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90/S4/T1 E=2.1 

• 
. . . . ......................................... 
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In t 

Figure 6.17. The observed and modeled observation-well draw downs for test 90/S4/T1, 
corresponding to the transmissivity distribution shown in Figure 6.16. 

illustrated in Figure 4.5 that the well~test data is primarily sensitive to the region between pump~ 

ing and observation wells. 
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6.3.4 Single-Test Inversions of Test 90/S3ffl 

Figure 6.10 suggests that an inversion of test 90/S3ff1, in which well 8 was pumped and 

drawdowns were observed in wells 5, 7, and 9, will complement the inversion oftest 90/S4ff1 by 

providing information about the southern half of the well field. The inversions of 90/S4ff1 

described above could be done successfully without time-shifting because the observed data 

could be simulated moderately well with a uniform-medium model (E = 3.5), for which it is easy 

to determine background diffusivity (by simply repeating the forward calculation for a variety of 

diffusivity values). This is not the general case, however, and in particular is not true for test 

90/S3ff1, for which a uniform-medium model gives an energy of E = 28.1. The inversion of 

90/S3ff1 requires a diffusivity optimization, as described in Section 3.2.3. The application of 

this algorithm is illustrated in Figure 6.19, which shows the energy as a function of iteration 

number for one inversion of test 90/S3ffl. The plus-minus algorithm was used for this inversion, 

with multiplicative increments !:!T = !:1S = ±1.2, k = 4 affine transforms and n = 12 unknown 

parameters (the rotation form of the B matrix given by Equation (2.12), with only B's and b's 

variable). The observed and modeled pressure transients corresponding to the final energy of 

E=2.66 ate shown in Figure 6.20, and Figure 6.21 shows the attractor and the transmissivity dis

tribution. The low-transmissivity region between wells 8 and 7 delays the pressure response at 

well 7, whereas the high transmissivity localized around well 5 lessens the magnitude of the pres

sure change there. Although there are no attractor points in the region between wells 8 and 9, the 

transmissivity along the pathway from well 8 to well 9 is higher than that along the pathway from 

well 8 to well 5 or along the pathway from well 8 to well 7, resulting in the earlier pressure 

response at well 9. 

Four other inversions of test 90/S3ffl using the same control parameters yielded energies 

around E = 3 to E = 4, and showed reasonably consistent transmissivity variations in the south

em half of the well field, as shown in Figure 6.22. The lower the energy is, the more features the 

transmissivity distributions have in common. As was the case for test 90/S4ff1, the various 

inversions of test 90/S3ffl do not provide a consistent transmissivity distribution for the region 

of the well field beyond the wells involved in the test. 
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Figure 6.19. Energy decrease during the inversion of test 90/S3ffl. The open circles mark the 
points at which background-diffusivity optimizations were done .. 
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Figure 6.20. The observed and modeled observation-well drawdowns for test 90/S3ffl. 
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Figure 6.21. The returned transmissivity distribution for test 90/$3/Tl. The upper frame shows 
the attractor returned by the inversion (horizontal dashes identify attractor points that decrease 
transmissivity and vertical dashes identify attractor points that increase transmissivity). The 
lower frame shows a grey-scale map of transmissivity with darker shades corresponding to higher 
transmissivity_ 
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Figure 6.22. Transmissivity distributions for four other inversions of test 90/S3/T1. 
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6.3.5 Multiple-Test Co-Inversions of Tests 90/S3fl'l and 90/S4fl'J 

As shown in the schematic diagram of the lower sand channel tests (Figure 6.10), a co~ 

inversion of tests 90/S3/T1 and 90/S4/Tl should provide information on flow properties 

throughout the well field. In the co~inversion, the two tests are treated as one long test, with one 

set of long pressure transients. The first part of the long test corresponds to test 90/S3/Tl, in 

which well 8 is pumped, and the second part of the long test corresponds to test 90/S4/Tl, in 

which well 1 is pumped. Figure 6.23 illustrates the observed drawdowns used for the co~ 

inversion. Each forward calculation in the inversion includes the twelve~hour periods of the two 

tests, but the intervening time between the two tests (two days) is not modeled; instead, the pres~ 

sure changes are reset to zero at the end of the first test. 

Despite the straightforward method of setting up the co-mverst~n problem and the 

apparently minor conceptual difference from inverting a single test, several surprising results 

have emerged from initial attempts at co-inversion. Typical results for observed and modeled 

drawdowns and transmissivity distributions are shown in Figures 6.24 and 6.25, respectively. 

The inversion used an IFS with k = 4 affine transforms, the step map with the multiplicative algo

rithm, l!..T = 1.6, and l!..S = 1.0. It is notable that the drawdown matches do not look appreciably 

better for the final result than do those for a uniform medium, despite the decrease in energy from 

E = 11.3 toE = 3.6. This is because the observed data points are .equally spaced in log time for 

each of the individual tests, but since they are plotted against linear time, casual examination of 

the mismatch between observed and modeled pressures does not properly reflect the energy. Two 

consecutive tests cannot be plotted on one log time scale, because the second test would be too 

compressed to show anything. The log-time weighting was chosen to emphasize early time 

behavior, which should reflect near well-field heterogeneities, however, its use in co-inversion of 

sequences of tests makes it hard to readily visualize decreases in energy. 

Another problem with the co-inversion of multiple tests is that the inversion seems to get 

stuck addressing either one part of the co-inversion or the other. In Figure 6.25, the transmis

sivity distribution has primarily been modified between well 8 and the observation wells, in effect 

addressing the 90/S3/Ti part of the pressure transients. Individual inversions of tests 90/S3/Tl 

and 90/S4/Tl yielded comparably low energies around E = 2.5, but the starting point for these 

inversions, a uniform medium, gave substantially higher energy for 90/S3/T1 (E = 28) than for 

90/S4/Tl (E = 3.5). Hence a co-inversion of the two tests sees a much larger decrease in energy 

by making permeability changes to which the 90/S3/Tl portion of the test is sensitive (i.e., the 
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Figure 6.23. Observed drawdowns for the co-inversion oftests 90/S3ff1 and 90/S4ffl. Calcu
lated drawdowns are reset to zero at 11.5 hours. 
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Figure 6.24. The observed and modeled drawdowns for a co-inversion of tests 90/S3/Tl and 
90/S4ffl using an IFS with k = 4 affine transforms. 
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Figure 6.25, Transmissivity distribution returned by a co-inversion of tests 90/S3ffl and 
90/S4ffl using an IFS with k = 4 affine transforms. 
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region between wellS and the observation wells). 

Using IFS's composed of greater numbers of affine transforms provide transmissivity distri

butions. with more distinct regions of variability. This should be helpful for matching the compo

site well-test data used in a co-inversion, which reflects iq.formation about many flow paths 

through the reservoir. A co-inversion of well tests 90/S3ffl and 90/S4ffl using k = 6 affine 

transforms instead of the k = 4 used previously was done to test this notion. The co-inversion 

was done in two stages. In the first stage a rotation-matrix form was specified for the affine 

transforms composing the IFS, which requires only n = 18 unknown parameters (three for each of 

the six affine transforms: one rotation angle, and two components of a translation vector. In the 

second stage, which starts with the final attractor from the first stage, the most general form of the 

affine transforms was used, allowing more variability and requiring n = 36 unknown parameters. 

This two-stage approach was used in order to try to initially determine the general features of the 

transmissivity distribution relatively quickly, then refine it later. The plus-minus algorithm for 

mapping the attractor to the transmissivity distribution was used, with multiplicative increments 

ll.T = ±1.5 and t:.S = 1.0. 

The attractors resulting at the end of the first and second stages are shown in Figure 6.26. 

The energy for ·a uniform medium is E = 13.5, at the end of the first stage it has decreased to 

E = 3.4, and at the end of the second stage it has further decreased toE = 2.5. The observed and 

modeled draw downs at the end of the second stage are shown in Figure 6.27. They show quite a 

good match between the model and the observed data, indicating that an inversion returning 

E = 2.5 may have gone as far as is necessary. Figure 6.28 shows a grey-scale plot of the 

transmissivity distribution corresponding to the final attractor for the second stage of the inver

sion. (Note that because t:.S = 1.0, the storativity distribution is uniform.) The transmissivity 

distribution successfully combines features seen in individual inversions of 90/S3ffl and 

90/S4ffl. The key features are the high transmissivity region in the southwest quadrant, medium 

transmissivity values in the southeast, and the generally low transmissivities in the northern half, 

with the lowest values in the northwest. These features recur in the other co-inversions which 

yielded low energies (Figure 6.29), and can be traced to specific features in the pressure transients 

for the two tests which were co-inverted. 
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Figure 6.26. Attractors for a co-inversion of tests 90/S3ffl and 90/S4ffl using an IFS with k = 6 
affine transforms. The upper frame shows an intermediate result after allowing limited variability 
of attractors during the first stage of the inversion, and the lower frame shows the final attractor. 
Horizontal dashes identify attractor points that decrease transmissivity and vertical dashes identi
fy attractor points that increase transmissivity. 
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Figure 6.28. Grey-scale plot of the transmissivity distribution corresponding to the final attract:or 
shown in Figure 6.26. Darker shades correspond to higher transmissivity. 
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Figure 6.29. Transmissivity distributions inferred from additional co-inversions of tests 90/S3!Tl 
and 90/S4!Tl. Darker shades correspond to higher transmissivity. 
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6.3.6 Cross-Validation Studies 

In order to assess how well a hydrologic inversion is working and to judge how much and 

what kind of information is contained in the well-test data, a procedure known as cross-validation 

may be used. In cross-validation, rather than using all available data to develop a hydrological 

model, some of the available data is not used in the inversion process, and the inferred hydrologi

cal model is subsequently used to try to match it. If the model cannot match the held-out data, it 

suggests that there is a significant amount of new information in that data which is not contaim~d 

in the original observations used to develop the model. 

Of the five lower sand channel well-tests illustrated schematically in Figure 6.1 0, only two 

of the tests, 90/S4/T1 and 90/S3/Tl, provide complete enough drawdown records to do indepen

dent inversions. Two other tests, 90/S 1/T1 and 89/S2/T2, provide enough partial information 

(early-time dra\Ydowns only) to be used in conjunction with other tests. Test 89/S1/Tl provides 

only a short segment of early-time data from one observation well, and probably cannot add 

much to the analysis. 

The results of single-test inversions for tests 90/S4/Tl and 90/S3/Tl described in Sections 

6.3.3 and 6.3.4 show that no single-test inversion provides a reliable transmissivity distribution 

for the entire well field, eliminating the need to use any of the returned transmissivity distribu

tions to try to model the remaining well tests. On the other hand, because repeated co-inversions 

of tests 90/S4/Tl and 90/S3/Tl yield similar patterns of transmissivity throughout the well field, 

it is reasonable to use transmissivity distributions returned by the co-inversion to model the 

remaining well tests. Accordingly, the transmissivity distribution shown in the top frame in Fig

ure 6.29 was used to model all the well tests individually, and the returned energies were com

pared to the energies obtained using a uniform-medium model with a single value of transmis

sivity. The results are summarized in Table 6.6, which also shows the results of the best single

test inversion of each well test. 

Both tests 89/S2/T2 and 90/S 1/T1 show nearly a factor of two decrease in energy for the 

co-inversion model compared to the uniform medium model. Test 89/S1/T1 shows an increase in 

energy, but the reciprocity checks shown in Table 6.3 suggest that there may be problems com

paring the results of test 89/S 1/Tl to other tests. The overall conclusion is that the cross

validation exercise is successful. 

It is of interest to note that a single-test inversion of test 90/S1/T1 yields a much lower 

energy than does the co-inversion model, suggesting that there is extra information to be gained 
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Table 6.6. Energies for lower sand channel cross-validation studies. 

Test Pumping Uniform Model Based Best 
Interval Medium on Co-Inversion Single-test 

Modelt of 90/S3/Tl and 90/S4/T1 Inversion 
90/S4/T1 lL 10 3 2 
90/S3/T1 8L 14 2 3 
90/S1/Tl llL 17 10 1 
89/S2/T2 5L 50 25 -
89/Sl/Tl 7L 1 4 -

tTransmissivity and storativity taken from base values for best co-inversion of tests 90/S3/Tl and 
90/S4/Tl: T0 = 8.86x10-4 m2/s, S0 = 3.3xlo-5• 

by a co-inversion of all three of 90/S4/T1, 90/S3/Tl, and 90/S1/Tl (test 89/S2/T2 shows rather 

odd flattened pressure responses which suggest instrumentation problems, so it has not been 

included in further analysis). A co-inversion of the three 1990 tests has beeri done, using the 

transmissivity distribution shown in the top frame of Figure 6.29 as its starting point. The initial 

energy is E = 3.8 (Because energy is normalized by the number of observed data points, a simple 

arithmetic average of the energies for the three tests does not yield the co-inversion energy. 

There are about twice as many observed pressures for tests 90/S4/Tl and 90/S4/Tl as there are 

for 90/S 1/Tl, yielding E = [2(2.0+2.8)+9.6]/5 = 3.8). At the end of the inversion, the energy has 

been reduced toE = 2.3. The resulting transmissivity distribution is shown in Figure 6.30 and 

the 90/S 1/Tl portions of the pressure transients are shown in Figure 6.31. The main difference in 

the calculated drawdowns is the smaller response at well 5 when well 11 is pumped, which occurs 

because the low-transmissivity region between wells 5 and 11 extends further around well 5 after 

the inversion. 

This procedure of sequential model building, in which first the well tests with the most 

observed data available are inverted individually, then co-inverted together, then co-inverted with 

additional information to fine tune the transmissivity distribution, appears to be successful. 

