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ABSTRACT 

Electrical resistivity and induced polarization (IP) data from the area of a radioactive 

and nitrate-rich groundwater plume were gathered by a joint Russian-American team. The 

results show the contaminated area both to be conductive and to have an anomalously low IP 

response. The low IP response may be due to a radiolytic reaction with the dissolved nitrate, 

yielding oxygen which, in turn, reacts to remove accessory pyrite from the host rocks. 

INTRODUCTION 

The P.A. Mayak plant near Chelyabinsk, Russia (Figure 1) has produced weapons grade 

fissionable materials since the 1940s. An unfortunate series of mishaps has resulted in a variety 

of environmental problems, including the loss of acidic, radioactive waste products into the 

groundwater in a remote area between Lake Karachai and the River Mishelyak. 

An electrical resistivity and induced polarization survey was undertaken as part of a 

joint Russian-American effort to study the problem. The work described here was conducted 

between 10 and 18 September 1994. Purposes of the work were 1) to characterize the 

subsurface groundwater flow regime, and 2) to determine whether the Mayak contaminant 

plume may be mapped by surface electrical geophysical methods. The first purpose is 

important as a means of predicting the migration of contaminants from Lake Karachai toward 

the Mishelyak River. The second is thought plausible in that the contaminated groundwater has 

been reported to have a nitrate concentration so high as to yield a resistivity of about 0.1 n-m, 

as contrasted with more usual groundwater resistivities in the area of 10 to 100 n-m. 

Successful results have been obtained tracing contaminant plumes as conductive features 

using various surface electrical and electromagnetic methods (e.g., Ross, et al., 1990; Buselli, et 

al., 1990; Goldstein, et al., 1990). Induced polarization (IP) represents an additional parameter 

which may be employed to characterize subsurface electrical properties (e.g., Sandberg, 1991; 

Seara and Granda, 1987; Soinenen and Vanhala, 1992). Accordingly, we decided to gather IP 

data at the Mayak site to evaluate its usefulness in tracing the nitrate plume. 

GEOLOGICAL SETTING 

Geological information is based upon reports by Russian workers in the area, (Drozhko, 

et al., 1993; Solodov, et al., 1994) and on observations by other members of the field party 

(Drozhko, et al., 1996). In general, the water in DH 176 is strongly contaminated, while that in 

DH 173 is clean. 
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Bedrock throughout the region is described as a "porphyrite", a low-grade 

metamorphosed porphyritic andesitic to basaltic assemblage of flows, volcaniclastics, and 

shallow intrusives. As observed in both the drillholes and in a nearby quarry, the porphyrite is 

irregularly silicified, epidotized, and calcified. These styles of alteration tend to make a rock 

more resistive by decreasing porosity and the interconnectivity of pore spaces. Exposures in the 

quarry show that weathering depths are highly variable, ranging between nil and 10 or so 

meters. A near-vertical set of fractures and a nearly horizontal one are reported from outcrop 

exposures. 

The overburden in the area generally consists of a loamy, clayey soil which was generally 

moist at the time of this work. Depth of bedrock below surface is noted to be 3.4 meters in 

drillhole 176 and nil to 1.3 meters in drillhole 173, as indicated in the cross-section, Figure 2. 

Such thin layers (compared to the dipole length) of overburden have a nearly negligible effect on 

apparent resistivity. 

SURVEY PROCEDURES 

Figure 3 shows the locations of the lines surveyed with respect to the topography and 

selected drillholes in the area. Components of the survey were positioned to take advantage of 

drillhole control, while avoiding interference from cultural features such as pipelines and drill 

casings. Profile A runs along the longer geologic cross section of Figure 2, between drillholes 

43/78 and 173, through drillhole 176, site of extensive logging and packer tests (Drozhko, et al., 

1996). Profile B is situated south of the Mishelyak River, in an area thought to lie beyond the 

present extent of the contaminant plume. Profile C runs along the trend of the contaminant 

plume, traversing the other two profiles, with a large gap due to inaccessible marshes along the 

river. Much of the region south of the Mishelyak River is covered with fly ash from a nearby 

coal-fired power plant. 

