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ABSTRACT 

To study the effect of atmospheric pressure fluctuations on the entry of radon and soil-gas contaminants into 

houses, we have simultaneously measured the gas flow rate into and out of an experimental basement structure and 

the changes in atmospheric pressure. Falling atmospheric pressure draws soil gas into the structure; rising 

atmospheric pressure drives air from inside the structure into the soil. The gas flow rate into and out of the structure 

depends on both the characteristic response time of the soil gas and the time-rate-of-change of an atmospheric 

pressure fluctuation. The larger the time-rate-of-change of a fluctuation in atmospheric pressure the larger the gas 

flow rate into the structure; a change in pressure must be sustained for a period comparable to several characteristic 

response times to maximize the soil-gas flow rate. Spectral analysis reveals that diurnal and semi-diurnal oscillations 

in atmospheric pressure drive the largest components of the long-term gas flow rate into and out of the structure. 

Analytical and numerical model predictions are compared to the detailed measurements of gas flow in both the time 

and frequency domains. The finite-element model correctly predicts both the dynamics and the magnitude of the 

observed gas flow, while the analytical model correctly predicts its dynamics, but underpredicts the amplitude of the 

observed flow by a factor of- 2.3. Atmospheric pressure fluctuations may increase the long-term radon entry rate 

into the experimental structure by as much as 0.2 Bq s-1
, more than twice the total diffusive entry rate. 

Key word index: radon, atmospheric pressure, indoor-air quality, contaminant transport, soil-gas transport 



INTRODUCTION 

Recent theoretical (Narasimhan et al., 1990; Tsang and Narasimhan, 1992) and experimental (Robinson and 

Sextro, 1995a) studies have shown that atmospheric pressure fluctuations can draw soil gas into houses. We are 

interested in the different mechanisms which induce soil-gas flow because the advective entry of radon-bearing soil 

gas into houses is generally believed to be the dominant transport mechanism of radon into most homes with elevated 

indoor concentrations (see e.g. review by Nazaroff (1992)). Advective soil-gas flow may also transport VOCs 

(volatile organic chemicals) from contaminated soils into buildings thereby contributing to indoor exposures to these 

contaminants (Wood and Porter, 1987; Hodgson et al., 1992; Little et al., 1992). 

Soil-gas entry into houses is commonly associated with small but sustained indoor-outdoor pressure differences 

created by temperature effects, wind interaction with the building shell, and the operation of heating, ventilation and 

air-conditioning (HV A C) systems (Nazaroff et al., 1988). The phrase "indoor-outdoor pressure difference" refers to 

the pressure difference between the ambient atmosphere at the soil surface and the indoor air at the mouth of an 

opening between the basement and the soil. Several field studies (Hernandez et al., 1984; Holub et al., 1985; Turk 

et al., 1989; Hintenlang and AI-Ahmady, 1992) have observed elevated indoor radon concentrations during periods 

when indoor-outdoor pressure differences were apparently small. Atmospheric pressure fluctuations can draw soil 

gas into a house without these pressure differences because the response time of the interior of a house to a change in 

atmospheric pressure is generally several orders of magnitude shorter than the response time of the soil gas 

(Robinson and Sextro, 1995a). Consequently, soil-gas entry driven by atmospheric pressure fluctuations represents a 

possible explanation for these observed but unexplained elevated indoor radon concentrations. 

The reported experimental evidence for radon entry driven by atmospheric pressure fluctuations is based on the 

correlation of atmospheric pressure with measured indoor radon concentrations (Hernandez et al., 1984; Hintenlang 

and AI-Ahmady, 1992). Unfortunately, such studies provide little detailed insight into the effect of atmospheric 

pressure fluctuations on radon entry because indoor radon concentrations depend on both the entry rate and the 

building ventilation rate. Using a numerical model Tsang and Narasimhan (1992) have investigated the effect of 

periodic atmospheric pressure oscillations on radon entry. Although their results suggest that such oscillations may 

drive significant radon entry into houses for certain combinations of soil properties, basement configurations and 

atmospheric pressure signals, their efforts yield little physical insight into the phenomenon. 

In this two part study, we present a detailed examination of the gas flow between a building and the underlying 

soil in response to changes in atmospheric pressure. The goal of this study is to characterize the relationship 

between this flow, soil properties, and typical atmospheric pressure fluctuations. A thorough understanding of this 

transient gas flow is an important step towards understanding the complex effect of atmospheric pressure fluctuations 

on the entry of radon and other soil-gas contaminants into buildings. 

In this paper, we report measurements of gas flow and atmospheric pressure made in an experimental basement 

structure. We compare these measurements to predictions of both a finite-element and an analytical model. We 
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employ spectral analysis to examine our measurements and to validate the predictions of these models. In the second 

part of this study (Robinson et al., 1996), these models are used to examine the sensitivity of the soil-gas entry into a 

house to changes in soil properties, water table depth, and the addition of a high-permeability gravel layer. 

Preliminary results of this investigation have been reported earlier (Robinson and Sextro, 1995a). 

EXPERIMENTAL AND COMPUTATIONAL METHODS 

Experimental System 

The measurements reported in this study were made in an experimental structure which was designed and 

constructed to study soil-gas and radon entry into houses (Fisk et al., 1992; Garbesi et al., 1993; Robinson and 

Sextro, 1995b ). Fig. I shows a schematic of the soil-structure system. The concrete structure is a single-chamber 

with interior dimensions of 2.0 x 3.2 m and a height of 2.0 m; only about 0.1 m of the walls extend above grade. The 

structure's floor slab rests on a 0.1-m-thick, high-permeability gravel layer. Two 1.25-cm-diameter holes in one wall 

of the access hatch permitted the interior of the structure to rapidly respond to changes in atmospheric pressure. A 

companion structure exists at this experimental site which is essentially identical to the one used for this study except 

that its floor slab rests on undisturbed soil. 

