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DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 
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SUMMARY 

A modeling study is presented which demonstrates how the combination of simulation 
and optimization techniques can be used to improve the design of a multi-component 
remediation system. A series of computer codes has been developed at the Lawrence Berkeley 
National Laboratory to solve forward and inverse problems in groundwater hydrology. 
Simulations of non-isothermal, three-phase flow of volatile organic compounds in three
dimensional heterogeneous media were performed. Inverse modeling capabilities have been 
developed which can be used for both automatic model calibration and optimization of 
remediation schemes. In this study, we discuss a sequence of simulations to demonstrate the 
potential use of numerical models to design and analyze cleanup of a contaminated aquifer. 

INTRODUCTION 

Industrial processes involving metallurgical operations frequently cause contamination 
of soil and groundwater due to the release of solvents such as chlorinated hydrocarbons and 
other volatile organic compounds (VOCs). In the subsurface, these chemicals tend to remain as 
nonaqueous phase liquids (NAPL), and are transported under multiphase flow conditions due 
to gravitational, viscous and capillary forces. Other physiochemical processes also taking place 
include evaporation into the soil gas phase and dissolution into the groundwater. In the gaseous 
phase, VOCs are transported by multi-component diffusion in addition to density and pressure 
driven advection. In the liquid phase, dissolved contaminants may cause density effects which 
affect advective transport. Simulation of cpntaminant behavior in the subsurface requires 
accounting for all these mechanisms. Accurate process description and robust implementation 
of multiphase flow in porous media including phase changes are essential for the modeling of 
air sparging, steam flooding, and vapor extraction as some of the most effective remediation 
technologies such as air sparging, steam flooding, etc. 
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The design of a cleanup operation for a contaminated aquifer poses problems of a 
hydrological, technical, environmental, and economic nature. Decisions have to be made 
regarding aquifer testing for site characterization, the design of a containment system, the choice 
of an appropriate remediation technology, which usually requires specifying an injection and 
pumping schedule, and the layout of a monitoring system. First, it is crucial to characterize the 
relevant hydrogeological features at a given site. Information about the system state under 
natural or test conditions have to be collected to calibrate the numerical model. Secondly, a 
remediation· technology is chosen, and cleanup operations are simulated to improve the 
understanding of the fate of the contaminants in the subsurface. A comparison between 
alternative approaches is performed to design and optimize the remediation strategy. 

Most of the tasks described above require solving some kind of optimization problem, 
i.e. the maximization or minimization of a performance measure. An incomplete list is given in 
Table 1. The testing and data collection program can be optimized to obtain as much 
information about the plume location and hydrogeologic properties of the aquifer as possible. 
The numerical model to be used for the subsequent studies has to be calibrated against the 
available data. Model calibration involves minimizing the difference between the observed and 
the calculated system state. It is important to realize that the result of the subsequent modeling 
studies as well as the conclusions drawn regarding the optimum remediation system design 
depend on the accuracy with which the relevant features at the site are represented in the 
numerical model. Once an appropriate remediation technology has been selected, operational 
details such as the layout of the containment system, temperature and rate of air or steam 
injection, the pumping schedule, etc. can be optimized to increase the effectiveness and 
efficiency of cleanup. This step requires the definition of a cost function which comprises 
actual operational costs as well as hypothetical costs for residual contamination. It is obvious 
that selection of the remediation technology and optimization of the operational parameters is an 
iterative process. The overall performance of the optimized remediation alternatives are 
compared to determine the most appropriate strategy. Finally, the design of a monitoring 
system is improved by evaluating the amount of information that can be obtained from a limited 
number of sensors. 