A 20-m conventional dipole-dipole array was employed throughout the survey, in order 

to gather both sounding and profiling information simultaneously. Results are plotted in 

pseudosection format, with apparent resistivity presented in ohm-meters (Q-m) and apparent 

IP effect shown as phase lag in milliradians (mR). Locations were determined with reference to 

known drillholes and, occasionally, by Brunton compass sightings to recognized features. A 

• few GPS readings served as checks on overall location. Electrode intervals were measured with 

a standard field wire, measured with a tape and cut to length at the beginning of the work. 

Directions along lines were determined Brunton and by backsighting. 

Equipment used consisted of a phase-measuring IP and resistivity receiver and a 

portable, battery-powered transmitter. The instrumentation is based on a stable oscillator clock 
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which provides a phase reference system (Frangos, 1990). The entire survey was conducted at 

a frequency of 1 Hz. Porous pot receiver electrodes were employed throughout, while 

transmitter electrodes were single metal stakes. Overall precision of apparent resistivity 

measurements depends upon relative accuracy of electrode locations and the determination of 

current and voltage; the precision is estimated to be ±4% or better. Phase measurements are 

generally accurate to ±1 mR. 

Results 

Profile A, with its west end, station 17W, about 2 meters east of DH 43/78, runs past 

DH 176 at the midpoint of dipole 1-2W, to within about 5 m of a slurry pipeline, about 20m 

northwest of DH 173. The data are presented as the pseudosection of Figure 4. Slight 

mismatches between data from overl~pping segments of the line are not unexpected since the 

stations do not coincide exactly. 

Higher apparent resistivities occur on the east and west ends of the line, with relatively 

low apparent resistivities in the middle portion. The high apparent resistivities are associated 

with outcrops of porphyrite between stations 12E and 14E and in the small hill near dipole 13-

14W (not shown on the geologic cross section). Apparent IP responses vary similarly as the 

apparent resistivity, with two exceptions: at the extreme east end of the profile where a 

number of negative apparent IP effects are noted, and in the region between stations -3 and -10 

where relatively high IP values are associated with low apparent resistivities. The slightly 

negative apparent IP effects on the east are interpreted as a normal geometric effect associated 

with the sharp resistivity contrast. 

Profile B 

Surveyed in two sections, Profile B serves to define background responses of the soil and 

bedrock in an area presumably well away from the contaminant plume. The eastern portion of 

Profile B is situated on a berm between the fly ash-covered region and the swamps south of the 

Mishelyak; the log of drillhole DH 3,77 reports about 4 meters of fly ash and 11 meters of soil 

and sediment overlying porphyrite bedrock at a depth of 15 meters. The eastern portion 

traverses an area of normal soil cover. 

The results, Figure 5, show a nearly classic layered earth resistivity and IP pattern to the 

east. Care was taken to avoid data contamination from the drill casing of DH 3,77; we were at 

least partially successful in this effort. Note that the porphyrite underlying the fly ash and 

sediments is both resistive and IP responsive at this location. Apparent resistivities on the 

western portion of the profile suggest conductive soils at the extremes of the segment and a 
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buried ridge of resistive bedrock at depth near the center. Apparent IP effects are moderate 

throughout, increasing slightly to the southeast. 

Profile C 

The southern segment of Profile C is placed along a track through the marshy fly-ash, 

while the northern portion extends away from DH 176. The intervening area is only accessible 

when the river and marsh are frozen. A pair of drillholes are situated at station -29. 

On the south end, the data (Figure 6) reveal a pattern similar to that seen on the east 

end of Profile B: low apparent resistivities and IP effects at shallow separations overlying 

higher resistivities and IP effects. The drillstems appear to have disrupted the data, yielding a 

less ideal layered-earth pattern in the results. To the north, apparent resistivity is generally 

high, and IP effects are quite low. 

