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] ABSTRACT
e ) : . ‘
We derive from field theory a formula that expresses

. the discontinuity of any multiparticle scéttering function

across any. normal threshdld cut in terﬁs.of specified .
limits of the scatféring functionS"fér other processes.
The special case that expresses any inclusive Cross
section as a discontinuity has been used extensively
in recent work on high-energy'processes. Other cases
of the general formula glso appear to have important

implications, which are briefly discussed.

2=

I. INTRODUCTION

Recent studies of high-energy pfocesses based on the work of

Mueller have exploited a formula that expresses any inclusiye'cross

section in terms of a discontinuity in an appropriate multiparticle

scattering function.

Fig. 1.

This formula is a special case of the general

» discontinuity formula represented in Fig. 1.

Diagrammatic representation of the four forms of a basic

discontinuity equation.
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This formula will be described in detail in the next section. It has
been discussed earlier from the S-matrix viewpoint in several unpub-
lished works,g but has never actually been derived. The aim of the
present work is to dgscribé it in detail, to point out its relevance
to the theory of high-energy processes, and to derive it from field
theory. This field-theoretic derivation yields the off-mass-shell
version of the on-mass-shell formﬁla discussed earlier.

The basic discontinuity equétion can be briefly described in
nondiagrammatic terms as follows:v.Let A', B', A", and B" represent
arbitrary sets of particles. Let SC(pA,,pB,; o3 pA”, PB") represent
a. particular boundary value of the analytically continued (off-mass-
shell) connected component of the § matrix for the process
A" + B' = A" + B". This boundary value is the one obtained by
approaching the point p' = (pA,,pB,; PA"’pB") from within the cone
PU, which lies in the physical sheet. The location of the cone r, is
épecified by the set of signs ¢ - (cl,...,or',.--cN): r, lies in the
intersection of the upper-half planes of the signed channel-energy

variables Ef,x o_, sign Re EY" Take T to be the particular

¥
channel defined by A = A' + A" (or equivalently by B = B' + B"). And

let o be divided into four parts, o = (0 UC), where 0,

Y’ OA} OB!
is the set of signs for the channels defined by ncnempty proper subsets

of A, O is the set of signs for the.channels defined by nonempty

B

Aproper subsets of B, and 0, is the set of remaining signs O

C T

The functions So(Pyes Tpps p,ynsPp) and 8.(pg , Prs 9pupi Dgr)

are defined, analogously, as boundary values of the‘connected COmpon -
ents of the S matrices for the processes A' — A" +T and B' + I - B

respectively. In terms of these definitions the first basic

discontinuity equation (top line of Fig. 1) says

o
Sb[pAn)va; (+l)0A)UB)GC); pAn}anJ

-SC[pA' JPBv ;(—l’GA’GB’OC); pAv ;va ]

= z ,' SC[PA,s (UA: O‘I:H'})E pAll}PI]
T J

X 8clppoppns (05,05=()); pguls (1.1)

where E: represents the sum over all possible sets of intermediate
particlei I, and the integral Jf is the same mass-shell integral
that occurs in unitarity. (The precise weight factor in the unitarity
integral depends on the conventions one adopts.) The other three forms

are defined analogously, with the plus and minus boxes representing. the

full S matrix and its ihverse, respectively, including both the

connected and disconnected parts.- The main content of this paper is

first:the formulation of the precise rules for evaluating all of the

signs GA and Ué occurring on the right-hand side of these discon-

tinuity formulas in terms of the signs UA and 'OB

left-hand side, and second: the proof that the resulting equations

occurring on the

follow from field theoretic principles. These equations constitute a
closed set of equations on the physical sheet boundary values of the
analytically continued S métrix, in the sense that the quantities
occurring on the right-hand side are again physical-sheet boundary
values of the analytically continued S-matrix. For each process
there are a finite number of these boundary values, as contrasted

to an infinite number of sheets. The discontinuit& formula exploited

by Mueller is the simplest one of these equations.
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II. DESCRIPTION OF THE FORMULA
To provide a framework we recall some standard field theoretic
results. 1In field theory the scattering functions are related to the

functions

rlxeexy) = Caln(ate) e ealx)) o)

PRRCIICHR I G R ICRIL)
- P : .

\\ 0 0 o
X oG, - ’%(n W00, < ). (2.1)
The variabie X is a space-time four»veétor, and xio is its time
component. (This variable can be considered to be associated with a

suppressed "type" variable, which specifies the type of particle

"associated with the index i.) The state IQ) is the vacuum, and

T is the time-qrdering bperator, which is defined by the second line
of (2.1). The function G(XO) is plus one for . x  positive and zero
for xo negative. The set (Pl,a-;,Pn) is a permutation of the set

of integers (1,¢++,n), and the sum is over all n! such permutation.

-,xn) = 1(x) is defined by

o b . ] ' \
= | dx...dxy exp[-l(klxl +oeee + knxn) T(xl, ,xn), (2.2)
where k.x, = k. °x,° - k, By using the identit
X o= kK ki *X;- By using the identity

0.0
kl Xy ok ovee

0
kpy (xpy

* (k‘Plo

+ vee

+ (kplo
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0 0 0o o0 0 0
tRyox = Kpy Xpy F o F kg, Xy

°- "on) + (kPlo * kP2O)(xP20 - xPBO)

* 13320' + kP5O)(XP30 - "Pho)

e i 00,0

one obtains, formally, the resulti

-r(k) - Z[ f n — (0}&(ap,)- .x(qpl»)m‘).

¢}

JCwox

where
A(qy)
E.(P
5(®)

w; (P)

(2.3)

“n- 1(1’7) ( n-2(F) - g(P7) (“(‘5‘7'@9

X en'a(klour cee 4 kno) 5

I “lagx
=IdxiA(xi)e 7

0 0]
Kpp  + om0t h Kpy

= O+ Ol.+ O .
= 9p S

= k.
K40

and the pole singularities are resolved by the rule

E (P

L)

i i

- = lim
- W, - + i€,
@y P %~%O+ EJ(P) Wy (p) +1i 3

(2.4)

(2.5)
(2.6)

(2.7)

(2.8)»

(2.9)



-7_
Use of the translation formula

Alx) = X p(0) 1P (2.10)

gives, for any two eigenstates |Ql) and |Q2) of the energy-momentum

operator P, the identity
(Q,1&(q;) ) = (c;zg|A(0)|c,zl>(2n)LL zsl*(cz2 -Q -q) . (211)

The conservation-law &-function occurring here implies tﬁat the factor
(Q|K(an)---K(qu)|Q) in (2.4) vanishes unless for each

j=1,2,--+,n-1 the vector
a;(P) = Apy +Qpp * ottt * Oy (2.12)

lies in the physical ‘energy-momentum spectrum. Thus the variables
wj(P) in (2.4) range only over the values allowed by the spectrai'
conditions, and in particulér only over non-negative values, i.e., the
integrand is zero whenever any wj(P) is negative.

The function ?(k)/(2n)h Su(izki) defined by (2.4), considered

0

.0
as a function of the n complex variables (k 0 -t,kn ) = x°, for

17
fixed regl (El’;';’kn) = k, has simple analyticity properties. It is
formally analytic except where one or more of the quantitiés_ Ej(P)' is
real and non-negative. That is, the function' is analytic in the‘prod-
uct of the cut Ej(P) pianes, where the cuts run along the positive
real axes.

We consider only the subspace z:ki =0, take Im k = 0, and
consider a fixed value of Re k éuch that Re Ej(P) # 0 for each
j eand P. These conditions define an (n - 1) dimensional subspace
(Inm klo,"',Im kno)/(EZIm kio = 0). This’subspace is separated by

the various surfaces Im Ej(P) = 0 1into a set of disjoint "cells!

but they are not ali;d»j‘

-8-

Fxo each of which lies on a well-defined side of each of the

surfaces Im E&(P) = 0. The function ?(k)/(En)h Sh(zzki) is
, o .

- formally analytic inside each of the cells T ~.

A

There are n!(n-1) functions Ej(P) (j =1,-+-,n-1),

~veren‘c. The different ones correspond to the

N =281 .1 Qifferent partitions ¥ of the set of integers

(1,++-,n) into two disjoint, nonempty sets J; and I The signs

on J; and J; are fixed here by the condition that the vector k(J;)
defined by ‘
k(J) = ij (2.13)

jed

has a positive real energy part:

Re kO(J;) Re E(J;) > 0. o (2a1d)

The location of the cell PK9 is specified by the set of signs

U)\ = (0)\1’._”.’07\‘””.’07\.1\1) ) (2.15)
+ - . R
o = =
where AT UK(JY) GX(JY)’ and for either sign in +
s In E(3}) o o :
U}\(JY) = sign ———— for Imk ¢ L. (2.16)
Re E(J;) A
:The cell Fxo lies in the upper-half E(J;), plane 'if 9 v is posi-

tive and lies in the lower-half -E(J;:) plane if o

Although each cell FXO corresponds to a definite set of

is negative.

gigns cx, not evefy set of N signs corresponds to a cell. For the

N = 2n—l - 1 conditions on the n - 1 variables are often

incompatible.

(LS



-9-

There 1s, however, a cell corresponding to the set o, = (4,+++,4)
consisting of all plus signs. This cell? F+O, is called the physical

cell, because the physical scattering function is, formally at least,

.th?“ié@}t from within this cell of the function

(&) = ()00 7 - m®)eee(® - m P)IR(R). (2.17)

That is, the scattering matrix element

]

S

B a
PEENCALS

out

L .y ‘ . * *
d'x,+°ed £ ceef con
‘[ % *n al(xl)‘ am(xm) fsl(xm+l) fﬁn_m(xn)

X . .(_i)n Kl_,-,Kn T(Xl"..’xn) (2.18)

is given formally by

o dhkl dhk
 (neF+O)—>O (27) 2x)

&

Saﬁ = lim

—~~

~ 0 .N N* ’ bo ..'\‘* i N
X fal(kl) fam(km) fBl(kml) f6 m(kn) sk + in) .

-
(2.19)
where |
~ oo ik1 i ‘
fa‘(ki) = fd x; fa‘(xi) e s (2.19a)
; (
s ik, x,
fai(ki) = fdl,*xi f;_(xi) e T4 (2.19p)
A i , .
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and

(2.19¢)

1

‘ : 2 9 2 2
Ki = -0 i ° mi - (gt:) + (Yi ) - mi .