The atmospheric pressure was measured at 0.2 Hz using a pressure transducer connected to an outdoor 

omnidirectional static pressure tap located-3m from the structure. The response time, accuracy, and resolution of 

this pressure transducer (Paroscientific model 1015a) are 1 s, ± 5 Pa, and 0.1 Pa, respectively. The pressure 

difference between the interior of the structure and the static pressure tap was measured at 30-s intervals using a 

differential pressure transducer (Validyne model DPI03). We refer to this pressure difference as the indoor-outdoor 

pressure difference. 

All openings between the structure interior and the soil are sealed except for a 3.8-cm-diameter hole in the 

center of the structure floor. Although this hole is not geometrically representative of the cracks and gaps which 

commonly exist in real houses (Scott, 1988), these experiments require such an opening in combination with a high

permeability subslab gravel layer to enable atmospheric pressure fluctuations to generate gas velocities greater than 

the detection limit of our flow sensor. Because of the high permeability of the subslab gravel layer, the soil-gas flow 

rate into the structure only weakly depends on the geometry of an opening if the opening does not provide significant 

resistance to flow. The effect of a gravel layer on steady-state soil-gas entry was examined by Robinson and Sextro 

(1996); its effect on transient entry is explored in the second part of this study (Robinson and Sextro, 1995b). 

Therefore, the measured gas flow rate through. the hole is representative of the flow between the structure and the 

soil for more realistic opening configurations. 

The gas flow rate through the 3.8-cm-diameter hole was measured using the flow sensor shown in Fig. I. The 

80-cm high sensor incorporates two omnidirectional hot-film velocity transducers (TSI model 8470) mounted in a 

U-shaped tube (1.9-cm ID) and measures the magnitude and direction of gas flow as small as 0.15 Lmin-1
. Two 
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velocity transducers are required to determine the direction of the soil-gas flow. A hot-film velocity transducer 

determines the gas velocity by measuring the heat loss rate from a small sphere which is maintained at a constant 

temperature difference above the surrounding gas. At low velocities (low gas flow rates), the complex interaction 

between the slight flow induced by this temperature difference and the mean gas flow around the sphere causes this 

heat loss rate to depend on the orientation of the gas velocity with respect to gravity (Hatton et al., 1970). This 

effect enables us to determine the direction of the flow. At the same flow rate, the upward velocity reported by one 

transducer will be greater than the downward velocity reported by the other transducer. Although at flow rates in the 

sensor greater than 1 L min-I this effect disappears, we assume that our sampling frequency of 0.2 Hz is much more 

rapid than the changes in flow direction, allowing us to record the direction of the lower velocities that accompany 

these changes. Because of the small size of the spherical sensing element, the slight flow induced by its elevated 

temperature does not affect our measurements of gas flow. The sensor was calibrated with a bubble flow meter. The 

response time, accuracy, and resolution of the flow sensor are 2 s, 5% of reading, and 0.02 L min-I respectively. For 

the range of flows considered in this study, the resistance of the flow sensor tube varies linearly with flow and was 

measured in the laboratory to be 0.3 Pa CI min. 

Measured Soil Properties 

Table 1 reports the measured permeability of the gravel, backfill, and undisturbed soil at the structure site. The 

permeability of the undisturbed soil is scale dependent, increasing by more than an order of magnitude when the 

measurement scale increases from 0.1 to 3.5 m (Garbesi et al., 1995). In Table 1 we report the values measured at 

the 3.5-m scale, the longest length scale at which measurements were made. Although the length scale of our system 

is - 6.5 m (defined by the depth of the water table below the structure floor slab), the measurements suggest that the 

horizontal permeability of the undisturbed soil approaches an asymptote of- 3 x 10-II m2 at length scales greater 

than 3 m (Garbesi et al., 1995). The backfill region, shown in Fig. 2, was excavated during the construction of the 

structure. It was carefully refilled to minimize the disturbance of the native soil environment (Fisk et al., 1992). The 

careful packing of the backfill region is thought to have destroyed the features which create the scale dependence 

observed in the undisturbed soil. 

Measurements of the air-filled porosity of the soil at the structure site are summarized in Table 2. We calculated 

this porosity profile based on gravimetric analysis (Danielson and Sutherland, 1986) of soil cores taken by Flexser et 

a! (1993). The change in porosity between 1.6 and 2.2 m corresponds to the transition between the organic surface 

soil and the underlying sapprolite. Further geological details of the structure site are described by Flexser et al. 

(1993) and Brimhall and Lewis (1992). 

Spectral Analysis of Experimental Data 

Data for spectral analysis were collected over a period of 30 days in the fall of 1994. This data set is continuous 

except for four - 1 hr periods during which data were downloaded. For this analysis, the data were broken into 

overlapping, equal length time blocks (Bendat and Piersol, 1986). To eliminate the influence of soil-gas flow driven 
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by indoor-outdoor pressure differences on our estimates, time blocks were discarded in which the measured indoor

outdoor pressure differences were greater or less than +/- 0.5 Pa. These periods occurred during storms when high 

winds (speeds greater than -5 m s-
1
) blowing over the open holes in the structure access hatch depressurized the 

interior of the structure relative to the. outside. The application of this criterion resulted in data being drawn from 

approximately 21 non-sequential days of the measurements. 

We employ the algorithms described by Bendat and Piersol (1986) to estimate: 1) the atmospheric pressure, 

time-rate-of-change of atmospheric pressure, and soil-gas flow rate power spectra, and 2) the gain and phase 

functions of the soil-structure system. Briefly, the Hanning taper window (Bendat and Piersol, 1986) was applied to 

the data in each time block to reduce leakage of power to adjacent frequency bins. The data were then transformed 

into the frequency domain using a fast Fourier transform. The Fourier transforms of the data within each time block 

were corrected for power loss due to the taper window, and then averaged to generate smooth, consistent spectral 

estimates of the various power spectra and gain and phase functions using the expressions described by Bendat and 

Piersol (1986). To minimize the effect of aliasing on our estimates, the highest 25% of the frequency ordinates of 

each periodogram were discarded. 