Because the computational effort of the calculations increases dramatically as more tests are 

added to the co-inversion, it makes sense to try to infer the major features of the transmissivity 

distribution with the minimum number of tests possible first, then use this distribution as a start

ing point for further inversions. 
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Figure 6.30. Transmissivity distribution inferred from the co-inversion of tests 90/S 1/Tl, 
90/S3/Tl, and 90/S41Tl~ 
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Figure 6.31. A portion of the pressure transients for the co-inversion of tests 90/S lffl, 90/S3ffl, 
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6.4 UPPER AND MIDDLE SAND CHANNEL ANALYSES 

6.4./ Conceptual and Numerical Model 

Based on the matrix display of the pilot -site well tests described in Section 6.2.1, it appears 

that the lower sand channel is hydrologically separated from the upper and middle sand channels 

by the dense red clay layer, whereas the upper clay layer observed in some but not all of the 

pilot-site wells does not hydrologically separate the upper ·and middle sand channels, as is illus

trated conceptually in Figure 6.32. The conceptual model of the upper/middle sand channel sys

tem consists of two horizontal sand layers, separated by a heterogeneous intermediate layer 

(made up of vertical elements), which is composed of low-permeability clay some places and 

high-permeability sand other places. In Figure 6.32 the vertical elements which are composed of 

clay are not shown, to indicate that there is no vertical flow at those locations. The hydrologic 

inversion assumes that the upper and middle sand layers have uniform high permeabilities, while 

the permeability of the vertical elements varies strongly, to represent either sand or clay. Thus, 

although the flow calculation is three-dimensional, the attractor created by the IFS is two

dimensional and is confined to the intermediate layer of vertical elements. A two.:.dimensional 

attractor requires fewer parameters to specify it than does a three-dimensional attractor, and is 

easier to visualize. 

upper 
sand 

middle 
sand 

lov..er 
sand 

Figure 6.32. Conceptual model of the Gypsy pilot site. Each horizontal layer represents a sand 
channel. The lack of communication between the middle and lower sand channels is represented 
by no elements connecting these two layers. The partial hydrologic communication between the 
upper and middle sand channels is represented by some vertical connections. 
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In most of the inversions the intermediate layer has low (clay-like) background permeability 

and the effect of the attractor is to increase the permeability, thus the attractor shows locations 

where the upper clay layer is missing. An alternative approach is to give the intermediate layer a 

high (sand-like) background permeability and let the attractor act to decrease the permeability 

and thus represent the region where the upper clay layer is present. Lithologies inferred from 

well-log information suggest that the clay layer is present the western, northern, and eastern por

tions of the well field (wells 1, 7, 9, and 11), but absent in the central and southern portions (wells 

5 and 8), as shown in the first frame of Figure 6.33. Thus, a gap in the clay layer can be 

represented simply as a convex polygon, while the clay layer itself requires a more complicated 

shape, as illustrated schematically in the second and third frames of Figure 6.33. Having the 

attractor represent the gap therefore enables IFS' s with fewer parameters to be used, which 

simplifies the inversion, as fewer unknown parameters must be searched for. 

Solid squares: upper clay present 
Open squares: upper clay absent 

• 1 

• 11 

• 9 D 5 • 7 

D 8 

Inversion looks for gap 
in upper clay 

• 1 

• 11 

• 9 • 7 

Inversion looks for upper 
clay 

D 

8 

Figure 6.33. Lithologic information on the location of the upper clay layer, and possible inver
sion schemes. 

The multi-layer model of the upper and middle sand channels requires substantially more 

nodes and elements than does the single layer model used for the lower sand channel inversions. 

The lower sand channel model has a lattice spacing of 10 m in the finest region, and a total of 945 

nodes and 1807 elements. If this spacing were used for the multi-layer model, the number of 

nodes would be 1890 (double the single layer value) and the number of elements would be 4535 

(approximately 2.5 times the single-layer value). In order to try to make the forward calculations 

' ' 
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as efficient as possible, different lattice spacings were studied to see if accurate calculations could 

be made using larger lattice spacings. Lattice spacings of 10m, 16.67 m, and 25m were used in 

both two-dimensional (confined aquifer) and quasi-three dimensional (leaky aquifer) models of 

constant-flow-rate well tests, and compared to the analytical solutions shown in Appendix A. It 

was found that the model using a lattice with 16.67 m spacing in the finest region calculates 

acceptable drawdowns for the locations corresponding to_ the Gypsy wells. Hence this model 

(shown in Figure 6.34) was used as the basis for the multi-layer model of the upper and middle 

sand channels. The layer shown has 521 nodes and 980 elements and the multi-layer model has a 

total of 1042 nodes and 2449 elements. The CPU times required for one forward calculation of 

the multi-layer model and the lower-channel model are comparable. 

-5 
Figure 6.34. Central portion of one layer of the lattice used to model the upper and middle sand 
channels. Each layer of the lattice extends a total of 2400 m in the x and y directions, with 
steadily increasing lattice spacing. 
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6.4.2 Assessment of Upper and Middle Sand Channel Well-Test Data 

Seven well tests were done among upper and middle channel intervals. The data available 

for the seven tests are summarized in Table 6.7, and shown schematically on a well-field diagram 

in Figure 6.35. 

Table 6.7. Production and observation well combinations for the Gypsy upper and middle sand 
channel well tests. 

Test Weill WellS Well7 WellS Well9 Wellll 

90/Sl/T2 Observe Observe Observe Pump 
middle 

90/S2/T2 Observe Observe Observe Pump Observe 
middle 

90/S2/T3 Observe Observe Observe Pump Observe 
upper 

90/S3/T2 Observe Observe Pump Observe Observe 
upper/middle 

90/S4/T2 Pump Observe Observe Observe 
middle 

89/S2/T3 Observe Pump Observe 
middlet upper/middle middlet 

89/S2/T4 Pump Observe 
upper/middle up pert 

tlimited data available 

In all the 1990 tests, observed data is available for both upper and middle layers if the observation 

well has separate screened intervals there. In Figure 6.35, the lines connecting the pumping and 

observations wells for each test illustrate the portion of the system to which the well-test data is 

most sensitive. As in the analysis of the lower sand channel, it appears that co-inversion of 

several tests will be necessary to obtain a reliable permeability distribution over the entire well 

field. For all of the 1990 tests there is sufficient data to do independent inversions of each test. 

For the 1989 tests there is not enough data available to do independent inversions, but the data 

could be used in co-inversions with other data. 

For two of the tests, 90/S2/T2 and 90/S2/T3, the reported flow rates for the second pulse 

were about twice the size of the other pulses, but the pressure responses in the pumping well were 

not consistent with a larger second pulse for either test. For test 90/S2/T2 the pressure response 

to the second pulse was unusually small and for test 90/S2/T3 the pressure response to the second 

pulse was comparable to that for the other pulses. For these two tests, it was assumed that the 

second-pulse flow rates were recorded incorrectly, and these flow rates were modified as shown 
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7 

Figure 6.35. The Gypsy pilot-site well field showing a schematic view of the upper and middle 
sand channel well tests. The shaded lines connect the observation and pumping wells for a given 
test. 

below to give the correct relative magnitude for the pressure response in the pumping well. 

Test 
90/S2!f2 

90/S2!f3 

Pulse 
1 
2 
3 
4 
1 
2 
3 
4 

Reported Flow Rate 
230 
575 
287 
282 
263 
430 
240 
288 

Modified Flow Rate 
230 
57.5 
287 
282 
263 
230 
240 
288 
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6.4.3 Single-Test Inversions ofTest 90/Slm 

Eleven inversions have been done of test 90/S 1ff2, in which well 11 was pumped from the 

middle sand channel and drawdowns were observed in the upper and middle sand channels of 

wells 1 and 7, and in the upper/middle sand channel of well 5. Some of the inversions look for a 

gap in the clay layer by using an attractor that increases permeability, with an additive increment 

!lT :::: 103T 0, while others look for the clay layer itself by ·using an attractor that decreases per

meability, with a multiplicative increment !lT:::: .01. Because the permeability contrasts are so 

great, essentially no flow occurs through the low-permeability portion of the intermediate layer, 

making it unnecessary to modify storativity there. Various vah.ies of the permeability increments 

or decrements were used, along with different numbers of affine transforms (either k = 4 or 

k = 6), and different optimization algorithms (either simulated annealing or simplex annealing). 

Most of the inversions successfully match the main features in the pressure transients for the three 

observation wells, which requires that the clay layer be present between wells 1, 7, and 11, yield

ing distinct responses in the upper and lower model layers, but absent around well 5, yielding the 

same pressure response in the upper and lower model layers. Observed and modeled pressure 

transients are displayed in Figure 6.36 for one inversion. The solid lines and solid dots 

correspond to the middle sand channel and the dashed lines and open dots correspond to the 

upper sand channeL The effect of the intermittency of the upper clay layer is striking. Where the 

clay layer is present there are two widely separated pressure transients, and where it is missing 

the upper and middle sand channels respond in unison. The model captures the main features of 

the observed data very well. The final attractor for this inversion is shown in Figure 6.37; the 

attractor acts to increase permeability, and thus shows locations where the clay layer is missing. 

The corresponding permeability distribution for the intermediate layer is shown in Figure 6.38. 

The energy for successful inversions ranges from about E=14.5 to E=16.5; some of the permea

bility distributions for the intermediate clay layer are shown in Figure 6.39. Recall that only 

wells 1, 5, 7, and 11 were used for test 90/Sl/T2, so the permeability distribution is only reliable 

for the northeast quadrant of the well field. 
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90/S1/T2 gum09 E=14.53 

• 0 
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., - 0 

·~ 
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Figure 6.37. Final attractor for one inversion of test 90/S lff2. Attractor points identify locations 
of high permeability in the intermediate layer between the upper and middle sand channels. 
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Figure 6.38. Permeability distribution corresponding to the attractor shown in Figure 6.37. 
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Figure 6.39. Series of permeability distributions for the inversions of test 90/S lff2. 
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6.4.4 Single-Test Inversions ofTest 90/S2m 

In test 90/S2ff2, well 9 was pumped and pressures were observed in wells 1, 5, 7, and 11. 

Early inversions of test 90/S2ff2 yielded energies over E=100, with pressure transients that 

grossly mismatched the observed values, as illustrated in Figure 6.40. After some study, it was 

determined that the inversion program was not broken, but that strongly scattered early-time 

observed pressures were dominating the matching procedure. In general, not all the observed 

pressure data is used for the well-test analysis, as pressures are recorded far more frequently than 

is necessary to discern most trends. A preprocessing program is used to select enough points to 

resolve pressure variations that correspond to the step flow rate changes which occur during the 

tests. However, this program is not very sophisticated and tends to include too many data points 

when there is a lot of scatter in the observed pressure data. Therefore, for all the well tests, the 

observed pressure transients to be inverted were edited by hand to remove many of the widely 

scattered data points, making the density of points similar for early and late times. With these 

changes the inversions of test 90/S2ff2 improve significantly, yielding energies around E=10. 

Figure 6.41 shows the pressure transients for a typical example, in which !lT = 1 03T 0, and Figure 

6.42 shows the corresponding attractor, which represents gaps in the upper clay layer. The match 

is acceptable for all the wells except well.l, for which the calculation shows the same response 

for the upper and middle sand channels, whereas the observed data shows a significant difference. 

This comparison suggests that the high permeability region shown in Figure 6.42 just to the north 

of well 1 should not. be present. None of the inversions show the correct difference between 

upper-sand-channel response and the middle-sand-channel response for all four observation 

wells. 
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Figure 6.40. Observed and modeled pressure transients for an inversion of test 90/S2ff2 before 
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Figure 6.41. Observed and modeled pressure transients for an inversion of test 90/S2m after 
observed data had been edited. 

\ 

I --...l -...l 
I 



90/S2ff2 gum39a E=8.72 

• •• ' .. .... • • • • .. • • , . •• ... 
•• .., • , . 

• •• ' ., • • •• .. ,. "-· ••• • .. • • 

, .... 
•• • • • •• • • ~ • • 

~ ... • • • ·- .. ., . • 
iJ ••• 

• •• • • •• • 

••• \ .... 
•• 

• . ' ,. ~ ..... . .. . .... . . : . ·' .. .. • • • 
• ... . ... • • • 

• 

••• • 
•• 0 .o.. ' .. 

• • •• -· : ... 

0 

. .. . .. .. . _, ... ,... . ... . '. .. 
, ,.. ' ~~ ... , '··· . ·., . . " .:" . ·' : . ... '•·'\ . ~ . . . ~ .... . •. . .... . .. ~ . ~. . . .. _..·. -~ .. .· -.. . .. . .. .. . -. . .. . : . ~ : \- ., . . . .... . .. : .. . . , ...... 
~· .: 'lll•, • ·~.. ". ~ \. . • .• 

~~ •• • •• 0 ••• ,· • 

0 

.. .. . .. 
• • • 

• • • 

. . . : . .. . ; . .. .. . . - . . . ' . ... . .. .. :1' • .: ,. ~ • , • •• • .,... ... .. , .... ·' . . . ·' . • .,.. .... ..... c··--··· , ..... ·' .. . . .. . . . . .. 
I • • • • • • • ~ • _. • .•• ... • 

• • • .. • I • •_I • • • : ~ •. • • . •. . ~ . .. ,_., . .. .. .. ., . .. . ... . . ., . . . ~.. . . . .. . . . .. ·., ..... . . . .•.. .. . . : . ~ . .. . . 
• •• 

':•.s •• 

-178-

Figure 6.42. The final attractor for an inversion of test 90/S2ff2. Attractor points identify loca
tions of high permeability (gaps in the clay layer) in the intermediate layer between the upper and 
middle sand channels. 
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6.4.5 Single-Test Inversions of Test 90/S2ff3 

In test 90/S2ff3, well 9 was pumped and pressures were observed in wells 1, 5, 7, and 11. 

