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Abstract 

Quantum Effects in Unimolecular Reaction Dynamics 

by 

joshua Daniel Gezelter 

Doctor of Philosophy in Chemistry 

University of California at Berkeley 

Professor William H. Miller, Chair 

This work is primarily concerned with the development of models for the quantum 

dynamics of unimolecular isomerization and photodissociation reactions. We apply 

the rigorous quantum methodology of a Discrete Variable Representation (DVR)1 with 

Absorbing Boundary Conditions (ABC) 2 to these models in an attempt to explain some 

very surprising results from a series of experiments on vibrationally excited ketene. 3 

Within the framework of these models, we are able to identify the experimental signa

tures of tunneling and dynamical resonances in the energy dependence of the rate of 

ketene isomerization. Additionally, we investigate the step-like features in the energy 

dependence of the rate of dissociation of triplet ketene to form 
3
B1 CH2 + LE+ CO that 

have been observed experimentally. These calculations provide a link between ab initio 

calculations of the potential energy surfaces and the experimentally observed dynam

ics on these surfaces. 

Additionally, we develop an approximate model for the partitioning of energy in the 

products of photodissociation reactions of large molecules with appreciable barriers to 

l. D. T. Colbert and W H. Miller,]. Chern. Phys. 97, 1982 (1992). 

2. T. Seideman and W H. Miller,]. Chern. Phys. 97, 2499 (1992). 

3. E. R. Lovejoy and C. B. Moore,]. Chern. Phys. 98, 7846 (1993); S. K. Kim, E. R. Lovejoy, and C. B. 
Moore,]. Chern. Phys. 102,3202 (1995). 
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recombination. In simple bond cleavage reactions like CH3COCl-7 CH3CO + Cl, the 

model does considerably better than other impulsive and statistical models in predict

ing the energy distribution in the products. 1 

We also investigate ways of correcting classical mechanics to include the important 

quantum mechanical aspects of zero-point energy. The method we investigate2 is 

found to introduce a number of undesirable dynamical artifacts including a reduction 

in the above-threshold rates for simple reactions, and a strong mixing of the chaotic 

and regular energy domains for some model problems. 

We conclude by discussing some of the directions for future research in the field of 

theoretical chemical dynamics. 

l. S. W North, D.A. Blank,]. D. Gezelter, C. A. Longfellow, andY. T. Lee,]. Chem. Phys. 102,4447 
(1995). 

2. j.M. Bowman, B. Gazdy, and Q. Sun,]. Chem. Phys. 91,2859 (1989); W H. Miller, W L. Hase, and 
C. L. Darling,]. Chem. Phys. 91, 2863 (1989). 
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1 Introduction 

1.1. A Philosophical Overview 

Theoretical chemistry presents a very different approach to the scientific method than 

is practiced in other parts of the scientific food chain. Theoretical Biology and Physics 

share a reductionist approach to theory construction. Theorists in these fields develop 

theories whose entities exist on a smaller level than the observations carried out by the 

experimentalists in their fields. This way of making theories has had great success, par

ticularly with quantum mechanics and with the molecular biological model for how 

living things work. 

Theoretical chemistry presents a different set of problems. We already have a theory that 

we believe to be "right" (quantum mechanics) and it works on a microscopic scale rel

ative to the things that experimental chemists measure. Unfortunately, at the level of 

complexity of many atoms and molecules, quantum mechanics (although it is the "cor

rect'' theory) is not a particularly "good" theory for chemical dynamics. I say this 

because it doesn't allow for a simple understanding of how the chemical reactions work, 

and because it can't give predictions in a reasonable amount of time and/or effort for sys

tems with more than a moderate number of degrees-of-freedom. 

We also have at our disposal the "wrong" theory (classical mechanics) which can be 

used for complex systems. This is also not a particularly "good" theory for chemical 

dynamics; although it provides a means of understanding the phenomena being 

observed, and predictions can be made with a reasonable amount of time and effort, the 

predictions are simply wrong when compared to experimental evidence. 

1 



Chapter 1. Introduction 

So, theoretical chemists are stuck with two theories that are lacking for very different 

reasons. The compromises that seem to be working themselves out as the primary occu

pation of theoretical chemists are l) reduced-dimensionality or "model" systems for 

chemical processes, and 2) hybrid theories for systems in their full dimensionality. The 

work in this dissertation is primarily concerned with the first of these approaches, and 

it will be helpful to r~view the positions of some philosophers of science who have had 

(somewhat controversial) things to say about this approach. 

1.1.1. The Creation of Scientific Models 

Nancy Cartwright touches on the subject of model building in her book "How the Laws 

of Physics Lie". [3] Like many philosophers, she takes an extreme position; nature is 

fundamentally messy and intractable to scientific model-building, so all scientific 

models are merely useful fictions. Constructing models, according to Cartwright, is a 

balancing act; the more general your model is, the more idealizations you have to make, 

so the further it is from applying to any real-world situations. And Cartwright extrapo

lates this all the way down to quantum mechanics, which is very general, but is still a 

useful fiction or a "big lie." 

So Cartwright would say that the field of theoretical chemical dynamics just brings a 

universal feature of scientific theories to the fore. In any field, scientists balance gener

ality with applicability when they're constructing models; it's just more evident in the

oretical chemistry. (Physicists, according to Cartwright, don't realize this is what they're 

doing.) She would say that what makes one model better than another is purely a prag

matic thing which depends upon what kind of understanding is sought from the theory. 

Sometimes you want a very general framework that's applicable to a whole range of sit

uations. Sometimes you want a very particular model that just applies to one or two sit

uations, but applies very straightforwardly. And neither is "better" or "more 

fundamental" or "a more accurate description of the world." 

I'd like to take exception with Cartwright's position that since all theories are useful fic

tions, they are all equivalently false descriptions of the inner workings of the natural 

2 



1.1. A Philosophical Overview 

world. I'd like to think that a full quantum mechanical treatment of the systems we deal 

with is a better and more fundamental description of the world than a reduced-dimen

sionality treatment. This is not to say that model building is a less important part of sci

ence, however. It does, after all, make up a large part of this dissertation. I find myself 

agreeing with Ian Hacking when he argues that model building is the fundamental step 

in doing scien_ce. [ 4] That is, theories are always too complex for us to discern their con

sequences, so we simplify them in mathematically tractable models. He conceives of 

models as the comprehensible intermediaries between incomprehensible phenomena 

and inapplicable theories; the aim of science is not a theory of everything which is true, 

but a plethora of usable models which approximate the truth. 

1.1.2. A Reduction to the Essentials 

In the early 1980's the debate in the philosophy of science shifted from an argument 

over reductionism to a pitched batde between realists who think that scientific theories 

and entities have real physical significance [5] and the empiricists who believe them to 

be simply useful fictions without any truth value. [6, 3] The original debate was proba

bly more fruitful for those of us who participate in doing the science, however. Is a 

theory of biological life that requires knowledge of subatomic particles a useful theory? 

Or is this reduction necessary for understanding the phenomena? Can explanations of 

observable phenomena really be reduced to a small number of "essentials"? 

These questions are answered in the affirmative by most theoretical chemists. We have 

had great success in using quantum mechanics to connect observable phenomena to 

potential energy surfaces that are obtained from first principles. This is reductionism in 

one of its purest and most successful forms. Starting at the bottom with particles and a 

general theory like quantum mechanics, we are able to make predictions about observ

able phenomena. 

In his Ph.D. thesis, Scott Auerbach argued for a strongly reductionist view of science 

with one major exception; he claimed that he could not conceive of himsdf as "nothing 

more than a bag of particles," [7] and took an anti-reductionist position of the biological 

3 



Chapter 1. Introduction 

sciences for this reason. If nothing else, the work carried out in this dissertation will 

show that even exceedingly small "bags of particles" can exhibit rich behaviors under 

the right conditions. I find myself taking this as support for a much stronger reduction

ist view of science; I do not conceive of myself as a bag of particles, but feel that what I 

am is simply the behaviors exhibited by a very complex bag of particles, and is not the 

particles themselves .. The essential aspects of biological systems may be at the particle 

level, but the behavior exhibited by the particles is not necessarily simple. This is an 

important philosophical distinction, and one that allows me to maintain simultaneously 

the strong reductionist position and a sense of wonder about human intelligence. 

1.2. Unimolecular Reactions 

A large portion of our understanding of the dynamics of chemical reactions has been a 

consequence of the development of crossed molecular beam techniques. [8] In a molec

ular beam experiment, the reactants are prepared in known internal states, and the 

internal states and translational energy distributions of the products are measured at a 

variety of scattering angles, yielding the differential cross section, which is the most 

detailed information we can hope to obtain for a bimolecular reaction. 

Quantum effects have been observed relatively few times in molecular beam studies. In 

a set of experiments, Neumark et al. [9] were able to use crossed molecular beams to 

observe resonances in a scattering experiment on the F + H 2 reaction. In general, how

ever, it is nearly impossible to control the impact parameter between the colliding reac

tant molecules, and the wide range of impact parameters has the effect of averaging the 

cross section over a distribution of values of the total angular momentum. This can often 

obscure the experimental signatures of interesting quantum effects like resonances. 

Unimolecular reactions, however, can be prepared in well-defined initial states with 

very cold rotational distributions. This allows the experimental chemist to obtain 

extremely detailed information about the reaction. Indeed, C. Bradley Moore's group 

has prepared ketene and formaldehyde molecules in nearly mono-energetic distribu-

4 
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tions with rotational temperatures at or below 4 K, and has measured detailed product

state distributions for the photodissociation reactions of these molecules. 

Much of the work presented in this dissertation is carried out to explain the results of 

some of the Moore group's experiments on ketene. [10, 11, 12, 13, 14, 15, 16, 17, 18, 

19] In particular, we try to explain a series of observations of what appear to be reso

nances in the energy dependence of the rate of ketene isomerization. We also investigate 

a series of steps in the dissociation rate of ketene on the triplet surface that look like they 

are coming from quantized levels at the transition state. In both of these experiments, 

vibrationally excited (but rotationally cold) ketene molecules were prepared by exciting 

k~tene from the ground state surface to the first excited singlet electronic surface. The 

system then undergoes internal conversion or intersystem crossing onto the ground 

state and first excited triplet surfaces, and the reaction proceeds. The products of the 

dissociation are measured by laser-induced fluorescence (LIF) of the CH2 or CO frag-

ments. 

The unimolecular reactions of ketene happen at energies very far above the ground state 

energy of the ketene molecule. In the limit that the energy is rapidly randomized 

between the available vibrational modes, we can treat the arrival at and passage through 

the transition stite statistically. [20, 21, 22, 23] The rate constant when the reaction is 

carried out at total energy E with angular momentum] is given by 

_ N (E,]) 
k (E,J) - hp (E,]) ' (l-l) 

where p ( E,]) is the reactant density of states, N ( E, ]) is the cumulative reaction prob

ability at the transition state, and h is Planck's constant. In most statistica~ theories, 

N ( E,]) is taken to be the number of orthogonal ro-vibrationallevels at the transition 

state with energy less than E. Differing statistical theories make different assumptions 

about N (E,J) , which contains all of the dynamics of the reaction. What we attempt to 

do in our calculations is to obtain N(E,J) quantum mechanically, in as rigorous a fash

ion as possible. 
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Ketene has 9 vibrational degrees of freedom, and the current computational limit on 

quantum dynamics calculations is around 6 coupled degrees of freedom. We must 

therefore make the simplifying assumption that some of the vibrational degrees of free

dom are uncoupled from the rest. This is often called the reduced-dimensionality 

approximation, [24] and if taken to the limiting case where all vibrational modes are 

decoupled from the r~action coordinate, we recover the one-dimensional tunneling cor

rections to microcanonical transition state theory, [25] where we approximate the 

cumulative reaction probability, 

N(E,J) =Ill E-E:,J ). (l-2) 
n 

where E is the total energy of the molecule, £: is the energy level of the transition state 

with quantum numbers 11 , and P ( E,]) is the one-dimensional tunneling probability 

along the reaction coordinate. The reduced dimensionality approximation is used 

extensively in Chapters 3 and 4 of this dissertation. 

1.3. Theoretical Methods 

The calculations presented in this dissertation stand on the shoulders of a large body of 

theoretical methodology. It will be useful to review briefly some of these methods before 

forging ahead. 

1.3.1. Corrections to Classical Trajectory Methods 

Classical trajectories have long been used to study the dynamics of chemical reactions. 1 

One of the unfortunate limitations of using classical trajectories is that they cannot rep

licate tunneling, resonance, and interference effects that are inherently quantum phe

nomena. Another similar limitation is that trajectories can have less than the zero-point 

vibrational energy in the vibrational modes. This subtle problem has been addressed in 

recent years in simultaneous papers by Bowman et al. [26] and Miller, Hase, and Dar

ling. [27] Their method for correcting zero-point energy involves a local normal-mode 

1. For good reviews of classical trajectory methods, see Refs. 1 and 2. 
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expansion about the instantaneous location of the trajectory on the potential energy sur

face. If the trajectory falls below the zero-point energy in any of these vibrational modes, 

the momentum in that mode is reversed, effectively keeping the trajectory out of the 

· "forbidden" (n < 112) region. Although their method was tested extensively for bound 

systems, it has never (to our knowledge) been used in a trajectory simulation of a reac

tive chemical ?YStem. For this reason, we wanted to investigate how this method would 

compare to reaction probabilities calculated using un-modified classical trajectories as 

well as a fully quantum mechanical treatment. 

1.3.2. Quantum Reactive Scattering 

Until very recently, problems in gas phase chemistry involving quantum scatteri:r;J.g were 

solved using techniques based on one of the well-known propagation methods for elas

tic or inelastic scattering, [28] or via the Kohn variational principle (KVP) for reactive 

scattering. [29, 30] The problem with using the KVP method for the kind of unimolec

ular reactions carried out by Moore's group is that it requires a basis set expansion in 

the reaction coordinate. At the energies of interest, ketene has millions of available 

vibrational levels in both the reactant and product regions, which would l:nake the cal

culation of reaction probabilities using the KVP method impractical. 

A number of recent developments made by Miller and co-workers have allowed us to 

concentrate on the region immediately surrounding the trapsition state; we can now cal

culate the reaction probability directly, i.e. without having to obtain the immense 

number of state-to-state reaction amplitudes that make up the scattering matrix (the 5-

matrix). Seideman and Miller [31] developed a formalism for obtaining the cumulative 

reaction probability ( CRP) using absorbing boundary conditions (ABCs). The ABCs are 

negative imaginary potentials added to the Hamiltonian just outside the interaction 

region. They allqw us to construct a Green's function which has the correct outgoing 

wave boundary conditions by absorbing the flux that leaves the barrier region. This is 

really the piece of theoretical methodology that made calculating rates for ketene 

isomerization a feasible undertaking. 
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A discrete variable representation (DVR) basis set developed by Colbert and Miller [32] 

allows for further advances in calculating the reaction probabilities in multiple degrees

of-freedom. The matrix representation of the multi-dimensional Hamiltonian is sparse 

in a DVR, [33, 34] and the integrals required to construct this matrix representation are 

analytic. This allows us to construct the Hamiltonian for a very large problem "on-the

fly" and using a mini~al amount of computer storage. Since the Green's function is the 

inverse of El-IJ + i~, we can use one of a number of algorithms for inverting sparse 

linear systems. The efficient solution of sparse linear systems is a small industry in the 

applied mathematics community, and a number of techniques have been recently devel

oped that are quite good at inverting the Hamiltonian matrices we create. Among them 

are the GMRES [35] and QMR [36] algorithms, which are used extensively in the fol

lowing chapters. 

Manthe and Miller [37] introduced a reaction probability operator, P (E) , which has 

only a few non-zero eigenvalues which correspond to the reaction probabilities for indi

vidual vibrational levels of the transition state. The cumulative reaction probability is 

simply the trace of P (E) , or the sum of these eigenvalues (the "eigenreactionprobabil

ities"), and all of the closed channels at the transition state correspond to eigenvalues of 

P (E) which are equal to 0. This discovery was quite advantageous, as we need only find 

the non-zero eigenvalues of P (E) to obtain the cumulative reaction probability. This 

task is ideally suited to an iterative Lanczos diagonalization technique, [38, 39, 40] 

which converges the outlying eigenvalues very rapidly. Using P (E) can save one or two 

orders of magnitude in the amount of computer time required to obtain the CRP. 

1.3.3. Impulsive and Statistical Models 

Two easily-applied theories are in widespread use by experimental chemists who want 

to model the partitioning of the total available energy in photodissociation reaction. The 

first of these, the impulsive model, [ 41, 4 2] uses all available energy in an impulsive kick 

that is applied along the bond that is being severed. Conservation of energy, linear 

momentum, and angular momentum allows one to easily predict the amount of energy 

in the rotational, vibrational, and translational degrees of freedom of the fragments. The 
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impulsive model tends to overestimate the translational energy of the fragments when 

. the available energy is in excess of the barrier to recombination. 

The other set of theories that are in common use are usually applied to reactions which 

have small (or no) barriers to recombination. The simplest of these is the prior distribu

tion [ 43] which assumes that all energetically accessible product states are equally prob

able. When the conservation of angular momentum of the products is taken into 

account, the result is phase space theory (PST). [ 44] Both of these theories tend to over

estimate product rotational excitation above the vibrational threshold while underesti

mating product vibrations. The separate statistical ensembles theory (SSE) [ 45] 

attempts to correct these deficiencies by using some of the information about energy 

partitioning in the parent molecule to obtain product state partitioning. 

In Chapter 5, we will present a single theory that unifies the essential aspects of both the 

impulsive model (for energies near the top of the barrier) and the best of the statistical 

models (for energy in excess of the barrier height). We will require the theory to be 

easily applicable to molecules of appreciable size, so it must utilize information that is 

commonly available for these reactions; namely the energies, frequencies, and geome

tries of the parent molecule, the transition state, and the fragments. 

1.4. Overview of the Following Work 

Chapter 2 details our investigation of a technique for modifying classical equations of 

motion to correct for the zero-point energy problem. We look at what this technique 

does to the dynamics of the Henon-Heiles Hamiltonian, [46] as well as to the state-to

state reaction probabilities for the H + HF(v=2,3) ~ F + H2 (v=0) r~action, comparing 

various properties of the dynamics to quantum and un-modified classical calculations 

in both systems. 

Chapters 3 and 4 concentrate on reduced-dimensionality (but rigorous and fully quan

tum mechanical) models for two fascinating unimolecular reactions of ketene. Chapter 

3 is an investigation of resonance structure in the energy dependence of the rate of 
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ketene isomerization via the oxirene intermediate, and the dissociation of triplet ketene 

to form 
3
B1 CH2 + ti:+ CO is discussed in Chapter 4. These reactions provided a good 

test of the methodology discussed above. Indeed, it would have been nearly impossible 

to calculate quantum mechanical reaction rates for these reactions without some of the 

advances mentioned in Section 1.3.2. 

A new method for predicting the distribution of energy in photodissociation reactions 

is developed in Chapter 5. Briefly stated, the theory combines an impulsive model [ 41, 

42] using the height of the exit barrier as the size of the impulse reservoir and a statis

tical model for the rest of the available energy. Contributions to the average product 

rotational, translational and vibrational energy are calculated for each reservoir, and are 

combined to give totals for each fragment of the dissociation event. The statistical res

ervoir is divided using a method similar in character to the separate statistical ensembles 

(SSE) method [ 45] which has been modified to handle very large parent molecules and 

fragments. 

Finally, we conclude the dissertation in Chapter 6 with a summary of the previous chap

ters, and with suggestions for future work. 
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2 On the Zero-Point Energy Problem 

Abstract 

A series of calculations is presented which compare the traditional 
quasiclassical trajectory method for calculating chemical properties 
(reaction probabilities, IVR rates) for some model systems (the 
Henon-Heiles Hamiltonian and the H + HF -7 H2 + F reaction) with 
the Bowrnan-Miller-Hase (BMH) method which constrains trajecto
ries so that they maintain zero-point energy in all vibrational modes. 
Calculations using both methods are compared to exact quantum cal
culations of the same properties, and the BMH method is found to 
introduce serious errors into the dynamics as well as into the aver
aged properties for ensembles of constrained trajectories. A number 
of other possible solutions to the zero-point energy problem are also 
discussed. 

2.1. The origins of Zero-Point Energy 

Zero-point energy can best be understood as a consequence of the Heisenberg uncer

tainty principle. When a particle is localized in a potential well of length a, it must have 

a momentum uncertainty of ilp ~ rtlil a , giving a kinetic energy of E - ( ilp) 2 I (2m) , 

which can be thought of as the zero-point energy for a particle in a box. Bayrn [ 48] 

argues that zero-point energy is why Helium remains a liquid at temperatures near abso

lute 0. Solid Helium would require the individual atoms to be localized in a lattice, and 

since the masses are so small, the resulting zero-point energy would overcome the rela-
l 

tively weak attractive forces between the atoms. 

hi a harmonic oscillator, the total energy can be expressed as (p212m) + (kx212) . A 

state with zero energy would require that the expectation values of P2 and X2 be simul-
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taneously zero. The problem with this becomes apparent if one re-derives the uncer

tainty principle from the Schwartz Inequality, 

(2-1) 

where ..1.A =A- ( lA I ) . (Here, I ) symbolizes an arbitrary ket.) Since an eigenstate of a 

harmonic oscillator centered around X=O will have < lXI > = 0 and < IPI > = 0' Eq. 2-l 

simplifies to 

(2-2) 

If the right hand side of Eq. 2-2 is expressed in terms of the commutator and anticom

mutator for X and P, we have [ 49] 

(2-3) 

Both terms on the right side of the inequality are real and positive, so the uncertainty 

relation, 

(2-4) 

holds. 

It is easy to see that if the expectation values of f>2 and X2 are simultaneously zero, the 

uncertainty relation will be violated. The minimum uncertainty product allowed by Eq. 

2-4 requires a state whiCh has an energy of E0 = nro/2, the zero-point energy for the 

harmonic oscillator. 

2.2. Using Classical Mechanics to study large systems 

Quantum mechanical calculations of chemical properties (state-to-state reaction proba

bilities, cross sections, and thermal rates) for systems of N atoms require matrix diago-
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nalizations (which scale with N3) or inversions (which scale with N2). These scaling 

laws make quantum calculations impractical for obtaining chemical information from 

systems with more than a few atoms. One way of getting around this limitation is to 

average the results from ensembles of classical trajectories, making the initial ensemble 

resemble the initial quantum state as closely as possible. 

The traditional way of performing a classical trajectory simulation of a simple reaction 

(2-5) 

(where the reactant BC is started in its ground vibrational state) is to place an amount 

of energy in the vibration of BC that is equal to the zero-point energy of an equivalent 

quantum mechanical harmonic oscillator. The phase of this oscillation is sampled ran

domly, and the resulting distribution is called the "quasiclassical" distribution, which 

corresponds to a microcanonical distribution of initial conditions sampled from a ring 

in the phase space of that vibrational mode. A trajectory is run for each set of initial con

ditions and after some amount of time (or when the trajectory reaches a fixed separation 

between the atom and diatom), the final positions and momenta are placed in one of a 

set of "bins" which correspond roughly to the nearest quantum vibrational state of the 

product diatom. This allows for easy computation of state-to-state reaction probabilities 

using an ensemble of classical trajectories instead of a fully quantum mechanical treat

ment. 