Within the Wightman framework 6f field theory the momentum-

.space results described above remain purely formal. This is because

a préduct of distributions is not necessarily a distrihution,‘and hence

one'does.ﬁot knOW'that the momentum spaée functions ;(k) exist. iThe

problem is with the definition of the functions» T(i) at points where
one or more srguments coincide. Sipce, however, the momentum-space
functions are the ones of physical interest, and since-thé postuléte

that the Wightman functions (QlA(xl)§--A(xn)|Q) are tempered .
distributions has, in any césé, no physical bésis, itiis reasonable to
take the momentum-space functions as the basicbquantities; and to
postulate for them the properties described above, which follow
formally from the spectial conditions and the x-sﬁace support
properties. .

The same results can be ébtainedz altefnativelw froﬁ the
approach of Bros, Epstein, and Glaser,u who postulate the existence
of tempered distributions correspoﬁdiﬁg to various generalized’
retarded functions, and‘assumé_thaf theée diétfibutions enjoy:

(i) the algebraic properties that féllow formally frém the properties
of the ©-functions, and (ii) the suppoft properties that follow .
formally from the commutation relations and.G-function;facéors. "It
follows from these assumptions that for each cell Fxo there is a
fpnction Sx(k) that_is'analytic in Pxo (and in fact in a larger
cell FK that will be described later) and that the limit of each

function Sx(k) exists in the distribution sense on the various -
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0
\

conditions in a natural manner then the various functions Sx(k) are

boundaries of T If one imposes, moreover, the spectral

found to be analytic continuations of the single analytic function

S(k) discussed earlier. However, for fhe moment we shall consider
these various cell functions Sx(k) to be independent functions, each

defined in its associated closed cell fxo. The analytic

connection between them will follow from the discontinuity equation that

is to be derived.

0
A
associated with a corresponding "cell function" Sx(k) analytic in

FKO (or FX), we now describe the meaning of the discontinuity

formula represented in Fig. 1.

Within this framework, in which each cell T (or FK) is

A bubble with a set of signs Ux corresponding to a cell PKO

represents thelcell function Sx(k).- This bubble hds one line attached
to its left-hand side for each Variaﬁle’ ki . such that Re kio > 0.
And it has-one line attached to its right-handside for each variable
with Re kio < 0. The lines attached on the left- and right-hand

sides correspond, in the physical 1limit, to the incoming and outgoing
particles of the scattering process, respectively. .Shadéd strips
'represenf sets consisting of any nﬁmber of lines.

Congider a partition 7 of the set of lines associated with
some process into two nonempfy sets. This partition is indicated by
the line v in Fig. 1. The sets of lines corresponding to the index
sets JYf and J,7 defined in (2.14) are lebelled by A = A' + A"
and B = B' + B", respectively. -The arrow on the line y indicates

that energy flows from the set A to the set B, in accordance with

(2.14), The sets A and B are broken into the incoming parts A'

-12-

and B', which contain the lines with Re kio > 0, and the outgoing

; . ) 0
parts, A" and B", which contain the lines with Re k.~ <O.

et FK+O and Fx_o be any two cells such that
U)\_'_Y = +1 ’
[+ = - l
T ’
and
= - = 0 for all 1" . 2,20
A A S Y AT, ( )

These two cells are "meighboring cells" in the sense that they have a

common boundary face, which lies on Im E(J+Y).. The left-hand side

of Fig. 1 represents Sx+ - Sx-,

The seﬁ of common signs o o in (2.20) can be separated into
three subsets, called Ops UB’ and UC' The set 9y consists of the
sign; UKY' for partitions ¥' of (A + B) into two nonempty subsets
one of which is a proper subset of A. The set UB ‘consists of the
signs UxY' for partitions 7' of (A + B) into two nonempty subsets
one of which is a proper suBset of B. The set GC consists of the

"rest of the o© The‘partitions Y' corresponding to ¢, are all

AT’ ¢

"crosséd" relative to partition 73
+ +
TN #f
+ -
. . (2.21)
- +

evaluated on this common boundary face.

ek
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The sets of signs 9y and GB‘ are indicated in the bubble on

the left-hand side of Fig. 1. The discontinuity formula will depend on
these signs but,bin accordance with the Steinmann relation? will be
independent of UC.
The right-hand side of Fig. 1 gives four equivalent formulas
f?r the discontinuity S>\+ - SX" The bubbles on the right—hand side
represent‘certain cell functions SQTI and éiTI for the processes
(A" A" +I) and (B' + I »B"). The sets I represent sets consis-
ting of any numbers of lines, and there is a sum over the possible
sets I. This sum represents a unitarity-type sum: there .is an
integration over all mass-shell values, and the normalization is
exactly as in the unitarity equation. The plus ani minus boxes in
the last two lines represent S and its inverse S-l, réspectively.
The main content of these formulas resides in three rules

given below. These rules specify precisely which cells F2$A+I)

O(B+I
0e)

specified by giving the signs UK'Y'

and
dre to be used on the right-hand side. These cells are
as functions of thesigns OXY'

in UA and GB.

Instead of O\ 1y 'and Oyt We shall write Ox,(X) a#dl
cx(x), where X is either one of the two sets of lines dgfihed by the
partition Y'.

Rule 1 If iX is a proper subset of A, or a proper subset of - B, then
OX,(X) = OK(X)' (A proper subset is not the whole set.) ’
Rule 2 If X 1is a subset of I then Gx'(X) = +, where i is the.
sign appearing explicitly in the cut-out sector adjacent_to I. Por
example, UiTI(X) is plus in the first and fourth lines of the right-

hand side of Fig. 1, and is minus in the secondand third lines.

Rule 3 If A+, is a pfoper subset of A, and I

¥

of I, and the sum of the energies Re ki

X = A;, + I;,

;, is a proper subset

O of the lines of

is positive, then o, (X) = UK(A;,). If B, isa

T

proper subset of B, and I;, is a proper subset of I, and the sum

1

of the energies Re kiO of the lines of X = BY + IY' is negative,

then ox,(x) = OX(B;,).

Rule 3 is represented diagrammatically in Fig. 2.

A;;

A,
Vel

v L = (7
X

A )\‘
Fig. 2a. If the set I con-

sists of outgoing lines, which

~ carry energy out of the bubble,

then the partition 71' 1is
shifted backwards, against the
energy flo;ing across it, to
the position indicated by the
dotted line. The sign GX'Y'
is the same as the sign cor-
responding to the shifted
position, which is fixed by

Rule 1.

B
"

I{ \ ¥

o By
Fig. 2b. If the set I consists

of incoming lines, which carry
energy into the bubble, then the
partition Y' is shifted for-
ward, in the direction of the
energy flow across it, to the
position indicated by the dotted
line. The sign Oy is the
same as the sign cprresponding

to the shifted position, which

is fixed by Rule 1.
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Rule 3 is called- the "back-up rule":

of the imaginary part of the energy corresponding to any mixed set of

it says that the sign

internal and external lines is determined by the sign of the imaginary
bart of & corresponding "back-up energy" associated with a set of

external lines.

p)

The first example of this rule was encountered by
Hwa” in his studyvof the discontinuity function for the five-line
function. Hwa traced out the motion of the triangle singularity and
showed how it led to the determination of the sign corresponding to
the mixed . energy by the sign corresponding to the back-up energy.
Hwa's method is quite complicated even for this simplest case,
and it depends on a knowledge of properties of singularity surfaces
other than those associated with normal thresholds. It would be
difficult to extend it to a general proof since the properties of these
other singularity.surfaces are quite complicated in general, and are
‘not yet known. Also it depends on a knowledge of the singularity
structureinsome initial situation, from which the continuation starts,
and upon a justificationof both the continuation procedure and the
procedure of coﬁsidering the singularities individually, without
regard to their possible interference with one another.

The proof to be given here avoids these difficulties. It
refers explicitly only to the normal threshold singularities themselves,
and is not based on any continuation procedure. However, even though

only normal threshold singularities enter explicitly, there is no neg-
lect of any other singularities: the proof is such that all possible

singularities are taken into account, even though only the normal

threshold singularities are explicitly mentioned.

_ from the local commutation relations leads to an extension of the

-16-
The cells T 0

A
Im k = O, and the analyticity discussed was analyticity only in the

defined above are restricted to the space

energy components. These chcepﬁéiére not Lorentz invariant. Consider-

ation of the Lorentz invariant support properties in x-space that follow

analyticity in energy components in FKO to analyficity in all vari-

ables k in the cell3’l‘L

+
N f) {Im k: oy Im k(J-v) € vﬁﬂ[ Z k; = 0}, (2.22)

=1

=
m

: + . .
where k(J;) is defined by (2.13) and V  1is the forward light-cone

+ 2 0

viog (v vv>0, v >0]. (2.23)

The cell Fx is defined above as a set in the space of real

kn vectors Im k, ?estricted by E: ki = 0. This cell was originally
associated with some fixed value of Re k, and the sets J; in (2.1k)
are defined with reference to that fixed value of Re k. The discon-
tinuity is to be evaluated at that fixed value of Re k, or in some

region around that value over which the sets J; do not change.

The set {k: Im k ¢ Ty» E:lxi=0} is called the tube T, .

This convex tube domain is the product of the convex cone Fx in
Im k with the entire space Re k e'Run//z:Re ki = 0. The analytically
continued §, (k)/(zn)l‘( Z ki) is, according to field theoretic

principles,s’l‘L analytic in each tube PX'

L

b
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porresponding cell FK. In particular, S

gfadient vector' 'becaﬁse of the constraint §: k
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III. DISCUSSION OF THE FORMULA
The statement of the discontinuity formula in Sec. II takes no
cognizance of any analyticity of any cell function Sx(k) outside the

>\‘(k) is defined on the

0

boundary BPXO of T However, the

only in a distribution sense.
functibn Sx(k) ie exPected to §e analytic.almosf everywhere on
SFKO. Consideration of perturbation theory, for example, leads to the
expectation that-the function Sx(k) will be analytic everywhere
excepf on certain surfaces defined by the zeros of analytic fuﬁctionsf
We ‘shall consider, 'in this‘section, points of the boundaries of
TXQ’ aed will discuss the possibil;ty that the Sx(k): are anelytic at
these boundary poipts except on certain eurfaces defined by the,zeros
of analytic functions. ‘This will lead to an.undeTS£andihg ef the
connectlon between our dlscontlnulty formulas and singularity surf&ces
Consider then the surface ¢(k) A regular p01nt of the
éurfaee ¢(k) =

#(x) = 0, and V¢(E) #£ 0.

is a point k such that ¢(k) is analytic at &,
[He;e' (k) is the ’h(nv- 1) dimeneienal
O we shall for
any functlon g(k), deflne the gradlent Vg by the equatlon

(Vg)i =3(g-b ZJkJ )/3k;",  wnere b is fixed by the. condition that
Zi(Vg)iu

to a vector in the appropriate 4(n - 1) ~dimensional space.]