Test 90/S2ff3 is the only test in which the upper sand channel interval of the pumping well was 

pumped. In all the other upper/middle tests, the middle sand channel was pumped and a greater 

pressure change was observed in the middle channel interval of the observation wells than in the 

upper channel interval, as would be expected for two partially connected channels. Unexpect

edly, test 90/S2ff3 also showed pressure changes that were greater in the middle sand channel 

than in the upper sand channel, for observation wells 1, 7, and 11. This suggests that the 

transmissivity of the upper sand channel is less than that of the middle sand channel, and that a 

model which assigns the equal values of transmissivity to each sand layer is inadequate. After 

some trial and error, a transmissivity ten times greater in the middle sand channel than in the 

upper sand channel was chosen for the inversion of test 90/S2ff3. This modification is at least 

qualitatively supported by the well log information, which suggests that the upper sand channel is 

thinner and/or produces a weaker 'sand' signal than the middle sand channel for for wells 1, 9, 

and 11. .With this change in the conceptual model, several inversions successfully matched the 

difference between the middle and upper sand channel pressure transients. Figure 6.43 shows the 

pressure transients for a typical example, in which tlT = 103T 0, and Figure 6.44 shows the 

corresponding attractor, which represents gaps in the intermediate layer. This modified concep

tual model, with different transmissivities for the upper and middle sand channels, was used for 

all subsequent inversions of the upper/middle well tests. 
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90/S2/T3 gum21- E=1-5.16 

Figure 6.44. The final attractor for an inversion of test 90/S2/T3. Attractor points identify loca
tions of high permeability (gaps in the clay layer) in the intermediate layer between the upper and 
middle sand channels. 
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6.4.6 Single-Test Inversions of Test 90/SJm 

In test 90/S3tr2, well 8 was pumped and pressures were observed in wells S, 7, 9, and 11. 

In all the observation wells there was no difference between the upper and middle sand channel 

responses. This is not surprising, as the upper clay layer is absent in well 8, leaving no distinc

tion between the upper and middle sand channels there. Four inversions of this test successfully 

matched this pressure response, however, they did not yield-consistent permeability distributions. 

Placing gaps in the clay layer either at the pumping well (as the well-log lithology suggests), at 

each of the observation wells (in contradiction to the well-log lithologies), or both places allows 

the pressure responses to be matched equally well. Including the pressure response at the pump

ing well as part the observed data to be inverted would help the inversion to place gaps at the 

pumping well, but there would still be no reason to avoid placing gaps other places as well. In 

conclusion, the pressure responses for test 90/S3tr2 do not provide enough information about the 

reservoir to be useful in single-test inversions, but they can be an important contribution to a co

inversion of multiple well tests. 

6.4.7 Single-Test Inversions ofTest 90/S4ff2 

In test 90/S4rr2, well 1 was pumped and pressures were observed in wells S, 7, and 11. 

This is the same set of wells used in test 90/Sltr2, and not surprisingly, the results are similar. 

All three inversions yielded good matches to the pressure transients and placed a gap in the clay 

layer between the pumping well and wellS, or a gap localized around wellS. 
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6.4.8 Multiple-Test Co-Inversions of Tests 90/Slm, 90/S2ff2, and 90/S3ff2 

The goal of co-inversion is to use multiple tests which provide complementary information 

about the reservoir. However, because the forward calculation becomes slower as more tests are 

added, it is also desirable to minimize the number of tests to be co-inverted. For example, it 

would not be worthwhile to co-invert tests 90/S 1ff2 and 90/S4ff2, because they both contain 

information about the northwest quadrant of the well field.- Similarly, we needn't co-invert tests 

90/S2ff2 and 90/S2ff3 when the inversion is looking for gaps in the clay layer, although if the 

inversion were searching for variability within each sand layer, a co-inversion of tests 90/S2ff2 

and 90/S2ff3 would be useful. Two pairs of tests have been co-inverted (tests 90/Slff2 and 

90/S3ff2 and tests 90/S2ff3 and 90/S4ff2) and co-inversion of three tests (90/S 1ff2, 90/S2ff2, 

and 90/S3ff2) has been done. The co-inversions of two tests were done for practice, as Figure 

6.35 suggests that three tests is really the minimum number needed to include all independent 

information about the reservoir. Figure 6.45 shows the observed data for the three-test co

inversion. If only one pressure transient is shown for a given segment of the test, it means that 

the upper and middle sand channels responded identically. In inversions that look for clay-layer 

gaps, the key features to try to match are the differences between middle and upper sand channel 

responses for each observation well. For example, there is a large difference in upper and middle 

responses in wells 1 and 7 when well 11 pumps, but a much smaller difference when well 9 

pumps. 

A three-stage sequence was followed for the first co-inversion of tests 90/S 1ff2, 90/S2ff2, 

and 90/S3ff2. In the first stage, simulated annealing was used with simple attractors determined 

by only· six unknown parameters (k = 3 affine transforms of the rotation matrix form, with 

C; = 0.667 and 8; = 0 fixed, and two components of b; variable), to get a rough picture of hetero

geneity. Attractors of this form will always have a triangular shape, with the b; specifying the 

coordinates of the triangle's comers. The attractor points act to increase permeability 

(!)..T = 103T 0) and hence represent gaps in the upper clay layer. The initial attractor, a triangle 

with its apex near well 5 and and its base near well 8, produced an energy of E = 42. With simu

lated annealing, permeability distributions are tried at random so a great variety of distributions 

may t;>e considered. The final energy of the first stage was E = 26.2. Next, the inversion was res

tarted using the final attractor of the first stage, but considering nine parameters as unknowns (8; 

variable), which allows more variability in the permeability distribution. The second stage 

resulted in an energy decrease to E = 23.0. In the final stage, the inversion was restarted using 
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the final attractor of the second stage, using simplex annealing rather than simulated annealing as 

the optimization algorithm. Simplex annealing makes small non-random changes in the trial per

meability distributions, which are specifically designed to move to lower energy values. The 

final stage produced a further slight decrease in energy, to E = 22.9. Figure 6.46 shows the 

attractors resulting from each stage for the three-test co-inversion. Figure 6.47 shows the pres

sure transients at the end of the final stage. With the exception of the response in well 11 when 

well 8 is pumped, the difference between upper and middle sand channel responses is matched 

adequately. 

Three other co-inversions of tests 90/S l/T2, 90/S2/T2, and 90/S3/T2 were done in which 

the attractor represented gaps in the upper clay layer. As before, D.T = 103T 0. The inversions 

used k = 6 affine transforms of the rotation matrix form, with three unknown parameters each (8i 

and two components of bi ). The resulting energies range from E = 20.7 to E = 21.7. The 

decrease in energy over the previous inversion using k = 3 affine transforms is not surprising, as 

18 degrees of freedom are available to match heterogeneities rather than the nine of the previous 

inversion. Figure 6.48 shows the resulting permeability distributions, which consistently locate 

the gap in the upper clay layer as an east-west trending band centered on well 5, which extends 

closer to well 9 than to well 7. Although the well lithologies suggest that the gap in the clay layer 

extends to the south as far as well 8, it is apparent that the well-test data, which does not include 

any observations from well 8, does not contain this information. This shortcoming points out the 

value of using the pressure response from the pumping well in addition to that from observation 

wells, which was not possible in the present work due to computational limitations (the 16.67 

meter lattice spacing used is too coarse to adequately model the pressure response in the pumping 

well, and using a finer mesh around each pumping well would have slowed down the calculations 

excessively). 

Three co-inversions of tests 90/S1/T2, 90/S2/T2, and 90/S3/T2 were done in which the 

attractor points decrease permeability and hence the attractor represents the clay layer itself, 

rather than gaps in it. For these cases, D.T = 0.01 and M = 0.5. As above, k = 6 affine 

transforms with three unknown parameters each were used. The resulting energies range from 

E = 20.6 to E = 23.5, which are comparable to the previous k = 6 inversions, indicating that there 

is little advantage in looking for a gap in the clay layer rather than the clay layer itself. The 

resulting permeability distributions, shown in Figure 6.49, nicely complement those in which the 

attractor represents gaps in the clay layer. 
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Figure 6.46. Attractor at the end of each stage of a co-inversion of tests 90/S 1/T2, 90/S2/T2, and 
90/S3/T2. Attractor points identify locations of high permeability (gaps in the clay layer) in the 
intermediate layer between the upper and middle sand channels. 
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The pressure transients for the lowest-energy co-inversion, corresponding to the permeabil

ity distribution shown in the left frame of Figure 6.49, are shown in Figure 6.50. Although the 

main features of the observed pressure transients, in particular the differences between the upper 

and middle sand channel responses, are well matched, significant discrepancies remain. It 

appears that a more sophisticated conceptual model, which allows variability in both the upper 

clay layer and the upper and middle sand channels themselves is necessary to achieve this. In 

light of the lower sand channel inversions, which required significant. heterogeneity within one 

sand channel to match all pressure responses, this is not an unreasonable expectation. A simple 

means of examining this more elaborate conceptual framework is explored below in Section 

6.4.10. 
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6.4.9 Incorporating Well-Log Lithology in Well-Test Analysis 

In view of the difficulty in achieving good matches to the observed pressure responses 

described above, an alternate approach, making use of both well-log lithologic data and interfer

ence data has been explored. The well-log data indicates the presence or absence of the upper 

clay layer at six points, the well locations, only. There are a variety of ways this point informa

tion can be interpolated to create a complete picture of the clay layer and its gaps, as suggested in 

Figure 6.51. Each ofthese interpolations (with additive increment LiT= 103T0) has been used to 

simulate the sequence of three tests 90/S 11T2, 90/S21T2, and 90/S31T2, and the resulting energy, 

the integrated mismatch between the observed and calculated pressure transients, is shown in Fig

ure 6.51. The strong variation in energy suggests that a large clay gap is much more likely than a 

small one. The configuration with the lowest energy also provides guidelines for a good starting 

shape for further inversions br co-inversions. The first few accepted attractors and the 

corresponding energies for one such co-inversion of tests 90/S 11T2, 90/S21T2, and 90/S31T2 are 

shown in Figure 6.52. 

The display of energies for various clay gaps shown in Figure 6.51 suggests that the inver

sion can be posed with only two unknown parameters, the width and height of a triangular gap in · 

the upper clay layer. This simplification enables the energies to be presented as a two

dimensional surface, the minimum of which represents the optimal solution to the inverse prob

lem. Such an energy surface is shown in Figure 6.53. It is a contoured representation of the ener

gies for the configurations shown in Figure 6.51, with the addition of more extreme gap 

configurations, which are not necessarily consistent with the borehole lithologies. The black line 

outlines the portion of the energy surface which is consistent with the borehole lithology. An 

ideal energy surface would have a single minimum which is consistent with geologic information 

(i.e., within the outlined region) but is much more localized, effectively singling out one correct 

way to interpolate between boreholes. 

In they (height) direction, the minimum in the energy surface is rather narrow, and is con

sistent with the borehole lithology. Thus, the height (north-south extent) of the gap in the clay 

layer is well-constrained by the co-inversion of tests 90/Sl/T2, 90/S2/T2, and 90/S31T2. In con

trast, in the x (width) direction, the minimum in the energy surface is very broad, and is not 

confined to gap configurations consistent with the borehole lithologies. The energy minimum is 

sharply defined on the low-width side, and its location does rule out a range of narrow gaps. The 

exten~ of the energy minimum is not well-defined on the high-width side, as energies remain low 
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Figure 6.51. Nine possible interpolations of the point lithologic data obtained from well-logs. 
The dark regions represent gaps in the clay layer between the upper and middle sand channels. 
The energy values show the mismatch between pressures calculated for each of these models and 
the observed data for tests 90/S1/T2, 90/S2rf2, and 90/S3/T2, shown in Figure 6.45. 

as wider and wider gaps are considered. This means that the well-test data being inverted can be · 

comparably well matched with or without an upper clay layer present in wells 7 and 9, although 

the borehole lithologies suggest the layer exists in both wells. Comparing the observed and 

modeled pressure transients for a wide-gap model (Figure 6.54) confirms this notion. Of all the 

observed data for wells 7 and 9, only the response at well 7 when well 11 pumps shows a 

significant difference between upper and middle channel responses. Given the other mismatches 
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Figure 6.52. The initial attractor, the first 19 accepted attractors, and the corresponding energies 
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dle sand channels. 
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Figure 6.53. Two-dimensional energy surface as a function of the height and width parameters of 
a triangular gap in the upper clay layer centered on well 5. The black line outlines the portion of 
the energy surface which is consistent with the borehole lithology. The circles show the results 
of co-inversions using the direction-set method (black), simulated annealing (grey), and simplex 
annealing (white). To convert from parameter space to physical space, multiply height and width 
parameters by 1600 m. 

for this simplistic model, not reproducing this difference does not disqualify wide-gap 

configurations. However, if a more complicated model with greater variability can produce a 

better match overall (for example, closely matching the well 5 pressure transients, not just show

ing the upper and middle channel responses as identical), then the lower energy ranges being con

sidered will disqualify a model that does not show distinct upper and middle channel responses at 

well 7 when wellll is pumped. Development of such a model is described in Section 6.4.10. 

Overall, the technique of incorporating borehole lithologic information into the well-test 

analysis can be of great value. One starts with information known about the system at a series of 

points, and uses the well-test data to provide information on the interpolation of that information 

to inter-well regions. By constraining the in :version in this way, the number of unknown parame

ters can be greatly reduced, because much of the structure of the heterogeneity is specified by the 

point values obtained from the boreholes. If the number of parameters can be reduced to two, an 

energy surface can be constructed, the features of which can provide great insight into the infor

mation content of the well-test data. 
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With an energy surface, it is also possible to compare the performance of various optimiza

tion algorithms. The returned energies for several inversions using different optimization algo

rithms are shown in Figure 6.53. The simulated-annealing inversions all end up somewhere in 

the minimum of the energy surface, whereas the simplex-annealing and direction-set methods 

sometimes get stuck in high-energy regions, and cannot find the minimum. However, the 

simulated-annealing inversions require far more forward calculations (several thousand) than do 

the simplex-annealing (around 50) or direction-set (around 100) inversions. For the present prob

lem it is more efficient overall to do a series of quick simplex-annealing or direction-set inver

sions using different random seeds, to enable identification of inversions that are stuck at high 

energy values, than it is to do one simulated annealing inversion. However, as the number of 

unknowns increases, the simplex-annealing and direction-set methods both get expensive more 

rapidly than does simulated anneaiing. Furthermore, increasing the number of unknowns greatly 

increases the complexity of the energy surface, so the greater ability of simulated annealing to 

avoid getting stuck often makes it the method of choice. 