T bl 1 0 .. a e JOtimization p bl ro . A '£ R d' . ems m I.QUI er erne 1at10n 

Objective Task Simulation Problem Optimization Problem 
data collection for test design, simulate plume maximize sensitivity of 
plume mapping and data collection spreading and data with respect to 
site characterization hydraulic tests parameters of interest 
site characterization model calibration simulate system state minimize difference 

under natural or test between measured and 
conditions calculated system state 

effectiveness, technology selection, simulate cleanup minimize cost function 
efficiency determination of operation comprising actual and 

operational hypothetical costs 
parameters 

control design of monitoring simulate migration of maximize obtainable 
system residual contamination information 
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The modeling study presented in this paper aims at demonstrating how the combination 
of simulation and optimization techniques can be used to improve the design of a multi
component remediation system. Computer programs have been developed at the Lawrence 
Berkeley National Laboratory to solve forward and inverse problems in groundwater 
hydrology. Simulations of non-isothermal, three-phase flow of volatile organic compounds in 
three-dimensional heterogeneous porous media were performed. Inverse modeling capabilities 
have been developed which can be used for both automatic model calibration and optimization 
of remediation schemes. We first discuss the modeling approach used to simulate multiphase 
contaminant transport, before we provide some information about the optimization algorithms. 
A sequence of simulations of a hypothetical contaminated site demonstrates the potential use of 
numerical models to design and evaluate cleanup operations. 

MODELING MULTIPHASE CONTAMINANT TRANSPORT 

Sophisticated numerical simulators have been developed at the Lawrence Berkeley 
National Laboratory to model multiphase, multi-component flow and transport in the 
subsurface. The main computer code used in this studyis T2VOC [1] for three-phase (gas, 
water, NAPL), non-isothermal flow of water, air, and a volatile organic compound (VOC) in 
three-dimensional heterogeneous porous media. T2VOC is an extension of the TOUGH2 
general-purpose simulation program [2] which uses a general integral finite difference 
formulation for mass and energy balance equations. The balance equations for three mass 
components K:(K:= w-water, a-air, c-chemical) and heat (K:= h-heat) are written in integral form 
for some flow region, Vn, having a surface area Tn, as follows: 

(1) 

Here MIC is the amount of component K: per unit porous medium volume, FIC is the total flux of 
component K:into Vn, n is the inward unit normal vector on Tn, and qiC is the generation rate per 
unit volume. The three fluid components air, water, and VOC may be present in different 
proportions in any of the three phases gas, aqueous, and NAPL. Thus, the mass accumulation 
terms (K:=w, a, c) contain a sum over the three phases f3 ({3 = g-gas, w-aqueous, n-NAPL): 

(2) 

Here </J is the porosity, S f3 is the saturation occupied by phase {3, p B is {3-phase density, and Xp 
is the mass fraction of component K: in phase {3. The organic chemical accumulation term 
( K:= c, oiCc = 1) includes the effect of linear equilibrium adsorption onto the solid phase, where 
Pb is the dry bulk density of the soil, and Kn is the solid-aqueous distribution coefficient for the 
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organic chemical [3]. The heat accumulation term (K=h) includes contributions from both the 
solid and the fluid phases: 

(3) 

where pR is the soil grain density, C R is the heat capacity of the soil grains, Tis the 
temperature, and u13 is the specific internal energy of phase {3. 

Each phase flows in response to pressure and gravitational forces according to the 
multiphase version of Darcy's law which includes the effects of relative permeability and 
capillary pressure between the phases. The mass flux terms of component K ( K= w, a, c) 
include a sum of contributions from the three phases {3 ({3 = g, w, n): 

(4) 

{3 
I( I( 

F?r aqueous and NAPL phases ( = w, n) we have F f3 = x13 F {3' where the phase fluxes F f3 are 
given by 

krf3 Pf3 ( ) F f3 = -k V P f3 - p f3 g . 
f.LJ3 . 