=0 for all u. Thls effectively reduces the gradient

A function f(k) is said to be @-singular at k if and only
if: (i) The function f(k) is.not analytic at k; (ii) X is a
regular point of the surface @(k) = 0; and (iii) The function f(k)
is, for some fixed real ©  and real T > o, anelytic in the inter-

éection of some neighborhood of k with the set

_singularity surface is @(k) =

-18-
o(r,8) = (k: g(k) = r' eie, O<r' <r}. (3.1)

Condition (iii) says that f(k) is analytic at all points k near k
that correspond to points on some open line segment in the '¢ plane
that ends at ¢ - 0. fThis condition gives meaning to the idea that the
o, rather:than some other surface that V

passes through the point k. Note that (iii) is much weaker than the

requirement that f£(k) be analytic in some full neighborhood of k

except on the surface #(k) = 0 and a trailing cut.

Analytic functions of severai complex variables can heve singu-

" larities on boundaries of domains of analyticity only under special

conditions. These entail, in fact, that if a function f(k) is

¢-singular at E, then it is singular at all points on- the surface
#(k) = 0 in some neighborhood of " k. Thus if the function Sx(k) is

¢-s1ngular at & on or.°, then the surface #(k) = cannot enter

z
the tube vab at k. ‘ o ‘ o . .
fhié result ig formalized and slightly extended in the follow-
ing theorem, which is proved in Appendix A: o

¢-singuiar at k on BFXO only

Theoremté.l ' The function Sx(k)
if the set (k: (k - k)-V¥(k) = 0) does not intersect the tube r,-
Convention We shall always adjust the phase ef #(x) so that at least

‘one nonzero eomp0nent of Vﬁ(ﬁ) is reel. .

if V¢(E) is not purely real then one can always fiﬁd a:solu-
(k - B)-9(E)

tion of = 0 for any given value of Im(k - k). Thus

" Theorem 3.1 has the following

Corollary: The function sh(k) is ¢-singular’at‘ ¥ on 5PKO only if

vg(k) is resl.
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Theorem 3.1 can be stated, alternatively, as a condition on
the direction of the gradient vector (k). This statement involves
the set (r: Im E(JYf) = 0}, which is the set consisting of those ¥'s

such that Im kX lies on the tip of the cone ({Im k: o

+ +
oy 1B k(JY Ye V1

Let FK(E) represent the intersection of these cones:

r,(k) = : Se vy [ )
NG | (im ki 0, Im k(3 ")e V') (Y k =0} .
{v:Im k(JY )=0} (3.2a)
This set coincides in some neighborhood of %k with the set I, defined

by (2.22), because the remaining conditions in (2.22) are satisfied at
k, and hence also in some neighborhood of K.

The closure of PK(E) is

3 {im ki o Inm k(JT+)e v n(z k; = 0),
(v:Im K(5,7)=0] “(3.2p)

FA(E) =

where V' is the closure of the forward light-cone v Define the
corresponding positive polar
T(E) = (u: In(k - K)eu>0 for all Tmk in T. (E)}'m[ Y u, = 0)
A AN = ) A ! im0
(3.3)
Then we can state
Theorem 3.2 If the function Sk(k) is @-singular at k on BFKO,

then the sign of the function @(k) can be fixed so that

W(K) € T, (K) ; (3.4a)
or equivalently,
- + .
VB(k) edu: v - oy ¥y VE(T »)-,_ veeT h L (3.4m)

(r:Im E(J’Y+)=O]

‘new set of variables k&

~z0-

Here Vk(JY+) is a LX ﬁ(n - 1) dimensional vector, and each vy is a
four vector 1ying in the closure V' of the forward light-cone v,

The condition (3.4a), together with the definition (3.3),
asserts that the closed set fx(i)‘ lies in the closed half-space
(Im k: Im(k - E)-V¢(§) >0}, This follows immediately from Theorem 3.1,
which asserts that ﬁhe conneéﬁed'open set Fx does not intersect the
boundary of this.half-space. v _

_ The eqﬁi&alence of (3.&&) and (3.4b) is shown in Appendix A.

A simﬁle but‘important épplicétion of Theorem 3.2 is to a

point K that lies on a "face” of I,°. A face of [, is a portion

- . . o
of the boundary BFXO that lies on only one of the surfaces Im k(JT) =Q

The discontinuity formula of See. II gives the difference of the

(0

A and

functions SK+(k) and Sk'(k) on coincident faces of T
Fh- . .

If k 1lies on a face then the set {y: Im E(JYf) = 0} has
just'oné element, séy y=1. It is then convenient to introduce a

:E-cji ki’ where Cji

ple of an oxthogbnél transformation and 'kl = k(Jl+), and

is a constant multi-

to define @$'(k') by @'(k') = #(k). Then (3.4b) shows that the

k'-space gra&ient v' g (E;) has the form (modulo .b-VZ ki) ' b
V'¢'(E'), = (v,0,--+,0), (3.52) -
’ wheré vA is a positive_mﬁitiple‘of the four-vector UXTVY fbr ry=1,
i.e., OXYV’ is noniero and lies in V+. Equation (3.5a) is an
abbreviation of
Rt (2 T 2
A GHVE S A (j-5b)
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Equation (3.5) implies that ”B¢'(E')/Bkio #£ 0. Thus the

surface @'(k') = 0, restricted to 2:ki = 0, can be written in some
neighborhood of k' as ,
0 1..,2.,3
t - L] 1 1 | '
kl h f(kl ’kl ’kl ’k2’ ’kn-l)

1

) (A0, J41) . | (3.6)

If f(kil,ig) is a real analytic function of the variables
kil then the intersection of the surface ¢’(ki1,Ej) = 0 with the
real section {Im Sl 0} of ki“ space will be a three-dimensional

1
su;face in a four-dimensional space, and it will (near Ei) divide
this real section into disjoint .parts.

But if f(kii,ig) is not a real analytic function of the
variables kii then tpe intersection of the surface ¢'(ki,£3) =0
with the real section of ki space will havé dimension lesé than three
and will not divide the real section into disjoint parts. 1In this
case the singularity surface can be avoided, in the senseé thatvone'can
1pcally continue around the singularity surface without everuléaVing
the real section. Thus the discontinuity fuﬁction cannot change its
analytic form as a consequence of such a singularity. ‘Such singu-
larities, if they exist at all, will thus not be important in the
discussions that follow.

We shall consider, then, the case in which f(k'i,ES) is a
real analytic function of the variables kii, near Eii. In this case
the surface -§'(k') = O near k' must be independent of the
variables ké. This is the content of
Theorem 3.3° Suppose the following three conditions hold: (i) The

function vSK(k) is @-singular at k on BFXO;

‘s =+ : )
(i1) Im k(JY ) =0 for y =1, but for no other 7t; (iii) The

—po.
13 B
function f(kll,ké) defined by (3.6) when restricted to the set-

k& = k! for all j % 1 is a real analytic function of the remaining

variables kil. Then the surface ¢(k) = 0 coincides in a neighbor-

"hood of k with a surface ﬁ[k(JI)] = 0, where ¢(ki) is'a real ana-

~n N —
lytic function of the four-vector ki, V¢(ki) # 0, and V¢(ki) e T

This theorem is proved in Appendix A.

In the following discussion the possible singﬁlarities;that
touch é face. of .Fxo but do not locally divide the realrsector
Im k(JYf) =.Q into disjoint regions are igpéred. They cannot separate
the real sector into regions in which the discontinu;ty functions have
different analyti¢ forms, and hence are--if they exist aﬁ gll--nof
important_in.the cpntegt_of the discussion. -

It is 8 consequence of the Lorentz invariance requirement on
the scattering functions that @(k) must be a function of the
(scalar and pseudoscalar) invériants of the p?ocess. But the only in-
variants that can be formed frbm a single four—vecto? k(JYf) 'are func-
tions of the invgriant [k(JYJr)]2 = Myg. Thus the éhly singularity
surfaces that can lie on a face lying in Im-k(JY+) =0 are thqse that

have the form ¢(MY?) = 0. These surfaces are surfaces that lie at

fixed values of MYE.

If one inserts this form into (3.4b) then the vector v,

occurring there can be identified as a multiple of k(Jyf). This means

that the singularities must lie at MY? > 0.

The discontinuity across a face lying on Im k(Jyf) = 0 "van-
ishes 1if MY? is less than the square of the mass of the lowest mass
intermediate state in the channel specified by ¥. And the only

singularities that occur on these faces are those lying at constant
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‘ 5 . .
values of MY . Thus the discontinuity is, in effect, a discontinuity
around only these normal threshold type singularities.

0 0
A+ and Px_
addition to the common boundary points lying on their common face,

However, the two neighboring cells T bave, in
common boundary points that do not lie on this common face. They have,
for example, & common boundary point at Im k = 0, which iies on all
of the surfaces Im k(Jyf) = 0. At this real bouhdary point,.which lies
at the tip of both FX+O and Fx-o, the various cell functions can have
non-normal-threshold singularities. For example, the function Sx(k)
corrésbonding to the physical cell can have, and.is'expected to havé;
at Im k = O the singular positive-or Landau sgrfaces
corresponding to triangle diégrams and box diagrams‘etc. And the
functions Sx(k) corresponding to noﬂphysical cellé can have various
nohpositive«] singularities at Imk = 0.

Theorem 3.1 ensufes that if 'SK+(k) is @-singular at
Imk = 0, and ¢(k) depends on variables other than MY?’ then the
singﬁl&rity at ¢ = 0 must move to outside the closure of FX+O as
Im k moves to a point on the féce of Fx+9 that lies in Im k(JYf) = 0.
The analogous thing happens to the singularities of Sx_(k). This

effect 'is shown in Fig. 3. [For brevity we write kO(JY+) =EB_.]

T

are neighboring cells with a

and T -O
A

Fig. 3a. The cells Fx+o

common face on Im EY = O. The variable E' represents the rest

of the energies. Re E' will be held fixed.