') 
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6.4.10 Building a Three-Dimensional Model with Sequential Two-Dimensional Inversions 

The initial inversion strategy for upper/middle sand channel well tests was to assume that 

the only heterogeneity in the system was in the discontinuous intermediate clay layer, because it 

was presumed to have a dominant effect on the pressure transients. Various inversions yielded a 

consistent picture of the clay layer with a large gap in it, centered on well 5. Because none of the 

corresponding models perfectly matched the pressure transients, it was decided to consider more 

subtle heterogeneities within the upper and middle sand channels in the model as well. Although 

the present version of the IFS inversion method is restricted to creating two-dimensional aurae

tors (and therefore searching for two-dimensional heterogeneities), it is possible to sequentially 

look for heterogeneities in different layers of the model. The heterogeneous permeability distri

bution in the intermediate clay layer can be held fixed while the inversion looks for hetero

geneities within either the upper or middle sand channel. 

The procedure followed was to use the permeability distribution from the best co-inversion 

of tests 90/S1/T2, 90/S2/T2, and 90/S3/T2, shown in the left frame in Figure 6.49, then look for 

variability within the middle sand channel while co-inverting these same three tests. An IFS with 

k = 6 affine transforms in the rotation matrix form was used, with the plus-minus mapping algo

rithm, and multiplicative increments i'!.T = ±1.6 and ilS = 1.0. The inversion resulted in an 

energy decrease from E = 20.6 to E = 11, and a transmissivity distribution for the middle sand 

channel as shown in the left frame of Figure 6.55. The corresponding pressure transients are 

shown in Figure 6.56. Several other inversions looking for middle-sand channel variability were 

done, using different starting permeability distributions for the intermediate clay layer; the 

transmissivity distributions are also shown in Figure 6.55. The common features of all the inver

sions are the high-transmissivity region around well 8, and the low-transmissivity region to the 

northeast of well 5. The impact of these features is readily apparent by comparing the pressure 

transients shown in Figure 6.56 with those for a uniform middle sand channel (Figure 6.50). The 

larger response of wells 5 9, and 11 when well 8 pumps is due to increased transmissivity in the 

paths between these wells, compared to adjacent regions. Conversely, the smaller response of 

well 5 when well 11 pumps is due a region of decreased transmissivity between these two wells. 

The transmissivity· distributions shown in the left frames of Figures 6.49 and 6.55 were 

then held fixed while the transmissivity in the upper sand channel was allowed to vary in a co

inversion of tests 90/S2/T2, 90/S2/T2, and 90/S3/T2. Again an IFS with k = 6 affine transforms 

was used, with the plus-minus mapping algorithm, and multiplicative increments !::.T = ±1.6 and 
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llS = 1.0. The inversion resulted in an energy decrease from E = 11 to E 8.5, and a transmis

sivity distribution for the upper sand channel as shown in the left frame of Figure 6.57. The 

corresponding pressure transients are shown in Figure 6.58. Several other inversions looking for 

upper-sand-channel variability were done, using alternate random seeds; the transmissivity distri

butions are also shown in Figure 6.57. The common features of all the inversions are a high

transmissivity region around well 5, especially to.ward the. west, and a region of low transmis

sivity between wells 5 and 8. Two of the three distributions also show low transmissivity around 

well 11, especially toward well 1. The impact of these features may be seen by comparing the 

pressure transients shown in Figure 6.58 with those for a uniform upper sand channel (Figure 

6.56). The larger upper-channel response in well 5 when well 9 pumps is due to increased 

transmissivity between the two wells, whereas the unchanged response in well 5 when well 8 

pumps reflects the balance of low and high transmissivity regions between these two wells. The 

low-transmissivity region between wells 1 and 11 decreases the response at well 1 when wel111 

pumps. 

Overall, the final product of the sequential model-building produces a reasonable match to 

most of the features of the pressure transients for the three well tests. The decrease in energy 

from E = 20.6 toE = 8.5 as variability is allowed in the middle and upper sand channels suggests 

that heterogeneity within sand channels has a noticeable effect on the flow behavior of the Gypsy 

formation, although the dominant effect remains the presence or absence of the extremely low

permeability clay layers. 
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Figure 6.57. Transmissivity distributions for three co-inversions of tests 90/S lff2, 90/S2ff2, and 
90/S3ff2 in which the inversion searched for heterogeneities within the upper sand channel. 
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6.4.11 Cross-Validation Studies 

Of the upper/middle sand channel well tests, two pairs of tests were done using the same 

subset of the six pilot-site wells but with different pumping wells, which makes them good candi

dates for a simple cross-validation study in which the model developed by analyzing one test is 

used to predict the other. As summarized in Table 6.8, each of the four predictions yields a much 

higher energy than does the model calibrated using that particular test. Some increase in energy 

is expected, as different flow fields are set up by the different pumping wells, however, for three 

of the four tests the prediction made with the opposite model is no better than that obtained using 

a uniform-medium model. The lack of reciprocity between the pressure responses of tests 

90/S4/T2 and 90/Sl/T2, shown in Table 6.3, provides a possible explanation for the mediocre 

predictions for this pair of tests. The data required to check reciprocity are not available for tests 

90/S2/T2 and 90/S2/T3. lf reciprocity does hold, the poor predictions for these tests suggests that 

the simple model used for single-test inversions (uniform sand channels above and below a 

heterogeneous clay/sand layer) is fundamentally inadequate to represent the upper/middle sand 

channel system. 

Table 6.8. Energies for cross-validation studies among upper/middle sand channel tests using 
common wells. 

Test Pumping Observation Best Predicted Uniform 
Interval Wells Single-test Using Other Medium 

Inversion Best Modelt Model:j: 
90/S1/T2 11m 1, 5, 7 14 32 76 
90/S4/T2 1m 5, 7, 11 7 26 29 
90/S2/T2 9m 1,5, 7,11 9 23 17 
90/S2/T3 9u 1,5, 7,11 15 80 30 

tModel from 90/Sl/T2 used to predict 90/S4/T2 and vice versa; model from 90/S2/T2 used to 
predict 90/S2/T3 and vice versa. 
:j:Middle sand transmissivity and storativity taken from base values for best co-inversion of tests 
90/Sl/T2, 90/S2/T2, and 90/S3/T2: T0 =2.7lxlo-5 m2/s, S0 =4.4x1o-5, upper sand 1/10th as 
transmissive as middle sand, no intermediate clay layer. · 

The large decrease in energy obtained for the co-inversion of tests 90/S 1/T2, 90/S2/T2, and 

90/S3/T2 when variability in the upper and middle sand channels was considered (Section 6.4.10) 

suggests that this variability is an important feature of the system as a whole. If this is the case, 

then the more complicated model developed in the sequential model building exercise should do 

a better job predicting responses to individual tests than did the simple models used above for 

cross-validation. Table 6.9 summarizes a cross-validation study in which three models of 
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steadily increasing complexity are used to predict the pressure responses of all the single-well 

tests involving upper/middle channel intervals. The simplest model considers the upper and mid

dle sand channels to be a single uniform layer. The second model is based on interpolating 

borehole lithologic information, as described in Section 6.4.9. It considers uniform upper and 

middle sand channels which are separated by a discontinuous clay layer with a triangular shaped 

gap in it. The third model is the result of the sequential model building process described in Sec

tion 6.4.1 0. It considers heterogeneities in all three layers, as inferred from a co-inversion of tests 

90/S 1/T2, 90/S2/T2, and 90/S3/T2. 

In general there is a decrease in energy as one progresses from the uniform-medium model, 

to the triangular-gap model, to the sequentially-co-inverted model, supporting the conceptual 

model and approach to inversion being taken. The sequential model is expected to improve the 

results for tests 90/S 1/T2, 90/S2/T2, and 90/S3/T2, since their responses were used in the co

inversion from which it was derived. The rigorous cross-validation check is for tests 90/S2/T3, 

90/S4/T2, 89/S2/T3, and 89/S2/T4. Compared to a uniform-medium model, the energy for test 

90/S2/T3 decreases significantly using the sequential model, whereas it increases for the 

triangular-gap model. Recalling that test 90/S2/T3 is the only test which pumped from the upper 

sahd channel, and that it did poorly in the common-well cross validation study shown in Table 

6.8, these results suggest that variability in the upper sand channel is important, and is reasonably 

represented by the sequential model. In contrast, the energy for 90/S4/T2 does not decrease for 

the sequential model. This is not too surprising considering that the reciprocity check shown in 

Table 6.3 indicated that tests 90/S 1/T2 and 90/S4/T2 did not produce consistent results. 

The energy for the 1989 tests is much greater for the sequential model than for either of the 

two simpler models. It is problematic to include these tests in the inversion process because each 

test has such limited observed data available (for test 89/S2/T3 there are two observed pressure 

transients in the middle sand channel and for te~t 89/S2/T4 there is one observed pressure tran

sien.t in the upper sand channel). Thus neither test can be used alone to obtain any information on 

vertical variability, or much information on lateral heterogeneities. In fact, both tests can be very 

well matched using a uniform-medium model, as shown in the final column of Table 6.9. A 

further complication is that well 5, the pumping well for the 1989 tests, is screened over both the 

upper and middle sand channels so it is not clear how to specify where fluid is pumped from in 

the model. For the triangular-gap model, where fluid is pumped from makes little difference, as 

the vertical permeability at well 5 is very high. For the sequential model, on the other hand, a 

factor of two difference in energy is possible. Finally, the reciprocity check shown in Table 6.3 
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suggests that there may be problems associated with test 89/S2ff3, although other evidence sup

ports test 90/S4ff2 as the unreliable one. In spite of all these problems, the huge energies 

obtained for the 1989 tests using the sequential model indicate that there is something wrong with 

the sequential model in the vicinity of well 5. This finding suggests that using well 5 as an obser

vation well does not provide as much information as using it as a pumping well would. In hind

sight, perhaps this should not be too surprising in light of the lithologic evidence that the charac

ter of the upper and middle sand channels changes strongly around well 5, going from two 

separate channels to a single channel. 

Table 6.9. Energies for cross-validation studies using various models for all upper/middle sand 
channel tests. 

Test Pumping Uniform Triangular Sequentially Best 
Intervals Medium Gap Co-inverted Single-test 
Modelt Modelt Model§ Inversion 

90/S1ff2 lim 76 32 9 14 
90/S2ff2 9m 17 28 10 9 
90/S2ff3 9u 30 47 14 15 
90/S3ff2 8u/m 29 23 6 10 
90/S4ff2 1m 29 18 24 7 
89/S2ff3 5ulm 14 22 118 1 
89/S2/T4 5ulm 8 1 95 0.3 

tMiddle sand transmissivity and storativity taken from base values for best co-inversion of tests 
90/S1ff2, 90/S2ff2, and 90/S3/T2: T0 = 2.71x10-5 m2/s, S0 = 4.4x1o-5, upper sand 1/10th as 
transmissive as middle sand, no intermediate clay layer. 
tBest lithology-constrained model described in Section 6.4.9. 
§Based on the co-inversion of90/S1/T2, 90/S2ff2, and 90/S3/T2 described in Section 6.4.10. 
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6.5 COMPARISON OF HYDROLOGIC INVERSION WITH CROSS-WEU SEISMIC IMAGING 

6.5.I Overview of Cross-Well Seismic Data 

BP conducted a series of cross-well seismic surveys at the Gypsy pilot site, using well pairs 

1 and 5, 1 and 7, and 5 and 7, and source and receiver spacings of either 0.6 or 3 m (two or ten 

feet)., We have interpreted data from the 0.6-m-spacing surveys for each well pair in light of the 

lithological model, shown in schematic form in Figure 6.59, and the implications from the well

test analyses that the dense red clay layer is a continuous barrier to flow while the upper clay 

layer is only a local barrier. The upper clay layer is present in wells 1 and 7 but absent in wellS, 

and its extent between the three wells is unknown. The layers shown in Figure 6.59 are just 

linear interpolations between the sand-clay transition depths observed in the wells. 

The cross-weB seismic data for each of the three well pairs have been displayed as both 

common source gathers and common receiver gathers. The data quality is good, with features 

such as refractions, tube waves, and possible reflections readily apparent. These displays provide 

a good view of near-well lithologic variations (the common source gathers illustrate variation at 

the receiver while the common receiver gathers illustrate variation at the source), and all the vari

ations in borehole lithology shown in Figure 6.59 can be identified. The cross-well seismic data 

is also consistent with the digital array sonic logs conducted in each well, and corresponds most 

closely to the variations in shear wave component, though no sheer waves exist in the data. 

While it is useful to verify that lithological, geophysical-log, and cross-weB data provide 

consistent information at well locations, the real purpose of cross-weB surveying is to interpolate 

to regions between wells. First-arrival-time inversions, reflection studies, and guided wave ana

lyses may be used to attempt this. 

6.5.2 First Arrival-Time Inversions 

A computerized inversion of first arrival times for well pair 5 and 7 [Vasco et al., 1996] 

indicates a pronounced low-velocity zone over the Gypsy sand interval, depths of 280 to 300 m 

(930 to 990 feet), as shown in Figure 6.60. The presence of the intervening clay layers cannot be 

ascertained from this analysis of the first arrival times. As shown in Figure 6.59, these layers are 

probably only about 1 to 2.5 m thick, which is small compared to the cross-well source and 

receiver spacing of 0.6 m and the dominant seismic wavelength of about 3 m, making it possible 

that these layers are too thin to resolve. Another limitation of first-arrival-time inversion arises 

from the difficulty in picking first arrivals. In many cases the first arrival is probably not the 

direct arrival. In a low velocity layer the first arrival will be the refracted or head wave. 
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Figure 6.59. Schematic lithologic cross-sections of the Gypsy pilot site for well pairs 1 and 5, 1 
and 7, and 5 and 7, for which cross-well seismic surveys were conducted by BP. 

