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Rayleigh scattering of elastic waves by an inclusion is investigated and the 

limitations determined. In the near field of the inhomogeneity, the scattered 

waves are up to a factor of 300 stronger than in the far field, excluding the 

application of the far field Rayleigh approximation for this range. The investi­

gation of the relative error as a function of parameter perturbation shows a range 

of applicability broader than previously assumed, with errors of 37% and 17% 

for perturbations of -100% and +100%, respectively. The validity range for the 

Rayleigh limit is controlled by large inequalities, and therefore, the exact limit 

is determined as a function of various parameter configurations, resulting in 

surprisingly high values of up to kpR = 0.9. The nonlinear scattering problem 

can be solved by inverting for equivalent source terms (moments) of the scat­

terer, before the elastic parameters are determined. The nonlinear dependence 

between the moments and the elastic parameters reveals a strong asymmetry 

around the origin, which will produce different results for weak scattering ap- _ 

proximations depending on the sign of the anomaly. Numerical modeling of 

cross hole situations shows that near field terms are important to yield correct 

estimates of the inhomogeneities in the vicinity of the receivers, while a few well 

positioned sources and-receivers considerably increase the angular coverage, and 

thus the model resol~tion of the inversion parameters. The pattern of scattered 

energy by an inhomogeneity is complicated and varies depending on the ob­

ject, the wavelength of the incident wave, and the elastic parameters involved. 
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Therefore, it is necessary to investigate the direction of scattered amplitudes 

to determine the best survey geometry. The inversion of a cross hole dataset 

to determine the location and elastic parameters of a fracture zone reveals the 

following results. The bulk modulus appears to be sensitive to voids and welded 

contacts, whereas the density is mostly affected by fractured zones. The shear 

modulus is least constrained, possibly due to the absence of S wave anisotropy 

information. However, P wave anisotropy is included and prevents the collapse 

of linear features into block-like structures during the inversion. 

l' 
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Chapter 1 

Introduction 

Elastic waves propagating through the Earth are affected by structures on 

all scale lengths. These scale lengths range from several hundreds of kilometers 

for e.g. the core mantle boundary and subducting slabs, over several tens of 

kilometers for crustal structures, to a meter or less in heterogeneous surface 

layers. 

The waves are affected by the inhomogeneities in several ways. Their travel 

time is delayed or advanced, depending on the nature of the inhomogeneity 

(Peterson, 1986; Nolet, 1987), and energy is scattered throughout the medium 

ar!iving at different times at the point of observation (Aki and Chouet, 1975). 

Furthermore, the direction of propagation is changed for most of the propagat­

ing energy every time the waves are reflected or refracted by inhomogeneities. 

In addition, zones of anelastic attenuation decrease the amplitude of the waves 

and dissipate their energy throughout the medium. The degree to which the 

waves are affected is a function of their wavelength in relation to the size of the 

inl10mogeneities. The problem of propagating waves with small wavelengths 

through inhomogeneities of large scale length can be treated, to a certain de­

gree, as wave propagation through a blockwise homogeneous medium, whereas 

waves with wavelengths on the scale of the inhomogeneities are best treated 

as scattering at the interfaces. Therefore, ·the question of which process best 

describes wave propagation through a medium depends on the frequencies and 

scale lengths under investigation. 

Seismologists use the different effects on wave propagation to deduce pa­

rameters of the medium. Travel time changes are employed to derive velocity 
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perturbations (Aki et al.; 1976, Toomey et al., 1989), while changes in the am­

plitudes are used to determine elastic properties, such as the elastic moduli and 

the density, as well as intrinsic attenuation (Scherbaum, 1990; Romero; 1995). 

However, in recent years the demand to use seismic waves as a diagnostic tool 

to estimate high resolution models of the subsurface and to extract a variety 

of parameters, which can further be used to model subsurface processes, has 

increased. Despite this need to determine parameters beyond elastic wave ve­

locities, most waveform approaches that utilize amplitude information solve for 

velocities rather than the elastic parameters of the medium (Wu et al., 1987, Lo 

et al., 1988; Tura et al., 1992). However, medium parameters, as represented by 

the elastic moduli, may not be correctly determined by velocities, as the moduli 

may cancel or reduce their effect in the equations of the velocities (Gritto et al., 

1995b). Consequently the magnitude of changes in the subsurface structures 

may be larger in the elastic moduli. Therefore, the intention of this work is to 

study elastic wave scattering .and to use scattered wave:fields to invert for the 

elastic parameters mentioned above. 

The present work is not submitted as a finished study; rather it is an at­

tempt to investigate the feasibility to extract information from scattered waves 

that may provide more insight into the elastic parameters of the medium. In 

the past, various. inversion techniques have been developed, each of which is ap­

plicable to certain conditions under which it works most favorably. Travel time 

tomography utilizes the first arrival time of the direct wave to determine the 

velocity structure of the medium. In order to invert for attenuation properties, 

the amplitudes of the first arrival are estimated to determine its variation over 

the path of propagation. These techniques use the properties of the direct wave 

in seismograms. In contrast, waveform algorithms are based on amplitude infor­

mation evident in later phases, to determine the velocity structm:e and anelastic 

properties of the medium. However, these methods almost never use the full 

content of information present in the seismogram, but rather use the properties 

of P and S waves. All. of these methods have in common that they neglect 

phases that appear after the main arrival of the direct body waves, although . 
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these late phases may carry information about the medium properties. There­

fore, a thorough study of the scattered phases is essential to determine whether 

their properties can reveal a more detailed picture of the subsurface structure. 

The present approach differs from other inversion techniques by the fact that 

it does not use the first direct arrival, but incorporates all scattered phases 

that appear at later times in the seismogram, and therefore, it is important to 

remove this energy before a successful inversion can be performed. 

The techniques utilizing the scattered phases in seismograms are often re­

ferred to as diffraction tomography. The goal of these techniques is the location 

and determination of elastic parameters of the medium (Devaney, 1984; Wood­

ward, 1992), and in this sense they are similar to the present approach. The 

advantage of these techniques is that their mathematical treatment is based on 

simplified far field Green functions. The inversion is performed in the frequency 

wavenumber (f-k) domain, where the resolving power of the inversion operator 

can be studied and the experimental design adjusted accordingly (Tura et al., 

1993). However, the disadvantage of these techniques is that they rely on regu­

lar source and receiver spacing to allow the transforma:tion into the f-k domain. 

In contrast, the present approach is based on an analytical solution that pro­

vides a more complete treatment of the scattering process. In addition, it does 

not rely on a regular source receiver geometry, but is capable of treating -any 

irregular sized 3-dimensional geometry. 

A commonly used imaging technique in exploration seismology is seismic 

migration. The idea is to determine the origin of reflected phases in seismogram 

sections. The amplitudes of these reflected phases are integrated along the 

reflection hyperbola over many traces and the result collapsed, or migrated, 

into the point of origin (Tygel et al. 1994, Yilmaz, 1987). Thus, assuming a 

background velocity model, interfaces reflecting energy in the subsurface can be 

pointwise reconstructed. The analogy to the technique presented in this thesis 

is that the inversion of scattered waves can be interpreted as integration along 

the hyperbola of scattered phases, and the result, under the assumption that the 

background parameters are known, collapsed into the location of the scattering 
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object. In addition to the location, the present method estimates the elastic 

parameters as well. However, in a strict sense, this approach is not a seismic 

migration technique. 

The process of wave scattering by an inhomogeneous medium is of a com­

plicated nature, and therefore, a thorough investigation is essential before scat­

tered amplitudes can be converted to information of the subsurface structure. 

Consequently this study first investigates the problems arising in elastic wave 

scattering and incorporates the results to improve the inversion for medium 

parameters. 

In order to evaluate the scattering of elastic waves by inhomogeneities, exact 

solutions are needed, some of which are available for simplified geometries. But 

even for these cases, as the exact solutions are difficult to implement, asymp­

totic approximations are developed. However, most of these approximations are 

based on assumptions which do not have fixed limits, and therefore, it is not 

always clear when the results are valid. 

Chapter 2 investigates the validity range and the limitation of the low fre­

quency Rayleigh approximation to the analytic solution for the scattering of 

elastic waves by a sphere shaped inhomogeneity. The Rayleigh approximation 

is a widely applied tool in waveform inversion algorithms, as it provides a means 

to linearize the inherently nonlinear problem of solving for the elastic parame­

ters of the inhomogeneity. However, thus far no attempt has been undertaken to 

establish limitations for this approximation and strong inequalities are used to 

justify its application. Therefore, in order to qualify results determined through 

the use of the Rayleigh approximation, its limitations are tested and determined . 

. Once the process of scattering is better understood and limitations are es­

tablished, information of the scattered amplitudes can be used to determine the 

properties of the inhomogeneity. Although this process is nonlinear in terms 

of the elastic parameters, Chapter 3 offers a direct solution to this problem 

based on the low frequency Rayleigh approximation under the assumption that 

scatterers can be represented by simplified geometries. The advantage of this 

method is a fast and direct way to solve for the elastic parameters without 
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limitations on the scatterer strength. Additionally, a time consuming iterative 

process to solve for strong contrasts can be avoided. Although this theory opens 

the field for a wider class of scatterers, it requires a better understanding of the 

scattering process. It will be shown that near field terms play an important 

role in cross hole geometries if the Rayleigh approximation is applied to invert 

the scattered wavefield. The direction of the scattered energy strongly depends 

on the strengths of the inhomogeneity and consequently, a successful field ex­

periment requires a thorough study of the scattering process to optimize source 

and receiver geometries. Based on this fact, various numerical experiments are 

presented to address the aspect of optimUm. source and receiver geometries. The 

case of a high velocity inclusion with a reduction in density only, will be used to 

study the resolviiig power of the inversion to solve for a single elastic parameter 

without affecting the constant parameters. 

Finally, Chapter 4 applies this new approach to a field experiment where the 

objective is to determine the location and the elastic parameters of a fractured 

zone in an otherwise undisturbed host rock. The challenge in this problem lies 

in the fact that the fracture zone, based on the theory, has to be modeled by a 

series of small inhomogeneities each representing a single scatterer. The success 

of such an experiment could lead to the treatment of a completely new class of 

irregularly shaped inhomogeneities represented by a series of single scatterers 

for the inversion of full waveform data. 
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Chapter 2 

Low-Frequency Elastic Wave Scattering 

by an Inclusion 

2.1 Introduction 

Scattering of seismic waves is a fundamental process in the propagation of 

waves through the Earth. In recent years, numerous authors have turned to 

the theory of scattering to describe the complicated nature of seismograms that 

occur in various places, believed to be caused by inhomogeneities and sequences 

of layering within the structure of the Earth. Different scale lengths are the 

focus of attention, varying from mantle (Haddon and Cleary, 1974; Doornbos, 

1976; Aki, 1980), over crustal (Aki, 1969; Wu, 1982; Sato, 1984), to regional 

• and even local scales on the order of a few meters (Wu and Aki, 1985; Her­

raiz and Espinosa, 1987; Sams and Goldberg, 1990). The common objective of 

these studies is to apply statistical approaches to determine the heterogeneity 

and the elastic parameters of the medium and to distinguish between differ­

ent attenuation processes like intrinsic and scattering attenuation (Frankel and 

Clayton, 1986; Frankel and Wennerberg, 1987; Frankel, 1991). Lately, the the-­

ory of localization, well established in quantum mechanics, solid state physics 

and optics, was introduced to seismology (O'Doherty and Anstey, 1971) to in­

vestigate scattering processes during propagation, and to determine possible 

limits in wave propagation (Richards and Menke, 1983; White, Sheng, Zang 

and Papanicolaou, 1987; White, Sheng and Nair, 1990), although presently it is 

unclear whether the common approach of treating the Earth as a self averaged 



7 

random medium is valid (Shapiro and Zien, 1993). 

As an alternative to statistical methods, deterministic approaches are a valu­

able tool to estimate local parameters by measuring their properties in the 

medium. Such approaches require exact solutions for the scattering problem, 

but only a few exist for special cases. Even though these cases are based on 

simplified geometries for the numerous shapes and sizes of inhomogeneities that 

are present in the Earth, they are difficult to implement, and hence solutions 

in terms of asymptotic approximations are developed. The assumptions used· 

in the derivation of asymptotic solutions are usually expressed in the form of 

strong inequalities where some combination of parameters is assumed to be 

much less or much larger than unity. For instance, for the· case of Rayleigh 

scattering it is assumed that the parameter kR, where k is the wavenumber of 

the incident wave and R is the radius of the scatterer, satisfies the condition 

kR « 1. In the same manner, for the case of linearizing the inverse problem, 

we assume "very small" relative deviations of elastic parameters and density. 

Such assumptions are convenient at the stage of mathematical development, but 

they present problems when attempting to determine the actual bounds on pa- · 

rameters during application of the results. Indeed, in realistic situations while 

operating with parameters having finite values, there is always a problem in jus­

tifying the validity of the approximation and determining the accuracy of the 

solution. What is the actual difference between the exact solution and the ap­

proximation which has been used? What are the upper limits of the parameters 

which can be used and still retain a specified level of accuracy in the solution? 

For the case of Rayleigh scattering of elastic waves, it appears that the limits of 

the approximation have not yet been quantified~· An additional problem occurs 

when more than one assumption is involved in that they may be contradictory. 

This is a possibility for the case of Rayleigh scattering (w -t 0} in the far field 

(r -too), where the parameter (wr)/(Vp) is assumed to be large. The intention 

of this chapter is to investigate the accuracy of several asymptotic solutions 

and quantify the limits under which these appro~ations are applicable. The 

study presents the error for the application of the asymptotic solutions as a 
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function of various parameters and estimates under which conditions a given 

approximation provides an acceptable solution to the scattering problem. 

Recently, Korneev and Johnson (1993a, 1993b) derived a solution. for the 

scattering of an elastic P wave by a spherical inclusion of arbitrary contrast and 

developed asymptotic solutions for this problem. Their low frequency Rayleigh 

approximation which is valid for an arbitrary distance between the observation 

point and the inhomogeneity is being investigated and compared to the solutions 

based on near field and far field approximations. The validity range for these 

limited approximations is presented with respect to the distance of observation 

and the .relative contributions of the near and far field terms to the complete 

Rayleigh approximation is discussed. It should be noted here that, while these 

approximations were derived from the exact solution for a sphere, they depend 

only upon the volume of the scatterer and not upon its shape, and thus should 

be valid for the general class of inclusions with approximately equal dimensions. 

The Rayleigh approximation can be used to model the scattering process 

of low frequency waves by an inhomogeneity. A common goal in seismology 

is to determine the elastic properties of this inhomogeneity by inversion tech­

niques. However, since the dependence of the solution on the elastic parameters 

is nonlinear, the inversion of the data often is preceded by a linearization of 

the problem. For this purpose, a linearized solution in terms of the elastic pa­

rameters is derived and the error as a function of their perturbations assessed. 

Furthermore, the improvement of the approximation by accounting for higher 

order terms is investigated. The determination of the relative error is based on 

the parameter values of the inhomogeneity and the background medium. Often 

these values are unavailable, particularly in the planing stage of an experiment 

when anticipated errors play an important role. Therefore, an equation for the 

approximate error due to linearization of the problem is developed which is 

based entirely on the estimated parameter perturbations from the background 

values. Finally, the upper limit for the Rayleigh approximation ( kR << 1) as a 

function of parameter perturbation is investigated. 
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2.2 Rayleigh Approximation for an Elastic Sphere 

of Arbitrary Contrast 

A derivation of the exact scattering solution for a homogeneous elastic sphere 

was given by Korneev and Johnson (1993a, 1993b). In their second paper they 

derive a low frequency approximation for a spherical inclusion. However, be­

cause of its low frequency character, this approximation simultaneously provides 

a solution for a wide range of arbitrary shaped 3-dim.ensional structures. For 

reasons of clarity, the exact solution is restated followed by their derivation of 

the low frequency approximation. 

The investigated scattering problem consists of an elastic inclusion defined 

by the parameters )q, p,1 and p1 (in the following, the index v = 1 denotes the 

medium of the inclusion) embedded in a homogeneous medium with constant 

parameters A2 , p,2 and p2 (in the following, the index v = 2 refers to the back­

ground medium). The geometry for this situation is shown in Figure 2.L A 

joint Cartesian (x, y, z) and spherical (r, (}, ¢) coordinate system with its origin 

at the center of the inclusion is considered. 

An incident plane P wave of the form 

(2.1) 

which is traveling in the background medium in a positive direction along the 

z-axis . is considered in the following investigations. U 0 denotes the Fourier 

transform of the incident wave. However, at. the end of this section, a factor 

that accounts for an incident spherical wave generated by a point pressure source 

will be provided. 

In the frequency domain, the total solution to the scattering problem can 

be written as a sum of the incident and the scattered fields 

(2.2) 



10 

where UP and Us denote the scattered P and S waves, respectively. 

For the case of a plane P wave impinging upon a sphere of radius R, the 

total scattered field can be represented as 

hz(kpr)8P,(cosB)e] b [zcz )hz(ksr) R( e)·A 
kp r 8(} + I + 1 ks r I COS r 

{2.3) 

where hk(x) are spherical Hankel functions of the second kind and Pz are the 

Legendre functions. The coefficients a1 and b1 depend upon the properties of the 

sphere as well as the background medium. They also depend on the wavenum­

ber of the scattered fields. For a detailed discussion of the derivation refer to 

Korneev and Johnson {1993a). 