2.3. The ZPE Problem 

The problem with using classical trajectories to simulate chemical reactions is that clas

sical mechanics does not capture the "correct" physics of chemical processes. Tunnel

ling, resonance and interference effects are obvious examples of phenomena that are not 

observed in classical mechanics. A more subtle, but equally troublesome error shows up 

because classical mechanics allows trajectories to sit near the bottom of a potential well 

with no momentum in that degree of freedom. The "zero-point energy problem" is that 

the energy in some vibrational modes may fall below the quantum zero-point energy 
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Ciirok where rok is the harmonic frequency for mode k). This may not seem like a prob

lem, but in a medium size polyatomic molecule like benzene the zero-point energy is a 

considerable amount of energy (52.2 kcaVmol). It becomes a serious problem when the 

molecule has a number of stiff modes with considerable zero-point energy which can 

then pool into one weak bond, thereby breaking the bond when the molecule may have 

a true (quantum) grqund vibrational state. 

The zero-point energy problem is also apparent in the energy dependence of microca

nonical reaction probabilities. Classical trajectories do not have to maintain zero-point 

energy in vibrational modes that are perpendicular to the reaction coordinate at the 

transition state, so the energy from those modes may pool into the reaction coordinate 

itself, thereby lowering the effective energy threshold for the reaction. This effect is 

clearly shown in state-to-state reaction probabilities for H + HF ~ H2 + F (cf. Fig. 2-7). 

When the chemical property being calculated is the rate at which intramolecular vibra

tional energy redistribution (IVR) takes place, then an exchange of energy between 

vibrational modes that leaves one of the modes below it's zero-point vibrational energy 

will give spurious results for the rate of energy transfer. 

2.3.1. Evidence for the problem 

A number of studies have revealed these limitations in great detail. Guan et al. [50, 51] 

added differing fractions of the total zero-point energy to their trajectory studies of near

threshold overtone-excitation-induced photodissociation ofH20 2. In their calculations, 

trajectories which started with zero-point energy in all modes and had the OH local 

mode excited to v OH = 5 had a total energy in excess of the barrier to 0-0 bond fission. 

Experiments by Crim et al., [52, 53] however, show that excitation of v0 H = 5 alone 

provides insufficient energy to cross the barrier. Guan et al. found a significant depen

dence of the classically calculated dissociation rates on the fraction of total zero-point 

energy included in the initial conditions, but inclusion of the full zero-point energy gave 

poor ~greement with the experiments. 
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Lu and Hase [54] have noticed poor IVR in classical trajectory studies of Benzene when 

the trajectories are started with zero-point energy in all vibrational modes. In particular, 

stiff vibrational modes with a large amount of vibrational energy quickly (within 0.3 ps) 

transferred much of this energy to "floppy" vibrational modes. This flow of energy is 

obviously incorrect from a quantum mechanical viewpoint. 

In a paper on the dynamics of Ethyl radical decomposition, Hase and Buckowski [55] 

argued that classical unimolecular dissociation rates can yield "exploding ground 

states". Below the quantum barrier to dissociation, the zero-point energy from other 

vibrational modes can pool into the reaction coordinate, yielding classical rates that 

indicate dissociation below the quantum threshold. Although no trajectories were run 

to test this hypothesis, classical and quantum RRKM [56, 57, 58, 59] calculations 

showed a strong divergence of the classical and quantum dissociation rates below the 

quantum threshold. 

2.4. Proposed Solutions to the ZPE Problem 

A number of strategies have evolved for fixing the zero-point energy problem. These 

strategies can be divided roughly into two classes. The first class seeks modifications to 

initial state or final state sampling of trajectories while leaving the classical evolution of 

the trajectories alone. These are the "passive" methods for dealing with the ZPE prob

lem, which are discussed in the Sections 2. 4 .l through 2. 4.3. 

The other class of methods are the "active methods" which seek to modify the classical 

equations of motion to take zero-point energy into account at every point along the tra

jectory. One active method in particular (the BMH method) is detailed in Section 2.4.4. 

Some problems with this method a~e discussed in Sections 2.5 and 2.6. A more recently 

developed active method is discussed in Section 2. 7. 

2.4.1. Partial ZPE inclusion methods 

Lu and Hase [60] studied the effect of zero-point energy in calculations of the C-H over

tones following excitation of a C-H local mode in Benzene. Their method for dealing 
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with the ZPE problem was to include a fraction of the zero-point energy ( 0 ~ fzpe :5: 1 ) 

in the vibrational modes of the system. The calculated linewidth was less than 1.0 cm-1 

for fzpe=O, regardless of which overtone state was sampled. Usingfzpe=0.04 gave results 

in good agrement with experiments for the n=3 state. Larger values offzpe yielded line

widths an order of magnit~de larger than experimental values. 

Additional calculations were performed where zero-point energy was excluded from 

some of the normal modes. By excluding zero-point energy from the initial conditions 

of the seven normal modes with strong CCH bending character and retaining the zero

point energy in the initial conditions of the other 14 modes, Lu and Hase observed a sig

nificant decrease in the calculated linewidth. The linewidth decreased by a factor of 3 to 

5 when compared to the trajectories which were started with zero-point energy in all 

vibrational modes, depending on which overtone was excited. In contrast, excluding the 

zero-point energy from the initial conditions of the other 14 modes while adding it to 

the seven CCH bending modes gave linewidths that were nearly identical to the full-ZPE 

initial conditions. Lu and Hase also suggested another passive method for correcting the 

zero-point energy problem based on initial state sampling from the Wigner distribution. 

This approach will be discussed in greater detail in Section 2.4.3. 

2.4.2. Trajectory rejection methods 

Another passive method was investigated by Nyman and Davidsson [ 61] as part of a tra

jectory study on the reaction ol 3P) + 0Hl 2n) ~ 02l 3:I:~J + Hl 2s). The initial con

ditions for the trajectories were started with either all or none of the zero-point energy 

in the OH vibration, and trajectories were propagated classically. Once the trajectories 

had completed, those which had less than the zero-point energy in the 0 2 products (or 

OH reactants if the trajectory was non-reactive) were selectively "thrown out" or 

removed from ensemble of trajectories used for calculating various properties of the 

reaction. 

The criteria for rejecting a trajectory were also the subject of study by Nyman and 

Davidsson, and was allowed to range from retaining all trajectories regardless of vibra-
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tional energy to throwing out all those trajectories that completed with less than the 

zero-point energy. The results showed a strong dependence on which scheme of cate

gorizing the trajectories was employed, and the treatment that yielded the best agree

ment with experiment varied considerably with which properties were being compared. 

2.4.3. Initial and Final state sampling methods 

As mentioned above, Lu and Hase [60] suggested that since such a small fraction of the 

zero-point energy gave the best agreement between experiments and the trajectory sim

ulations, the important regions of phase space for the vibrational modes are those with 

bond distances closest to the bottom of the well and with p = 0 . This corresponds quite 

well to the quantum ground-state vibrational distribution in both p and x. The quasiclas

sical initial conditions that are employed in traditional trajectory simulations sample 

from a ring outside of these maxima in the quantum distribution. What was sought was 

a distribution of initial conditions for an ensemble of trajectories that closely resembled 

the distribution of p and x in the quantum ground-state distribution. 

The Wigner distribution, 

(2-6) 

has already proven itself very useful as a distribution function for initial conditions in a 

large number of calculations of various chemical properties for simple systems. [ 62, 63, 

64, 65] (In Eq. 2-6, pis the density matrix for the appropriate vibrational degree-of-free

dom.) Brown and Heller [ 62] found that agreement between quantum calculations of 

cross sections for the collinear dissociation ofiCN(O,O) into rl 2
P312 ) and CNl 2A1tiJ 

with classical trajectories started with a Wigner distribution of initial conditions was 

substantially better than agreement obtained using the corresponding quasiclassical dis

tribution. 

There are two problems with using a Wigner distribution for initial conditions. 

Although the Wigner distribution is real, it can be negative, which means interpreting 
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it as a distribution function for initial conditions can be problematic. This limitation can 

be removed by using Husimi's distribution function, [66] 

where w is the width·of the uncertainty in the position coordinate, q. 

The other limitation of using either the Wigner or Husimi distribution functions is that 

the quantum mechanical wavefunction for a smaller (but still appreciable) system must 

be calculated to obtain the distribution functions for large reactions. For example, sup

pose one wishes to perform a trajectory simulation of an atom colliding with a vibrating 

5-atom molecule. A Wigner or Husimi initial state distribution for the trajectories 

requires the ground-state vibrational wave function for the entire reactant molecule (a 

system with 9 degrees of freedom). This defeats the main advantage of classical trajec

tory simulations which is the linear scaling behavior with increasing numbers of atoms. 

If one wishes to study the dynamics of large systems it is unlikely that using initial con

ditions sampled from the Wigner or Husimi distributions will be of great utility. 

2.4.4. Dynamics-altering Methods 

The other class of methods that have been proposed for dealing with the zero-point 

energy problem introduce new ways of integrating the equations of motion in order to 

preserve the zero-point energy at every point along the trajectory. These "active" meth

ods attempt ·to replace classical mechanics with a dynamical method that has a more 

"global" view of the potential energy surface, and typically require second derivatives of 

the potential energy surface at each point along the trajectory. 

2.4.4.1. The Bowman-Miller-Hase (BMH) method 

One active method was proposed simultaneously by Bowman et al. [26] and Miller, 

Hase, and Darling [27] and will hereafter be referred to as the BMH method. The BMH 

method operates on the principle that trajectories should be kept out of the forbidden 

(n < 1/2) region of phase space by a hard wall potential in the action. A classical hard 
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wall in position space simply reverses the conjugate momentum, so a hard wall in the 

action should reverse the associated angle variable. Figure 2-1 illustrates the general 

idea: 

Pk 

Figure 2-1. Schematic illustrating the BMH method 

When a trajectory attempts to cross the nk < 112 region, it is prevented from doing so by 

a reflection across the qk axis. The simple version of this method splits the potential into 

harmonic and anharmonic parts: 

(2-8) 

where 

(2-9) 

The positions and momenta for the harmonic Hamiltonian are given in terms of action 

{nk} and angle {8k} variables: 

(2-10) 
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(2-11) 

so the full Hamiltonian can be written as: 

(2-12) 

with 

(2-13) 

The trajectory is prevented from crossing into the forbidden region with a hard wall in 

the action which corresponds to an instantaneous reflection of the angle: 

(2-14) 

Using equations 2-10 and 2-11, it is easy to see that this corresponds to: 

(2-15) 

Pk (t) 

in cartesian coordinates. 

Since many chemically interesting problems are highly anharmonic, however, the above 

treatment's use of a privileged set of harmonic modes can be made more general using 

instantaneous or "local" normal modes. At an arbitrary time t, the potential is expanded 

about a particular point ; ( t) = ;t as follows: 
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(2-16) 

where 

a 
I<~) = a~V(~) ,and (2-17) 

(2-18) 

If H:·k} are the eigenvectors of the projected force constant matrix [67], 15 (~t) , and 

{ .Q~} the eigenvalues, then the "local" normal coordinates ~ and momenta r are 

related to the original Cartesian variables (~,E) by 

~- ~t = ~).k . ~ = L . ~ (2-19) 
k 

E = L·P. (2-20) 

This is a quadratic approximation to the Hamiltonian in the vicinity of ~t which can be 

written in the local normal mode coordinate system as 

(2-21) 

where { Dk} = Q is given by 

(2-22) 

We can complete the square for each of the shifted harmonic oscillators in Eq. 2-21, 
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(2-23) 

but since we are computing the local normal modes at each point along the trajectory, 

Qk = 0, so the zero-point constraint in each mode is 

(2-24) 

for all k. In terms of the original Cartesian coordinates and momenta, the condition for 

assuring that zero-point energy is preserved in mode k is 

(2-25) 

This more general version of the BMH model is implemented by adding the following 

steps at each point along the trajectory: 

• Diagonalize the projected force constant matrix at the current position~ (t) , 
yielding the eigenvalues { nn and eigenvectors u,.k} . 

• For all modes k for which .Q~ > 0, check the zero point condition in Eq. 2-
25. If it has been violated in this time step, make the replacement 

:f! -7 :f!- 2{-kl {.~.:e). (2-26) 

This extends the simple picture in Fig. 2-l to allow for potential energy surfaces which 

are highly anharmonic. The local harmonic approximation about each point along the 

trajectory is expected to be excellent near the bottom oflocal minima on the surface, yet 

still allows this method to be extended to reactive systems. As presented above it pre

vents the trajectory from entering those regions of phase space which have less than the 

zero-point energy in any of the local normal modes. The questions which remain to be 

answered center around how strongly this method affects dynamical properties of the 

system. Of particular interest is the question of what the BMH method does to chemi-

22 



2.5. Undesirable dynamical effects - the Htnon-Heiles potential 

cally relevant observables such as state-to-state reaction probabilities for simple reac

tions. Sections 2.5 and 2.6 attempt to answer these questions. Section 2.8 concludes the 

work on the zero-point energy problem. 

2.5. Undesirable dynamical effects- the Henon-Heiles potential 

2.5.1. Model and Methods 

The first model system which we used to investigate the dynamical effects of the BMH 

trajectory method was the Henon-Heiles [46] Hamiltonian for two identical oscillators 

in mass-scaled units Cmx =my= ffix =roy= 1): 

(2-27) 

Initial conditions for the classical and zpe-corrected trajectories were sampled from a 

quasi-classical (constant action) distribution [68] corresponding to the ground state of 

a zeroth order harmonic potential: 

(2-28) 

i.e. 

(2-29) 

(2-30) 

with similar equations for Yo and Pyo· 

The quasi-classical distribution for the ground state is obtained by setting nx = ny = 0, 

and by sampling ex and ey randomly over the interval (0,21t). In equations 2-29 and 2-

30, n is a dimensionless Planck's constant which determines how quantum mechanical 
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the system is. For the results below, ii was arbitrarily chosen to be l/(77t), though other 

values have also been investigated. 

The more general BMH method which applies the zpe-constraint instantaneously (in a 

local harmonic approximation at each point along the trajectory) was used for the zpe

corrected dynamics simulations, and uncorrected classical trajectories were also com

puted to provide a comparison. 

We monitored the time dependenc~ of a number of quantities of dynamical interest. The 

harmonic mode energies, 

(2-31) 

for i = x andy, are of particular interest because they show the frequency with which the. 

regular trajectories violate the zero-point energy restrictions. Additionally, the autocor

relation functions of the coordinates, 

T 

= lim -T
1 

Jdt'q. (t') q. (t' + t) , 
T~oo I I 

(2-32) 

0 

(also fori= x andy) were computed, and these were Fourier transformed to obtain the 

power spectra, I/m). Both quantities in equations 2-31 and 2-32 were averaged over the 

initial phases of the two modes (d. eqs. 2-29 and 2-30) using ensembles of 100 trajec-

toties. 

For comparison with the classical and zpe-constrained trajectories, quantum mechani

cal values of the above quantities were also computed. The energy in mode i (d. eq. 2-

31) is given quantum mechanically by 

(2-33) 
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2.5. Undesirable dynamical effects - the Henon-Heiles potential 

where <1>0 (x, y) is the initial zeroth-order (ground state) harmonic oscillator wave func

tion, and hi is harmonic oscillator Hamiltonian for mode i, 

(2-34) 

If {'1\} and {Eh} are the eigenfunctions and eigenvalues of the total Hamiltonian H

obtained by diagonalizing the matrix of H in a sufficiently large harmonic oscillator 

basis - then the time evolution operator in eq. 2-33 can be expressed as 

so that eq. 2-33 becomes 

Ei ( t) = I (<I> ol'l\)ei (E,- Ek.) t/1i('l\l hil'l\.)('1' k'l<l> o>. 
k, k' 

Similarly, the time correlation function is given quantum mechanically by 

T 

= lim .!Jdt(<l> le(iHt')l1ih.e(-iHt')l1ie(iH(t+t'))l1ih.e<-iH(t+t'))l1il<l>) 
T-?ooT 0 1 1 0 ' 

0 

and again using eq. 2-35 for the time evolution operators, this becomes 

ci ( t) = I l<<l>ol'l' k>l 2 1<'~' klhil'l' k'>l 2e (i (Eh- Ek.) t) In. 
k, k' 

(2-35) 

(2-36) 

(2-37) 

(2-38) 

The time dependence of the zeroth-order mode energies, eqns. 2-31 and 2-36, exhibit 

time dependence only because the initial state is not the true ground state. This is most 

obvious in the quantum case which would be time independent if 1<1>0) = 1'1' 0). (Expec

tation values of all operators are constant in an eigenstate.) The time correlation func

tions, eqns. 2-32 and 2-37, however, exhibit time dependence even if the initial state is 

the true ground state. 
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2.5.2. Results and discussion 

Figure 2-2 shows the harmonic mode energies for the unconstrained (panel a) and con

strained (panel b) classical calculations and for the quantum calculations (panel c). The 

results of the constrained classical mechanics are perhaps in somewhat better agreement 

with the quantum results, but the unconstrained classical trajectories are not in serious 

error. This may be explainable in terms of the initial conditions for the trajectories, 

which were chosen from the nx = ny = 0 rings in phase space, i.e. very close to the min

imum on the potential energy surface. Although there is anharmonicity in the system 

that would tend to mix the two vibrations, near the bottom of the well the coupling is 

quite small and the unconstrained motion may be nearly harmonic. This would tend to 

preserve much of the energy of a given mode within that mode. 

Figure 2-3 shows the results for the power spectra, the Fourier transforms of the time 

correlation functions. Here, matters are quite different. The normal, i.e. unconstrained 

classical mechanics gives a single peak at w""' 1 , signifying quasi-periodic motion. 

Figure 2-4 shows the coordinate space projection of this trajectory, confirming this.) 

The constrained classical mechanics, however, shows a broad, essentially continuous 

distribution of frequencies, characteristic of chaotic dynamics. (Fig. 2-4b shows the 

configuration space projection of a constrained trajectory, confirming the chaotic 

behavior of the motion.) The quantum result in Fig. 2-3c is clearly much closer to that 

of the unconstrained classical dynamics. The BMH zero-point energy constraints thus 

severely modify the classical dynamics in what appears to be a physically incorrect fash

ion. 

A variety of other initial conditions and potential parameters have been considered, but 

the qualitative results were all similar to those presented above. The BMH constraint 

method does indeed prevent the energy in each degree of freedom from falling below its 

local zero-point value, but the constraint appears to introduce non-physical behavior 

into the trajectory simulations - a side effect that may be worse than the problem that 

the method was intended to fix. 
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2.5. Undesirable dynamical effects - the Henon-Heiles potential 
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Figure 2-2. The BMH method's effects on harmonic mode energies 

Time-dependent harmonic mode energies for the unconstrained and constrained classi
cal mechanics (panels a and b, respectively), and for the quantum mechanical calcula
tion (panel c). The results are for the "ground state" of the Hamiltonian with n = l/77t. 
The classical results are averages of 100 trajectories. The harmonic mode energies in 
the x direction are shown as solid lines, and in the y direction are shown as shaded 
lines. 
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Figure 2-3. The BMH method's effects on the power spectrum. 

Power spectrum of the "ground state" dynamics. Panels a and b are for the uncon
strained and constrained trajectories, respectively. The quantum results are shown in 
panel c. The power spectra above are generated by fourier transforming the autocorre
lation function of the x coordinate. The spectra for they coordinate are nearly identical 
to the ones shown above. 
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Configuration-space projections of representative unconstrained (a) and constrained 
(b) classical trajectories. 

29 



/ 

Chapter 2. On the Zero-Point Energy Problem 

2.6. Undesirable effects on observables: H + HF(v=2,3) -> F + H2(v=O) 

The previous work on the Henon-Heiles potential centered around undesirable side 

effects in the dynamics that are introduced by application of the BMH zero-point energy 

constraint method. However, if a method for correcting classical trajectories for zero

point energy can obtain more "quantum-like" chemically relevant observables from a 

classical calculation,. then the method may still have utility in the simulation of large 

chemical systems. A second model system was therefore investigated in order to answer 

to what degree the BMH method corrects the classical energy-dependent state-to-state 

or half-state-selected reaction probability in a real world reaction. The system under 

consideration is the H + HF ~ F + H2 reaction, which has been studied extensively in 

numerous experiments. [ 69, 70] This reaction also has a large library of high-quality 

potential energy surfaces associated with it, [71, 72, 73] and quantum and quasi-classi

cal-state-to-state reaction rate calculations have been performed on some of these sur

faces. [ 4 7] These factors made this reaction an ideal choice for an investigation of how 

the BMH method effects observable quantities in a real chemical reaction. 

2.6.1. Model and Methods 

The potential energy surface used to explore the dynamics of the H + HF ~ F + H2 reac

tion was Muckerman's M5 potential. [71] The M5 potential is a London-Eyring-Polanyi

Sato (LEPS) [74, 75, 76, 77] surface which has the functional form 

(2-39) 

where Q and] are the Coulomb and exchange integrals from the Heider-London valence 

bond theory. Q and] are determined from the Morse functions for a given two-atom pair 

as follows: 
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(2-40) 

(2-41) 

The S (or Sat6) parameters in equation 2-39 are chosen to fit the location and height of 

the barrier with respect to the BC and AB distances. The parameters used for construct

ing the MS surface are given in Table 2-1. The MS surface is known to have some prob-

ij=HaHb ij=FHa ij=FHb 

~i/A-1) 1.9420 2.2187 2.2187 

Di/eV) 4.7462 6.1229 6.1229 

r0 ij(A) 0.7419 0.9170 0.9170 

sij 0.106 0.167 0.167 

Table 2-1. LEPS parameters for the MS surface 

lems when used as a model for the H + HF --7 F + H2 reaction, and has been recently 

been replaced in most calculations by the TSA [72] and SSEC [73] surfaces which repro

duce the ab initio energies [78] over much more of the configuration space than MS 

does. There are, however, good quantum [47] and quasi-classical calculations that have 

been performed on MS that we can compare our results to, and the newer surfaces do 

not have this background. 