DISCUSSION 

General Characteristics 

The survey results indicate that fresh bedrock at the P.A. Mayak site is highly resistive, 

500 to over 1,000 Q-m. The overburden, on the other hand, is more conductive; 50 Q-m appears 

to be representative. The fly ash, a special case, is highly conductive at less than 10 Q-m. The 

intrinsic IP effects of the soil and fly ash typically exhibit a background response of 8 to 10 mR, 

owing to the minor clay content, while the IP response of the bedrock appears variable. 

Measurements of water resistivity in drillhole 176 show "specific resistance" in the range 

8 to 15 Q-m. Lower resistivities correspond to higher ion content. Samples of ground water 

have shown resistivities as low as 0.1 Q-m due to nitrate contamination. 

The resistivity of saturated rock, to a first order approximation or better, is a linear 

function of pore-water resistivity, as expressed in Archie's Law, (Archie, 1942) 

Prock = Pwater<l>-m 

in which <1> is the porosity of the rock, 

and m is the "cementation factor," an empirical constant generally 

about2 

Water resistivity, at near-surface temperatures and pressures, is primarily a function of salinity 

or ion content. Porosity of igneous and metamorphic rocks such as the porphyrite may be taken 

to lie in the range of 1 to 10% in the absence of fractures, and higher in fracture zones. The 
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relative influences of water resistivity and rock porosity on total rock resistivity are seen to be 

similar, since water resistivity may vary through several orders of magnitude, while porosity 

acts as the second power. 

In light of the above considerations, there are three main possible causes of low apparent 

resistivities in the survey data: 

1) decreased bedrock resistivity due to high fracture density, the fractures being filled 

with contaminated, relatively conductive ground water, 

2) decreased resistivity of low- to moderate fracture density bedrock due to invasion 

by extremely conductive contaminated ground water, and, 

3) thickening of the conductive overburden layer. 

Thus areas of low resistivity bedrock are significant either as potential conduits for contaminant 

flow or regions into which contaminated ground water has already moved. 

Numerical Models of the Results 

A series of two-dimensional numerical models was calculated which aid interpretation 

of the survey results. Figure 7 shows four models in section view: the first represents a 10-m 

layer of conductive overburden lapping onto resistive bedrock, the second is the same with the 

addition of a 5-m depression on the bedrock surface, while the third adds a 20-m wide 

conductive fracture zone in the bedrock. Figures 8, 9, 10, and 11 present the apparent 

resistivity and IP effects which would be observed over these structures. Figure 8 shows an 

apparent resistivity pattern similar to those obtained on the east end of Profile A. Note the 

decreased IP response at the extreme end of the model, correlating with the region of negative 

apparent IP effect at the east end of the profile. Variable bedrock topography or depth of 

weathering, as modeled in Figure 9, can account for some of the variations. Note the similarity 

between Figure 10 and the observed resistivity data of the east end of Profile A (Figure 4). The 

model indicates that bedrock itself at DH 176 is highly conduc~ve, since the drillhole 

encountered porphyrite at a depth of only 3.4 m. The high number of fractures noted in the 

drillhole is consistent with this finding. 

The fly ash cover encountered on Profiles Band C poses a special problem, in that it 

acts as a conductive cover, shielding the underlying material from investigation. The fourth 

numerical model (Figure 7) is relevant to the eastern segment of Profile B; a conductive layer 

overlies a resistive and IP responsive basement which may or may not contain a conductive, 

non-IF-responsive, vertical-standing fracture zone. In the absence of the fracture zone the 

results are perfectly layered; Figure 11 shows those in its presence. The numerical model is in 
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good agreement with the observed results, suggesting that a fracture zone may be present at or 

just east of drillhole 3,77. 

Implications of the IP Results 

The relationship between IP response and the zone of known contamination is striking. 

Low apparent IP effects correlate with the regions of greater groundwater contamination, while 

the porphyrite bedrock in general appears to have an IP response of 5 to 12 mR. Such 

background response is not uncommon for metamorphosed volcanic rocks, which often contain 

significant accessory pyrite, magnetite, and cation-exchanging clays. The question at hand is 

why the IP response is decreased in the contaminated porphyrite. We speculate as follows. 