We analyzed the reduced data set twice using different length time blocks. To increase the resolution of our 

estimates at low frequencies, 5-day-long blocks were used to calculate the various spectral functions at frequencies 

less than 200 dai
1

. To decrease the variance of our estimates at higher frequencies, 24-hour-long blocks were used 

to estimate these functions at frequencies greater than 100 dai1
. These estimates were combined by averaging their 

values in overlapping frequency bins. 

Theoretical Framework for Predicting Transient Soil-gas Flow 

In this section we describe the equations which govern the transient flow of soil gas into houses. In subsequent 

sections we describe both an analytical and numerical model which we use to solve these equations and predict the 

gas flow rate into and out of the experimental structure in response to changes in atmospheric pressure 

Combining Darcy's law and the continuity equation, and considering soil air as a compressible ideal gas, the 

equation which predicts the propagation of a pressure fluctuation through a porous medium is (see e.g. (Massmann, 

1989)) 

dp k ( ) -=-VpVp at eJ..L 
(1) 

where p is the soil-gas pressure (Pa), k is the soil permeability to air (m\ £is the air-filled porosity (-), and J..L is the 

dynamic viscosity of the soil gas (Pas). Massmann (1989) shows that for small deviations from the mean pressure 

(< 5 %), eqn. (1) can be approximated with negligible error by the linear transient diffusion equation 

where 
kP 

D -
p- J..Le 

(2) 
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where Dp is the pressure diffusivity (m2 s-1
), and P is the mean soil-gas pressure (Pa). Many authors (e.g. 

Buckingham, 1904; Fukuda, 1955; Weeks, 1979) have used the transient diffusion equation to predict soil gas 

response to atmospheric pressure fluctuations. After eqn. (1) or (2) has been solved, the soil-gas velocity field, v (m 

s-1
), carl be calculated with Darcy's law, 

-k 
v=-V"p 

fJ. 
(3) 

Utilizing dimensional analysis, we can. estimate a characteristic response time of the soil gas to a change in 

pressure. Such a response time, t (s), can be derived from eqn. (2), 

(4) 

where L is the characteristic length scale of the system (m). Physically, t characterizes the time for a pressure 

perturbation to propagate the distance L. 

Since the equation which predicts the propagation of small pressure perturbations through a porous medium is 

linear, many powerful analysis tools can be used to investigate soil-gas flow driven by changes in atmospheric 

pressure. This transient flow can be equivalently characterized in both the time and the frequency domains 

(Chatfield, 1989). There are many advantages to examining this flow in the frequency domain because typical 

atmospheric pressure signals are dominated by large oscillations at two or three frequencies (Gossard, 1960). 

Several studies (Burkhard et at., 1987; Nilson et al., 1991; Neeper and Limback, 1994) have employed spectral 

techniques to analyze soil-atmosphere interactions. 

In the time domain, the transient response of the soil gas to changes in atmospheric pressure is characterized in 

terms of the step-response function. The step-response function defines the soil-gas flow rate into the structure 

caused by a unit-step change in atmospheric pressure. Once this function is known, the soil-gas flow rate caused by 

any change in atmospheric pressure can be determined by convoluting the step-response function with the 

atmospheric pressure signal. In the study of heat conduction this convolution is known as Duhamel's theorem 

(Carslaw and Jaeger, 1959). Duhamel's theorem states that the soil-gas flow rate can be expressed in terms of either 

atmospheric pressure or the time-rate-of-change of atmospheric pressure. We will develop both formulations to . 

compare and contrast these two ways at looking at the problem. Duhamel's theorem defines the gas flow rate into 

and out of the structure in response to changes in atmospheric pressure, q(t) (m3 s-1
), as 

ft ' q(t) = -oo Qstep ( t- e) p attn (e)de, or (Sa) 

(5b) 

where Qstep is the step-response function of the soil-structure system (m3 s-
1 

Pa-
1
), Q:tep is the time derivative of the 
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step-response function (m
3 

s-
2 

Pa-
1
), Patm is the atmospheric pressure (Pa), P~tm is the time-rate-of-change of 

atmospheric pressure (Pa s-
1
), and e is a dummy variable indicating integration over time (s). 

In the frequency domain, the transient response of the soil gas to changes in atmospheric pressure is 

characterized by the frequency response function. The frequency response function defines the amplitude and the 

phase of the soil-gas flow rate caused by a sinusoidal oscillation in atmospheric pressure. Because the equation 

which governs the propagation of a pressure perturbation through a porous medium is linear, a sinusoidal oscillation 

in atmospheric pressure will drive a sinusoidal oscillation of soil-gas flow at the same frequency (Chatfield, 1989). 

The frequency response function can be defined as the Fourier transform of the step-response function: 

x(ro) = J;Qstep(e)exp(-iroe)de, or (6a) 

(6b) 

where i = ..r::J., and ro is the circular frequency (radians s-1
). 

We will report the complex valued frequency response function in terms of the gain, G(ro), and phase, <j>(ro), 

functions (Chatfield, 1989), 

Gq,dp(ro) = lx(ro)l and <l>q,dp(ro) = arg(x(ro)) (7a) 

and (7b) 

3 -1 
where II and arg( ) indicate the magnitude and argument of a complex number. Gq,dp(ro) (m Pa ) and <l>q,dp(ro) 

(radians) define the amplitude and phase of the soil-gas flow rate caused by an oscillation in the time-rate-of-change 

of atmospheric pressure as a function of frequency. Gq,p(ro) (m3 s-1 Pa-1
) and <l>q,p(ro) (radians) define the amplitude 

and phase of the soil-gas flow rate caused by a oscillation of atmospheric pressure as a function of frequency. 