In a collinear system, it is possible to reduce the system to two degrees-of-freedom using 

mass-weighted jacobi coordinates. Using this coordinate system, we calculated state-to

state and half-state-selected reaction probabilities ( P J, 0, P 2, 0, and P n, 0 ) with both clas

sical and zpe-constrained trajectories. In the notation above, the reaction is 

HF (v = i) + H --7 H2 (v = j) + F where the state-to-state probabilities are denoted Pi,j 

and the half-state-selected probabilities are denoted P .. The microcanonical reaction 
n,J 

probabilities were calculated at a number of energies ranging from 0.3 to 0.7 eV. 
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The trajectories were started in a particular vibrational "state" of the HF diatom by first 

finding the energy levels of the appropriate Morse oscillator, [79, 80] 

(2-42) 

(2-43) 

and by setting the internuclear distance for HF to the maximum separation allowed at 

this energy. The momentum of the vibrational coordinate was set to 0, and the remain

ing energy was put into the initial momentum of the scattering coordinate, P 0 . To 

sample the phase of the vibration, the period ( 't) of the HF vibration was calculated as 

follows: 

't = 
2
1t, where wvib = ~-2~(n+~) 

Wvib 21tc 21td~ 2 · 
(2-44) 

This period was then used to set an initial distance for the scattering coordinate: 

(2-45) 

where Rref was taken to be a large distance (15 Bohr), J..L was the reduced mass of the 

scattering coordinate, and<!> was sampled uniformly over the interval (0,27t). At each 

energy and in each of the initial vibrational states of the HF molecule, 100 uncon

strained and 100 zpe-constrained trajectories were run until either the HF or HH dis

tances reached a value of 15 Bohr. The final states of the trajectories were placed into 

quasi-classical "bins" depending on the energy in the vibrational coordinate for the cor

rect arrangement of the Jacobi coordinates. 
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2.6.2. Results and Discussion 

The results of the state-to-state calculations are compared to the quantum calculations 

ofBowman et al. [47] and are presented in Figs. 2-5 and 2-6, and the half-state selected 
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Figure 2-5. The BMH results for the P3 0 
' 

The unconstrained classical (dotted line) and zpe-constrained reaction probabilities 
(squares) compared to the quantum results (solid line) of Bowman et al. [47] for HF in 
the v=3 state reacting to form H2 in the v=O vibrational state. 

results are presented in Fig. 2-7. The results indicate that the zpe-constraints have intro

duced very serious errors into the reaction probabilities for a simple barrier crossing 

reaction, making it essentially unusable for calculating chemically relevant quantities in 

its current form. 

The choice of this particular reaction was fortuitous in some ways because it illustrates 

very clearly exactly where the BMH method introduces the greatest errors. Immediately 
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Figure 2-6. The BMH results for P2 0 
' 

The unconstrained classical (dotted line) and zpe-constrained reaction probabilities 
(squares) compared to the quantum results (solid line) of Bowman et al. [ 4 7] for HF in 
the v=2 state reacting to form H2 in the v=O vibrational state. 

0.7 

after trajectories cross the top of the barrier, the downhill (H2 + F) side of the barrier 

looks (locally) like the entrance to a region in the surface that contains a minimum 

along the reaction coordinate. The local normal mode expansion about that point in the 

trajectory sees a harmonic well that may have appreciable zero-point energy in the reac

tion coordinate even though the local calculation of the zero-point energy would drop 

to zero as the reaction coordinate is followed out into the asymptotic region. Figure 2-

8 illustrates this effect in detail. 

In order to illustrate to what degree this problem will manifest itself in calculations of 

reaction probabilities and to illustrate one possible solution to the problem, we have 

plotted the zero-point "condition" for the BMH method for a simple one-dimensional 

Eckart barrier 
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Figure 2-7. The BMH results for Pn,O 

The unconstrained classical (dotted line) and zpe-constrained reaction probabilities 
(squares) compared to the quantum results (solid line) of Bowman et al. [ 4 7] for HF in 
all energetically accessible vibrational states to react to form H2 in the v=O vibrational 
state. 

It is obvious that a one-dimensional model has no zero-point energy problem because 

there are no perpendicular vibrations, but the BMH method is unable to make distinc

tions between the reaction coordinate and non-reactive degrees of freedom, so this 

model illustrates the problem very clearly. 

The "zero-point condition" for the one-dimensional model, or the condition which will 

result in a momentum-reversing kick for a trajectory that just barely crosses the barrier 

is given by 

z = ~ro- _l_(av)2 
2 2ol ax 

(2-47) 
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Figure 2-8. Sketch of the BMH barrier crossing problem 

Products 

This illustrates how the reaction coordinate can be mistaken by the local normal mode 
approximation as a harmonic well with a zero-point energy above the barrier energy. At 
energies just above threshold, trajectories that should be reactive are knocked back 
over the barrier by the BMH method. 

where ro is obtained from the second derivative of the potential at x. Fig. 2-9 illustrates 

how the zero-point condition can kick a trajectory that has already crossed the barrier 

back into the reactant region. The curves in Fig. 2-9 are calculated assuming a mass of 

1 atomic unit. The zero-point condition for a more realistic mass and surface (an Eckart 

barrier which approximates the collinear H of H2 barrier) is shown in Fig. 2-10. 

Although the hard zero-point constraints do not cause problems on the more realistic 

surface, it is possible that a chemically relevant potential energy surface which has a 

small first derivative after the inflection point following the barrier could exhibit the 

same behavior shown in Fig 2-9. 

2.6.3. Future directions for the BMH model 

One possible solution to this problem is to introduce a soft-wall potential in the action 

instead of the hard wall that gives the momentum-reversing dynamics of the BMH 

method. A soft wall in the action would allow trajectories to cross into the forbidden 
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Figure 2-9. Zero Point Corrections for the Eckart Barrier 

The Eckart barrier (dotted line) with V0 = 0.1, m = 1, and a= 1.0 is plotted along with 
the "hard" zero point condition (solid line) from eqn. 2-4 7 and the "soft" constraint 
(dashed line) from eqn. 2-56. A value of 3 was used for A. in the soft constraint plotted 
above. Trajectories that cross the barrier with energies below 0.11 on the scale above 
will be reflected back across the barrier by the BMH method. All valid trajectories at the 
top of the barrier are allowed into the product region by the soft constraints. 

4.5 

region in phase space temporarily, but would discourage them from staying there indef

initely. The Hamiltonian including the soft constraints can be written as follows: 

p2 
H = 

2
-=- + V(q) + ~f(n.), 

m - ~ J 
(2-48) 

J 

where soft harmonic potentials, 

(2-49) 

are placed in the action to repel trajectories from the regions in phase space that have 

less than zero-point energy in all modes. 

With these potentials, Hamilton's equations of motion become 
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Figure 2-10. Zero Point corrections for a Realistic Barrier 

This figure shows the zero-point violations for a more realistic barrier with parameters 
approximating the barrier for the collinear H + H2 reaction. (V0 = 0.425 eV, m = 1060, 
and a= 1.0). In this case the barrier does not exhibit the zero-point violation problem 
shown in Fig. 2-9. The solid line is the hard zero-point condition which will never be 
violated on this surface, and soft constraints (dashed line) are only slightly above 0. 

dH dV dn. 
Pi = - - ---L f (n)-1 ' aqi aq. aq. 

1 j 1 

where nj can be written as: 

1 ( 1 2 1 ( r avJ2J n. = -- + - (p . L.) + - L. . - .\ 
J 2 2 - -) 2Q~ -) dq 

J -

These "new" Hamilton's equations can be simplified to the following form: 
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(2-50) 

(2-51) 

(2-52) 
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P. = _( M. avJ - l- a~ , 

2an. 
M = 1 + ~-1h (-n.) · L.L. · 
- - £..J Q. J -rJ 

j J ' 

(2-53) 

(2-54) 

(2-55) 

This formulation conserves the energy of the original Hamiltonian, and has only one 

adjustable parameter. 

For a one-dimensional problem-like the Eckart barrier, the value of the soft potential in 

the action can be written 

f(n) =A --+E:+--
( 

1 2 1 (av)2J2 

2 2 2o/ ax 
(2-56) 

Once again, ro is obtained from the second derivative of the potential energy at x. For a 

one-dimensional problem like the Eckart barrier, the momentum is easily found as a 

function of position and energy, so the conditions at which the soft constraint begins to 

affect the dynamics can be plotted along with the hard-wall constraint of the BMH 

method. Figs. 2-9 and 2-10 show the soft constraints for trajectories with energies just 

above the barrier height. The primary advantage of the soft constraint is that trajectories 

that have enough energy to cross the barrier are allowed to proceed into the product 

channel. On the realistic surface in Fig. 2-10, the soft effective potential barely rises 

above 0, and is not expected to effect the dynamics at all. 

Simulations to elucidate the effects that the soft constraints have on chemically relevant 

observables would be of great use in determining whether dynamics altering methods 

(like the BMH method) are worth using in simulations oflarger systems. However, given 

39 



Chapter 2. On the Zero-Point Energy Problem 

our initial investigations of the effects of the BMH method on the dynamics of the 

Henon-Heiles model, as well as on observable quantities (reaction probabilities, etc.), 

we are not particularly optimistic about such methods. 

2. 7. Other Dynamics-Altering Methods 

Recently, Peslherbe ~nd Hase [81] extended the BMH method for rotating systems so 

that linear and angular momenta are conserved when the constraints are applied. (The 

BMH method does not necessarily conserve these quantities). Their extensions to the 

original method are quite impressive, but they are still expected to suffer from the post

barrier problem discussed in Section 2.6 in situations where the original BMH method 

exhibits the problem. 

Lim and McCormack introduced an active method that was very similar in character to 

the BMH method. [82, 83] The new "twist" on correcting the trajectories was that 

instead of reflecting the trajectories across the q=O line in phase space, a semiholonomic 

constraint is applied, forcing the trajectory to slide around the rim of the forbidden 

region. Modes that are about to violate the zero-point constraint are transformed as fol

lows 

where 

a. = 
I 

2E~ 
I 

pf+qf' 

(2-57) 

(2-58) 

and E·~ is defined as the left-hand-side of equation 2-25. All other vibrational modes are 

transformed with 

(2-59) 
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The coefficients y and ~ are chosen to conserve total energy and linear momentum. The 

effect of these transformations is illustrated in Fig 2-11. Any mode which is about to 

Figure 2-11. Sketch of the TRAPZ constraint method 

drop below the ZPE is forced to slide around the rim of the ZPE ring in phase space. The 

trajectory leaves the ZPE orbit tangentially when the constraint is no longer needed. 

Lim and McCormack found that their method is free of some of the dynamical pathol

ogies that were present when the BMH method was applied to the Henon-Heiles Hamil

tonian. Their power spectra look quite similar to the quantum and classical results 

presented. above. However, in regions where the Henon-Heiles Hamiltonian exhibits 

classically chaotic motion, their method collapses all trajectories to a small set of peri

odic orbits. They did not carry out the corresponding quantum calculation with which 

to compare their results. 

Lim and McCormack's method applies the zero-point constraints at the same point that 

the BMH method applies its constraints, and it could suffer from the same mis-identifi

cation of the post-barrier region as a vibrational mode in situations where the BMH 

method exhibits the same problem. The decision whether their method will be useful in 

trajectory simulations of chemical systems awaits the comparison of trajectories run 

with their method to quantum mechanical calculations of reaction probabilities on a 

real potential energy surface. 
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2.8. Conclusions 

So far, none of the methods proposed for fixing the zero-point energy problem have 

been clearly superior to unmodified classical trajectory simulations. Indeed, some of the 

errors introduced in the course of fixing the ZPE problem have been worse than the 

original problem! The BMH method seems to introduce serious errors in trajectory cal

culations, and so far the only other "active" method which shows promise does not con

serve angular momentum and changes the essential dynamics of chaotic systems. 

Whether or not the mis-identification of the post-barrier region as a harmonic well is 

relevant to real trajectory simulations awaits a more detailed analysis, but this problem 

will be most apparent on surfaces which are nearly flat (small first derivatives) following 

the inflection point after a barrier (where ro is increasing rapidly). The potential energy 

surfaces for biological molecules are usually quite corrugated with many local minima 

separated by barriers, and it seems possible that simulations on these surfaces could 

exhibit this problem. 

None of the passive methods discussed at the beginning of this Chapter are able to pre

vent individual trajectories from falling below the zero-point energy of a vibrational 

mode, but they can provide ensemble averages that closely resemble the quantum 

mechanical observables. This seems like a more reasonable goal than trying to fix a 

dynamical method which (for the most part) works quite well. What is needed, it seems, 

is a method for sampling initial conditions and sorting final conditions that is better 

than the traditional quasiclassical method. There is still some debate on whether the 

ZPE problem is simply an artifact of how we perform these aspects of classical simula- · 

tions, and until the problem is well understood, solutions to the problem will be appro

priate for only a limited set of situations. 
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3 Resonant Features in the Energy 
Dependence of the Rate of Ketene 
Isomerization 

Abstract 

Calculations of the microcanonical isomerization rates for vibra
tionally excited ketene are presented. The calculations utilize the 
quantum reactive scattering methodology of absorbing boundary 
conditions (ABC) with a discrete variable representation (DVR) to 
obtain the cumulative reaction probability for one form of ketene to 
isomerize via the oxirene intermediate, and were carried out with 
model1-, 2-, and 3-degree-of-freedom potential energy surfaces con
structed using ab initio data. Significant differences are seen in the 
energy-dependent features of the microcanonical rate for the single 
mode and multi-mode potentials; e.g., the single mode potential 
exhibits tunneling resonances with widths of around 1 cm-1, while 
the calculations involving more than one degree of freedom have 
additional resonant features that have widths around 10 cm-1 and also 
exhibit non-Breit-Wigner resonant lineshapes. This suggests that 
many of the resonance features are best described as Feshbach 
(energy transfer, or dynamical) resonances that result because of a 
strongly bent region on the multi-mode potential energy surfaces. 
The calculated rates show reasonable qualitative agreement with the 
experimental results of Lovejoy and Moore. [ 12] 

3.1. Introduction 

In recent history, theoretical models for the reactions of small molecules have shown 

remarkably good agreement with experiments on the same reactions. Transition state 

theory [86, 87] and RRKM theory [56, 57, 58, 59] have both proven to be powerful pre

dictive and explanatory models for a wide class of reactions. Likewise, exact quantum 
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calculations [88] have had equal successes with reactions that involve Hand D atom 

motion, showing experimentalists the details one could expect in an angular distribu

tion from a system that exhibited a resonance, [30] and predicting the role of the geo

metric phase in reactions that involve conical intersections between two electronic 

surfaces. [ 89] However, the computational demands of exact quantum calculations have 

limited their applical?ility to at most 4 atom systems. [37] 

Although there have been many of these theoretical investigations of quantum effects 

on chemical reactivity, there have been few experimental confirmations of these effects. 

Neumark et al. [9] observed dynamical resonances in a scattering experiment on the F 

+ H2 reaction, but scattering studies are carried out over a wide range of impact param

eters, and the requisite averaging over total angular momentum can obscure the exper

imental signs of quantum effects. Unimolecular reactions, however, can be studied from 

well-defined initial states, which can reveal the effects of resonances on reaction rates. 

Lovejoy and Moore [ 12] recently reported some remarkable experimental results on the 

photodissociation and photoisomerization of ketene. Figure 3-1 shows a (much simpli

fied) picture describing the situation; C and C' denote the isotopes carbon-12 and 

carbon-13, respectively. Very cold ketene (in a supersonic beam, Trot - 4 •K) is laser

excited to a well-defined energy E (energy resolution is- 1 cm-1) and dissociation prod

ucts (carbon monoxide and methylene) are observed. If the reactant molecule is 

H2CC'O, then the major product is CH2 and C'O, but 10-20% of the product has the 

isotopes of carbon switched, i.e. C'H2 and CO, indicating that the isomerization, 

(3-1) 

has taken place prior to dissociation, presumably passing through the oxirene interme

diate (cf. Fig. 3-1). (This isomerization or exchange process was also deduced from 

much earlier "hot atom" experiments by Rowland et al. [90]) From the branching ratio 

between normal and exchanged products, Lovejoy and Moore used a simple kinetic 

model to extract separately the unimolecular rate constants for direct dissociation (i.e., 
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H2 C=C'=0 -7 H2C + C'=O without isomerization) and for isomerization, kd(E) and 

ki50 (E), respectively. In a series of papers, [ 10, 14, 15, 11] Moore et al. have reported on 

many other interesting aspects of ketene photodissociation. The dissociation onto the 

triplet methylene surface is the subject of Chapter 4. 

0 
1\ 

C'=C 
H/ 'H 

· Figure 3-1. Sketch of the energe~cs along the reaction coordinate 

A sketch of the relevant structures and energies involved in the photodissociation and 
photoisomerization of ketene. 

The energy dependence of kd(E) shows some interesting step structure due to quantiza

tion of the transition state but is otherwise a very typical unimolecular k(E) for which 

standard microcanonical transition state theory (i.e. RRKM [56, 57, 58, 59]) is an excel

lent description. The isomerization rate ki5/E), however, varies non-monotonically and 

exhibits regularly-spaced peaks as the energy is increased. 
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This appears to violate one of the fundamental tenets of transition state theory. If tran

sition state theory were valid for this experiment, then the isomerization rate would 

appear to be a 'staircase' as a function of energy. As more vibrational levels at the tran

sition state were opened with increasing reactant energy, the rate would jump up a step. 

Each step would indicate an additional open channel at the transition state. 

Lovejoy and Moore observed a rate constant which had large features in the energy 

dependence of the rate; and was most certainly non-monotonic with increasing energy. 

Citing ab initio studies on the oxirene structure,[91, 92] 

0 
1\ 

C=C 
H/ B' (3-2) 

they tentatively concluded that the features in the energy dependence of the reaction 

rate were due to tunneling resonances through quasi-bound states in a small well in the 

potential energy surface around oxirene. Resonance tunneling through a one-dimen

sional double barrier is a well-known phenomenon, but it has never (to our knowledge) 

been observed in a molecular process. (Under less well defined experimental conditions, 

it would be easily averaged out.) Because of the novelty of this process, we therefore 

undertook a more detailed theoretical treatment, first to see if our theoretical method

ology is capable of handling this complex reaction dynamics accurately for a polyatomic 

molecule of this size, and also to lend support (or not) to Lovejoy and Moore's interpre

tation of their observed structure. 

Of additional interest, it has been postulated that ketene isomerization through the 

oxirene structure is an important step in the Wolff rearrangement, [93, 94] in which 

diazoketones are photolyzed to ketocarbene intermediates, which can then rearrange to 

form ketenes. An isomerization through the symmetric oxirene intermediate has been 

proposed [95, 96, 97] as an explanation for the observation that diazoketones that have 

been 
13 

C -labeled at the carbonyl carbon often have mixed labeling of the two carbons 

after the Wolff rearrangement is complete. A more complete understanding of the 
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dynamics involved in ketene isomerization observed by Lovejoy et al. would be useful 

to the understanding of the Wolff rearrangement for more complex molecules. 

In Section 3.2, we introduce the general theoretical underpinnings of a calculation of 

the ketene isomerization rate via the oxirene intermediate. Results are presented in 

Section 3.3 and Section 3.4 concludes. 

3.2. Summary of Theoretical and Computational Specifics 

In comparing the results of theoretical calculations to experimentally measured quanti

ties, the microcanonical rate is often the most detailed quantity that is available for com

parison. The microcanonical isomerization rate can be expressed as 

kiso (E) = N(E) 
21tnp(E)' 

(3-3) 

where p (E) is the density of reactant (ketene) states per unit energy- which is a 

smooth, almost constant function of energy over the relevant region. In most cases, 
..r 

p (E) can be easily estimated using the Whitten-Rabinovitch approximation [98, 99]or 

the Beyer-Swinehart algorithm, [20] although experimental and anharmonic ab initio 

state densities are often available, as is the case for ketene. N(E) is the cumulative reac

tion (here isomerization) probability (CRP), which contains all the aspects of the 

isomerization process and whose calculation is the central task. 

3.2.1. The Cumulative Reaction Probability 

The development of theoretical methods for calculating CRPs has been a major focus of 

our research group in the last few years, so the present application is an excellent test of 

this methodology. Seideman and Miller's [31] expression for the CRP is 

(3-4) 

" where G (E) is the Greens function, 
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A A A -1 
G(E) = (E+iE-H) (3-5) 

H. being the total Hamiltonian for the ketene molecule and E an absorbing potential to 

enforce outgoing wave boundary conditions. Er ( Ep) is the part of the absorbing poten

tial in the reactant (product) region, e.g. the left (right) dotted curves in Figure 3-l; 

€ = Er + Ep. One may think of this quantum mechanical expression for the CRP as 

analogous to a classical trajectory calculation in which one starts trajectories in the left 

ketene well (cj. Figure 3-l), with initial conditions sampled from a microcanonical dis

tribution, and runs them to determine the fraction that reach the right hand ketene well, 

terminating them as soon as they exit the double barrier region into the product well. 

In this quantum calculation we are thus by-passing the problem of describing the 

dynamics of highly vibrationally excited ketene itself and only calculating the microca

nonical reactive flux (which is the CRP). 

Even with this limited treatment of the dynamics, however, it is not possible to carry out 

the calculation in its full dimensionality ofF= 3N-6 = 9 degrees of freedom (with total 
'\,. 

angular momentumJ=O). We thus carry out a CRP calculation includingf degrees of 

freedom, obtaining NfE), and then fold in the other uncoupled degrees of freedom by 

microcanonical convolution, 

N(E) = iNA E-E:-1), (3-6) 

!:)=0 

where { E:-f} are the energy levels- approximated as harmonic oscillators- for the F

f uncoupled degrees of freedom- i.e., 11 = n1 + 1, ... , nF, and 

(3-7) 
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This is the idea of "dimensionality reduced" approximations [24, 100], and for f=l is the 

standard expression for one-dimensional tunneling corrections to microcanonical tran

sition state theory. [25] 

Treating vibrational modes in this way is similar to the ]-shifting approximation, [24, 

100, 101] which estimates rate constants and cross sections using only ]=0 calculations. 

This estimate is made by ignoring Coriolis coupling, and assuming that the geometry 

used to estimate the centrifugal coupling strongly resembles the transition state geom

etry. TheJ-shifting approximation to the thermal rate constant for D+H2(v=l) has given 

excellent agreement the exact quantum results. [102] 

Described in terms of the normal modes of the oxirene intermediate, the ketene isomer

ization reaction has 3 strongly coupled degrees of freedom, and 6 degrees of freedom 

that are only weakly coupled to the reaction coordinate. This makes the n-shifting 

approximation in equation 3-6 useful in calculating the overall isomerization rate. 

3.2.2. The Potential Energy Surface 

The stability of the oxirene intermediate has been the subject of a great deal of contro

versy in the quantum chemistry community. Scott et al. [84] have performed the most 

detailed calculation of the reaction path to date. At the CCSD(T)/6-3llG(df,p) level of 

theory, they find a broad, corrugated well between the transition states that separate the 

two ketene structures, as shown in Figure 3-2. 

The oxirene well, however, is only slighdy stable and lies at an energy above the energy 

for formylmethylene. Frequencies for the oxirene structure have been obtained at the 

CCSD(T)-fc!TZ2P(f,d) level of theory by Vacek et al. [85]. This level of theory also 

shows oxirene to be a stable point on the potential energy surface. 

Other levels of theory, including density functional theory, have given an imaginary fre

quency for the ring-opening mode of oxirene [ 103]. Most of these calculations also give 

a fairly broad central well with transition states between the formylmethylene structures 

and the associated ketene structures. The fact that the region between the two outer 
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Figure 3-2. The 1-d potential energy surface 

I 

I 

A plot along the reaction coordinate showing the !-dimensional potential energy sur
face (solid line) and the absorbing potential (dotted line). The critical points are 
labeled with the names of the structures along the reaction coordinate that were calcu
lated in reference [ 84]. 