Water samples from DH 176 showed relatively high oxygen concentrations (Solodov, et 

al., 1994). Pyrite is stable in acidic environments, but unstable in oxidizing environments, 

reverting to hydrous iron oxides and sulfuric acid. It has been suggested Oohn Apps, personal 

communication) that the excess oxygen may be generated by interaction between the radioactive 

contaminants and the nitric acid. This radiolytic reaction, along the lines of 

could readily explain the observed strong correlation between low IP responses and the 

radioactive, nitrate-rich groundwater. 

CONCLUSIONS AND RECOMMENDATION 

Surface electrical resistivity measurements provide useful results in both characterizing 

the groundwater transport regime and tracing the flow of the contaminant plume. Induced 

polarization data at Mayak correlate well with the known extent of the plume in the sense of 

decreased IP response from the contaminated area. It appears that the radioactive, nitrate-rich 

groundwater removes accessory pyrite from the porphyrite host rocks, lowering the IP response. 

A further laboratory investigation of the hypothesized radiolytic decrease of IP response may 

be warranted. 
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Fig. 7: Descriptions of numerical models 
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-4 -3 -2 -1 0 +1 +2 +3 +4 +5 

va v 
81 81 81 79 161 

100 
128 127 125 121 

165 163 159 152 129 325 

196 193 188 177 148 289 391 289 
200 

219 33n 337 281 

232 374 ~ 379 322 279 ~a 
. b<<:s ~<;) v 

200~<:) ~ 
<"V 

Apparent IP effect 

-5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 

7 , , 
7.3 7.3 7.3 7.3 7.4 7.2 7.0' 5.1 

---- ------- 5 7.1 7.1 7.1 7.1 7.3 ,' 6.9 6.4 6.9 5.1 
7 --------

, 
I 

, 

6.9 ~~9-----
, , 

7.0 ----·7.0 .. 7.2 ,,' 6.7 6.2 6.5 6.8 5.0 
' 

, 

\5.0 
, 

I , 
6.8 

I , 
6.8 6.9 6.9 ,•7.1 , 6.5 6.0 6.3 6.4 6.7 , , , , 

'5 
, , , , 

6.7 6.8 6.8 7.0 ,' 
, 6.3 5.8 6.1 6.3 6.4 6.7 , , , , , , , , 

6.7 6.8 7.0, 6.1 6.1 6.1 6.2 6.4 

Fig. 8: Numerical model results for overburden lapping onto resistive basement 
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Apparent resistivity 
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Fig. 9: Numerical model results for overburden lapping onto resistive basement, with buried valley 
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Apparent resistivity 
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Fig. 1 0: Numerical model results for overburden lapping onto resistive basement, w/ valley & shearzone 
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Apparent resistivity 

-5 -4 -3 -2 -1 0 +1 +2 +4 
-- -- -- -- --.. -- -- -- -- --

27 27 27 27 26 27 27 27 
40 

40 46 46 46 44 43 43 45 46 46 

70 . 
63 63 63 60 58 57 58 62 63 63 

70 

79 79 79 75 72 71 71 73 77 79 79 

95 94 89 85 85 84 85 87 92 95 
100 ~100 

109 98 98 98 /100 106 

100 100 

Apparent IP effect 

-5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 

7 

6.9 7.0 7.0 6.5 6.3 6~9 7.0 6.9 

7.9 8 .. 0 8.1 7.5 6.8 7.1 7.9 8.1 8.0 5 

10 9.1 9.2 9.3 8.7 7.9 7.9 8.2 9.1 9.3 9.2 10 

·10.4 10.5 .9 9.2 9.1 9.1 10.4 10.6 10.4 

11.9 12.0 11.3 10.4 10.3 10.3 ·10.3 10.7 11.8 12.0 

13.4 12.6 11.7 11.6 .11.6 11.6 12.0 13.1 

Fig. 11 : Numerical model results for Ash-over bedrock with shear zone in bedrock . 
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