Description of the Analytical Model 

In this section we derive analytical expressions for the step and frequency response functions of the 

experimental structure based on an exact solution of eqn. (2). The model predicts the soil-gas flow underneath the 

structure by approximating this 'flow as one-dimensional in the vertical plane between the deep soil and the gravel 

layer. The flow underneath the structure is approximated as one-dimensional because: 1) the gravel layer acts as an 

isobaric plenum (Robinson and Sextro, 1995b), and 2) atmospheric pressure fluctuations drive flow because of the 

compressibility of the soil gas. Although the flow within the gravel layer is not one-dimensional because of the 

convergence of the flow field into the hole in the concrete floor slab, we have assumed that this does not significantly 

affect the flow rate into the basement because the permeability of a gravel layer is almost 3 orders of magnitude 

larger than the permeability of the undisturbed soil. The analytical model assumes that the pressure within the gravel 
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compressibility of the soil gas. Although the flow within the gravel layer is not one-dimensional because of the 

convergence of the flow field into the hole in the concrete floor slab, we have assumed that this does not significantly 

affect the flow rate into the basement because the permeability of a gravel layer is almost 3 orders of magnitude 

larger than the permeability of the undisturbed soil. The analytical model assumes that the pressure within the gravel 

layer is uniform, and that the gas flow rate into and out of the structure is equal to the flow between the soil and the 

gravel layer. 

With these assumptions, the step-response function of the soil-structure system can be approximated by solving 

eqn. (2) with the following initial and boundary conditions: initial condition, p(z,O) = 0 Pa; boundary condition #1, 

p(O,t) = 1 Pa (unit step change in pressure in the gravel layer defined at z = 0); boundary condition #2 ()p( L, t) jaz = 
0 (a no flow boundary at the z = L; physically this boundary represents a water table, bedrock, or some other 

impermeable layer). The analytical model defines the interface between the gravel layer and the soil as z = 0. 

Assuming homogeneous soil, the solution of eqn. (2) for these boundary conditions is (Carslaw and Jaeger, 1959) 

{ 
1t z l 

oc si (2n+1)--J 1 l 4 2 L -t 
p(z,t)=--L ex -

1tn=O (2n+1) T0 

defined for t ~ 0 (8) 

where T n = 1 
2 ( 

4
2 ).!2.] (s). Using eqns. (3) and (8) and our assumption that the gas flow rate into the 

(2n+ 1) 1t ~ Dp 

structure is equivalent to the soil-gas flow into the gravel layer, we can write the structure's step-response function as 

Q (t)=--A I ex -k 2 oc {-t) 
step 1l L n=O T n 

defined for t ~ 0 (9) 

where A is the vertical cross-sectional area of the gravel layer (m2
). Using eqns. (6a) and (9) we can derive an 

expression for the frequency response function defined by the analytical model, Xa(ro), 

defined for ro > 0. (10) 

Eqns. (8)-( 1 0) indicate that computation of the analytical model requires the evaluation of an infinite series. 

Fortunately, this series rapidly converges and only a limited number of terms need be considered to accurately 

approximate the analytical solution. We considered the series converged when the relative error of neglecting an 

additional term was less than 10-8
. Values of the different soil and geometric properties used as inputs for the 

analytical model to simulate gas flow into and out of the experimental structure are listed in Table 3. Because the 

analytical model assumes a homogeneous soil, the values for permeability and air-filled porosity listed in Table 3 are 

averages of measurements. The measured values of these soil properties are summarized in Tables 1 and 2. 

9 



Description of Numerical Simulations 

A transient, finite-element model was used to predict the gas flow rate into and out of the experimental basement 

structure. The model calculates this flow rate by solving eqns. (I) and (3) over the region shown in Fig. 2. The gas 

flow rate into and out of the structure is defined by the soil-gas velocity normal to the opening in the basement floor. 

The code is a modified version of the RN3D model written by Holford (1994). RN3D was developed to simulate 

gas flow and radon transport in variably saturated, non-isothermal porous media. The original code only simulates 

regularly shaped geometries; we have written a preprocessor to generate a two-dimensional mesh with an irregularly 

shaped boundary required for simulating soil-gas flow around a basement. Holford (1994) describes the 

mathematics, numerics, and physics of the model. 

Although the experimental structure has a rectangular floor plan, we simulated it as a cylindrical basement 

surrounded by a cylindrical soil block. The radius of the simulated gravel layer was defined to match the vertical 

cross-sectional area of the gravel layer of the real structure, 5 m2
. By simplifying the problem into an axial

symmetric radial coordinate system we significantly reduce the computational requirements of the model while 

preserving the structure volume and floor area. In addition, by utilizing a cylindrical coordinate system we can 

accurately simulate the convergence of the soil-gas flow field into the hole in the center of the structure floor. We 

divided the model's soil block into the three regions shown in Fig. 2. The permeability values assigned to each 

region are listed in Table I. The air-filled porosity of the soil block varied with depth as summarized in Table 2. 

To examine the gas flow rate into and out of the structure driven by atmospheric pressure fluctuations, we used 

the finite-element to simulate the step-response function. For this simulation the following initial and boundary 

conditions are used: initially (t = 0 s) the entire soil block was assigned a pressure of 92,200 Pa (the average 

atmospheric pressure measured at the experimental site); fort> 0 s the soil surface (indicated as PI in Fig. 2) and the 

mouth of the hole (indicated as P2 in Fig. 2) were assigned a pressure of 92,199 Pa. As Fig. 2 indicates, the outside 

edge of the structure's concrete walls, floor, and footer are defined as no flow boundaries. The bottom of the soil 

block is defined as a no flow boundary at the measured depth of the water table. The outside edge of the soil block is 

also defined as a no flow boundary. The radius of the soil block (15 m) was chosen such that outside edge of the soil 

block falls outside the domain of influence of the structure. 

To simulate the step-response function, the finite-element model marches forward in time utilizing a fully

implicit time-discretization scheme until the soil-gas flow rate into the structure had fallen 7 orders of magnitude 

from its peak value. At this point, we assume that the soil gas and atmospheric pressure have reached equilibrium 

and the simulation is ended. We assumed that the atmospheric pressure is uniform across the entire surface of the 

soil, and that changes in atmospheric pressure are communicated instantaneously to the interior of the structure. 