For the development of the low frequency approximation, only those terms of 

the exact solution are used that are of lowest degree in frequency. These terms 

(w3) are of third order and appear only in the first three coefficients (l = 0, 1~ 2) 

of the exact solution. 

a1 - -ie (P1 _ 1) b1 = i1J
3 (p1 -1) 

9 P2 9 P2 

a2 ie.!. (J.£
1 

- 1) 'Y
2 

, b . 3 2 ( J.£1 ) 'Y - 2 = -tTJ 45 J.£2 D 45 J.£2 D 
{2.4) 
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Scattered Wave 
z 

r 

Inhomogeneity 

X 

Background 

v=2 

Incident Plane Wave 

Figure 2.1: Geometry of the problem. The properties of the inhomogeneity and 
the background are denoted by v = 1 and v = 2, respectively. A plane wave 
is incident in the positive z direction, while the oberservation of the scattered 
wave is a function of r and 8. 



with 

~, v-;;:- V: = ff:v s., , 
Pv 

w 
kp = v. , 

P2 

12 

(2.5) 

Thus, a low frequency approximation with no restrictions upon the elastic pa­

rameters is obtained as: 

with 

UP.- (UP)rr + (Up) 90 

- A{[-!. H,\1- ,\2) + f-£1- f-£2w.p (Z) + (P1 - 1) WP (Z) (} 
. 2 !{~,\1 + f.£1) + f-£2 Or p P2 1r p COS 
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The new functions are defined as follows 

(2.8) 

where V is the volume of the inclusion, and 

WCr(Zp) 
2 

1--
Zp 

Wf,.(Zp) 2
1 + iZp P ( ) _ 9i - 4iZ; - 9ZP 

- 1- Z2 ' W2r Zp -1 + Z3 
p p 

Wte(Zs) 1-
1 +iZs w:s(Z)= 1 32i-iZ;-2zs 

Z2 ' 2e s + z 3 s s 

Wfe(Zp) 
1+iZP p ( ) _ 3i - iz; - 3Zp 

Z2 w2e Zp - z3 
p p 

Wtr(Zs) 
1 +iZs 

w;r(Zs) = 
3i- iZ2 - 3Z .s s (2.9) - Z2 '. Z3 s s 

with 

(2.10) 

The above approximation has used the lowest degree in frequency only, and is 



based on the assumption that 

wR 
kmaxR = ~ « 1, 

mtn 
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(2.11) 

where Vmin denotes the minimum velocity and kmax represents the corresponding 

wavenumber. This result, generally known as the Rayleigh approximation, does 

not depend upon the shape of the inclusion but only upon its volume. 

The W functions in equation (2.9) contain the distance dependence of the 

observation point from the center of the sphere and are valid for all values of 

r ~ R. Thus, the expression in equations (2.6) and (2.7) is a complete solution 

containing near and far field contributions. From this solution it is evident that 

the P wave of the scattered field contains a contribution in the 0-direction, while 

the S wave contains a factor in the r-direction. Thus, the P and S waves are 

not decoupled and their polarization is complicated in the near field. However, 

as the distance of observation increases, the relative contributions of the W 

functions change in such a way that the solution takes on the form of the far 

field approximation. 

To obtain the far field approximation, we have to satisfy the following con­

ditions for the W functions in their limits: 

(2.13) 

In this limit, the scattered field can be divided into an r- and a 0-component, 

both revealing a 1/r dependence for scattered waves in the far field: 
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. + - - - 1 - 1 - 3cos r 2 (f-Ll ) ry
2 

( 2())} A 

3 J.L2 D 
(2.14) 

Us = k;--- - __!.- 1 sin()+ .....!:. - 1 -sin2B 9. V e-ik.r { (P ) (f-L ) 'Y } A 

47r r P2 J.L2 D 
(2.15) 

The natural polarization in the r- and 0-direction for the P and S wave, re­

spectively, is evident. 

The effect on the amplitude of the scattered field of the ratio between R and 

the wavelength ).P of the incident P wave can easily be addressed by putting 

the solution (2.6) and (2. 7) in the form 

Up+ Us = (kpR) 3 F(Zp, 0) = (21r ~ )3 F(ZP, B) 
p 

(2.16) 

(using Zp = ryZs) where the function F(Zp, B) also depends upon the parameter 

perturbations, but does not depend on the radius R of the inclusion. Thus, 

when R --+ Ap, the amplitudes increase, until the approximation reaches its 

limit at (kpR)lim (Rayleigh limit). 

In the near field where ZP << 1.0, Zs << 1.0 the P and S components of the 

scattered field may be combined to form an asymptotic solution depending on 

both rand 0, by expanding e-ikpr and e-ik.r in equation (2.8) and keeping only 

the lowest degree in Zp· 
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With the definitions for Zp and Zs in equation (2.10), it becomes apparent that 

the amplitude for the near field approximation contains components which are 

proportional to 1/T and 1/T2
• The sum of the r and 0-component indicates the 

complicated polarization, as the P and S-wave are not decoupled yet. 

So far, the scattering problem involving considering an incident plane P 

wave with a source located at infinity has been treated. However, the problem 

can as well be addressed for the case of an inhomogeneity in the near or far field 

of a point pressure source exciting a spherical P wave 

(2.18) 

where To is the distance between the point source and the center of the inclusion. 

The consideration of a spherical incident wave introduces additional func­

tions for the distance dependence of the scattered field of the form 

Co q 

c1 Zp0 - i 
- q 

Zpo 

c2 z;o - 3iZp0 - 3 
(2.19) Z2 q 

PO 

with 

k WTo 
(2.20) q- _p_ Zp0 = kpTo = V.. - ' To p2 

The C1 have to be multiplied onto those Wz functions in equation (2.9) that 

have the same degree in l to provide the correct distance dependent functions 

"'" 
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for the case of a single point pressure source at an arbitrary distance from the 

inhomogeneity. However, in this chapter the problem of an incident plane P 

wave is treated only. This restriction permits all of the displacement fields to be 

represented in terms of unitless values for the purpose of simplicity in presenting 

numerical results. 

2.3 Comparison Between Low Frequency To­

tal Solution and the Approximations in the 

Near and Far ·Field 

For the comparison of the various approximations listed above, the scattered 

amplitude for a given spherical inclusion with radius R along a profile of ob­

servation extending from r = R (near field) to r >> R (far field) is computed. 

The profiles are determined for various scattering angles between () = 0° and 

() = 180° (symmetry exists along the 0°- 180° axis of incidence) to present 

a qualitative view of the angular dependence. The results are computed for 

an inhomogeneity with a 10% increase in Vp and Vs velocity as well as density 

with respect to the background. The structure ( eq. 2.16) of the scattered field 

makes it possible to investigate the unitless function F independently of the 

radius R of the inclusion, thus p~oducing results with more universal applica­

tion. In Figure 2.2 (a,b,c) absolute values of the r-component of F(ZP, 8) are 

plotted as functions of Zp -. kpr of the incident wave for three different angles 

() = 0°(a), 90°(b), 180°(c). In order to compare results of a different geometry 

with these curves, the minimum value of the parameter kpR has to be deter­

mined for the new geometry, and subsequently the normalized amplitudes to 

the right of the new limit on the abscissa will be comparable after multiplica­

tion by the corresponding value of (kpR)3 • This minimum should be equal to, 

or less than the Rayleigh limit (kpR)lim, which depends upon the parameter 

perturbations. A detailed discussion on the validity range of the Rayleigh limit 
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is presented in section 2.5. 

For each value of() in Figure 2.2 (a,b,c) three curves are sh<?wn, representing 

the r-component of the total field (solid line, eqs. 2.6 and 2.7), the neal," field 

(dashed line, eq. 2.17), and the far field (dotted line, eqs. 2.14 and 2.15) of 

the Rayleigh approximation. The graphs are plotted using· a logarithmic scale 

for both axis. Thus, the far field solution with a distance dependence of 1/r 

appears as a straight line with a slope of -1, whereas the near field solution 

revealing both a 1/r and 1/r2 dependence produces two constant slopes. In the 

very near field the 1/r2 term is dominant, creating a slope of -2, while for larger 

distances the dominance of the 1/ r term is apparent by a change in slope to -1. 

The transition between these two slopes is defined by contributions from both 

factors. However, the application of the approximations at various distances of 

observation requires a careful investigation of their validity range. All c:urves 

are computed between kpr = 10-2 (r = 1R) and kpr = 103 (r = 105 R), although 

only the total field is valid for the whole range, as found from comparison with 

the exact solution for the sphere. ·The near field solution is applicable in the 

vicinity of the inhomogeneity, whereas the far field yields correct values at a 

greater distance from the inhomogeneity only. This is supported by Figure 

2.2a). The total field solution coincides very well with the near field solution for 

small values of kpr, whereas the discrepancy becomes larger for greater distances 

of observation. Similarly, it differs from the far field solution in the near field, 

while asymptotically, the two solutions merge in the far field. The oscillatory 

nature of the total solution in the r- and the 8-component is based on the near 

field contribution of the S wave (ks vector in the r-component) and P wave 

(kp vector in the 8-component), respectively. The interference between both 

components is present in the near field only and decreases in the far field. 

The most intriguing result is the large amplitude difference between the total 

and the far field solution of magnitude(~ 300) for the very near field kpr = 10-=-2 

( r = R). This difference decays continuously until good agreement is reached 

at a distance of approximately kpr :=:::: 411" (r ~ 2..X). Between kpr =.10-2 and 

kpr ~ 411" /10 (r ~ 0.2..X), the near field provides a better approximation than 
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Figure 2.2: Normalized modulus of amplitude factor F(Zp, 8) (eq. 2.16). Radial 
component of the low-frequency scattered fields for a high velocity and high 
density inclusion of +10%. 
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the far field solution. In between these distances (0.2.\ < r < 2..\), a range 

that is referred to as the mid field, both .solutions present an alternating fit to 

the total field because of its oscillatory behavior. Figure 2.2a) presents pure 

forward scattering (B = 0°), while Figures 2.2b) and 2.2c) show the results for 

a scattering angle of {} = 90° and {} = 180° (backscattering), respectively. It 

is evident that the main features described above still apply in these cases, 

although the amplitude difference between total and far field for r = R decrease 

by one order of magnitude for {} = goo, before it regains the initial value for 

. {} = 180°. For the scattering angle of {} = goo, a drop in amplitude of the near 

field solution below the values of the far field solution is noticeable yet without 

bearing as the solution is not valid in this range. 

The 0-components of the same fields are presented in Figures 2.3a) - 2.3c). 

Because the amplitude of the 0-component is zero for {} = 0° and {} = 180°, the 

results for {} = 45°, {} = goo and {} = 135° are shown. Again, the total field 

coincides well with the near and the far field solution in the near and far field 

range, respectively. However, it is evident that the amplitude difference in the 

near field decreases to a factor of 15 for {} = 45° and {} = 135°, and shows no 

significant difference for {} = goo, while the amplitudes are slightly larger for 

the far field solution. The mid field region is characterized by a misfit for both 

near field and far field solutions, although the total field solution reveals less 

oscillations. 

The oscillatory nature of the total field solution causes similar oscillations 

of the relative error between the total field and the far or near field solutions. 

Because of this it is useful to define the mean value of the error as the smooth 

trend through the residuals which minimizes the effect of the rapidly fluctuating 

values. For the relative error in the r-component, a mean value of 15% at a 

distance of 2..\ is found. However, the oscillations around this value can be as 

high as 35% and as low as 2%. At a distance of 10..\, for example, the mean 

error has decreased to 5% with variations between 8% and 2%. The values for 

the 0-component reveal a smaller error over the entire distance of observation. 

At 2..\, the mean value of the relative error is 2%, with fluctuations between 4% 
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and 0%, and this decreases gradually with increasing distance of observation. 

The comparison between the total and far field solution indicates the advantage 

of near field components in the total field solution. The high amplitudes of the 

scattered waves in the near field suggest an improvement for the determination 

of the elastic properties, under the assumption that corrections for the incident 

field can be applied. Thus the deployment of recording instrumentation in the 

vicinity of inhomogeneities together with the observation of the incident field 

could improve the results for inverting scattered energy. In addition the limit 

for the validity of the far field solution indicates that for an observation distance 

less than 2-X, this solution produces wrong results, while it can be applied to 

distances greater than 2-X. 

The presented results are computed for an inhomogeneity with a 10% in­

crease in v;, and Vs velocities as well as in its density with respect to the back­

ground. Because the modulus of the amplitudes is computed in this study, 

investigations of a negative perturbation produce the same shape and relations 

of the amplitude curves for equal magnitude of perturbation. To determine the 

sign of the perturbation, the separate use of real and imaginary part is more 

appropriate. However, the investigation of scattering diagrams as a function of 

combinations of parameter perturbations is beyond the purpose of this work, 

and are treated by Sato {1984), Wu and Aki (1985), and Tarantola {1986). 

2.4 Extension and Evaluation of the Rayleigh­

Born Approximation 

Thus far, scattering solutions for arbitrary contrast in the elastic parame­

ters have been treated only. In equation {2.4) the coefficients are nonlinear in 

terms of the elastic parameters A. and 1-£· This can be problematic, if a solution 

for the inversion of the scattering problem in terms of the elastic parameters 

is sought. A common practice, therefore, is to solve the linearized inversion 

problem. This linearization is often referred to as the Born approximation. The 
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Figure 2.3: Normalized modulus of amplitude factor F(Zp,B) (eq. 2.16). Az­
imuthal component of the low-frequency scattered fields for a high velocity and 
high density inclusion of +10%. 
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actual conditions for the validity of the Born approximation include the size 

of the inclusion, the perturbation of its elastic parameters with respect to the 

background, and the phase shift between different scattered phases (Hudson 

and Heritage, 1991). In the Rayleigh scattering regime, the wavelength is large · 

compared to the scatterer size, and for the case of a weak inhomogeneity, the 

consideration of a possible phase shift can be neglected. Thus, for this case, 

the Born approximation is valid, and is often referred to as the Rayleigh-Born 

approximation. To linearize the problem, the coefficients are expressed in a con­

verging binomial series expansion assuming the perturbations in the parameters 

are smaller than the background values. The approximate solution is found by 

keeping the linear term of the series expansion while disregarding higher orders. 

This step is valid only for small perturbations. 

(2.21) 

Expanding the coefficients in equation (2.4) in terms of the elastic parameters 

and keeping the first terms only yields a linearized solution to the scattering 

problem which has the form 

u<I> = u<I> + u<I> sc p s 

with 

u(l> 
p 

(2.22) 
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(2.23) 

In order to evaluate the error made by applying the linearized solution, both 

the linear and the quadratic term of the expansion for the coefficients in equa­

tion (2.4) are used and a more exact approximation to the nonlinear solution, 

referred to as the quadratic approximation, is derived. This gives 

u<2) = U(2) + u<2) 
sc p s 

where 

(2.24) 
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(2.25) 

Equations (2.6), (2.7), (2.22), (2.23), (2.24) and (2.25) are the basis for the 

evaluation of the error in approximating the nonlinear solution. The evaluations 

are undertaken in the far field of the inhomogeneity, allowing the application 

of the commonly used far field approximation. First, the error is evaluated in 

terms of the scattering angle to. investigate the possible effects of the scattering 

direction. Therefore, the amplitude of the scattered field are determined for all 

angles between 0° and 360° using the three equations mentioned above. The 

result is given in Figure 2.4. For both components, the amplitude values of 

the linear approximation exceeds the nonlinear solution, while the quadratic 

approximation underestimates it. This is caused by the alternating sign in the 

series expansion with increasing order. 

A problem for the estimation of the relative error between the approxi­

mations and the nonlinear solution for every scattering angle arises from the 

vanishing amplitude values at 0 ~ 0°, 75°, 180°, 285°, 360°. These singularities 

produce unphysically high values for the relative error. Therefore, the error in 

the r- and B-component will be related to the mean square amplitude 

111r 2 (Usc)~ = - IUsc(B)Ic sinOdO. 
2 0 

(2.26) 

Here, c = r, 0 denotes the components of the scattered wave. Hence the relative 

error becomes 
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.6.e(~) = ((U£~)((})- Usc(O))~)l/2 

c (U )2 ' sc c 
(2.27) 

where c = 1, 2 represents the linear and quadratic Rayleigh-Born approximation, 

while u;c(O) and Usc(O) denote the scattered field of equations (2.22), (2.23), 

(2.24), (2.25), (2.6) and (2.7), respectively. Thus, the error is normalized for 

each component by the average scattered amplitude of the same component. 

Figure 2.5 reveals the results. For the r-component, a relatively smooth dis­

tribution of the error can be seen. The scattering problem is symmetric along 

the 0°-180° axis. One evident feature is the decrease of the error between the 

forward and the 90° scattering direction by a factor of"' 3. Further, it can be 

seen that for this particular example of a velocity and density perturbation of 

+10%, the introduction of the quadratic term in the series expansion reduces 

the error compared to the linear approximation by a factor of more than 5. The 

same improvement is found for the 8-component. Distinct lobes at angles of 

approximately 45° to both sides of the axis of wave incidence are visible. For 

both components no particular difference between forward and backscattering 

is evident. This representation of the error reveals the strong dependence on 

the scattering angle and provides some insight in the improvement to be gained 

by taking into account the quadratic term in the series expansion. 

Next, in order to estimate the error as a function of perturbation in the 

elastic parameters, the difference between the Rayleigh-Born and the nonlinear 

approximation is integrated over all scattering angles (} 

(2.28) 

and related to the nonlinear approximate solution integrated over all scattering 

angles (} 
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Figure 2.5: Relative error of the radial and azimuthal component of the linear 
and quadratic Rayleigh-Born approximation. 
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(2.29) 

This allows to compare the total average scattered amplitude for the nonlinear 

and the approximate solution and to investigate it as a function of parameter 

perturbation. Hence the error becomes 

((
U(E:) · U )2 ) 112 

~e(E:) = sc ~ sc , 

usc 
(2.30) 

where the notation is equivalent to equations (2.26) and (2.27). The result is 

shown in Figure 2.6 for positive and negative parameter perturbations in )., J.l 

and p. The quadratic approximation reveals a smaller error compared to the 

linear approximation over the entire range for both cases of a positive and nega­

tive perturbation. However, the best improvement is achieved for perturbations 

less than 20%. While -100% constitutes a lower limit for the error, it was 

found that above a perturbation of +200%, the error for the linear approxi­

mation becomes less than for the quadratic approximation (although physically 

this is an acceptable statement, mathematically the extension beyond + 100% is 

incorrect, since the assumption for the series expansion of the elastic parameters 

(eq. 2.21) was that the absolute value of the relative parameter perturbation 

remains smaller than one). 