T E;‘ Im .8‘

/7/7//'!/ jf "j//>7?e Ex
L P+

Fig. 3c. - The shaded strip is
0 . ) . "0
rh+ for some fixed Px_

Im E' > 0. The point P InE' > 0. The point P

Fig. 3b. The shaded strip is

for some fixed

is a singularity that has

moved to outside fx;o.

" is a singularity that has

0]

moved to outside fx+ .

<5
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Ly
g /'I /"v
bk R ¢ Eé;

Fig. 3d.  The domain Fx+o is
exiended to reveal the sin-
gularity P+, and its

‘trailing cut.

—> Re Eak,‘

-Fig. 3f. A domain of anaLyt;
icity of the discontinuity
function Sx+(k) - Sh_(k)
for some Im E' > 0. This
domain is bounded in part
by P' and P and their-

trailing cuts.

0

' Fig. 3e. The domain L7 is

extended to reveal the sin-
gularity P, and its

trailing cut.

Fig. 3g. The domain of analyt-

icity of the discontinuity

function may be separated by -

the cuts trailing' P' and
P7, if these points coincide

at Im E' = 0.
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Figure 3a shows the two neighboring cells FK+O and Fx_o,

and shows the "other" imasginary variables Im E'. TFigure 3b shows the
domain of analyticity FK+O fof some fixed Im E' > O. The point
P+ is a singularity of the analytic continuation of SX+(k). At
ImE' =0 it reaches ImE. = 0. For TmE' >0 it lies outside

v
Figure 3¢ is the analogous figure for Fk_o. Figures 3d and

0
FK+ .
3e show extensions of the domains FX+O and Px-o. These extensions

are bounded, in part, by P" and P~ and their trailing cuts.

_ Figure 3f shows part of the domain of analyticity of the discontinuity

function. Figure 3g shows how the domain.of analyticity of the
discontinuity function'ﬁay be separafed into twq parts at Im E'.= 0,
if the singularifies P+ and FP- are conjugate pairs that coincide
at Im E' =>O. | .

Poikinghorné7has pointed out that in the case of the discon-
tinuity funétion that.represents.at Imk =0 (hence at
Tm E,. = In E' = 0) the inclusive cross section the singularities
corresponding to triangle diagrams and other singuiarities do occur in
conjugate pairs, becauée‘of the special symmetry of.the discohtinuity

function. The pinching of these singularities at Im E' = O means

that the inclusive cross section will not continue analytically around

the various singularities tﬁat occur at Im k = O: the inclusive
cross section at real points lying on one side of one of these
singularity surfaces is hot the analytic éontinuation of the function
that represents the inclusive cross section at real points lying on

the other side of the singularity surface. This nonanalyticity of

"the inclusive cross section is demanded by the fact that it is real,

and is therefore not unexpected.
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Note, however, thaf the discontinuity funétion that becomes
the inclusive cross section at Imk = O does ﬁot have‘this nonanalyt-
icity at Im E' > O, except at the normal threshold type singularities
that.lie at constant MY?' Figure 2f shows how the singularitiés
that depend on other variables retreat from the surface Iﬁ E; = 0,
and hence do not block the analytic continuation'of the discontinuity
functioﬁ.

We turn now to another question. The primitive domains of
analyticity of the cell functions Sx(k) are thg corrgsponding'cells
Fx(k). These cells are défined by conditions on the componeﬁts of
k, not by conditions on the scalar invariants. However, the Lorentz
invariance of the scatteriﬂg functions implies that the singularities
must lie in surfaces defined by the vanishing of functions of scalar
invariants. This poses the problem of expressing the domains of
analyticity in termslof scalar invarianté. »

When restricted to Imk = 0 Athe domains Px go to FXO,
which are bounded by surfaces of the form Im EY = 0. These surfaces
coincide in the space Imk = O with the sets Im S, = O, where
5, = MY2 = [k(J;)]g. This fact, together with prevailing ideas about
the domain of analyticity of the 2 — 2 scattering function, raises
the hope that the scattering function Sx(k) may be analytic, at
‘least near each real point k, in domains bounded By surfaces of the
form im SY = 0. Tﬁen the cut-plane analyticity invﬁéspace for
‘Im k = O, would go over into local cut-plane analyticity in the space
of invariants.

This hope is dashed by fhe counter example provided by the

simplest non-normal-threshold Landau singularity, namely the triangle

diagram singularity. The triangle diagram singularity depends only

?28-
10 _Se, and S3 associated with the three vertices
of the diagram. The location of the singularity can be described by

on the invariants §

an equation §, = SB(Sl’SE)’ where S_ is the square of the invariant

3 5

energy associatéd with intermediate vertex, gnd Sl and 82 are the
squares of the invariant energies associated with the initial and
final Veftices. |

We consider a % —» 3% amplitude for equal mass particles{ Then

S,, and all other 1 -1 cross energie;,will be negative and there

3’
will be ho normal thfééhold cuts associated with them. This remains
true at nearby off-mass-shell points}

We take an energy less than the four-particle threshold. Then
the only cross-energy normal-threshold singularities are pole singu-
larities. We take_a poiﬁt k dway from these poles. Then there will
be, locally,.no cross-energy normal-threshold cuts.

If only normal-threshold cuts Im Si = 0 are present, then the

physical cell can be extended to a cell bounded by the conditions

Im Si > 0, where the Si run over Sl and Sg; over the squareé of

‘all four other two particle subenergies; over all six Si' associated

with the six individual lines; and over the square of the total energy.
The invariant space cell defined by the above conditions con-
tains singularities at points arbitrarily close to the positive-a
triangle diagram singularity at Im kX = O. To prove this take any
values of Sl and 82 in this cell and consider the point where
S3 ='SB(Sl,Sé). This poipt may no£ correspond to a point in the—cell,
because of the constraints other thén Im Sl >0 and Im 82 > 0.
However, if we add a sufficiently large positive imagiﬂary energy to
the positive physical energy of the incoming line that is atfached to

the vertex associated with S_, and add the same positive imaginary

3

<&
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energy to the positive physical energy of the outgoing line that is

attached to that vertex, then, without changing 8 S or S,, we

2> - 3

can shift the imaginary parts of all the other subenergies, and also

l}

~ the total energy, to positive values. And the Im Si corresponding to

the individual lines ki can also be made positive. The triangle
singularity will therefore be exposed: there are no normal threshold
cuté behind which it can go aé it moves away from the singular point
on the boundary of the physical cell. A

The countgr example shows that one éannot in general define
the domains of analyticity in invariant space, even near the physical
points, by considering only-normal thréshoid type cuts. It is k
space that has this advantage.

The applications of the discontinuity formulas that we have
in miﬁd refer to thg on-mass-shell scattering fUnctioﬁs. The first
complication that‘arises.in trying to extend our formulas onfo fhe
mass shell is that the conditions on the éells include conditions on
the individual lines, as well as on their sums: each individual ki

+

is required to satisfy either Im ki eV or Im ki € V.  These

conditions are incompatible with the mass-shell constraints

k.2 =m?2> o0,
i i
For each 1 the real mass-shell points ki2 = mig, Im ki =0,

lié, however, on the common boundary of Im ki € V+> and Im ki eV .
Our discontinuity formulas give the difference between the limits of
the functions in these two cones, evaluated on their common boundary, .
provided. the difference is evaluated at a point k 1lying on the common

0

face. lying in  Im ki = 0. of two neighboring cells FX+O and FK- .
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At the mass-shell point there is a contribution proportional to

2
- m.2)._ However, there is also a factor k.= -m,
i - . :
. 2 2 2
the definition of 8(k). The product (ki - m; )B(ki

8(k12 coming from

A - miz) is
zero in the distribution sense. Thus the two boundary values are
equal. But then the functions Sx+(k) and Sx_(k) are, by virtue
of the generalized edge-of-the-wedge theorem,{3 equal and analytic in
some neighborhood of the mass-shell point k, provided this point
that lies on the surface

0
lies on a common face of Fx+o and Fx-

Ink; = 0. B

The same procedure can be applied in turn to each ki' Then
using the method of analytic completion used in the proof ofb
Theorem 3.1 (with discs in the energy variable) one can show that the
scattering function will bé_analytic iﬁﬁé.heighborhood of each real
mass-shell point that lies inside the "enlarged" cell. The enlgrged
cells. are defined ih theAsamg wéy as. the cells Px, buE‘without the
conditions on the individual vectors kid |

We give no proof of this result. For even if it is granted>a
serious additional problem remains: There is a large physical region
—f? such that the restriction of the enlarged physical ce;l to the
mass shell does not come close to 1%2. This is true for all processes

with three or more initial particles or three or more final particles.

To see this note that if ki is in the nonrelativistic
%l

s JIm ki‘ <<'m,, then the surface

domain [Re k;| << |Re k;

k.2 = p2
1

i (which lies near Im k,‘Re k, = 0) must have Im k. that

are very spacelike: |Im kiol < |Im Eil. If two such vectors add
to give a vector in v (or in V) then their vector parts must be

nearly equal but opposite:
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(Im(ki + kj) € VJ’) %_(m k, ~ -Im .1~:J.) . (3.7) :

But consider then a process with three or more initial particles,

of momenta kl, k2, and k3, and the corresponding conditions

R
Im(kl + k2) eV

In(k, + k) € V" (5.8)

+
Im(k3 + kl) ev .

Comparison with (3.7) gives an immediate contradiction. This shows
that the enlarged physical cell restri;ted to fhe mass sheli cannot
enter the nonrelativistic domaiﬁ for processes with three or mére
initial (or final) paiticles°

It might be hoped that.there is some further enlargement of
the phjsiéal cell such that the physical scattering amplitude is a’limit
from.mass-shell points lying inside the enlaigement. .However, this
hope also is dashéd by4a simple counter example. For the 4 —k
scattering function one can find positive-i Landau.curves.that are
tangent to each other, but have exactly opposite half spaces of
analyticity, in the mass shell. Thus there can be no well-defined
cone of énalyticity such that the phygical scattering function is
the limit to the real boundary point from mass-shell points lying in

this cone. The counter example is shown in Fig. k,

Fig. 4.