3.5 

transition states is not a single minimum (as indicated in the simplified Figure 3-1) does 

not change the discussion: in the introduction about resonance tunneling, but it does 

suggest that the dynamics of the resonance intermediate may be quite complex. 

We have used normal coordinates referenced to the oxirene geometry, 

(3-8) 
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to construct a potential energy surface in the region of Figure 3-2, incorporating all 

information available from ab initio [84, 85, 103] calculations as well as possible. From 

these calculations, we identify at least three degrees of freedom that play active roles in 

the isomerization process. (The carbon-carbon and one of the carbon-hydrogen bond 

lengths are largely unchanged throughout the isomerization.) 

The first important normal mode coordinate - the one we identify as the reaction coor

dinate - involves mainly oxygen and hydrogen atom motion. Displacement along this 

normal mode describes most of the structural differences between oxirene and the inter

mediates that lie between oxirene and ketene. 

We have identified the other two quantum degrees of freedom in terms of two of the 

local modes of oxirene. The second degree of freedom that we include in the quantum 

calculation is a linear combination of the a2 CH asymmetric out-of-plane mode and the 

b1 CH symmetric out-of-plane mode. This corresponds to the out-of-plane motion ofHa 

relative to the ceo plane, a motion which has a frequency of approximately 514 cm-1. 

The third degree of freedom is a linear combination of the b2 CH asymmetric rock and 

the a1 CH symmetric rock. This combination corresponds to the in-plane swing of Hb 

towards the middle of the CC bond, and has a frequency of approximately 873 cm-1. 

We make some simplifying assumptions in calculating the frequencies of these local 

modes. The first assumption is that the asymmetric and symmetric normal modes are 

the normal modes for a system with two local modes which have identical frequencies. 

Next, we assume that the coupling between these local modes is positive. With these 

two assumptions, it is easily shown that the frequency of the symmetric normal mode is 

the same as the frequency of the constituent local modes. This is the lower of the two 

frequencies for each pair of normal modes listed above. 

The form of the potential energy surface that we have used to perform this calculation 

is given by 
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V(s,~) = V1a(s) + ±kj(Qj+~~~)J2 

j=2 J 

(3-9) 

(3-10) 

(3-11) 

The parameters for the 1-d potential V 1 d ( s) were obtained by fitting to the energies and 

structures in reference [ 84]. A plot of this fit is given in figure 3-2. A comparison of the 

energies and frequencies of the calculated fit to the ab initio calculations is given in 

Table 3-l. 

inner Formyl-
Oxirene TS methylene 

Energy (k]/mol) best fit vld 0 1.8 -2.4 

Ref. [84]a 0 1.9 -2.0 

ro (cm-1) best fit vld 134 141 i 152 

Refs. [84]b and [85] 163c 133 i 328 

Table 3-l. Properties of the best-fit 1-d potential surface 

Energies and frequencies for the critical points along the reaction 
coordinate. Energies are relative to the oxirene structure. 

--------------------a. geometries are optimized at the CCSD(T)/6-311 G( df,p) level, and energies are calculated 
using a mean of CCSD(T)/cc-pVTZCD and CCSD(T)/cc-pVTZ(g) values. 

b. calculated at the CCSD(T)/6-31G(d) level. 

c. calculated at the CCSD(T)-fc!TZ2P(f,d) level. 

outer 
TS 

23.9 

23.9 

277 i 

409 i 

Frequencies for the two coupled degrees of freedom were obtained from the frequencies 

for the asymmetric hydrogen rock (in plane) and asymmetric hydrogen wag (out of 

plane) modes calculated in reference [85]. The coupling constants (d) for those two 

modes are obtained by using the geometries calculated in reference [84]. A contour plot 

of the potential energy surface as a function of sand Q2 is shown in figure 3-5, and all 

the parameters used in constructing the potential energy surface are given in Table 3-2. 
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parameter value 

a2 -2.3597 x 10-5 (hartree bohr-.L) 

a4 1.0408 x 10-3 (hartree bohr-4) 

a6 -7.5496 x 10-5 (hartree bohr-6) 

c 7.7569 X 10-3 (hartree bohr-2) 

d 1.9769 (bohr-2) 

k2 1.0074 X 10-2 (hartree bohr-2) 

d2 -2.45182 x 10-4 (hartree bohr-5) 

k3 2. 9044 X 10-2 (hartree bohr-2) 

d3 -8.54360 x 10-4 (hartree bohr-5) 

Table 3-2. Parameters of the best-fit potential energy surface 

3.2.3. Absorbing Boundary Conditions 

Miller and Seideman [104, 105] developed an approach to calculating cumulative reac

tion probabilities using Absorbing Boundary Conditions (ABC's). In the original formu

lation, it allowed for easy calculation of the cumulative reaction probability in a DVR 

basis (see section 3.2.4) with the equation 

N (E) = 4L€r (q) 1Gj,j'l2 €P (qj') ' 
j,j' 

(3-12) 

where €r and €P are the DVR representations of the absorbing potentials in the reactant 

and product regions, and G is the DVR representation of the scattering Green's function, 

given by 

G (E+) = (El-I- Y + i€) . (3-13) 

In this Green's function, the standard convergence parameter, £, has been replaced with 

the coordinate dependent absorbing potential, €. The summation in equation 3-12 is 

derived from the original trace formula: 

N (E) = ~ (2n1i) 2tr [Fo (E- H) .Fo (E- H)] , (3-14) 
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where F is the flux operator and o(E-H) is the microcanonical density operator. This 

formula is basis-set independent, and marks the point of departure for the P-matrix 

method that will be discussed in section 3.2.5. 

The main reasons for using absorbing boundary conditions are that they allow one to 

treat a scattering problem as if it were a non-Hermitian bound system, and that they 

allow one to shrink the extent of the problem to the area immediately surrounding the 

interaction region. The second of these two advantages proved to be indispensable in 

calculating rates for ketene isomerization. The ABC formalism has been recently 

extended to allow for calculations of state-to-state [105, 106, 107] and half-state

selected [106, 107] reaction probabilities with great success. 

The absorbing potential, €(s,Q2,~2J), that we use in our calculations is given by 

(3-15) 

where 

(3-16) 

We place the beginning of the absorbing potential, r0, just after the final barriers to 

isomerization. The absorbing potential needs to rise fast enough to absorb the flux 

resulting from the rapid drop off of the potential energy, so a polynomial of at least 

degree 3 is required for the form of €. The end of the absorbing potential, r max• is placed 

at the edge of the grid. This edge is located just far enough outside the barrier to isomer

ization to assure convergence. Typical values for r max• and for the constants in equations 

3-15 and 3-16 are presented in Table 3-3. 

3.2.4. The Basis Set 

We have used a discrete variable representation (DVR) (i.e., a basis set of grid points) 

to represent the operators in equation 3-4, specifically the sine-function DVR of Colbert 

54 



3.2. Summary of Theoretical and Computational Specifics 

parameter value 

ro 2.7 (bohr) 

Cs l 

c2 0.9 

c3 l 

a 0.01 (hartree bohr-4) 

rmax (ld) 3.45 (bohr) 

(2d) 4.3 (bohr) 

(3d) 5.6 (bohr) 

Table 3-3. Parameters of the Absorbing potential 

and Miller. [32] This is a convenient representation for a number of reasons. The poten

tial energy operator is diagonal in a DVR, and the kinetic energy operator is the sum of 

!-dimensional kinetic energy matrices. These two features of the DVR combine to give 

a sparse Hamiltonian matrix. The matrix inverse that is required to obtain the Green's 

function can therefore be solved with some of the sparse matrix techniques that will be 

discussed in section 3.2.6. 

The basis functions themselves are an orthonormal set given by: 

. ( (x-x)) 
Sin 1t ~X 

1t (x-x) 
(3-17) 

\ 
In this equation, ~x is the grid spacing of the DVR grid, which is obtained by estimating 

the deBroglie wavelength of the highest kinetic energy that needs to represented: 

(3-18) 

NB is the number of grid points in one complete deBroglie wavelength. This number is 

typically taken to be around 3.7. Ehigh is the highest energy in the problem, and Vlow 

is the lowest point on the potential energy surface. 
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For the three cartesian degrees of freedom that we used in this work, the kinetic energy 

operator for each degree of freedom can be expressed in this basis set as: 

2 . { 
Tii' = 1i 2 (-1) i-i' 

2mAx 

i = i' 

2 . ., 
-(-. -.,)-2 l :;C l 
1-l 

(3-19) 

The first part of the calculation involves laying down a primitive rectangular grid in all 

3 degrees of freedom. The primitive rectangular grid required to go from reactants to 

products would be very large, so the primitive grid is truncated based on the potential 

at the various grid points. If 

(3-20) 

then the point (i,j,k) is removed from the grid. This procedure drastically reduces the 

number of grid point necessary to obtain the reaction probability. Vcut was taken to be 

twice the largest energy for which a value for N(E) was required. 

3.2.5. Evaluation of the Trace 

Manthe and Miller [37] have shown that an efficient way to evaluate the trace in Eq. 3-

4 is to introduce the reaction probability operator P (E) , defined by 

p (E) (3-21) 

so that Eq. 3-4 for N(E) becomes 

N(E) = tr[P(E)]. (3-22) 

(Since the absorbing potential matrices are diagonal, the square roots in Eq. 3-21 cause 

no problems.) This expression can be derived from equation 3-14 using cyclic permu

tation of the operators within the trace, and by observing that 
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1 A o (E- H) = -- Im G (E+) . 
1t 

(3-23) 

One must also note that the flux operator, f:, is defined in terms of a surface in coordi

nate space that separates the reactant region from the product region. If one specifies 

this surface as f (s, ~) = sF, i.e. the surface is taken when the reaction coordinate, s, is 

held at a constant value sF, then the flux operator may be written as 

,... i A " A 

F = h { H, h [f ( s, ~) ] } . (3-24) 

Manthe and Miller also show that the eigenfunctions of the P-operator all lie between 0 

and 1. The cumulative reaction probability is expressed in terms of the eigenvalues 

{pk(E)} as 

(3-25) 

These eigenvalues have been termed "eigenreactionprobabilities", and roughly corre

spond to the probability of transmission through a given open channel at the transition 

state. 

The great strength of this method is that it allows us to use iterative methods to obtain 

only those eigenvalues that contribute to the reaction probability. This provides a 

simple convergence test for the iterative methods that are discussed in the next section. 

Typically, one only needs to find the lowest few eigenvalues of a very large matrix. The 

computational savings due to this fact are significant. 

3.2.6. Methods for Solving Sparse Linear Systems 

The preferred method [38] for finding the Greens function in equation 3-12 is to use 

LU-decomposition followed by back-solving to obtain the columns of the Greens func

tion: 
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(H- EI + i€) G = I . _ n n (3-26) 

Here, In and Gn are the nth columns of the identity matrix and Green's functions, respec

tively. The LU-decomposition is done once, and backsolving is done for each column of 

the Green's function that is required. This is an extremely efficient and reliable way of 

obtaining the inverst: of small and medium sized matrices, and for N x N matrices, the 

number of operations required to perform the inverse scales with N3. 

When the size of the grid and the resulting Hamiltonian matrix becomes too large, it 

becomes impossible to store either the Hamiltonian, the Green's function, or the P-oper

ator. This limit is reached at around 7500 grid points on workstations with l GByte of 

core memory. The number of grid points required to treat three quantum mechanica1 

degrees of freedom in the ketene isomerization is approximately 48,000, so a different 

technique is required. 

Methods based on Krylov subspaces [39, 40] of the operator are extremely good at con

verging the high end of the eigenvalue spectrum. This is ideal for the P-operator, as the 

higher eigenvalues are the ones that contribute most to the cumulative reaction proba

bility. One needs to find only the non-zero eigenvalues of P, which is typically a very 

small subset of the full set of eigenvalues. These eigenvalues can usually be obtained in 

only a few iterations of the Lanczos algorithm. 

The algorithm is summarized as follows: 

We start with an arbitrary initial vector y0 , which is often chosen to be a random vector. 

The Lanczos recursion formula for a Hermitian operator is as follows 

(3-27) 

where 

(3-28) 
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and 

(3-29) 

The inner product in equa,tion 3-28 is the hermitian inner product. We now define P as 

the representation of the P operator in the Krylov basis of v"' = { y 
1

, y2, ... , ym} . Since 

P is hermitiail, it is easy to show that P is a tridi11gonal matrix of the form: 

(3-30) 

This matrix can be used direcdy to calculate the eigenvalues of P. Due to round-off 

errors, however, the elements of the vectors, yi ,can deviate from their exact values. This 

can introduce spurious or 'ghost' eigenvalues or multiple copies of correct eigenvalues 

into the spectrum for P. To alleviate this problem, one may explicidy reorthogonalize 

the vectors, and obtain the following recursion relation: 

where 

i-1 

ci,i-1Yi = Pyi-1- L cj,i-1Yj' 
j = 0 

(3-31) 

(3-32) 

Since we are looking for the trace of the P operator in this representation, all we really 

need are the diagonal elements of P: 

N(E) 
Nkry 

""' c .. , £..J I, I 

i=O 

(3-33) 
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where Nkry is the number of Krylov iterations that have been performed. 

Since the Lanczos algorithm obtains the highest lying eigenvalues of the P operator first, 

the number of iterations required to converge N(E) is on the order of N(E) itself. This 

amounts to a built-in convergence test of the method- when N(E) is stable, no more 

Lanczos iterations are required. 

Every operation of the matrix :p onto a vector in Eq. 3-27 requires two operations of the 

Green's function matrix onto a vector (i.e., the various matrices in 
A Al/2A A A Al/2 
P (E) = 4Er G (E)* EpG (E) Er multiply sequentially from the right). The opera-

tion of the Greens function matrix onto a vector effectively means that one must solve 

the set of linear equations, 

A·x = b - - -' (3-34) 

where the vector ~ is given and .d. = (E + i~ -lj) , and this is the primary computa

tional task. Use of the Lanczos method above with the P-operator/matrix greatly reduces 

the number of Green's function operations that are required and is why it was such an 

important step forward. 

There is, of course, an enormous literature on the solution of the linear algebra problem 

in Eq. 3-34. Our present matrix .d. is complex symmetric, large, but very sparse. We 

have made most use of the generalized minimum residual ( GMRES), [35] and more 
\ 

recently the quasi-minimum residual (QMR) algorithms.[36] These are both Krylov-

based algorithms, and they allow one to use pre-conditioners. I.e., if .d-o is an approxi

mation to .d. that itself is easily invertible, then one writes Eq. 3-34 as 

A'·x = b' - - - ' (3-35) 

where 

A' = A-1 ·A 
- -0 -

(3-36) 
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b' = A-1 
• b - -o -' (3-37) 

and then generates a Krylov basis using .1'. GMRES is the most efficient procedure on 

the basis of the number of such iterations, but it requires that one store (and explicitly 

orthogonalize) all the Krylov vectors. QMR is not as efficient as GMRES on the basis of 

number of iterations, but since it requires the storage of only a few Krylov vectors, its 

cost (i.e., computational time) per iteration is much less. QMR finds the inverse by a 

quasi-minimization of the residual at each iteration. It is based on the look-ahead Lanc

zos algorithm which is used to find approximate eigenvalues of large non-Hermitian 

matrices. We stop the QMR iterations when the residual for the Green's function has 

dropped below 1 o-4 
0 

We have found that a diagonal preconditioner gives the best performance with QMR, i.e. 

(A 0
) = (A) .. 8 .. 

- i,j - l,) l) 
(3-38) 

in equation 3-36 above. Other preconditioners, notably the Symmetric Successive Over 

Relaxation (SSOR) preconditioner resulted in a smaller number of iterations, but the 

costs associated with finding the inverses of upper and lower Hessenberg matrices made 

it a less attractive preconditioner. [108, 109] For the particular matrices used in this cal

culation, SSOR was often more expensive than having no preconditioner at all. 

3.3. Results 

3.3.1. Isomerization Rate using one degree of freedom 

The best-fit single mode potential energy surface is shown in figure 3-2, and the calcu

lated cumulative reaction probability (Nld(E)) for this PES is shown in figure 3-3. 

N 1d(E) was used to calculate the isomerization rate using the other 8 vibrational modes 

at the outer transition states as uncoupled harmonic oscillators. The isomerization rate 

is shown as a solid line in figure 3-4. In all calculations, the experimentally measured 
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Figure 3-3. 1-d N(E) 

The calculated cumulative reaction probability (N(E)) for the potential shown in figure 
3-2. 

[10, 14, 15, 11, 13] density of states (4.5 x 104 states/cm-1) for a reactant ketene mole

cule with 28,000 cm-1 of vibrational energy was :used. 

With a single quantum degree of freedom, the rate shows resonant features with widths 

of -1-5 cm-1 that are spaced -70-80 cm-1 apart. From the N(E) calculation in figure 3-

3, this spacing corresponds to a progression of tunneling resonances within the one

dimensional oxirene well. Agreement with the experimental rate is surprisingly good, 

giving qualitative matches between the number of observed features and the absolute 

magnitudes of the rates. 
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Figure 3-4. 1-d kiso (E) 

The calculated isomerization rate for the !-dimensional surface shown in figure 3-2. 
The dotted line is the experimentally obtained reaction rate from reference [ 12]. 

3.3.2. Isomerization Rate using two degrees of freedom 

Using the two-mode potential energy surface displayed in figure 3-5 to calculate the 

microcanonical isomerization rate, two additional and striking aspects of the energy 

dependence of the rate are observed. Figure 3-6 shows the rate calculated using the reac

tion-coordinate and the out-of-plane hydrogen mode as the two coupled degrees of free

dom, and treating the other 7 modes as uncoupled harmonic oscillators. Resonant 

lineshapes appear in the 2-dimensional rates that resemble Fano lineshapes instead of 

the pure Breit-Wigner peaks observable in the 1-d rates. This indicates that the back-
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ground phase at those energies is non-zero, which we believe to be a signature of over

lapping resonant contributions to the cumulative reaction probability.[llO] 

4 

3 

2 

0 0 
-1 

-2 

Figure 3-5. 2-d potential energy surface 

A contour plot showing the 2-dimensional potential energy surface (solid contours) 
and the absorbing potential (dashed contours). The two degrees of freedom repre
sented in this plot are the reaction coordinate, s, and the hydrogen out-of-plane local 
mode, {:22-

The other striking feature is that there are resonant features that are wider (-10 cm-1) 

than those observed in the one-degree of freedom rate. We believe that these features 

correspond to Feshbach, energy-transfer or dynamical resonances that occur at energies 

above the barrier to isomerization. These dynamical resonances appear because the 

multi-mode potential energy surface has a strongly bent region between the two outer 
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3.3. Results 

9500.0 

The calculated isomerization rate for the 2-dimensional surface shown in figure 5. The 
dotted line is the experimentally obtained reaction rate from reference [12]. 

transition states (cf. Fig. ) which acts as a dynamical bottleneck even at total energies 

above the outer transition state energies. 

Figure 3-7 shows the 2-dimensional rate calculated using the reaction coordinate and 

the in-plane hydrogen mode as the two coupled degrees of freedom, and treating the 

other 7 modes as uncoupled harmonic oscillators. As in the other 2-dimensional calcu

lation, resonance'widths are wider (10 cm-1) than in the !-dimensional calculation and 

the spacings between the wide resonant features are on the order of 70-80 cm-1. Most of 

the peaks are pure Breit-Wigner-type peaks, which indicates that there are very few 

overlapping resonances when the in-plane mode is used as the second coupled degree 
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of freedom. This is due in large part to the higher vibrational frequency of the in-plane 

mode relative to the out-of-plane mode's vibrational frequency. 
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Figure 3-7. 2-d kiso (E) 

9500.0 

The calculated isomerization rate for a 2-dimensional surface using the reaction coordi
nate, s, and the hydrogen in-plane local mode, Q3. The dotted line is the experimentally 
obtained reaction rate from reference [12). 

3.3.3. Isomerization Rate using three degrees of freedom 

We h~ve also calculated kiso(E) for three coupled degrees of freedom (i.e., the reaction 

coordinate, the in-plane, and the out-of-plane hydrogen local modes are coupled 

according to the parameters for the potential energy surface given in Table 3-2)-. The 

isomerization rate for the three-dimensional calculation is shown in figure 3-8. It exhib

its broad (10 cm·1) features similar to the ones that were observed in the two-dimen-
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3.3. Results 

9500.0 

The calculated isomerization rate for a 3-dimensional surface using the reaction coordi
nate, s, and both the hydrogen out-of-plane local mode, Q2 , and the in-plane local 
mode, Q3 . The dotted line is the experimentally obtained reaction rate from reference 
[12). 

sional rates, as well as a few overlapping resonances similar in character to the ones 

present in figure 3-7. 

We attribute the narrow (1 cm-1) features that are similar to the ones observed in the !

dimensional calculations to tunneling resonances. These features are observed at ener

gies below the barriers to isomerization (at- 8100 cm-1 in Figs. 3-4, and 3-6 through 3-

8). The narrow features can also be observed at higher energies because of repetitions 

due to the uncoupled harmonic modes. At energies well above the barrier to isomeriza-
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tion, we again see the broad features that we attribute to Feshbach resonances that were 

observed in the 2-dimensional isomerization rates. 

3. 4. Discussion 

In figures 3-4, 3-6, 3-7, and 3-8, the calculated rates (solid lines) are plotted along with 

the experimental rat~s (dashed lines). However, since the present experiments deter

mine the isomerization rate indirectly, i.e., from the exchange yield of the labeled 

carbon atom in the dissociation of ketene into CO and CH2, they cannot measure the 

isomerization rate below this dissociation threshold. The barrier to dissociation lies 

slightly above the barrier for the isomerization, and the relative energies of these two 

barriers are only known to within a few hundred cm-1, so we have adjusted the zero of 

energy for the experimental rate to illustrate the kind of agreement that our calculations 

can give with the experimental rates. The energy that we have assumed as the barrier to 

dissociation is marked with an arrow along the energy axis in each of these figures. It 

would be very useful to have experimental results for the isomerization rate below the 

dissociation threshold, for this would confirm or deny the existence of true tunneling 

resonances that lie below the barrier to isomerization. 

Additionally, by placing absorbing potentials immediately outside the outer transition 

state between the oxirene well and ketene, we have eliminated any interaction between 

the dynamics within the ketene wells and the oxirene region. It is possible that these 

interactions could alter the theoretically calculated rates to some degree. However, these 

calculations are performed at energies where there is a near-continuum of states in the 

ketene well, and we expect that the mixing of the ketene states that occurs prior to 

isomerization will average out the effects of the interaction between the two regions. 

The model potential surfaces presented in Section 3.2 are obviously not close enough to 

the true surface to give us quantitative agreement with the experimental rate. Also, 

although we have included up to three of the most strongly coupled degrees of freedom 

relevant to the isomerization process, incorporating other degrees of freedom fully 

dynamically (and not just via the reduced dimensionality approximation) will undoubt-
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3.4. Discussion 

edly change the results somewhat. Nevertheless, we do see qualitative similarities 

between the present calculated rates and the experimental results. The average width 

and spacing of the features in the isomerization rate are represented well in our calcu

lations, leading us to believe that we have included most of the important large-scale fea

tures of the potential energy surface in our current model. 