I 
\ r 

-.J 

~ 

' ~ 
-~ 

\ 

\ 

\ 
,,, I 
'' 

r= 

\ 

r 



-209-

...., 

..:._\.. 

~ 

1 \;r 

' I 

-""'-., 

~115 ~117 

~ I 845 257 ,, 
I . 
I 

885 269 
I 

\ I p -
Q) /""""'\. 

j ' ~ 925 281 g 
e,,.,_, t ~ 

' 0.. 
·' 

~ ~ ' 1 965 294 
\ ; 

J ~· 1005 306 

) 
1045 318 

I 100m 

\ -l 

Figure 6.59. continued. 





.. ,,--"--. 

~ 

Well7 
Source 

260·· 

g 280 
:E 
Q.· 

~ 300 

320 

~ . -~ ./ 

'~ _.J ' -,, / 

. --- } 
("" """ . ~ ,. ? ---- / t . /,--' ... -~' ~./ i'~ ~ ~' . 

-...... ~ ,, 

WellS 
Receiver 

846 

906 

966 

r1026 

..... 
'=' 
:E 
Q. 
(I) 
c 

~--- .. 108m----. 

-0.3 VEL. DEV. (KM/S) 
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6.5.3 Reflection Studies 

We have examined reflection signatures in the common source/multiple receiver gathers 

from the cross-well seismic survey from well 5 to well 1, in conjunction with hydrologic results. 

Reflections show up as 'V' shapes in the common source/multiple· receiver gathers, with the apex 
I 

of the V at the depth of the layer off which . seismic waves reflect. There is a strong reflection 

from the Tallant/Gypsy interface at depths of about 300 m (990 feet) when the source and 

receivers are above the interface (Figure 6.61), and a weaker signal when the source and receivers 
I 

are below it. We also see some indication of reflections off the boundary between the top of the 

Gypsy and the overlying flood plain deposits at a depth of about 287 m (942 feet). Figure 6.61 

also suggests that there are reflections off the dense red clay layer at the 295 m (970 foot) depth, 

but shows no evidence of any reflections at the depth of the upper clay layer, 290 m (950 feet). 

This suggests that the gap in the upper clay layer observed at well 5 is an extensive rather than 

highly localized feature, which is consistent with the results of the hydrologic inversions of the 

upper/middle sand channels. However, these conclusions must be categorized as tentative 
I 

because the aspect ratio of the Gypsy seismic surveys (well spacing 100m or more compared to 
I 

formation thickness of 15-20 m) makes interpretation of reflection signals difficult, as most rays 

arrive nearly parallel to one another. 

6.5.4 Guided Wave Analyses 

i 
If there are continuous low-velocity paths between wells, 'it may be possible for guided 

I 

seismic waves to propagate. These waves show less attenuatiort than do conventional seismic 

waves, and can be identified in common source or common receiver gathers as high-amplitude 

high-frequency signals which last a long time and occur when both the source and receiver are at 

the depth of the wave guide. Figure 6.62 shows a possible guided wave between wells 5 and 7, at 

the depth of the lower sand channel. No such signals were found at the depths of the upper and 

middle sand channels. These findings are consistent with the well-test findings that the lower 

sand channel is a continuous, isolated channel which supports propagation of a guided wave 

whereas the upper and middle channels are intermi,ttently connect~d, so do not allow propagation 

of guided waves. 
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Figure 6.61. Common source/multiple receiver gathers for the 0.6-m (two-foot) cross-well 
seismic survey between wells 1 and 5; some interpretations made in conjunction with the geolo
gic and hydrologic data are noted. 
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Figure 6.62. Example of possible guided waves at the depth of the lower sand channel at the 
Gypsy pilot site. 
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6.6 COMPARISON WITH TRADITIONAL GEOSTATISTICALANALYSIS 

6.6.I Introduction 

The use of interference tests to help build hydrological models, as described in the present 

work, is not the only way to characterize heterogeneous reservoirs. Another approach, examined 

in this section, is to estimate transmissivity values at various locations in the reservoir from 

single-well tests (most often buildup tests), then interpolate between these locations using geosta

tistical information derived from core-scale measurements of permeability. Permeabilities meas

ured on core plugs taken from the Gypsy outcrop-site are used to construct variograms, and 

transmissivity values inferred from pilot-site pressure buildup tests are used as conditioning 

points for the generation of a two-dimensional areal transmissivity distribution for the lower sand 

channel at the pilot site. This transmissivity distribution is then used to model several lower

sand-channel interference tests, and the results are compared with previous inversion results. 

6.6.2 Estimation ofVariograms 

The outcrop site provides two extensive permeability data sets. The first is from the road

cut exposure (Figure 6.1), and consists of 990 permeability values. The second is from 22 of the 

boreholes drilled behind the road cut, which are spaced 30 to 60 m (100 to 200 feet) apart in a 

rectangular array (Figure 6.2), and consists of 1051 permeability values. Because of the large 

size of these two data sets, and the different coordinate systems used to identify data locations in 

each one, they were analyzed separately. A public-domain set of computer codes known as Geos

tat Toolbox was used for the variography analysis. The log of permeability, rather than permea

bility itself, is used as the basis for calculating the variograms. Because the variograms will be 

used to estimate lateral variability in a two-dimensional model, no vertical-direction variograms 

were constructed. 

The road-cut permeability data points are identified by (x ,y ,z) coordinates, where x 

increases from west to east along the road cut, which runs nearly east-west, y increases from 

south to north (the road cut is nearly vertical, but is divided into sections with three different y 

values by two benches), and z increases upward. To make the large data set more manageable, 

x -direction variograms for each of the three y values were created separately, as shown in Figure 

6.63. The three variograms all show rather different sill values, but similar correlation lengths of 

about 30 meters. 
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Figure 6.63. Variograms of log permeability from the Gypsy outcrop site road-cut (R.C.) and 
boring (B.) data. 

The boring permeability data points also use x increasing from west to east, y increasing 

from north to south, and z increasing upward. In this case, there are enough different x and y 

values to create both x- and y -directional variograms, in addition to an omni-directional 

variogram, as shown in Figure 6.63. The variograms for the different directions are similar. A 
I 

comparison of the road-cut variograms -and boring variograms suggests a continuous variogram 

can be constructed by using they = 0 m road-cut data for small lag~ and the omni-directional bor-
' 

ing data for large lags. Such a combination variogram is shown in Figure 6.64, along with a fitted 

curve, given by r= 4h 0·
25

. 

6.6.3 Generation of Transmissivity Distribution 

Two methods were used to generate transmissivity distributions for the lower sand channel 

of the Gypsy pilot site. In both cases transmissivity values inferred from matching analytical 

solutions to lower-sand-channel buildup tests in wells 1, 5, 7, 8, and 11 [Dowdle et al., 1990; 
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200 

Figure 6.64. V ariogram combining y = 0 m road-cut data and omni-directional boring data. 
Grey points are the original points; black points are equally spaced points used by CRFGEN. 
The solid curve is a power law fit to the data, used for kriging. 

Papadopulos et al., 1991] were used as conditioning points at which the transmissivity was held 

fixed. Results from the buildup test for well 9 were not included because of the suspected packer 

failure in that well. Figure 6.65 shows a kriged transmissivity distribution, which provides a 

smooth interpolation between the five fixed points. The kriging interpolation uses a log permea

bility distribution with a mean of 7.15 (e 7·15 is the permeability in millidarcies corresponding to 

the arithmetic average of the five buildup-test transmissivities, assuming a lower-sand-channel 

thickness of 8 m (26.3 feet)) a standard deviation of 3.7 (the square root of the sill of the road-cut 

variogram for y = 0 m), and the power-law approximation to the observed variogram shown in 

Figure 6.64. Figure 6.66 shows two transmissivity distributions created with a correlated-
. . 

random-field generator (here called CRFGEN), which uses simulated annealing to match user-

specified variograms [A. Datta-Gupta, personal communication, 1994]. CRFGEN uses the same 

mean and standard deviation as the kriging interpolation, but can use the actual observed 
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Figure 6.65. Lower-sand-channel transmissivity distribution generated by kriging. 
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7.2-7.25 

7.15-7.2 

7.1-7.15 

7.05-7.1 

7-7.05 

variogram, rather requiring a closed-form curve fit to it, so it is able to include the suggestion of a 

hierarchical structure shown by the multiple sill structure of the points in Figure 6.64. The two 

distributions shown in Figure 6.66 were generated using different random seeds to start the 
' 

matching process. 

The striking difference between the three transmissivity distributions shown in Figures 6.65 
I 

and 6.66 is not altogether unexpected, as a kriged field will always be much smoother than a ran

dom field generated to match a variogram. However, in this case the small-scale variability of 

the transmissivity distribution created by CRFGEN, which is necessary to be consistent with the 

variogram shown in Figure 6.64, overwhelms any conditioning information provided by the 

buildup tests, thus precluding any overall resemblance between the three transmissivity distribu

tions. If the variogram given in Figure 6.64 is assumed to be representative of the lower sand .. 
channel at the pilot site, then the highly variable character of the transmissivity distributions 

created by CRFGEN is more realistic than the smooth character of the kriged field. However, 

there is no reason to suspect that the actual locati~ns of high an~ low permeability features are 

correct, as demonstrated by comparing the two different fields generated with CRFGEN. 

Two attempts were made to generate random fields with more variability than the kriged 

field, but which would show a greater sensitivity to the conditioning points. The first used a 

\? 

\ 
'·· 

\ 

(;; 

\ I 

r'"·,_w 

' _) 

(\ 

_....... 

' ! 

\ 

(' 

I 
\ I 

\ I 

( 



I ' 
'··"" 

\ i 

I r 

f. 
.-

' ' 

\ 

' I 

II 14-16 

11112-14 

Ill 10-12 

Ill 8-10 

IN 6-8 

ffiSJ 4-6 

[]] 2-4 

0 0-2 

Ill 14-16 

1111 12-14 

• 10-12 

111 '8-10 

l!l 6-8 

Bill 4-6 

[JJ 2-4 

0 0-2 

-219-

Figure 6.66. Lower-sand-channel transmissivity distributions generated by the correlated random 
field generator CRFGEN, using the variogram shown in Figure 6.64. 
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power-law curve fit to they = 5 m road-cut variogram, shown in Figure 6.67, which has a some

what lower sill than the boring variograms have. 
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Figure 6.67. V ariogram for they = 5 m road-cut data and a power-law curve fit to it. 
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Log permeability values from the y = 5 m section of the road cut have a higher mean and smaller 

variance than do values from they = 0 m or y = 32 m sections, because they correspond to a mid

dle range of z values which are composed almost entirely of channel sands, rather than combin

ing channel and flood plain deposits as do the higher and lower level samples (see Figure 6.2). If 

one a.ssumes that the model of the lower sand channel at the pilot site is likewise comprised 

predominantly of channel sands, with the overlyin.g and underlying low-permeability layers pro

viding no-flow boundary conditions, rather than being part of the model, then it may be more 

appropriate to use this variogram in the construction of a lower-sand-channel model. Figure 6.68 

shows two transmissivity distributions generated with CRFGEN using different random seeds. 

While there is substantially less variability than in Figure 6.66, the conditioning points still have 

a negligible effect. 
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Figure 6.68. Lower-sand-channel transmissivity distribution generated by the correlated random 
field generator CRFGEN, using a power-law fit to they = 5 m variogram shown in Figure 6.67. 
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The second attempt to create a less variable transmissivity distribution abandons any 

attempt to use core-scale permeability measurements from the outcrop site, and instead uses the 

variogram shown in Figure 6.69, which was constructed using information from the pilot-site 

buildup tests. 
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Figure 6.69. Ad hoc variogram constructed from pilot-site pressure buildup data. 

200 

The variogram sill is equal to the variance of the five transmissivity values inferred from the 

pilot-site buildup tests. The correlation distance is about 50 m, half the distance between the 

pilot-site wells. This value was chosen based on the notion that a buildup test integrates 

transmissivity values from a large area around the well. Figure 6.70 shows two transmissivity 

distributions generated by CRFGEN using the variogram shown in Figure 6.69 and two different 

random seeds. There is substantially less variability than in the previous CRFGEN fields, and the 
I 

conditioning points now have a noticeable effect. · 
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Figure 6.70. Lower-sand-channel transmissivity distributions generated by the correlated random 
field generator CRFGEN, using the pilot-site variogram shown in Figure 6.69. 
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6.6.4 Simulation of Well Tests 

Simulating tests 90/S1ff1, 90/S3ff1, and 90/S4ff1 provides a stringent test of a model, as 

the model must reproduce the three different flow fields that arise because a different pumping 

well is used for each test. Table 6.10 summarizes the energies for simulations of these three tests 

using the geostatistically-derived models shown in the previous section, using a uniform-medium 

model, and using models inferred from IFS inversions that include varying amounts of observed 

data. The IFS co-inversion of all three tests which used all the available observed data was 

described in Section 6.3.6; it provides a baseline against which the other models can be com

pared. This co-inversion yields an energy of E = 2.3 and, as shown in Figure 6.71, a produces 

noticeably better match to all the main features of the pressure transients than does a uniform

medium model (E = 11), indicating that heterogeneity does play a significant role in controlling 

flow behavior in the reservoir. 

Table 6.10. Energies for a simulation of tests 90/S1ff1, 90/S3ff1, and 90/S4ff1, using various 
transmissivity distributions. 