(5) 

Here k is the absolute permeability, krf3 is the relative permeability of phase {3, f.LJ3 is the {3-phase 
dynamic viscosity, P 8 is the fluid pressure in phase {3, and g is the gravitational acceleration 
vector. Mass flux in the gas phase includes advection and multicomponent diffusion: 

( 
b Jk p Fl( = -k 1 + -p rg g XI( (v P - p g)+ JIC . 

g g f.L g g g g 
g 

(6) 

Here b is the Klinkenberg factor [4], which accounts for increased effective gas permeability at 
low pressures, and JIC is the diffusive mass flux of component Kin the gas phase. The 
diffusive flux is driv~n by a mass fraction gradient, vxl(, and is a function of saturation, 
tortuosity~ and the multicomponent molecular diffusio~ coefficient (for details see [1]). 
Aqueous and gas phase pressures are related by 

P =P +P w g cgw 
(7) 

where P < 0 is the gas-water capillary pressure. The NAPL phase pressure is related to the 
cgw 

gas phase pressure by · 

P =P +P n g cgn (8) 
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where P cgn < 0 is the gas-NAPL capillary pressure. Assuming the NAPL is the intermediately 
wettable phase, the NAPL-water capillary pressure, P , is given by 

cnw 

P =P +P = P +P cnw cgw cgn w n (9) 

The heat flux includes both conduction and convection 

(10) 

where K is the overall porous medium thermal conductivity, hf3 is the j3-phase specific enthalpy, 
and F f3 is the total mass flux of phase /3. 

Finally, the sink and source term in Eq. (1) includes external contributions, e.g. the 
release of contaminant or the injection of steam as well as the production of a three-phase fluid 
mixture during forced vacuum extraction. In addition, a sink term may be included that permits 
an approximate representation of biodegradation ofVOCs (for details see [1]). 

Water properties in the liquid and vapor state are calculated using steam table equations 
given by the International Formulation Committee [5]. Thermophysical properties of the NAPL 
phase such as saturated vapor pressure and viscosity are calculated as functions of temperature, 
while specific enthalpy and density are computed as functions of both temperature and pressure. 
Gas phase thermophysical properties including molecular diffusivities are considered to be 
functions of temperature, pressure, and gas phase composition. A general equation of state is 
provided to compute the necessary NAPLNOC thermophysical and transport properties. Based 
on semi-empirical corresponding states methods, the chemical parameters are calculated as 
functions of critical properties such as the critical temperature and critical pressure, which are 
readily available for many substances (see for example [6]). This approach makes T2VOC 
applicable to a variety of contamination problems involving different NAPLs that are either 
denser or lighter as water, and that have different vapor pressures and solubilities. 

For numerical solution, the balance equations (1) are discretized in space based on an 
integral finite difference formulation [7]. Time is discretized fully implicitly using first-order 
backward finite differences. Discretization results in a set of nonlinear coupled algebraic equa
tions which are solved simultaneously by means of Newton-Raphson iterations. A conjugate 
gradient algorithm is used to solve the linear equations arising at each iteration step [8]. 

OPTIMIZATION ALGORITHM 

As discussed in the introduction, we use the simulation capabilities in combination with 
. optimization techniques to perform model calibration and to support the design of a remediation 
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system. The first task is referred to as inverse modeling, whereas optimization of a remediation 
design is a prevalent groundwater management problem. In both applications a performance 
measure is either minimized or maximized by adjusting certain input parameters or design 
variables. For example, model calibration consists of reducing the differences between the 
simulation results and the measurements, such as water potentials or temperatures, by adjusting 
the model input parameters, such as the absolute permeability or thermal conductivity of the 
porous medium. A cleanup operation can be improved by minimizing, for example, the 
remediation time, which can be achieved by increasing pumping rates or steam temperature. 
Increasing pumping rates or steam temperature, however, leads to higher energy costs. 
Therefore, the objective function to be minimized should also reflect these costs in order to 
obtain an optimal remediation design. 