Perhaps the most definite conclusion that we can draw is that the resonance structure 

in the isomerization rate is not from purely tunneling resonances. Tunneling is the only 

decay mechanism of a metastable oxirene state in one dimension, but the widths of the 

resonant features in the one dimensional calculation are much narrower than the struc

ture seen experimentally. Multidimensional models allow also for Feshbach, or energy

transfer (dynamical) resonances: here the metastable state has enough total energy to 

dissociate (without tunneling) but not enough energy in the reaction coordinate; the 

decay rate (resonance width) is determined in this case by the rate of energy transfer 

from a "bath" mode into the reaction coordinate. Both tunneling and multimode cou

pling are of course included in the multidimensional calculations, and the significantly 

broader resonance features indicate that Feshbach-type resonances make a very signifi

cant contribution to the ketene isomerization. This is easily understood from the strong 

curvature seen in the multidimensional potential energy surfaces. 
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4 Dynamics of the Photodissociation of 
Triplet Ketene 

Abstract 

Calculations of the microcanonical dissociation rate for vibrationally 
excited ketene on the first excited triplet surface (T 1) are presented. 
The calculations utilize the quantum reactive scattering methodology 
of absorbing boundary conditions (ABC) with a discrete variable rep
resentation (DVR) to obtain the cumulative reaction probability for 
dissociation over the barrier. Model 1- and 2- degree of freedom 
potential energy surfaces for the T 1 surface were obtained by fitting to 
the best available ab initio structures, energies, and frequencies. The 
dissociation rates in these reduced-dimensionality calculations give 
good overall agreement with the experimentally measured rates, 
although the step-like features seen in the experiments are washed 
out by the tunnelling through the narrow barrier predicted in the ab 
initio calculations. Further model calculations reveal that a barrier 
frequency of approximately 50-100 i cm-1 is required to recover the 
step structure seen experimentally, which suggests that there is either 
another transition state region on the T 1 surface farther out towards 
the product channel, or that there is surface-hopping dynamics taking 
place between the T 1 and 50 ketene potential energy surfaces, or that 
the ab initio barrier frequency is simply too large. 

4 .1. Introduction 

In a recent series of experiments, Moore et al. have reported on a number of fascinating 

aspects of the dynamics ofketene photodissociation. [10, 11, 12, 13, 14, 15, 16, 17, 18, 

19] The internal isomerization of carbon-labeled ketene via the oxirene intermediate 

exhibited surprising structure in the energy dependence of the isomerization rate; [ 12, 

13] the quantum dynamics of this process was the subject of the previous chapter. [ 113] 
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Chapter 4. Dynamics of the Photodissociation of Triplet Ketene 

The photodissociation of singlet ketene onto the singlet methylene surface has also been 

studied in great detail because it was an excellent example of a barrierless bond-break

ing process. [14, 15, 16] Productstatedistributionsofthisreactionhavealsobeenmea

sured, giving varying degrees of agreement with statistical theories such as phase space 

theory (PST). [44, 114] 

More recently, Kim, Lovejoy, and Moore [10, ll] have investigated the dissociation of 

triplet ketene onto the triplet methylene surface. Figure 4-1 shows a schematic of the 

surfaces and energies involved in the experiment. Kim et al. prepared rotationally cold 

ketene on the S0 surface (see Fig. 4-1) in a supersonic molecular jet, and used a UV laser 

to excite the ketene to the first excited singlet surface (S1), which then underwent inter

system crossing to the triplet (T 1) surface. The products of the photodissociation on the 

triplet surface, 
3
B1 CH2 + 1L+ CO, were detected using laser-induced fluorescence (LIF) 

of the CO fragment. 

At first glance, the dissociation on the triplet surface is a simple barrier process for 

which standard reaction rate theories (RRKM [56, 57, 58, 59] and Transition State 

Theory [25]) provide adequate descriptions of the process and reaction rates. Indeed, 

the reaction rates observed by Kim et al. are very close to the predictions of RRKM the

ory, and the energy dependence of the reaction rate seems to exhibit the classic stair

case-like structure that would result from newly opening channels at the transition 

state. Upon closer inspection, however, Kim et al. found that not all of the detailed fine 

structures in the energy dependence of the reaction rate were explainable using standard 

RRKM theory. We therefore undertook a series of calculations of the dissociation rate 

of triplet ketene onto the triplet methylene surface in order to further elucidate the 

origin of these structures. This paper describes those calculations and reports their 

results. 

The microcanonical dissociation rate can be expressed as 

N (E,J) 
kd (E,J) = 21tlip (E,J) ' (4-1) 

72 



28 

26 
~ 

I s 
u 
~ 
0 
1""""'1 

:;:.:.. 
0.0 
~ 
~ 
0 

UJ 

4.1. Introduction 

I 

So 

Reaction Coordinate 

I 

I 
I 

I 

Figure 4-1. The energetics of the ketene dissociation experiments 

A schematic depiction of the lowest three electronic surfaces of ketene along the reac
tion coordinate. In the experiment, ketene is photoexcited to the first excited singlet 
state (S1), which then undergoes internal conversion to the ground electronic surface 
(S0) or inter-system crosses to T 1. The dissociation can happen on either the S0 or T 1 
surfaces, which lead to the 1CH2 + CO (Singlet channel) or 3CH2 + CO (Triplet chan
nel) products, respectively. The calculations in this chapter are of dissociation rates 
through the barrier region of the T 1 surface. The absorbing boundary potential used in 
this work is shown as a dotted line. 
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where p (E,J) is the density of reactant (ketene) states per unit energy, which is a 

smooth function of energy and can be treated well using an empirically determined con

stant times the Whitten-Rabinovitch approximation for the density of states: [98] 

(E+E )F-1 
PwR (E,]=O) = --~zp-=F--

(F -1)! n liroi 
i = 1 

(4-2) 

where F is the number of vibrational modes of the ketene molecule, Ezp is the zero-point 

energy of ketene on the S0 surface, and {rod are the frequencies of the vibrational modes 

on the S0 surface. The empirical constant multiplier has been measured by the Moore 

group in various experiments and was found to be 3.34. [10] 

N(E,J) is the cumulative reaction probability (CRP), which contains all the aspects of 

the dissociation process and whose calculation is the central task. The development of 

theoretical methods for calculating CRPs has been a major focus of our research group 

in the last few years, so the present application is an excellent test of this methodology. 

Seideman and Miller's [31] expression for the CRP is 

(4-3) 

where G1 (E) is the Greens function, 

(4-4) 

H1 being the total Hamiltonian (for total angular momentum]) for the ketene molecule 

and € an absorbing potential to enforce outgoing wave boundary conditions. Er ( Ep) is 

the part of the absorbing potential in the reactant (product) region, e.g. the left (right) 

dotted curves in Figure 4-1; € = Er + Ep. In practice, one may place the absorbing 

potential immediately outside the barrier region for the reaction, thereby by-passing the 
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problem of describing the dynamics of highly vibrationally excited ketene itself and only 

calculating the microcanonical reactive flux (which is the CRP). 

Even with this limited treatment of the dynamics, however, it is not possible to carry out 

the calculation in its full dimensionality ofF= 3N-6 = 9 degrees of freedom (with total 

angular momentumJ=O). We thus carry out a CRP calculation includingf degrees of 

freedom, obtaining NjCE), and then fold in the other uncoupled degrees of freedom by 

microcanonical convolution, 

N(E) = INA E-e:-f), (4-5) 

n=O 

where { e:-f} are the energy levels for the F-f uncoupled degrees of freedom. Most of 

the modes are treated as uncoupled harmonic oscillators, though in this calculation one 

of the modes is a hindered internal rotation for which the harmonic approximation is 

particularly poor, so the energy levels for that degree of freedom are obtained in a more 

careful fashion. The details of the energy level calculation are given in Section 4.2.5. 

Equation 4-5 is a statement similar in nature to the "dimensionality reduced" approxi

mations [24, 100], and for f=l is the standard expression for one-dimensional tunneling 

corrections to microcanonical transition state theory. [25] 

Section 4.2 first gives a more detailed description of the theoretical methodology and its 

implementation, and section 4.3 describes the results of the calculation for f = 1 and 2 

coupled degrees of freedom. Section 4.4 concludes. 

4.2: Summary of Theoretical and Computational Specifics 

4.2.1. The Potential Energy Surface 

Allen and Schaefer have carried out the most detailed calculations to date on the reac-
. 3 3 1 + f uon A CH2 CO --7 B1 CH2 + L CO. [lll, 112] At the TZ(2dlf,2p) CCSD level o 

theory, they find the transition state to be 4.74 kcal/mol above the products. The 3A" 
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transition state is easily deformed via a hind~red internal rotation to a 3 A' transition state 

that lies between the 3 A' ketene structure and the products. The barrier to the internal 

rotation is only 1.07 kcal/mol, resulting in energy levels for the internal rotation that lie 

within the range over which the experiments were carried out. For the purposes of this 

calculation, the internal rotation is treated as uncoupled from the reaction coordinate, 

although the energy levels must be calculated in order to obtain the RRKM rate. This is 

necessary because the harmonic approximation that is used for the other uncoupled 

modes will be incorrect for an internal rotation. The calculation of these energy levels 

is detailed in Section 4.2.5. 

The points along the reaction path that have been calculated by Allen and Schaefer lead 

us to believe that a simple one or two degree-of-freedom calculation will capture the 

essential aspects of the reaction dynamics. The reaction coordinate is ideally chosen to 

be the distance between the centers of mass of the CH2 and CO fragments (R in Figure 

4-2). The ab initio calculations show two other degrees of freedom to be strongly cou

pled to this reaction coordinate. One of these (the CCO bending vibration, yin Figure 

4-2) transforms asymptotically into rotation of the CO product, while the other (the 

CH2 scissors mode) retains it's identity as a vibration, although the CH2 bend angle 

changes considerably from 3 A ketene to the 3B1 methylene product. Although this mode 

may be strongly coupled to the reaction path, we treat it as uncoupled for the purposes 

of this calculation. 

The functional form that we have used for the potential energy surface is: 

(4-6) 

where vld is defined as 

As Bs ( cr)12 
vld = (1-s)- (1-s)2+ R -Vo, (4-7) 

with 
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R 

Figure 4-2. The coordinate system for ketene triplet dissociation. 

The Jacobi coordinates used in this chapter. The coordinate r is the C-0 vibrational 
coordinate, R is the distance of the center-of-mass of the CH2 to the center-of-mass of 
the CO, andy is the angle between these two distances. In this chapter, the CO bond 
distance r is fixed, and the calculation is carried out in the scattering coordinate R and 
the angle y. The angle e is utilized in the calculation of energy levels for the hindered 
internal rotation. e is angle between the plane defined internally to the CH2 unified 
atom and the plane defined by the two carbon and oxygen atoms. 

(4-8) 

and where (1) is switched smoothly from the ceo bend frequency at ketene to 0 in the 

product region: 

(4-9) 

The inertial term, ainert• in equation 4-6 is given by 

(4-10) 
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In equation 4-9, R112 is chosen so that the frequency of the perpendicular vibrational 

mode is correct at both the ketene and transition state structures, 

(

(l) -(l) J R = R - aln ketene TS 
112 max (l) 

TS 
(4-ll) 

The frequencies, energies, and positions of the ketene minimum, the transition state, 

and the asymptotic product valley are given in Table 4-l. The parameters used to con

struct the best-fit potential energy surface are collected in Table 4-2. 

3A'' CH2 ... CO 
3
B

1 
CH2 + 

1
L+ CO 3A'' CH2CO transition state 

best fit 
-26.76 0 -4.87 

surface 
Energy (kcaVmol) 

Ref. 
[1ll]a -27.53 0 -4.74 

best fit 
932 409 i 0 

surface 
CC Stretch 
ro (cm-1) Refs. 

[111] and 931 379 i 0 
[ll2]b 

best fit 
447 229 0 

surface 
CCOBend 
ro (cm-1) Refs. 

[111] and 463 228 0 
[ll2]b 

best fit 
3.83 4.98 

surface 
00 

R (bohr) 

Ref. [111] 3.88 4.96 00 

best fit 
2.22 2.06 

surface 
----

y (radians) 

Ref. [112] 2.20 2.06 ----

Table 4-1. Energies and frequencies for the critical points along the reaction coordinate. 
Energies are relative to the transition state structure 

----~~~~--~~~ 

a. calculated at the TZ(2dlf, 2p) CCSD level of theory. 

b. 3N CH2CO frequencies were calculated at the DZP CISD level of theory. 
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parametera value 

A 0.0896 

B 0.1550 

cr 2.77554 

Vo 0.007758 

Rbarr 4.4938 

l -2.4696 

!lg 12506.1 

'Yo 2.06188 

CRy 0.27 

Rmax 4.97585 

(!)ketene 2.0868 x 10-3 

IDrs 1.0402 x 10-3 

a 0.3 

Table 4-2. Parameters of the best-fit potential energy surface 

a. All quantities are given in Atomic units (i.e. Dis-
tances are given in Bohr, Energies in Hartree, and 
angles in Radians, etc.) 

4.2.2. The coordinate system 

In performing this calculation, we used mass-scaled body-fixed center-of-mass Jacobi 

coordinates. The particular arrangement of the Jacobi coordinates we employed used 

the vector R between the CH2 and the CO centers-of-mass as the scattering coordinate, 

and r as the CO vibrational coordinate. Figure 4-2 illustrates the details of the coordi

nate system that was used. The internal coordinates can be simplified to a set of 3 coor

dinates, q = (R, r, y), where R is the mass scaled scattering coordinate (R = IRI), r is the 

mass scaled CO vibrational coordinate (r = lrl), and y is the bending angle 

(y = acos (r · RlrR) ). The plane defined by the three "atoms" can be related to the lab 

frame coordinates via 3 Euler angles (ct>, E>, '¥) which rotate the body-fixed center of 

mass coordinates into the lab frame center of mass coordinates. 

In the coordinate system outlined above, the six dimensional Hamiltonian is: 
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fi Q, r, R, y) (4-12) 

where 1-l is the orbital angular momentum operator, l is the angular momentum 

operator for the CO, and the reduced mass, J.L, is 

(4-13) 

In equation 4-12, the kinetic energy operators are 

2 
A . n a d 
TR = -2J.L{)R2 'an (4-14) 

(4-15) 

and V ( r, R, y) is the potential energy surface in the internal coordinates. 

Since the internal degrees of freedom of the CH2 moiety are treated as uncoupled from 

the scattering coordinate, the coordinate system is equivalent to the coordinates used in 

3 atom reactive scattering calculations. In reduced-dimensionality scattering calcula

tions, the two most commonly used coordinates are the scattering coordinate R, and the 

vibrational coordinate r. In the dissociation of triplet ketene, R is an obvious choice for 

the scattering coordinate, but yis a natural choice for the second degree of freedom since 

deformations of the ceo bend angle appear to be highly coupled to the reaction coor

dinate and the CO bond length and vibrational frequency change little from ketene to 

the product CO molecule. We thus make the simplifying approximation that the CO 

bond distance is fixed at the transition state CO distance, r0. Within this approximation, 

the Hamiltonian simplifies to: 
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(4-16) 

The orbital angular momentum term can be expanded as 

(4-17) 

A2 A 

If we operate these terms on the simultaneous eigenstates of 1 and the projections of 1 

along the z-axes of both the body-fixed and space-fixed frames, then the first term in 

this equation is 21i21(Jtl). The final term in this equation is simply 21i2K2 , where K is the 

projection of the total angular momentum (]) onto the z-axis of the body-fixed frame 

(which is along R). The third and fourth terms in equation 4-17 are off-diagonal inK 

and are usually called the Corio lis coupling terms. When the off-diagonal terms in K are 

small, these terms can be neglected, and the approximate Hamiltonian (or the "centrif

ugal sudden" approximation) is given by: 

(4-18) 

4 .2.3. The Basis Set 

In performing this calculation, we have used two different Discrete Variable Represen

tations (DVRs) for the two coupled degrees of freedom. Along the scattering coordinate, 

R, we use the radial form of the sine-function DVR introduced by Colbert and Miller. 

[32] In this basis set, the functions are associated with points along a grid defined by 

Ri = iLlR , where LlR is determined by the highest kinetic energy we wish to represent, 

(4-19) 

In this equation, NB is the number of grid points per deBroglie wavelength (typically 

between 3.7 and 4), and Vzow is the lowest point on the potential energy surface. In the 
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radial sinc-DVR basis set, the kinetic energy for the scattering coordinate (the first term 

in equation 4-18) is given by 

rc2 
1 ---

3 2i2 
i= i' 

( 4-20) 

2 2 i ::t: i' 
(i-i')2 (i+i')2 

In the bending degree of freedom, we are using a Gauss-Legendre DVR to construct a 

set of points { cosyJ and weights { roJ for the K=O associated Legendre functions. 

These points and weights are then used to construct a representation of the angular 

momentum in the third term in equation 4-18 as follows: 

2NGL -1 

J2ii. (K) = L FzPjK (cosyi') [li2j (j + 1)] PjK (cosy) ,JW;, (4-21) 

j = K 

where the PjK's are the associated Legendre functions (PjK (cosy) = JlicyjK (y, 0) , 

and Yzm ( 8, <!>) is a spherical harmonic function). NcL is the number of Gauss-Legendre 

DVR points, which is obtained by dividing the range of y (0 to 7t) by the angular spacing 

required to represent the highest kinetic energy. This spacing is calculated in a similar 

fashion to the radial spacing in equation 4-19. 

4.2.4. Evaluation ofthe Trace 

Manthe and Miller [37] have shown that an efficient way to evaluate the trace in Eq. 4-

3 is to introduce the reaction probability operator P (E) , defined by 

(4-22) 

so that Eq. 4-3 for N(E) becomes 

N (E,]) = tr [P (E,J)] . (4-23) 
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(Since the absorbing potential matrices are diagonal, the square roots in Eq. 4-22 cause 

no problems.) We have dealt with the calculation of the trace of P (Eq. 4-23) in greater 

detail in Chapter 3. It is helpful to review the basic implementation of the method here, 

however. The trace is evaluated using the Lanczos algorithm; [39, 38, 40] i.e., one 

begins with some starting vector y 1 , and a sequence of Krylov vectors is generated by 

Yn + 1 = p. vn + S.O. (4-24) 

where S.O. denotes Schmidt orthogonalization to all preceding vectors. The matrix ele

ments of p in this basis, 

P .=v ·P·v, n, n -n - -n ( 4-25) 

are obtained in the process of generating the vectors, and the trace carried out in this 

representation, 

N(E,J) = ~p . 
£.,. n,n 
n 

(4-26) 

This procedure is efficient because the rank of the matrix p is low, typically orders of 

magnitude lower than the size of the DVR basis itself, and the number of Lanczos itera

tions required- i.e., the number of Krylov vectors which must be generated via Eq. 4-

24- is essentially the rank of p. 

We explicitly re-orthogonalize the Lanczos vectors to avoid compounding numerical 

errors and iterate until N(E) is converged to w-3. For the highest energies reported this 

required 5-10 iterations, and for the lowest energies only about 3. 

Every operation of the matrix p onto a vector in Eq. 4-24 requires two operations of the 

Green's function matrix onto a vector (i.e., the various matrices in 
A A1/2A A A A1/2 . 
P = 4Er G (E)* EpG (E) Er multiply sequentially from the right). The operation of 

the Greens function matrix onto a vector effectively means that one must solve the set 

of linear equations, 
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A·x = b - - -' (4-27) 

where the vector ~ is given and .d. = (E + i~ -Ij) , and this is the primary computa

tional task. Use of the Lanczos method above with the P-operator/matrix greatly reduces 

·the number of Green's function operations that are required and is why it was such an 

important step forward. 

We have made use of the quasi-minimum residual (QMR) algorithm [36] to solve Eq. 

4-27 for -5 = .d--1 · ~. QMR finds the inverse by a quasi-minimization of the residual at 

each iteration, and is based on the look-ahead Lanczos algorithm which is used to find 

approximate eigenvalues oflarge non-Hermitian matrices. We have also used a diagonal 

pre-conditioner to reduce the number of required applications of .d. = (E + i£ -Ij) 

required to obtain the inverse. The detailed workings and the effective use of QMR in 

reactive scattering calculations has been investigated in great detail by Karlsson, [109] 

and the reader is encouraged to see this work for more specifics of how the QMR algo

rithm is applied to this type of calculation. 

In this set of calculations, we have stopped the QMR iterations when the residual for the 

Green's function has dropped below 10-4
. This typically required N applications of the 

matrix, where N is on the order of 10%-20% of the number of basis functions. 

4.2.5. Hindered Internal Rotation 

Following the work of Kim, Lovejoy, and Moore, [10] we have treated the hindered 

internal rotation as uncoupled from the reaction coordinate, R, and the CCO bend, y. 

The hindered rotor cannot be treated as a simple harmonic oscillator in the reduced

dimensionality approximation (eqn. 4-5) because the barrier to internal rotation is at 

approximately the same energy as the energies at which the experiment is carried out. 

The situation is complicated even more by the high degree of coupling between the 

internal rotation and the overall rotation of the ketene about the same axis. Given the 

information about the transition states that is known from ab initio calculations, we can 
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approximate the potential energy surface for the hindered rotation as a cosine series: 

[10] 

' V(S) 
vo vl = 2 (1- cos28) + 2 (1- cos48) + .... (4-28) 

In equation 4~28, 8 is the dihedral angle between the CH2 and CCO planes, V0 is the 

barrier to internal rotation, and V1 changes the width of the barrier. There is one minor 

difference between our tr~atment of the internal rotation and the treatment in Ref. [ 10]; 

we utilize the Jacobi R coordinate as the axis of the reference frame for the internal rotor, 

while Kim et al. used the CC bond as the axis for this rotation. 

In order to calculate the coupling between the hindered internal rotation and the overall 

rotation of the ketene molecule, we use ab initio calculations of the structure of the c!1 

transition state to obtain the moments of inertia for the ketene itself. The moment of 

inertia of the CH2 top about the jacobi axis is denoted Itop• and the moment of inertia of 

the CO frame about the same axis is denoted Iframe· Since I top > Iframe, we use the prin-. 

cipal axes of the ketene molecule at the transition state as the coordinate system. Fol

lowing Brocks, et al. [llS] and Stockman, et al., [ll6] the Hamiltonian is written as: 

(4-29) 

where Hrot is the rigid-rotor asymmetric top rotational Hamiltonian, and F is the effec

tive rotational constant for the internal rotation of the top about its symmetry axis: 

fi2 /....I 
F = --· r = 1-"" ~ i = ( b ) 2 I , ~ I. , a, ,c . 

r top 1 1 

( 4-30) 

In equation 4-30, Ia, Ib, and Ic are the principal moments of inertia of the ketene mole

cule, Aa, A.b, and Ac are the direction cosines of the symmetry axis of the top to the prin

cipal axes, and Itop is the moment of inertia of the CH2 about the symmetry axis. 