It should be noted that the solution in equations (2.6) and (2.7) depends 

linearly on the perturbation in density. Therefore, the scattering problem for 

an inhomogeneity with a change in density only, can be exactly described by 

the linear approximation in equations (2.22) and (2.23). 

The difference in the errors between the linear and quadratic Rayleigh-Born 

approximation can be ·used in the inversion of a linearized problem. Mter the 

first iteration of the inversion, the quadratic Rayleigh-Born approximation is 

computed and the difference from the linear approximation can be applied to 
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adjust the first preliminary result. The corrected result will be the input for 

the second iteration. This scheme, should ensure a faster converging solution 

to the problem of inverting for the parameters of a scatterer. 

In the following, a quantitative estimation of the relative error of the linear 

approximation based purely on the relative perturbations in the elastic param­

eters from the background values is presented. This provides an important 

estimate for the ·error due to linearization of an experiment where no absolute 

values are available, except for assumed perturbations of the inhomogeneity 

from the background. The error is based on the equation (2.30) 

( 
(U(l) _ U )2) 1/2 ( (U(l) _ U(2) )2) 1/2 

Ae(I) = sc sc ~ sc sc 

U2 u(lh 
sc sc 

(2.31) 

This has the advantage that only perturbation terms of the elastic parameters 

remain in the resulting equation. Assuming equal perturbation for 

(2.32) 

it is found that 

(2.33) 

Thus for the case of similar perturbations in the density and the elastic param­

eters (n = 1) this yields C/4, whereas no density contrast (n = 0) produces 

an error of C/2 .. The dependence of this error on the perturbation in elastic 

parameters is shown in Figure 2.6 (dashed line). A good agreement between 

the linear approximation and the estimated error is found up to a parameter 

. perturbation of 20%. The derived equation provides a means to estimate the 
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minimum error in the total averaged scattered amplitude due to the lineariza­

tion of the problem. It should be mentioned that for the case of an inversion, 

additional errors associate with ill conditioning of the experiment and poor sig­

nal to noise ratios, for example, will increase. the total error for the estimated 

parameters of the inclusion. 

2.5 Investigation and Evaluation of the Rayleigh 

Limit 

The Rayleigh approximation generally is based on the assumption that the 

parameter kpR is small compared to 1, 

wR 
kpR= V. << 1, 

p 

{2.34) 

although the actual magnitude of the limit is· not known. The value of kpR 

depends not only on the wavelength, the velocity of the background, and the 

dimensions of the scatterer, but also on the. perturbations in the elastic pa­

rameters from the background values. Therefore, the Rayleigh limit of kpR is 

investigated as a function of perturbation in the elastic parameters. For a given 

perturbation and fixed value of kpR, the average square amplitude is computed 

ove~ all scattering angles, for the exact solution for the sphere (eq. 2.3) and 

for the Rayleigh approximation in the far field (eqs. 2.14 and 2.15). The two 

solutions tend to deviate with increasing kpR for a fixed perturbation value. 

The Rayleigh limit is determined from the value of kpR that is reached for a 

predefined maximum deviation of these two solutions. The result is shown in 

Figure 2. 7. The maximum deviation between the two solutions is set to 5%, 10% 

and 20%, while the parameter perturbation was chosen to vary, when possible, 

between -100% and +300%. Three different relations between the perturba­

tions of elastic moduli and density were selected. In addition, the velocity and 
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density ratios are indicated to demonstrate the effect of the parameter pertur­

bations. In the presented examples, the sign and increase in perturbation are 

kept equal for). and J.L, while the associated change in p varies in sign and mag­

nitude. Figure 2.7a) denotes the situation of a 50% reduced density increase 

in relation to the other parameters. The curves for the Rayleigh limit show a 

parallel trend for the different errors, with a smooth flat level between -75% 

and + 100%. For higher perturbations a slow decrease in the Rayleigh limit is 

observable. However, towards -100% the limit drops steeply, indicating a small 

value for the Rayleigh limit of a very low-velocity inclusion. This result has 

a natural explanation in the fact that kpR inside the inclusion becomes large 

and violates the Rayleigh limit condition. Changing the relation between the 

parameter perturbations will affect the shape of the curves as seen in the next 

examples. In Figure 2.7b), the density is kept at a constant level which pro­

duced a maximum in the Rayleigh limit for perturbations between -25% and 

-50%. This maximum is caused by the mutual influence of an underestimation 

of the behavior of the Rayleigh solution for low-velocity obstacles in the Mie 

diffraction region (kpR::::::: 1) and a general overestimation of the trend of the so­

lution at high frequencies. At some point these two processes compensate each 

other. Numerical examples illustrating this phenomena and a discussion may be 

found in Korneev and Johnson (1993b). For a third relation between the elastic 

parameters (Fig. 2.7c)), the maximum is reached for a lower negative pertur­

bation with a different amplitude. In both cases the trend of the curves for 

positive perturbations remains the same, indicating a continuously increasing 

deviation between the Rayleigh approximation and the exact solution. 

The results clearly suggest that the Rayleigh limit has a more flexible in­

terpretation than indicated by condition (2.34). Depending on the acceptable 

error between the Rayleigh approximation and the exact solution, values for 

the Rayleigh limit vary between 0.3 and 0.8 for a positive increase in parameter 

perturbation, and the limits reaches values of up to 0.9 for negative perturba­

tions. The constant shift between the graphs for the three errors over the entire 

range of perturbation indicates a relation between the error and the Rayleigh 
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Figure 2.7: Rayleigh limit for the parameter kpR as a function of parameter 
perturbation. The three curves correspond to three investigated error limits of 
5%, 10% and 20%. Also plotted are the velocity and density ratios associated 
with the chosen relation between the elastic parameters. 
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limit (kpR)lim which can be found from the equation 

(2.35) 

where D.e is the allowed error, and d a constant, defined by the perturbation 

in the elastic parameters from the background. In order to approximate the 

magnitude of d, the exact solution for the sphere ( eq. 2.3) is chosen, and a low 

frequency approximation is derived based on frequency terms up to fifth order 

(w5), thus. using the first four coefficients (l = 0, 1, 2, 3) of the exact solution. By 

comparing the parameter kpR of this improved approximation and the Rayleigh 

approximation based on third order terms (eqs. 2.6 and 2.7), we areable to 

evaluate d. The notation and assumptions from equation (2.32) yield in the 

vicinity of zero perturbation 

d ~· 0.4 7n ~ 5n + 2 
( 

2 ) 1/2 

6.4n + 1.6 
(2.36) 

Thus, for the low frequency Rayleigh approximation (eqs. 2.6 and 2.7), equation 

(2.35) provides a means to estimate the error of the Rayleigh limit with a 

minimum knowledge of the parameters involved. 

2.6 Conclusions 

The intention of this chapter was to investigate the accuracy of several 

asymptotic solutions to the problem of low frequency elastic wave scattering 

and to provide means to evaluate scattering experiments in their planing stage. 

The results were kept in universal format, allowing for a convenient application 

to various scattering problems in seismology, varying from local over crustal to 

mantle scale lengths. 
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A low frequency total field solution to the problem of elastic Rayleigh scat­

tering was investigated and produced, within the Rayleigh limits, exact results 

over the entire distance range of observation. This solution was subsequently 

compared to pure near and far field solutions. The generally used far field 

solution cannot be applied to the case of an inhomogeneity situated within a 

distance less than two wavelengths from the point of observation. Within this 

distance, the near field terms dominate the amplitude of the scattered wave, and 

P and S waves cannot be separated. This case, dependent on the wavelength of 

the incident wave, may arise in cross hole experiments when the inhomogeneity 

is located close to the observation well (Chapter 3.5) and in experiments where 

the scattering object is sited in the uppermost crust beneath the detecting sys­

tem. The inversion for the perturbation in the elastic parameters will fail if a 

Green function is applied that does not contain the appropriate near field terms. 

However, at a distance farther than 2>., the near field terms have decayed suf­

ficiently and the far field solution can be applied. At this distance, the mean 

value of the relative error between total and far field solution is 15% and 2% 

for the r and 8-components, respectively. The generalized amplitude distance 

relations (Figs. 2.2, 2.3) can be used to determine the scattered amplitudes 

for any case of low frequency elastic wave scattering as long as the results are 

normalized by the actual experiment parameter kpR. 

The availability of an exact solution made it possible to compute errors 

for the application of the Rayleigh approximation and associated solutions and 

to investigate them as a function of various parameters. The representation 

of the nonlinear Rayleigh approximation as a linear and quadratic Rayleigh­

Born approximation revealed, for the relative error, a strong dependence on 

the scattering angle for both the r- and 8-component. For a fixed parameter 

perturbation, it was found that the r-component incurs a larger error for forward 

scattering than for scattering perpendicular to the direction of incidence. Four 

distinct lobes about 45° off the axis of wave incidence developed for the error in 

the 8-component. In both cases the application of the quadratic Rayleigh-Born 

approximation reduced this error by a factor of 5. These results suggest that if 
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the orientation of primary source, scatterer and receiver are known, then it is 
\ 

possible to estimate the accuracy of the approximation due to linearization of 

the problem. 

The increase in magnitude of parameter perturbation caused increasing mag­

nitudes in the relative error for linear and quadratic approximations, although 

the exact amount depends on the sign of the perturbation. For a positive in­

crease of 100%, the maximum error amounts to 9% and 17% for the quadratic 

and linear Rayleigh-Born approximation, respectively. A decrease in elastic pa­

rameters caused a larger error. For the case of a void ( -100%), the deviation 

. was determined to be 19% for the quadratic and 37% for the linear approxi­

mation. As a consequence, a more :flexible interpretation of the magnitude of 

parameter perturbation is justified. As could be seen, the inequality (eq. 2.21) 

represents a very conservative limit, whereas a linearization in the case of per­

turbations below "'"' 20% should produce reliable results. In the case of inversion 

for the parameter perturbations, the difference between the linear and quadratic 

Rayleigh-Born approximation can be applied to correct the result after every 

iteration in the inversion procedure. A faster and more stable algorithm should 

be the result. 

In order to facilitate the estimation of the relative error due to linearization 

of the problem, an approximation of the error was derived, entirely based on the 

deviations in the elastic parameters from the background. This enables one to 

estimate the error prior to an experiment based on a minimum of information 

and may help to improve the planing of the investigations. It w:as found that the· 

equation provides an adequate representation of the relative error in the linear 

Rayleigh-Born approximation for a parameter perturbation of up to ±20%. 

One of the assumptions of the Rayleigh approximation is that the value 

of kpR is small compared to 1. However, thus far no exact evaluation of this 

limit has been performed. The investigation of the Rayleigh limit for kpR as a 

function of perturbation in the elastic parameters (allowing for various errors 

between the exact solution and Rayleigh approximation) produced surprisingly 

high values for the limit over almost the entire range of perturbation between 
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-100% and +300%. Maximum values of more than 0.9 were reached. A relation 

between the Rayleigh limit and the accepted error as a function of parameter 
'· 

perturbation was found. The high values for the Rayleigh limit allow the validity 

of Rayleigh scattering ( eq. 2.34) to be extended further toward the range of Mie 

scattering (R--+ ..X), and thus open a broader range for the application of elastic 

wave Rayleigh scattering. 

The results of this chapter have direct consequences for the planing stage and 

the successful conduction of seismic experiments in which scattered waves are 

measured and inverted to determine subsurface properties. The investigation 

of the near field limit for the influence of a scatterer is important for cross­

hole exp'eriments (e.g.), where the sources may be close to an inhomogeneity 

of unknown location. If a Green function containing near field terms is avail­

able, the placement of receivers within a distance of 2-X from the inhomogeneity 

could prove beneficial as large scattered amplitudes can be recorded. The pos-. 

sible extension of the Rayleigh limit to higher values is an advantage for the 

parametrization of inversion techniques. Most inversion techniques inverting 

scattered data rely on the Rayleigh approximation as a means to linearize the 

problem which implies that the inhomogeneities are point scatterers. Therefore 

a fine discretization of the medium is necessary to meet the requirement of a long 

wavelength relative to the scatterer size. However, the new results relax this 

limit and consequently a coarser grid spacing or, similarly, higher frequencies 

could be applied to the inversion technique. The investigation of these factors 

is the subject of the following chapter. 
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Chapter 3 

Theory and Numerical Inversion of the 

Nonlinear Scattering Problem 

3.1 Introduction 

The inversion of scattered elastic waves to determine subsurface structures 

has become an active area of research in recent years. The need to determine 

medium properties like elastic constants, scattering and anelastic attenuation 

(Lees et al., 1994), to detect and locate fracture zone (Vasco et al. 1995), 

partially molten zones (Zucca et al., 1989; Romero et al., 1993) and hydro­

carbon deposits, for example, led to the development of waveform inversion in 

addition to travel time tomography techniques. 

Elastic waves propagating through an inhomogeneous medium are affected 

in two ways. Their travel time is delayed or advanced depending on the nature of 

the inhomogeneities, and energy from the incident wave is scattered throughout 

the medium arriving at different times at the point of observation. The bulk of 

this scattered energy is delayed and becomes evident as various phases arriving 

after the direct wave in the seismogram {Aki, 1969; Korn, 1990). This energy is 

generally referred to as coda.. However, the coda contains valuable information 

about the medium and is the target of waveform inversion techniques (Tura, 

1990). 

Although the determination of the velocity structure by travel time inversion 

is a viable tool to subsurface imaging, it lacks the ability to estimate elastic 

properties, e.g. revealing information on the state of anelastic attenuation in 
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the medium. Furthermore, a problem which may arise in the use of velocities 

is that effects present in the elastic moduli and density may be diminished by 

the tendency to cancel each other in the equations for the P wave and S wave 

velocity, j(K + 4J-L/3)/p and r;JP, respectively. Gritto et al. (1995 b) showed 

that the bimodal character of a medium, deduced from borehole data, is only 

weakly observable in the velocity logs, but clearly evident in the bulk and shear 

modulus as well as the density. Therefore, it could prove advantageous to invert 

for the elastic moduli, as they may be more sensitive to changes of the subsurface 

structure. 

Recently, Korneev and Johnson (1993 a,b) derived a solution for the scat­

tering of an elastic P wave by a spherical inclusion of arbitrary contrast. In this 

section an asymptotic solution for this problem, the low frequency Rayleigh 

approximation investigated in Chapter 2, will be used to solve the problem of 

inverting for the location and elastic parameters of inhomogeneities. This ap­

proximation offers several advantages. As presented by Gritto et al. (1995 a), it 

was shown that near field terms of the Rayleigh approximation dominate over 

far field terms up to a distance of 2 A of the incident wave from the inhomogene­

ity. Thus, for the case of a typical cross hole experiment, where the target often 

is an inhomogeneity with unknown location, the use of long wavelengths may 

cause the receiver to be within 2 A of the inhomogeneity. Therefore, near field · 

terms become necessary and are considered in the present formulation. Simul­

taneously, because of the long wavelengths, the solution to the problem becomes 

less dependent on the shape of the inhomogeneity and should be applicable to 

a wider class of scatterers. 

The problem of inverting for the elastic parameters of inhomogeneities is 

inherently nonlinear. Therefore, in the past the problem has been linearized 

assuming small perturbations in the elastic properties with respect to the back­

ground medium which generally limits the application to the treatment of weak 

inhomogeneities (Chapter 2.4) (Lo et al., 1988). As shown in Chapter 2, this 

weak scattering assumption can be relaxed to a certain degree without tolerat­

ing too large· errors. However, in many cases encountered in subsurface imaging 
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the inhomogeneities reveal strong contrasts, and therefore the linearized inver­

sion fails to produce reliable results. The Rayleigh approximation, as stated in 

equations (2.6) and (2.7), exhibits a practical feature that can be used to solve 

this problem. As will be shown in the present chapter, it is possible to solve 

the scattered wavefield for the elastic parameters in an exact and direct way, 

therefore, extending the applicability of the inversion to a completely new class 

of strong inhomogeneities in the subsurface. 

The degree of nonlinearity of the elastic parameters as a function of pertur­

bation varies considerably over the magnitude of perturbation encountered in 

inversion problems. This relationship is investigated and conclusions for linear 

and nonlinear inversions are drawn. 

Various techniques are available to solve inverse problems. In many cases of 

tomographic inversion a discretization of the model space is chosen to express 

the problem in matrix formulation. This work is based on the same principle 

using singular value decomposition (SVD) to invert the matrix describing the 

problem. The disadvantage of this time consuming inversion process is balanced 

by the insight gained in understanding the inversion which is essential in the 

process of developing a new approach. Using SVD, important problems like 

resolving power, variance of the result, stability of the inversion, and Telated 

.questions will be studied for various geometries. 

Chapter 2 addressed the importance of near field terms in the vicinity of 

inhomogeneities. The influence of near field terms on the quality of the inversion 

of cross hole data will be shown for a typical underground geometry. Results 

include inversions based on Green functions with and without near field terms. 

The model resolution for these two cases is investigated and results indicate a 

possible source of misinterpretation for the case of a far field Green function, 

if the final interpretation is based on the model resolution. Furthermore, the 

importance of sufficient coverage of well placed sources and receivers to achieve 

best resolution will be addressed. 

The case of strong nonlinear scattering will be investigated using the model 

of a cavity representing a strong scatterer. The feasibility to resolve the strong 
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contrast between the cavity and the surrounding medium will be tested. The 

3-dimensional scattering of energy by an inclusion is a function of many param­

eters. . The distribution of energy can vary greatly depending on the incident. 

wave, its wavelegths in relation to the size of the inhomogeneity~ the distance 

of observation from the inclusion, and the elastic parameters of the medium. 

Thus it is essential to study the scattering properties of the medium under in­

vestigation first, before a successful survey can be planed. For the case of a 

cavity, it will be shown which typical survey geometries are most favorable for 

the inversion of scattered waves. 