Model 

Uniform Medium 

Geostatistical Modelst 

Kriged Field ( cr = 3. 7) 
CRFGEN (cr = 3.7) 
CRFGEN (cr= 3.7) 
CRFGEN ( cr = 2.4) 
CRFGEN (cr = 2.4) 
CRFGEN (cr=0.14) 
CRFGEN (cr=0.14) 

Hydrologic Inversions 

Inversion oftest 90/S4ff1 
Inversion of test 90/S3ff1 
Co-inversion of tests 90/S3ff1, 90/S4ffl 
Co-inversion of tests 90/S1ff1, 90/S3ff1, 

and 90/S4ff1, well5 data omitted 

Transmissivity Distribution 

Figure 6.65 
Figure 6.66 top frame 
Figure 6.66 bottom frame 
Figure 6.68 top frame 
Figure 6.68 bottom frame 
Figure 6.70 top frame 
Figure 6.70 bottom frame 

Figure 6.18 third frame in top row 
Figure 6.21 
Figure 6.29 top frame 
Figure 6.73 

Co-inversion of tests 90/S1ff1, 90/S3ff1, Figure 6.30 
and 90/S4ff1 

Energy:j: 

11 

11 
17 
43 
24 
44 
10 
11 

11 
20 
4 
3 

2 

tAll geostatistical models use a mean log permeability of 7.15. The standard deviation cr equals the square 
root of the sill of the variogram. 
:j:Rounded off to integral values 

Table 6.10 shows that neither the kriged model (E = 11) nor the CRFGEN models (lowest 

E = 10) yields an energy significantly lower than that obtained with a uniform-medium model 

(E = 11 ), suggesting that the nature of the heterogeneity cannot be adequately captured using 
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single-well test results and a geostatistical approach. Interestingly, the highly variable CRFGEN 

models that were created using variograms based on core-scale log-permeability measurements 

with cr = 2.4 and 3.7 produce higher energies (E = 17 - 44) than do models created using 

variograms based on single-well-tests with cr = 0.14 (E = 10- 11), pointing out the uncertainties 

involved in upscaling. 

Neither of the models obtained from an IF'S inversion of a single well test, with observation 

wells covering only a part of the well field (tests 90/S4/T1, with E = 11 and 90/S3/Tl, with 

E = 20) produces a lower energy than does the uniform-medium model (E = 11). This reiterates 

the conclusion that to predict flow conditions throughout a heterogeneous reservoir, it is 

beneficial to use interference data from as much of the reservoir as possible. 

Two models obtained from co-inversions which omitted some of the data for tests 

90/Sl/T1, 90/S3/Tl, and 90/S4/Tl do improve on the uniform-medium model. The relatively 

low energies obtained from these models (E = 3.2 and 3.8) suggests that most of the key features 

of the transmissivity distribution have been accounted for. The first model was created by co

inverting all observation well data for just two of the three well tests (90/S3/Tl and 90/S4/Tl, the 

co-inversion is described in Section 6.3.5). The second model was created by co-inverting all 

three tests (90/S1/Tl, 90/S3/Tl, and 90/S4/Tl) but omitting all observation data for well 5 (Fig

ure 6.72 shows the pressure transients obtained by the co-inversion and Figure 6.73 shows the 

corresponding transmissivity distribution). Both types of data exclusion mimic a possible 

sequence of reservoir characterization. In the first case, one has a given number of wells and 

wants to know how many well tests need to be run. When the inclusion of an additional test in 

the co-inversion procedure does not result in a significant energy increase, enough tests have been 

conducted. In the second case, one wants to know how many more wells need to be drilled. 

When the inclusion of data from a new well in the co-inversion procedure does not result in a 

significant energy increase, enough wells have been drilled. 

6.6.5 Conclusions from Traditional Analysis Comparison 

The ability of a hydrologic model developed with one set of data to make predictions about 

another data set is a critical attribute for any model being .used as a tool to address real-world 

problems. In general, Table 6.10 shows that the models developed by hydrologic inversion are 

more successful than the geostatistical models in predicting new behavior. The reason for this is 

illustrated in Figure 6.74, which compares the transmissivity distributions obtained by inverting 

all available data (the 'true' picture of the subsurface), the best geostatistical model (the 
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Figure 6.73. The transmissivity distribution returned by a co-inversion of tests 90/Sl/Tl, 
90/S3/Tl, and 90/S4/Tl which omitted all observation data from wellS. 
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CRFGEN model with cr = 0.14, E = 9.8) and the best inverse-based model which omitted some 

data (the no well 5 inversion, E = 3.2). Clearly, the geostatistical model does not capture as 

many features of the 'true' transmissivity distribution as does the inverse-based model. 

It must be pointed out that the present comparison is biased in favor of the inverse-based 

models because the new behavior being predicted is so similar to the behavior used in their model 

development (the addition of one more test or one more observation well to a set of interference

test data). In contrast, the geostatistical models are based on single-well tests and small-scale 

permeability measurements, and then must predict interference-test responses. However, rather 

than pointing out a flaw in the inverse-based models, the similarity between behavior used for 

model development and processes occurring during model application is a major strength of 

inverse-based models, and should be actively considered when designing the tests to be con

ducted as part of a reservoir characterization. 
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6.7 CONCLUSIONS OF GYPSY ANALYSES 

Combining the sequential inversion results for the upper/middle sand channel analyses 

along with the results of the lower sand channel co-inversions produces a three-dimensional pic

ture of subsurface heterogeneity at the Gypsy pilot site, as shown in Figure 6.75, which repro

duces all the key features of the observed pressure data for lower sand channel tests 90/S lffl, 

90/S3!fl , and 90/S4ffl, and upper/middle sand channel tests 90/Slff2, 90/S2/T2, and 90/S3!f2. 

The permeability of the dense red clay layer, separating the lower and middle sand channels is 

not determined by the inverse process, but is assumed to be negligibly small, based on the results 

of the matrix display of well-test responses shown in Figure 6.8. 

A number of specific conclusions can be made regarding the hydrologic and seismic ana

lyses of the Gypsy pilot site. The matrix display of well-test responses, in conjunction with the 

borehole lithology, clearly identifies those portions of the Gypsy system which act independently 

and those which are interconnected, and guides development of the conceptual model of the site. 

Because the lower sand channel is hydrologically isolated from the upper and middle sand chan

nels, it can be analyzed separately, using a two-dimensional model. The lower-sand-channel 

hydrologic inversions predict gradual, relatively small-magnitude variations in sand properties, 

within a hydrologically isolated layer. This is corroborated in the seismic data by the suggestion 

of guided waves at the depth of the lower sand channel, and by reflections off the top and bottom 

of this layer (the dense red clay and the Gypsyffallant contact, respectively). On the other hand, 

the upper and middle sand channels are strongly connected, as indicated in the well-bore litholo

gies by the lack of an upper clay layer in wells 5 and 8, and by the strong responses in both chan

nels during upper/middle sand channel interference tests. The upper/middle sand channel inver

sions, which idealize the upper part of the Gypsy interval as a three-layer system (upper sand, 

middle sand, and an intervening layer represe •• ~ing the discontinuous upper clay layer), require 

sharp, large-magnitude variations in the hydrologic properties of the intervening layer in order to 

match pressure transients. The seismic data supports the finding that the upper clay layer is 

strongly discontinuous, by showing no evidence of guided waves through the upper or middle 

sand channels nor reflections off the upper clay layer. Overall, a largely consistent picture of sub

surface variability has emerged, by making use of an understanding of the geological processes 

which created the formation, considering the well tests individually and as a group, incorporating 

borehole lithologic data, and comparing results to geophysical images. This approach, which 

emphasizes well-field scale observations, is more successful than the traditional geostatistical 

approach, which makes use of hundreds of small-scale permeability measurements. 
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' 
Several more general implications for effective use of the IFS inverse method have been 

brought out by the Gypsy analysis as well. Firstly, it is very useful to co-invert multiple tests 

using different pumping wells, in order to include information from as much of the well field as 

possible, and under different flow conditions. Secondly, in order to meaningfully invert pressure 

data for a highly heterogeneous system, one must carefully choose which observations to include 

in the objective function, and evaluate the pressure transient matches during the course of the 

inversion, rather than merely judging the success or failure of an inversion based on the returned 

energy value. Thirdly, it would be desirable to include the pressure response at the pumping 

well, especially if there are few observations wells with analyzable data. This can be done in a 

straightforward way only if the computational grid is fine enough around the pumping well to 

properly represent the sharp pressure gradients which occur there. Such a fine resolution greatly 

increases computation time, by not only increasing the size of the grid, but also by decreasing the 

length of time step that can be taken. An alternative approach would be to not include pressure 

data at the pumping well directly, but to add a penalty term to the objective function if some key 

feature of the pumping-well response were not matched. For example, in the upper/middle sand 

channel well test in which well 8 pumps (90/S3ff2), the pressure responses in the upper and mid

dle layers of well 8 should be identical, because the upper clay layer is missing there and well 8 

has only one screened zone over the upper/middle sand channel intervals. With a coarse grid, the 

pressure response would not be accurately simulated, but the difference between upper and mid

dle sand channel layers could easily be calculated. 

Finally, the Gypsy analysis has illustrated that code development and code application need 

not be isolated events, but can proceed iteratively. The first step necessary for the Gypsy 

analysis, the modification of TRINET to allow time-varying flow rates, enabled the co-inversion 

of multiple tests, and also required the introduction of the diffusivity optimization. The 

upper/middle sand channel interconnectedness required use of a three-dimensional flow model, 

and led to the concept of sequential inversions using two-dimensional attractors. All of these 

options greatly enhance the applicability of the method. 
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7. SUMMARY, CONCLUSIONS, AND FUTURE WORK 

7.1 SUMMARY 

7.1.1 Development of the IFS Inverse Method 

An inverse method to estimate heterogeneous hydrologic property distributions based on 

well-test analysis has been developed. A numerical model is used to simulate transient draw

downs at multiple observation wells during one or more interference tests. The trial hydrologic 

property distributions considered during the inversion process are generated using iterated func

tion systems (IFS's), and are constructed to have self-similar or fractal geometry, which greatly 

decreases the number of unknown parameters that must be determined by the inversion. A 

variety of standard optimization algorithms may be used to search for the parameters of the IFS 

which minimize the mismatch between the simulated and observed well-test response. The 

objective function, which quantifies this mismatch, is constructed to be most sensitive to early

time pressure data, which contains most of the information on well-field-scale heterogeneities. 

7.1.2 Application of the IFS Inverse Method 

The IFS inverse method has been applied to synthetic data to study its strengths and 

weaknesses and to real data from two field sites. Application to synthetic data has illustrated that 

the method does work successfully in that it provides a hydrologic property distribution which 

reproduces the observed well-test response. However, caution must be used so as not to infer 

more information about the distribution than the well-test data contains. In particular, regions 

away frqm the flow path between the pumping and observation wells ate not well-constrained. 

Use of an ensemble of inversions provides a convenient way to assess the reliability of various 

features of the returned property distributions. Application to field data has motivated develop

ment of many of the features of the IFS inverse method that are necessary to make it work in a 

practical way (e.g., the diffusivity optimization necessary for time-dependent flow rates), and 

pointed out a number of difficulties associated with the use of real data that must be accounted 

for. Most importantly, comparison with other well-test analysis methods (Kesterson) and other 

types of geophysical data (Gypsy) has demonstrated that the IFS inverse method is a useful tool 

for characterizing heterogeneous geologic media. 

Two other applications of the IFS inverse method to field data have been carried out to date. 

The first [Bestir et al., 1991] used an early version of the method to examine well-test data from a 

fractured tuff at the Nevada Test Site. Although only three observation wells were available, 
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making it relatively easy to obtain a good match to the pressure transients, the development of a 

plausible-looking fracture pattern as the inversion proceeded encouraged further development of 

the IFS inverse method. The second application [Doughty et al., 1994] used an interference test 

conducted in a shear zone of a fractured granitic rock at the Stripa mine in Sweden to develop 

several models of transmissivity variations within the fracture zone. The models were then 

checked by using them to predict the inflow to a drift after the conclusion of the interference test. 

This verification exercise not only demonstrated the ability of the IFS inverse method to success

fully identify heterogeneities,, but provided insight into the nature of the transmissivity distribu

tion within the fracture zone. 

7.2 CONCLUSIONS 

7.2.1 The Value of Hydrologic Inversion 

Geologic media are highly heterogeneous on many overlapping scales, making it very 

difficult to take laboratory measurements of flow or transport properties on core or outcrop sam

ples (typically on a scale of a few centimeters), and upscale them so that they can be applied at a 

field-wide scale (typically tens to thousands of meters, depending on the application). A variety 

of idealized conceptual models are available for upscaling, ranging from the assumption of sta

tionarity and ergodicity at some scale, above which a stochastic treatment may be used, to the 

assumption of a fractal geometry in which variability repeats itself at all scales. Rather than rely

ing on such idealizations, an alternative approach is to use hydrologic inversion to attempt to 

determine effective properties at the scale of interest in the first place, and eliminate any need to 
--

scale up. This approach requires that the scale at which parameter identification is done be 

chosen specifically for the application at hand. For example, for the clean-up of a contaminant 

plume in a groundwater aquifer, inverting interference-test or tracer-test data using wells in the 

vicinity of the plume would make sense. For understanding regional variability of a water-supply 

aquifer, an inversion of regional head data would be appropriate. 

Inverting pressure or flow data to obtain permeability is in fact just what permeameters do, 

albeit at a much smaller scale, where flow through a homogeneous medium in a known geometry 

permits the direct inversion of the flow equation to determine permeability. At the larger scales 

of interest, heterogeneities preclude knowledge of exact flow geometry, so the flow equation must 

be inverted indirectly. The indirect inversion procedure described in the present work consists of 

numerically simulating an interference test using a mathematical model of the subsurface, 
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assuming some distribution of hydrological properties (the parameters of the model), then com

paring the calculated and observed pressure responses, and based on this comparison, modifying 

the parameters of the rnodel and repeating the simulation. This procedure continues until a satis

factory match between the observed and calculated data is obtained, and the corresponding model 

parameters are accepted as providing a possible representation of the hydrological property distri

bution. An analogous procedure can be applied invert to tracer-test data or regional hydraulic 

head data. 