After determining the step-response function, we calculated the gain and phase functions by first numerically 

evaluating eqn. (5a) and then applying the definitions shown in eqns. (7a) and (7b). The gas flow rate into and out of 

the structure in response to different atmospheric pressure signals was determined by numerically evaluating eqn 

(5a). By indirectly calculating this flow using the step-response function, the computational time to simulate a 
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particular atmospheric pressure signal is reduced by several orders of magnitude in comparison to directly simulating 

that pressure signal with the finite-element model. To examine the difference between· the soil-gas flow rate 

calculated using the step-response function and the flow rate calculated d~rectly by the finite-element model, we 

directly simulated 1 hr of atmospheric pressure data with the model. The maximum difference between the flow rate 

directly computed by the finite-element model and the flow rate calculated using the step-response function was less 

than 0.04 L min-1
, yielding an average relative error of less than 0.5%. 

An iterative procedure was used to incorporate the resistance of the flow sensor in the simulations. For each 

time step the pressure at the mouth of the hole was initially set equal to the pressure in the basement. The model then 

calculated the soil-gas flow rate into the basement. The pressure boundary condition at the bottom of the opening 

was adjusted to account for the resistance of the flow sensor and the flow rate into the structure was recomputed. 

This procedure was repeated until the flow rate had converged, defined as a relative flow change of less than 10-4 

between iterations. 

We also employed the finite-element model to simulate soil-gas entry driven by a steady-state indoor-outdoor 

pressure difference. For these calculations, the model solves the steady-state form of eqn. ( 1) with the following 

boundary conditions: soil surface (indicated as P1 in Fig. 2) is assigned a pressure of 92,200 Pa, and mouth of the 

opening is assigned a pressure of 92,199 Pa. As previously described, all of the other boundaries of the soil block 

are defined as no-flow. 

RESULTS AND DISCUSSION 

Since most investigations of soil-gas entry into houses have focused on entry driven by indoor-outdoor pressure 

differences, we briefly compare this entry to entry caused by changes in atmospheric pressure before presenting our 

measurements of gas flow and atmospheric pressure. A comparison of the flow field around the experimental 

structure created by an indoor-outdoor pressure difference to one induced by a change in atmospheric pressure 

highlights many ofthe differences between these two phenomena. 

We employed the finite-element model to illustrate the nature of these flow fields. Fig. 3a shows the calculated 

soil-gas pressure and velocity fields caused by a constant time-rate-of-change of atmospheric pressure. The 

streamlines indicate that a change in atmospheric pressure drives essentially one-dimensional flow between the deep 

soil and the gravel layer underneath the structure. For comparison, predictions of the soil-gas pressure and velocity 

fields caused by steady indoor-outdoor pressure difference are shown in Fig. 3b. An indoor-outdoor pressure 

difference creates a more complex, three-dimensional flow field because the driving potential for flow exists between 

the interior of the structure and surface of the soil. 

Although the different mechanisms which create indoor-outdoor pressure differences vary in time (Nazaroff et 

al., 1988), most analyses of soil-gas entry driven by these pressure differences assume that this entry can be 

approximated as a steady-state process in which the soil gas is treated as incompressible (see review by Nazaroff 
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(1992)). Thus, the flow of soil gas into a basement driven by indoor-outdoor pressure differences is balanced by 

flow from the atmosphere into the soil. In contrast, soil-gas flow driven by changes in atmospheric pressure is 

fundamentally a transient phenomena where atmospheric pressure fluctuations drive gas flow because of the 

compressibility of the soil gas. A change in atmospheric pressure causes a net gas flow either into or out of the soil 

as the soil gas adjusts to the new pressure. 

Atmospheric Pressure and Soil-gas Entry Measurements in the Time Domain 

In Fig. 4, measurements of atmospheric pressure made during a 6-day experiment indicate that atmospheric 

pressure fluctuations occur at a variety of amplitudes and time scales. Several mechanisms, ranging from the diurnal 

heating of the earth to turbulent wind fluctuations, create changes in atmospheric pressure (Gossard and Hooke, 

1975). The response of the soil-structure system to changes in atmospheric pressure depends on the characteristic 

response time of the soil gas to changes in pressure. Using eqn. (4) and values for L and Dp listed in Table 3, the 

characteristic response time of our soil-gas to a change in surface pressure is - 2 min --- much shorter than the time 

scale of the large atmospheric pressure fluctuations shown in Fig. 4. 

Measurements of atmospheric pressure and the gas flow rate into and out of the experimental structure for a 1-hr 

period of the 6-day experiment are presented in Fig. 5. This 1-hr period was chosen because the large soil-gas flows 

clearly illustrate the dynamics of the soil-atmosphere interaction. Fig. 5a shows atmospheric pressure oscillations 

with a period of -20 min and an amplitude of -10 Pa. The calculated time-rate-of-change in atmospheric pressure, 

approximated with a central difference, is shown in Fig. 5b. The measured gas flow rate into and out of the structure 

is shown in Fig. 5c. During this period, the average indoor-outdoor pressure difference was -0.02 Pa with a standard 

deviation of 0.25 Pa (approximately the resolution of the pressure transducer). 

A comparison of the calculated time-rate-of-change of atmospheric pressure, shown in Fig. 5b, and the measured 

gas flow rate, shown in Fig. 5c, reveals that the soil-gas flow rate generally follows the time-rate-of-change of 

atmospheric pressure. Falling atmospheric pressure drives soil-gas entry into the structure; rising atmospheric 

pressure drives air from inside of the structure into the soil. The larger the time-rate-of-change of atmospheric 

pressure the larger the gas flow rate into or out of the structure. The soil-gas flow rate does not respond to the high 

frequency fluctuations in atmospheric pressure because the characteristic response time causes the soil to act as a 

high-frequency filter. 