Solving an optimization problem occurs in two steps. First, a performance measure has 
to be defined which is an arbitrary function of T2VOC output variables, and which depends on 
certain T2VOC input parameters. This objective function contains contributions from different 
sources which have to be appropriately weighted against each other. Secondly, a minimization 
algorithm is needed which is capable of updating T2VOC input parameters in order to reduce 
the value of the objective function. Note that the objective function is usually highly non-linear, 
and - in certain cases - even discontinuous. In the remainder of this section we present the 
general form of the objective function and discuss the bases of the minimization algorithm. 

We first introduce the residual vector r which holds the differences between the 
measured and calculated state_ variables in the case of model calibration, and the differences 
between the desired and calculated costs in the case of design optimization: 

r = y*- y(p) . (11) 

In the case of model calibration, the vector y* contains the actual data. For test design, the 
elements of vector y* are synthetically generated data, and for management problems, they 
represent target quantities such as zero costs or the maximum possible amount of contaminant 
removed from the aquifer. Note that y(p) is a function of the input parameters which are 
summarized in vector p. The elements of the parameter vector p are either hydrogeologic 
properties, initial and boundary conditions, or pumping and injection rates. In general the 
residuals have different units and may cover many orders of magnitudes. This requires 
specifying a weighting matrix of dimensions mxm, where m is the total number of residuals .. 
In inverse modeling, the weighting matrix W can be considered to be the inverse of the 
covariance matrix C holding measurement errors: 

w = c-1 (12) 

If no correlations are present, the vector of the weighted residuals z contains elements of the 
form 

r.*- r. 
l l 

zi = c. 
(13) 

l 
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where ci is the square root of the i-th diagonal element of matrix C. The objective function to 
be minimized can be defined as follows: 

m 

Z= .I,. p (zi) 
i=l 

(14) 

In maximum likelihood theory, the function p reflects the negative logarithm of the probability 
density function of z. For normally distributed residuals, we obtain 

(15) 

which yields the standard least squares estimator. The so-called Lt-estimator is obtained by 
minimizing the sum of the absolute values of the weighted residuals, thus 

P.=lx.l . 
l l 

(16) 

The choice of an appropriate estimator is somewhat arbitrary. For inverse modeling 
applications, it is common to use least squares or one of the robust estimators described in [9]. 
For management problems, i.e. if r. represents a cost function, the Lt-estimator is most 

l 

frequently applied. 

Next an algorithm has to be developed that minimizes the objective function Z. Note 
that the functions y(p) are highly nonlinear which immediately renders the direct solution of the 
minimization problem infeasible. The iterative procedure involves computing a correction 
vector L1pk such that the new parameter set 

(17) 

leads to a reduced objective function, Zk+l < Zk, at each iteration k. A number of minimization 
algorithms are available to solve non-linear least-squares problems as defined by Eqs. (14) and 
(15) [10]. One of the most general and most robust methods is the Levenberg-Marquardt 
modification of the Gauss-Newton· minimization algorithm [11, 12]. This procedure involves 
solving the following system of equations: 

(18) 

Here, J is_ the sensitivity matrix with elements lij = CJy/dPj· D denotes a matrix of order n (n 
being the number of parameters to be estimated) with elements equivalent to the diagonal 
elements of matrix (Jk T W Jk). The basic idea of this method is to move in the parameter space 
along the steepest descent direction far from the minimum, and switching continuously to the 
Gauss-Newton algorithm as the minimum is approached. This is achieved by decreasing the 
scalar A, known as the Levenberg parameter, if an iteration is successful and increasing it if the 
objective function is increased. The minimum of the objective function, which may be only a 
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local one, is detected iteratively by solving Eq. (18) for dpk. The parameter set is then updated 
according to Eq. (17). Under the assumption of normality and linearity, a detailed error 
analysis of the final residuals and the estimated parameters can be conducted (for details see 

'[13]). 