2 4
Two Landau diagrams that correspond to positive-x Landau-;ur—
faces that are tangent at their point of intersection

k = (kl,"',kB), but that have opposite half-spaces of andlyticity.
The first diagram consists of the outer solid lines

(1,2,3,4) - (5,6,7,8). The second diagram consists of the inner
dotted lines (1',2',3",4") —9(5',6’,7',8'); The vector k., eduals
ki, for all 1i.

Also ki = The masses of the four particles

k9-i'
whose lines intersect at an& point on the horizontal axi; are

taken to be equal. The displacement vectors qi Ithat s;tisfy
ui-ki = 0, and that take‘lines i from initial positions passing
through the origin O to the positions shown in the figure satisfy

.

;= -u9 i The equivalence between the displacement vectors U,

and the gradients to the corresponding Landau surfaces established
in reference 9 implies that the positive gradients to the Landau
surfaces at the point k will be equal but opposite. Hence the

ie continuations around the surfeaces are opposite.
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The counter example exhiﬁited in Fig. 3 entails that there » Within a strictly mass-shell S-matrix framework one accepts,
is, in general, no curve C(k) in the mass shell that:” (i) ends at at the basic 1e§re1, only functions defined on the mass shell. In this
the real point k; (ii) depends continuously on. kj (i{{? lies, apart framework one replaces the off-mass-shell concept of the physical cell,
from its end point, in the domain of analyticity of the scattering . in which the scattering function is known to be analytic, and which

a? function; and (iv) has its GHQIPOint at the physical point. Hence . contains the physical points on its boundary, by the concept of ie¢
V the physical scattering function cannot in general be defined as alimit rules}l The primitive domain of analyticity is the physical region
) from along & mass-shell curve that lies in" the domain of analyticity of itself, deprived of points on positive-—x Lendau surfaces. The iec
the scattering function -and that depends continuously on the physical rules give the rules for continuing around these Landau surfaces.
b} limit point. Continuity cannot be maintained at the point of contact These rules are associated with the inaividual Landau surfaces; they
2 of the two positive-a Landau surfaces'shown in Fig. 4 because of - do not ensure thé existence of a universal physical cell of analyticity
- the conflicting - ie rules of that point. - ) from which the physical limit is taken.
. - The assumption upon which this conclusion is based is that , , Discontinuity formulas for all singularities that enter the
- the physical scattering amplitudes do have the positive-o Landau physical region itself have aglready been derived within the mass-shell
‘Kv surfaces of singularities that are found in perturbation theofy, and frameﬁork directly from unitarity?iz Work is under way to derive by
| ﬁgf that can be derived directly from unitarity plus wesk analyticity similar methods the restriction to the mass shell of the basic
- requirements.lo The conclusion is that the mass shell does not in discontinuity equation described in Sec. Ii. Thaf work will be
2 general contaih an analog of the off-mass-shell physical cell: it . _reported later. But it will be mentioned here that the special
: does not in general contain a domain of analyticity such that the status of the cell functions 8, (k) vié 3 vis tﬁe more general
st physical scattéring function is the limit at a real boundary point functions SG(R):uwhere 0 is the set of all N signs, one for each
e, of a function analytic in this domain. » » _ normal thréshdi& cut, without regard to compatibility of the
This situation can be coped with in one of two ways. Within corresponding conditions, appears to be lost. Within the framework of
- a field theoretical framework one can simply regard the on-mass-shell ~an ie rule of definition of the functions, the preferred status of
physicgl scatter;ng fﬁnctioﬁ as the limit of an off-mass-shell the cell functions Sx(k) over the ¢ functions S&(k) seems to
extension. This is the approach adopted here. Tn the general field dissolve. We find . that the basic discontinuity equation holds
theoreéical framework there is no need to define the scattering ' not only for the cell functions but also for many of the more general

functions as avlimit‘from within the mass shell. . o functions.

'
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The contemplated applications of the discontinuity formulas
stem from the work of Muéller.l Mueller proposed, in effect, that
the discontinuity function that corresponds to the inclusive cross
section should exhibiﬁ Regge asymptotic behavior in certain liﬁits,
and derived from this requirement s number of results that had been
previously derived from special dynamical models, and wﬁich seem to
agfee with experimsnt. It has been suggested, moreover, by several
authors that this Regge behavior‘of the discontinuity is a consegquence
of the Regge behavior of the 3 — 3 amplitude itself in the sectors
that define the two ferms that meke up the discontinuity. The
formalization and generalization of this suggestion is that all the
cell functions (or at least their on-mass-shell real k limits)

exhibit the Regge behavior. Consequently, all of the basic discon-

tinuities should exhibit this béhavior. These conditions would impose

a large number of as yet unexploited theoretical constraints on the

boundary values of the kind occurring in the Mueller analysis.

-cell T.. The cell operators RX,A ‘and R
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IV. PROOF OF THE FORMULA
our proof is based on an equation of Bros, Epstein, and Glaser

that reads13

rale) - 5,0 = (allg, )8 Aol (¥.1)

This x-space férﬁula was derived modulo the usual ambiguities associated
with points where one or more arguments coincide. But following the L.g
lead of Bfos, Epstein, and Glaser we shall assume that the momentum-
space discontinuity formulas that follow from it do in fact hold, at
least at finité'QaLues of the momenta.
The function rx(x) is the Fourier transform of the boundary
value at Imk = O of the function ?X(k) = ?X(k), where ?x(k) is
related to Sx(k) via (2.17).3 The quantity Rx(x) is a certain

linear function of the operators A(xPi)"'A(XPn) that satisfies
= . - 4.2
r, (x) (a|r, (x)]2) | (4.2)

The operator Rk(x) is called the cell operator corresponding to the

occurring in (4.1) are

B
A

respectively. These are the cells in the spaces of variables associ-

b A .
the cell operators corresponding to the cells FK,A and T
ated with the sets of lineé A and B, respectively, that are specified
by the sets of sigﬁs GA and OB described in Sec;lII. -~
The proof has five.steps. First, complete sets of‘gﬁ¥gfmediate
states are inserted into the right-hand side of (4.1). "In" states
will lead to the first form of the result, and "out" states will lead
to thevseéond. Insertion bf the identities I ;‘ §:|out,8) qiﬁ(in,a|
and I = |in,ﬁ) S&é(out,al' will lead to the third and fourth forms.

Next the reduction formulas are used to reduce the matrix elements of
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RK' and RX,B to vacuum expectation values. These vacuum expectation
values are then shown to be the rx, ‘corresponding to éertaih cells
FQTI and FiTI. These cells are identifiedand are shown to be just

the ones specified by rules 1, 2, and 3 of Sec. IT. Finally the momen-

tum arguments k are allowed to be complex, and the resulting formilas

are shown to give the discontinuity formula described in Sec.. II.
The first step is the insertion into (4.1) of a complete set

of "in" or "out" states, or one of the other two forms of unity

A

mentioned sbove. In order to reduce the matrix elements of Rk'

B
)\'
Epstein, and Glaser, the operators

following Bros,

and R to vacuum expectation values we introduce,
\

A{P and Ai& defined by

Ay ¥ Ap(m) AP(m-l)"'Apl !
m . .
0 0 :
=7 Z O(xpy~ = x5 JAp(yy (A Ap 1Ay (.32)
3=1
and
a7 AP(m)' Ap(m-1)" " Ae1
m .
= Z e(xi - xPJ )AP(m) [A »Ap ] Ay - (4.3p)
3=1
Héré' Aj is an abbreviation for A(xj).

The operator defined by (L.3b) has two important properties:
0 — -0 with all other variables held

"hApy ]
These are the propeities needed

14
one

it vanishes in the limit .xi

fixed; and it becomes [A;,A in the limit Xio - 4

P(m)’
with all other variables held fixed.

to derive the reduction formulas. Following the LSZ argument
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obtains, in momentum space,

~an ~ L 2 2\v A 0 . L4
. = - - R 0 ba
[A{ out’Rx'] = 1(ki m, )A{Tva for Xk, ( )
and
Phad 2 2\ v A 0
= -i - >0 . L kb
[R By o] = ci0sT - my )AiTRK, for k; ( )
And from the analogous properties of AfLRK' one obtains
" oo 0
%, , As ] -1(k,” - mie)Ai‘LR)\, for x,° >0 (4.ke)
and
R0R 1 = -i(k2 - m O)AAR k2 <o . L.ha
(A oy o= 1(ki m, )AiJrR)\, for k, ( )

The vector ki is a real mass-shell four-vector, ‘and the factor

2 2
(ki - mi )
ing pole singularity in. K{T§x¢ or AR, ,. The Iy (1n out) 2nd

on the right-hand side is expected to cancel a correspond-

~§?._ t) are, respectively, the annihilation and creation parts of
in,out’ .
the asymptotic field operators.lu The quantit?es KiT ﬁx, and Aii/ﬁx'

are the Fourier transforﬁs of A{T RK,
By repeated use of the same argument, with BX,

operators of the form APfyAP(i-ly&...APIbRx' agd

APiTAP(i-lir."APiTRx' for successively larger values of i, one

reduce the matrix elements of Rx, to vacuum expectation values.

and Ai"'Rx" respectively.

replaced by

may

Introducing the abbreviations Ki = -i(ki2 - miz)Ki, one obtains
oL : o)
(2l lin, 1) = (Q|AP VA, b (3 l)‘]r KR o o)y (a12 k?i > 0)
' (k.52)
(QI, , Jout,1) = {aJ&L R Pookn T8, 1) (el x..°>0)
Al el Pj AP(;j-l) PL A Pi
(k.5p)
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(in, 1|8 ,]2) - (QIK§3¢K§(3_1)¢-7-K§1¢§)\,IQ) (all kPiO<O)
. (k.5¢)

<9|K'PJTK1',(J._1)T---T\.1'31 ﬁk,_ln) (all kPio <jo).

(k.54)

(out,I|§>\, | o)

The label "I" stands for the set of vectors (kPj"'f’kPl)’ which are
the physical energy-momentum vectors in the case of.the kets lin,I)
and |out?I), and are minusvthe physical energy-momentum vectors for
the case of the bras (in,I| and (out,I|. The operators
K§j¢---xii$ﬁx, and KﬁgT.'°Kf£Tﬁx' a#e
(1) (p,® - mp, ) e (2
APJ¢"°APILRK1 and APgT"'APirRx" respectively.

Next it must be shown that APj$---API&RK, and APjT"°APiTRk'

are cell operators. This follows from the following

2 .
- ny ) times the Fourier transforms of

Theorem., If RX, is a cell operator then AfLRX, and A{TRX, are
cell operators.