3.2 The Non-Linear Inversion Problem 

The solution to the scattering problem outlined in Chapter 2 will be the 

basis for the 3-dimensional inversion for the location and the elastiC parame­

ters of an inhomogeneity. The inversion is based on the assumptions that the 

locations of sources and receivers are known as well as the elastic parameters 

of the background medium. However, mathematically there is no restriction 

on the location and the spacing between receivers and source locations. In the 

following, a point pressure source exciting P waves and a receiver located at 

distances of r0 and r, respectively, from the center of the inclusion are assumed 

{Figure 3.1). 

In Chapter 2, the equation governing the scattering process, are expressed 

in terms of the Lame parameter X, the shear modulus J.L, and the density p. 

For a better understanding of the physical processes describing the scattering 

problem, the Lame parameter henceforce will be substituted by the bulk mod­

ulus K which facilitates the description and the understanding of the nonlinear 

scattering case. This substitution provides a means to decompose the scatterer 

into equivalent force terms and to relate them to the physics of the problem. 

Thus rewriting equations {2.6) and (2.7) in terms of K, J.L and p yields 
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Receiver 

z Scattered Wave 

r 

Incident Wave 

X 

* Inhomogeneity 

v=2 Background 

Figure 3.1: Geometry of the problem. The properties of the inhomogeneity and 
the background are denoted by v = 1 and v = 2, respectively. A spherical 
wave, generated by a point pressure source, is incident upon the inhomogeneity. 
Again, the scattered wave is a function of r and {J. 
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(3.1) 

using the definitions of equations (2.8), (2.9), (2.10), (2.19) and (2.20)~ 

From equations (3.1) and (3.2) it is obvious that the scattered amplitude is 

nonlinear in terms of K and J.L. However, because of the similar structure of the 

coefficients a2 and b2 in equation (2.4) which is based on the symmetry in the 

shape of the scatterer, it is possible to introduce the substitution 

(~-1) 
(3.3) 
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(3.4) 

(3.5) 

which yields a system of equations which is linear in the new nondimensional 

parameters mK, mp. and mp 

(3.7) 

In the following mK, mp. and mP will be referred to as moments, although 

they must not be confused with the common seismological definition of a mo­

ment of an earthquake as a measure of size. However, the term moment is 

(3.6) 
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justified as reference to a source excitation mechanism in the sense that mK is 

responsible for a volume change, and therefore, excites scattered P waves only, 

whereas m"' and mp represent a force couple and a single force, respectively, 

exciting both, scattered P and S waves (Wu and Aki, 1985; Tarantola, 1986). 

Equations (3.6) and (3.7), revealing a linear relation between the scattered 

amplitudes and mK, m"' and mp, can easily be inverted to solve for the mo­

ments. The substitution in equations (3.3) and (3.4) introduced a closed form 

of the functions including mK and Kr, and m"' and J.Lr, and therefore, once the 

moments mK, m"', and mp are found, equations (3.3), (3.4), and (3.5) can be 

transformed to solve for the moduli and the density, yielding 

(3.8) 

(3.9) 

(3.10) 

The advantage of solving for the moments, rather than the elastic parame­

ters directly, is two-fold. The first and foremost benefit is the option to solve the 

nonlinear scattering problem in a direct and exact way. Arbitrarily large con­

trasts can be calculated exactly without much computational effort by solving 

for the elastic parameters directly, greatly increasing the applicability beyond 

conventional methods relying on linearized solutions·. Second, the moments 

mK, m"' and mp are dimensionless quantities, therefore producing functions of 

comparable magnitudes, which results in a more stable inversion process. In 
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contrast, solving for the elastic parameters directly, which by comparison re­

veal a difference in magnitude of 106 (e.g. bulk or shear modulus compared 

to density), can cause unstable inversion conditions even for well conditioned 

cases. 

3.3 Characterization of the Nonlinear Depen­

dence of the Elastic Parameters on the Mo-

ments 

The characterization of the nonlinear nature of the scattering problem pro­

vides an insight into the difficulties that may occur if a linearized approximation 

is applied. Equations (3.8) and (3.9) can be transformed to relate dimensionless 

properties of the elastic parameters to the dimensionless moments mK and m~. 

Rewriting equations (3.8) and (3.9) in terms of the relative. perturbations in 

K and J.L, it is possible to derive an equivalent dependence for both moments, 

yielding 

(3.11) 

(3.12) 

where the nonlinear dependence for both moduli is represented by the same 

function 

F(m) -
m 

1-m 

and m denotes the inversion parameters mK and mw 

(3.13) 
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This function is plotted in Figure 3.2. The values form range from -oo to 

1.0. At m = 1.0 the solid line approaches the physical limit. For this case, the 

moduli of the inhomogeneity are much greater than those of the background. 

The limit is represented by a rigid body that does not deform under loading (e.g. 

the displacement vanishes). Decreasing m between 1 and 0 rapidly decreases 

the value for the moduli and the inhomogeneity gradually becomes weaker. At 

m = 0 the moduli of the inhomogeneity and the background have equal values 

(homogeneous medium). Form< 0, the moduli continue to decrease until they 

vanish form---t-oo, representing the case of a vacuum. 

The curvature of the graph clearly indicates the asymmetry about m = 0. 

For m ---t 1 the graph becomes strongly nonlinear and overly sensitive to small 

changes in m, whereas for m ---t -oo the graph becomes approximately linear. 

This has two implications. First, the common problem of inverting waveforms 

scattered by small deviations about m = 0 is complicated by the fact that small 

negative perturbations have a different dependence on m than small positive 

perturbations. Therefore, linearized approximations of the inversion problem 

will have a distinct performance depending on the sign of the perturbation. 

Second, since the dependence of the elastic parameters on the moments becomes 

almost ,linear for extreme negative perturbations, e.g. a cavity, large changes in 

the moments produce small changes in the elastic properties only. Therefore, it 

could prove difficult to distinguish, based on scattered waves, between a cavity 

and a low density yet solid inhomogeneity. Simultaneously, for large positive 

perturbations small changes in the moments produce large changes in the elastic 

parameters, and thus the inversion of large positive contrasts may not be reliable 

due to unstable results. 

\ 
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1.0 

Figure 3.2: Nonlinear dependence of the deviation in the elastic moduli with 
respect to the moments mK, and mw The deviation in the moduli is represented 
by F(m), while the moments are given by m. 
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3.4 Matrix Formulation of the Scattering Prob­

lem and the Solution by Singular Value De-

composition 

In Chapter 3.2 the scattering problem was formulated in terms of the mo­

ments mK, mJ.t and mp as functions of the spherical coordinates r and {J ( eqs. 

3.6 and 3.7). This section is concerned with reformulating the problem in matrix 

form and subsequently solving it by singular value decomposition (SVD). Since 

all of the seismic field data are recorded by components arranged in cartesian 

coordinates, a rotation from spherical to cartesian- coordinates is applied prior 

to the matrix formulation. 

Combining equations (3.6) and (3.7) yields the total scattered field 

Ustoctre = Upre + Usr6· , , '' '' 
(3.14) 

Introducing functions containing all distance dependences the scattered field 

can be written as 

utot sc,r,6 - k!? ~ KrmKr + kPPm T pr p kPP ~ + J.trmJ.tr 

+ J!$mp0 + k:~mJ.tO 

+ kPSm T 
pr p + kps ~ J.trmJ.tr 

+ J?;mPO + k:~mJ.tO (3.15) 

with 



k!_S 
p8 

2 

-AC1Wf'e(Zp)sin8, k~~ = -2A:r._C2W:8 (Zp)'sin28 
qJ.L 

k~~ = 2B2.c2w;r(Zs)(3cos28- 1) 
qJ.L 
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(3.16) 

The rotation between the two coordinate systems is achieved by introducing 

direction cosines (rotating the components r and 8 tore, fl and z, yielding 

utot 
sc,x,y,z Up,x,y,z 1- Us,x,y,z 

- kpp ( -Kr ffiK rx X 
,_ ~~r ffiK (ry Y ,_ J?lr ffiK (rz Z 

,_ k~ mp (rx re ,_ kPP ( -pr mp ry y ,_ k~ mp (rz z 

,_ k~ mJ.L (rx re ,_ k:t. mJ.L (ry fl ,_ k:t. mJ.L (rz z 

,_ ~ mp (ex re ,_ kpp ~ -p9 mp ey y ,_ ~; mp (ez z 

,_ k~ mp. (ex re ,_ ~p (: -p.e mJ.L ey Y ,_ ~ mp. (ez z 

,_ kps ( -pr mp rx a:: ,_ kps ( -pr mp ry y ,_ kps ( -pr mp rz z 

,_ kps ( -p.r ffip. rx X 
,_ kPS ( -p.r mJ.L ry y kPS ( -,_. p.r mp. rz z 

,_ kps ( -p8 ffip Bx :V 
,_ ~s ( -p9 mP By y ,_ ~ mp (ez z 

,_ kps ( -p.e mJ.L Bx X 
,_ ~~ mJ.L (oy f1 ,_ ~~ mp. (ez z. (3.17) 
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Finally combining the distance dependent functions and direction cosines yields 

utot - (cKx ffiK + Cp.x ffip. + Cpx mp) :V sc,x 

utot 
sc,y (cKy ffiK + Cp.y mp. + cpy mp) fJ 

utot 
sc,z (cKz TnK + Cp.z ffip. + Cpz mp) z (3.18) 

where the c functions are defined as 

CKx kPJr (rx 

CKy - /?fr (ry 

CKz - /?fr (rz 

Cp.x k~ (rx + ~~(8x + k~~ (rx + ~~ (ex 

Cp.y k~ (ry + k:~(8y + k~~ (ry + ~~ (ey 

Cp.z - k~~ (rz + k:~(8z + k~~ (rz + k:~ (ez 

Cpx - kfj: (rx + k~(8x + k~: (r:z: + k~: (e:z: 

Cpy - kfj: (ry + ~(8y + k~: (ry + k~: (ey 

Cpz kr;f: (rz + k~(8z + k~pr (rz + kps 
mpe (e •. (3.19) 

At this point it is convenient to rewrite equation (3.17) in matrix form as 



I 
utot 

sc,x 

utot 
sc,y 

utot 
sc,z I 

CmKz Cm,..z Cmpz 

CmKy Cm,..ll Cmpy 

CmK• Cm,... Cmp• 

or in short form 

U=CM. 
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(3.20) 

(3.21) 

Asssuming a typical cross borehole experiment with M source receiver combina­

tions and a background medium which is parametrized into N volume elements 

(voxels), the matrix U is of dimensions 3M x 1, while C and M have dimensions 

3M x 3N and 3N x 1, respectively. 

Since equation (3.20) is linear in mK, m~ and mp, these moments can easily 

be computed by inverting the matrix C 

(3.22) 

A variety of methods exist to invert the matrix C, however, the method chosen 

here is SVD as it provides good diagnostic insight into the inversion problem. 

The C matrix can be decomposed into the product of three matrices (Menke, 

1989) 

C=WAVT (3.23) 

where W is a matrix of orthogonal eigenvectors spaning the data space, while 

similarly V is a matrix of eigenvectors that span the model space. The matrix 

A is the diagonal matrix of non negative elements called singular values. The 
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singular values are arranged in decreasing order with the possibility of zero val­

ues. However, before the inverse can be computed the zero singular values and 

the related vectors in W and V have to be eliminated from the system. Thus 

the rank of the matrix is reduced which is indicated by the index p denoting 

the number of non-zero singular values. Once the decomposition is computed, 

the inverse of C is readily given by 

(3.24) 

and thus, the solution to the inversion problem is given by 

(3.25) 

where M denotes the estimate of M. Furthermore, the decomposition of C 

into the matrices w p and v; allows the performance of the inversion to be 

investigated. A measure of the resolving power of the model parameters can be 

computed using the matrix V P by 

(3.26) 

In a perfectly resolved model, R is equal to the identity matrix I. If model 

parameters become dependent on each other and can no longer be resolved, the 

value of the diagonal decreases and spreads out to neighboring elements. In this 

sense the rows of Rare a qualitative measure for the resolution of each model 

parameter. 

The variance for the model estimate is given by the covariance matrix 

(3.27) 
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where 0"3 is the variance in the data, which is assumed to be uniform and 

independent of the model parameters. Thus, for a given data variance, the 

covariance of the model can be computed using SVD. 

In addition to zero singular values, it may happen, for ill-conditioned prob­

lems, that these values are very small (close to zero). In these cases the estimate 

M of the model in equation (3.25) may have very large components which may 

be unrealistic in a physical sense. Therefore, a common practice is to damp the 

system of equations and stabilize its solution. In the present case damping is 

achieved by setting to zero small singular values and their associated column 

and row vectors in W and yT, respectively. This causes the rank of the sys­

tem to decrease. However, because the information contained in the omitted 

equations is negligible, the solution of the inversion is not affected while the 

result becomes more stable. The question of how many singular values have to 

be deleted to produce a stable and reliable solution is most important, yet no 

simple answer exists. In many cases, a trial and error approach is attempted to 

find the most stable inversion result. However, in this work a more objective 

measure will be presented. 

Figure 3.3 shows a trade-off curve for a typical inversion problem. The un­

certainty, defined as the normalized standard deviation of the model, is plotted 

against model resolution. For an overdetermined undamped system; the model 

resolution is perfect as one solution can always be found. However, the ~so­

dated uncertainty reveals very large Values that can reach magnitudes larger 

than the model estimate, thus rendering the inversion result useless. Damping 

the system causes the resolution to decrease together with the uncertainty, thus 

gradually decreasing the error of the estimate. 1However, a reliable model esti­

mate has to have a well balanced resolution and uncertainty which requires a 

search for the right damping. For a trade-off curve with normalized axis, the 

best solution is provided by the resolution and uncertainty values associated 

with the point on the curve closest to the origin, which can be found by seeking 

the minimum length of a vector t between the origin and the curve. To deter-
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mine this point, the undamped model estimate is computed and t determined by 

ltl = V(LO- R)2 + (sd (M')) 2 
. (3.28) 

where sd (M) is the standard deviation or uncertainty of the model, and (LO-R) 

was used to compute the component of the t vector on the resolution axis 

(Figure 3.3). Damping the system is achieved by setting to zero the singular 

values and their associated vectors in W and VT and recomputing for every 

step the resolution R, the uncertainty sd (M), and t. This process iteratively 

is repeated until t starts to increase again, at which point the previous values 

for the model estimate, resolution, and uncertainty are chosen as the optimum 

inversion result. Figure 3.4 shows the length of the vector t as a function of 

the iteration process. At inversion step number 38 the length starts to increase 

again, and the result of step number 37 is the optimum inversion. The resulting 

vector is shown in Figure 3.3. This procedure provides a fast and objective 

way to compute the most stable solution without repeating the time consuming 

SVD of the background matrix for every new damping step, as the damping is 

performed after the initial SVD. 

3.5 ·Numerical Modeling of Near Field Inver­

sion Cases 

It was shown in Chapter 3.2 that the nonlinear scattering problem can be 

solved directly if the low frequency approximation (Rayleigh scattering) is ap­

plied. The advantage of quasi independence on the shape of the inhomogeneity, 

caused by the the long wavelength relative to the size of the scatterer, is paid 

for by the need to include near field terms in the solution. In a typical cross 

hole experiment with source and receiver wells separated by distances on the 

order of 10 m - 20 m, the location of the target prior to the investigation is 
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Figure 3.3: Trade-off curve for a typical inversion problem. The uncertainty, 
defined as normalized standard deviation of the model, is plotted versus the 
model resolution. The resolution axis is flipped to match perfect resolution 
with minimum uncertainty at the origin of the plot. 
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often unknown. However, the near field influence of an inhomogeneity extends 

to a distance of 2 wavelengths beyond the inhomogeneity (Chapter 2). Thus 

in the case of Rayleigh scattering, when the wavelength is much larger than 

the scatterer dimension, the receivers may well lie within the near field of the 

inhomogeneity. To illustrate this problem, the effect of a solution containing 

near field terms is evaluated with respect to a solution containing far field terms 

only, based on a numerical model of a field experiment. 

This field experiment was conducted at the FRI site in the southern part 

of the Grimsel test facility in the Swiss Alps. The facility is run by the Swiss 

National Coorporative for Storage of Nuclear Waste (NAGRA) to conduct re­

search on topics ranging from measurements of rock mechanical properties to 

hydrological studies to determine permeabilities of fractured zones in granit~. 

A cross hole tomographic experiment was conducted to determine the location 

and extend of two fractured zones crossing an area of approximately 20 m by 

10m in size. A more detailed description of the FRI field site can be found in 

Chapter 4.1. 

The numerical model of this test site extends 20 m in length and 10 m 
> • ' 

across. Sources and receivers are deployed in intervals of 2 m along the sides 

of the model (Figure 3.5). The background parameters are 5500 mfs and 3200 

mf s for the P and S wave velocities, respectively, while the density is 2650 

Kgfm3 • The attenuation in the model is determined by the relation 

Q;l (Ki + !JLi) 
(Kr + !JLr) 

Q-;1 J.Li 

JLr 
(3.29) 

where the indices i and r denote the imaginary and real part of the moduli, 

respectively. The complex parts of the elastic parameters are chosen such that 

the quality factor for the background amounts to Qp,a = 100. 

Three weak zones are defined as linear features running across the model 
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from the upper left to the lower right corner (Figure 3.5, left panel), consisting 

of a decrease by -11 %, -5 % and -10 % in the velocities and density with 

respect to the background medium. Simultaneously, the quality factor was 

reduced to Qp,s = 10. The parametrization of the model consists of 50 voxels 

with constant side lengths of 2 m. A single frequency for the forward modeling 

and the inversion is chosen to ensure that the wavelength of the incident wave 

is long compared to the inhomogeneities (one voxel in this model) and thus the 

requirements for Rayleigh scattering are met. Given the background velocity, 

a frequency of f = 445 Hz is chosen such that the resulting wavelength ( >. 
= 12.4 m) is about six times larger than a single voxel. There are several 

objectives for this experiment. First, is it feasible to invert for the structure and 

to resolve the model parameters from each other considering the long wavelength 

used? Second, if so, is it feasible to distinguish between the 3 weak zones with 

almost identical properties, and third, what effect do the near field terms in 

the solution have on the quality of the inversion? For the nonlinear forward 

modeling, equation (3.1) is used to generate the scattered field at the receivers. 