Model Predictions in the Time Domain 

Predictions of the finite-element and the analytical model are compared to the measurements in Figs. 5c and 5d, 

respectively. The finite-element model correctly predicts both the amplitude and the dynamics of the gas flow rate 

into and out of the experimental structure for this one hour period. The analytical model correctly predicts the 

dynamics of the observed gas flow but underpredicts the magnitude of the entry by a factor of- 2.3. 

The calculated soil-gas flow field shown in Fig. 3a suggests that the underprediction of the observed soil-gas 

flow rate by the analytical model may be due to its failure to account for the two-dimensional components of the flow 
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field underneath the structure. Because the floor of the structure lies 2-m below the soil surface changes in 

atmospheric pressure propagate both vertically and horizontally away from the gravel layer. 

Measured Atmospheric Pressure and Soil-gas Entry Power Spectra 

To illustrate the spectral composition of a typical atmospheric pressure signal and the long-term soil-gas flow 

rate, power spectra estimated from more than 21 days of measurements are presented in Fig. 6. The large peaks in 

the atmospheric pressure power spectrum, shown in Fig. 6a, correspond to -150 Pa diurnal and semi-diurnal 

oscillations in atmospheric pressure such as those shown in Fig. 4. The absence of any significant high-frequency 

spikes indicates that large, high-frequency pressure oscillations such as those shown in Fig. 5a occur only 

intermittently. The spectrum shown in Fig. 6a is consistent with previously reported estimates of the atmospheric 

pressure power spectrum (Gossard, I960). 

The calculated soil-gas flow and time-rate-of-change power spectra are shown in Fig. 6b. A comparison of these 

spectra reveals that the power distributions for soil-gas flow and the time-rate-of-change in atmospheric pressure· 

match. The peaks at frequencies of I and 2 day- 1 indicate large diurnal and semi-diurnal oscillations in the soil-gas 

flow rate. Approximately 3% of the total power of the soil-gas flow spectrum corresponds to a diurnal oscillation, 

and - 10% corresponds to a semi-diurnal oscillation. More than 60% of the total power of the soil-gas flow 

spectrum occurs at frequencies less than 100 day"1
. 

Measured Gain and Phase Functions 

By transforming our analysis into the frequency domain we can gain valuable insight into soil-gas flow driven by 

atmospheric pressure fluctuations. In the frequency domain, the gain and phase functions define the soil-gas flow 

rate caused by any change in atmospheric pressure. The estimates of these functions shown in Fig. 7 were calculated 

from 2I days of atmospheric pressure and gas flow measurements. 

The estimate of Gq,p(ro) shown in Fig. 7a indicates the amplitude of the soil-gas flow rate caused by a I Pa 

oscillation in atmospheric pressure as a function of frequency. The shape of Gq,p(ro) reveals that low-frequency 

oscillations in atmospheric pressure require large amplitudes to drive significant gas flow into and out of the 

structure. For example, a diurnal oscillation in atmospheric pressure with an amplitude of I Pa drives only a 0.001 

L min-I diurnal oscillation in gas flow into and out of the structure. In comparison, a I Pa IOO day"
1 

oscillation in 

atmospheric pressure drives a 0.1 L min-I 100 day-1 oscillation in gas flow. This occurs because the time-rate-of

change of a sinusoid varies linearly with its frequency; consequently, low-frequency atmospheric pressure 

oscillations require very large amplitudes to generate significant time-rates-of-change. This behavior underscores 

the utility of thinking about this phenomenon in terms of the time-rate-of-change in atmospheric pressure. 

The shape of Gq,dp(ro), shown in Fig. 7b, illustrates the relationship between soil-gas flow and the characteristic 

response time of the soil gas to a change in pressure. Physically, we can interpret Gq,dp as the amplitude of the soil 
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gas flow caused by a 1 Pa min-I oscillation in the time-rate-of-change of atmospheric pressure. The roll-off of Gq,dp 

at a frequency of- 50 day-! reveals that the soil acts as low pass filter. For a given amplitude, low-frequency 

oscillations in the time-rate-of-change atmospheric pressure will drive the largest soil-gas flow rates. The roll-off of 

Gq,dp(C.O) occurs at the frequency at which the characteristic response time of the soil gas ('t- 2 min) limits the gas 

flow into and out of the structure. 

The estimates of the phase functions shown in Fig. 7c further illustrate the relationship between the 

characteristic response time and the flow rate into and out of the structure. Physically, the phase function is the 

phase shift between the soil-gas flow rate and oscillations in atmospheric pressure. At frequencies less than 30 day- 1
, 

$q,dp(C.O) indicates that the soil-gas flow rate and the time-rate-of-change are in phase --- the maximum soil-gas flow 

rate corresponds to the maximum time-rate-of-change of atmospheric pressure. As the frequency of the oscillations 

increases, the gas flow lags behind the time-rate-of-change of atmospheric pressure because of the finite response 

time of the soil gas. 

The coherence of the measurements of gas flow and atmospheric pressure is shown in Fig. 8. The coherence 

indicates the linear correlation between the soil gas flow rate and the changes in atmospheric pressure as a function 

of frequency. The coherence varies between 0 and 1; the closer the coherence is to 1 the stronger the correlation 

(Chatfield, 1989). The coherence is greater than 0.85 for frequencies between 2 and 200 dai1 indicating a strong 

correlation between the observed gas flow and changes in atmospheric pressure. At very low frequencies, the 

coherence falls off because the frequency of the estimate approaches the spectral resolution of our analysis, - 0.17 

day-
1

. At high frequencies, we hypothesize that the coherence falls off because the size of both the atmospheric 

pressure and gas flow rate approach the resolution of our sensors. In addition, wind fluctuations may increase the 

experimental noise at these frequencies. 

Comparison of Measured and Predicted Gain and Phase Functions 

In Fig. 7, the gain and phase functions estimated from our measurements are compared to those predicted by 

both the analytical and numerical model. This comparison enables us to examine the predictions of these models 

over the entire range of possible atmospheric pressure fluctuations. 