Proof': The proof rests on some results of Bros, Epstein,and Glaser.
These authors prove the existénce of a set of "tree functions" fB(x)

that have the following properties:

1. The Fourier transform fg(k) of fB(x) is analytic in a cone

53 to be described below. If '%B(k) is defined to be zero in the

complement of the closure of ¢, (where it is otherwise ill-defined),

g

then for every A and every k in FX

Bl = ) E) . )
- |

That is, each ;X(k) is equal inside of I

functions fB(k) that are nonzero there.

A to the sum of the

The tree diagrams t

-L40o-
2. There is a one-to-one correspondence }é(k) e—ats between the

tree functions %B(k) and the tree diagrams t, of a,certéin class.

B

"of this class are constructed by first

)
associating ‘each variable of k = (kl,---,kn) with either a "dot"

A4
or a "cross" in all ways such that not all are dots and not all are

n R .
crosses. There are 25 - 2 such sets of associations. For each such
: ' ' o
set of associations one forms all possible "tree" diagrams tB (i.e.,

simply connected diasgrams tﬁ) subject to the condition that each

tree diagram t consists only of the dots and crosses and line

B

segments that connect dots to crosses: i.e., no line segmgnt that
connects a dot to a dot or a cross to a cross is allowed. The cutting
of any line & of any tree diagram tB separates the diagram into

two parts, each of which is a connected diagram. The sets of indices

corresponding to the vertices of these two parts are called J+ Qnd

[519)

+ ) .
JBS,; where JBS contains the index corresponding to the dot on one

end of B, and J. contains the index corresponding to the cross on

pd
the other end of 3, and J

+ . - .
+ J =Jd ig the full index set for  +t_.
Bd Bd 2 B

3. The cone 66 is

A (\ im Z ky € \}+. ﬂ Zlkj=0 > (4.72) -

3 .
o) jed eJ
. 358 J U

ﬂ fIm Z ky e v fﬂ Z k=00, (b.70) ‘
A _

) jeJ‘6 J Lj eJ

(P4
i}

1]

g

: -
where the index & runs over all lines of tB. Note that (4.6) and
(%.7) entail the Steinmann relations: no tree graph contains lines

corresponding to two partitions that are "crossed" in the sense of

(2.21), since for any two lines & and &' in tB the set Jg& lies
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. +
in JBS' or in JBB’T

have no discontinuity across a "crossed" partition- ¥':

Thus the discontinuity associated with Y can

4, Consider a linear space consisting ofISums of tree diagrams tB.

Define to be the sum of trees tB whose cones 66 contain Fx:

>ty s
B:CBDFN

Py

m

Y

Define ﬂ(A{TRX) to be the sum of tree diagrams formed by associating

ki with a cross and joining this cross in turn to each dot of each

ty of p,. And define Z(Ai'er)\)

by associating ki with a dot, and joining this dot in turn to each

cross in each % in Py

B

class to linear combinations of tree diagrams of a certain class has a

well-defined inverse mapping z-l,‘defined on this latter class, and

this inverse mapping is such.that for any cell _Fx the .corresponding

cell operator R is Z_l(px);

The result just stated reduces the problem of proving the

This relationship in fact defines Rx,

theorem to the ﬁroblem of proving thét"z(AfLRh,) and Z(A{TRX,) are

~
precisely the - Py corresponding to two cells. These cells are denoted
by Ft, and Fg,,, respectively, and the corresponding _p, are

denoted by 'pt, and d;,, respectively.

Rx, is, by assumption; a cell operator. Thus it corresponds
to some cell Fx, For each partition ¥Y' of the set of indices Jk’
corresponding to Fx, into two disjoint sets J;,’ and I}, theb

signs on J;, and J;, can be chosen so that

to be the sum of tree diagrams formed

This‘mapping £ from operators of a certain

and S A A ' 4
A Tmk; €V nIm keV ﬂk +Z k ;=0
jeJ

T, ﬂ Im z K e V+>[~H kJ.:O} (b.9a)
| )
?

(\ Im 2: Ky ¢ v (Wﬂ 2: k= j . (k.90)

Y' jEJY' J d eJ)\'l

T and J

These sets Y'_ occur in the following definitions: \
I |

- N T eyl T
FX' = k ev’ / Im kj eV i 3 f

jeIy, S Y L
’ e
. k., + - k.=
Im ki € Y {/\ Im _E: , kJ €V Ky 3

T ey, » jed,

>

It

‘(h.lOa)

hd (} : Im. k + Im E:

T - €J

rT =
1
T . i JeJx,
| r o
= ImkiGV-ﬂn<Im Z K, evlﬂk +Z‘ k=0
s jed J Jed, J

X ﬂ T kg + Imy

k. Je V—/}
J
JeJ', J

(4.10b)

The second lines of these equations, which follow trivially from the

fifst‘lines, show that ng and fI, are cells, provided they are

' nonempty.
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The sets I‘I, and I’%, are indeed nonempty. To set this let
k' represent the set of vectors kj with ,j‘eJx, . (The sum of" these
kj is not required to be zero.‘) And consider 'a.ny pbint Im k' that
lies inside the cell I‘)\,. -:Let n(}?') be the set of p?)ints Im k'
such that, for a.ll‘ p and .-jeJ)“,QIIm kj“ - Im ﬁj“[ < € for some sma.li

€ > 0. This e is chosen small enough so that all the conditions

Im }: k. e V' (b.11a)
e )
Jedy
and
Im Z kJ eV : (4.11v)
JGJY.

occurring in (4.9) are satisfied for all points in n(k'). Such a

set n‘(ﬁ') exists because 1">\, is open. Thus it is evident that

I‘-‘i, Stk = (ki,k'): In k' € n(k'); Im Z 'kj eV ;

jeJ’X,

K=oy kb (4.12a)

and

7 A;\r' =qk = (k;,k'): Im k' e n(k'); Im Z ky eV
Jed, ,

k, = - }: K, P ~ (Lk.12p)
i : J .
JGJK,
are nonempty sets that lie in I“){’, and I‘I-, respectively:
oV, € TV (4.13a)
and

?;r, st 1“'{, . (4.13b)

b
The properties of these sets ’f‘)\{', and ﬁ;\r, provide the basis
for the rest of the proof.

First we must show that for every ¢t in Z(AiJ, R)\,) the

_ B'
corresponding 55, contains l"}\"; . . The rules for constructing

Z(Ai\]/ Rk,) from the trees t, in the sum. p,, = B(Rx,) are such -

p

in (4.7) corresponding to any line 3 of

~

that the condition on CB
tB gets repia.ced in 66, by one or both of the conditions (4.1la) C.'!_
and (h.llb); Thus these conditions (h.ila.) and (4.11b) on n(k')
ensure that any k in /f‘)‘}{ must satisfy all the conditions imposed
by all the trees in "E(Ai\[, Rx,). All of these conditions are then
satisfied also for all k in the whole cell I‘*,, because no cell is
cut by any boundary of any cone (, B! The -argument holds also with,’P
in place of \1'

It remains to show, conversely, that Z(Ai\lc R)\,) contains
every tB ‘whose cone 66 contains I‘)‘\Lf, and that E(Ai/P R)\,)- con-
tains every tB whose cone EB co‘nta.ins I‘Q\,. ,

For definiteness we take Z(Ai‘LR)\’) and I‘;\lf 5 the other case
is c_ompletely analogous.

Let 1:B _be such that Eﬁ o I‘}‘ff.. Then -the condition

(Im,ki € V+) in (4.10a) requires the vertex of 1:.B as>socia‘ted with "

k, to be a dot. For (k.70) ensures- that if k, is associated with

a cross it satisfies Im ki ev. . . ' _ L~
This dot associated with ki caﬁnot be connected td more than

one line segment of tB. For suppose it were connected to several.

Then for each of these lines & there would be, from (L.7b), a

“condition on . of the form

B

k(J;B) m oy kev . | (b.2h)
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These various sets J.

B8

make up the whole set of indices associated with k. Thus

would be disjoint sets that, together with 1,

- TR =k (k.15)

wheré_the sum is over the several lines- 5 of tB fhat connect to

the dot associated with ki'
The conditions (4.14) and (4.15) are incompatible with the

requirement ESLD Fiﬂ. This requirement demands, by virtue of (4.13%a),

~

that 03:3 ?i%. But if every point in fik lies in aé then some

point k with [Im kjH - Im ﬂj“] << € for all y and J lies

in C_.

B
- +
-Im k<J66) €V

The conditions (4.1L4) and (4.15) then require that the vectors

sum to Im ki e v'. But then, for any of these 8§,
+

Im»k(JéS) +Ink, eV, Therefore the addition of Im k, and

-Im ki to the imaginary parts of any two of the k(Jé6) will give a

k in f;% that does not satisfy all the conditions (4.14). Thus the

requirement 65:3 Pik is incompatible with the requirements (4.1k)
and (4.15), and hence with the possibility that more than one line of

tB connects to the dot associated with ki. Hence only one line of

tB connects to the dot associated with ki'

The ¢t plus one

p

line that connects a cross in té to the dot associated with ki. The

must therefore consist of a subdiagram té

requirement o) F‘k implies C_ f‘L.A But then 65 contains points

B A B A

with Im ki arbitrarily small and the remaining set of variables arbi-
trarily close to Im E', which lies in PX;. The conditions on the 6é

associated with the subgraph f’ must therefore be cémpatible with the

B
point Im k'. That is, ﬁé must contain Im E', and hence the whole
cell Px,. But then té lies in Oyt Therefore tB lies in

e e v -
z(Aiifo,). That is, [CB:D Fx,] implies [tB € Z(AiJfRX,ﬂw Thus, in

view of the earlier result that [t e £(A R )] implies {a':grﬂb}
. : B i At g A

L6

and the definition (4.8) of 0,5 e have

p%: = K(AiJfRK,). (h.1§)
But then
-1
AiifRK,b = ¢ ﬂ(Aii/Rx,)
-1,
= N
= E (pk')
= Riﬁ (k.172)
Similariy,
s :
Ai"\Rx, = R) , : (k.170)

and the theorem is proved.

Repeated application of the theorem shows that the operators
occurring on the right-hand sides of the equations (4.5) are, apart
from factor (-i)‘?(kpj2 - ije)---(kPl2 jvalg), cell operators. Their
vacuum expectation values are, dccordingly, cell functions, apart frém
these same factors.