A common complaint about hydrologic or tracer inversion methods, that they do not pro- . 

vide a unique representation of the subsurface property distribution, is mitigated if the test used 

for parameter identification is similar enough to the ultimate application for which the characteri

zation is being done. In this case, while it is true that the model may not contain the 'true' per

meability distribution, it contains one that will produce the correct response for the problem at 

hand, which is just what is needed. It is therefore necessary that the test used for parameter 

identification be as relevant to the ultimate application as possible. A straightforward way to 

achieve this condition is to use the ultimate application itself as the 'test' to be inverted. Thus 

parameter estimation and ultimate application proceed concurrently in a prediction/correction 

mode, each becoming more effective as they progress_ and exchange information. 

Another way to alleviate non-uniqueness is to constrain the inversion process with geologi

cal or other external information. Not surprisingly, one useful piece of information in this regard 

is how heterogeneity varies with scale, which is embodied in the self-similar character of the IPS 

attractor (in rotation-matrix form, the parameter C controls the scaling behavior of an attractor) 

Thus, constructing a heterogeneous permeability distribution with an IPS means that we end up 

invoking an idealized scaling model after all. However, this approach differs from classical ups

caling in one fundamental way: rather than studying behavior at a small scale and upscaling to 

the application scale, we study behavior at the application scale, and invoke a model for downs

caling only as necessary to reproduce that large-scale behavior. 

7.2.2 Advantages of a Fractal Approach to Hydrologic Inversion 

Fewer parameters are needed to describe a self-similar geometry than a general heterogene

ous geometry, improving the efficiency and robustness of the inversion. Equally important is that 

the final parameter set produces a hydrologic property distribution with a hierarchical structure, 

which is consistent with the wide range of scales of heterogeneities seen in natural geological 

media. Constraining the parameters of the IPS during the inversion constrains the resulting 
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attractor shapes, which may make it possible to limit the search for hydrologic property distribu

tions to those consistent with conceptual geological models or with other additional information. 

The IFS inversion method does not always return a uniquely determined hydrologic pro

perty distribution. This is not a failure of the method itself, but rather reflects on the limitations 

of the information contained in the well-test response. In fact, one of the significant uses of 

hydrologic inversion (not limited to the IFS method) is to assess the information content of the 

well-test data. By making multiple inversions of a given well test, and comparing the returned 

hydrologic property distributions, one can discern from the common features those regions which 

have the greatest influence on the well test and their hydrologic properties, and from the contrad

ictory features those regions to which the well-test response is not sensitive, a process which can 

help identify where to drill additional wells for imprqved testing. 

7.2} Limitations of a Fractal Approach to Hydrologic Inversion 

Despite the advantages described above, the full mathematical and philosophical beauty of 

fractals cannot be fully exploited for hydrologic inversion. One problem is that the use of finite

resolution and finite-extent numerical models limits the representation of fractals to only a few 

scales. This is more of a problem in practice rather than in principle, however, as arbitrarily 

high-resolution and spatially-extensive grids can be designed. A more severe problem arises 

from the diffusive nature of the flow equation coupled with the scarcity of observation locations 

during a well test, which severely limits the information content of the observed well-test data. It 

appears unrealistic to hope to glean from such information more than a glimpse into the true 

underlying geometry of a site. However, the ultimate goal of these studies is not complete 

knowledge about the multiplicity of scales of heterogeneity present at a site, but a mathematical 

model that may be used to predict flow and transport at the well-field scale. By construction, the 

models developed inverting well-test data do just that. 

7.3 FUTURE WORK 

7.3.I Further Development of the IFS Inverse Method 

Application of a two-dimensional version of the IFS inversion method to synthetic and field 

data has shown its promise, but further work to i~prove code efficiency and robustness would 

greatly enhance its value. A more efficient code would allow problems of the present level of 

complexity (single-phase flow, two-dimensional attractors) to be solved much more rapidly, mak

ing the method more widely useful outside a purely research environment. Improved efficiency 
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would also allow much more computationally intensive problems (e.g., multi-phase multi

component flow, fully three-dimensional models) to be addressed. Code efficiency could be 

improved in three ways: 1) doing the forward calculation more efficiently; 2) searching through 

unknown parameter space more effectively; and 3) decreasing the size of the parameter space to 

be searched. Each of these areas is briefly discussed below. 

Because the IFS inverse method typically does thousands of forward calculations during the 

· course of an inversion, the numerical simulation of the forward problem must be as efficient as 

possible. One exciting possibility for improving the efficiency of the numerical solution of the 

flow equation is to take the Laplace transform of the governing equations, and thus eliminate time 

from the numerical model [Moridis and Reddell, 1991]. Spatial discretization of heterogeneities 

remains unchanged, but the solution is reached via a single step, rather than marching through a 

series of time steps. Therefore, the more time steps a conventional solution requires, the greater 

the speedup achieved by using the Laplace transform; the break-even point is for a calculation 

requiring 10 time steps. Because the flow problem is solved in the Laplace domain rather than in 

the time domain, the observed pressure responses must also be Laplace transformed, which 

requires that they be approximated by analytical forms. Rather than being an impediment to a 

successful inversion, this step is readily achieved wit~ commercially available graphical software, 

and provides an opportunity for an experienced user to choose which parts of the response curyes 

to emphasize, or to clean up noisy data. 

Another possibility for improving efficiency of the forward calculation is to replace the flow 

calculations with a trained artificial neural network. Such an approach has been used to deter

mine optimal placement of remediation wells in groundwater clean-up operations [Rogers and 

Dow/a, 1993]. The problem of characterizing heterogeneous media is more demanding than that 

of optimally locating remediation wells, because there are more unknown parameters to deal 

with, but the potential savings in computational time could be significant, making this a 

worthwhile approach to consider. 

' 
Another means of improving the overall efficiency of the inverse method is to improve the 

optimization algorithm. Optimization algorithms such as simplex annealing, which combine 

intelligent choices for new parameter values with the ability to escape local minima seem very 

promising, and should be investigated further. Typical hydrologic inversions using IFS's require 

many unknown parameters, making direct visualization of a two-dimensional energy surface as 

was done in Section 3.3.2 impossible. However, ann -dimensional polynomial objective function 
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could be constructed in order to asses the strengths and weaknesses of various optimization algo

rithms under high-dimensional conditions. 

One of the frustrating aspects of using an automated inversion method is that while moni

toring the progress of the inversion, it is common to look at the trial permeability distributions 

being considered and think that better choices could be made by hand. User intuition is a valu

able component of successful hydrologic analysis, and not one readily transportable to computers. 

A possible solution to this problem would be to make the inversion a more interactive process, 

which would allow convenient user intervention to implement intuitive choices. 

Both the efficiency and robustness of an inverse method can be improved by decreasing the 

size of the unknown parameter space. This is already achieved in the IPS inverse method to a 

great extent by making use of the self-similarity of fractal attractors to represent hydrologic pro

perty distributions. Constraining the form of the attractors considered during the inversion to 

conform to geologic information further improves the situation, and should be developed more 

extensively. In a related area, alternate methods for mapping the attractor to the lattice could be 

used to better represent geological structure or features observed in geophysical imaging. For 

example, the distributed map could be modified to create elliptical rather than circular regions of 

altered permeability, with the long axes aligned with paleoflow direction in a fluvial system, or 

the dominant fracture orientation in a fractured system. This approach would be especially valu

able used in conjunction with well tests involving only a few observation wells, in which hetero

geneity resolution is intrinsically limited. Attractors composed of relatively few points (created 

by fewer iterations of Equation (2.2)) could be mapped to broad, geologically-based shapes, 

yielding -a low-resolution picture of heterogeneity consistent with the information content of the 

well test. 

Improving the robustness of the inverse method (that is, making the returned property distri

bution more reliable) would be very useful, as it would allow less experienced users to run the 

code effectively. One method of enhancing robustness would be to couple the hydrologic inver

sion process more closely to analysis of other kinds of data. As illustrated in Figure 4.5, co

inverting multiple well tests can make the analysis sensitive to greater portions of the flow region. 

This concept can be extended by co-inverting different kinds of data, for example adding seismic 

or electromagnetic measurements to the objective function, and adding the corresponding simula

tions to the forward calculation. A more economical means of improving uniqueness is to condi

tion the inversion of a hydrologic interference test by adding penalty terms to the objective 
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function to reflect mismatches to known hydrologic property data. Another possibility would be 

to do a geostatistical analysis of each trial hydrologic property distribution and reject those which 

contradict observed geostatistical parameters. 

7.3.2 Further Applications of the IFS Inversion Method 

One·of the strengths of the hydrologic inversion method is that it uses observations of pres

sures and fluid flow to develop models that will be used to predict pressure and fluid flow - no 

subsidiary relation to the process of interest is required as is the case when geological mapping or 

geophysical imaging is used to build a flow model. Current studies have focused on well-test 

. analysis, but regional flow problems should be amenable to IFS inversion as well. Predicting 

fluid flow is the ultimate goal for applications such as estimating water supply or optimizing oil 

recovery. For studies involving remediation of contaminated aquifers or storage of nuclear waste, 

understanding solute transport via fluid flow is the ultimate goal, rather than studying the flow 

itself, making the inversion of solute transport data desirable. Such inversion can be incorporated 

in the IFS framework in a straightforward manner, and may yield noteworthy results because the 

equation governing solute transport contains an advective as well diffusive term, which may 

strongly impact the inversion process. 

The ability to treat problems in which both the flow domain and the attractor are three

dimensional will require only minor modifications to the IFS inverse method, as described in Sec

tion 2.1. However, treating fully three-dimensional problems will be computationally intensive 

not only because of the larger computational grids required, but because of the increase in the 

number of unknown parameters. Additionally, the use of three-dimensional attractors may cause 

some practical problems as it becomes more difficult to visualize the attractor during the course 

of the inversion. 

So far, the IFS inverse method has only been applied to isothermal, single-phase liquid flow 

problems. By using a numerical simulator such as TOUGH2 [Pruess, 1987, 1991] for the for

ward calculation, non-isothermal, multi-phase, multi-component flow problems could also be 

tackled. It would be straightforward to replace TRINET with TOUGH2 in the IFS inverse 

method. However, TOUGH2 has already been embedded in an inverse method, ITOUGH2 [Fin

sterle, 1993], which incorporates powerful features for analyzing the results of an inversion, as 

well as a flexible user interface for constructing the objective function. It would therefore make 

more sense to add the IFS method of generating trial property distributions to ITOUGH2. This 

modification would greatly increase the range of applicability of the IFS inverse method, 
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allowing analysis of hydrologic data from a great range of environments, including the use of his

tory data from producing geothermal and petroleum reservoirs. 

It is common to do a hydrogeologic characterization of one location, then try to extrapolate 

. the results to a neighboring region. This situation may arise in a contaminant cleanup operation, 

where a well test cannot be conducted using wells within a contaminant plume for fear of spread

ing the plume to previously clean locations, or in characterization of a potential waste· storage 

site, where drilling additional wells could compromise the integrity of the site. No inverse 

method can make deterministic predictions about an area beyond the region to which well-test 

responses are sensitive. However, statistical predictions can be used for extrapolation. One com

mon procedure is to make the statistical assumption of stationarity, that is, a pattern found at one 

location is repeated indefinitely in all directions away from that location, as suggested schemati

cally in the left column of Figure 7 .1. The fractal character of the IPS-generated property distri

butions provides a means for upscaling results without invoking the stationarity assumption. 

Instead, the assumption is made that the fractal property distribution found for the studied region 

is actually a just_a part of a larger fractal. That is, the process of starting with a pattern at one 

scale, and then repeating it at smaller and smaller scales through the IFS construction of an attrac

tor (as in Figures 2.2 and 2.3), can also be applied in reverse, creating larger and larger versions 

of the pattern, as suggested in the right column of Figure 7 .1. Figure 7.1 shows that after only 

two iterations, the two upscaling assumptions produce markedly different property distributions. 

The fractal method of extrapolation presumes that the fractal geometry inherent in the IFS con

struction of an attractor continues to apply at larger scales than the well-field in which the origi

nal hydrologic characterization was done. In contrast, the stationarity assumption invokes the 

notion of an upper-limit scale, above which fractal geometry ceases to apply. Regional geologi

cal information can be used to help decide which is the more appropriate assumption for a given 

problem. 
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Figure 7 .1. Extrapolation of a hydrologic characterization using either the assumption of sta-
tionarity for scales greater than that of the well field, or the assumption that fractal geometry ap
plies at scales both larger and smaller than the scale of the well field. 
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The finite element model TRINET [Karasaki, 1987] calculates fluid flow and solute tran

sport on a lattice of one-dimensional finite elements (i.e., pipes) of porous medium. TRINET 

incorporates an adaptive gridding algorithm to minimize numerical dispersion for transport calcu

lations, but the present application uses a fixed grid and calculates fluid flow only. The flow 

equation between the two nodes at either end of a one-dimensional finite element may be written 

as 

(A. I) 

where h is hydraulic head and Ss, w, and T are the specific storage, aperture, and transmissivity, 

respectively, of the element. The product of specific storage and aperture is storativity: Ssw = S. 

The height of each element b is taken to be one. The lattice of elements need not be uniformly 

spaced; it can be two- or three-dimensional, and rectangular, triangular, or a combination thereof. 

A square lattice such as is shown in Figure 3.3 provides a neutral template on which to build 

heterogeneities by attractor mapping, but geological information can be incorporated by using 

less regular lattices as well. For example, a non-orthogonal lattice, with elements aligned with 

regional fracture sets, would provide enhanced permeability in those directions. Although 

TRINET was originally developed to study fracture networks it can also model porous media, as 

described in Section A.2 below. 