The weak zone is modeled as a series of single inhomogeneities, for each of 

which the scattered field is computed independently before the superposition of 

all scattered fields is determined at each receiver site. The inversion is performed 

with the same parametrization as for the forward modeling, while the data is 

kept noise free, therefore providing a means to evaluate the performance of the 

inversion in relation to the use of a low frequency signal and the consideration 

or dismissal of near field terms alone. 

The inversion is performed by solving the system of equations (3.20) contain­

ing near field terms and substituting the moments mK, m'"' and mp in equations 

(3.5), (3.6) and (3.7) to determine the elastic parameters K 17 J.l.l and p1• The 

result is presented in Figures 3.5 and 3.6 showing the bulk modulus at the top, 

the shear modulus in the middle, and the density at the bottom of the plot. 

The real parts of the properties are shown in Figure 3.5 It is evident that the 

fractured zones are recovered, revealing distinct amplitudes for the three degrees 

of weakness for most of the fractured area. A decrease in resolution can be seen 
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by fading colors in the center of the image particularly for the bulk modulus 

and to a lesser degree for the density. The bulk modulus is the least constrained 

of the three properties, as it is only affecting P wave propagation, and thus, for 

the purpose of an inversion, can only be reconstructed from P to P scattered 

phases, whereas the shear modulus and the density can be determined from P 

to P and P to S wave scattering. Therefore, a reduction in model resolution 

due to a non-optimum geometry will first be apparent in the bulk modulus. In 

the present example the minimum resolution is about 0.75 for some pixels in 

the central row of the panel for the bulk modulus, indicating that they cannot 

be perfectly resolved from neighboring elements. Nevertheless, the surrounding 

pixels reveal a high level of resolution, indicates that these model parameters 

have been sufficiently resolved, and in this sense, they are independent to a high 

degree. 

The imaginary parts (Figure 3.6) reveal a decrease in the quality of the 

inversion result. Whereas the shear modulus shows an acceptable result for the 

fracture zone as a whole, the result for the bulk modulus indicates a trend in 

amplitudes only, coinciding with the strike of the disturbance. The reason for 

the decrease in quality of the imaginary parts lies in the correlation between 

the real and imaginary parts. The larger amplitudes of the real parts represent 

a higher noise level for the small amplitudes of the imaginary parts. Therefore, 

the relative error is much larger for the imaginary parts, causing the reduction 

in quality. 

Eliminating the near. field terms in equation (3.20) and recomputing the in­

version yields the result shown in Figure 3.7. Again, the model is plotted in the 

left panel for comparison. As can be easily seen, the inversion fails to produce 

any meaningful result, either in the amplitudes or in the geometric structure of 

the anomalies. However, the model resolution produced values comparable to 

those of the inversion including near field terms. Thus in a cross hole situation, 

the lack of near field terms can lead to situations where the inversion produces 

erroneous results which wrongfully are supported by acceptable model resolu­

tion. In such a case without further knowledge, a misleading evaluation of these 
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Figure 3.5: Inversion results for the real part of the elastic parameters computed 
with the total field Green function. The left panel shows the model, while the 
inversion result is given on the right. The bulk and shear modulus, as well as 
the density are presented in the top, middle and bottom of the plot respectively. 
Sources are denoted by stars, whereas receivers are given by triangles. The reso­
lution is represented by the intensity of the color. Full saturation reveals perfect 
resolution, whereas fading to white indicates total loss of model resolution. 
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Figure 3.6: Inversion results for the imaginary part of the bulk and shear mod­
ulus computed with the total field Green funtion . 
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results can cause severe interpretation errors. 

To investigate the improvement of the inversion result based on a better 

source receiver geometry, two receivers are added to the upper and bottom side 

of the model area. The improved geometry is shown in Figure 3.8 which reveals 

the inversion results for the real parts, whereas Figure 3.9 shows the results for 

the imaginary parts again. The improvement of the inversion is evident in both 

plots. All features are clearly recovered while the model resolution increased in 

those panels which revealed non perfect results before. The improvement is most 

remarkable for the imaginary parts which reveal an almost perfect inversion 

result. To emphasize this improvement, Figure 3.10 shows the resolution for the 

old and improved geometry for the real parts alone. In this figure the resolution 

is plotted in a color scheme with red denoting zero and green indicating perfect 

model resolution. The result derived from the old geometry is plotted in the 

left panel. The lowest value of about 0. 75 for the bulk modulus can be found 

in the center towards the edges of the model. The shear modulus shows perfect 

resolution while the density reveals slight decreases in the central part of the 

model as well. The improvement is evident in the right panel with prefect model 

resolution for all parameters. In all cases the resolution increased not only at 

the edges of the model, close to the new receiver locations, but in the central 

parts of the model as well. 

It can be learned from this example that a well designed geometry can pro­

vide favorable inversion results. In near field situations additional receivers at 

the side of the model add to the information content of the system by improv­

ing the angular coverage. Mathematically, this means that the scattered field 

described by the equations (3.1 and 3.2) becomes more distinct for different 

source receiver pairs, as for this case, the ~ngle (}between a single pixel and the 

receivers takes on different values, in comparison to the case with all receivers 

lined up at one side of the model. Thus the situation can be avoided where the 

equations become almost equal, contributing little independent information to 

the solution of the system. This lack of information produces small singular 

values in the decomposition of the coefficient matrix, which will cause unstable 
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Figure 3. 7: Inversion results for the real part of the elastic parameters computed 
with the far field Green function. 
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Figure 3.8: Improved inversion results for the real part of the elastic parameters 
computed with the total field Green function, due to better source receiver 
coverage. Note the additional receivers at the top and bottom of the panels. 
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Figure 3.9: Improved inversion results for the imaginary part of the bulk and 
shear modulus computed with the total field Green funtion, due to better source 
receiver coverage. 
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inversion results. 

3.6 Numerical Modeling of Strong Nonlinear 

Scatterers with Particular Consideration of 

Source Receiver Geometry 

A common problem in geophysical exploration is the determination of the 

location and the size of cavities in the subsurface structure. The reasons are 

widespread, ranging from the detection of abandonded mine shafts to the ver­

ification of underground facilities for military purposes. In the past, attempts 

have been undertaken to solve this problem (Cote et al., 1995). However, al­

though some methods provide a approximate location for the structure, most 

·fail to give reliable estimates of the actual volume. The present section will 

address this problem, proposing a detailed study to ensure optimum inversion 

results for future investigations of this class of problems . 

. Cavities having a reduction of 100% in their elastic properties with respect 

to the surrounding medium comprise a class of strong scatterers. Therefore, 

inversion approaches relying on a linearized solution are not suitable for the 

problem, as one of their main restrictions is the assumption of small perturba­

tions in the elastic properties from the background medium. This fact is most 

unfortunate, considering the possible advantage of a good signal to noise ratio 

of the scattered waves caused by the large contrast in properties. However, the 

nonlinear approach introduced in Chapter 3.1 takes advantage of the strong 

scattered waves without being bound by any limitations regarding the scat­

tering strength. Therefore, the possibility of inverting for the location and the 

structure of underground cavities is a promising feature of the present approach. 

Considering the problem that the location and extent of a near surface cav­

ity needs to be determined, the question arises as to what source and receiver 

geometry is most promising for a successful survey. Figure 3.11 depicts 4 com-
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Figure 3.10: Resolution for the real part of the elastic properties for the case 
of ordinary transmission geometry (left panel) and improved source receiver 
geometry (right panel) . The resolution is indicated by the color scheme (green: 
perfect resolution), (red: no resolution) . 
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mon geometries in near surface exploration surveys. For the common situation 

of a cross hole experiment (Case A) the cavity is located in between the bore­

holes and transmission data is used to study the problem. However, for the 

case of only one borehole, a VSP survey can be conducted with sources at the 

surface and receivers in the less noisy borehole environment (Case B). In this 

case, forward and side scattered energy is considered depending on the exact 

location of the sources and receivers. Case C shows a situation where sources 

and receivers are both located in the same borehole and only back scattered 

waves are recorded. · The advantage of this set up is that strong amplitudes 

from the incident field do not interfere with back scattered energy, and thus 

removal of the incident wavefield generally is not necessary. This compares to 

Case D where the same source receiver geometry is located at the surface, in 

the case where no borehole is available. This case may not be favorable for 

other reasons, such as multiple scattering in the inhomogeneous surface layers 

interfering with the primary scattered wavefield. 

The question of which geometry is favorable over the others depends highly 

on the target under investigation. The 3-dimensional scattering of energy by 

an inclusion is a function of the incident wave, its wavelength in relation to the 

size of the inclusion, the distance of observation from the inclusion, and the 

elastic properties of the media involved. The distribution of scattered energy 

can vary greatly based on these factors, and therefore, it is imperative to study 

this problem before a successful survey geometry can be assigned. Figure 3.12 

shows the scattering diagram of a sphere shaped cavity for an incident P wave 

generated by a point pressure source at a distance of 2 >.. The wavelength is 

12 times larger than the diameter of the cavity. The scattered amplitudes are 

recorded at a radial distance of 2 >. from the center of the cavity. The P to 

P scattered amplitudes are plotted on the left side of the graph, while P to 

S converted amplitudes are given on the right. The scattered amplitudes are 

symmetric along the axis of wave incidence. It can be seen from this example 

that little energy is forward scattered for both P and S waves. While most of 

the scattered P wave energy is back scattered at 180°, the P to S converted 
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Case: C 

Case: D 

Figure 3.11: Four common geometries used in near surface exploration. X's 
denote sources while V's denote the receivers. Case A: borehole transmission 
survey, Case B: VSP survey, Case C: Reflection survey in borehole, Case D: 
Reflection survey at surface. 
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energy is back scattered at an angle of 135°. It is evident that more of the 

incident P wave amplitude is converted to scattered S waves than scattered P 

waves. In order to detect and to determine the properties of the cavity in this 

example, seismometers have to be deployed on the source side of the cavity to 

record the back scattered energy. To determine the bulk modulus, seismometers 

have to be arranged close to the source to record the back scattered P wave 

amplitudes which carry the information to estimate the bulk modulus (equation 

3.1). As the source is at a distance of 2 >.from the cavity, seismometers should 

be placed at an equal distance of 2 >. from the cavity and the source to record the 

back scattered S wave energy under 135°. This energy is essential to constrain 

the location, as well as the shear modulus and the density which are zero for 

the case of a cavity. Any other seismometer locations will fail to record the 

largest scattered amplitudes and thus make it difficult to detect the presence 

of the cavity by means of scattered waveforms. This example is intended to 

demonstrate the need for a careful analysis of the complicated nature of the 

scattering processes. 

Several aspects will be addressed in the present numerical example. First, it 

is important to determine the performance of the nonlinear inversion approach, 

as outlined in section 3.1, in the presence of a strong inhomogeneity. An appro­

priate test case is the model of an underground cavity. Second, does the source 

receiver geometry have as strong an influence as suggested by the last figure? 

And third, the spatial parameterization in the inversion thus far has always been 

identical to the parameterization used for forward modeling. In the following 

example the performance of different parameterizations for forward modeling 

and inversion is investigated. This case always arises in nature, where the in­

cident wave samples a continuous medium and is affected by inhomogeneities 

on all scales. However, for the inversion the medium has to be parameterized 

into discrete blocks whose properties are being investigated. Thus it is desir­

able that the elastic quantities inside the discrete blocks are averaged over each 

single volume, therefore producing mean values of the properties which depend 

on the discretization. For the forward modeling the parametrization presented 
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in Figure 3.13 (upper panel) is applied. The cavity is comprised of 64 voxels of 

volume 1 m3 , each of which is considered a small inhomogeneity. As before, the 

exact scattered wavefield is computed for each single voxel and their superpo­

sition calculated for each receiver site. The parameterization for the inversion 

is shown in the bottom panel of Figure 3.13, where each of the new voxels has 

a total volume of 8 m3 . The wavelength of the experiment was chosen to be 

about six times larger than the voxel size of the inversion, to satisfy the con­

ditions for Rayleigh scattering. The purpose of the small discretization for the 

forward modeling lies in the physics of Rayleigh scattering. One of the under­

lying principles of Rayleigh scattering is that the wavelength is long compared 

to the scattering object such that there is no phase relation in the amplitudes 

that have been scattered by adjacent objects. The consequence for the forward 

modeling is that either the single voxels are chosen to be as small as possible, 

which is computationally expensive, or the distance of observation is increased 

such that the angle between the receiver and neighboring voxels becomes small 

enough so that the difference in the phases of the scattered waves vanishes. For 

the inversion, however, the discretization is chosen such that the size is small 

compared to the wavelength, yet the phase information between neighboring 

elements has to be preserved to resolve adjacent voxels. Therefore, it is desire­

able to decrease the distance of observation and keep the angle between adjacent 

voxels large enough to maintain the phase difference in the scattered waves. As 

can be seen, a trade off is evident in the modeling experiment between the op­

timum distance for forward modeling and the inversion. The best compromise 

for the example under investigation is determined to be at about 2 .A distance 

from the inhomogeneity. It is found for this distance that the phase relation 

between the small voxels in the forward modeling decreased sufficiently, while 

it is still possible to resolve adjacent elements in the inversion. This fact led to 

the choice of 2 .A as observation distance for the investigation of the scattered 

amplitudes in the last paragraph (Figure 3.12). 

The numerical model of the cavity is shown in Figure 3.14. For reasons of 

brevity only one vertical slice through the model and only the real parts are 
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Parametrization for Forward Modeling 

Parametrization for Inversion 

Figure 3.13: Parametrization of the model for the forward modeling (top) and 
the inversion (bottom). Total volume of the cavity is 64 m3 , with each voxel 
having a volume of 1 m3 for the forward modeling (top), and 8 m3 for the 
inversion (bottom). 
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displayed. For the forward modeling background values of Vp = 4750 m/ s, 

Vs = 2750 m/ s and p = 2000 K gfm3 are selected which translate into the 

bulk and shear modulus values presented in Figure 3.14. The parametrization, 

including the background medium surrounding the cavity, was chosen to study 

possible interferences between neighboring voxels with strong contrast in the 

elas~ic parameter. According to the choices of geometries in Figure 3.11, three 

set ups are selected for the inversion. A transmission survey, representing the 

cross hole case, a VSP geometry with sources located at the surface and receivers 

in the borehole, and a reflection survey, representing an array of both sources 

and receivers either at the surface or located in one borehole. Each of the three 

set ups consists of groups of 5 sources and 15 receivers. However, to reveal the 

effect of directivity in the amplitudes of the scattered waves on the performance 

of the inversion, the receivers are deployed in two different ways. One is a 

general set up of 15 receivers separated by 1m spacing located at()= 0° for the 

transmission case, at () = 180° for the reflection, and at () = 270° for the VSP 

case (refer to Figure 3.12 for orientation). Second, the receivers are split into 3 

groups of 5 each deployed at()= 315°, () = 0° and()= 45° for the transmission, 

at () = 225°, () = 180° and () = 135° for the reflection, and at () = 225°, () = 270° 

and () = 315°·for the VSP case. The purpose of the second set up is to record 

the maximum scattered P and S wave energy, simultaneously. 

The ·results for the reflection survey are displayed in Figure 3.15. The results 

for the split receiver geometry (3 groups of 5 receivers) is shown in the left panel, 

while the single group geometry (1 group of 15 receivers) is given in the right 

panel. Because of space limitations in the figure, a star represents a group of 5 . 

sources while a cross denotes 5 receivers. Similarly, the locations of the sources 

and receivers symbols are not drawn to scale, rather th~y should indicate their 

position relative to each other at a distance of 2 >. from the· center of the inclusion 

in the right panel and additionally are separated by a distance of 2 >. in the left 

panel. 

It is evident in the left panel of Figure 3.15 that the inversion produced 

good results for all three parameters. The background values are well recovered 
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Figure 3.14: Numerical model for the real parts of the elastic parameters for 
the case of the cavity. The cavity is modeled by sixteen central voxels, while 
the outer delimiter represents the background medium. 



78 

and the values inside the cavity are close to zero. The background values for 

the bulk modulus show slightly larger deviations due to its decreased constraint 

depending on the scattered P wave only. No interference is evident hetween 

the strong contrasts across the cavity boundary. This is due to the fact that 

equation {3.1) is nonlinear in the elastic parameters and thus strong deviations 

can be accommodated in the inversion. In contrast, the inversion using the 

single receiver array failed to produce a meaningful result. Although the am­

plitudes scale in the correct magnitude range, their location has no relation to 

the model. It should be noted that, although a considerable amount of P wave 

energy is backscattered (Figure 3.12), the result for the bulk modulus reveals no 

improvement over the other parameters. This suggests that the poor geometry 

produced coupling between the bulk modulus and the remaining parameters, 

thus limiting the quality of the inversion result. For the transmission case (Fig­

ure 3.16) neither of the two geometries produced correct amplitudes or locations, 

with amplitudes ranging widely from negative to positive values. However, this 

is not surprising, as little energy is forward scattered for this example (com­

pare to Figure 3.12). Finally the VSP geometry reveals intermediate results for 

both receiver arrays {Figure 3.17). In both cases the shear modulus and density 

show acceptable images, while the bulk modulus again produces no reliable re­

sult. Although the amplitudes for the shear modulus underestimate the cavity 

slightly (negative values) its location is well determined. The inversion for the 

density produced correct background values while the estimates for the cavity 

are slightly wrong. The increase in performance of the VSP over the transmis­

sion case can be explained by the fact that considerably more S wave energy 

is being side scattered (Figure 3.12), producing better inversion results for the 

shear modulus and the density. 