If T = (H-V), then momenta P and pin equation 4-29 are defined as 
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P = LPii; Pi= aar , where i = (a, b, c), and p =a:. 
i roi ae 

(4-31) 

In the expression for Pi, roi is the angular velocity about axis i. We can now make 2 sim

plifying assumptions. First, since there is a plane of symmetry, Ac from equation 4-30 

vanishes. Second, since (p-P) in equation 4-29 represents the relative angular momen

tum of the top and the frame, we can rewrite the Hamiltonian as: 

t 2 t 2 t 2 
H =A 'Pa+B 'Pb+C P,-2F(aPap+PPbp) 

+ Fap (P apb + PbP a) + Fp2 + V (8) 

where 

. and i= denotes the transition state geometry. 

Abltop 

I ' b 

( 4-32) 

(4-33) 

The Hamiltonian matrix can then be easily set up in a symmetric prolate top free-rotor 

basis. The non-vanishing elements of H are given in Stockman et al. [116] For the 

ketene transition state, which is a nearly symmetric top, the matrix elements off-diago

nal in Kt are very small, so they are neglected in this calculation. In the free-rotor basis 

I > 
1 -im9 th H "1 . . . h set, m = ~ e , e ami tonian matnx IS t en: 

..J21t 
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(miHim ± 2) = - 4 , and 

vl 
(miHim ± 4) = -- . 

4 

(4-34) 

( 4-35) 

(4-36) 
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4.3. Results 

The parameters used for the calculation of the hindered rotor energy levels are given in 

Table 4-3. A basis set of 100 free-rotor functions was used to construct the Hamiltonian 

matrix, which was then diagonalized to give the energy levels of the hindered internal 

rotation for each value of K. These energy levels (which differ slightly from those calcu

lated in Ref. [10] due primarily to the height of the ab initio barrier) were then used in 

the RRKM expression for the dissociation rate. 

parametera value 

I a 5.65 

Ib 69.55 

Ic 75.21 

A a 0.91 

"-b 0.42 

F 12.64 

I top 2.004 
At 4.297 
Bt 0.244 
c.,. 0.224 

Vo 374.2 

vl -30.0 

Table 4-3. Parameters used in the calculation of hindered internal rotation energy levels 

4.3. Results 

of the transition state. 

a. The units are amu * A2 for Ix (x=a,b,c,top) and 
cm-1 for F, if", Br, c", Vf, and V1. The ab initio 
(TZ(2dlf, 2p) CCSD) C5

1 transition state struc
ture in Ref. Ill was used to obtain these values. 

The dissociation rate has been calculated with one and two quantum degrees-of-free

dom in the scattering calculation. Thermal populations of the overall angular momen

tum (]) of ketene at a rotational temperature of 4 K were generated. At each energy, all 

allowed K states for a given] were used to construct the Hamiltonian in the centrifugal 

sudden approximation (eqn. 4-18). This Hamiltonian was used in the calculation of 
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N1K(E), which was then used in the RRKM expression for the dissociation rate. The 

results of these calculations are presented below. 

4.3.1. One degree of freedom 

The cumulative reaction probability, N(E), for the one degree offreedom calculation is 

plotted in figure 4-3. _The most notable thing about N(E) is that it rises slowly over the 

span of several hundred cm-1 in energy. This range of energy is directly related to barrier 

frequency, which in the best ab initio calculations is 379 i cm-1. A lower barrier fre

quency would make the rise in the reaction probability much sharper, because at ener

gies below the barrier, tunnelling through a wider barrier would be more difficult 

thereby reducing the reaction probability at those energies. 

1.0 

0.8 

0.6 

0.4 

0.2 

88 

-300.0 -100.0 100.0 300.0 
Energy (cm-1) relative to triplet barrier 

Figure 4-3. N 1d(E) for ketene triplet dissociation 

The cumulative reaction probability (N1d(E)) for the calculation with one active degree 
of freedom. 
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4.3. Results 

This reaction probability has been used in an RRKM calculation (with ab initio vibra

tional frequencies given in Table 4-4) to obtain the dissociation rate as a function of 

mode frequency (cm-l)a 

v1 (a') asyrn CH stretch 3343.9 

v2 (a') syrn CH stretch 3135.0 

v3 (a') CO stretch 2141.4 

v4 (a') CH2 scissor 1166.6 

v5 (a') CH2 rock 421.4 

v 6 (a') CC stretch 379.0 i 

Vy (a') CCO bend 228.3 

v8 (a") CH2 wag 331.6 

v9 (a") HCCO torsion 134.4 

Table 4-4. The ab initio Vibrational frequencies of the C5n transition state 

a. Frequencies are taken from Ref. lll and were cal-
culated at the TZ (2dlf, 2p) CCSD level of theory. 

energy. This is plotted along with the experimentally measured dissociation rates in 

figure 4-4. There is good agreement in general with the experimental results and our cal

culation, although any step-like features due to quantization of states of the activated 

complex have been "washed out" by the slow rise of N 1d(E). This is due to the frequen

cies of some of the perpendicular vibrations (CCO bend, CH2 wag, CH2 rock, and 

HCCO torsion) being considerably lower than the barrier fr~quency. This causes the 

spacings between the would-be steps to be smaller than the width over which the step 

rises, so that they overlap one another, leading to a very smooth reaction probability in 

RRKM calculations. 

In order to estimate what barrier frequency would be needed to closely match with the 

experimental rates, we have also calculated the rates using an asymmetric Eckart barrier 

with a number of different barrier frequencies as the potential energy along R. The reac

tion probability for this barrier is analytical and well-known. [ 117] These calculated 

rates are shown in figure 4-5. It is interesting to note that we do not observe step-like 
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Figure 4-4. The one-dimensional ka(E) for ketene triplet dissociation 

The calculated dissociation rate (kd(E)) with one active degree of freedom compared to 
the experimental results from Ref. [ 10 ). 

600.0 

features in the calculated rates until the barrier frequency has dropped below 100 cm-1, 

4 times lower than the barrier frequency predicted by ab initio calculations. With barriers 

that low, we do not obtain good agreement with experiments over the whole energy 

range, although the agreement at lower energies suggests that the barrier frequency may 

be substantially lower than ab initio calculations predict it to be. 

Additionally, the step-like features seen with barrier frequencies of 100 and 50 cm-1 

have approximately the correct energy spacings for states of the hindered internal rota

tion. The spacing of the steps in the experimental rates leads us to believe that the bar

rier to the internal rotation as well of the frequency for that vibrational mode at the 

transition state are probably too high in the ab initio calculations. 
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Figure 4-5. The effect of lowering the barrier frequency. 

0 0 

Plots showing one degree of freedom calculations of the dissociation rate (kd(E)) for a 
number of different barrier frequencies, compared to the experimental results from Ref. 
[10]. (a), (b), (c), and (d) are for barrier frequencies of 397 i cm-1 (as calculated in Ref. 
[Ill)), 200 i cm-1, 100 i cm-1, and 50 i cm-1, respectively. 
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4.3.2. Two degrees of freedom 

We have also investigated whether the step-like features in the experimental rates could 

be caused by coupling between one of the perpendicular vibrations and the reaction 

coordinate. If the potential energy surface "tightened" just before or after the transition 

state, it is possible that structure could arise in the CRP due to short-lived metastable 

states. Most of the highly-coupled modes loosen as the reaction coordinate goes toward 

the product region and become tighter toward the ketene reactant well. We picked the 

most highly-coupled mode (the CCO bend) for our investigation of this effect. The 

potential energy surface we are using (see equations 4-6 through 4-ll) does tighten the 

perpendicular vibrational frequency considerably towards the reactant region. A con

tour plot of the 2-dimensional surface is shown in figure 4-6. 

The calculated rate using two quantum degrees-of-freedom is shown with the experi

mental rate in figure 4-7. The most noticeable feature of the energy dependence of this 

reaction rate is that while giving good overall agreement with the experimental rates, it 

does not exhibit the step-like features observed experimentally. 

4. 4. Discussion 

The present calculations thus show good overall agreement with the experimentally 

observed rates, but the step-like features observed experimentally are still unexplainable 

using the best currently available potential energy surface. 

It is possible that the potential energy surface we have been using does not accurately 

capture the essential features of the reaction. The frequencies and energies along the 

reaction coordinate are known at a very small number of points -- ketene, the transition 

state, and the asymptotic products. A second transition state farther out into the product 

region, or a tightening of the perpendicular modes after the known transition state to 

form a dynamical bottleneck could result in some of the structures observed by Kim et 

al. It may be, too, that the ab initio calculations are simply not quantitatively accurate 

for this system and that the barrier frequency may be significantly lower than the 

present value. 
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R 

Figure 4-6. The 2-D surface for ketene triplet dissociation 

Contour plot showing the best-fit 2-d potential energy surface used in the calculation 
of the 2-d dissociation rate in Fig 4-7. 
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Figure 4-7. The two-dimensional kd(E) for ketene triplet dissociation 

The calculated dissociation rate (ka(E)) with two active degrees of freedom compared 
to the experimental results from Ref. [ l 0] 
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Alternatively, Troe and Moore have proposed [118] that the crossing between the sin

glet and triplet surfaces may occur at a geometry very near the transition state configu

ration (although with a substantially different CH2 bending angle). Surface hopping 

between the triplet and singlet surfaces in the vicinity of the transition state could also 

give some amount of structure to the rates or effectively broaden the barrier along the 

reaction coordinate. 

Which scenario is a most likely explanation for the observed features awaits a more 

comprehensive exploration of the both the triplet and singlet potential energy surfaces 

by ab initio methods. 
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5 The Barrier Impulsive Model: A new 
method for predicting the 
distribution of energy in 
photodissociation reactions 

Abstract 

A new model for calculating the average energies in product rota
tional, vibrational, and translational degrees of freedom in photodis
sociation reactions involving substantial exit barriers is presented. 
The model is discussed as a logical extension of the impulsive model 
that includes statistical partitioning of energy in excess of the barrier. 
Calculations are performed using the new model on the photodissoci
ation of acetone and acetic acid. The results are compared to experi
ments and to other models for unimolecular dissociation. 

5 .1. Introduction 

In seeking to explain the results of a wide range of photodissociation experiments, it is 

desirable to have a model that accurately reflects the physics of the dissociating mole

cule. Many models have been used because they explain the reactions in terms of simple 
J 

impulsive bond rupture. [ 41, 4 2] These models are justifiably popular because they give 

an easily understood physical picture of the reaction. 

Another class of models seeks to explain the experiments in terms of a statistical distri

bution of energy either in the products or at the transition state. For experiments which 

involve large barriers to recombination, however, these models fail to reproduce the 

interesting physics of the dissociation event. It seems then, that neither set of models 
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has satisfactory predictive (or even explanatory) power for many possible photodissoci-

ation events. 

We seek a model that will reflect both the impulsive nature of reactions with large bar

riers to recombination as well as the statistical distribution of energy in excess of the 

barrier height. We also want to restrict our model so that it requires only readily avail

able information about the transition state and the reactants. Commonly known quan

tities are the normal mode frequencies of the reactant and product molecules, 

geometries of the transition state, and the forward and reverse barrier heights. We 

believe that the model presented in this chapter represents a simple extension of the 

impulsive and statistical models that are currently in common use. We hope that the 

physical picture that we present will allow a physical understanding of the unimolecular 

reaction that gives qualitative agreement with experiments. 

The barrier impulsive model (BIM) is conceptually very simple. The available energy is 

separated into two "energy reservoirs", one which is denoted statistical and the other 

impulsive, 

stat imp 
Eavail (tot) = E (tot) + E (tot) (5-1) 

Eimp (tot) is chosen to be the height of the exit barrier (Figure 5-l). In this way the model 

reduces to the impulsive model at the dissociation threshold and to a simplified statis

tical model in the absence of a barrier. Furthermore, since the ~ranslational energy of 

the products from the impulsive reservoir is fixed by the barrier height, the total trans

lational energy increa~es with available energy statistically. This behavior is consistent 

with experimental observation. (for examples, see Refs. 122, 123, 124, 125, and 126) 

The partitioning of energy into product rotation, vibration, and translation in each res

ervoir independently conserves linear momentum, angular momentum, and total 

energy. The impulsive reservoir can be partitioned among the fragment degrees of free

dom according to either the soft or the rigid fragment models. The energy in the statis

.tical reservoir is partitioned by a new method that is outlined in Section 5.3. The average 
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•.•..••.•..............••......•..............•.•.. 

l ........... . 
D0°(A-BC) 

A-B 

Figure 5-1. Sketch showing the energetic reservoirs. 

Schematic energy diagram showing the relations between various energetic quantities 
in the barrier impulsive model. 

energies from each reservoir are combined to obtain the final R,V, and T energies of the 

products. There are a number of inherent assumptions in this model. We assume that 

once the molecule is beyond the transition state the localized release of the potential 

energy from the exit barrier can be adequately described by the impulsive model. In 
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order for the statistical treatment of Estat(tot) to be justified, the redistribution of vibra

tional energy must occur prior to dissociation but cease at the moment of the impulsive 

energy release. 

We now consider the photodissociation of a polyatomic molecule A-B. The ini

tial bond cleavage, produces fragments A and B which can themselves be polyatomic. 

We assume that neither fragment is electronically excited upon dissociation and that the 

A-B parent contains no internal energy prior to absorption of the photon. 

5.2. The Impulsive Model 

If there is a large release of the available energy into product translation then a model in 
/ 

which the potential energy is released locally, between the departing fragments is 

required. The most commonly used of these due to its simplicity is the impulsive model, 

first applied to triatomic photodissociation by Busch and Wilson. [ 41] An extension of 

the model that treats polyatomics has been presented by Tuck. [42] In the Impulsive 

model it is assumed that when the bond is broken all of the potential energy is released 

in the dissociative coordinate as repulsion between the two previously bonded atoms. 

The two atoms then transfer their initial kinetic energy into translation, rotation and 

vibration of the fragments in accordance with classical kinematics. The impulsive model 

has been successful in predicting the partitioning of available energy into product trans

lation in the dissociation of many polyatomic molecules. Most notable are the alkyl 

halides.[127] These molecules exhibit strong anisotropy in the photofragment angular 

distributions indicating that the dissociation occurs prior to parent rotation. This sug

gests that the dissociation is sudden, with excitation directly to a repulsive electronic 

state. In the alkyl halides, the transition involves promoting an electron localized on the 

halogen to a C-X anti-bonding orbital. The inherent assumptions in the impulsive 

model are justified here because the dissociation resembles a quasi-diatomic due to the 

localized absorption of the photon. [128] 

The available energy (in the A-B center-of-mass) which will ultimately be parti

tioned between the various degrees of freedom of the photofragments is given by, 
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(5-2) 

where Ehv is the photon energy, Eint(AB) is the internal energy of the parent, and D0(AB) 

is the bond dissociation energy. The contribution of Eint(AB) to the available energy is 

neglected, which is a reasonable assumption in the context of a molecular beam exper

iment. The basic premise of the impulsive model is that all of the available energy is 

released as a repulsion localized in the reaction coordinate. There are two limiting 

impulsive models: the "soft" fragment limit and the "rigid" fragment limit. 

5.2.1. The Soft Fragment Limit 

In the soft fragment impulsive model (SFIM) the two previously bonded atoms, a (on 

fragment A) and~ (on fragment B) are considered to be loosely coupled to their respec

tive fragments which behave as spectators during the dissociation. The atoms recoil with 

relative translational energy according to the conservation of linear momentum, 

Ey (a) = ::Eavail = E (A) (5-3) 

(5-4) 

where mw m13, and Mare the mass of atom a, the mass of atom~. and the total mass 

Cmu+ml3) respectively. This kinetic energy also determines the total energy, E(A) and 

E(B), each atom transfers to its respective fragment A and B. The translational energy of 

each fragment is obtained from the conservation of momentum, 

(5-5) 

(5-6) 
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where rnA and m8 are the masses of the fragments. When one of the fragments is an 

atom, for example A=a, then the expected result E(A)=ET(A) is obtained. Rearranging 

equations 5-5 and 5-6 the total translational energy, ET(tot), released in the dissociation 

can be obtained, 

[ 
f..laj3J Ey (tot) = - Eavail 
f..LAB 

(5-7) 

where f..lcx~ is the reduced mass of atoms a and ~ and f..LAB is the reduced mass of the two 

fragments. The fact that, in a two-body dissociation, the total translational energy is 

determined only by a mass factor (f..lcx~/f..LAB) and the available energy is the well known 

result of the soft fragment impulsive model. It is important to note that the translational 

energy is independent of the geometry of the molecule. 

The internal energy of each fragment is simply the difference between its total 

energy and its translational energy, 

(5-8) 

(5-9) 

If A is an atom and B is a diatomic then the partitioning of internal energy between frag

ment rotation and vibration can be found in reference 41. Even if they are not, the poly

atomic parent can often be approximated as a pseudo-diatomic. However, this treatment 

assumes that the geometry of the fragment at the time of the impulse is identical to the 

asymptotic geometry. If this is not the case then the model will incorrectly predict the 

rotational energy despite conserving angular momentum. 

A general method for determining the partitioning of internal energy involves 

first obtaining the rotational energy from the conservation of angular momentum. The 
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fragment vibrational energy is then later determined from the conservation of energy. 

The angular momentum associated with each atom as it recoils about its respective frag

ment's center-of-mass is given by, 

(5-10) 

(5-ll) 

where ba. and b~ are the classical exit impact parameters (see Figure 5-2). Clearly the 

Figure 5-2. Sketch of the masses involved in the Soft-fragment impulsive model 

Sketch of the bodies involved in the Soft Fragment Impulsive Model (SFIM). a. and ~ 
are the 2 atoms at the ends of the bond that is breaking. These recoil and become parts 
of the 2 fragments, A and B. The centers of mass of the two fragments are indicated by 
dots. 

calculation of the impact parameters requires prior knowledge of the dissociative geom

etry. In practice, this is usually assumed to resemble the equilibrium geometry. The 
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angular momenta of the atoms are conserved, evolving into fragment rotation. The 

resulting rotational energy of each fragment is then, 

ER (A) 
Ua)

2 

= 
2IA 

(5-12) 

u )2 
ER (B) = _P_ 

21B 
(5-13) 

where IA and IB are the moments of inertia for fragments A and B. The remaining energy 

in each fragment is vibrational, 

Ev (B) = E (B) - Ey (B) - ER (B) (5-14) 

Ev (A) = E (A) - Ey (A) - ER (A) (5-15) 

5.2.2. The Rigid Fragment Limit 

In the rigid fragment impulsive model (RFIM) the dissociation results in no 

vibrational excitation of the fragments, 

Ev (A) =Ev (B) = 0 (5-16) 

The available energy is, therefore, partitioned only between fragment rotation and trans

lation, 

(5-17) 

Eavail = Ey (tot) + ER (A) + ER (B) (5-18) 
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where g is the relative velocity of A and B. Since the dissociation must conserve angular 

momentum (initially assumed to be zero) the translational energy is constrained, 

Eavail (5-19) 

where b A and b8 are the exit impact parameters (and should be equivalent to bcx and b13 

above). Hence, unlike the soft fragment model, the translational energy of the products 

predicted by the rigid fragment model is intimately dependent on the choice of the dis

sociative geometry. Once the translational energy has been determined, the rotational 

energy of the fragments can be expressed in terms of Er(tot), 

(5-20) 

(5-21) 

5.2.3. Modified Impulsive Models 

There have been several attempts to increase the flexibility of the impulsive model. One, 

the equilibrium geometry model, takes into account the internal excitation caused by 

the sudden geometrical changes that occur during the dissociation. [129] This vibra

tional excitation can be estimated from a Franck-Condon analysis of the geometries of 

the dissociating parent and the separated fragments. The impulsive model calculation is 

then performed with this fraction removed and the final results combined. This method 

was successful in describing the partitioning of energy in the dissociation of NOCl into 

NO and Cl. 

If the fraction of the available energy in product translation falls between the soft and 

rigid fragment impulsive models then an empirical parameter, a, can be introduced as 
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a measure of the "softness" of the molecule as it dissociates. [ 125] The "scaled-reduced

mass impulsive approximation" defines a as follows 

a = (lleff- !la~) 
( Jl AB - !la~) 

(5-22) 

where lleff is the reduced mass that correctly predicts the fraction of energy in product 

translation according to equation 15. The parameter a ranges from 0 to 1 corresponding 

to the two limiting impulsive models. The authors also found that for the UV dissocia

tion of alkyl halides that a=0.44 successfully predicted the correct <Ey>. 

5.3. Statistical Models 

The most well-known statistical theory of unimolecular reactions is RRKM theory, [23, 

21] in which accurate reaction rates are easily obtained with minimal knowledge about 

the potential energy surface. RRKM theory can be extended to give reasonable RTV par

titioning of products only when there is a small barrier to recombination. In this case, 

it is assumed that product energy distributions are similar to the distribution among T, 

R, and V at the critical configuration. This method makes no attempt to match up the 

disappearing modes in the parent molecule with rotations of the fragments, and hence 

underestimates the rotational and translational excitation of the products. (See Figure 

5-4). 

Other statistical theories predict product state distributions using information about the 

product states themselves. The prior distribution, [43] and Phase Space Theory (PST) 

[44] rely solely on information about. the product states to partition energy. A signifi

cant problem with these methods is that they tend to overestimate product rotational 

excitation above the vibrational threshold [130] while underestimating product vibra

tions. [19] This has been understood in terms of the vibrational modes of the parent 

molecule that can develop asymptotically into both product rotations and vibrations. 

The Separate Statistical Ensembles theory (SSE) [45] attempts to correct these deficien

cies by using some of the information about energy partitioning in the parent molecule 
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to obtain product state partitioning, but below the vibrational threshold, SSE and PST 

do not differ at all. 

5.3.1. A new statistical method for partitioning fragment energy 

The basic assumption of our method of partitioning the statistical reservoir is that the 

energy is distributed statistically in the parent molecule. The breaking of the bond is 

viewed as an instantaneous event, which prevents any further rearrangement of energy. 

Following this reasoning, it makes sense to partition the statistical energy into T, R, and 

V using information only from the parent, and not information from the products as in 

PST and the prior distribution. 

The method we use to divide the statistical reservoir into T, R, and Vis very similar to 

the way it is done in SSE. Product vibrations can develop out of all parent vibrational 

modes, while product rotations and translations develop only out of those modes of the 

parent molecule that disappear during the course of the reaction. A schematic of this 

idea is shown in Figure 5-3. 

We utilize three ensembles. The vibrational ensemble includes all vibrational modes of 

the parent and overlaps with the other two ensembles. The rotational ensemble includes 

those disappearing modes that lead to rotational excitation of the products. These 

modes can include methyl torsions, skeletal bends, etc. The third ensemble is a transla

tional ensemble that includes modes that disappear into product translations. Identifi

cation of which modes belong in which ensemble can be a subde matter for large parent 

molecules, but three basic rules can be easily applied: 

• Parent torsions and skeletal bends go into the "rotational" ensemble, 

• Parent skeletal stretches go into the "translational" ensemble, and 

• all parent vibrational modes go into the "vibrational" ensemble. 