As expected from our analysis in the time domain, both models appear to correctly predict the dynamics of the 

observed soil-gas flow. Figs. 7a and 7b indicate that the finite-element model overpredicts by- 30% the magnitude 

of the gas flow rate driven by atmospheric pressure fluctuations with a frequency less than 100 day-1
. At frequencies 

greater than 100 day-! the finite element model predicts the amplitude of the soil-gas flow rate to within 15%. Fig. 

7a and 7b indicate that the analytical model underpredicts the amplitude of the observed gas flow rate by a factor of 

- 2.3 across the entire frequency band. 

Comparing the measured and predicted phase functions in Fig. 7c indicates that both models correctly predict 

the phase lag between the soil-gas flow rate and oscillations in atmospheric pressure at frequencies less than 
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200 day"
1
. However, the predicted and measured phase functions approach different high-frequency limits. We 

hypothesize that this discrepancy can be attributed to the magnitude of the high frequency changes in both the 

atmospheric pressure and the soil-gas entry rate approaching the resolution of our sensors. The coherence shown in · 

Fig. 8 indicates that the correlation between the measured soil-gas entry rate and changes in atmospheric pressure 

falls off at high frequencies. 

Considering the uncertainties associated with both our measurements of the gas flow rate and the soil properties 

used as inputs for the simulations, the J>redictions of the finite-element model are excellent. Our examination of the 

sensitivity of soil-gas flow to changes in soil properties presented in the second part of this study (Robinson et al., 

1996) suggests that the overprediction of the observed gas flow rate caused by low-frequency oscillations in 

atmospheric pressure by the finite-element model may be caused by the uncertainty in the air-filled porosity values 

used as inputs for the model. As Table 2 indicates, we assumed an air-filled porosity of 0.25 below 5.0 m; reducing 

the air-filled porosity in this region will decrease the gas flow into and out of the structure calculated by the finite

element model. 

Contaminant Entry Driven by Atmospheric Pressure Fluctuations 

Although the time-averaged gas flow between the soil and the interior of the structure driven by atmospheric 

pressure fluctuations is zero, these fluctuations can produce a net radon (or other soil-gas contaminant) entry rate 

because the radon concentration of the soil gas is generally orders of magnitude larger than indoor air. 

Unfortunately, detailed analysis of this entry is complicated by the dilution of the radon concentration of the soil gas 

immediately underneath the structure by "fresh" air flowing out of the ventilated structure in response to increases in 

atmospheric pressure. 

By ignoring the effects of this dilution we can calculate an upper bound for the long-term radon entry rate 

caused by typical atmospheric pressure fluctuations. Atmospheric pressure fluctuations draw - 230 L of soil gas into 

the structure each day. Based on measurements made during steady-state radon entry experiments, the average radon 

concentration of the soil gas underneath the structure floor slab is - 90,000 Bq m -3 (Robinson and Sextro, 1995b ). If 

the radon concentration of the soil gas underneath structure's floor slab was not diluted by the outflow of indoor air, 

atmospheric pressure fluctuations would increase the long-term radon entry rate into the structure by 0.2 Bq s-
1

, 

more than twice the total measured diffusive entry rate into the structure. To compare this estimate with entry driven 

by steady indoor-outdoor pressure differences, we calculated an equivalent steady-state soil-gas entry rate. This 

equivalent steady-state entry rate is 0.15 L min-I which corresponds to the entry rate caused by 0.4 Pa steady indoor

outdoor difference. Such a pressure difference is commonly found in real houses (Nazaroff, 1992). 

CONCLUSIONS 

Atmospheric pressure fluctuations can draw soil gas into buildings without the indoor-outdoor pressure 

differences commonly associated with the advective entry of radon and other soil-gas contaminants. Consequently, 
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atmospheric pressure fluctuations may represent an important mechanism for driving advective entry of radon and 

soil-gas contaminants into buildings. 

The potential of an atmospheric pressure fluctuation for driving soil gas flow is determined by both its time-rate

of-change and the period over which it occurs. The larger the time-rate-of-change of an atmospheric pressure 

fluctuation the larger the soil-gas flow rate. However, changes in atmospheric pressure must be sustained to drive 

significant soil-gas flow. If a change is sustained for a period less than the characteristic response time of the soil 

gas to a change in pressure, this response time limits the flow rate into the structure --- effectively creating a low-pass 

filter. Changes in pressure must be sustained for a period comparable to several characteristic response times to 

maximize the soil-gas flow rate into or out of the structure. 

Spectral analysis has revealed that diurnal and semi-diurnal oscillations in atmospheric pressure drive the largest 

component of the long-term gas flow rate into and out of the structure. These fluctuations are the most important 

because of their relatively large magnitude ( -150 Pa) and their consistency. The largest observed soil-gas flow rates 

corresponded to relatively rapid (-20 min) and small (-15 Pa) fluctuations in atmospheric pressure. However, such 

high-frequency pressure oscillations only occur intermittently and therefore do not significantly contribute to the 

long-term gas flow rate. 

A transient finite-element model based on Darcy's law with regionally defined soil properties correctly predicts 

the observed gas flow rates into and out of the experimental structure. An analytical model based on a one

dimensional solution of the diffusion equation correctly predicts the dynanlics of the gas flow, but underpredicts its 

magnitude by a factor of -2.3. We hypothesize that this underprediction may be caused by the failure of the 

analytical model to account for two-dimensional components of the soil-gas flow field underneath the experimental 

structure. 