This simple numerical experiment clearly demonstrates the complicated na­

ture of the scattering of elastic waves. For a successful detection of a subsurface 

inhomogeneity it is imperative to incorporate all available information prior to 

the experiment and to investigate the scattering mechanism of the expected 

target body. Failure to do so, may lead to a wrong experimental design, which 
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Figure 3.15: Inversion results for the real parts of the elastic parameters of 
the reflection survey. The cavity is represented by four central voxels, whereas 
the background is given by the surrounding area. The positions and number of 
sources and receivers are not to scale. One triangle and one star is representative 
for a group of 5 receivers and 5 sources, respectively, located at a distance of 
2 .\ from the center of the cavity. The left panel reveals the results for the 
geometry using three groups of 5 receivers each, located at (} = 225°, (} = 180° 
and (} = 135° (refer to Figure 3.12 for orientation), while the right panel shows 
the results for one single group of 15 receivers located at () = oo. In both cases 
the source is located at (} = 0° . 
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Figure 3.16: Inversion results for the real parts of the elastic parameters of the 
transmission survey. The notation is similar to that of Figure 3.15, except that 
the three groups of 5 receivers in the left panel are located at () = 315°, () = oo 
and () = 45°, whereas the group of 15 receivers in the right panel is located at 
() = 0° (refer to Figure 3.12 for orientation) . 
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can produce erroneous results no matter how well the experiment and the data 

processing are being conducted .. 

3. 7 Inversion of Elastic Waves Scattered by a 

High Velocity Inclusion 

In Chapters 3.5 and 3.6 forward modeling and inversions were performed 

using identical Green functions. The purpose of the present chapter is to in­

vert synthetic data using different Green functions for both processes and to 

investigate the performance of the inversion process. Furthermore the effect of 

correlation will be studied to determine possible leakage between the parame­

ters. 

The forward modeling is based on the exact solution for the scattering of 

elastic waves by a sphere (Korneev et al. 1993a, 1993b), whereas the inversion 

uses its low frequency Rayleigh approximation. Thus the feasibility to recover 

an anomaly, by applying a frequency band limited approximation to invert ex­

act broadband data, is investigated. The inhomogeneity consists of a sphere 

with a 10 % reduction in density relative to the background medium. As the 

bulk and shear modulus are kept constant, the velocities consequently are in­

creased. The background values are taken from the example in Chapter 3.5 with 

K = 37.42 GPa, J.L = 27.14 GPa and p = 2650 Kgfm3 (V, = 5270 mfs, Vs = 

3200 m/ s), while the sphere has a density p = 2385 Kgfm3 (V, = 5555 m/ s, ~ = 

3373 mfs). Based on these values it is possible to study the correlation between 

the parameters by inverting for the density anomaly and investigating side ef­

~ects on the elastic moduli. In the ideal case, correlation should be negligible 

and the values for the elastic moduli should remain unchanged. 

The low density sphere with a diameter of 1 m is located approximately at 

the center (x=5.3m, z=11.3m) of a crosshole geometry consisting of 20 sources 

and 20 receivers separated by an interval of b..z = 1m each, with a horizontal 

separation of 10 m (refer to Figure 3.18 for orientation). Figure 3.16 displays 
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Figure 3.17: Inversion results for the real parts of the elastic parameters of the 
VSP survey. The notation is similar to that of Figure 3.15, except that the 
three groups of 5 receivers in the left panel are located at at () = 225°, () = 270° 
and () = 315°, whereas the group of 15 receivers in the right panel is located at 
() = 270° (refer to Figure 3.12 for orientation) . 
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the incident wave for a source located at the center (z = 10 m) of the source 

gather. The x- and z-components are plotted at the top and bottom, respec­

tively. Because of the small size of the sphere and relatively weak decrease in 

density only, the amplitudes of the scattered field are too small to be observ­

able when they are displayed together with the incident field. Furthermore, 

the travel time differences between the two wavefields are so small that their 

phases cannot be separated. Thus the scattered field is plotted in a separate 

seismogram section, displayed in Figure 3.17. It can be seen that even for the 

example of a single sphere in a homogeneous medium the scattered wavefield is 

of complicated nature. Two major wave groups can be seen. The first represents 

P to P scattered phases, visible in trace 1 in the time window between t = 3.0 

ms and t = 3.5 ms, while the second denotes P to 8 scattering which appears 

between t = 4,3 ms and t = 4.8 ms~ In the first group several arrivals can be 

seen. The first pulse is the P2 P2 phase which is reflected by the sphere. The 

indices denote the medium in which the waves propagate. The second pulse is 

a superposition of two phases that arrive almost simultaneously. These are the 

P2 P1 P2 and P2 A P2 phase. The first propagates through the sphere, while 

the second is diffracted on the inside of the sphere propagating with the P wave 

velocity of the sphere. The second wave group represents the same travel paths 

with the exception that the waves convert to 8 waves while being scattered 

from the sphere towards the receivers. Thus they represent P2 82 , P2 P1 82, 

and P2 P1 82 for the first, second, and third arrival, respectively. 

The stronger amplitudes of the incident over the scattered field by a factor 

of more than 103 prevented the inversion for the structure of the inhomogeneity 

without removing the incident field first. The large amplitudes of the incident 

field produce numerical noise that is much stronger than the signal of the scat­

tered wavefield and hence a coherent image of the inhomogeneity cannot be 

reconstructed. The incident field is generated by a second set of numerical sim­

ulations using the same geometry and elastic parameters for a homogeneous 

background without the inhomogeneity. The incident field subsequently is sub­

tracted from the total field and the remaining scattered wavefield is used in the 
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Figure 3.18: Incident field for the source position at z = 10m; a) x-component, 
b) z-component. 
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Figure 3.19: Scattered field for the source position at z =10m; a) x-component, 
b) z-component. 
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present inversion attempt. 

The area to be inverted for consists of 13 x 20 voxels with a side length of 

1 m each (Figure 3.18). As before, sources and receivers are denoted by stars 

and triangles, respectively. The parametrization is extended beyond source and 

receiver positions to investigate whether scattered waves are being mapped into 

these locations. The results of the inversion is split into three panels, with bulk 

modulus, shear modulus, and density plotting at the top, in the middle, and at 

the bottom, respectively (Figure 3.18). The inversions are computed for a total 

of 25 frequencies and the results stacked. The frequencies vary from 122 Hz to 

5981 Hz. Considering a background velocity of v;, = 5270m/ s, this translates 

to wavelengths between A = 43.2m and A = 0.88m for the incident wave, and 

Rayleigh limits between kpR = 0.07 and kpR = 3.56, respectively. Thus, the 

wavelength of the incident wave spans the whole range from Rayleigh to Mie 

scattering. Although the results for the single frequency inversions vary, the 

averaging process is successful in recovering the density perturbation. It can be 

seen that for most of the voxels the background values for the three parameters 

are well recovered. This result can be extended to the source and receiver 

regions which indicates that no amplitudes are mapped into these positions and 

the inversion produced stable results. The density reveals a negative deviation 

from the background value at the approximate position of the sphere. However, 

the exact location of the sphere is at x = 5.3 m and z = 11.3 m, whereas 

each voxel of the parametrization is centered around values with 0.5 m spacing. 

Therefore, the inhomogeneity is parametrized by the four neighboring voxels at 

(x=4.5m, z=10.5m), (x=5.5m, z=10.5m), (x=4.5m, z=l1.5m), and (x=1.5m, 

z=11.5m), with most of its volume residing in the voxel at (x=5.5m, z=11.5m). 

Accordingly, the inversion result the strongest deviation in this voxel. Since 

the returned value of the inversion is a function of the product of the deviation 

from the background value times the scatterer volume, the deviation in the 

density in voxel (x=5.5m, z=11.5m) has to be less than the original 10 %, as 

it parametrizes the scatterer only by a fraction. Therefore, the adjacent voxel 

at (x=4.5m, z=11.5m) reveals some deviation in density that comprises part of 
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Figure 3.20: Inversion result of the scattered wavefield for the elastic moduli 
and the density. 
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the scatterer as well. 

Taking the location of the scatterer into consideration, it becomes evident 

that the most noise in the images of the bulk and shear modulus appears around 

that particular position. This is caused by correlation between the density 

and the elastic moduli based on the parametrization of the medium. Figure 

3.19 shows the correlation between the value of the density in voxel (x=5.5m, 

z=11.5m) and the surrounding voxels of the model for each model parameter. 

The top panel shows the correlation between the density and the bulk modulus, 

the middle panel the correlation between density and shear modulus, while the 

bottom part reveals the correlation of the density with itself. The values range 

from -1 (anticorrelation) to +1 (perfect correlation). As expected, the auto­

correlation of the density value at voxel (x=5.5m, z=11.5m) is unity (bottom 

panel of Figure 3.19), while the neighboring elements surrounding this voxel 

reveal a correlation of -0.1. The correlation decreases farther away from the 

object revealing mean background values of 0.0029. The top panel shows a neg­

ative correlation of -0.4 between the density and the bulk modulus at the same 

location . . As expected, this correlation amplifies the noise in this region and 

produces the weak anomaly apparent in the top panel of Figure 3.18. However, 

the background correlation reveals a very low value of 0.0017. Similarly, the 

correlation between the density and the shear modulus (middle panel of Figure 

3.19) reveals a high value of +0.8 at the location of the object, and amplifies 

the noise in this area (middle panel of Figure 3.18). The mean background 

correlation between density and shear modulus is equally low at -0.0017. The 

overall low mean background value for the correlation means that little energy is 

smeared from the voxel of the inhomogeneity to neighboring pixels and indicates 

that the parametrization resolves the model well. 

3.8 Conclusion 

The thesis of this chapter was to reformulate the nonlinear scattering pro b­

lem in terms of a direct linear solution and to invert this solution for the elastic 
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Figure 3.21: Correlation between the density value at voxel (x = 5.5m, z = 
11.5m) and the model parameters. Top: Correlation between the density and 
the bulk modulus, Center: Correlation between the density and the shear mod­
ulus, Bottom: Correlation among the density values . 
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parameters of the medium. The inversion was investigated to determine the 

need for near field terms in certain cross hole situations, the resolving power of 

several source receiver geometries, the performance in the case of strong inho­

mogeneities, and the correlation between model parameters. 

Reformulating the expression of the scattered field in terms of moments 

mK, m"', and mp represents a decomposition of the excitation mechanism of 

the scatterer and has several advantages. The scattered field and the elastic 

parameters depend linearly on the moments, and therefore, it is possible to solve 

for the moments first which subsequently can be used to determine the elastic 

parameters of the medium. This substitution stabilizes the inversion process, 

as the moments are unitless properties of equal magnitude. Further, strong 

inhomogeneities can be easily inverted for by solving the equations directly, 

without having to iterate based on a linearized approximation, derived for weak 

scatting cases. In most cases the linerized applications fail to produce reliable 

results for deviations larger than 20 % (compare to Chapter 2.4). 

The nonlinear dependence of the deviation of the elastic parameters on the 

moments reveals that deviations between - 50 % and + 100 % exhibit the 

strongest nonlinearity, whereas extreme or negative deviations can be approx­

imated by a linear fit but with almost no change in the moments for negative 

deviations in the elastic parameters. As a consequence it may not be possible 

to distinguish between a cavity and a solid inhomogeneity with small values in 

the elastic parameters. 

The SVD was selected to invert the matrix system of linear equations as it 

provides a valuable insight into the physics of the problem. The decomposition 

into singular values allows the degree of independence among equations in the 

matrix system to be studied. Equations that are almost linearly dependent 

produce small singular values that cause instabilities during the inversion and 

therefore need to be set to zero. An automatic technique was chosen to damp 

the system, by minimizing the distance between the origin and the trade-off 

curve. The damping was achieved by progressively setting smallsingularvalues 

and their associated eigenvectors equal to zero until the resulting resolution and 
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variance produce an optimum value on the trade-off curve. This damping value 

is found to produce the best result in terms of a trade-off between resolution 

and variance of the parameters. 

The numerical modeling of an underground crosshole situation revealed that 

in the absence of noise, it is possible to invert Rayleigh scattered waves to solve 

for the elastic parameters of the medium. It was shown that although the size 

of a single voxel is small compared to the wavelength, its value was successfully 

retrieved. As indicated in Chapter 2.3, it was shown that near field terms are 

important in a crosshole situation when the Rayleigh approximation is used to -

linearize the scattering problem. The long wavelengths cause the receivers to 

lie within a distance of 2 A from the inhomogeneity and near field terms become 

necessary to produce correct results. Although the model resolution produced 

by the Green function containing only far field terms reveals an acceptable 

result, the amplitudes of the elastic parameters deviate from the true model by 

up to 2 orders of magnitude, and thus may lead to erroneous interpretations. 

The importance of a good source receiver geometry was presented by adding 2 

receivers at selected positions which increased the angular coverage of the model 

area. This produces equations that are less linearly dependent and therefore add 

new information to the system. Adding two receivers to an existing array of 

10 sources and 10 receivers improved the model resolution in the least resolved 

areas from 0.6 to 0.9. 

The 3-dimensional scattering of energy is a complicated process almost im­

possible to visualize, as it depends on many parameters. An important factor 

are the elastic parameters of the medium, and therefore the scattering process 

strongly depends on the object under investigation and needs to be studied to 

determine the best geometry for a successful inversion experiment. It was shown 

for the case of a cavity that a reflection survey provides the most promising ge­

ometry, as most of the energy is back scattered. In contrast, the commonly used 

cross- hole geometry proved unsuccessful as the cavity blocks the propagation of 

most of the waves and little energy is forward scattered. However, the successful 

result for the reflection survey indicates that the presented theory is applicable 
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to strong scattering objects. 

The numerical case of elastic wave scattering by a high velocity (low density) 

inclusion was intended to invert data generated with different Green functions 

and to investigate the influence of the incident field on the inversion. The 

forward modeling was performed using an analytic solution for the scattering 

by a sphere, and thus the wavefield was exact over a broad frequency range. 

The intention was to invert this data set applying the low frequency Rayleigh 

approximation and to investigate whether it is possible to recover the anomaly 

within the limited frequency range of the approximation. It was shown that 

in the case of a small weak inhomogeneity, the incident field has much larger 

amplitudes than the scattered field and that the travel time difference, due to 

the small scatterer size, is not observable. Therefore, the incident wave field 

has to be removed before a successful inversion can be achieved, as the noise in 

the inversion produced by the incident field dominates over the amplitudes of 

the anomaly. However, in a field situation, where the incident field generally is 

poorly constrained, the removal would be problematic, due to interference as the 

fields almost coincide in time. After removing the incident field in the numerical 

example, the inversion of the remaining scattered field produced correct results 

in retrieving the anomaly. An increase in the noise level for the bulk and 

shear modulus at the location of the anomaly could be explained by increased 

correlation between the density and the moduli at this location, whereas small 

background values of the correlation indicate a stable parametrization of the 

model. This example showed that a successful inversion can be performed on 

broadband data by applying a low frequency approximation, as long as the 

incident field can be subtracted from the total wavefield. However, it should 

be noted that the frequencies applied for the inversion varied from Rayleigh 

to Mie scattering. Although this appears to be in violation with the strict 

mathematical application, the stacking process produces a good estimate of 

the results in terms of resolution of small scale features and in recovering their 

amplitude anomaly. 

The problem of a strong incident wavefield that dominates the recorded data 
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and its influence on the inversion will be addressed in the next chapter for the 

case of a field experiment to determine the elastic moduli of a fractured zone in 

a granitic host rock. 



Chapter 4 

Inversion of Scattered Waves Applied 

to a Crosshole Experiment 

4.1 Introduction 
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The last chapter was concerned with the the investigation of the effect of 

near field terms on the inversion result, as well as the effect of source receiver 

geometries. Although this is a valuable educational exercise for planing fu­

ture surveys, the usual strategy to recover anomalies on a small scale is still a 

crosshole survey with source and receivers in opposite boreholes and the object 

located in between. The objects vary widely and the survey intentions range 

from the location and estimation of the volume, e.g for the case of a cavity, 

to the delineation and possible estimation of elastic or hydrologic parameters 

for the case of a fractured zone. In the present example, it will be attempted 

to invert a crosshole data set to determine the location and, if possible, the 

elastic parameters of a fractured zone. The intention is to study the possibility 

of modeling a large object by a series of small point scatterers. 

A brief overview: will be given to describe the experimental design and the 

geology at the survey site. Transmission crosshole data contain a variety of 

direct, scattered, and reflected phases that need to be extracted from the data 

before the scattered waveforms can be inverted. It will be shown what param­

eters have to be taken into account and whether it is possible to successfully 

remove unwanted phases. The results of the inversion will be presented based 

on images of the elastic moduli, the density, as well as the velocities, and it 
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will be discussed which parameters are suitable for the various objects encoun­

tered in subsurface imaging. Finally, an overview will be presented to suggest 

improvements for the future application of this inversion technique. 

4.2 Geology and Experimental Design at the 

Grimsel FRI Test Site 

The United States Department of Energy (DOE) and the Swiss Coopera­

tion for the Storage of Nuclear Waste (NAGRA) conducted several experiments 

to investigate the effect of fractures on the storage of nuclear waste in under­

ground repositories. The experiment was carried out at the Grimsel test site in 

Switzerland, with the primary goal to determine the nature of wave propagation 

in fractured rocks and to relate seismological to hydrological parameters. The 

experiment described here was carried out at the FRI site with the intention 

to delineate and determine the elastic parameters of a known fracture zone in 

a highly foliated granitic host rock. The geometry of the FRI site is shown in 

Figure 4.1. Two main access tunnels provide access to a zone of fracturing strik­

ing NE-SW. The zone appears to be an area with varying concentration of thin 

fractures, determined from cores taken from two horizontal boreholes (BOFR 

87.001 and BOFR 87.002) as indicated by the short lines along the holes in Fig­

ure 4.1. In addition to the mapped fractures, a change in color of the granodior-
~ 

ite may indicate an additional feature in the upper half of the panel, indicated 

by the dashed line. The data were collected between the two boreholes BOFR 

87.001 and BOFR 87.002, with 39 sources located in the first and 39 receivers 

in the second hole, respectively, separated by a distance of 10 m (Figure 4.2). 