The energy reservoir that we are treating statistically is partitioned in the following man

ner: 
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Ey(A) 

\ 

Ey(parent) 1----
1 
I 
I 

I 
Ey(B) 

Figure 5-3. Energy partitioning in the statistical reservoir 

Schematic diagram illustrating the partitioning of energy in the statistical reservoir into 
· T, R and V of the fragments. The left side of the diagram represents the vibrational 
modes of the parent molecule. The shaded modes disappear during the course of the 
reaction. The right side of the diagram represents partitioning of energy in the frag
ments. All parent modes contribute to fragment vibrations, while only those modes 
from the T and R ensembles can contribute to fragment T and R. 

J dEv J 
(EsRtat) = _,0'-----,:0e:-:----~~0------------------

Eslat Estat- Ey Estat- Ev-Er 

J dEv 
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dET J dERpP (Ey) PR (ER) Pr (ET) o( Estat- Ev-Er- ER) 

0 

(5-23) 

where pp, PR• and PT are the densities of states for the P (parent), R, and T ensembles of 

parent vibrational modes. The P ensemble is made up of all vibrational modes of the 

parent molecule. In the harmonic approximation, the densities of states can be corn-
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d 1 th h 1 th h c (Esvtat) and pute easi y using e Beyer-Swine art a gori m. T e expressions tor 

( E~at) are similar to the one for the rotational energy that is given above. 

Essentially, we are assuming here that the energy above the barrier is going to be dis

tributed statistically between the three ensembles, where the ensemble for vibrations 

can sample from the other two ensembles. The statistics (and hence the energy distribu

tion) are governed by the vibrational frequencies of the parent as well as a judicious 

choice of modes for membership in each ensemble. 

Dividing (E~at) between the two fragments is easily accomplished by conserving linear 

momentum: 

(5-24) 

(5-25) 

( E~at) is similarly partitioned by requiring conservation of angular momentum: 

E~at (A) 
(E~at) 

= 

N B 

(5-26) 

E~at (B) 
(E~at) 

= H A 

(5-27) 
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In these equations, the moments of inertia, IA and !8 , are calculated by approximating 

both fragments are spherical tops, with moments of inertia that are the averages of the 

real moments of inertia for that fragment. 

The only remaining difficulty is to divide the vibrational energy from the statistical res

ervoir between the two fragments. It seems reasonable to view the impulse as an instan

taneous event, so that the energy is frozen in the parent modes. The energy in the modes 

that develop into fragment vibrations should then be assigned to the appropriate frag

ment. Identifying these modes and obtaining their frequencies seems to be impossible 

for all but the simplest of molecules. By approximating the frequencies of these modes 

by the frequencies of the fragment modes themselves, one obtains the following expres

sion for the vibrational energy partitioned into fragment A from the statistical reservoir: 

Estat Estat _ E 

IdEA vI AdEBpA(EA)pB(EB)o(E~at_EA-EB)EA 
(E~at (A)) = 0 0 

Est at Estat _ E 

IdEA vI AdEBpA(EA)pB(EB)o(E~at_EA-EB) 
(5-28) 

0 0 

where p A and PB are the vibrational densities of states of fragments A and B respectively. 

Partitioning of the statistical reservoir is made with a number of important assumptions. 

We use vibrational densities of states in the harmonic approximation, and we assume 

that both of the fragments can be well approximated by totally symmetric tops. The har

monic approximation to the vibrational density of states does moderately well, due in 

part to fortuitous cancellation of the effects of coupling and anharmonicity. Anharmo

nicity tends to raise the density of states at energies near the dissociation limit, and cou

pling between modes tends to separate nearly degenerate vibrational levels. The 

cancellation of the two effects makes the harmonic approximation to the density of 

states a reasonable approximation. 

108 

.. 



5.4. The Barrier Impulsive Model 

The approximation of both fragments as spherically symmetric tops is a necessary 

approximation if we are trying to satisfy conservation of angular momentum while 

being subject to the constraint of having minimal information about the geometry of the 

transition state. An .additional approximation is that the parent is assumed to have no 

rotational motion prior to the dissociation, which is a good approximation for the rota

tionally cold ~onditions of most molecular beam experiments. 

5. 4. The Barrier Impulsive Model 

In the various versions of the original impulsive model, all the available energy is 

released as a repulsion localized in the reaction coordinate. For the present model, the 

available energy for the impulsive reservoir is replaced with the height of the exit bar-
0 

rier. We utilize the rigid fragment impulsive model (RFIM) to partition the energy (see 

equations 5-16 through 5-21) from this reservoir. The two reservoirs (statistical and 

impulsive) are then combined to give average translational energies for the two frag

ments as follows: 

(5-29) 

(5-30) 

Similar equations are used for rotational and vibrational energies. 

5.5. Results and Discussion 

In this section, we compare the predictions of the barrier impulsive model to a number 

of the theories discussed in the previous sections. We have chosen to focus on the 

energy partitioning in the a-cleavage in carbonyls excited to their 1(n,1t*) state by 

absorption of an ultraviolet photon. The excitation involves the promotion of a non

bonding electron the oxygen to .an anti-bonding pi orbital on the CO moiety. The mol

ecules then dissociate over a barrier that results from an avoided crossing between the 

\n,1t*) and 3(cr,cr*) configurations in non-planar geometries. [131] Since the dissocia-
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tion ultimately involves the cleavage of only a single bond, the impulsive model can be 

used in a straightforward way as a repulsion along the breaking bond. In addition the 

transition state geometry should not be a substantial departure from the reactant geom

etry unlike "ring" transition states that involve multiple bonds being made and broken. 

This facilitates the choice of a dissociative geometry in order to obtain exit impact 

parameters and mom_ents of inertia. We have chosen to perform calculations on acetone 

and acetic acid due to experimental data available for comparison. Additionally, the lack 

of measured anisotropy in the photodissociation of both of these compounds suggests 

that the excited state may exist for sufficient time to allow full or partial randomization 

of the initial excitation energy. Thus, the use of a statistical method for treating the 

energy in excess of the barrier is justified. 

5.5.1. Acetone Dissociation 

The photodissociation of acetone into CH3CO and CH3 has been carried out at a 

number of wavelengths in the ultraviolet. Although the product internal state informa

tion is far from complete, the translational energy of the photofragments has been mea

sured at each wavelength. The excitation at 193 nm is to the 3s Rydberg state, and the 

molecule crosses to the 1•3(n,7t*) state prior to dissociation. [ 132, 133] 

For the impulsive reservoir of the BIM model, a barrier height of 13.4 kcallmole was 

used based on the measurements of Zuckermann et al. [ 134] The rigid fragment exten

sion, described in Section 5.2.2, was chosen with a non-planar dissociative geometry 

consistent with the geometry of the 1•3(n,7t*) excited state. The impulse was assumed to 

be through the C3v symmetry axis of the CH3 group and therefore, resulted in no CH3 

rotational excitation. Both the soft fragment impulsive model (SFIM) and RFIM calcu

lations utilized the same exit impact parameters and moments of inertia as were used in 

the BIM calculation. The statistical reservoir was partitioned using ground state acetone 

vibrational frequencies [ 135] as an approximation to those of the 1•3(n,7t*) excited state. 

The assignments of the vibrational modes were also taken from Ref. 135. Of the 24 

modes of acetone, 6 disappear upon dissociation, evolving into product translation and 

rotation. We assigned 2 of these modes the symmetric and antisymmetric C-C stretch 
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to the translation ensemble. Two methyl rocking modes, a methyl torsion and the C-C

C skeletal bend were assigned to the rotational ensemble. The Beyer-Swinehart algo

rithm was used to calculate the vibrational density of states for all ensembles. The 

moments of inertia for the CH3CO fragment were determined from the ab initio equilib

rium geometry calculated by Baird and Kathpal. [ 136] Vibrational frequencies were 

taken from RRKM calculations ofWatkins and Word. [137] 1 

Figure 5-4 shows the comparison of the two limiting impulsive models, SFIM and 
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Figure 5-4. Comparison of BIM with other impulsive and statistical theories 

Calculated translational energies as a function of available energy for the photodissoci
ation of acetone. The experiments (a) are from references 119 and 120. 

RFIM, and BIM with the experimentally determined average translation energies at 

1. The vibrational frequencies were derived from acetaldehyde and adjusted to agree with the pre
exponential factor for the CO+ CH3 reaction. 
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three wavelengths. The predictions of RRKM theory is also shown as a representative 

barrierless statistical calculation. Both pure impulsive models rise linearly with available 

energy as expected. In acetone photodissociation at 266 nm (Eavaa=23.5 kcaVmole) the 

average translational energy was measured to be 13.9 kcaVmole and the SFIM prediction 

is 12.8 kcaVmole. [121] Although the SFIM calculation underestimates <Ey> at 266 nm 

it overestimates it at ~48 nm where the SFIM predicts 16.9 kcaVmole but the experimen

tal <Ey> is only 14.1 kcaVmole. [120] At both these wavelengths the RFIM partitions far 

too much available energy into translation. It is interesting to note that at an available 

energy near 14 kcaVmole, assuming the trend continues, then the product translational 

energy would agree more with the RFIM prediction. The barrier impulsive model suc

cessfully predicts the magnitude of <Ey> at each wavelength but also shows the correct 

dependence of <Ey> on the available energy. There are several points worth comment

ing on. The first is the choice of the rigid fragment model for treating the impulsive res

ervoir. This suggests that the impulse is not effectively coupled into the vibrational 

modes of the products which is reasonable given the geometry at the transition state. 

Secondly, the fact that <Ey> changes gradually with available energy suggests that either 

there is complete randomization of energy or the unrandomized energy is not localized 

in the reaction coordinate. 

5.5.2. Acetic Acid Dissociation 

The present model was also used to compare predicted energy partitioning with exper

imental results in the photodissociation of acetic acid at 218 nm and 200 nm. [ 138, 139] 

Both wavelengths involve 1(n,x*) excitation but differ by -12 kcaVmole in the energy 

available for dissociation. Table 5-1 shows the BIM results and includes predictions of 

SFIM and RFIM. The barrier height was assumed to be 13.0 kcaVmole and the dissocia

tive geometry was non-planar. Vibrational frequencies were taken from Herman and 

Hofstadter [ 140] with the mode assignments of Haurie and Novak. [ 141] The C-0 (H) 

stretch and the COO bend were assumed to evolve into product translation while the 

OH torsion and rocks were partitioned into rotation. The OH and CH3CO vibrational 

density of states were calculated using the method ofBeyer-Swinehart. 
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ER {OH) Ey(OH) Ey(OH) Eint (CH3CO) Ey(CH3CO) 

Experimenta 
1.21 b 218nm <0.2 9.81 12.9 3.89 

200nm 1.36 <0.4 10.4 23.73c 4.11 

This work 
218nm 1.39 0.23 9.79 12.73 3.87 
200nm 2.05 0.80 10.15 22.99 4.01 

RFIM 
218nm 0.14 0 19.4 0.78 7.67 
200nm 0.21 0 27.72 1.12 10.95 

SFIM 
218nm 0.08 0.63 11.30 11.53 4.46 
200nm 0.12 0.90 16.14 16.47 6.38 

Table 5-l. Comparison of theoretical predictions to experiments on Acetic Acid 
photodissociation 

Product Energy Partitioning for Acetic Acid Photodissociation at 200 nm and 218 nm 

a. References 121 and 120. 
b. All energies are expressed in kcal mor1 

c. Inferred from Eavail and all other measured quantities. 

There is very good agreement between BIM and experiment. Not only does the model 

accurately predict the partitioning at 218 nm, high product translational energy and low 

OH internal excitation, but it is also consistent with the additional energy at 200 nm 

being deposited primarily in the ro-vibrations of the CH3CO fragment. Although the 

SFIM and RFIM also predict low OH rotation and vibration they grossly overestimate 

the fraction of available energy appearing as product translation. 

5.6. Conclusions 

We have presented a simple model which allows the prediction of energy partitioning 

in the disso~iation of polyatomics molecules that possess a substantial exit barrier. This 

is extremely useful in comparing average product translational energy from photofrag

ment translational spectroscopy experiments with internal energy measurements. We 

expect that this model will work for systems like the two shown above that satisfy sev

eral criteria: l) IVR should occur prior to dissociation, 2) the molecules should be large 
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enough to contain many modes that are not directly involved in the dissociation, and 3) 

the transition state should permit facile treatment of the impulsive reservoir. 
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6 Concluding Remarks 

We conclude this dissertation by summarizing the results presented in the preceding 

chapters, by discussing the impact of these results on both the experimental and theo

retical aspects of the field of chemical dynamics, and by suggesting future directions for 

research in this field. 

6.1. The Zero-Point Energy Problem 

We have investigated a method for correcting the zero-point energy (ZPE) problem in 

classical trajectory simulations and have found that the method introduces some prob

lems into the dynamics, making it impractical for use in simulations of reactive systems. 

The most noticeable effect of the BMH method is what it does to the power spectra of 

trajectories that have violated the ZPE conditions. Another troubling aspect of the BMH 

method is that it can mis-identify surfaces which are nearly flat following the inflection 

. points after a barrier as harmonic wells with zero-point energy above the true barrier 

height. The falsely-identified well can restrict reactive trajectories (that satisfy the ZPE 

in all other vibrational modes) from continuing on into the product valley. Although the 

problem is most apparent in systems with very low masses, it is possible that a chemi

cally relevant potential energy surface could exhibit the same behavior when used with 

BMH trajectory, simulations. 

Our feeling is that all methods that utilize local information about the potential energy 

surface (first and second derivatives) in an attempt to correct for what is really a global 

phenomenon on the surface will suffer similar deficiencies. We do not hold out much 
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hope for a solution to the ZPE problem that actively modifies the classical equations of 

motion for individual trajectories. It seems that a solution for the problem lies either in 

a mixed semiclassicaVclassical method like the one proposed by Alimi et al. [ 142], or in 

a rethinking of how initial conditions are sampled and how final conditions for the 

ensemble of trajectories are analyzed. There is still debate on whether the ZPE problem 

is simply an artifact ~f how we perform these aspects of classical simulations, and until 

the problem is well understood, solutions to the problem will be appropriate for only a 

limited set of situations. 

6.2. The Unimolecular Reactions of Ketene 

In Chapters 3 and 4, we developed reduced dimensionality models for the isomerization 

of ketene via the stable oxirene structure, and for the dissociation of triplet ketene over 

a barrier to form 
3
B1 CH2 + 

1
L+ CO. In both of these reactions, the reactant is highly 

vibrationally excited (but rotationally cold) ketene prepared by exciting ground-state 

ketene to the first excited singlet state and allowing it to undergo internal conversion or 

intersystem crossing onto the appropriate electronic surface. The quantum microcanon

ical rates for both reactions were obtained rigorously (for the active degrees of freedom 

within the barrier region) using methodology developed by Miller et al. over the past 

few years. The uncoupled degrees of freedom were treated separately (either as har

monic oscillators, or within an appropriate basis-set). 

The Absorbing Boundary Conditions (ABC) developed by Seideman and Miller [31] 

allowed us to construct a Green's function with the correct outgoing wave boundary 

conditions by absorbing all flux which leaves the barrier region on the surface. A nega

tive imaginary potential is added to a grid representation of the Hamiltonian, making it 

possible to calculate the cumulative reaction probability directly, i.e. without calculating 

all of the state-to-state reaction amplitudes in the 5-matrix. This made performing the 

calculation of ketene isomerization rates a feasible undertaking because the asymptotic 

(ketene) regions of the potential energy surface support millions of states at the energies 

of interest. This would have prevented us from using the earlier methods for reactive 

scattering based on the Kohn variational principle. [29, 30] 
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6.2. The Unimolecular Reactions of Ketene 

A second technical development that contributed to the feasibility of these calculations 

was the grid-based discrete variable representation (DVR) developed by Colbert and 

Miller. [32] A DVR of the ABC Hamiltonian is sparse in multiple degrees-of-freedom, 

allowing us to use some of the newly developed techniques (such as QMR [36]) for 

inverting and diagonalizing sparse linear systems. 

The advance that made it possible to complete these calculatio11:s within a graduate 

career was introduced by Manthe and Miller [37] in the form of a reaction probability 

operator, P (E) . This operator has only a few non-zero eigenvalues corresponding to 

reaction probabilities for individual vibrational levels of the transition state. The great 

advantage of this property is that the iterative Lanczos technique [38, 39, 40] can be 

applied to find the eigenvalues of P (E) very efficiently. For large grids with small 

cumulative reaction probabilities, this saves great amounts of computer time. 

The calculated microcanonical rates presented in chapters 3 and 4 exhibited good qual

itative agreement with the experiments performed by Moore and co-workers. We were 

able to say with some certainty that the features in the energy dependence of the rate of 

ketene isomerization are due to a combination of overlapping tunneling and Feshbach 

resonances in a strongly bent region on the potential energy surface. Our calculations 

showed many narrow resonances at energies below the experimental energies, and a 

combination of narrow (tunneling) and wide (Feshbach) resonances at experimentally 

relevant energies. The poor agreement between the exact energies, amplitudes and 

widths of the resonant features is probably a result of a poor model for the true potential 

energy surface. However, it would be very interesting to see what the experiments show 

at energies below the barrier to ketene dissociation (the current low energy limit). This 

would help us to refine the potential energy surface for future calculations . 

In the microcanonical rate for the dissociation of triplet ketene, we saw good overall 

agreement with the experimental rates, but were missing the step-like features that are 

apparent in the energy dependence of the experimental rates. We were able to recover 

the step-like features by using a barrier frequency four times lower than the one pre-
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dieted by ab initio calculations. A two degree-of-freedom calculation was performed to 

find out if coupling between the ceo bend and the reaction coordinate could give rise 

to the steps, but the results were essentially unchanged from the one degree-of-freedom 

calculation. Once again, we were forced to conclude that we either have a poor model 

for the true potential energy surface, or that there are additional features on the surface 

that have not yet bee!l discovered by the ab initio groups. 

6.3. The Barrier Impulsive Model 

In Chapter 5, we developed a simple model for partitioning energy between rotational, 

vibrational and translational degrees of freedom in the unimolecular dissociations of 

large molecules. It was designed for reactions where the reaction coordinate primarily 

involves the rupture of a single bond. The model simplifies to the impulsive model when 

the available energy is just enough to clear the transition state, and simplifies to an SSE

like [ 45] statistical model in the absence of a barrier to recombination. Agreement of 

this model with experimental data is excellent, and the information that is traditionally 

available for these kinds of reactions (energies, frequencies, and geometries of the 
~ 

parent molecule, transition state, and fragments) is all that is required to make predic-

tions. It has already proven itself quite useful in settling a dispute over the stepwise or 

concerted nature of the dissociation of Acetone into 2CH3 +CO, [119] and performed 

quite well against the impulsive [41, 42] and prior [43] models in predicting the vibra

tional energy in the CO fragment of the 193 nm photodissociation reactions of 

(CH3)2CO and (C2H5hCO. [143] 

The Barrier Impulsive Model was developed to give "coarse grained" details about the 

pa~titioning of energy in the products of the dissociation oflarge molecules. This is most 

useful when comparing to the average product translational energy from photofragment 

translational spectroscopy experiments. In these experiments, the barrier impulsive 

model can be used with the product translational distribution to learn something about 

internal energy distribution within the fragments. 
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6.4. Future Directions 

6.4. Future Directions 

We view this dissertation as an early exploration of the kinds of model building and 

approximate theory construction that chemical dynamicists will have to engage in as we 

move towards larger reactions with more atoms in each molecule. We would like to 

leave the reader with our thoughts on three directions for future work that are suggested 

by the calculations reported in this dissertation. 

6.4.1. On Potential Energy Surfaces 

Perhaps the most disappointing and educational aspect of the work on ketene is our 

dependence on good ab initio surfaces on which to calculate the dynamical quantities of 

interest. The energy dependence of the rate of ketene isomerization is strongly depen

dent on the coupling between the active degrees of freedom, and the geometry and 

energy of the outer transition state can greatly influence the spacing of the tunnelling 

resonances observed in our calculations. In the calculations of the rate of dissociation 

for ketene on it's triplet surface, the ab initio barrier frequency appeared to be four times 

as large as what we would expect from the appearance of step-like features in the exper

imental rates. These deficiencies point either to ab initio results that didn't accurately 

represent the geometries, energies, and frequencies at the structures of interest, or they 

highlight serious problems in how we construct surfaces from the ab initio data. 

When we use a potential energy surface, that surface has come to us via a grid of points 

in the coordinate space of the molecule. The traditional and well-known surfaces (par

ticularly for small reactions) are built by fitting functional forms which have the correct 

behavior to this grid of energies in coordinate space. 

For larger reactions, the information communicated to us from ab initio chemists is in 

the form of geometries, energies and frequencies at a very small number of critical points 

(local minima, transition states, global minima, etc.). The frequencies are typically 

obtained via finite difference methods in a small grid of configurations surrounding 

these critical points. In cases where the locations of the critical points are not known, 

grids are used to search for them. Once we have the information at the critical points, 
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we again utilize functional forms that have the correct behavior and fit the energies, fre

quencies, and geometries of critical points these functional forms to the ab initio infor

mation. 

What strikes us most about this whole process is that within the DVR-ABC methodol

ogy, we take energies at a grid of configurations, fit them to a functional form (and intro

duce substantial errors in the process), and then use the functional form to obtain 

energies at another grid of configurations. It would seem that there is at least one unnec

essary step in this process. Given the recent increases in the speed of some kinds of ab 

initio calculations (particularly the work of White and Head-Gordon [144, 145]), it 

would be of particular interest to do away with the surface fitting altogether, and simply 

calculate the potential energy directly at every grid point in the DVR grid. It would be 

of great intellectual interest to be able to calculate reaction rates rigorously from first 

principles where the only approximation is the Born-Oppenheimer approximation. 

Alternatively, M.A. Collins [146, 147] has proposed a simple method for placing ab 

initio calculations at configurations where a dynamicist would be .most interested in 

having knowledge of the surface. The surface is interpolated between the known ab 

initio energies, and a very high-quality surface is obtained without fitting, and with rel

atively few ab initio calculations. The attraction of both methods is the absence of the 

surface-fitting step which has given such unsatisfactory results in the past. 

6.4.2. Approximate Theories 

Now that experiments are performed on larger molecules than those with just a few 

atoms, it is becoming less useful to collect or understand the huge amount of detailed 

state-to-state information available 'for these reactions. Often the experiments will 

simply measure broad translational energy distributions or the vibrational and rota

tional temperatures of the product molecules. For very large systems, spectra which are 

not assignable and which have broad overlapping features may be all the experimental 

data that is available. 
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6.4. Future Directions 

The ABC methodology allows us to calculate averaged quantities like the thermal rate 

directly, without summing or averaging over initial or final states. Indeed, this has been 

a great leap forward in the utility of quantum mechanical calculations of dynamical 

quantities. However, experimental chemical dynamics seems to be moving on to sys

tems for which exact quantum calculations would be next to impossible. Photofragment 

translational ~pectroscopy has been used to obtain information of the photodissociation 

of acetone (with 24 vibrational degrees of freedom), and diethyl ketone (with 42 vibra

tional degrees of f;reedom). What would be of great use to the experimentalists carrying 

out these reactions are approximate theories to increase their understanding of how 

energy is partitioned in the fragments following the dissociation event. 