The particular céllé I&% and PQ: cérrespénding to AiJ,Rx’
andb Ai¢‘3x, were identified in the course of thebproof. Repeétqd

application of the result (4.10) shows that the cell correspondiné to

Aps "'APibRx, is

vj |
F*%"'J' = (’) (In 1, € v (,‘\[Im k(J;,) c V+}(r\{§i k, = 0}
i=l Y' .

(4.182)

and that the cell corresponding to AP3T-'-AP1T Rx, is

j .
F;]'\’]‘ _ m{xm kpy € V_}m{l_m k(J;,) € V'}m[Zki =0},
. S - .

(4.18b)

where the sets J-, are defined above (4.9), and the E: k. runs

YY
over all the k., 1 <i <], and over all the k, with i € Iyre
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We must now show that the cells defined by (4.18) are the
same as those identified by the Rules 1, 2, and 3 of Sec. II.

Consider first the case corresponding to Eq. (4.5a). -This is
the function associated with the left-hand bubble of the first and
fourth lines on the right-hand side of Fig. 1. Rule 1 .follows from a
comparison of the second set of conditions in (4.18a) with the
conditions (4.9a) that define the cell Fh" which in our case would

be the cell T ,B specified by the set of signs o The equivalence

A B’
of these two sets of conditions ensure that Rule 1 is satisfied.
[Recall'ghat the discontinuity equation is evaluated on the boundary

J
Im E(3Y) = 0. Thus Im 2: ky; = 0. Hence the conditions (4.9a) and
Y &1 i

(4.9b) are equivalent, even when the sets J; and JY are regarded
as subsets of the larger set of indices corresponding to the larger
process B + I.]

Rule 2 follows ih this same case from the first éet of
conditions in (4.18a). These require that all combinations of the
variables (Im kPj,---,Im kPl) be evaluated as limits from the
uppér-half cones: ;i' Im kPi € V+, where 2;’ " indicates any partial
suin. Since the reél energies Re kéio are all positive in this case

the corresponding signs o are all positive, as indicated in

A
Fig. 1.
To prove Rule 3 in this case suppose the sum of the energies
Re kio of the lines of X = B}, + I;, is negative, as specified

by the rule. Then the sum of the energies Re kio of the lines of
- o

positive. Thus the rule says that the sign of the imaginary part is

B is even more negative,. since the contribution from T is

as it is for (B

the same for (B}, + I;,) T')'

48

If this latter sign is positive then the result that the sign

;,+ I;, is also positive follows directly from (4.18a). On the

othefAhah@ if the sign of the imaginary part is negative for B;,, then

for B

it is positive for B;,. But then (4.18a) implies that it is positive
also for (B;, + I;,). But since the real energy of this set is also
positivé one has '

+ v - =
U(Brn + IY') = O(BY' + IY') = G(X)

) | : (4.19)

since G(B;,) is positive in this case. This confirms Rule 3 fof this
cage. _

The proof of Rules 1, 2, and 3 for the case (4.5b) proceéds in
the same way, except that one uses (h;18b)binstead of (4.18a). The
proof for thé cases (4.5¢) and (4.5d) proceeds in the same way, except
that the signs of the real parts of the energies are now reversed. This

induces a reversal of'the signs For example, the signs in the

UK'Y"
cut-out sector of the right-hand bubble in the first line of the right-
hand side of Fig; 1 are negative because tﬁe imaginary parts in the
corresponding expreésion (L.5¢c) are positive, by virtue of (L.18a), but
the real parts are negative. v

This completes the proof of Rules 1, 2, and 3.

Bros, Epstein,Aand Glaser derive our initial equatidn (b.1)
from a corresponding identity in the space of sums of tree diégrams.
This identity, Pyt = Py- = tpx,B;pX,A], expresses the difference
betwéen the sum of tree diagrams )+ and the sﬁm of tree diagrams

- as the sum of tree diagrams that are in p_4 but not in o) -

N A

minus’ the sum of tree diagrams that are in 0y - but not in Pyt The

}1 .
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vacuum expectation value of the image under z'l of fhis tree diagram

identity is (4.1). Thus each side of this equation representé the
sum of the functions 'fB(x) such that %B(k) contributes to ;K+(k)
but not to ?&_kk), minus the sum of the functions fs(x) such that
%B(k) contributes to ;x_(k) but not to ;x+(k).

The Fourier transform of the right-hand side of (k.1) is
defined only for points k that lie on the common boundary face of
Fx+ an& Fx_. For there is no © functioﬂ associated with the
intermediate state 71 that would 1éad to an analytic extension into
m 1(3 ) £ o. |

LN
For any point k that lies on the common boundary facg in
Im k(JYf) =0 of I, and I, . the function ?x+(k) - ?x_(k)> is
defined.to be the limit of ?x+ from points within FX+’ minus the
limit of ;x- from points within r,-. This difference
§x+(k) - ;X'(k) has no éontribution from any %B(k) that contributes
to both 5K+(k) and ?x-(k). For any such fs(k) will be analytic

at k, and will contribute equally to both. Thus both sides of. the

equation
~ ~ ~ B.By~ A, A
k) - T (k) = (Q]IR),T(7),E, U ()] ]e)  (k.20)
represent the séme combination of functions %B(k);

The spectral cqndition that the energy of any physical state

be nonnegative, together with our original stipulation that the

energy is flowing from set A to set B; entails that only one term of

the commutator survive: :

F +(k) - T, (k) = (Qlﬁh.B(kB) ﬁhmA(kA)|Q) . (4.21)
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This result combined with (4.5) and (4.18) gives the formula we seek,

except in one special case.
This special case is the case in which one of the two sets

A or B consists of a single line. This case is not covered by the

work of Bros, Epstein, and Glaser. However, the basic discontinuity

oy

formula holds alséiin this case. . This follows directly from (2.4).
The relevant‘denom&ﬁator is the one on one end or the other. The

7
difference on the left-hand side of (4.21) gives a delta function that

cancels the iﬁ%egration over dql or dqno, and converts the

or qno to klo or kno, fespectively.

corresponding ql This
yields (4.21) for this special case.
One could presumably derive the whole result from (2.k4).

We have used instead the beautiful work of Bros, Epstein, and Glaser,
and have shown that the formula described in Sec. IT is, apart from

the trivial case, essentially the momentum-space form of a result

obtained by them.
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APPENDIX: PROOFS OF SOME THEOREMS

i. Proof of Theorem 3.1

Suppose the set (Imk: (k - K)-Vf(K) = O} does intersect
Fx. Then, because of the conical shape of FK,‘there must be in any
neighborhood of %k points on the surface @(k) = O that lie also in
r,. The function Sx(k) is analytic at these points.

Because k 1is .a regular point of the surface @(k) = 0 one

can introduce a set of local analytic coordinates6

(¢;Z) g (¢’Zl""’zh(nél)-l) (A.1)

~

such that k(#,z) is analytic near the point (¢O,zo), where

gy = O » (A.é)'
and

2o = (0,0+,0), o | (4.3)
and |

k(By0z) = ¥ . (A.4)

The coordinates 2z can be chosen so that

<a, a>0} & r. (A.5)

A

{Im k: k = k(¢o,zl,0,---,0), 0 <z

Consider then the set of one (complex) dimensional analytic

discs of the form

D(r') = ({(k: k.= k(¢,zl,0,--°,0), g = r'e_ie: 0< lz]_l <a }

(A.6)

'light cone V+._
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where © is the fixed angle occurring in (3.1). For sufficiently

small a' >0 arnd r' >0 the function

5, (6,2) = sK@(e,z)) | ()
is analytic in D{(r') by virtue of (3.1). At the point r' =0 >
this function is analytic in D(0) on the line 0 <z; <a, by
virtue of (A.5). But then this function is analytic on the whole . 3.

disc D(0), by virtue of Bremermann's variation of the
Kontinuité'.tsa.tz.l5 The center of the disc D(0) is the image of

k under the mapping ©(k),z(k). Since these functions are analytic

near k the function

5,(5) = 5, (01x),2(x)) (.8)

is analytic at k. Thus it is false that the function .Sx(k) is ¢-
singular at kX on Fxo, and. the theorem is proved.

2, Proof of Theorem 3.2 '

What must be proved is the equivalence of (3.4a) and (3.kb).

To do this first define

‘ =+

C. = [(vi v = cva k(JY+)-V eV }. (A.9)

v 'r
This is the set of (4n - 4)-dimensional vectors v generated as the

four-dimensional vector vy, ranges over thé closure V+ of the forward o

The linearity of k(JY+) in the variables k; implies that

Im k-vx(J;) = Inm k(J;) . .. | (A.10)
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: +
Thus, if v = o Vk(J then
’ mrv(Y)’

+y '
k- = 0 . .

Im kev oy I k(JY ) v, (A.11)
Thus the set

. . o

Coy = (Imk: Im kv 20 for ell v in C,J (A.12)
is

+ et o =
Coy = {Im k: Oy In k(JY ) v,>0 for all vy in v } .
(a.13)
Define the set
= : ¢} - .
Ty {Im k oy I k(JT eV ). (a.1%)

Noting that the set of all four vector u such that quY >0 for

. — . _ ) )
all VY eV is just the set V+ itself, one has

T.. = ctr .

Iy AY (8.15)

The set oécurring on the right=hand side of (3.42) may now be
written

FE = F®”

_ qQ+
ﬂ Por

it

(r:1mk (s, ")=0}
St T
= C;\_Y , X S - (A.16)

Irfzﬁ(JY+)=dl

_5h-
The condition Im k«v >0 in (A.12) can be replaced by
In(k - k)+v >0 for all those C;Y that oceur in (A.16). Then the

connection between X and X is expressed via Im(k - k)°v > 0 for

all the sets X' occurring in (A.16).

The set of vectors on the right-hand side of (3.4b) is

k) = . Al
¢, (k) E ¢ (a.17)
{Y:ImE(J;r):O} ' .

Thus the theorem can be proved by proving that
N +
= A.18
CKY CXY ( )
{Y:‘ImE(J;rFO} {Y:ImE(JT*)=o]
It follows immediately from the definitions that’
~— . - +
AN N
= Al
/ / CXY CKY'”" (4.19)

.l T + — . L3 =1 +
{vY.Iml;‘(J_'Y )=01} {Y.Imk(,JY }=0
= [e,®1",

where

in

[CK(E)]+ (tmk: Im(k -k)-v>0 forall v in c (K)].