During the experiment, the horizontal holes were water filled to improve the 

source and receiver coupling. Additionally, the receiver, a 3~component geo­

phone, was clamped to the borehole wall. Although the setup reveals a typical 

2-dimensional crosswell geometry, the fracture zone can be expected to extend 

in both directions perpendicular to the plane. Therefore, scattering in the third 
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dimension will have an effect on this experiment and is a possible explanation 

for relatively large amplitudes recorded on they-component. 

4.3 Data Processing 

Figure 4.3 shows· a typical source gather for a source located at z = 1.35m 

in borehole BOFR 87.001. The reverberative nature of the incident wave is 

apparent behind the first arrival, and is caused by multiple reflection in the 

water filled boreholes. Several faint arrivals, representing reflections off tunnel 

walls, S waves radiated at an angle of 45° by the source, and tube waves appear 

in the section after t = 5.5ms. 

The theory of the presented inversion approach is formulated for the scat­

tered wavefield only, which requires the elimination of the incident wavefield 

from the recorded data. However, the reverberations in the present example 

make it difficult to correctly estimate the incident wave and remove it from the 

data. In addition to the incident field, the data are contaminated by the radi­

ation pattern of the source, the source and receiver coupling to the borehole, 

and anelastic attenuation in the medium which need to be corrected for before 

an inversion can be attempted. 

To correct for the differences in energy radiation of the source, a cosine 

operator ( cose) is applied, where e is the angle between the horizontal and the 

source receiver direction. This operator was found by estimating the amplitude 

of the first arrival (after correcting for geometrical spreading and preliminary 

anelastic attenuation) while the receivers were moved in a crosshole fashion 

around a fixed source in a homogeneous region of the host rock. The cosine 

function was found to best fit the amplitude pattern (Majer et al., 1990). In a 

similar experiment, the P wave velocity was determined as a function of direction 

of propagation. The granitic rock shows a high level of foliation, parallel to the 

strike of the fracture zone. This foliation produces P wave anisotropy which 

reaches up to 8 %, with the symmetry axis normal to the plane of fracturing. 

Hence, the fast direction is parallel, and the slow direction perpendicular to the 
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strike of the fracture zone. The average background velocity was determined at 

5270m/ s. Although no anisotropy estimation was done for the S wave velocity, 

the background value was determined at Vs = 3200m/ s. It is expected, however, 

that the host rock reveals a similar degree of S wave anisotropy, the lack of 

which will reduce the quality of the inversion results, as a considerable amount 

of scattered energy is converted into S waves. 

To estimate the mean anelastic background attenuation a and the factors 

governing the source receiver coupling at their locations in the boreholes, the 

amplitudes of the first arrivals were measured and the parameters estimated in 

a least squares sense. The parameters have to be determined simultaneously, 

as they have similar effects on the amplitude of the wavefield, and an inversion 

of a single parameter is not possible without estimating the others first. The 

wavefield is corrected for geometrical spreading and the radiation of the source. 

Subsequently, the traces are aligned along their arrival times and the amplitudes 

of the first minima determined. A total of 1521 amplitude values were inverted 

to solve for the 79 unknowns (39 source and receiver parameters each and the 

average background deviation a). The background attenuation is estimated to 

be a = 0.36m-1 . Assuming a linear frequency dependence for a, a background 

velocity of Vp = 5270m/s, and a peak frequency dominating the incident pulse 

of fo =10KHz, the relation Q = 1rjjaYp produces a frequency independent 

quality factor of Q = 17. The value for a, although it seems to be low, is not 

unreasonable for this highly foliated medium considering the short wavelength 

of 0.53 m of the incident pulse. It is representative of the mean background 

attenuatio~, however, and does not take into account local areas of abnormal 

attenuation. 

The results for the normalized source and receiver coupling factors are pre­

sented in Figure 4.4. It can be seen that the source factors vary around the value 

of 1.0 with larger deviations between source position 10 to 20, corresponding 

to z = 5tn to z = 10m, respectively. Referring to Figure 4.1 it becomes obvi­

ous that this is the range where the assumed fracture zone intersects borehole 

BOFR 87.001. As the factors are larger than unity towards the edges but less 
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than unity in the center of the fracture zone, the physical parameters may be 

varying across the fault area, indicating that, in fact, this is not a homogeneous 

fracture, but rather an accumulation of thin parallel cracks. The trend .for the 

receiver factors differs but supports the geological interpretation. A monotonous 

increase from values around 0.5 to 1.0 between receiver position 1 (z ~ 1.5m) 

.and 15 (z = 8.5m) is evident in Figure 4.4b). The low values are too small to be 

explained by borehole effects only. However, since the inversion simultaneously 

solves for the mean value of a, but does not recover local attenuation anomalies, 

any anomaly will have an effect on the wavefield, particularly if these zones are 

close to certain receivers. Such an anomalous zone was detected by Majer et al. 

(1990) for a region close to borehole BOFR 87.002 between the receiver position 

1 (z = 1.5m) and 10 (z = 6.0m). This result is mirrored by the low values in 

Figure 4.4b). Figure 4.1 shows borehole BOFR 87.002 intersecting the fracture 

zone at approximately (z = 16.0m) (receiver position 32). Again, the receiver 

factors reveal a maximum, before they drop to lower values towards the center 

of the fracture zone at the end of the borehole. Thus, the source and receiver · 

coupling factors seem to relate to the geological features, indicating a non uni­

form fractured zone and possibly a high attenuation area in the SE corner of 

the study area. 

After correcting the total wavefield for the source and receiver coupling fac­

tors and the background attenuation, the first arrivals should be a good repre­

sentation of the source wavelet. Therefore, for every source position, the traces 

are stacked to produce a representative source signal for each source location. 

Finally, the 39 source wavelets are stacked to produce the common source signal 

representative of all source positions. This wavelet is shown in Figure 4.5. The 

reverberative nature is evident after the first impulse for almost 0.6ms. How­

ever, in contrast to many traces, the amplitudes are not constant but appear 

. to be attenuated after the first pulse. The reverberations are caused in part 

by multiple reflections in the receiver borehole. However, in contrast to the 

receiver, the source was not clamped in the borehole, as the water was intended 

as the coupling medium to the borehole wall. Thus, after the first source pulse, 



102 

2.00 

1.75 

1.50 

1.25 

"' -g 1.00 

a. 
~0.75 

0.50 

0.25 

0.00 '----'------'---'---...L.---'-----1--L---..J 
0 to 15 20 25 JO ~0 

a Source Position 

2.00 

1.75 

1.50 

1.25 

a. 
~0.75 

0.50 

0.25 

0.00 '----'------'---'----...L.----'----1--.I........-..J 

bo 10 15 20 25 JO ~0 

Receiver Position 

Figure 4.4: Normalized source and receiver coupling factors, a) source factors, 
b) receiver factors. 



103 

a fraction of the energy reverberates in the source hole and each reverberation 

radiates energy into the formation. Therefore, the multiples are likely to be a 

mixture of source and borehole reverberations. It will be discussed in a later sec­

tion what length of the source wavelet provides the best deconvolution operator 

for the scattered wavefield. 

The first 0.6ms (150 samples) of the source wavelet are convolved with a 

3-d Green function to compute a representative incident field which should be 

subtracted from the total field. However, because of the large amplitudes of 

the reverberations in many single traces which did not stack constructively to 

equally large amplitudes in the source wavelet, it was not possible to remove 

the incident field and the reverberations effectively. Without the removal of the 

reverberations, however, the inversion will not produce reliable results as they 

produce the largest amplitudes in the seismogram after the removal of the inci­

dent field. Therefore, the incident field and the reverberations are suppressed by 

applying a one sided Hamming window to the beginning of the traces, to damp 

an interval of 0.6ms after the first arrival. The window length was estimated 

from the source wavelet in Figure 4.5, where the reverberations appear to be 

present up to 0.6ms. The windowing process simultaneously damped all near 

field scattered phases that might have been present in the seismogram. These 

phases appear with little travel time separation from the incident field in the 

seismogram, since the scattering takes place in the vicinity of the source or the 

receiver. To avoid incident S waves and tube waves in the coda of the traces, 

visible after 5.5ms in Figure 4.3, the end of the traces are damped, again us­

ing a one sided Hamming window. The filtered wavefi.eld representing the bulk 

of the scattered energy is shown in Figure 4.6, where the geometry of sources 

and receivers is the same as for Figure 4.3. The windowing process limits the 

scattered phases to primarily forward scattered energy. 

In a final step before inversion, the scattered field has to be deconvolved 

by the source wavelet, to normalize the amplitudes by the source strength. In 

the last paragraph, it was argued that part of the reverberative nature of the 

source wavelet is due to reverberations in the source borehole. In this case 

;, .. 
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the borehole source acts like a pulsar pumping energy into the formation with 

every reverberation. This additional energy has to be taken into account for a 

successful deconvolution by the source signal. For this reason the length of the 

deconvolution operator is chosen to be 0.6msr, after which the reverberations 

of the wavelet are sufficiently damped. After deconvolution, the spectral values 

of the scattered field are taken as input for the inversion algorithm. 

4.4 Inversion of the Field Data 

The images of the inversion results are compiled by stacking 13 individual 

inversion results, each computed for one single frequency ranging from 3051Hz 

to 5981Hz with an interval of 244Hz. Assuming a background P wave velocity 

of v;, = 5270m/ s, this translates to a wavelength of Ap = 1. 7m and Ap = 0.9m for 

the incident wave, respectively. Unsing a voxel length of lm, the wavelengths 

vary from the Mie scattering range (.AP = 0.9m) to a value of (.AP = 1.7m) 

that lies between the ranges of Mie and Rayleigh scattering. The inversion 

was performed using lower frequencies as well, but the resulting images did not 

reveal sufficient resolution and therefore were dismissed from the final stack. 

The inversion is computed using two criteria. First, the Green function is 

computed with and without P wave anisotropy in the background medium, and 

second, the data is inverted with and without corrections for the background at­

tenuation The intention is to study the sensitivity of the inversion to anisotropy 

and to determine what effect anelastic attenuation has on the inversion result. 

Figure 4. 7 reveals the geometry of the area which is parametrized in the 

model. As indicated in Figure 4.2 the boreholes are slightly slanted with respect 

to the z-axis of the coordinate system. An area 9m x 19m was parametrized into 

171 voxels of 1m3 each. Data from all 39 source and receiver positions are used. 

After the inversion, each panel is smoothed applying a cubic b-spline interpo­

lation after Michelini et al. (1991), generating the final plot. The background 

values of the inversion are determined using the v;, and ~ values given above 

and a mean density of p = 2650kgfm3 (Majer et al., 1990). This translates into 



38 
36 
34 
32 
30 
28 
26 
24 
22 
20 
18 
16 
14 
12 
10 

8 
6 
4 
2 
0 

a) 0.0 

38 
36 
34 
32 
30 
28 
26 
24 
22 
20 
18 
16 
14 
12 
10 

8 
6 
4 
2 
0 

b) 0.0 

I I I 

1.0 2.0 

I . I 

1.0 2.0 

'M ,/\. J. 

~ ~ r:.v 
:.X ..... 

':II. .A:;;. 
.H. 

'£ v. 
•i>lflf J:\,, 
l'J rA.,. 

~ 
,.. r~..;;.·~~~ 

IX Jj ,M. 
fit. 'I. 

~ 
~X :'! 

:'II .v 
X', 

ll l\1.'.::"~ 
r_v 

rlll." til'" ~ 
Ill~ ... ~:;..-_;.: 

1ft: ~:J! ·v 

-... 
~AyA• 

.;;;\. ~v_ v 
~ 
vv :ttt ·~ 

•v 

I I I I 

3.0 4.0 5.0 

Time [ms] 

ill: ~~ ';:' 

l'S. If 
V\j l'.. 
~ 

c;.~~ l"-' 
,)f r-.v. ·.:. 

>II 'VYV "'!~. , .. 
·~ 

I 'A~ 
.ll. 

~ ~~ 

r "'"' "'· 'V 
:'! 
;. 