To date, the approximate theories in use by experimentalists (including the barrier 

impulsive model presented in this dissertation), are fairly crude and have only limited 

applicability. Further refinements of these theories would be of great use to many exper

imental gas phase chemists. Similar theories would also be useful in predicting averaged 

quantities for large bi-molecular reactions, and for reactions that involve substantial 

molecular rearrangements during the course of the reaction. 

6.4.3. Reduced Dimensionality Models 

As theoretical chemists push towards understanding the dynamics of larger and larger 

systems, we are going to have to develop reduced dimensionality methods not only for 

quantum mechanical calculations, but also for classical simulations of biologically inter

esting reactions. The challenge of reduced dimensionality models is in knowing which 

modes to fix or average over, and which modes capture most of the essential aspects of 

the reaction coordinate. A clever choice of coordinate systems can sometimes make this 

task easier than it is in other coordinate systems. 

There is currently a great deal of interest in developing methods to study the structure 

and dynamics of protein chains. The standard methods of simulating classical molecular 

dynamics require integration time steps that are many times smaller than the time scale 

of highest frequency motion in the protein, while the actual folding dynamics is thought 
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to take place in times that are several orders of magnitude longer than this time scale. 

[ 148] A few methods have been introduced for performing the simulations in a subspace 

of the full dimensionality, [149] but a coordinate system that aids in the choice of the 

"important" degrees of freedom has not yet been developed. 

If one wishes to understand the quantum mechanics of very large coupled systems (like 

proteins or clusters), then approximate methods for separating the active degrees of 

freedom from the rest of the problem must be developed. Jungwirth and Gerber have 

proposed a mixed classical-quantum method for doing time-dependent quantum 

dynamics on separable potentials obtained from trajectory simulations. [ 150, 151] Their 

method builds the coupling (obtained classically) into separable time-dependent poten

tial energy surfaces for each vibrational mode, and uses TD-SCF to propagate the one

dimensional wave function on these surfaces. 

Both methods described above are currently limited in their applicability to relatively 

stiff systems where the normal modes are good descriptions of the full motion of the 

molecules under consideration. An extension of either of these methods to reactive sys

tems, or to "floppy" molecules will greatly aid in the push to understand the dynamics 

of complex chemical systems. 

The coming years will be exciting times at the triple point between biology, physics and 

chemistry. One of the most important areas of research at this junction will be the appli

cation of the principles of chemical reaction dynamics to biologically relevant reactions, 

and I look forward with great excitement to future developments in this field. 

122 



• 

Bibliography 

[l] ].1. Steinfeld, ].S. Francisco, and W.L. Hase, Chemical Kinetics and Dynamics, 
(Prentice Hall, Englewood Cliffs, New Jersy, 1989). 

[2] R.N. Porter and L.M. Raff, "Classical Trajectory Methods in Molecular 
Collisions," in Dynamics of Molecular Collisions, Part B, W. H. Miller, ed., pages 
1-52, (Plenum Press, New York, 1976). 

[3] N. Cartwright, How the Laws of Physics Lie, (Oxford University Press, New York, 
1983). 

[ 4] I. Hacking, Representing and intervening: Introductory topics in the philosophy of 
natural science, (Cambridge University Press, New York, 1983). 

[5] P.M. Churchland, "The Ontological Status of Observables: In praise of 
Superempirical Virtues," in Images of Science: Essays on Realism and Empiricism, 
(University of Chicago Press, Chicago, 1985). 

[6] B. Van Fraassen, The Scientific Image, (Clarendon Press, New York, 1980). 

[7] S.M. Auerbach, Modern Integral Equation Techniques for Quantum Reactive 
Scattering Theory, PhD thesis, (University of California at Berkeley, 1993). 

[8] Y.T. Lee, Science 236(4803), 793-8 (1987). 

[9] D.M. Neumark et al.,]. Chem. Phys. 82, 3045 (1985). 

[10] Sang Kyu Kim, E.R. Lovejoy, and C.B. Moore,]. Chem. Phys. 102(8), 3202-19 
(1995) . 

[11] E.R. Lovejoy, Sang Kyu Kim, and C.B. Moore, Science 256, 1541-4 (1992). 

[12] E.R. Lovejoy and C.B. Moore,]. Chem. Phys. 98(10), 7846-54 (1993). 

123 



'-· 

Bibliography 

[13] 

[14] 

[15] 

[16] 

[17] 

[18] 

[19] 

[20] 

[21] 

[22] 

[23] 

[24] 

[25] 

[26] 

[27] 

[28] 

[29] 

[30] 

[31] 

[32] 

124 

E.R. Lovejoy, S.K. Kim, R.A. Alvarez, and C.B. Moore,]. Chern. Phys. 95(6), 
4081-4093 (1991). 

I. Garcia-Moreno, E.R. Lovejoy, and C.B. Moore,]. Chern. Phys. 100(12), 8890-
8901 (1994). 

I. Garcia-Moreno, E.R. Lovejoy, and C.B. Moore,]. Chern. Phys. 100(12), 8902-
6 (1994). 

W.H. Green, A.]. Mahoney, Qi-Ke Zheng, and C.B. Moore,]. Chern. Phys. 94(3), 
1961-9 (1991). 

I.C. Chen and C.B. Moore,]. Chern. Phys. 94(1), 263-269 (1990). 

I.C. Chen and C.B. Moore,]. Chern. Phys. 94(1), 269-274 (1990). 

S. K. Kim, Y. S. Choi, C. D. Pibel, Q. Zheng, and C. B. Moore,]. Chern. Phys. 
94(3), 1954-60 (1991). 

R.G. Gilbert and S.C. Smith, Theory of unimolecular and recombination reactions, 
(Blackwell Scientific Publications, Boston, 1990). 

P.]. Robinson and K.A. Holbrook, Unimolecular Reactions, (Wiley-Interscience, 
New York, 1972). 

I.W.M. Smith, Kinetics and Dynamics of Elementary Gas Phase Reactions, 
(Butterworths, Boston, 1980). 

W. Forst, Theory of Unimolecular Reactions, (Academic, New York, 1973). 

j.M. Bowman,]. Chern. Phys. 95(13), 4960-4968 (1991). 

W.H. Miller,]. Am. Chern. Soc. 101, 6810 (1979). 

].M. Bowman, B. Gazdy, and Q. Sun,]. Chern. Phys. 91(5), 2859-2862 (1989). 

W. H. Miller, W. L. Hase, and C. L. Darling,]. Chern. Phys. 91(5), 2863-8 (1989). 

B.R. Johnson, National resource for computation in chemistry. In NRCC 
Proceedings, number 5, page 86, (University of California, Berkeley, 1979). 

j.Z.H. Zhang, S.-1. Chu, and W.H. Miller,]. Chern. Phys. 88(10), 6233-9 (1988). 

j.Z.H. Zhang and W.H. Miller,]. Chern. Phys. 91(3), 1528-47 (1989). 

T. Seideman and W.H. Miller,]. Chern. Phys. 97(4), 2499-2514 (1992). 

D.T. Colbert and W.H. Miller,]. Chern. Phys. 96(3), 1982-91 (1992). 



" 

• 

Bibliography 

[33] D.O. Harris, G.G. Engerholm, and W.D. Gwinn,]. Chern. Phys. 43, 1515 (1965). 

[34] ].C. Light, I.P. Hamilton, and].V. Lill,j. Chern. Phys. 82(3), 1400-9 (1985). 

[35] Y. Saad and M.H. Schultz, SIAM]. Sci. Stat. Comput. 7(3), 856-69 (1986). 

[36] R.W. Freund, SIAM]. Sci. Stat. Comput. 13(1), 425-48 (1992). 

[37] U. Manthe, T. Seideman, and W.H. Miller, ]. Chern. Phys. 101(6), 4759-68 
(1994)·. 

[38] ].H. Wilkinson and C. Reinsch, "Linear algebra," in F. L. Bauer, editor, Handbook 
for automatic computation, volume 2, (Springer-Verlag, New York, 1971). 

[39] C. Lanczos,j. Res. Natl. Bur. Stand. 45, 255 (1950). 

[40] ].K. Cullum and R.A. Willoughby. Lanczos algorithms for large symmetric 
eigenvalue computations, volume 3 of Progress in scientific computing, (Birkhauser, 
Boston, 1985). 

[41] G.E. Busch and K.R. Wilson,]. Chern. Phys. 56,3626 (1972). 

[42] A. F. Tuck, journal of the Chemical Society, Faraday Transactions 73, 689 (1977). 

[43] R.D. Levine and].L. Kinsey, In R.B. Bernstein, editor, Atom-Molecular Collision 
Theory- A Guide for the Experimentalist, (Plenum, New York, 1979). 

[44] P. Pechukas and]. C. Light,]. Chern. Phys. 42, 3281 (1965). 

[45] C. Wittig, I. Nadler, H. Reisler, M. Noble,]. Catanzarite, and G. Radhakrishnan, 
]. Chern. Phys. 83, 5581 (1985). 

[ 46] M. Henon and C. Heiles, Astron.]. 69, 73 (1964). 

[47] ].M. Bowman, G.C. Schatz, and A. Kuppermann, Chern. Phys. Lett. 24, 378 
(1974). 

[48] G. Baym, Lecutres on Quantum Mechanics, (Addison-Wesley, Menlo Park, CA, 
1990). 

[ 49·] ].]. Sakurai, Modem Quantum Mechanics, (Addison-Wesley Publishing Company, 
Inc., Redwood City, California, 1985) . 

[50] T. Uzer, B.D. MacDonald, Y. Guan, and D.L. Thompson, Chern. Phys. Lett. 152(4-
5), 405-8 (1988). 

125 



Bibliography 

[51] Y. Guan, T. Uzer, B.D. MacDonald, and D.L. Thompson, "Dissociation of 
overtone-excited hydrogen peroxide near threshold; a quasiclassical trajectory 
study," inj.M. Bowman and M. Ratner, editors, Advances in Molecular Vibrations 
and Collision Dynamics, volume lB, pages 81-104, (JAI Press, Greenwich CT, 
1991). 

[52] H.-R. Dubal and F.F. Crim,J. Chem. Phys. 83(8), 3863-72 (1985). 

[53] T.M. Ticich, T.R. Rizzo, H.-R. Dubal, and F.F. Crim,]. Chem. Phys. 84(3), 1508-
20 (1986). 

[54] D. Lu and W.L. Hase,J. Chem. Phys. 89(11), 6723-35 (1988). 

[55] W.L. Hase and D.G. Buckowski,J. Comput. Chem. 3(3), 335-343 (1982). 

[56] O.K. Rice and H.C. Ramsperger,J. Am. Chem. Soc. 50, 617 (1928). 

[57] L.S. Kassel,]. Phys. Chem. 32, 1065 (1928). 

[58] R.A. Marcus and O.K. Rice,]. Phys. Colloid Chem. 55, 894 (1951). 

[59] R.A. Marcus,]. Chem. Phys. 20, 359 (1952). 

[60] D. Lu and W.L. Hase,]. Chem. Phys. 91(12), 7490-7 (1989). 

[61] G. Nyman and]. Davidsson,J. Chem. Phys. 92(4), 2415-22 (1990). 

[62] R.C. Brown and E.J. Heller,]. Chem. Phys. 75(1), 186-8 (1981). 

[63] ].C. Gray and D.G. Truhlar,J. Chem. Phys. 76(11), 5350-5 (1982). 

[64] H.-W. Lee and M.O. Scully,]. Chem. Phys. 77(9), 4604-10 (1982). 

[65] V.M. Azriel, G.D. Billing, L.Y. Rusin, and M.B. Sevryuk, Chem. Phys. 195(1-3), 
243-258 (1995). 

[66] M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics, (Springer-Verlag , 
New York, 1990). 

[67] W.H. Miller, N.C. Handy, andj.E. Adams,]. Chem. Phys. 72(1), 99-112 (1980). 

[68] B.A. Waite and W.H. Miller,]. Chem. Phys. 73, 3713 (1980). 

[69] D.M. Neumark, A.M. Wodtke, G.N Robinson, C.C. Hayden, K. Shobatake, R.K. 
Sparks, T.P. Schafer, and Y.T. Lee,]. Chem. Phys. 82, 3067 (1985). 

[70] D.M. Neumark, A.M. Wodtke, G.N. Robinson, C.C. Hayden, and Y.T. Lee,]. 
Chem. Phys. 82,3045 (1985). 

126 



Bibliography 

[71] j.T. Muckerman,j. Chem. Phys. 54(3), 1155-1164 (1971). 

[72] R. Steckler, D.G. Truhlar, and B.C. Garrett,]. Chem. Phys. 82,5499-5505 (1985). 

[73] G.C. Lynch, R. Steckler, D.W. Schwenke, A.j.C. Varandas, et al.,]. Chem. Phys. 
94(11), 7136-7149 (1991). ' 

[74] C.A. Parr and D.G. Truhlar,j. Phys. Chem. 75, 1844 (1971). 

[75] F. London, "Probleme der modernen physik," in Sommerfeld Festschrift, page 
104 (1928). 

[76] S. Sato,J. Chem. Phys. 23, 592 (1955). 

[77] P.j. Kuntz, E.M. Nemeth, ].C. Polanyi, S.D. Rosner, and C.E. Young,]. Chem. 
Phys. 44, 1168 (1966). 

[78] H.F. Schaefer III,]. Phys. Chem. 89, 5336 (1985). 

[79] S. Flugge, Practical Quantum Mechanics, volume 1, (Springer-Verlag, New York, 
1971). 

[80] M. Karplus and R.N. Porter, Atoms & Molecules: An Introduction For Students of 
Physical Chemistry, (Benjamin Cummings, Menlo Park, 1970). 

[81] G.H. Peslherbe and W.L. Hase,J. Chem. Phys. 100(2), 1179-89 (1994). 

[82] K.F. Lim and D.A. McCormack,]. Chern. Phys. 102(4), 1705-1715 (1995). 

[83] D.A. McCormack and K.F. Lim,]. Chem. Phys. 103(5), 1991-1992 (1995). 

[84] A.P. Scott, R.H. Nobes, H.F. Schaefer, and L. Radom,]. Am. Chem. Soc., 116(22), 
10159-10164 (1994). 

[85] G. Vacek, j.M. Galbraith, Y. Yamaguchi, H.F. Schaefer, et al.,]. Phys. Chem. 
98(35), 8660-8665 (1994). 

[86] H. Eyring,]. Chem. Phys. 3, 107 (1935). 

[87] M.G. Evans and M. Polanyi, Trans. Faraday Soc. 31, 875 (1935). 

[88] W.H. Miller, Ann. Rev. Phys. Chem. 41, 245 (1990). 

[89] Y.S.M. Wu and A. Kuppermann, Chem. Phys. Lett. 205(6), 577-586 (1993). 

[90] C.C. Chou and F.S. Rowland,]. Chem. Phys. 50(12), 5133-40 (1969). 

[91] K. Tanaka and M. Yoshimine,J. Am. Chem. Soc. 102, 7655 (1980). 

127 



Bibliography 

[92] W.]. Bouma et al.,j. Org. Chem. 47, 1869 (1982). 

[93] L. Wolff,]ustus Liebigs Ann. Chem. 325, 129 (1902). 

[94] L. Wolff, justus Liebigs Ann. Chem. 394, 23 (1912). 

[95] I.G. Csizmadia,j. Font, and O.P. Strausz,j. Am. Chem. Soc. 90, 7360 (1968). 

[96] D.E. Thornton, R.K. Gosavi, and O.P. Strausz,]. Am. Chem. Soc. 92, 1768 (1970). 

[97] K.-P. Zeller, Angew. Chern. Int. Ed. Engl. 11, 781 (1977). 

[98] G.Z. Whitten and B.S. Rabinovitch,j. Chem. Phys. 41, 1883 (1964). 

[99] D.C. Tardy, B.S. Rabinovitch, and G.Z. Whitten,]. Chem. Phys. 48, 1427 (1968). 

[100] j.V. Michael, j.R. Fisher, J.M. Bowman, and Q.Y. Sun, Science 249(4966), 269-
271 (1990). 

[101] S. Takada, A. Ohsaki, and H. Nakamura,]. Chem. Phys. 96(1), 339-48 (1992). 

[102] S.M. Auerbach and W.H. Miller,]. Chem. Phys. 100(2), 1103-12 (1994). 

[103] N.C. Handy, private communication. 

[104] T. Seideman and W.H. Miller,]. Chem. Phys. 96(6), 4412-22 (1992). 

[105] T. Seideman and W.H. Miller,]. "Chem. Phys. 97(4), 2499-2514 (1992). 

[106] W.H. Miller and T. Seideman, in ]. Broeckhove and L. Lathouwers, editors, 
Time-dependent quantum molecular dynamics, volume 299, NATO ARW, 
(Plenum, New York, 1992). 

[107] W.H. Thompson and W.H. Miller, Chem. Phys. Lett. 206, 123-129 (1993). 

[108] D. Baxter, ]. Saltz, M. Schultz, S. Eisenstat, et al, "An experimental study of 
methods for parallel preconditioned Krylov methods," in G. Fox, editor, Third 
Conference on Hypercube Concurrent Computers and Applications, volume 2, pages 
1698--711, (ACM, New York, 1988). 

[109} H.O. Karlsson,]. Chem. Phys. 103(12), 4914-4919 (1995). 

[ 110] ]. R. Taylor, Scattering Theory: the Quantum theory on nonrelativistic collisions, 
(Wiley, New York, 1972). 

[111] W.D. Allen and H.F. Schaefer III, unpublished results. 

[112] W.D. Allen and H.F. Schaefer III,]. Chem. Phys. 89(1), 329-44 (1988). 

128 



fo1 

Bibliography 

[113] ].D. Gezelter and W.H. Miller,]. Chern. Phys. 103(18), 7868 (1995). 

[114] C.E. Klots,]. Phys. Chern. 75, 1526 (1971). 

[115] G. Brocks, A. van der Avoird, B.T. Sutcliffe, and]. Tennyson, Mol. Phys. 50(5), 
1025-43 (1983). 

[116] P.A. Stockman, R.E. Bumgarner, S. Suzuki, and G.A. Blake,]. Chern. Phys. 96(4), 
2496-?10 (1992). 

[117] H.S. Johnston, Gas Phase Reaction Rate Theory, (Ronald Press Company, New 
York, 1966). 

[118] ]. Troe and C.B. Moore, communicated to the author by C.B. Moore. 

[119] 

[120] 

[121] 

[122] 

[123] 

[124] 

[125] 

[126] 

[127] 

[128] 

[129] 

[130] 

[131] 

[132] 

S.W. North, D.A. Blank, J.D. Gezelter, C.A. Longfellow, and Y.T. Lee,]. Chem. 
Phys. 102(11), 4447-4460 (1995). 

S.W. North, C.A. Longfellow, and Y.T.Lee, unpublished results. 

G. Hancock and K.R. Wilson, in the Fourth International Symposium on Molecular 
Beams, Cannes France (1973). 

X. Zhao, W.B. Miller, E.]. Hintsa, and Y.T. Lee,]. Chem. Phys. 90(10), 5527 
(1989). 

X. Zhao, E.]. Hintsa, and Y.T. Lee,]. Chem. Phys. 88, 801 (1988). 

D. Krajnovich, F. Huisken, Z. Zhang, Y.R. Shan, and Y.T. Lee,]. Chem. Phys. 77, 
5977 (1982). 

A.M. Wodtke, E.J. Hintsa, and Y.T. Lee,]. Chem. Phys. 90, 3549 (1986). 

L.J. Butler, R.J. Buss, R.j. Brudzynski, and Y.T. Lee,]. Chem. Phys. 87, 5106 
(1983). 

S.]. Riley and K.R. Wilson, Faraday Discuss. Chem. Soc. 53, 132 (1972). 

K.E. Holdy, L.C. Klotz, and K.R. Wilson,]. Chem. Phys. 52,4588 (1970). 

R.C. Mitchell andj.P. Simons, Disc. Faraday Soc. 44, 208 (1967). 

I. Nadler, M. Noble, H. Reisler, and C. Wittig,]. Chern. Phys. 82, 2608 (1985). 

M. Reinsch and M. Klessinger,]. Phys. Org. Chern. 3, 81 (1990). 

G.A. Gaines, D.]. Donaldson, S.J. Strickler, and V.Vaida,j. Phys. Chem. 92, 2762 
(1988). 

129 



Bibliography 

[133] D.J. Donaldson, G.A. Gaines, and V.Vaida,J. Phys. Chern. 92, 2766 (1988). 

[134] H. Zuckermann, B. Schmitz, andY. Haas,]. Phys. Chem. 92,4835 (1988). 

[135] P. Cossee andj.H. Schachtschneider,]. Chern. Phys. 44(1), 97 (1966). 

[136] N.C. Baird and H.B. Kathpal, Canadian journal of Chemistry 55, 863 (1977). 

[137] K.W. Watkins and W.W. Word, Intemational]oumal of Chemical Kinetics 6, 855 
(1974). . 

[138] S.S. Hunnicutt, L.D. Waits, andj.A. Guest,]. Phys. Chem. 93, 5188 (1989). 

[139] S.S. Hunnicutt, L.D. Waits, andj.A. Guest,]. Phys. Chem. 95, 562 (1991). 

[140] R.C. Hermen and R. Hofstadter,j. Chem. Phys. 7, 460 (1939). 

[141] M. Haurie and A. Novak, SpectrachimicaActa 21, 1217 (1965). 

[142] R. Alimi, A. Garcia-Vela, and R.B. Gerber,]. Chem. Phys. 96(3), 2034-8 (1992). 

[143] G.E. Hall, H.W. Metzler, j.T. Muckerman, j.M. Preses, and R.E. Weston Jr.,]. 
Chem. Phys. 102(17), 6660-8 (1995). 

[144] C.A. White and M. Head-Gordon,]. Chem. Phys. 101(8), 6593-6605 (1994). 

[145] C.A. White and M. Head-Gordon, Chem. Phys. Lett. 230(1-2), 8-16 (1994). 

[146] ]. Ischtwan and M.A. Collins,]. Chern. Phys. 100(11), 8080-8 (1994). 

[147] M.j.T.Jordan, K.C. Thompson, and M.A. Collins,]. Chern. Phys. 102(14), 5647-
57 (1995). 

[148] T.E. Creighton, Protein Folding, (W.H. Freeman and Company, New York, 
1992). 

[149] A. Askar, B. Space, and H. Rabitz,J. Phys. Chem. 99(19), 7330-7338 (1995). 

[150] P.Jungwirth and R.B. Gerber,]. Chem. Phys. 102(15), 6046-56 (1995). 

[151] P. Jungwirth and R.B. Gerber,]. Chem. Phys. 102(22), 8855-64 (1995). 

( 

130 



... -,. 

LAWRENCE BERKELEY NATIONAL LABORATORY 
UNIVERSITY OF CALIFORNIA 
TECHNICAL & ELECTRONIC INFORMATION DEPARTMENT 
BERKELEY, CALIFORNIA 94720 

...... -~ 