Constant head or constant flow boundary conditions can be specified for any node. In this 

way, wells can be modeled as point sources or sinks located at nodal points, the intersections 

between elements of the lattice. The version of TRINET embedded in the IFS inversion algo

rithm has been modified so that pumping-well flow rate can vary with time (in the standard ver

sion of TRINET it has to be constant). A time-varying flow rate at a pumping well is approxi

mated as a series of constant flow-rate periods. Each period can be made as short as necessary to 

achieve a desired accuracy for a highly variable flow rate. However, for pulse well tests, in which 

the pumping schedule is a series of on-off pulses, the constant-flow periods need be no shorter 

than the pulse lengths. Each time a flow-rate change occurs, the next few time steps of the 

numerical simulation must be small, to properly account for flow transients. This means that 

simulations involving variable flow rates will be more computationally intensive than those with 

constant flow rates. 
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The ability to model time-varying flow rates makes co-inversion of multiple well tests 

straightforward. Each test using a different pumping well is considered to be part of one long test 

in which initially only the first well pumps, then after a time the first well is shut in and only the 

second well pumps, etc. A feature to allow re-initialization of heads when flow rate changes has 

been included, eliminating the need to simulate the period of time between tests when the system 

is re-equilibrating, allowing multiple tests which occurred at widely separated times to be co

inverted more efficiently. 

A.2 TWO-DIMENSIONAL POROUS MEDIUM (CONFINED AQUIFER) 

When applying the IFS inversion method to a porous medium, TRINET may be used with a 

two-dimensional rectangular lattice to represent an areal view of an aquifer. Figure A.l shows a 

schematic view of a portion of such a lattice. The distance L gives the lattice spacing, and w and 

b are the aperture and height, respectively, of each element in the lattice. The region marked by 

the dashed line represents the unit cell of the lattice. The following algorithm provides a basis for 

choosing Ss , w , and T, the properties of the elements, so that the lattice as a whole acts like an 

aquifer with storativity S and transmissivity f. Although TRINET always uses b = 1, keeping b 

as a variable helps make the following derivations clearer. 

Figure A.l. Schematic diagram of a two-dimensional TRINET lattice. 

From Equation (A.l), it is apparent that the hydraulic conductivity of an element is 

K = T /w, and therefore its conductance (hydraulic conductivity times cross-sectional area) may 

be written as Kwb. Figure A.l shows that the conductance through a unit cell of the lattice is 

exactly this value, whereas the conductan.ce through an equal volume of aquifer would be KLb , 
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where K is the equivalent aquifer hydraulic conductivity. Equating these expressions for conduc

tance gives 

(A.2) 

Writing this expression in terms of the input variable of TRINET T = Kw and the desired output 

variable f = Kb, and recalling that b = 1, gives the desired relationship for transmissivity for a 

lattice with spacing L : 

- T 
T=L. (A.3) 

The storage of a unit cell of the lattice is given by the element specific storage times the 

volume of the elements within the unit cell. Since half of four elements (each with length L and 

cross-sectional area wb) lie within the unit cell, storage capacity is given by Ss 2wbL. The 

storage of an equal volume of aquifer would be ~ bL 2. Equating these expression for storage 

gives 

(A.4) 

Writing this expression in terms of the desired output variableS= ~b, and recalling that b ~.1. 

gives the desired relationship for storativity for a lattice with spacing L: 

§ =S [2w] s L . (A.5) 

For a lattice with variable spacing to behave as a uniform porous medium, element proper

ties must vary with lattice spacing. A convenient variable lattice is a nested lattice in which a 

central fine region with spacing L is surrounded by a region with spacing aL, which in turn is 

surrounded by a region with spacing a 2L, and so on, so that the jth nested region has lattice 

spacing aj L. In Figure A.1, a = 2 and portions of the j = 0 and j = 1 regions are shown. One 

consistent prescription for lattice element properties is to require that as lattice spacing increases 

from L to aj L, the element properties are modified as follows: 

(A.6) 

These modifications can be easily derived by examining Figure A.1 and equating conductance 

and storage for regions of the lattice with different values of j. Equations (A.3) and (A.5) 
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relating effective porous medium properties to lattice properties may be generalized for a nested 

lattice as follows: 

(A.6.5) 

The ability of TRINET to properly model flow through a porous medium has been verified 

by comparing its results to the Theis solution for transient radial flow in a confined homogeneous 

isotropic aquifer, in which a fully-penetrating well is pumped at a constant flow rate [Theis, 

1935]. The lattice used for the calculation, shown in Figure A.2, was developed to model an 

aquifer with a well-field shown by the solid circles, with the pumping well at the center 

(x = 0, y = 0). The spacing in the central region of the lattice is L = 3 m, and the aperture 

throughout the lattice is w = 1 m. The nested lattice design is practical for modeling flow in 

porous media, where fine resolution is needed to represent flow near wells adequately, but the lat

tice must extend far beyond the well field to realistically implement pressure boundary condi

tions. Fine resolution is undesirable beyond the well field, because it greatly increases the size of 

the calculation without improving the ability of the model to predict flow or pressure at the well 

field. 

Figure A.3a compares the Theis solution to the dimensionless drawdown calculated by 

TRINET using the material properties and boundary conditions shown in Table A.1. Overall, the 

match is excellent. The open circles in Figure A.2 show the locations where the drawdowns are 

compared. An equally good match is obtained if the drawdowns are compared along a line paral

lel to the x- or y- axis. The calculation was also done with a finer nested lattice, in which L = 3 

m throughout the region defined by -120 < x < +120 and -120 < y < +120 m, beyond which lat

tice spacing was successively doubled. A comparison of the calculated drawdowns to the Theis 

solution is shown in Figure A.3b. Although the match is even better than in Figure A.3a, the fine 

lattice contains about 9,000 nodes and 17,000 elements as compared to 800 nodes and 1,500 ele

ments for the lattice shown in Figure A.2. Computer time roughly increases by a factor 2m when 

the number of nodes and elements increases by a factor m, making the fine lattice highly imprac

tical for use in an inversion. The nested lattice shown in Figure A.2 provides a good compromise 

between accuracy and efficiency to model flow in porous media within an inverse method. 
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Figure A.3. TRINET comparison with Theis [1935] solution: a) using the lattice shown in Figure 
A.2; b) using a finer lattice. 
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Table A.1. Parameters for Theis solution verification. 

TRINET Input Parameters Equivalent Porous Medium Properties 

Material Properties and System Dimensions 

T = 3x10-3 m2/st f =I.= 1x1o-3 m2/s 
L 

Ss = 5.6x10-5 m-1t S = S 2w = 3.73x10-5 
s L 

w =1m 
b =1m b =1m 

Initial and Boundary Conditions 
h = 0 for all x and y att = 0 h = 0 for all r at t = 0 
h = 0 at x = y = ±600 m:j: h =Oasr ~= 
Q = 0.333x1o-3 m3/s at x = y = 0 Q = 0.333xlo-3 m3/s at r = 0 

tUsed in the finest region of the lattice, where L = 3 m; where lattice spacing is aiL, T ~ ai T 
and Ss ~ ai Ss. 
:j:Calculation time is short enough so that a finite lattice acts like an infinite medium. 

A.3 QUASI THREE-DIMENSIONAL POROUS MEDIUM (LEAKY AQUIFER) 

The two-dimensional aquifer model described in the previous section has completely 

impermeable confining layers above and below it. It is straightforward to extend the model to 

include small vertical flows into the aquifer through a leaky confining layer. Figure A.4 shows a 

schematic view of the quasi three-dimensional lattice that is used to accomplish this. 

Figure A.4. Schematic diagram of a quasi three-dimensional TRINET lattice. 
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One new element and one new constant-,head node are added for each non-boundary node in the 

original two-dimensional lattice. Each new element has specific storage S/, aperture w', 

transmissivity T', and length L '. Due to the requirement that TRINET elements have height 

b = 1, the cross-sectional area of the new elements is wb = w , whereas Figure A.4 indicates that 

it should actually be w 2. This limitation is circumvented by using w = b = 1 throughout the lat

tice. 

In order for the confining layer as a whole to have vertical hydraulic conductivity K' and 

specific storage ~ ', vertical conductance and storage for a unit cell of the TRINET lattice are 

equated to those of a unit cell of the porous medium, as before. For lattice spacing L , 

K'wb = K'L 2 ~ K' = r_ 
L2 

S 'bwL'=S'L 2L' ~ S'=S '[~] s s s s L2 

where b = 1 and T' = K'w have been used. 

(A.7) 

(A.8) 

To account for the variable lattice density, when the lattice spacing increases from L to 

aj L, the TRINET properties are modified as follows: 

(A.9) 

At the boundaries between regions of the lattice with different densities, intermediate values ofT' 

and S/ are used, with a 2j in Equation (A.9) replaced by 0.375a 2j along the edges of the regions, 

and 0.5625a 2j at the corners. These coefficients are chosen to make the conductance and storage 

as uniform as possible across the density-boundaries in the lattice. For the lattice shown in Fig

ure A.2 this correction is not exact, because the different density regions are of very different 

extents (e.g., the L = 6 m region of the lattice is only one element wide, while the L = 12 m 

region is eight elements wide). For a lattice with continuously increasing density (each region of 

the lattice is only one element wide), the appropriate correction factors would be 0.333a 2j for 

edges and 0.2857a 2j for corners. Equations (A.7) and (A.8) can be generalized for a nested lat

tice as follows: 

§' =S '[ w ] s s (aj L )2 
(A.9.5) 

Figure A.5a compares the results of TRINET using the quasi three-dimensional nested lat

tice described above to an analytical solution for transient radial flow in a homogeneous isotropic 
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aquifer with a slightly leaky confining layer, in which a fully-penetrating well is pumped at a con

stant flow rate [Hantush and Jacob, 1955]. In the confining layer, flow is taken to be purely verti

cal, storage is assumed to be negligible, and head is held fixed, making the leakage into the 

aquifer act like a source term proportional to aquifer drawdown. Tables A.l and A.2 summarize 

the material properties and boundary conditions used. The parameter B, which is used to scale 

radial distance from the pumping well, is given by B = (Kbb 1IK 1
)

112 = 170 m. The TRINET 

drawdowns for the locations marked by the open circles in Figure A.2 reproduce the analytical 

solution quite well, especially for the values of riB ::;; 1.0. Use of the alternate edge and comer 

correction factors improves the match for large values of rIB at the expense of the smaller ones, 

which is undesirable for the intended purpose of this lattice to model the drawdown at the wells 

shown as solid circles in Figure A.2. The calculation was repeated using the finer nested lattice 

described above, and Figure A.5b shows that a better match to the analytical solution can be 

obtained. As in the case of the two-dimensional lattice, the increased computation time for the 

fine lattice makes its use impractical in an inverse method, and the accuracy of the lattice shown 

in Figure A.2 provides an adequate representation of a slightly leaky aquifer. 

Table A.2. Parameters for Hantush and Jacob [1955] solution verification, in addition to those 
given in Table A.l. 

TRINET Input Parameters Equivalent Porous Medium Properties 

Confining Layer Properties and Dimensions 

Tl = 1.9x10-6 m2/st K1 = T~ = 2.11x10-7 rnls 
L 

Ss I= 5.6xlo-13 m-1t+ s I= s I~= 6.22x10-14 m-1+ 
s s Lz 

b 1 =6.1 m b 1 =6.1 m 

Boundary Condition in Confining Layer 
h = 0 for all x and y at z = b 1 h = 0 for all r at z = b 1 

tUsed in the finest region of the lattice, where L = 3 m; where lattice spacing is aj L, T 1 
-7 a Zj T 1 

d S I 2js I an s -?a s. 

+S:~ 1 is assumed to be zero in the analytical solution. 
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Figure A.5. TRINET comparison with Hantush and Jacob [1955] solution: a) using the lattice 
spacing shown in Figure A.2; b) using a finer lattice. 
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A.4 USE OF TRINET FOR HIGHLY HETEROGENEOUS MEDIA 

In a highly heterogeneous medium, it is likely that some observation wells will respond to a 

pumped well much sooner than others, due to low-permeability regions separating some observa

tion wells from the pumping well. A TRINET calculation requires a small enough initial time 

step to resolve the early-time behavior at the quickest responding observation well, at which time 

the slower responding observation wells may show almost no response. Under these conditions, 

the TRINET solution for the slow-responding observation wells tends to oscillate slightly, and 

may predict small negative drawdowns (pressure increases) when there should in fact be no or a 

very small positive drawdown .. If TRINET is being used to simply perform a forward calculation, 

this oscillation causes no trouble, as its magnitude is so small as to be nearly invisible on a plot of 

drawdown versus time. 

However, when TRINET is used in the IFS inverse method, the log of draw down (In h) is 

generally used in formulating the objective function, as described in Chapter 3, Section 3.2. 

Therefore something must be done to allow for the possibility that the calculated drawdown may 

have a small negative value, and thus no logarithm. One approach (used for the present calcula

tions) is to take the absolute value of calculated drawdown before taking the logarithm (In I hI). 

The philosophy behind this choice comes from examining plots of drawdown versus time for 

slow-responding wells, and noting that while the sign of the earliest calculated drawdown is cer

tainly wrong, its magnitude is probably about right. Another possibility that has also been used is 

to assign any negative drawdown an arbitrary small positive value. The difficulty of this method 

is knowing how small a value to use. A better approach would probably be to estimate the smal

lest observable drawdown for a particular problem, then assign any negative calculated draw

down a slightly smaller value than that. 

The choice of method used to treat negative calculated drawdowns is not expected to have 

much impact on the success of an inversion unless early-time observed data that does not show 

much pressure response is included in the objective function. The reason for this follows from 

the construction and use of the objective function as described in Section 3.2. Without the inclu

sion of non-responding observed data, one of two things will happen: 1) if time-shifting is not 

allowed, the corrected negative drawdowns will not appear in the objective function because 

there is no observed data corresponding to the time of the negative drawdown, or 2) if time

shifting is allowed, the corrected negative drawdowns will be compared to drawdown data that 

does show a response, yielding a large contribution to the energy, and a rejection of the 
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diffusivity value corresponding to that time-shift. On the other hand, if non-responding observed 
. . 

data is included in the objective function, the choice of method for treating negative calculated 

drawdowns may completely control the inversion process. However, as discussed in Section 3.2, 

if it is desired to include non-responding observed data, the objective function should be formu

lated in terms of h rather than ln h , eliminating the need to correct negative calculated draw

downs at all. 
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