For if Im k 1lies in the set on the left-hand side of (A.19), and
Hence satisfies Im(k - k)-v >0 for all v in each one of the sets

C then it must satisfy this condition for any v _thét is a sum of

Y’ _
such vectors. Hence it lies in the right-hand side; Conversely, if

Im k is such that this condition Im(k - k):v >0 is satisfied for

all v that can be written as sums of v's from the various sets
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C then this condition must hold for all v's in each of these

AT

t
sets CXY

. Hence Im k must lie in the set on the left-hand side of
(A.19). This confirms (A.19).

The desired identity (A.18) follows from (A.19) and the identity

=\ ++ — '
[Cx(k)] = Ck(k) . (4.20)
The set [C}\(E)]++ is
[cx(i)]++ = (v: Im(k -k)-v>0 forall Imk such that

In(k - k)'v' >0 for all v' in CX(E)} .

(A.21)

It is clear from this definition that if v is in CK(E) ‘then it is

also in [Cx(k)]++:

c,® C [c,®1 . (a.22)

To prove the converse suppose. Vv is not in CK(E).' We ﬁust
find some real vector Im k such that Im(k - E)-v' >0 for all v'
in cx(i), but Im(k - k)-v <O, This will show that the point v is
not in [cK(E)]++.

The required Im k can be constructed.as fqllows: Let v
be the point not in CX(E)' Consider the set of closed balls (in the
Euclidean metric) centered at v. Let B(v) be the smallest one of
these balls that intersects the convex set CK(E)° The tangent hyper-
plane at the unique point of contact divides the whole space of v's
into two half-spaces one of which, called H(v), intersects B(v)

only at the point of contact.
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The set CK(E) ‘must lie in .H(v). For if ény point in the
complement of H(v) were in CA(E) then the convexity property of
CK(E) would entail that some point in the interior of B(v) would lie
in CK(E)’ contrary to the property that B(v) is the smallest ball
centered at v that contains points of CX(E)' This means that H(v)
is one of thg bounding half-spaces of CK(E)3 i.e, the whole set
CX(E) lies in H(v), and the boundary JH(v) of H(v) contains at
least one point of CK(E)'

The boundary OH(V¥) may contain more than one point of CX(E)'
In fact, if it contains any interior point of any réy that lies in
CK(E) then it must contain the whole ray, siﬁce otherwise the whole
set CK(E) would not lie in H(v). But the point of contact v,
between B(v) and Cx(i) is either an interior point of some ray that

lies in CA(E) or it is the origin v = O. Thus the origin lies on OJH(v).

The point v, lies at the point of contact of B(v) and H(v).
Thus the half space H(v) is defined by

H(v) = f{v*: (\:r'-(vc - vi)E > 0} ,'(A'23)
where .

, . 3 o ,
' - = ! - . .

6 (vc V))E z Z viu(vc v)ip (a.24)

) . i=l1 n=0
Since v, lies on OH(v) one has

Grc-(vc - VDE = 0, (a.25)
and hence

Gtvg-v)p < 0. (4.26)
But then the required real vector Im k can be defined by

-k = -
Im(k k)i = (vc v)iu . (A.27)

.,
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»
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3. Proof of Theorem 3.3

The'argtments given in the proof of Theorem 3.l_shOW‘that if
the function Sx(k) is @-singular at. ¥ on BPXO, then the function
Sx(k) is singular at all points on the surface @(k) = O that lie in
some neighborhood of k. ' We shall prove the theorem by showing that
the surface @(k) = O either ﬁas the required form, or penetrates
into rk_ arbitrarily close to k. The second possibility-is ruled
out by thgﬂfact that Sx(k) is analytic in FX

Because’ B¢'(E')/Bkio # 0 the surface @'(k') = O can be

L - 6
expressed 'near k' in the form
', 0 P iy :
t . ] ] 1 1 . .
k) = f(kl ,kj) + r (k) ,kj), | (A.28)

where r(kil,ké) is analytic in a neighborhood of (E{l;ié), and
vanishes at k&v= Eé (11 j #1). 1f r(kil, k&) is identically

zero then the theorem is proved by defining the required function

~

#(k;) vy
a(ki) = kio - f(k'i,ig) . o (A.29)

To complete the proof we will show that if r(kil, ks) is not
identically zero, then the surface @(k) = O enters r, arbitrarily

close to K.

If r(kil,kj) is not identically zero then there must be some
j > 1, which we call j = 2, some p = 0,1,2, or 3, and some n >1

such that

gt = dﬁ%%ﬂgu-?%n+”&fﬁp’ (8.50)
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whgre kg is the set of kjv for j #1 and (J,v) # (2,u);

a(kii,kg) is an}analytic function of its arguments that is not
identically zero mnear (E{i,ig); and r'(kii,kj) is either identically
zero or. is of order higher than n in (kéu - Eé“).' Since

a(kii,kg) ’ig not identically equal to zero near (i{i,ﬁg) one cah
find points arbitrarily close to (Eii,ig) such that a(kii,kg) £0

at these points. Because - a(kii,kg) is analytic, these points can

be taken to lie in the set Im kii = 0,

Fo; any neighborhood QQ/ of k' we can therefore find s
point k' with Im kii =0 such‘that a(kii,kg) is nonzéro.and-
(kii,ké”,kg) lies in €YY for Ikéu - Eé“! sufficiently small. Take.
Ikéu - E'gl small enough so that the magnitude of the second term

on the right-hand side of (A.30) is very small compared to the first

‘term. Then consider

0 =, i b o—pan. i
Imkj" = Im f(ki ’ké) + Im[a(ki ,kg)(ké ',kéu) 1+ Im 2! (K ,ké).

(A.31)

The first term on the right-hand side is zero, because _f( ’i,ES)

is by hypotheéis a real anglytic function of the arguments kii, and
these are by construction real. The phase of '(kéu - iép) can be
adjusted so that the second term times UXY is positive, and 1érge
compared to the last term. But then the point k' defined by (a.31)
lies in thebk'-space image of FK. This gives the deéired ‘

contradiction.



—59-

FOOTNOTES AND REFERENCES L,
This work was supported in part by the U.S. Atomic Energy Commission.
Partiéipating guest, LBL.
Af H. Mueller, Phys.‘Revffgg, 2963 (1970); H. P. Stapp, Phys. Rev. 5.
D3, 3177 (1971); Chung-I Tan, Brown University preprint; C. E. 6.
DeTar, C. E. Jones, F. E. Low, J. H. Weis, J. E. Young, and Chung-I
Tan{ Phys. Rev. Letters 26, 675 (1971); H. M. Chan, C. S. Hsue,
C. Quigg, and J. M. Wang, Phys. Rev. Letters .26, 672 (l97i);a 7.
J. Ellis, J. Finkelstein, P. A. Frampton, and M. Jacob, Phys.
Letters 35B, 227 (1971); G. Veneziano, Sum Rules for Inclusive V 8.
Reactions and Discontinuity Formulae, CERN pfeprint TH.1379~-CERN,
July, 1971. ' 9.
H. P. Stapp, "Lectures on Analytic S-matrix Theory" [Matscience

Report No. 26, Madras 1964, Chaps. XII and XIIT {unpublished)];

10.
"Lectures on the Analytic Structure of Many-Particle Scattering
Amplitudes" [ICTP Report No. IC/65/17, Trieste, 1965 (unpublished)]. 11.
See also D. I. Olive, Nuovo Cimento 37, 1422 (1965) and R. J. Eden, 12.
P. V. Lgndshoff; D. I. Olive, and J. C. Polkinghorne, The Analytic 13.
S-matrix [Cambridge University Press, Cambridge, England, 196L1,
Chep. -b.7. These latter two works také into account only normal 1k,
threshold singularities. Our formula takes all singularities into
account. |
H. Araki, J. Math. Phys. 2, 163 (1960),Eq. (2.21). See also
H. P. Stapp, Ref. 1, Eq. (2.8). A factor of 2x 5(§:ki°) is
missing from this latter equation, and from the Eq. (4.2) that 15.

follows from it. The Re k appearing above Eq. (3.4) in this

second reference should be Re kO = (Re k O,---,Re kno), and the

CJ(P) appearing below Eq. (3.6) should read Cg(P).

1965), p. 15. ' o 2

(1957, Eq. (34).

-60-

J. Bros, H. Epstein, and V. Glaser. Contribution by J. Bros in
"High-Fnergy Physics and Elementary Particles" (IAEA, Vienna,
1965), p. 8. | ' '

R. Hwa, Phys. Rev. 13LB, 1086 (196L). L

R. Gunning and H. Rossi, Analytic Functions of Several Complex v

Variables (Prentice Hall, Inc., Englewood Cliffs, New Jersey,

J. C. Polkinghorne, Inclusive Cross Sections and Discontinuities,

Cambridge preprint, September 1971.

J. Bros and D. Iagolnitzer, Causality and Local Analyticity:

Mathematical Study, Saclay preprint DPh-T/7l-33, July‘l97l.

C. Chandler and H. P. Stapp, J. Math. Phys. 10, 826 (1969). This

counter example %s due essentially to C. Chandler.gelv. Phys. Acta
k2, 759 (1969).

D. Iagolnitzer and H. P. Stapp, Commun. in Math. Phys. 1L, 15

(1969).

H. P. Stapp, J. Math. Phys. 9, 1548 (1968).

J. Coster and H. P. Stapp, J. Math. Phys. 11, 2743 (1970).

Reference L4, Eq. (16). We have altered the notation to conform

to ours.

H. Lehmann,‘K. Symanzik, and W. Zimmermann, Nuovo Cimento 6, 319 -

~an
Our Ai(in,out)

are (2n)5/2

~Cr
and Ai(in,out)

times those of 'LSZ. Our Fourier trénsfbrms of fields are defined
by (2.2) and (2.5), hence our k 1is the negative of the k of
LSZ. »

H. J. Bremermann, Thesis, Schrift. Math. Inst., University of"
Munster, No. 5 (1951). See also J. Bros, H. Epstein, and V.

Glaser, Nuovo Cimento 31, 1265 (1964), p. 1289. Bremermann's

continuity theorem says that if f(zl,---,zn) is analytic (in all



-61-~

in the ~plane for

variables) at all points of an open set Dl z
all points on an open line segment in (22""’Zn) space, then
f(zl, --,zn) continues analytically to an endpoint of this line
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e
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