rA:M 

~.:v:ft:., .... 
:..~~~ 

l/\lll "! 

~~~ 

t.'I.:Y~· 
[1\i' V,j' 

l\W,WIY 

I I I I 

3.0 4.0 5.0 
Time [ms] 

106 

I I I 

6.0 7.0 8.0 

I I I l --. I 

6.0 7.0 8.0 

Figure 4.6: Source gather of scattered wavefield for source location at z = 1.35m, 
a) x-component, b) z-component. 

" 



107 

a bulk and shear modulus of 32.42GPa and 27.14GPa, respectively. 

The inversion results in Figure 4. 7 are determined by taking the P wave 

anisotropy into account but neglecting the correction for anelastic attenuation. 

Therefore, the scattered amplitudes will be more attenuated, however, since the 

fracture zone most likely is a zone of higher attenuation, its influence may be 

mirrored in the data. The image of the bulk modulus reveals several features 

that can be related to the inferred geological interpretation as suggested in Fig­

ure 4.1. In the bottom half of the image (z = 13m - z = 20m) a crossing , 

pattern of low bulk modulus anomalies can be seen. The suggested fracture zone 

is not clearly visible due to a more pronounced feature running from the lower 

left corner (x = 2m, z = 18m) to borehole BOFR 87.002 (x = 10m, z = 14m). 

Referring to Figure 4.1 this could be the effect of the borehole labeled CO 1 

connecting the AU Tunnel with borehole BOFR 87.002. A possible explanation 

may be provided by the nature of the fracture zone. In contrast to a clear frac­

ture, this zone probably consist of several thin parallel fractures with a more 

gradual reduction in the elastic parameters, and thus it may not reveal such a 

strong contrast. The borehole, however, provides a sharp contrast to the back­

ground medium and therefore constitutes a strong inhomogeneity for elastic 

. waves; although it is not clear whether the relatively small volume of the bore­

hole can produce such strong scattering amplitudes. A similar crossing feature 

of low values in bulk modulus is visible in the upper half of the panel between 

(z =2m, z = 10m). The feature crossing from upper right (x =10m, z = 2m) 

to borehole BOFR 87.001 at (x =1m, z =10m) is comparable in signature to a 

low velocity anomaly found by Majer et al. (1990) and Vasco (1995), although 

this is only supported by a set of fractures found at the beginning of borehole 

BOFR 87.002, indicated by short lines at (x = 10m, z = Om). Again, a pro­

nounced anomaly is visible striking from (x = 10m, z = 7m) at BOFR 87.002 

upward towards t~~ source hole (x =3m, z = 5m). The interpretation could 

be a possible suture zone between two differently colored host rocks in the area 

(dashed line in Figure 4.1). An explanation could be based on the fact that 

this welded contact constitutes a better scatterer than the fracture zone and 
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Figure 4.7: Inversion result for the elastic parameters for an anisotropic back­
ground medium. Stars denote sources, while receivers are indicated by triangles. 
The result represents a stack of 13 individual frequencies, ranging from 3051Hz 
to 5981Hz. 
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thus produces a more pronounced feature. Side effects from the tunnel walls 

are not apparent, which is due to the windowing at the end of the traces. The 

results for the shear modulus partly support this interpretation, although they 

reveal the smallest perturbation of the three parameters. The fracture zone in 

the lower left half may be indicated by three point anomalies trending from 

the lower right corner to the middle of borehole BOFR 87.001. The suggested 

suture zone appears to be shifted relative to the position in the upper panel. 

However, S wave anisotropy is not accounted for in the inversion, and there­

fore the location of the shear modulus may be more affected than for the other 

parameters. The location of the bulk modulus should be well constrained as 

it is affected by the P waves only, whereas the density, being constrained by 

P and S waves, may not be as much affected by deviations in the S wave ve­

locity as the shear modulus. The bottom panel, displaying the density data, 

shows a strong feature runing from the upper right corner (x = 10m, z =Om) 

towards the middle of the panel (x = 4m, z = 6m). This partly supports the 

results of the bulk modulus for the location of the anomaly. The suture zone 

may be in~cated by a faint anomaly traversing the upper half of the panel from 

(x =10m, z = 8m) at borehole BOFR 87.002 towards the middle of the upper 

panel (x = 7m, z = 8m). However, the fracture zone in the bottom half is not 

, well constrained by the density. 

The results of the three parameters clearly suggest the complicated process 

of elastic wave scattering. Because of the limitations in the data processing, the 

amplitudes of the moduli are the least constrained parameters in the inversion. 

Similarly, the consideration of S wave anisotropy should improve the location · 

of the anomalies of the shear modulus. However, despite these constrains it is 

evident that the three parameters are affected in a distinct way by the encoun­

tered geological features. It appears that the bulk modulus is more sensitive to 

drastic changes (e.g. borehole or welded contact) than it is to gradual changes 

in a zone consisting of several fractures. The density on the other hand may be 

sensitive to both features, whereas no real conclusion can be drawn for the shear 

modulus from these results. However, this suggests, as indicated in Chapter 3.1, 
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that the difference in response of the three parameters may lead to decrea.Sed 

effects in the seismic velocities. 

To demonstrate this point, the P and S wave velocities as well as the V:/V, 
ratio are computed for the inversion results of Figure 4. 7 and presented in 

Figure 4.8. As can be seen, the same parameters produce different features 

when displayed in terms of the velocities. The P and S wave velocities suggest 

the presence of a low velocity anomaly in the lower right corner of the panel, 

possibly indicating the fracture zone, which is known to intersect the eastern 

tunnel (AU Tunnel in Figure 4.1) at (x = 8m, z =20m). Similarly the presence 

of borehole CO 1 is indicated by a low velocity anomaly but merges with the 

fracture anomaly (visible in P wave velocity). The suture zone in the upper 

half is not visible, whereas the anomaly crossing from the upper right corner 

(x = 10m, z = Om) towards the middle of the panel (x = 6m, z _:_ 5m) is 

evident as a high velocity anomaly, due to the low values in density for the 

same location in Figure 4. 7. Because these features are similar in P and S 

wave velocities, they do not produce anomalies in the V:/V, ration (bottom 

panel of Figure 4.8). The most apparent feature in the Va/V, ratio is what 

appears to be the borehole CO 1, as this anomaly produced larger negative 

deviations in the P wave velocity. Therefore, it is evident that the elastic moduli 

respond distinctively to geological features and are useful in extracting different 

information which can be displayed in various combinations to provide a more 

profound understanding of heterogeneous subsurface structures. 

The inversion problem is overdetermined since all 39 source and receiver 

positions are used and total of 513 model parameters are inverted. Thus the 

model resolution is good for most of the parameters. It ranges for the shear 

modulus and the density from values of 0.9 along the Source and receivers (due 

to near field terms in the Green function) to values of 0.6 in the center of the 

image, although the outermost row of voxels for the shear modulus reveals a 

resolution of only 0.2. However, for the case of the bulk modulus, the resolution 

is equally good at the edges but drops down to 0.45 in the center of the model. 

These results confirm the numerical calculations in Chapter 3.5, where a similar 
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behavior in the model resolution was determined. The drop in model resolution 

for the bulk modulus is caused by the fact that it is only constrained by the 

scattered P waves, whereas shear modulus and density are determined by both, 

P and S waves. The drop in resolution in the center relates to the less perfect 

angular coverage as stated in Chapter 3.5, where the waves are more likely 

to sample a voxel in a straight transmission manner. Concerning the model 

resolution, it can be stated that most of the features in Figure 4. 7 are resolved 

and to a certain degree independent from each other. 

In contrast to Figure 4.7, Figure 4.9 shows the inversion of the same pa­

rameters for an inversion based on an isotropic background P wave velocity of 

5270m/ s. It is evident, that the image does not resemble the geological features 

described in the previous figures. Moreover, it can be seen that the linear fea­

tures have disappeared and most of the deviations reveal a block like structure. 

This may indicate that linear features striking either parallel or perpendicular 

to the symmetry axis of anisotropy can no longer be resolved using a mean back­

ground velocity. In this case the velocity in the fast direction is underestimated, 

while it is overestimated in the slow direction. Therefore linear features striking 

parallel to the fast direction is are shrunk, while features parallel to the slow 

direction are elongated. Thus for the case of inverting scattered amplitudes, the 

Green function has to account for anisotropy if linear features are to be recov­

ered. It can be concluded that S wave anisotropy, which is not accounted for in 

this example due to the lack of S wave velocity measurements, can be as easily 

implemented as for the case of P wave anisotropy presented· here. The strong 

amplitudes for P to S scattered waves (refer to Figure 3.12) supports this point. 

However, in the present example, the effect of scattered S waves may have been 

suppressed due to the windowing at the end of the traces, which is supported 

by the weak anomalies in the shear modulus. Additionally, as the wavefield is 

not corrected for anelastic attenuation and the inversion is done one frequency 

at a time, the effect is stronger for the S waves as their wavelengths are shorter 

and therefore they are more strongly attenuated than P waves over the same 

travel distance. 
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The inversions were also performed for attenuation corrected data, however, 

the results revealed no structure, but rather strong oscillations between high 

and low anomalies. This may be caused by an overcorrection for the anelastic 

attenuation a = 0.36m-I, as determined in Chapter 4.2. However, inversion 

results based on a lower value of a = 0.12m-1 as determined by Tura (1990), 

revealed the same problem, and therefore it seems questionable whether the 

extraction of a is a suitable procedure. A possible solution is suggested in the 

following chapter. 

4.5 Conclusions 

The application of inverting scattered waves to detect a fracture zone in a 

cross hole situation revealed the following results. Before a successful inversion 

is feasible the raw data have to be corrected for various effects. . The source 

radiation pattern should be determined and corrected before any other param­

eters can be estimated. Source and receiver coupling to the borehole has to 

be estimated simultaneously with the anelastic attenuation in the medium, as 

all parameters have a similar effect on the first arrival and a single estimation 

cannot be performed without assuming values for the other parameters. The 

inversion produced meaningful results for the source and receiver factors, which 

correlate well with the geology encountered in the boreholes. It produces an in­

dication that the fracture zone is not a homogeneous feature along the borehole 

wall. However, the estimation of a produced an estimate that might be too low 

for this host rock. 

Reverberations in the source and receiver borehole made it difficult to suc­

cessfully remove the incident wavefield and a robust method of windowing the 

beginning and the end of the traces was necessary. However, the inversion of 

the scattered wavefield produced reasonable results that can be related to the 

geology as determined from the tunnel and borehole walls. It appears that the 

two moduli and the density respond to different features in different ways, and 

therefore this may be a good method of distinguishing between e.g. an open 
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fracture· zone and a closed welded fracture. Furthermore, the commonly used 

images of VP and Va velocities and their ratio can be easily computed to support 

other tomographic studies. 

At this point the general finding for the FRI zone are more suggestive than 

definitive. It appears that the main fracture zone striking NE-SW is an ac­

cumulation of several thin fractures producing a blurred image. In contrast 

an additional zone striking SE-NW from the Main Access Tunnel to borehole 

BOFR 87.001 seems to be a more narrowly defined feature. In addition, the 

existence of a welded contact between the two differently colored host rocks 

appears to be real at about the location indicated on the map in Figure 4.1. 

However, the quality of the image, although the findings appear significant, 

is limited. This can be explained by a variety of factors summarized in the 

following paragraph. 

The fracture zone is. embedded in a relatively homogeneous granite and it 

can be expected that it extends to both sides perpendicular to the experimental 

plane. Thus out of plane scattered amplitudes will be evident in the seismo­

gram traces, which will contribute to an overestimation of the parameters to be 

determined in the plane. A possible test would be to invert for a 3-dimensional 

medium consisting of 3 planes parallel to each other extending in the y-direction. 

Thus out of plane scattering could be traced back to its origin and the image 

could be improved. However, sufficient source and receiver coverage is neces­

sary. Reverberations in the source and receiver hole prevented the subtraction of 

the incident wavefield and therefore, the subsequent windowing of traces muted 

near field scattering as well. A better. procedure in subtracting the incident 

field, e.g. cross correlating the first pulse of a numerically calculated represen­

tation of the incident field with the field data and subsequent scaling before the 

synthetic field is subtracted, should improve the result. Anelastic attenuation is 

a substantial problem in amplitude inversion. It should be corrected for, if the 

Green function cannot account for it, although the determination of a seems 

problematic. A promising procedure in the present approach is the application 

of a complex Green function to solve for the real and imaginary parts of the 
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elastic parameters simultaneously, as presented in Chapter 3.5. However, the 

present example would require a large capacity in computing power, as, in addi­

tion to the 39 source and receiver combinations, the number of unknowns would 

increase from 3 to 5 per voxel. In this case, a reduction from 39 sources and 39 

receivers to 20 each could solve the computational constrains, however, it would 

reduce the resolving power for the model parameters as well, as the number of 

unknowns is increased while simultaneously the number of equations is reduced. 

An additional problem is the lack of S wave anisotropy information. As it is 

obvious by the difference between Figure 4.7 and Figure 4.9, anisotropy has a 

major effect on the inversion result. One possible approach is to recover the S 

wave anisotropy from the P wave anisotropy, assuming this quantity is known, 

which is a likely the case for many experimental geometries. The incorpora­

tion of S wave anisotropy should improve the results for the P to S scattered 

phases. Furthermore, the inversion was limited to wavelengths closer to the Mie 

than to the Rayleigh scattering range, as the amplitudes associated with low 

frequencies did not show enough resolving power. However, future applications 

of broad band technology should provide data with higher energy in the low 

frequency range. 

... , 
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Chapter 5 

Summary 

The presented thesis was intented to investigate two areas of elastic wave 

scattering. The scattering of elastic waves by an inhomogeneity, and subse­

quently the inversion of these waves to solve for the elastic parameters of the 

inhomogeneity. Both parts provide a general approach by keeping the results in 

a general format, and the techniques are applicable to discretionary geometries. 

The results should be useful for the evaluation of experiments in their planning 

stage. 

In the first part, the problem of low frequency elastic wave scattering by 

an inclusion was investigated. The low frequency approximation is· based on 

· an exact solution for the scattering of elastic waves by a sphere, and therefore, 

the exact solution was used to ~valuate the low frequency approximation under 

various conditions. The Rayleigh approximation is a useful tool to linearize the 

problem of elastic wave scattering, and therefore, it often is applied to solve the 

inverse problem. However, no limits of the approximation had been established 

thus far, as most of the assumptions were based on strong inequalities, and 

therefore it was intented to determine bounds for its validity range. 

The presented Rayleigh approximation produces excellent results within its 

validity range. The comparison to the generally used Rayleigh approximation, 

containing far field terms only, revealed that near field terms play an important 

role for the evaluation of scattered amplitudes. Within a distance of 2 times the 

wavelength of the incident wavefield from the inhomogeneity, P and S waves 

cannot be separated ·and the scattered amplitudes are up to a magnitude of 

~ 300 times larger than at a distance of 2>.. Therefore the use of the far field 
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Rayleigh approximation will produce wrong results if applied in this situation, 

which may arise during crosshole experiments or during the investigation of near 

surface heterogeneities. 

The nonlinear Rayleigh approximation was compared to its linearized and 

quadratic approximation. It was found that the relative error for these strongly 

depends on the scattering angle. The r-component reveals the largest error for 

forward scattering, whereas the 0-component has the largest deviations for a 

scattering angle of 45°. It was found that the quadratic approximation reduces 

the error by a factor of 5 over the linear approximation. The result helps to 

estimate the relative error based on the use of the linearized Rayleigh approxi­

mation if the locations of source, scatterer, and receiver are known for a planned 

experiment. 

The relative error of the linear Rayleigh approximation not only depends 

on the scattering angle but is a function of the parameter perturbation as well. 

This functional dependence was investigated and produced results that allow 

an application for larger deviations than previously assumed. Reliable result 

should be obtained for perturbations up to 20%. However, the dependence of 

the relative error on the parameter perturbation reveals an asymmetry with 

respect to the origin, in that the increase for the error is larger in positive than 

for negative perturbations. 

In the past inequalities were used to restrict the Rayleigh limit to values 

much smaller than unity ( kpR « 1). However, the Rayleigh limit not only is a 

function of the incident wavelength and the dimensions of the inhomogeneity, 

but also depends on the elastic parameters. The dependence of the Rayleigh 

limit as a function of perturbation in the elastic parameters was investigated 

and surprisingly high values were found, reaching up to (kpR = 0.9). This opens 

a broader range for the applicability of elastic wave Rayleigh scattering. 

The surprising results established for the Rayleigh scattering process were 

investigated in relation to their effects in the inversion of scattered waves. Near 

field effects have to be considered in a crosshole situation where the exact lo­

cation of the inhomogeneity may fall within a distance of 2>. of the receiver 
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borehole. In addition, features extending beyond the target area may intersect 

either borehole and therefore, the lack of near field terms would produce unre­

liable or false images close to the wells, where the performance of the inversion 

could be tested by correlating borehole properties with inversion results in the 

proximity of the wells. · The extension of the Rayleigh limit to larger values 

could help to reduce the computational expenses, since the parametrization of 

the medium can be coarser with respect to the wavelength of the incident field. 

At first, however, a method was presented to solve the inherently nonlinear 

scattering problem in a direct way. The solution was linearly expressed in terms 

of moments that decompose the scatterer into three types of force terms, each 

accounting for the change in one of the elastic parameters. These parameters, 

although they exhibit a nonlinear dependence on the moments, can be directly 
'/ 

recovered based on the symmetry of the scatterer, and therefore, the scattering 

problem can be solved in an exact direct way. This allows inversion of strong 

inhomogeneities directly, avoiding time consuming iterations which can only 

approximate the magnitude of the anomaly. 

The nonlinear dependence of the elastic parameters on the moments was 

performed covering the whole parameter range from a cavity to a rigid inclu­

sion. The dependence is highly nonlinear and very sensitive to large positive 

deviations, where small changes in the moments cause large variations in the 

deviation of the elastic parameters. For negative values of the moments, how­

ever, the relationship becomes almost linear, but the perturbation in the elastic 

parameters become almost insensitive to large changes in the moments. Thus it 

could prove difficult to distinguish between a cavity and a low density yet solid 

inhomogeneity. 

Based on this solution, the effect of near field terms was investigated using 

a numerical example which models a crosshole geometry. It was found that the 

Green function containing near field terms returned an almost perfect inversion 

result, whereas a Green function containing far field terms only produces erro­

neous magnitudes and locations for the anomaly. However, the model resolution 

was equally good in both cases, which could lead to wrong interpretations of 
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the far field Green function results. For the case of the correct Green function, 

the model resolution was improved to unity for all three parameters by adding 

one receiver each at the top and bottom of the model area. These receivers 

improved the angular coverage of the parametrized zone, which is essential for 

good results in the case of elastic wave scattering. 

The influence of source and receiver geometry on the success of an inversion 

for the location of a strong scatterer was presented for the case of a cavity. It was 

found that the distinct pattern of scattered energy (P to P scattering under 180°, 

P to S scattering under 135°) prevented the successful recovery of the image for 

most geometries, and only a reflection survey, set up to record both P and S 

scattered phases, proved successful in determining the location and parameters 

of the cavity. Therefore, it was shown that, prior to a field experiment, the 

scattering properties of the object have to be thoroughly studied to find the 

optimum geometry for a successful survey. 

The numerical fuvestigation of a small single scatterer with an anomaly in 

denSity only, where different Green functions had been used for the forward 

modeling and the inversion, revealed that in the absence of. the incident wave 

it is possible to retrieve the location and the amplitudes of the inhomogeneity. 

However, the incident field, due to its large amplitudes in relation to the scat­

tered field and the coincidence in travel time, had to be removed first. It was 

shown that correlation between the parameters introduced weak anomalies for 

the less constrained bulk modulus. However, these were almost comparable to 

the noise level and therefore negligible. 

The final chapter applied the inversion technique to the case of a fracture 

zone in an underground field laboratory. The purpose was to determine whether 

it is possible to model a fractured zone by an ensemble of point scatterers 

which would provide a technique to parametrize scatterers of any shape for 

the future application of this technique. Under this assumption the location 

and, if possible, the elastic parameters of this highly fractured zone had to be 

estimated. 

Before the inversion was performed the wavefield was corrected for several 



.. 

" 

121 

effects not related to the scattering process. The source and receiver parameters, 

describing the coupling to the borehole walls were determined using a least 

squares inversion approach of the first arrival amplitudes. The results related 

to the geology encountered in the boreholes indicated that the fracture zone 

is not a homogeneous feature, but probably consists of three zones; two of 

which showed a high degree of fracturing at each side of the shaded fracture 

zone in Figure 4.1, whereas the center section revealed a more homogeneous 

composition. The same inversion produced a very high background attenuation 

of a = 0.36m-1 for a frequency of 10 KHz. Although the magnitude of this 

value seems questionable, the high degree of foliation in the host rock will have 

a severe attenuation effect on wave propagation. Although an attempt was 

made to subtract the incident field from the data after these correction were 

applied, it proved unsuccessful, and therefore the beginning and the end of the 

traces were muted. 

The inversion of the data was performed for an isotropic and an anisotropic 

background medium. The anisotropic model produced reasonable results that 

could be related to the encountered geology. It was found, however, that the 

fracture zone does not constitutes a good scatterer and produced a blurry image 

in the moduli. This may be caused by a gradual change in properties from the 

host rock to the fractured medium. In contrast, the inversion seems to have 

detected an additional observation well traversing the study area, as well as 

a suture zone between two different types of host rock. Both features seem 

to be stronger scatterers for elastic waves, the borehole because of its strong 

negative anomaly and the suture zone because of the welded contact, which is 

the most probable between the two rock types. Displaying the same results 

in terms of the P and S wave velocities as well as the Vs/VP ratio, it became 

evident that different structures appeared in the plots. The amplitude of the 

small features (borehole and suture zone) were suppressed and the fracture zone 

became apparent with negative perturbations in the velocities. This confirms 

results discussed earlier that different physical parameters are each sensitive to 

different types of inhomogeneities. 
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The isotropic inversion produced no meaningful results, as all linear fea­

tures were reduced to block shaped structures. The lack of directionality in 

the velocities makes it impossible to recover stretched linear features, which, as 

for the case of the fracture zone, strike parallel to the direction of maximum 

velocity. Only the data that were not corrected for elastic attenuation pro­

vided a reasonable image after the inversion. This implies that the attenuation, 

which is probably highest in the fracture zone, added information to the data 

which helped to reconstruct the image. Since S wave anisotropy could not be 

accounted for, the inversion result is likely to improve if these data becomes 

available, since P to S scattered phases could not be correctly located in the 

present example. 

The overall result of the inversion raises hope for future applications. Al­

though a fracture zone is not a perfect target for the inversion of scattered 

waves, it was shown that it is possible to decompose it into an ensemble of 

point scatterers. The nonlinear approach appears to produce reliable results 

in the case of a strong scatterer as shown by the probable detection of a third 

borehole. 

Future improvements in the extraction of the incident wavefield and an im­

proved estimation of the background parameters, including. anisotropy, should 

produce better results. The correct subtraction of the incident wave would 

leave near field scattered phases in the data, which are important to reSolve the 

structure close to the receivers. An increase in resolving power for low frequen­

cies can be expected from applications of broad band technologies, which are 

currently introduced in many applications of observational seismology. At the 

same time, improvements in source technology, particular in borehole applica­

tions, are desirable, which could produce source signals capable of transmitting 

a constant amplitude level over a frequency band of at least two magnitudes. It 

remains to be seen how the inversion performs for the reconstruction of other 

classes of inhomogeneities, especially strong scattering objects (e.g. cavities) .. 

However, the work presented in this thesis indicates that successful results can 

be expected, as the treatment of large scattered amplitudes associated with 
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these objects proved successful in the numerical experiments, and therefore, it 

should produce better results than other techniques that have been applied in 

the past, which rely on linear approximations of the problem . 
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