Note that the Levenberg-Marquardt algorithm is also general enough to solve 
management problems usually formulated in terms of the L1-estimator, i.e. using Eqs. (14) and 
(16). However, there are two shortcomings that may prevent one from using the Levenberg
Marquardt method for arbitrary cost functions. First, in the presence of multiple local minima it 
cannot be assured that the optimum solution is detected. While this difficulty can be alleviated, 
the uncertainty in the definition of the cost function and the qualitative nature of the design 
process in general does not make it absolutely necessary to identify the global minimum. The 
second problem, however, precludes the use of the Levenberg-Marquardt algorithm for certain 
types of cost functions. The calculation of matrix J requires that the functions y(p) are 
continuous. In remediation technology, the cost functions are often discontinuous or even 
discrete. For example, installation costs depend on the number of wells being drilled, making 
the total cost a discontinuous function if the number of wells is subjected to the optimization 
process. In these cases, a minimization method is required that does not rely on the calculation 
of derivatives. The method of simulatecl annealing is able to handle discontinuous objective 
functions that exhibit many local minima. The term simulated annealing is used by analogy to 
thermodynamics, specifically with the way metals slowly cool and anneal. The analogy and 
algorithm is described in [14]. The basic idea is to take a random step dp which is always 
accepted if it leads to a reduction of the objective function. Furthermore, an uphill move is 
sometimes accepted with a certain, decreasing probability enabling the algorithm to escape from 
local minima. There is no need to calculate derivatives which makes simulated annealing 
applicable to several types of objective functions (discrete, discontinuous, or continuous). The 
main drawback of simulated annealing is its inefficiency, a result of the randomness of step dp 
which almost always proposes an uphill move. 

The minimization algorithms discussed in this section have been implemented in a 
computer program named ITOUGH2 [1]. ITOUGH2 performs automatic model calibration for 
the TOUGH2 family of codes [2], including T2VOC [1]. Furthermore, ITOUGH2 supports 
sensitivity analysis, the design of experiments, and provides uncertainties for model predictions 
using linear error propagation analysis or Monte Carlo simulations. It can also be used to solve 
groundwater management problems such as the design of a cleanup operation [15]. In the 
remainder of this paper we demonstrate that the combination of sophisticated process simulation 
and efficient and robust optimization techniques is a powerful tool to study subsurface flow and 
transport problems. 

MODELING STUDY 

The illustrative sample problem discussed in this modeling study deals with contaminant 
migration from a dense solvent trichloroethylene (TCE) spill into the unsaturated zone of a 
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highly heterogeneous soil, followed by a remediation operation using air sparging and soil 
vapor extraction. The effect of subsurface barriers on cleanup efficiency is also studied. 

We consider a shallow heterogeneous deposit containing both a saturated and a 
unsaturated zone. The water table is at depth of 12m and exhibits a head gradient of about 
0.03. The model domain has dimensions of 30m x 30m x 20m in the x, y, and z directions, 
respectively, and is discretized in 15 x 15 x 20 = 4500 grid blocks. A spatially correlated 
permeability field is generated using simulated annealing techniques. A log-normal permeability 
distribution is assumed with a geometric mean of 1 o-1 0 m2 and a standard deviation of one 
order of magnitude. During the annealing process, the permeability field is rearranged in a 
random manner, and the difference between the resulting variogram and a prescribed variogram 
is minimized using the algorithm described in the previous section. We prescribed a spherical 
variogram with a correlation length of 20 m in the horizontal direction. No vertical correlation 
is considered. The generated permeabilities were then ordered into 9 groups, covering values 
from 10-12 to 10-8m2. Porosities are in the range from 0.27 to 0.43, and are assumed to vary 
in proportion to the logarithm of permeability. The capillary pressure was scaled in inverse 
proportion to the logarithm of permeability [16]. The permeability distribution is shown in 
Figure 1. 