Soil-gas flow into houses driven by atmospheric pressure fluctuations is fundamentally different than entry 

driven by indoor-outdoor pressure differences. Indoor-outdoor pressure differences drive three-dimensional flow 

between the soil surface and openings in the building's substructure. In contrast, atmospheric pressure changes drive 

transient, largely one-dimensional flow between the basement and the deep soil. Because of these differences, we 

expect that the relationship between soil-gas entry, the properties of the soil, and the characteristics of a building's 

substructure will depend on whether this entry is driven atmospheric pressure fluctuations or indoor-outdoor pressure 

differences. In the second part of this study (Robinson et al., 1996), we examine the influence of soil properties, 

water table depth, and a high-permeability subslab gravel layer on soil-gas entry. 
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Acceleration of gravity (9.8 m s-2
) 
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) 

-./-1 
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Vertical distance between bottom of gravel layer and water table (m) 
Summation index (-) 
Soil-gas pressure (Pa) 
Mean soil-gas pressure (Pa) 
Prescribed pressure boundary condition at soil surface (Pa) 
Prescribed pressure boundary condition at the mouth of the hole in structure floor (Pa) 
Atmospheric pressure (Pa) 

Time derivative of atmospheric pressure (Pa) 

Gas flow rate into and out of the structure in response to changes in atmospheric pressure (m3 s-1
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Time derivative of step response function (m3 s-2 Pa-1
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Radial coordinate (m) 
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Soil-ga~ velocity vector (m s-1
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Vertical coordinate (m) 

Frequency response function defined by eqn. (6a) (m3 Pa-1
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Frequency response function defined by analytical model defined by eqn. (10) (m3 Pa-1
) 

Air-filled porosity(-) 

Phase function, phase shift between q(t) and oscillations in the time-rate-of-change of atmospheric 
pressure (radians) 

Phase function, phase shift between q(t) an·d oscillations in atmospheric pressure (radians) 

Dynamic viscosity of soil-gas (Pas) 

Dummy variable used to integrate over time (s) 

Characteristic response time of soil-structure system to a change in atmospheric pressure (s) 

Circular frequency (radians s- 1
) 

Modulus of a complex number (-) 
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Table 1. Measured soil and gravel permeability at the structure site used as inputs for numerical simulations. 

Soil Region Permeability (m2) 

undisturbed a 

backfillb 

-II -11 3.0 X 10 (h); 1.8 X 10 (v) 

c gravel 

3.5 X 10-12 

2.0 X 10 
-8 

a Horizontal permeability (h) based on measured permeability at 3.5-m length scale; vertical permeability (v) based 
on measured ratio of vertical to horizontal permeability (Garbesi et al., 1995). 

b The average of single-point measurements taken around the basement structure (Garbesi et al., 1993). 

c Based on laboratory measurements in a vertical column filled with a sample of the gravel used below the basement 
structure (Fisk et al., 1992) 

Table 2. Measured air-filled por<?sity of the soil at the structure site used for numerical simulations. 

Depth of layer (m) e, Air-filled porosity 
0.45 0.0- 1.6a 

1.6- 2.2a Approximately linear decrease from 
0.45 to 0.25 

2.2- 5.0a 
b 5.0- 8.5 

0.25 

0.25 (inferred) 

a Based on gravimetric analysis (Danielson and Sutherland, 1986) of soil cores taken by Flexser et al. ( 1993). 

bWe have extended the measured profile to 8.5 m, the measured depth of the water table below the soil surface. 

Table 3. Soil and geometric properties used as inputs for the analytical model. 

Property 
Soil permeability to air, k 

Air-filled porosity of the soil, e 
Mean soil-gas pressure, P 

Dynamic viscosity of soil gas, !l 

Pressure diffusivity, Dp 
Vertical cross-sectional area of gravel layer, A 

Water table depth below structure, L 

Value 

3x10-11 m2 

0.40 
92 kPa 

1.8 x 10-5 Pas 

0.39 m2 s-1 

5m
2 

6.5m 
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Fig. 1 Schematic of experimental structure and flow sensor. The figure is not drawn to-scale. 
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axial-symmetry only half of the cylinder is shown. The finite-element model calculates the soil-gas 
pressure and velocity inside the region bound by the heavy black line. The dashed lines indicate the 
interior edge of the walls of the structure. These lines are intended for visual guidance only. The figure is 
not drawn to scale. 
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Fig. 3 Calculated soil-gas velocity and pressure fields: (a) caused by a constant negative time-rate-of
change in atmospheric pressure; (b) caused by a steady indoor-outdoor pressure difference. Solid lines 
indicate streamlines, and dashed lines indicate isobars. Soil-gas pressures have been corrected for 
hydrostatic effects to illustrate the pressure gradients which drive the flow. 
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Fig. 5 Atmospheric pressure and the response of soil-structure system between hours 18 and 19 of the six
day experiment shown in Fig. 4: (a) measured atmospheric pressure; (b) time-rate-of-change of 
atmospheric pressure; (c) soil-gas flow rate (measured data represented by solid line, predictions of the 
numerical model shown by the dotted line); (d) soil-gas flow rate (measured data indicated by the solid 
line, predictions of the analytical model shown by the dotted line). Negative soil-gas flow indicates flow 
into the experimental structure. Uncertainty of the measured soil-gas flow rates is less than 5%. 
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Fig. 6 Smoothed power spectra estimated from 21 days of experimental data: (a) /po atmospheric 

pressure; (b) /dp. time-rate-of-change of atmospheric pressure, and /q. soil-~as entry rate. 
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Fig. 7 Measured and predicted gain and phase functions: (a) Gq.p(ro), amplitude of the soil-gas entry rate 
caused by a 1 Pa oscillation in aanospheric pressure; (b) Gq,dp(ro), amplitude of the soil-gas entry rate 
caused by 1 Pa min"1 oscillation in the time-rate-of-change of atmospheric pressure; (c) cpq,p(ro), phase lag 

between the soil-gas entry ra~e and an oscillation in aanospheric pressure; cpq,dp(ro), phase lag between the 
soil-gas entry rate and an oscillation in the time-rate-of-change of aanospheric pressure. Vertical bars 
indicate measurement uncertainty. 
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Fig. 8 Coherence between measured soil-gas flow and changes in atmospheric pressure. 
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