-9.0 
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E -9.6 
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('I -9.8 

-10.0 
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-10.4 

-10.6 

-10.8 
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Fig. 1 Permeability distribution 

The first part of the simulation aims at developing a gravity-capillary equilibrium in a 
saturated-=-i.msaturated flow system that exhibits a pressure gradient in the saturated zone. An 
atmospheric boundary condition is applied at the surface, and a single-phase liquid Dirichlet 
boundary condition with a hydrostatic pressure distribution is specified at the lower part of the 
two opposite faces of the model. The depth to the water table is fixed at -12 m at the back face, 
and at -13 mat the front face. The left and right vertical faces as well as the bottom are modeled 
as no flow boundaries. After reaching steady-state flow conditions, the simulation continues by 
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spilling a total of 6000 kg of TCE at the center of the model domain, 2 m below ground surface, 
for a period of 2 weeks. 

The next part of the simulation allows for free redistribution of TCE over a 6 week 
period under the combined action of gravitational, capillary and pressure forces. The NAPL 
phase slowly slumps downward and also spreads due to capillary forces, leading to somewhat 
reduced NAPL contents compared to the situation immediately after the spill. Part of the NAPL 
plume evaporates, and contaminated soil gas of higher density flows downwards until it reaches 
the water table where it spreads horizontally. This density effect prevents the contaminant from 
being discharged naturally to the atmosphere. High aqueous TCE contents are observed near 
the water table, and the contaminated groundwater flows downstream and deeper into the 
saturated zone due to increased water density. Figure 2 shows the NAPL content (the product 
of NAPL saturation and porosity), TCE content in the gas phase (the product of VOC 
concentration in the gas phase [kgfm3], gas saturation, and porosity), and the TCE content in 
the aqueous phase (the product of TCE concentration in the aqueous phase [kgfm3], water 
saturation, and porosity) after the redistribution period. Note that the concentration of TCE in 
one phase is related to the concentration in another phase due to an assumption of local chemical 
equilibria. TCE vapors spreading into the system lead to a contamination of the pore water due 
to the solubility of the chemical in water. At this point in time, a preliminary cleanup operation 
is designed consisting of air sparging in combination with soil vapor extraction. In addition, 
four vertical cutoff walls are emplaced to contain the contaminant plume. . 

In the next step of the process, a cost function is defined which includes pumping costs 
for the air sparging and soil vapor extraction system, energy costs for the heating system, and 
treatment costs for the contaminated fluid produced at the pumping well. Note that all these 
costs depend on the flow and transport behavior in the subsurface which determines the time 
required to reach cleanup standards. Simulated pressures and concentrations at the injection and 
production well also affect the cost function. Minimization of the cost function is accomplished 
by determining three operational input parameters, namely the injection rate and temperature of 
the air sparging system, and the pumping rate at the extraction well. The results of the 
optimization process are summarized in Table 2. Increasing both the injection and extraction 
rate leads to a shorter cleanup time which reduces overall costs, despite the fact that the specific 
pumping and energy costs are higher. In this example, injecting air at high temperatures is not 
effective enough to compensate for the increased energy costs. Consequently, ITOUGH2 
proposes to use air at ambient temperatures. Overall the proposed design is about twice as 
efficient as the original design. 

T bl 2 a e s f et o propos ed d . db h f operatJ.ona parameters etermme >Y mmimizmg t e cost unction 

Parameter Ori ainal Design Optimized Design 
Injection rate [kg/s] 0.01 0.03 
Injection temperature rcJ 90.00 40.00 
Extraction rate fkg/s l 0.01 0.04 
Cost function f"$"1 1090.00 550.00 
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CONCLUDING REMARKS 

A series of computer codes has been developed to support the design of a multi
component cleanup system. Accurate simulation capabilities for flow and transport of 
contaminants under multiphase flow conditions are crucial for predicting the fate of the 
contaminant for a given remediation scenario. Inverse modeling techniques provide an essential 
tool for site characterization by determining model-related input parameters for the numerical 
simulator. The same optimization algorithms can also be used to study alternative cleanup 
operations by minimizing a cost function that reflects the efficiency of the proposed design. The 
results of such a simulation-optimization study can be used as a basis for the evaluation and 
optimization of an integrated remediation technology. 
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